Configuring Controllers

There are three types of controllers for the line card. The controllers are the optics controller, the ethernet controller, and the coherent DSP controller. This chapter describes the procedures used to configure these controllers.

Automatic-In-Service

Automatic-In-Service (AINS) is a controller feature that:

  • allows the controller to automatically transition to the in-service state after the maintenance window,

  • associates a soak time period with the automatic-in-service (AINS) state, and

  • suppresses alarms from propagating to EMS/NMS monitoring systems during the AINS maintenance window.

You can configure AINS on the client ports of the QXP, 1.2T, 2.4T, and 2.4TX cards.

AINS states

If there are any service-affecting alarms when AINS is running on ethernet or optics controllers, the AINS state moves to Pending state. When the alarms are cleared, the AINS state moves to Running state.

The AINS soak time period restarts when there are line card reloads, XR reloads, line card warm reloads, power cycles, or alarm conditioning.

This table lists the AINS states.

State

Description

None

AINS is not enabled on the controller or the soak time period is complete.

Pending

AINS is configured on the controller. However, the soak time period has not started because either the primary state of the controller is in Shutdown, Admin down, or Not ready state or the secondary state is in Maintenance state. AINS can also move to Pending state if alarms are raised during the soak time period.

Running

AINS is enabled on the controller. The primary state of the controller is Up and the secondary state is AINS.

Soak time periods

A soak time period is a port timing parameter that:

  • suppresses alarms during the Automatic In Service (AINS) state,

  • begins when all optical and Ethernet alarms on the port are cleared, and

  • specifies the time before a port transitions from AINS to In Service (IS) state.

You can configure the soak time period to be between 1 minute to 48 hours.

All alarms are suppressed during the AINS state. If optical or Ethernet alarms are raised during the soak time period, the AINS state moves to Pending. These alarms are shown in the output of the show alarms brief card location 0/RP0/CPU0 conditions command, not in show alarms brief card location 0/RP0/CPU0 active. After all alarms are cleared, the soak time period initiates, and the AINS state moves to Running. When the soak time period expires, the port transitions to the IS state.

Configure Automatic In-Service (AINS)

Use this task to enable and set the soak time for Automatic In-Service (AINS) on a controller, a muxponder slice, or globally within the system.

AINS allows specific hardware components or the entire system to automatically transition to an in-service state after a defined soak time and reduces manual intervention.

Procedure


Step 1

Run the automatic-in-service controller controller rate controller hours hours minutes minutes command to configure AINS on a controller.

Example:

This is a sample to configure AINS globally.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#ains-soak hours 0 minutes 15
RP/0/RP0/CPU0:ios(config)#commit

Step 2

Run the hw-module location location mxponder-slice slice-number client-port-ains-soak hours hours minutes minutes command to configure AINS on a muxponder slice.

Example:

This example shows how to configure slice 0 client ports with AINS, setting the soak time to 40 minutes.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#hw-module location 0/3/nxr0 mxponder-slice 0 client-port-ains-soak hours 0 minutes 40
RP/0/RP0/CPU0:ios(config)#commit

Step 3

Run the ains-soak hours hours minutes minutes command to configure AINS globally.

Example:

This is a sample to configure AINS globally.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#ains-soak hours 0 minutes 15
RP/0/RP0/CPU0:ios(config)#commit

Disable AINS

Use this task to disable the AINS on a muxponder slice, which affects all client ports within that slice.

Procedure


Step 1

Run the hw-module location location mxponder-slice slice-number client-port-ains-soak hours hours minutes minutes command to disable AINS on all muxponder client ports. Set the hours and minutes to 0.

Example:

This is a sample in which AINS is disabled on all client ports.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#hw-module location 0/3/nxr0 mxponder-slice 0 client-port-ains-soak hours 0 minutes 0
RP/0/RP0/CPU0:ios(config)#commit

Step 2

Run the hw-module location location mxponder-slice slice-number client-port-ains-soak hours hours minutes minutescommand to disable AINS on a muxponder slice. Set the hours and minutes to 0.

Example:

This is a sample in which AINS is disabled on all client ports of slice 0.


RP/0/RP0/CPU0:ios(config)#hw-module location 0/3/nxr0 mxponder-slice 0 client-port-ains-soak hours 0 minutes 0
RP/0/RP0/CPU0:ios(config)#commit

Display AINS configuration

Use this task to view the current AINS configuration status, including the soak state and remaining duration, for various controller types.

The AINS Soak field in the output indicates the current state of AINS. The current state can be None, Pending, or Running. The Total Duration field indicates the total soak time period that is configured. The Remaining Duration field indicates the soak time that remains, after which, the AINS state moves to None.

Procedure


Run the show controller command for the desired interface type and location.

Example:

This example shows the Ethernet controller statistics with AINS Soak in running state.


RP/0/RP0/CPU0:ios#show controller HundredGigECtrlr 0/1/0/2
Thu Feb 21 19:52:55.001 UTC
Operational data for interface HundredGigECtrlr0/1/0/2:
State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    
    AINS Soak: Running
    Total Duration: 0 hour(s) 15 minute(s)
    Remaining Duration: 0 hour(s) 5 minute(s) 37 second(s)
    Laser Squelch: Disabled
Phy:
    Media type: Not known
Autonegotiation disabled.
Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
    Holdoff Time: 0ms

Example:

This example shows the Ethernet controller statistics with AINS Soak in pending state.


RP/0/RP0/CPU0:ios#show controllers HuC 0/0/0/2
Thu Mar 12 13:52:12.129 UTC
Operational data for interface HundredGigECtrlr0/0/0/2:
State:
    Administrative state: enabled
    Operational state: Down (Reason: State undefined)
    LED state: Red On
    Maintenance: Disabled
    AINS Soak: Pending
    Total Duration: 0 hour(s) 30 minute(s)
    Remaining Duration: 0 hour(s) 30 minute(s) 0 second(s)
    Laser Squelch: Disabled
Phy:
    Media type: Not known
    Alarms:
        Current:
            Local Fault
    Statistics:
        FEC:
            Corrected Codeword Count: 0
            Uncorrected Codeword Count: 9
Autonegotiation disabled.
Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Example:

This example shows the optics controller statistics with AINS Soak in running state.


RP/0/RP0/CPU0:ios#show controller optics 0/1/0/3
Thu Feb 21 19:45:41.088 UTC
Controller State: Up
 Transport Admin State: Automatic In Service
 Laser State: On
 LED State: Green
 Optics Status
         Optics Type:  400G QSFP-DD DR4
         Alarm Status:
         -------------
         Detected Alarms: None
         LOS/LOL/Fault Status:
         Alarm Statistics:
         -------------
         HIGH-RX-PWR = 0            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 0
         HIGH-LBC = 0               HIGH-DGD = 0
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 0
         TX-POWER-PROV-MISMATCH = 0
         Performance Monitoring: Enable
         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)          4.9      -12.0           0.0          0.0
         Tx Power Threshold(dBm)          3.5      -10.1           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00

         LBC High Threshold = 98 %
         Polarization parameters not supported by optics

        Total TX Power = 6.39 dBm
        Total RX Power = 5.85 dBm
         Lane  Laser Bias    TX Power    RX Power  Output Frequency
         ----  ----------  ----------  ----------  ----------------
           1      75.0 %    0.59 dBm    0.63 dBm  230.43 THz
           2      68.6 %    0.06 dBm   -0.68 dBm  230.43 THz
           3      69.0 %    0.26 dBm   -0.63 dBm  230.43 THz
           4      69.1 %    0.56 dBm   -0.10 dBm  230.43 THz
 Transceiver Vendor Details
	 Form Factor 		: QSFP-DD
	 Name 			: INNOLIGHT
	 Part Number 		: T-DP4CNT-NGL
	 Rev Number 		: 1A
	 Serial Number 		: INLBFI940027
	 PID 			: T-DP4CNT-NGL
	 VID 			: 1A
	 Date Code(yy/mm/dd) 	: 21/08/21
	 Fiber Connector Type: MPO 
	 Otn Application Code: Not Set 
	 Sonet Application Code: Not Set 
	 Ethernet Compliance Code: 400GBASE-DR4 
 Transceiver Temperature : 32 Celsius
 AINS Soak                : Running
 AINS Timer               : 0h, 15m
 AINS remaining time      : 771 seconds

When the soak time expires, AINS state changes from Running to None. The Transport Admin State of optics controller changes from Automatic In Service to In Service.


RP/0/RP0/CPU0:ios# show controllers optics 0/1/0/3
Thu Feb 21 20:02:34.126 UTC
Controller State: Up
 Transport Admin State: In Service
 Laser State: On
 LED State: Green
 Optics Status
         Optics Type:  Grey optics
         Alarm Status:
         -------------
         Detected Alarms: None
         LOS/LOL/Fault Status:
         Alarm Statistics:
         -------------
         HIGH-RX-PWR = 0            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 0
         HIGH-LBC = 0               HIGH-DGD = 0
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 0
         TX-POWER-PROV-MISMATCH = 0
         Performance Monitoring: Enable
         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)          4.9      -12.0           0.0          0.0
         Tx Power Threshold(dBm)          3.5      -10.1           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00
         LBC High Threshold = 98 %
         Polarization parameters not supported by optics
        Total TX Power = 6.41 dBm
        Total RX Power = 5.85 dBm
         Lane  Laser Bias    TX Power    RX Power  Output Frequency
         ----  ----------  ----------  ----------  ----------------
           1      74.9 %    0.60 dBm    0.63 dBm  230.43 THz
           2      68.6 %    0.06 dBm   -0.70 dBm  230.43 THz
           3      69.0 %    0.30 dBm   -0.63 dBm  230.43 THz
           4      69.1 %    0.57 dBm   -0.11 dBm  230.43 THz
 Transceiver Vendor Details
         Form Factor            : QSFP28
         Name                   : CISCO-FINISAR
         Part Number            : FTLC1152RGPL-C2
         Rev Number             : CISCO-FINISAR
         Serial Number          : FNS22150LEC
         PID                    : QSFP-100G-CWDM4-S
         VID                    : V02
         CISCO-FINISAR
         Date Code(yy/mm/dd)    : 18/04/11
         Fiber Connector Type: LC
         Sonet Application Code: Not Set
         Ethernet Compliance Code: 100GBASE-CWDM4
 Transceiver Temperature : 32 Celsius
 AINS Soak                : None
 AINS Timer               : 0h, 0m
 AINS remaining time      : 0 seconds

This example displays the coherentDSP controller statistics with AINS Soak in running state for a 2.4TX card.


RP/0/RP0/CPU0:ios#show controllers coherentDSP 0/0/0/7
Port                                            : CoherentDSP 0/0/0/7
Controller State                                : Up
Inherited Secondary State                       : Automatic-In-Service
Configured Secondary State                      : Normal
Derived State                                   : Automatic-In-Service
Loopback mode                                   : None
BER Thresholds                                  : SF = 1.0E-5  SD = 1.0E-7
Performance Monitoring                          : Enable
Bandwidth                                       : 800.0Gb/s
Alarm Information:
LOS = 0 LOF = 0 LOM = 0
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0        SF_BER = 0
SD_BER = 0      BDI = 0 TIM = 1
FECMISMATCH = 0 FEC-UNC = 0     FLEXO_GIDM = 1
FLEXO-MM = 0    FLEXO-LOM = 0   FLEXO-RDI = 1
FLEXO-LOF = 1
Detected Alarms                                 : None
Bit Error Rate Information
PREFEC  BER                                     : 2.95E-04
POSTFEC BER                                     : 0.00E+00
Q-Factor                                        : 10.70 dB
Q-Margin                                        : 4.40 dB
Instantaneous Q-Margin                          : 4.40 dB
TTI :
        Remote hostname                         : chassisA164
        Remote interface                        : CoherentDSP 0/1/0/7
        Remote IP addr                          : 0.0.0.0
FEC mode                                        : Soft-Decision 15
Flexo-Mode                                      : Enable
Flexo Details:
        Tx GID                                  : 1
        TX IID                                  : 1, 2, 3, 4, 5, 6, 7, 8,
        Rx GID                                  : 1
        RX IID                                  : 1, 2, 3, 4, 5, 6, 7, 8,

AINS Soak                                       : Running
AINS Timer                                      : 0h, 20m
AINS remaining time                             : 1196 seconds

FEC

Forward Error Correction (FEC) is a method for controlling errors during data transmission that:

  • adds data redundancy to the transmitted message using an algorithm, and

  • enables the receiver to detect and correct a limited number of errors occurring anywhere in the message, thereby eliminating the need for the transmitter to resend the message.

This feature can be enabled on 1.2T and 2.4T cards. FEC is automatically enabled on the pluggables installed in the NCS 1014.


Note


When you upgrade the software of an NCS 1014 with pluggables in the FEC disabled mode, traffic is affected.


FEC states for CoherentDSP controller

This table lists the FEC states for the coherentDSP controllers.

Table 1. FEC state for CoherentDSP controllers

State

Description

EnhancedSD15

FEC Soft-Decision 15. (Default)

Q-Margin support

Q-margin is an important optical parameter that characterizes the health of an optical link. The Q-margin value is calculated based on the average bit error rate (BER) in the optical link.

Enhanced Q-Margin support

Enhanced Q-Margin is supported for Forward Error Correction (FEC) and Performance Monitoring on CoherentDSP controllers for 2.4T cards. Enhanced Q-margin provides a better error free signal in the optical link. The enhanced Q-margin value is calculated based on the maximum number of errors per frame.

An attribute that is called instantaneous Q-margin is displayed in the output of the show controllers coherentDSP command. The lower the delta value between the instantaneous Q-margin value with the Q-margin value, the better the FEC performance of the NCS 1014 system.

The instantaneous Q-margin values thus help you to optimize the system with continuous error correction in subsea transport networks.

Configure FEC on the Ethernet controller

Use this task to configure FEC on the CoherentDSP controller.

Procedure


Run the controller { HundredGigECtrlr | fourHundredGigECtrlr } R/S/I/P fec { none | standard } command.

Example:

This sample shows how to configure FEC on the Ethernet controller.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller HundredGigECtrlr 0/1/0/6/ fec standard
RP/0/RP0/CPU0:ios(config)#commit

This sample shows the running FEC configuration on the Ethernet controller.


RP/0/RP0/CPU0:BH-SIT2#show controller HundredGigECtrlr 0/1/0/6
Tue Jul 16 15:30:30.165 IST
Operational data for interface HundredGigECtrlr0/1/0/6/2:

State:
    Administrative state: enabled
    Operational state: Down (Reason: State undefined)
    LED state: Red On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled

Phy:
    Media type: Not known
    Alarms:
        Current:
            Loss of Frequency Sync Data
    Statistics:
        FEC:
            Corrected Codeword Count: 0
            Uncorrected Codeword Count: 0
Autonegotiation disabled.
Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

From Release 24.2.11, the show controllers command output displays post FEC BER and pre FEC BER for the Ethernet controllers of the 2.4T and 2.4TX cards.


RP/0/RP0/CPU0:ios#show controllers fourHundredGigEctrlr 0/1/0/2
Thu Jan 18 18:58:03.846 UTC
Operational data for interface FourHundredGigECtrlr0/1/0/2:
State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
    Insert Idle Ingress: Disabled
    Insert Idle Egress: Disabled
Phy:
    Media type: Not known
    Statistics:
        FEC:
            Corrected Codeword Count: 358543                   Valid: True       Start time: 18:54:03 Thu Jan 18 2024
            Uncorrected Codeword Count: 0                      Valid: True       Start time: 18:54:03 Thu Jan 18 2024
        PCS:
            Total BIP errors: 0                                Valid: True       Start time: 18:54:03 Thu Jan 18 2024
            Total frame errors: 0                              Valid: False      Start time: 18:54:03 Thu Jan 18 2024
            Total Bad SH: 0                                    Valid: False      Start time: 18:54:03 Thu Jan 18 2024
Autonegotiation disabled.
Operational values:
    Speed: 400Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    Pre FEC BER: 9.1E-10
    Post FEC BER: 0.0E+00
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Configure FEC on CoherentDSP controllers

Use this task to configure FEC on the CoherentDSP controller.

Procedure


Run the controller coherentDSP R/S/I/P fec {EnhancedSD15} command.

Example:

This sample shows how to configure FEC on the CoherentDSP controller.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/0
RP/0/RP0/CPU0:ios(config-CoDSP)#fec EnhancedSD15
Tue Feb 25 11:25:52.670 UTC
WARNING! Changing FEC mode can impact traffic
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

Verify FEC on CoherentDSP controllers

This sample shows the FEC configuration on the CoherentDSP controller.


RP/0/RP0/CPU0:ios#show controllers coherentDSP 0/0/0/0                                                                                    
Tue Feb 25 11:26:08.235 UTC                                                                                                                                    

Port                                            : CoherentDSP 0/0/0/0
Controller State                                : Up                 
Inherited Secondary State                       : Normal             
Configured Secondary State                      : Normal             
Derived State                                   : In Service         
Loopback mode                                   : None               
BER Thresholds                                  : SF = 1.0E-5  SD = 1.0E-7
Performance Monitoring                          : Enable                  
Bandwidth                                       : 50.0Gb/s                
Alarm Information:
LOS = 1 LOF = 0 LOM = 0
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0        SF_BER = 0
SD_BER = 0      BDI = 0 TIM = 0   
FECMISMATCH = 0 FEC-UNC = 0       
Detected Alarms                                 : None
Bit Error Rate Information
PREFEC  BER                                     : 0.00E+00 
POSTFEC BER                                     : 0.00E+00 
Q-Factor                                        : 0.00 dB  
Q-Margin                                        : -5.00dB
Instantaneous Q_margin                        :  0 dB
TTI :
Remote IP addr                                  : 0.0.0.0
FEC mode                                        : Soft-Decision 15

AINS Soak                                       : None
AINS Timer                                      : 0h, 0m
AINS remaining time                             : 0 seconds

Laser squelching

You can enable laser squelching on Ethernet controllers. Laser squelching can be enabled on QXP, 1.2T, 2.4T, and 2.4TX cards which shuts down the laser in the event of trunk faults (LOS, LOF), and a SQUELCHED alarm is raised on the mapped client port.

Laser squelching uses an interrupt based method. Therefore, squelching occurs faster than in previous releases.

Squelching also occurs for client alarms such as Ingress LF, LOA, and CSF (but not for egress client alarms), in addition to trunk fault cases.

Configure laser squelching

Use this task to configure laser squelching on QXP, 1.2T, 2.4T, and 2.4TX cards.

Procedure


Step 1

Run the controller HundredGigECtrlr Rack/Slot/Instance/Portlaser-squelch command to configure laser squelching on 1.2T card.

Note

 

In case of muxponder configuration on the 2.4TX card, and if laser squelch is configured on the split port, whenever a fault is received on any one trunk, the corresponding split port will be squelched.

Step 2

Run the controller HundredGigECtrlr Rack/Slot/Instance/Port/Lane | controller fourHundredGigECtrlr Rack/Slot/Instance/Port laser-squelch command to configure laser squelching on a 2.4T and 2.4TX cards.

Example:

This is a sample where laser squelching is enabled on the Ethernet controller of a 2.4T card and a 2.4TX card.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller fourHundredGigECtrlr 0/1/0/1
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#laser-squelch
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit

This is a sample to view the laser squelch status on the controller of a 2.4T card and a 2.4TX card.


RP/0/RP0/CPU0:ios#show controllers fourHundredGigEctrlr 0/0/0/4
Fri Nov 17 14:26:43.213 UTC
Operational data for interface FourHundredGigECtrlr0/0/0/4:

State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: Running
      Total Duration: 0 hour(s) 5 minute(s)
      Remaining Duration: 0 hour(s) 3 minute(s) 34 second(s)
    Laser Squelch: Enabled
    Insert Idle Ingress: Disabled
    Insert Idle Egress: Disabled

Phy:
    Media type: Not known
    Statistics:
        FEC:
            Corrected Codeword Count: 580070472                Valid: False      Start time: 13:12:29 Fri Nov 17 2023
            Uncorrected Codeword Count: 0                      Valid: False      Start time: 13:12:29 Fri Nov 17 2023
        PCS:
            Total BIP errors: 0                                Valid: False      Start time: 13:12:29 Fri Nov 17 2023
            Total frame errors: 0                              Valid: False      Start time: 13:12:29 Fri Nov 17 2023
            Total Bad SH: 0                                    Valid: False      Start time: 13:12:29 Fri Nov 17 2023

Autonegotiation disabled.

Operational values:
    Speed: 400Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Step 3

Run the commit command to save the configuration.


Protection switching use cases

Fast-Squelching increases protection switching speed during trunk or client faults and is supported on 1.2T cards.


Note


Protection Switching is not supported on 2.4T line cards.


This sample topology includes a Far End station (FE station) and a Near End station (NE station). Each station includes an NCS 1014 node with two line cards. The nodes are connected to the respective traffic generators through a Protection Switching Module (PSM).

Figure 1. Reference topology for protection Switching

Protection switching principle (Trunk fault)

If there is a fiber cut in the trunk working path from the FE station to the NE station, an LOS alarm is raised on the NE working trunk. This results in the squelching of all client ports mapped to the working NE trunk port. As the laser of the client port is squelched, LOS is reported on the W-RX2 port of the PSM2. As the received optical power on the W-RX2 port of PSM is below the threshold, PSM2 switches to receive the optical signal in the P-RX2 port instead of the W-RX2 port. Hence switching happens for traffic from work to protect in FE station to NE station direction.

In the case of a unidirectional trunk fault, switching happens in one direction as explained above. In the other direction, when LOS is received at the W-RX2 port of PSM2, W-TX2 sends LOS for 25 milliseconds. When LOS is reported on the NE client port, fault gets propagated over the trunk, resulting in the squelching of FE station client ports. Finally, the LOS on the PSM port results in switching in this direction as well. In this way, bidirectional switching is implemented.

Protection switching principle (Client fault)

When a client failure happens on the FE station, a Client Signal Failure (CSF) alarm is raised on the NE station trunk. The CSF on the trunk results in the squelching of the corresponding client port, and the PSM switching happens. In summary, a fault on the NE station client RX port results in CSF on the FE station trunk, and the switching happens. And, a fault on the NE station client TX port results in LOS on the PSM ports, and the switching happens.

Guidelines and limitations:
  • PSM must be in the standalone mode.

  • PSM alarm threshold must be set to +/ –3 dBm from the actual power received in the PSM RX port.

  • If line card protection is required, the working and protect path must be configured in two different line cards.

  • If only client protection is required, the working and protection path can be configured in the same line card.

  • If the LC trunk configuration is x50 rate, then you cannot use a single line card for work and protection due to x50 coupled mode limitations (coupled trunk).

  • Manual switch, force switch, and lock-out protection on PSM result in bidirectional switching.

Idle insertion

When a fault occurs on the trunk port, you can hold the propagation of local faults using the idle insertion feature. This feature is can be enabled on the Ethernet controllers of 1.2T, 2.4T, and 2.4TX cards by configuring the hold-off timer.

When the fault occurs on the trunk, idles are inserted in the traffic stream from the trunk port to the client port for the duration of the configured holdoff-time. If the trunk port remains faulty beyond the configured holdoff-time, a local fault is transmitted towards the client device. If the trunk recovers from the fault before the holdoff-time expires, traffic resumes.

This feature can be used on customer deployments to prevent reset of client ports during a PSM switchover.

Idle Insertion for Ethernet controllers

Idle insertion for Ethernet controllers feature allows you to perform end-to-end link verification between 100GE or 400GE Ethernet controllers before bringing up the actual traffic. This feature enables you to perform pre-provisioning checks to isolate link errors in advance without any Ethernet testers.


Note


OTU4 client rate is not supported.


Idle frames can be inserted in both the ingress and egress directions on Ethernet controllers and the LOCAL-FAULT and REMOTE-FAULT alarms are cleared. The performance monitoring counters on the pcs layer are monitored to check for any errors on the link.


Warning


Do not configure the Idle insertion for Ethernet controllers feature on the link that carries live traffic.


Configure idle insertion on Ethernet controllers

Use this task to configure or disable idle insertion on Ethernet controllers.


Note


Do not configure idle frame insertion with hold-off timer.


Procedure


Step 1

Run the controller hundredGigECtrlr Rack/Slot/Instance/Port/insert-idle ingressinsert-idle egress command to enable this feature.

Example:

This is a sample for enabling the idle ingress and idle egress in 100GE controllers.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller hundredGigECtrlr 0/2/0/2
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#insert-idle ingress
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#insert-idle egress
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#end

Step 2

Run the controller hundredGigECtrlr Rack/Slot/Instance/Portno insert-idle ingressno insert-idle egress command to disable this feature.

After disabling the idle frame insertion feature, the LOCAL-FAULT or REMOTE-FAULT alarm may not appear again because the idle frames are in loop. Hence, you must break the idle frame loop in the link by performing either one of the following.

These are the limitations:

  • Perform fiber OIR on either the near-end or far-end client port.

  • Perform shut and unshut operation on any client port.


Verify idle insertion configuration for Ethernet controllers

Use this task to verify idle insertion for Ethernet controllers.


Note


Do not configure idle frame insertion with hold-off timer.


Procedure


Run the show controllers hundredGigECtrlr Rack/Slot/Instance/Port command to verify the idle ingress and idle egress that is configured on the Ethernet controllers of a 1.2T card.

Example:


RP/0/RP0/CPU0:ios#show controllers hundredGigECtrlr 0/2/0/2
Wed Mar 30 06:56:58.878 UTC
Operational data for interface HundredGigECtrlr0/2/0/2:
State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
    
    Insert Idle Ingress: Enabled
    Insert Idle Egress: Enabled
    
Phy:
    Media type: Not known
    Statistics:
        FEC:
            Corrected Codeword Count: 0
            Uncorrected Codeword Count: 0
Autonegotiation disabled.
Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Configure idle insertion on QXP Card

Use this task to configure idle insertion on 100GE or 400GE controllers for the QXP card.

Procedure


Step 1

Run the controller HundredGigECtrlr Rack/Slot/Instance/Port holdoff-time trunk-fault time-value command to configure idle insertion on the 100GE controllers for the QXP card.

The range of timevalue is from 0 ms to 3000 ms.

Example:

This is a sample where idle insertion is enabled on the 100GE controller for the QXP card.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller HundredGigECtrlr 0/1/0/1
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#holdoff-time trunk-fault 3000
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit

Example:

This is a sample to view the idle insertion status on the 100GE controller.


RP/0/RP0/CPU0:ios#show controller hundredGigECtrlr 0/1/0/1
Fri Jul 23 16:07:11.541 UTC
Operational data for interface HundredGigECtrlr0/1/0/1:

State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Enabled

Phy:
    Media type: Not known
Statistics:
FEC:
Corrected Codeword Count: 134967789
Uncorrected Codeword Count: 0

Autonegotiation disabled.

Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
        Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 3000ms

Step 2

Run the controller fourHundredGigECtrlr Rack/Slot/Instance/Port holdoff-time trunk-fault time-value command to configure idle insertion on the 400GE controllers for the QXP card.

Example:

This is a sample where idle insertion is enabled on the 400GE controller for the NCS1K4-QXP-K9 card.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller fourHundredGigECtrlr 0/0/0/10
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#holdoff-time trunk-fault 2000
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit

Example:

This is a sample to view the idle insertion status on the 400GE controller.


RP/0/RP0/CPU0:ios#show controller fourhundredGigECtrlr 0/0/0/10
Fri Jul 23 16:07:11.541 UTC
Operational data for interface fourHundredGigECtrlr0/0/0/10:

State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Enabled

Phy:
    Media type: Not known
Statistics:
FEC:
Corrected Codeword Count: 134967789
Uncorrected Codeword Count: 0

Autonegotiation disabled.

Operational values:
    Speed: 400Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
        Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 2000ms

FlexO GID and IID

The 2.4T and 2.4TX cards use are equipped with flexible OTN (flexO) interfaces on their trunk ports. These flexO interfaces enable the efficient and interoperable transport of OTU signals by aggregating multiple standard lower-rate interfaces.

Each group of flexO interfaces is assigned a unique flexO group identification (GID) number, which can range from 1 to 1,048,576. Within each group, individual interfaces are identified by a flexO instance identification (IID) number. Note that the IID for each member is fixed and cannot be modified.

Configure FlexO GID and IID

Use this task to configure flexO GID and IID on the coherentDSP controller.

Procedure


Step 1

Run the configure command to enter the global configuration mode.

Example:

This sample shows how to configure flexO GID on the CoherentDSP controller.


RP/0/RP0/CPU0:ios#configure terminal
Mon Feb  5 05:14:42.919 UTC
RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/0
RP/0/RP0/CPU0:ios(config-CoDSP)#flexo gid 1048575
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

Step 2

Run the show controllers command to verify the configuration.

Example:

This sample shows the flexO GID configuration on the CoherentDSP controller.


RP/0/RP0/CPU0:ios#show controllers coherentDSP 0/0/0/0 
Mon Feb  5 05:20:01.660 UTC

Port                                            : CoherentDSP 0/0/0/0
Controller State                                : Up
Inherited Secondary State                       : Normal
Configured Secondary State                      : Normal
Derived State                                   : In Service
Loopback mode                                   : None
BER Thresholds                                  : SF = 1.0E-5  SD = 1.0E-7
Performance Monitoring                          : Enable
Bandwidth                                       : 1200.0Gb/s

Alarm Information:
LOS = 1 LOF = 0 LOM = 0
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0        SF_BER = 0
SD_BER = 0      BDI = 0 TIM = 0
FECMISMATCH = 0 FEC-UNC = 1     FLEXO_GIDM = 0
FLEXO-MM = 0    FLEXO-LOM = 0   FLEXO-RDI = 0
FLEXO-LOF = 0   
Detected Alarms                                 : None

Bit Error Rate Information
PREFEC  BER                                     : 1.23E-02 
POSTFEC BER                                     : 0.00E+00 
Q-Factor                                        : 7.00 dB 

Q-Margin                                        : 0.80 dB

Instantaneous Q-Margin                          : 0.80 dB

TTI :
        Remote hostname                         : ios
        Remote interface                        : CoherentDSP 0/0/0/7
        Remote IP addr                          : 0.0.0.0

FEC mode                                        : Soft-Decision 15

Flexo-Mode                                      : Enable
Flexo Details:
        Tx GID                                  : 1
        TX IID                                  : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
        Rx GID                                  : 1
        RX IID                                  : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
          
AINS Soak                                       : None
AINS Timer                                      : 0h, 0m
AINS remaining time                             : 0 seconds
           

Step 3

Run the commit command to apply the changes.


LLDP Drop

Link Layer Discovery Protocol (LLDP) Snooping is enabled by default on all ethernet controllers.


Note


LLDP drop feature is not supported on NCS1K14-2.4T-K9, NCS1K14-2.4T-X-K9, and NCS1K4-QXP-K9 line cards.


Configure LLDP drop

Use this task to configure the LLDP Drop for a muxponder or muxponder slice. By default, the LLDP drop status is set to False. On enabling the LLDP Drop, the status is set to True.

Procedure


Step 1

Run the hw-module location location mxponder drop-lldp command to configure LLDP drop on a muxponder.

Example:


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios#hw-module location 0/1 mxponder drop-lldp
					

Note

 
Use the no form of the command to disable LLDP drop.

Limitation

  • When you disable LLDP globally, the LLDP gets disabled on all the interfaces.

Note

 

By default, LLDP is enabled for NCS 1014. But when you enable and disable LLDP in the global configuration mode, LLDP gets disabled on all the interfaces.

Workaround : You must enable LLDP globally or reload the Router.

Step 2

Run the hw-module location location mxponder-slice slice-number drop-lldp command to configure LLDP drop on a muxponder slice.

Example:

This sample shows slice 0 client ports enabled with LLDP drop.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#hw-module location 0/1 mxponder-slice 0 drop-lldp

Step 3

Run the commit command to apply the changes.

Example:

RP/0/RP0/CPU0:ios#commit
					

Verify the LLDP Drop status and LLPD neighbours

Use this task to verify the LLDP drop status and LLDP neighbours status.

Procedure


Step 1

Run the hw-module location location mxponder command to verify the LLDP Drop status.

Example:


RP/0/RP0/CPU0:ios#show hw-module location all mxponder
Fri Feb 22 13:22:19.281 UTC
Location:             0/0
Client Bitrate:       NONE
Trunk  Bitrate:       NONE
Status:               Not Provisioned
Location:             0/1
Slice ID:             0
Client Bitrate:       100GE
Trunk  Bitrate:       500G
Status:               Provisioned  LLDP Drop Enabled: FALSE
Client Port                     Mapper/Trunk Port          CoherentDSP0/1/0/0
Traffic Split Percentage
HundredGigECtrlr0/1/0/2/1         ODU40/1/0/0/1/2                      100
HundredGigECtrlr0/1/0/3/2         ODU40/1/0/0/1/4                      100
HundredGigECtrlr0/1/0/4/3         ODU40/1/0/0/2/3                      100
HundredGigECtrlr0/1/0/5/4         ODU40/1/0/0/3/2                      100
HundredGigECtrlr0/1/0/6/4         ODU40/1/0/0/4/1                      100
Location:             0/1
Slice ID:             1
Client Bitrate:       100GE
Trunk  Bitrate:       500G
Status:               Provisioned
LLDP Drop Enabled:    FALSE
Client Port                     Mapper/Trunk Port          CoherentDSP0/1/0/1
Traffic Split Percentage
HundredGigECtrlr0/1/0/1/2         ODU40/1/0/1/1/1                      100
HundredGigECtrlr0/1/0/4/3         ODU40/1/0/1/1/2                      100
HundredGigECtrlr0/1/0/1/3        ODU40/1/0/1/2/3                      100
HundredGigECtrlr0/1/0/3/2        ODU40/1/0/1/3/4                      100
HundredGigECtrlr0/1/0/3/4        ODU40/1/0/1/4/5                      100
Location:             0/2
Slice ID:             0
Client Bitrate:       100GE
Trunk  Bitrate:       500G
Status:               Provisioned
LLDP Drop Enabled: FALSE
Client Port                     Mapper/Trunk Port          CoherentDSP0/2/0/0
Traffic Split Percentage
HundredGigECtrlr0/2/0/2         ODU40/2/0/0/1                      100
HundredGigECtrlr0/2/0/3         ODU40/2/0/0/1                      100
HundredGigECtrlr0/2/0/4         ODU40/2/0/0/2                      100
HundredGigECtrlr0/2/0/5         ODU40/2/0/0/3                      100
HundredGigECtrlr0/2/0/6         ODU40/2/0/0/4                      100
Location:             0/2
Slice ID:             1
Client Bitrate:       100GE
Trunk  Bitrate:       500G
Status:               Provisioned
LLDP Drop Enabled:    FALSE
Client Port                     Mapper/Trunk Port          CoherentDSP0/2/0/1
Traffic Split Percentage
HundredGigECtrlr0/2/0/1/2         ODU40/2/0/1/0/1                      100
HundredGigECtrlr0/2/0/4/3         ODU40/2/0/1/1/1                      100
HundredGigECtrlr0/2/0/1/2        ODU40/2/0/1/2/2                      100
HundredGigECtrlr0/2/0/3/2        ODU40/2/0/1/3/4                      100
HundredGigECtrlr0/2/0/3/1        ODU40/2/0/1/4/2                      100
Location:             0/3
Slice ID:             0
Client Bitrate:       100GE
Trunk  Bitrate:       300G
Status:               Provisioned
LLDP Drop Enabled: TRUE
Client Port                     Mapper/Trunk Port          CoherentDSP0/3/0/0
Traffic Split Percentage
HundredGigECtrlr0/3/0/2/1         ODU40/3/0/0/0/2                      100
HundredGigECtrlr0/3/0/3/2         ODU40/3/0/0/1/1                      100
HundredGigECtrlr0/3/0/4/1         ODU40/3/0/0/2/3                      100
                    

Step 2

Run the show lldp neighbors detail and show lldp neighbors commands to verify the LLDP neighbor details.

Example:


RP/0/RP0/CPU0:ios#show lldp neighbors detail 
Tue Mar 12 11:49:20.819 IST
Capability codes:
(R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
(W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
 ------------------------------------------------
Local Interface: HundredGigECtrlr0/1/0/6/4
Chassis id: 008a.96cd.34e1
Port id: Hu0/0/0/4
Port Description - not advertised
System Name: ncs5500_node
                        
System Description: 
6.1.4, NCS-5500
                        
Time remaining: 116 seconds
Hold Time: 120 seconds
System Capabilities: R
Enabled Capabilities: R
Management Addresses - not advertised
Peer MAC Address: 00:8a:96:cd:34:10
                         
 ------------------------------------------------
Local Interface: HundredGigECtrlr0/1/0/1/2
Chassis id: 008a.96cd.34e1
Port id: Hu0/0/0/5
Port Description - not advertised
System Name: ncs5500_node
                        
System Description: 
6.1.4, NCS-5500 
Time remaining: 90 seconds
Hold Time: 120 seconds
System Capabilities: R
Enabled Capabilities: R
Management Addresses - not advertised
Peer MAC Address: 00:8a:96:cd:34:14
Total entries displayed: 2
                        
                

RP/0/RP0/CPU0:ios#show lldp neighbors
Tue Mar 12 16:17:56.713 IST
Capability codes:
(R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
(W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID       Local Intf               Hold-time  Capability     Port ID
ncs5500_node    HundredGigECtrlr0/1/0/6/4  120        R               Hu0/0/0/4
ncs5500_node    HundredGigECtrlr0/1/0/1/2 120        R               Hu0/0/0/5
                        
Total entries displayed: 2

When you enable LLDP drop on the client controller ports of the muxponder or muxponder slice, the LLDP frames drop on the ports without forwarding.

Note

 
LLDP on 400GE is not supported on the OTN-XP card.

MAC address snooping on client ports

A MAC address snooping on client ports feature is a network monitoring capability that:

  • learns the MAC address of the connected neighbor on 1.2T cards at client ports

  • enables ARP snooping across all client ports through CLI, and

  • helps overcome environments where LLDP cannot be used for neighbor discovery.

This feature overcomes the limitation, where LLDP (Link Layer Discovery protocol) cannot be enabled in some networks.

Limitations

  • When you enable or disable MAC address snooping on any slice, few packets are dropped during configuration.

  • Open config interface for enabling or disabling MAC address snooping is not supported.

  • SNMP MIB is not supported for the MAC address attribute.


Note


When you enable MAC address snooping on client ports, it overrides LLDP.


Configure MAC address snooping on client ports

Use this task to configure MAC address or ARP snoop on slice in muxponder slice mode.

Procedure


Run the hw-module location location mxponder-slice slice-number client-rate 100GE trunk-rate 600G { 100G | 150G | 200G | 250G | 300G | 350G | 400G | 450G | 500G | 550G | 600G } arp-snoop command.

Example:

This is a sample in which, MAC address or ARP snoop is configured on the client ports of slice 0 in Muxponder slice mode.


RP/0/RP0/CPU0:ios#configure
Mon Mar 16 19:30:33.933 UTC
RP/0/RP0/CPU0:ios(config)#hw-module location 0/3/nxr0 mxponder-slice 0
RP/0/RP0/CPU0:ios(config-hwmod-mxp)#client-rate 100GE
RP/0/RP0/CPU0:ios(config-hwmod-mxp)#trunk-rate 600G
RP/0/RP0/CPU0:ios(config-hwmod-mxp)#arp-snoop
RP/0/RP0/CPU0:ios(config-hwmod-mxp)#commit
Mon Mar 16 19:30:52.636 UTC
RP/0/RP0/CPU0:ios(config-hwmod-mxp)#end

This is a sample in which, MAC address or ARP snoop is configured in Muxponder mode.


RP/0/RP0/CPU0:ios#configure 
Mon Mar 16 19:08:17.154 UTC
RP/0/RP0/CPU0:ios(config)#hw-module location 0/1 mxponder arp-snoop 
RP/0/RP0/CPU0:ios(config)#commit

This sample shows the output of show controllers hundredGigEctrlr command, before configuring MAC address or ARP snoop on client ports.


RP/0/RP0/CPU0:ios#show controllers HundredGigECtrlr 0/1/0/2/1 
Mon Mar 16 19:40:37.434 UTC
Operational data for interface HundredGigECtrlr0/1/0/2/1:
State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
Phy:
    Media type: Not known
Autonegotiation disabled.
Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: None (or external)
    BER monitoring:
        Not supported
    Holdoff Time: 0ms

View neighbor MAC address

Use this task to view the neighbor's physical address after enabling MAC address or ARP snoop.

MAC address snoop output is enabled after ARP packets are received on the respective 100G client.

Procedure


Run the show controllers hundredGigEctrlr R/S/I/P command.

Example:

This sample shows the neighbor's MAC address after configuring MAC address or ARP snoop on client ports.


RP/0/RP0/CPU0:ios#show controllers HundredGigECtrlr 0/1/0/2/1 
Mon Mar 16 19:41:08.047 UTC
Operational data for interface HundredGigECtrlr0/1/0/2/1:
State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Disabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
    Neighbor Address:
    0010.9400.5502
Phy:
    Media type: Not known
Autonegotiation disabled.
Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None

Transmit shutdown

Transmit shut on trunk optics controller brings down the CIM8 and PICO transmit power. You can configure transmit shut on optics controller of a 1.2T, 2.4TX, or 2.4T card.

Configure transmit shutdown on trunk optics controller

To perform transmit shutdown, enter these commands:


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:chassisA164(config)#controller optics 0/1/0/0
RP/0/RP0/CPU0:chassisA164(config-Optics)#transmit-shutdown
RP/0/RP0/CPU0:chassisA164(config-Optics)#commit
RP/0/RP0/CPU0:ios(config-Optics)#exit
RP/0/RP0/CPU0:ios(config)#exit

Verify transmit shutdown on trunk optics controller

Use this task to verify the transmit shutdown details on the trunk optics controller.

Procedure


Run the show controllers opticsR/S/I/P command to view the transmit shutdown details.

Example:


RP/0/RP0/CPU0:ios#show controllers optics 0/0/0/0
Tue Dec 12 05:38:32.416 UTC
Controller State: Up
Transport Admin State: In Service
Laser State: Off
LED State: Green
Optics Status
     Optics Type:  CIM8 DWDM
     DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
     Wavelength=1552.524nm 

     Alarm Status:
     -------------
     Detected Alarms: None
     LOS/LOL/Fault Status:
     Alarm Statistics:
     -------------
     HIGH-RX-PWR = 0            LOW-RX-PWR = 0          
     HIGH-TX-PWR = 0            LOW-TX-PWR = 2          
     HIGH-LBC = 0               HIGH-DGD = 0          
     OOR-CD = 0                 OSNR = 1          
     WVL-OOL = 0                MEA  = 0          
     IMPROPER-REM = 0          
     TX-POWER-PROV-MISMATCH = 0          
     Laser Bias Current = 0.0 %
     Actual TX Power = -40.00 dBm 
     RX Power = -6.60 dBm 
     RX Signal Power = -7.06 dBm 
     Frequency Offset = -846 MHz 
     Performance Monitoring: Enable 
      
     THRESHOLD VALUES
     ----------------
      
     Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
     ------------------------  ----------  ---------  ------------  -----------
     Rx Power Threshold(dBm)         13.0      -17.0           0.0          0.0
     Tx Power Threshold(dBm)          5.0      -13.0           0.0          0.0
     LBC Threshold(mA)                N/A        N/A          0.00         0.00
      
     LBC High Threshold = 90 % 
     Configured Tx Power = 2.00 dBm 
     Configured CD High Threshold = 180000 ps/nm 
     Configured CD lower Threshold = -180000 ps/nm 
     Configured OSNR lower Threshold = 20.50 dB 
     Configured DGD Higher Threshold = 90.00 ps 
     Baud Rate =  137.9783780000 GBd
     Bits per Symbol = 3.5200000000  bits/symbol 
     Modulation Type: PCS 
     Chromatic Dispersion 0 ps/nm 
     Configured CD-MIN -10000 ps/nm  CD-MAX 48000 ps/nm 
     Polarization Mode Dispersion = 0.0 ps 
     Second Order Polarization Mode Dispersion = 9.00 ps^2 
     Optical Signal to Noise Ratio = 36.90 dB 
     SNR = 16.10 dB 
     Polarization Dependent Loss = 0.90 dB 
     Polarization Change Rate = 0.00 rad/s 
     Differential Group Delay = 1.00 ps 
     Filter Roll Off Factor : 0.100 
     Rx VOA Target Power : -2.0 dBm
     NLEQ Compensation Mode : 0
     Cross Polarization Gain Mode : 10
     Proprietary Submarine Parameters
       Type : 1        Value : 0
       Type : 2        Value : 0
       Type : 3        Value : 0
       Type : 4        Value : 0
       Type : 5        Value : 10485760 
          
          
 Transceiver Vendor Details
          
     Form Factor            : CIM8
     Name                   : CISCO-ACACIA
     Serial Number          : N/A
     PID                    : CIM8-C-K9
     VID                    : N/A
     Date Code(yy/mm/dd)    : 23/10/20
     Fiber Connector Type: LC 
     Otn Application Code: Not Set 
     Sonet Application Code: Not Set 
     Ethernet Compliance Code: Not set   
          
 Transceiver Temperature : 38 Celsius

AINS Soak                : None
AINS Timer               : 0h, 0m
AINS remaining time      : 0 seconds

Loopback

You can configure loopback on the CoherentDSP and Ethernet controllers of QXP, 1.2T, 24TX and 2.4T cards to identify connection problems. The loopback can be configured only in the maintenance mode. Use the controller controller-type and the secondary-admin-state maintenance commands to place the controllers in the maintenance mode.

Loopback configuration alarm details for each controller are triggered whenever there is a change in the loopback configuration. Details such as, location of the controller, severity, configuration date and time, and description are available in the output of the show alarms brief system active and show alarms brief history commands.

Configure loopback

Use this task to configure loopback on a 1.2T, 2.4T, and 2.4TX card.

Procedure


Step 1

Run the controllercontrollertype Rack/Slot/Instance/Portsec-admin-state maintenanceloopback [ internal ] command to configure the loopback on a 1.2T card.

Example:

This example shows how a internal loopback is configured on the Ethernet controller of a 1.2T card.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller HundredGigECtrlr 0/1/0/1
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#sec-admin-state maintenance
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#loopback internal
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit
RP/0/RP0/CPU0:ios(config)#exit

Note

 

Line loopback is not supported on CoherentDSP controller of 1.2T card.

Example:

This example shows how to verify a internal loopback configured on the Ethernet controller of 1.2T card.


RP/0/RP0/CPU0:ios#show controller HundredGigECtrlr 0/1/0/1
Fri Nov 17 10:01:22.840 UTC
Operational data for interface HundredGigECtrlr0/1/0/1:

State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Enabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
    Insert Idle Ingress: Disabled
    Insert Idle Egress: Disabled

Phy:
    Media type: Not known
    Statistics:
        FEC:
            Corrected Codeword Count: 72671614                 Valid: True       Start time: 15:53:12 Thu Nov 16 2023
            Uncorrected Codeword Count: 12                     Valid: True       Start time: 15:53:12 Thu Nov 16 2023
        PCS:
            Total BIP errors: 0                                Valid: True       Start time: 15:53:12 Thu Nov 16 2023
            Total frame errors: 0                              Valid: False      Start time: 15:53:12 Thu Nov 16 2023
            Total Bad SH: 0                                    Valid: False      Start time: 15:53:12 Thu Nov 16 2023

Autonegotiation disabled.

Operational values:
    Speed: 400Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: Internal
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Step 2

Run the controller {HundredGigECtrlr Rack/Slot/Instance/Port/Lane | fourHundredGigECtrlrRack/Slot/Instance/Port}sec-admin-state maintenanceloopback[ line | internal ] command to configure the loopback on 2.4T card and 2.4TX card.

Example:

This example shows how a line loopback is configured on coherentDSP controller of a 2.4T card and 2.4TX card.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/1/0/0
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#sec-admin-state maintenance 
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#loopback line
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit
RP/0/RP0/CPU0:ios(config)#exit

Note

 

In case of muxponder configuration on the 2.4TX card, internal loopback must be applied on both trunk ports for the loopback behaviour to reflect on the split ports. For direct ports, the corresponding trunk internal loopback works as expected.

Example:

This example shows how to configure internal loopback on a coherent DSP controller.


RP/0/RP0/CPU0:ios#configure
Fri Jul 8 10:42:51.329 UTC
RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/0
RP/0/RP0/CPU0:ios(config-CoDSP)#secondary-admin-state maintenance
RP/0/RP0/CPU0:ios(config-CoDSP)#loopback internal
RP/0/RP0/CPU0:ios(config-CoDSP)#commit
Fri Jul 8 10:43:48.644 UTC
RP/0/RP0/CPU0:ios(config-CoDSP)#end

This example shows how to verify the internal loopback configured on a coherent DSP controller.

RP/0/RP0/CPU0:ios#show controllers coherentDSP 0/0/0/0
Fri Jul 8 10:45:53.820 UTC
Port : CoherentDSP 0/0/0/0
Controller State : Down
Inherited Secondary State : Normal
Configured Secondary State : Maintenance
Derived State : Maintenance
Loopback mode : Internal
BER Thresholds : SF = 1.0E-5 SD = 1.0E-7
Performance Monitoring : Enable
Bandwidth : 400.0Gb/s
Alarm Information:
LOS = 2 LOF = 0 LOM = 0
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0 SF_BER = 0
SD_BER = 0 BDI = 0 TIM = 0
FECMISMATCH = 0 FEC-UNC = 0 FLEXO_GIDM = 0
FLEXO-MM = 0 FLEXO-LOM = 0 FLEXO-RDI = 0
FLEXO-LOF = 0
Detected Alarms : LOS
Bit Error Rate Information
PREFEC BER : 5.00E-01
POSTFEC BER : 0.00E+00
Q-Factor : 0.00 dB
Q-Margin : 0.00dB
OTU TTI Received
FEC mode : C_FEC
Flexo-Mode : Enable
Flexo Details:
Tx GID : 0
Rx GID : 0
AINS Soak : None
AINS Timer : 0h, 0m
AINS remaining time : 0 seconds

Example:

This example shows how to configure line loopback on a coherent DSP controller.

RP/0/RP0/CPU0:ios#configure
Fri Jul 8 10:48:48.577 UTC
RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/0
RP/0/RP0/CPU0:ios(config-CoDSP)#secondary-admin-state maintenance
RP/0/RP0/CPU0:ios(config-CoDSP)#loopback line
RP/0/RP0/CPU0:ios(config-CoDSP)#commit
Fri Jul 8 10:49:26.809 UTC
RP/0/RP0/CPU0:ios(config-CoDSP)#end

This example shows how to verify the line loopback configured on a coherent DSP controller.

RP/0/RP0/CPU0:ios#show controllers coherentDSP 0/0/0/0
Fri Jul 8 10:49:44.073 UTC
Port : CoherentDSP 0/0/0/0
Controller State : Down
Inherited Secondary State : Normal
Configured Secondary State : Maintenance
Derived State : Maintenance
Loopback mode : Line
BER Thresholds : SF = 1.0E-5 SD = 1.0E-7
Performance Monitoring : Enable
Bandwidth : 400.0Gb/s
Alarm Information:
LOS = 2 LOF = 0 LOM = 0
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0 SF_BER = 0
SD_BER = 0 BDI = 0 TIM = 0
FECMISMATCH = 0 FEC-UNC = 0 FLEXO_GIDM = 0
FLEXO-MM = 0 FLEXO-LOM = 0 FLEXO-RDI = 0
FLEXO-LOF = 0
Detected Alarms : LOS
Bit Error Rate Information
PREFEC BER : 5.00E-01
POSTFEC BER : 0.00E+00
Q-Factor : 0.00 dB
Q-Margin : 0.00dB
OTU TTI Received
FEC mode : C_FEC
Flexo-Mode : Enable
Flexo Details:
Tx GID : 0
Rx GID : 0
AINS Soak : None
AINS Timer : 0h, 0m
AINS remaining time : 0 seconds

Example:

This example shows how to configure internal loopback on the 400GE controller.


RP/0/RP0/CPU0:ios#configure
Fri Jul 8 11:19:26.286 UTC
RP/0/RP0/CPU0:ios(config)#controller FourHundredGigECtrlr 0/0/0/3
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#sec-admin-state maintenance
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#loopback internal
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit
Fri Jul 8 11:19:47.496 UTC
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#end

This example shows how to verify the internal loopback configured on the 400GE controller.


RP/0/RP0/CPU0:ios#show controllers FourHundredGigECtrlr 0/0/0/3
Fri Jul 8 11:19:59.597 UTC
Operational data for interface FourHundredGigECtrlr0/0/0/3:
State:
Administrative state: enabled
Operational state: Down (Reason: State undefined)
LED state: Red On
Maintenance: Enabled
AINS Soak: None
Total Duration: 0 hour(s) 0 minute(s)
Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
Laser Squelch: Disabled
Insert Idle Ingress: Disabled
Insert Idle Egress: Disabled
Phy:
Media type: Not known
Alarms:
Current:
Loss of Signal
Statistics:
FEC:
Corrected Codeword Count: 702710
Uncorrected Codeword Count: 1147
Autonegotiation disabled.
Operational values:
Speed: 400Gbps
Duplex: Full Duplex
Flowcontrol: None
Loopback: Internal
BER monitoring:
Not supported
Forward error correction: Standard (Reed-Solomon)
Holdoff Time: 0ms

Example:

This example shows how to configure line loopback on the 4X100GE MXP.

RP/0/RP0/CPU0:ios(config)#controller hundredGigECtrlr 0/3/0/1/1
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#loopback line 
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#sec-admin-state maintenance 
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit 

This example shows how to verify the line loopback configured on the 4X100GE MXP.

RP/0/RP0/CPU0:ios#sh controllers hundredGigECtrlr 0/3/0/1/1
Fri Jul 22 10:34:39.730 UTC
Operational data for interface HundredGigECtrlr0/3/0/1/1:

State:
    Administrative state: enabled
    Operational state: Up
    LED state: Green On
    Maintenance: Enabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
    Insert Idle Ingress: Disabled
    Insert Idle Egress: Disabled

Phy:
    Media type: Not known
    Statistics:
        FEC:
            Corrected Codeword Count: 6110368                  Valid: True       Start time: 13:10:41 Thu Jul 21 2022
            Uncorrected Codeword Count: 2771                   Valid: True       Start time: 13:10:41 Thu Jul 21 2022
        PCS:
            Total BIP errors: 63700992                         Valid: True       Start time: 13:10:41 Thu Jul 21 2022
            Total frame errors: 0                              Valid: False      Start time: 13:10:41 Thu Jul 21 2022
            Total Bad SH: 0                                    Valid: False      Start time: 13:10:41 Thu Jul 21 2022

Autonegotiation disabled.

Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: Line
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Example:

This example shows how to configure internal loopback on the 4X100GE MXP.

RP/0/RP0/CPU0:ios#conf
RP/0/RP0/CPU0:ios(config)#controller hundredGigECtrlr 0/3/0/7/1
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#sec-admin-state maintenance 
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#loopback internal 
RP/0/RP0/CPU0:ios(config-eth-ctrlr)#commit 

This example shows how to verify the internal loopback configured on the 4X100GE MXP.

RP/0/RP0/CPU0:ios#show controller HundredGigECtrlr 0/3/0/7/1
Fri Jul 22 10:40:34.928 UTC

Operational data for interface HundredGigECtrlr0/3/0/7/1:

State:
    Administrative state: enabled
    Operational state: Down (Reason: State undefined)
    LED state: Red On
    Maintenance: Enabled
    AINS Soak: None
      Total Duration: 0 hour(s) 0 minute(s)
      Remaining Duration: 0 hour(s) 0 minute(s) 0 second(s)
    Laser Squelch: Disabled
    Insert Idle Ingress: Disabled
    Insert Idle Egress: Disabled

Phy:
    Media type: Not known
    Alarms:
        Current:
            Loss of Signal
    Statistics:
        FEC:
            Corrected Codeword Count: 31426046
            Uncorrected Codeword Count: 2187

Autonegotiation disabled.

Operational values:
    Speed: 100Gbps
    Duplex: Full Duplex
    Flowcontrol: None
    Loopback: Internal
    BER monitoring:
        Not supported
    Forward error correction: Standard (Reed-Solomon)
    Holdoff Time: 0ms

Step 3

Run the show alarms brief system active command to view the loopback configuration alarms.

Example:

RP/0/RP0/CPU0:ios#show alarms brief system active
Tue Sep 13 17:43:35.212 UTC

------------------------------------------------------------------------------------
Active Alarms
------------------------------------------------------------------------------------
Location        Severity     Group            Set Time                   Description                                                                                                                                                                              
------------------------------------------------------------------------------------                                                                                                                                                                                                                                                                                             0/2             Minor        Controller       09/13/2022 17:34:32 UTC    HundredGigECtrlr0/2/0/2 - Internal Loopback Configured
0/2             Minor        Controller       09/13/2022 17:34:32 UTC    HundredGigECtrlr0/2/0/2 - Internal Loopback Configured
0/2             Minor        Controller       09/13/2022 17:34:32 UTC    HundredGigECtrlr0/2/0/2 - Line Loopback Configured                                                                                                                                   
0/2             Major        Ethernet         09/13/2022 17:34:31 UTC    HundredGigECtrlr0/2/0/1/2 - Loss of Synchronization The Data Interface                                                                                                                     
0/2             Minor        Controller       09/13/2022 17:39:19 UTC    CoherentDSP0/2/0/0 - Internal Loopback Configured                                                                                                                                        

Loop-and-drop mechanism on Ethernet controller

Table 3. Feature History

Feature Name

Release Information

Description

Loop-and-drop mechanism on Ethernet controller

Cisco IOS XR Release 24.4.1

The internal and line loopback configurations on the Ethernet controller have been enhanced to activate a loop-and-drop mechanism. This mechanism prevents traffic from flowing beyond the client port to the near end router in case of internal loopback, and far end router in case of the line loopback.

This loop-and-drop mechanism is implemented by:

  • Internal loopback: Shutting down the transmit power at the client Ethernet controller.

  • Line loopback: Inserting a local fault alarm signal toward the trunk.

This feature is supported on these cards:

  • NCS1K14-2.4T-K9

  • NCS1K14-2.4T-X-K9

  • NCS1K4-QXP-K9

  • NCS1K4-1.2T-K9 (supports only internal loop-and-drop)

  • NCS1K4-1.2TL-K9 (supports only internal loop-and-drop)

This enhancement isolates traffic during loopback, preventing it from reaching the router. A practical use case for this is when using the PRBS pattern for testing. By effectively containing the PRBS traffic, the mechanism ensures that PRBS traffic does not cause unwanted events such as error bits, which could otherwise lead to misinterpretation of network status and trigger false alarms at the router ports.

From Release 24.4.1, configuring client loopback on Ethernet controllers activates a loop-and-drop mechanism, replacing the previous loop-and-continue mechanism. When you set up internal and line loopbacks under Ethernet controllers, these loopback types are automatically applied for both 100GE and 400GE traffic.

  • Internal loop-and-drop

  • Line loop-and-drop

Advantage

This enhancement provides a significant advantage by isolating traffic during loopback operations. It prevents traffic from reaching the router, thereby avoiding potential undesired events and alarms at the router ports. This is particularly beneficial in maintaining network stability and integrity during diagnostic activities.

A practical example of this advantage is seen when using the Pseudo-Random Bit Sequence (PRBS) pattern to evaluate network link performance and reliability. By effectively containing PRBS traffic within the loopback, the mechanism prevents unwanted events, such as error bits, from reaching the router. This containment ensures that test data does not interfere with the router's regular functions, avoiding misinterpretation of network status and preventing false alarms at the router ports.

Internal loop-and-drop

When you apply an internal loopback on a client Ethernet controller, the transmit power is disabled. This mechanism is applicable for both breakout and non-breakout setups. In a breakout setup, power is turned off on the specific lane where the loopback is configured, whereas in a non-breakout setup, power is shut down on all the lanes. This power shutdown prevents traffic from traveling beyond the client port to the near-end router as indicated by the cross mark in this image.

Figure 3. Internal loop-and-drop

Line loop-and-drop

When you apply a line loopback on a specific client Ethernet controller, the system forces a local fault (LF) signal on the near-end in the egress direction. This LF signal then propagates towards the far-end, preventing the traffic from flowing towards the far-end router as indicated by the cross mark in this image.

Figure 4. Line loop-and-drop

Supported cards

This mechanism is supported on these cards:

  • NCS1K14-2.4T-K9

  • NCS1K14-2.4T-X-K9

  • NCS1K4-QXP-K9

  • NCS1K4-1.2T-K9 (supports only internal loop-and-drop)

  • NCS1K4-1.2TL-K9 (supports only internal loop-and-drop)

Loop-and-drop mechanism on coherentDSP controller

From Release 25.3.1, configuring trunk loopback on coherentDSP controllers activates a loop-and-drop mechanism, replacing the previous loop-and-continue mechanism. When you set up internal and line loopbacks under coherentDSP controller, these loopback types are automatically applied for the traffic:

  • Internal

  • Line

Table 4. Feature History

Feature Name

Release Information

Description

Loop-and-drop mechanism on coherentDSP controller

Cisco IOS XR Release 25.3.1

The internal and line loopback configurations on the coherentDSP controller are enhanced to activate a loop-and-drop mechanism. This mechanism prevents traffic from flowing beyond the trunk port to the far end router in case of internal loopback, and connected router in case of the line loopback.

This loop-and-drop mechanism is implemented by:

Internal: Propagating local fault to the far-end node by modifying the 64th byte of TTI.

Line: Inserting a local fault alarm signal toward clients associated with the trunk where the loopback is applied in the current node.

This feature is supported on these cards:

  • NCS1K14-2.4T-K9

  • NCS1K14-2.4T-X-K9

  • NCS1K14-2.4T-L-K9

  • NCS1K14-2.4T-XL-K9

The loop-and-drop feature provides a clear indication to the user that if traffic is not active on the router port, it is due to either a fault or an existing configuration that is preventing the traffic from coming up.

Supported cards

This mechanism is supported on these cards:

  • NCS1K14-2.4T-K9

  • NCS1K14-2.4T-X-K9

  • NCS1K14-2.4T-L-K9

  • NCS1K14-2.4TL-X-K9

How internal loopback on a coherentDSP controller works

This process explains the effects and behavior when applying an internal loopback on the coherentDSP controller, specifically how the software handles the local fault (LF) signal propagation to the associated clients and routers.

Summary

The key components that are involved in loop and drop process during the internal loopback are:
  • Near-end and far-end routers

  • Near-end and far-end NCS 1014 nodes with 2.4T cards.

Workflow

Figure 5. Internal loopback on Trunk port

When you apply an internal loopback on a coherentDSP controller:

  1. The software overwrites the most significant bit of the 64th byte of the TTI (Trail Trace Identifier) at the near-end (NE) node.
  2. This modified TTI is propagated to the far-end (FE) node.
  3. The FE node detects the overwritten bit in the TTI.
  4. Upon detection, the FE node raises an LF signal.
  5. The LF signal is propagated to the client devices associated with the trunk on the FE node.
  6. The LF signal is also sent to the FE router.

Result

As a result, loopback traffic is prevented from flowing towards the FE router, as indicated by the cross mark in the related image.

Limitation of Internal loop and drop on the trunk port

This feature is implemented exclusively with ASCII TTI, so configuring HEX TTI is not supported.

How line loopback on a coherentDSP controller works

This process explains the effects and behavior when applying a line loopback on the coherent controller, specifically how the software handles the local fault (LF) signal propagation to associated clients and routers.

Summary

The key components that are involved in loop and drop process during the line loopback are:
  • Near-end and far-end routers

  • Near-end and far-end NCS 1014 nodes with 2.4T cards.

Workflow

Figure 6. Line loopback on Trunk port

When you apply an line loopback on a coherentDSP controller:

  1. The software forces an LF signal towards the clients associated with the trunk in the near-end (NE) node.
  2. The LF signal generated by the software is then propagated from the clients towards the connected router.

Result

This LF signal prevents the traffic from flowing towards the connected router as indicated by the cross mark in this image.

Restore factory settings


Note


Perform this operation only on the console port.

Use this task to restore NCS 1014 to factory settings.

You can perform this operation only through the console port and not on the management interface.

Procedure


Run the commit replace command.

Example:


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#commit replace
Tue Sep 24 09:36:59.430 UTC

This commit will replace or remove the entire running configuration. This
operation can be service affecting.
Do you wish to proceed? [no]: yes
RP/0/RP0/CPU0:ios(config)#exit
RP/0/RP0/CPU0:ios#reload
Tue Sep 24 09:38:12.881 UTC

Standby card not present or not Ready for failover. Proceed? [confirm]

Preparing system for backup. This may take a few minutes especially for large configurations.
        Status report: node0_RP0_CPU0: BACKUP INPROGRESS 

        Status report: node0_RP0_CPU0: BACKUP HAS COMPLETED SUCCESSFULLY 
[Done]

Proceed with reload?  [confirm]
Reloading node  0/RP0/CPU0

RL: Reboot initiated with code 1, cause User initiated graceful reload reboot_timeout 30 shutdown delay 0
RL: Shutdown initiated
Query the node to be reloaded 
 NODE_IP of noded to be reloaded 198.51.100.1
sending stop hb
Cause: User initiated graceful reload
VM IP addr sent for reload 198.51.100.1

Received ack from sdrmgr for reload request.Returncode:0
successful disconnection from service 
wd_disconnect_cb 548 CMP-WD disconnected successfully
Invmgr successful disconnection from service

RP/0/RP0/CPU0:ios#
Disconnecting from 'default-sdr--1' console. Continue(Y/N)?


Connecting to 'default-sdr--1' console
ÿûÿûÿûÿýbootlogd: ioctl(/dev/pts/2, TIOCCONS): Device or resource busy
/sbin/restorecon:  lstat(/etc/adjtime) failed:  No such file or directory
Configuring network interfaces... done.
Starting system message bus: dbus.
Starting OpenBSD Secure Shell server: sshd
sshd start/running, process 1739
Starting rpcbind daemon...done.
Starting random number generator daemonUnable to open file: /dev/tpm0
.
Starting system log daemon...0
Starting kernel log daemon...0
tftpd-hpa disabled in /etc/default/tftpd-hpa
Starting internet superserver: xinetd.
net.ipv4.ip_forward = 1
Libvirt not initialized for container instance
Starting crond: OK
SIOCADDRT: File exists

DBG_MSG: platform type is 0
[*] ima_policy have loaded, or IMA policy file does not exist
Start serial incoming on , Clearing ..
RP/0/RP0/CPU0:Sep 24 09:38:44.284 UTC: fpd-serv[256]: %PKT_INFRA-FM-3-FAULT_MAJOR : ALARM_MAJOR :FPD-NEED-UPGRADE :DECLARE :0/PM0:  

This (D)RP Node is not ready or active for login /configuration
.......
........
........

ios con0/RP0/CPU0 is now available

Press RETURN to get started.

!!!!!!!!!!!!!!!!!!!! NO root-system username is configured. Need to configure root-system username. !!!!!!!!!!!!!!!!!!!!

After the commit replace operation completes, you must perform the IOS XR reload operation.

The commit best-effort command merges the target configuration with the running configuration and commits only valid changes (best effort). Some configuration changes might fail due to semantic errors.


Headless mode

Headless mode is an operating state of the NCS 1014 that occurs during process restarts, CPU reload, or CPU removal, maintains unimpeded traffic flow for up to 72 hours, and allows fault propagation for client and trunk ports.

During headless mode:

  • The control plane is not up and running.

  • You cannot provision new configurations.

  • You cannot view operational data.

  • Performance monitoring data based on 15-minute and 24-hour intervals is not supported.

Trail Trace Identifier

A trail trace identifier (TTI) is a feature that:

  • helps identify a signal from its source to its destination within a network,

  • supports configuration of sent or expected identifiers in both ASCII and HEX formats, and

  • triggers a controller shutdown and a TIM alarm when an expected TTI string does not match the received trace string.

Configure Trail Trace Identifier

Use this task to configure TTI on the coherent DSP controllers of a 1.2T, 2.4T, or 2.4TX card.

Procedure


Step 1

Run the controller coherentDSP R/S/I/P tti {sent | expected} ascii | hextti-string command.

Note

 
The tti-string can have a maximum of 64 characters for ASCII and 128 characters for HEX.

Example:

This sample shows how to configure TTI on a coherent DSP controller with the sent and expected strings set to the same ASCII string. The state of the controller is up.

RP/0/RP0/CPU0:ios#config
RP/0/RP0/CPU0:ios(config)#controller coherentDSP
RP/0/RP0/CPU0:ios(config-CoDSP)#tti sent ascii hello
RP/0/RP0/CPU0:ios(config-CoDSP)#tti expected ascii hello cisco
RP/0/RP0/CPU0:ios(config-CoDSP)#commit
Thu Dec 7 14:25:43.391 IST
RP/0/RP0/CPU0:ios(config-CoDSP)#end
This is a sample to view the TTI details on a coherentDSP controller.

RP/0/RP0/CPU0:ios#show controllers coherentDSP 0/3/0/0
Thu Dec 7 14:26:37.345 IST

Port : CoherentDSP 0/3/0/0
Controller State : Down
Inherited Secondary State : Normal
Configured Secondary State : Normal
Derived State : In Service
Loopback mode : None
BER Thresholds : SF = 1.0E-5 SD = 1.0E-7
Performance Monitoring : Enable
Bandwidth : 800.0Gb/s

Alarm Information:
LOS = 0 LOF = 0 LOM = 0
OOF = 0 OOM = 0 AIS = 0
IAE = 0 BIAE = 0 SF_BER = 0
SD_BER = 0 BDI = 0 TIM = 1
FECMISMATCH = 0 FEC-UNC = 0 FLEXO_GIDM = 0
FLEXO-MM = 0 FLEXO-LOM = 0 FLEXO-RDI = 0
FLEXO-LOF = 0
Detected Alarms : TIM

Bit Error Rate Information
PREFEC BER : 2.57E-04
POSTFEC BER : 0.00E+00
Q-Factor : 10.80 dB

Q-Margin : 4.50 dB

Instantaneous Q-Margin : 4.50 dB

OTU TTI Sent

FULL TTI ASCII STRING : hello
OTU TTI Received
FULL TTI ASCII STRING : hello
OTU TTI Expected
FULL TTI ASCII STRING : hello cisco

FEC mode : Soft-Decision 15

Flexo-Mode : Enable
Flexo Details:
Tx GID : 1
TX IID : 1, 2, 3, 4, 5, 6, 7, 8,
Rx GID : 1
RX IID : 1, 2, 3, 4, 5, 6, 7, 8,

AINS Soak : None
AINS Timer : 0h, 0m
AINS remaining time : 0 seconds
This sample shows how to configure TTI on a coherent DSP controller with the sent and expected strings set to HEX strings.

RP/0/RP0/CPU0:ios#config
RP/0/RP0/CPU0:ne(config)#controller coherentDSP 0/0/0/0
RP/0/RP0/CPU0:ne(config-CoDSP)#tti sent hex 6E6E6E2A2A2A
RP/0/RP0/CPU0:ne(config-CoDSP)#tti  expected hex 3F4B4B4B3D3E3A
RP/0/RP0/CPU0:ne(config-CoDSP)#commit
RP/0/RP0/CPU0:ios(config)#exit

Step 2

Run the commit command to apply the changes.


Configure Trail Trace Identifier on QXP card

Use this task to configure the TTI sent or expected string in the full ASCII format, or Source Access Point Identifier (SAPI)/Destination Access Point Identifier (DAPI) format on ODU-flex, ODU4, and coherentDSP controllers for the QXP card.


Note


TTI operates only in trunk mode OR .


This table lists the ASCII format that is supported for TTI:

ASCII with character string Controller

Full ASCII

64-character

CoherentDSP,odu4,odu-flex

SAPI ASCII

15-character

CoherentDSP,odu4,odu-flex

DAPI ASCII

15-character

CoherentDSP,odu4,odu-flex

Operator-specific ASCII

32-character

CoherentDSP,odu4,odu-flex

Procedure


Step 1

Run the controller controller-type R/S/I/P tti {sent | expected} {ascii | sapi ascii | dapi ascii | operator-specific ascii } tti-string to configure TTI.

Example:

This is a sample configuration for FULL TTI for coherentDSP controller.


RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/8
RP/0/RP0/CPU0:ios(config-CoDSP)#tti sent ascii cisco
RP/0/RP0/CPU0:ios(config-CoDSP)#tti  expected ascii cisco123
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

This is a sample configuration for TTI HEX for coherentDSP controller.


RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/8
RP/0/RP0/CPU0:ios(config-CoDSP)#tti sent hex 6E6E6E2A2A2A
RP/0/RP0/CPU0:ios(config-CoDSP)#tti  expected hex 3F4B4B4B3D3E3A
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

This is a sample configuration for Operator specific TTI for coherentDSP controller.


RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/8
RP/0/RP0/CPU0:ios(config-CoDSP)#tti sent operator-specific ascii hellooo
RP/0/RP0/CPU0:ios(config-CoDSP)#tti expected operator-specific ascii hellooo
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

This is a sample configuration for Operator specific TTI HEX for coherentDSP controller.


RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/8
RP/0/RP0/CPU0:ios(config-CoDSP)#tti  sent operator-specific hex 6E6E6E2A2A2A3D3E3A3A6E6E6E2A2A2A3D
RP/0/RP0/CPU0:ios(config-CoDSP)#tti  expected operator-specific hex 5A5A6D3A3B3C3F4B4B4B3D3E3A
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

This a sample configuration for SAPI for coherentDSP controller.


RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/8
RP/0/RP0/CPU0:ios(config-CoDSP)#tti sent operator-specific ascii hellooo
RP/0/RP0/CPU0:ios(config-CoDSP)#tti expected operator-specific ascii hellooo
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

This is a sample configuration for DAPI for coherentDSP controller.


RP/0/RP0/CPU0:ios(config)#controller coherentDSP 0/0/0/8
RP/0/RP0/CPU0:ios(config-CoDSP)#tti sent dapi ascii cisco123
RP/0/RP0/CPU0:ios(config-CoDSP)#tti  expected dapi ascii hello
RP/0/RP0/CPU0:ios(config-CoDSP)#commit

Step 2

Run the commit command to apply the changes.


Configure chromatic dispersion

Use this task to configure chromatic dispersion on optics controllers of 1.2T, 2.4TX, and 2.4T cards.

When you configure the maximum and minimum values for chromatic dispersion for any data rate, ensure the minimum difference between the configured values is equal to or greater than 1500 ps/nm.

This table lists the default CD search range for a 1.2T card.

Data rate

BPS

Card support

Default CD search range

200G to 500G

BPS < = 3

1.2T, 1.2TL

-10,000 to 100,000 ps/nm

3 < BPS <= 4

1.2T, 1.2TL

-10,000 to 80,000 ps/nm

4 < BPS <=5

1.2T

-5,000 to 20,000 ps/nm

600G

BPS=5.2578125

1.2T

-2000 to 2,000 ps/nm

This table lists the default CD search range for 2.4T, 2.4TX, cards.

Line rate Symbol rate (up to)
138GBd 128GBd 118GBd 108GBd 98GBd 88GBd 78GBd 68GBd
1200G 4000 to -5000 4000 to -5000

1000G 20000 to -5000 20000 to -5000 20000 to -5000

800G 48000 to -10000 48000 to -10000 48000 to -10000

35000 to -10000

35000 to -10000

600G 74000 to -10000 74000 to -10000 74000 to -10000 60000 to -10000 60000 to -10000 60000 to -10000 48000 to -10000 48000 to -10000
500G 90000 to -10000 90000 to -10000 90000 to -10000 72000 to -10000 72000 to -10000 72000 to -10000 58000 to -10000 58000 to -10000
400G

90000 to -10000 90000 to -10000 72000 to -10000 72000 to -10000 72000 to -10000 58000 to -10000 58000 to -10000

Note


The cd-min and cd-max values must be set for BPS values that are greater than 4 in the 1.2T card.



Note


When the user provisions the cd-min and cd-max values that are outside the range through CLI, the provisioned values are accepted; however, only the actual values supported by the hardware are applied.


Procedure


Step 1

Enter the controller optics command in the global configuration mode.

Example:

This is a sample where chromatic dispersion is configured on the optics controller.


RP/0/RP0/CPU0:ios#configure
Mon Aug 19 19:31:42.115 UTC
RP/0/RP0/CPU0:ios(config)#controller  optics 0/1/0/1
RP/0/RP0/CPU0:ios(config-Optics)#cd-max 4000
RP/0/RP0/CPU0:ios(config-Optics)#cd-min -1000
RP/0/RP0/CPU0:ios(config-Optics)#commit
Mon Aug 19 19:35:24.697 UTC
RP/0/RP0/CPU0:ios(config-Optics)#exit
RP/0/RP0/CPU0:ios(config)#exit

RP/0/RP0/CPU0:ios#show run controller optics 0/1/0/*
Mon Aug 19 19:57:41.859 UTC
controller Optics0/1/0/0
 transmit-power -15
 dwdm-carrier 50GHz-grid itu-ch 55
 enh-sop-tol-mode 1
 cross-pol-gain-mode 10
 lbc-high-threshold 5
!
controller Optics0/1/0/1
 description trunk power UP
 cd-min -1000
 cd-max 4000
 enh-colorless-mode 2
 enh-sop-tol-mode 3
 nleq-comp-mode 4
 cross-pol-gain-mode 2
 cross-pol-weight-mode 3
 cpr-win-mode 3
 cpr-ext-win-mode 8
 rx-voa fixed-ratio 1200
 filter-roll-off-factor 0.035
!
controller Optics0/1/0/5
 soak-time 10
!

Step 2

Run the commit command to apply the changes.


Configure chromatic dispersion threshold

Use this task to configure the minimum and maximum acceptable chromatic dispersion for the trunk optics controllers.

The CD alarm is raised if the chromatic dispersion goes below the minimum or exceeds the maximum value.

Procedure


Step 1

Enter the controller opticsR/S/I/Pcd-high-thresholdcd-highcd-low-thresholdcd-low command in the global configuration mode to configure the minimum and maximum chromatic dispersion threshold.

Example:

This sample configures the maximum and minimum acceptable CD on the controller optics:


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller optics 0/0/0/7
RP/0/RP0/CPU0:ios(config-Optics)#cd-high-threshold 2400
RP/0/RP0/CPU0:ios(config-Optics)#cd-low-threshold -2400
RP/0/RP0/CPU0:ios(config-Optics)#commit

This sample shows the maximum and minimum acceptable CD configured on the controller optics:


RP/0/RP0/CPU0:ios#show controllers optics 0/0/0/7
Fri Nov 12 10:58:50.595 UTC
Controller State: Up
Transport Admin State: In Service
Laser State: On
LED State: Yellow
Optics Status
         Optics Type:  CIM8 DWDM
         DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
         Wavelength=1552.524nm

         Alarm Status:
         -------------
         Detected Alarms:
                 HIGH-RX-PWR   LOW-TX-PWR
                 HIGH-DGD

         LOS/LOL/Fault Status:

         Alarm Statistics:

         -------------
         HIGH-RX-PWR = 1            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 1
         HIGH-LBC = 0               HIGH-DGD = 6
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 1
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 0.0 %
         Actual TX Power = 0.97 dBm
         RX Power = -0.53 dBm
         RX Signal Power = -1.20 dBm
         Frequency Offset = 63 MHz

         Performance Monitoring: Enable

         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)         -2.0       -3.0           0.0          0.0
         Tx Power Threshold(dBm)          4.0        2.0           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00

         LBC High Threshold = 55 %
         Configured Tx Power = 1.00 dBm
         Configured CD High Threshold = 2400 ps/nm
         Configured CD lower Threshold = -2400 ps/nm
         Configured OSNR lower Threshold = 0.40 dB
         Configured DGD Higher Threshold = 0.30 ps
         Baud Rate =  63.1394679230 GBd
         Bits per Symbol = 3.0000000000  bits/symbol
         Modulation Type: 8QAM
         Chromatic Dispersion 0 ps/nm
         Configured CD-MIN -48000 ps/nm  CD-MAX 48000 ps/nm
         Polarization Mode Dispersion = 0.0 ps
         Second Order Polarization Mode Dispersion = 29.00 ps^2
         Optical Signal to Noise Ratio = 36.10 dB
         SNR = 17.50 dB
         Polarization Dependent Loss = 0.50 dB
         Polarization Change Rate = 0.00 rad/s
         Differential Group Delay = 1.00 ps

Transceiver Vendor Details

         Form Factor            : CIM8
         Name                   : CISCO-ACACIA
         Part Number            : 10-3500-01
         Rev Number             : 01
         Serial Number          : ACA24480037
         PID                    : CIM8-C-K9
         VID                    : VES1
         Date Code(yy/mm/dd)    : 23/11/10
         Fiber Connector Type: LC
         Otn Application Code: Not Set
         Sonet Application Code: Not Set
         Ethernet Compliance Code: Not set

Transceiver Temperature : 46 Celsius
AINS Soak                : None
AINS Timer               : 0h, 0m
AINS remaining time      : 0 seconds

Step 2

Run the commit command to apply the changes.


Configure Transmit Power

Use this task to configure transmit power on the trunk (CIM8 and PICO) optics within the -190 to +50 range (in units of 0.1dBm)

Procedure


Enter the controller optics command in the global configuration mode.

Example:


RP/0/RP0/CPU0:ios#configure
Mon Aug 19 19:31:42.115 UTC
RP/0/RP0/CPU0:ios(config)#controller optics 0/1/0/7
RP/0/RP0/CPU0:ios(config-Optics)#transmit-power -1.50
RP/0/RP0/CPU0:ios(config-Optics)#commit
Mon Aug 19 19:35:24.697 UTC
RP/0/RP0/CPU0:ios(config-Optics)#exit
RP/0/RP0/CPU0:ios(config)#exit

This is a sample in which transmit power of -1.50 dBm is configured on the CIM8 optics.


RP/0/RP0/CPU0:ios#show  controllers optics 0/0/0/7
 Controller State: Up
 Transport Admin State: Automatic In Service
 Laser State: On
 LED State: Green
 Optics Status
         Optics Type:  CIM8 DWDM
         DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
         Wavelength=1552.524nm
         Alarm Status:
         -------------
         Detected Alarms: None
         LOS/LOL/Fault Status:
         Alarm Statistics:
         HIGH-RX-PWR = 0            LOW-RX-PWR = 2
         HIGH-TX-PWR = 0            LOW-TX-PWR = 1
         HIGH-LBC = 0               HIGH-DGD = 0
         OOR-CD = 0                 OSNR = 1
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 0
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 0.0 %
         Actual TX Power = 1.98 dBm
         RX Power = -0.68 dBm
         RX Signal Power = -1.25 dBm
         Frequency Offset = -41 MHz
         Performance Monitoring: Enable
         THRESHOLD VALUES
         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)         13.0      -17.0           0.0          0.0
         Tx Power Threshold(dBm)          5.0      -13.0           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00
         LBC High Threshold = 90 %
         Configured Tx Power = 2.00 dBm
         Configured CD High Threshold = 180000 ps/nm
         Configured CD lower Threshold = -180000 ps/nm
         Configured OSNR lower Threshold = 20.50 dB
         Configured DGD Higher Threshold = 90.00 ps
         Baud Rate =  137.9783940000 GBd
         Bits per Symbol = 3.5200000000  bits/symbol
         Modulation Type: PCS
         Chromatic Dispersion -1 ps/nm
         Configured CD-MIN -10000 ps/nm  CD-MAX 48000 ps/nm
         Polarization Mode Dispersion = 0.0 ps
         Second Order Polarization Mode Dispersion = 13.00 ps^2
         Optical Signal to Noise Ratio = 38.10 dB
         SNR = 17.40 dB
         Polarization Dependent Loss = 2.50 dB
         Polarization Change Rate = 0.00 rad/s
         Differential Group Delay = 1.00 ps
         Filter Roll Off Factor : 0.100
         Rx VOA Target Power : -2.0 dBm
         NLEQ Compensation Mode : 0
         Cross Polarization Gain Mode : 10
         Proprietary Submarine Parameters
           Type : 1        Value : 0
           Type : 2        Value : 0
           Type : 3        Value : 0
           Type : 4        Value : 0
           Type : 5        Value : 0
           Type : 6        Value : 1000
           Type : 7        Value : 0
           Type : 8        Value : 0
           Type : 9        Value : 0
           Type : 10       Value : 0

Configure laser bias current high threshold

Use this task to laser bias current high threshold.

Procedure


Step 1

Run the controller opticsR/S/I/P lbc-high-thresholdlbc-value command to configure the laser bias current threshold.

Example:

This is a sample which configures the high laser bias threshold on the controller optics.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller optics 0/0/0/7
RP/0/RP0/CPU0:ios(config-Optics)#lbc-high-threshold 55
RP/0/RP0/CPU0:ios(config-Optics)#commit

This is a sample which shows the high rlaser bias threshold configured on the controller optics.


RP/0/RP0/CPU0:ios#show controllers optics 0/0/0/7
Fri Nov 12 10:58:50.595 UTC
Controller State: Up
Transport Admin State: In Service
Laser State: On
LED State: Yellow
Optics Status
         Optics Type:  CIM8 DWDM
         DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
         Wavelength=1552.524nm

         Alarm Status:
         -------------
         Detected Alarms:
                 HIGH-RX-PWR   LOW-TX-PWR
                 HIGH-DGD

         LOS/LOL/Fault Status:
         Alarm Statistics:
         -------------
         HIGH-RX-PWR = 1            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 1
         HIGH-LBC = 0               HIGH-DGD = 6
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 1
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 0.0 %
         Actual TX Power = 0.97 dBm
         RX Power = -0.53 dBm
         RX Signal Power = -1.20 dBm
         Frequency Offset = 63 MHz

         Performance Monitoring: Enable

         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)         -2.0       -3.0           0.0          0.0
         Tx Power Threshold(dBm)          4.0        2.0           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00

         LBC High Threshold = 55 %
         Configured Tx Power = 1.00 dBm
         Configured CD High Threshold = 2400 ps/nm
         Configured CD lower Threshold = -2400 ps/nm
         Configured OSNR lower Threshold = 0.40 dB
         Configured DGD Higher Threshold = 0.30 ps
         Baud Rate =  63.1394679230 GBd
         Bits per Symbol = 3.0000000000  bits/symbol
         Modulation Type: 8QAM
         Chromatic Dispersion 0 ps/nm
         Configured CD-MIN -48000 ps/nm  CD-MAX 48000 ps/nm
         Polarization Mode Dispersion = 0.0 ps
         Second Order Polarization Mode Dispersion = 29.00 ps^2
         Optical Signal to Noise Ratio = 36.10 dB
         SNR = 17.50 dB
         Polarization Dependent Loss = 0.50 dB
         Polarization Change Rate = 0.00 rad/s
         Differential Group Delay = 1.00 ps

Transceiver Vendor Details

         Form Factor            : CIM8
         Name                   : CISCO-ACACIA
         Part Number            : 10-3500-01
         Rev Number             : 01
         Serial Number          : ACA24480037
         PID                    : CIM8-C-K9
         VID                    : VES1
         Date Code(yy/mm/dd)    : 23/11/10
         Fiber Connector Type: LC
         Otn Application Code: Not Set
         Sonet Application Code: Not Set
         Ethernet Compliance Code: Not set

Transceiver Temperature : 46 Celsius
AINS Soak                : None
AINS Timer               : 0h, 0m
AINS remaining time      : 0 seconds

Step 2

Run the commit command to apply the changes.


Configure differential group delay threshold

Use this task to configure the threshold value for the maximum acceptable differential group delay (DGD) on the trunk optics controllers.

  • The DGD alarm is raised if DGD exceeds this value.

  • The range is 0–18000 (in the units of 0.01 ps).

Procedure


Step 1

Run the controller opticsR/S/I/Pdgd-high-thresholddgd-value command to configure to configure the maximum acceptable DGD.

Example:

This sample configures the minimum acceptable DGD on the controller optics.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller optics 0/0/0/7
RP/0/RP0/CPU0:ios(config-Optics)#dgd-high-threshold 30
RP/0/RP0/CPU0:ios(config-Optics)#commit

This sample shows the maximum acceptable DGD configured on the controller optics.


RP/0/RP0/CPU0:ios#show controllers optics 0/0/0/7
Fri Nov 12 10:58:50.595 UTC
Controller State: Up
Transport Admin State: In Service
Laser State: On
LED State: Yellow
Optics Status
         Optics Type:  CIM8 DWDM
         DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
         Wavelength=1552.524nm

         Alarm Status:
         -------------
         Detected Alarms:
                 HIGH-RX-PWR   LOW-TX-PWR
                 HIGH-DGD

         LOS/LOL/Fault Status:

         Alarm Statistics:

         -------------
         HIGH-RX-PWR = 1            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 1
         HIGH-LBC = 0               HIGH-DGD = 6
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 1
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 0.0 %
         Actual TX Power = 0.97 dBm
         RX Power = -0.53 dBm
         RX Signal Power = -1.20 dBm
         Frequency Offset = 63 MHz

         Performance Monitoring: Enable

         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)         -2.0       -3.0           0.0          0.0
         Tx Power Threshold(dBm)          4.0        2.0           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00

         LBC High Threshold = 55 %
         Configured Tx Power = 1.00 dBm
         Configured CD High Threshold = 2400 ps/nm
         Configured CD lower Threshold = -2400 ps/nm
         Configured OSNR lower Threshold = 0.40 dB
         Configured DGD Higher Threshold = 0.30 ps
         Baud Rate =  63.1394679230 GBd
         Bits per Symbol = 3.0000000000  bits/symbol
         Modulation Type: 8QAM
         Chromatic Dispersion 0 ps/nm
         Configured CD-MIN -48000 ps/nm  CD-MAX 48000 ps/nm
         Polarization Mode Dispersion = 0.0 ps
         Second Order Polarization Mode Dispersion = 29.00 ps^2
         Optical Signal to Noise Ratio = 36.10 dB
         SNR = 17.50 dB
         Polarization Dependent Loss = 0.50 dB
         Polarization Change Rate = 0.00 rad/s
         Differential Group Delay = 1.00 ps

Transceiver Vendor Details

         Form Factor            : CIM8
         Name                   : CISCO-ACACIA
         Part Number            : 10-3500-01
         Rev Number             : 01
         Serial Number          : ACA24480037
         PID                    : CIM8-C-K9
         VID                    : VES1
         Date Code(yy/mm/dd)    : 23/11/10
         Fiber Connector Type: LC
         Otn Application Code: Not Set
         Sonet Application Code: Not Set
         Ethernet Compliance Code: Not set

Transceiver Temperature : 46 Celsius

AINS Soak                : None
AINS Timer               : 0h, 0m
AINS remaining time      : 0 seconds

Step 2

Run the commit command to apply the changes.


Configure optical signal to noise ratio

Use this task to configure the minimum acceptable Optical Signal to Noise ratio (OSNR) value on the 1.2T, 2.4TX, and 2.4T cards.

The OSNR alarm is raised if OSNR goes below this value.

The range is 0–4000 (in units of 0.01db).

Procedure


Step 1

Enter the controller opticsR/S/I/Posnr-low-thresholdosnr-valuecd-low command to configure the minimum acceptable OSNR.

Example:

This sample configures the minimum acceptable OSNR on the controller optics.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller optics 0/0/0/7
RP/0/RP0/CPU0:ios(config-Optics)#osnr-low-threshold 40
RP/0/RP0/CPU0:ios(config-Optics)#commit

This sample shows the minimum acceptable OSNR configured on the controller optics.


RP/0/RP0/CPU0:ios#show controllers optics 0/0/0/7
Fri Nov 12 10:58:50.595 UTC
Controller State: Up
Transport Admin State: In Service
Laser State: On
LED State: Yellow
Optics Status
         Optics Type:  CIM8 DWDM
         DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
         Wavelength=1552.524nm

         Alarm Status:
         -------------
         Detected Alarms:
                 HIGH-RX-PWR   LOW-TX-PWR
                 HIGH-DGD

         LOS/LOL/Fault Status:
         Alarm Statistics:
         -------------
         HIGH-RX-PWR = 1            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 1
         HIGH-LBC = 0               HIGH-DGD = 6
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 1
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 0.0 %
         Actual TX Power = 0.97 dBm
         RX Power = -0.53 dBm
         RX Signal Power = -1.20 dBm
         Frequency Offset = 63 MHz

         Performance Monitoring: Enable

         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)         -2.0       -3.0           0.0          0.0
         Tx Power Threshold(dBm)          4.0        2.0           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00

         LBC High Threshold = 55 %
         Configured Tx Power = 1.00 dBm
         Configured CD High Threshold = 2400 ps/nm
         Configured CD lower Threshold = -2400 ps/nm
         Configured OSNR lower Threshold = 0.40 dB
         Configured DGD Higher Threshold = 0.30 ps
         Baud Rate =  63.1394679230 GBd
         Bits per Symbol = 3.0000000000  bits/symbol
         Modulation Type: 8QAM
         Chromatic Dispersion 0 ps/nm
         Configured CD-MIN -48000 ps/nm  CD-MAX 48000 ps/nm
         Polarization Mode Dispersion = 0.0 ps
         Second Order Polarization Mode Dispersion = 29.00 ps^2
         Optical Signal to Noise Ratio = 36.10 dB
         SNR = 17.50 dB
         Polarization Dependent Loss = 0.50 dB
         Polarization Change Rate = 0.00 rad/s
         Differential Group Delay = 1.00 ps
Transceiver Vendor Details
         Form Factor            : CIM8
         Name                   : CISCO-ACACIA
         Part Number            : 10-3500-01
         Rev Number             : 01
         Serial Number          : ACA24480037
         PID                    : CIM8-C-K9
         VID                    : VES1
         Date Code(yy/mm/dd)    : 23/11/10
         Fiber Connector Type: LC
         Otn Application Code: Not Set
         Sonet Application Code: Not Set
         Ethernet Compliance Code: Not set

Transceiver Temperature : 46 Celsius
AINS Soak                : None
AINS Timer               : 0h, 0m
AINS remaining time      : 0 seconds

Step 2

Run the commit command to apply the changes.


Configure receive power threshold

Use this task to configure the high and low threshold of the total optical signal power of the received signal on the 1.2T, 2.4TX, and 2.4T cards.

The range is –400 to 300 (in the units of 0.1 dBm).

Procedure


Step 1

Enter the rx-high-thresholdrx-highrx-low-thresholdrx-lowR/S/I/P command to configure the high and low receive power threshold.

Example:

This sample configures the high receive power threshold on the controller optics.


RP/0/RP0/CPU0:ios#configure
RP/0/RP0/CPU0:ios(config)#controller optics 0/0/0/7
RP/0/RP0/CPU0:ios(config-Optics)#rx-high-threshold -20
RP/0/RP0/CPU0:ios(config-Optics)#rx-low-threshold -30
RP/0/RP0/CPU0:ios(config-Optics)#commit

This sample shows the high receive power threshold configured on the controller optics.


RP/0/RP0/CPU0:ios#show controllers optics 0/0/0/7
Fri Nov 12 10:58:50.595 UTC
Controller State: Up
Transport Admin State: In Service
Laser State: On
LED State: Yellow
Optics Status
         Optics Type:  CIM8 DWDM
         DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
         Wavelength=1552.524nm

         Alarm Status:
         -------------
         Detected Alarms:
                 HIGH-RX-PWR   LOW-TX-PWR
                 HIGH-DGD

         LOS/LOL/Fault Status:

         Alarm Statistics:

         -------------
         HIGH-RX-PWR = 1            LOW-RX-PWR = 0
         HIGH-TX-PWR = 0            LOW-TX-PWR = 1
         HIGH-LBC = 0               HIGH-DGD = 6
         OOR-CD = 0                 OSNR = 0
         WVL-OOL = 0                MEA  = 0
         IMPROPER-REM = 1
         TX-POWER-PROV-MISMATCH = 0
         Laser Bias Current = 0.0 %
         Actual TX Power = 0.97 dBm
         RX Power = -0.53 dBm
         RX Signal Power = -1.20 dBm
         Frequency Offset = 63 MHz

         Performance Monitoring: Enable

         THRESHOLD VALUES
         ----------------

         Parameter                 High Alarm  Low Alarm  High Warning  Low Warning
         ------------------------  ----------  ---------  ------------  -----------
         Rx Power Threshold(dBm)         -2.0       -3.0           0.0          0.0
         Tx Power Threshold(dBm)          4.0        2.0           0.0          0.0
         LBC Threshold(mA)                N/A        N/A          0.00         0.00

         LBC High Threshold = 55 %
         Configured Tx Power = 1.00 dBm
         Configured CD High Threshold = 2400 ps/nm
         Configured CD lower Threshold = -2400 ps/nm
         Configured OSNR lower Threshold = 0.40 dB
         Configured DGD Higher Threshold = 0.30 ps
         Baud Rate =  63.1394679230 GBd
         Bits per Symbol = 3.0000000000  bits/symbol
         Modulation Type: 8QAM
         Chromatic Dispersion 0 ps/nm
         Configured CD-MIN -48000 ps/nm  CD-MAX 48000 ps/nm
         Polarization Mode Dispersion = 0.0 ps
         Second Order Polarization Mode Dispersion = 29.00 ps^2
         Optical Signal to Noise Ratio = 36.10 dB
         SNR = 17.50 dB
         Polarization Dependent Loss = 0.50 dB
         Polarization Change Rate = 0.00 rad/s
         Differential Group Delay = 1.00 ps

Transceiver Vendor Details

         Form Factor            : CIM8
         Name                   : CISCO-ACACIA
         Part Number            : 10-3500-01
         Rev Number             : 01
         Serial Number          : ACA24480037
         PID                    : CIM8-C-K9
         VID                    : VES1
         Date Code(yy/mm/dd)    : 23/11/10
         Fiber Connector Type: LC
         Otn Application Code: Not Set
         Sonet Application Code: Not Set
         Ethernet Compliance Code: Not set

Transceiver Temperature : 46 Celsius
AINS Soak                : None
AINS Timer               : 0h, 0m
AINS remaining time      : 0 seconds

Step 2

Run the commit command to apply the changes.


Frequency

Use this task to configure the frequency on trunk ports of the transponder line cards.

This table lists the frequency range with grid spacing supported on the line card.

Line card

Frequency range (THz)

Grid spacing

1.2T

191.25 to 196.1

50GHz and 100MHz

1.2TL

1

186.1 to 190.85

100MHz

2.4T

191.25 to 196.1

50GHz and 100MHz

2.4TX using C band trunk pluggables

191.25 to 196.1

50GHz and 100MHz

2.4TX using L band trunk pluggables

186.15 to 190.925

100MHz

QXP

191.275 to 196.125

50GHz and 100MHz

1 Only non-ITU channels are supported

Procedure


Step 1

Run the controller opticsRack/Slot/Instance/Portdwdm-carrier {100MHz-grid frequency frequency} | {50GHz-grid [frequency frequency} command to configure the wavelength.

Step 2

Run the commit command to apply the changes.


Change the trunk port frequency on a transponder card

Use this task when you need to modify the optical signal frequency on the trunk port on the transponder cards.

Procedure


Step 1

Run the config command to enter the global configuration mode.

Step 2

Run the shutdown command in optics configuration mode to shutdown the trunk port.

Example:


RP/0/RP0/CPU0:ios(config)#controller optics 0/2/0/0
RP/0/RP0/CPU0:ios(config-Optics)#shutdown 
RP/0/RP0/CPU0:ios(config-Optics)#commit 
Fri Jul 11 07:19:30.624 UTC
RP/0/RP0/CPU0:ios(config-Optics)#
The interface at trunk port 0 is shut down.

Step 3

Run the dwdm-carrier 100MHz-grid frequency <frequency> command to set the new frequency.

Example:


RP/0/RP0/CPU0:ios(config-Optics)#dwdm-carrier 100MHz-grid frequency 1911500
Fri Jul 11 07:20:17.234 UTC
WARNING! Changing channel/wavelength/frequency can impact traffic
RP/0/RP0/CPU0:ios(config-Optics)#commit 
Fri Jul 11 07:20:19.905 UTC
RP/0/RP0/CPU0:ios(config-Optics)#

Note

 

Changing the trunk port frequency can impact traffic.

The frequency for the 100 MHz grid channel is set to 1911500.

Step 4

Run the no shutdown command in optics configuration mode to bring the port back up.

Example:


RP/0/RP0/CPU0:ios(config-Optics)#no shutdown 
RP/0/RP0/CPU0:ios(config-Optics)#commit      
Fri Jul 11 07:20:57.198 UTC
RP/0/RP0/CPU0:ios(config-Optics)#

Note

 

If you configure the frequency and use the no shutdown command in the same batch, the no shutdown command is processed first, followed by the new frequency. This means the trunk interface transmits at the previous frequency for a shorter time.

The channel resumes operation at the new frequency. The channel on the trunk port now operates at the configured frequency.


CCMD-16 controllers

The NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L cards have two types of controllers.

  • OCH controllers

  • OMS controllers

When the NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L cards become operational, both the OMS and OCH controllers are automatically created by default.

View OCH controller and parameters

Use this task to view an OCH contollers and parameters.

When you bring up the nodes with NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L cards, the OCH controllers are automatically created by default. The OCH controllers for the NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L cards are:

Table 5. Supported interfaces

Card

Port type

OCH ports

Interfaces

NCS1K14-CCMD-16-C

LC Ports

16

och R/S/I/1 to och R/S/I/16

NCS1K14-CCMD-16-L

LC Ports

16

och R/S/I/1 to och R/S/I/16


Note


R/S/I/P stands for Rack/Slot/Instance/Port.


Procedure


Step 1

Run the show controllers och command to view the OCH controllers.

Example:

This output shows the active OCH controllers in Slot 0 from port 1 to 16.

Output Example

0/0/0/1               Och Interface Instance
  0/0/0/10              Och Interface Instance
  0/0/0/11              Och Interface Instance
  0/0/0/12              Och Interface Instance
  0/0/0/13              Och Interface Instance
  0/0/0/14              Och Interface Instance
  0/0/0/15              Och Interface Instance
  0/0/0/16              Och Interface Instance
  0/0/0/2               Och Interface Instance
  0/0/0/3               Och Interface Instance
  0/0/0/4               Och Interface Instance
  0/0/0/5               Och Interface Instance
  0/0/0/6               Och Interface Instance
  0/0/0/7               Och Interface Instance
  0/0/0/8               Och Interface Instance
  0/0/0/9               Och Interface Instance

Step 2

Run the show controllers command to view the parameters of an OCH controller.

Example:

This output shows the parameters of the OCH controller.

Output Example

RP/0/RP0/CPU0:ios#show controllers och 0/1/0/1
Thu Oct 12 09:26:38.555 UTC

 Controller State: Up 

 Transport Admin State: In Service 

 LED State: Green 

         Alarm Status:
         -------------
         Detected Alarms: None


         Alarm Statistics:
         -----------------
         RX-LOS-P = 0          
         TX-POWER-FAIL-LOW = 0 

         Parameter Statistics:
         ---------------------
         Tx Power = -2.30 dBm 
         Rx Power = -0.70 dBm 

View OMS controller and parameters

Use this task to view an OMS controller and parameters.

When you bring up the nodes with NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L cards, the OMS controllers are automatically created by default.

The OMS controllers for the NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L cards are:

Table 6. Supported interfaces

Card

Port type

OMS ports

Interfaces

NCS1K14-CCMD-16-C

LC Ports

1

oms R/S/I/0

NCS1K14-CCMD-16-L

LC Ports

1

oms R/S/I/0


Note


R/S/I/P stands for Rack/Slot/Instance/Port.


Procedure


Step 1

Run the show controllers oms ? command to view the OMS controllers.

Example:

This output shows the active OMS controller in Slot 0.

Step 2

Run the show controllers command to view the parameters of an OMS controller.

Example:

This output shows the parameters of the an OMS controller.

Output Example

RP/0/RP0/CPU0:ios#show controllers oms 0/1/0/0
Thu Oct 12 09:23:35.297 UTC
 Controller State: Up 
 Transport Admin State: In Service 
 LED State: Red 
         Alarm Status:
         -------------
         Detected Alarms: 
                 HI-TX-BR-PWR    

         Alarm Statistics:
         -----------------
         RX-LOS-P = 3          
         TX-POWER-FAIL-LOW = 0          
         INGRESS-AMPLI-GAIN-LOW = 0          
         INGRESS-AMPLI-GAIN-HIGH = 0          
         EGRESS-AUTO-LASER-SHUT = 0          
         EGRESS-AMPLI-GAIN-LOW = 0          
         EGRESS-AMPLI-GAIN-HIGH = 0          
         HI-TX-BR-PWR = 2          
          
          
         Parameter Statistics:
         ---------------------
         Tx Power = -3.40 dBm 
         Rx Power = -2.30 dBm 
         Rx Voa Attenuation = 5.0 dB 
         Tx Voa Attenuation = 5.0 dB 
         Ingress Ampli Mode = Gain
         Ingress Ampli Gain = 5.0 dB
         Ingress Ampli Tilt = 0.0 dB
         Ingress Ampli OSRI = OFF 
         Egress Ampli Mode = Gain
         Egress Ampli Gain = 2.0 dB
         Egress Ampli Tilt = 0.0 dB
         Egress Ampli Gain Range = Normal 
         Egress Ampli OSRI = OFF 
         Egress Ampli BR Power = -12.90 dBm 
         Egress Ampli BR Ratio = -9.39 dB 
          
          
         Configured Parameters:
         -------------
         Rx Voa Attenuation = 5.0 dB 
         Tx Voa Attenuation = 5.0 dB 
         Ingress Ampli Mode = Gain
         Ingress Ampli Gain = 5.0 dB 
         Ingress Ampli Power = -9.0 dBm
         Ingress Ampli OSRI = OFF 
         Egress Ampli Mode = Gain
         Egress Ampli Gain = 2.0 dB 
         Egress Ampli Power = 0.0 dBm
         Egress Ampli Gain Range = Normal 
         Egress Ampli OSRI = OFF 
         BR High Threshold = -17.0 dBm 

Configure Controller Parameters for NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L Cards

Table 7. Feature History

Feature Name

Release Information

Feature Description

Supported Functionalities of CCMD-16-C and CCMD-16-L Line Cards Cisco IOS XR Release 7.11.1

Supported Functionalities of CCMD-16-C and CCMD-16-L Line Cards: The software supports Variable Optical Attenuator (VoA), power monitoring and reporting of parameters to the controllers at the OCH and OMS level. It helps in configuring the amplifier parameters for optimizing signal transmissions.

The software also supports in-band and out-of-band tone detection and monitoring and reporting of alarms.

This chapter describes the controller configuration using EDFA, VoA, optical safety, and photodiode parameters which are supported on NCS1K14-CCMD-16-C and NCS1K14-CCMD-16-L line cards.

Table 8. Basic Controller Configuration Parameters
Parameter CLI Description
EDFA-ADD Control Mode
controller Oms R/S/I/P
egress-ampli-mode power-control

Here the default mode is gain-control.

Use this command to change the mode to power-control mode.

You can delete this configuration to revert to gain-control mode.

EDFA-ADD Power
controller Oms R/S/I/P
egress-ampli-power <val in 0.1 dBm>
This is the target output power configuration for the EDFA located on COM-Tx. If the output power is not configured, then a default value is used by the system. You can find the applied target output power by using the show controller oms output.
EDFA-ADD Gain Range
controller Oms R/S/I/P
egress-ampli-gain-range <normal | 
extended>

If you change the gain range from Normal to Extended or the opposite way, without updating the proper gain value for the new gain range, then the following may happen:

  • The EDFA switches to the preconfigured or default value of the gain causing a mismatch between the operational and configured gain.

  • The gain configuration is lost during the reload of software or line card, as the configured gain mismatches with the latest gain-range. This may result in traffic interruption during these reload operations.

Hence, we recommend that you explicitly configure the gain range mode as normal or extended, and the corresponding gain values for each mode to get the expected results.

The following are a few example scenarios that may not work as expected:

  • Scenario 1:

    Current running config:

    controller Oms R/S/I/P
     egress-ampli-gain-range extended
     egress-ampli-gain <gain value in extended mode>
      

    New applied config:

    controller Oms R/S/I/P
     no egress-ampli-gain-range extended
     commit
  • Scenario 2:

    Current running config:

    controller Oms R/S/I/P
     egress-ampli-gain-range extended
     egress-ampli-gain <gain value in extended mode>
      

    New applied config:

    controller Oms R/S/I/P
     egress-ampli-gain-range Normal
     commit
    
  • Scenario 3:

    Current running config:

    controller Oms R/S/I/P
    egress-ampli-gain <gain value in normal mode>

    New applied config:

    controller Oms R/S/I/P
    egress-ampli-gain-range extended
    commit
    

The following is another example scenario that involves commit-replace command where you replace the existing gain configuration that does not have explicitly configured gain-range, with new gain-range and gain value.

Scenario 4:

Current running config:

controller Oms R/S/I/P
egress-ampli-gain <gain value in normal mode>

New applied config:

…………..
controller Oms R/S/I/P
egress-ampli-gain-range extended
egress-ampli-gain <gain value in extended mode>
commit replace
EDFA-ADD Gain
controller Oms R/S/I/P
egress-ampli-gain <val in 0.1 dB>
This is used for configuring gain for the EDFA located on the COM-Tx port. If the gain is not configured, then a default value is used by the system. The show controller oms output can be used for finding the applied gain.
EDFA-DROP Control Mode
controller Oms R/S/I/P
ingress-ampli-mode power-control

The default mode is gain-control.

Use this command to change the mode to power-control mode.

You can delete this configuration to revert to gain-control mode.

EDFA-DROP Power
controller Oms R/S/I/P
ingress-ampli-power <vale in 0.1 dBm>
This is the target output power configuration for the EDFA located on COM-Rx. If the output power is not configured, then a default value is used by the system. You can find the applied target output power by using the show controller oms output.
EDFA-DROP Gain
controller Oms R/S/I/P
ingress-ampli-gain <val in 0.1 dB>
This is used for configuring gain for the EDFA located on the COM-Rx port. If the gain is not configured, then a default value is used by the system. The show controller oms output can be used for finding the applied gain.
VoA Attenuation
controller Oms R/S/I/P
tx-voa-attenuation <val in 0.1 dB>
rx-voa-attenuation <val in 01. dB>

This is used to configure VoA attenuation for COM-Tx and COM-Rx ports. The system picks a default value if the gain is not configured. The show controller oms output can be used for finding the applied attenuation.

Shutdown (COM Port)
controller Oms R/S/I/P
shutdown

COM-Tx and Rx ports are put in Out of Service (OOS) when this command is executed. This turns off the EDFA devices on both COM-Tx and COM-Rx ports and the respective alarms are masked.

Here the default value is 'unshut'.

Shutdown

(Ch Ports)

controller Och R/S/I/P
shutdown
The channel port will be marked as out-of-service.

Configure Operational Parameters

The different operational parameters supported are given below.

Table 9. Operational Parameters
Parameter CLI Description
Photo Diodes (COM Port)

OMS Controller

Tx Power and Rx Power

Rx Power = Inband power + OOB

Tx Power = Inband power + OOB

It reports the power transmitted and received on the OMS port. The OOB power received on COM-Rx is looped back to COM-Tx with some loss due to the insertion-loss on the loop back path.
Photo Diodes (CH Ports)

OCH Controller

Tx Power and Rx Power
It reports the power transmitted and received on the channel ports.
Amplifier Parameters

OMS Controller

Ingress Ampli Mode
Ingress Ampli Gain
Ingress Ampli Tilt
Ingress Ampli OSRI
Egress Ampli Mode
Egress Ampli Gain
Egress Ampli Tilt
Egress Ampli Gain Range
Egress Ampli OSRI
Egress Ampli BR Power
Egress Ampli BR Ratio
Egress and ingress amplifier parameters.
VoA Parameters

OMS Controller

Tx VoA Attenuation and Rx VoA Attenuation
VoA attenuation parameters.

Configure Optical Safety Parameters

Use the following parameters for configuring optical safety.

Table 10. Optical Safety Parameters
Parameter CLI Description
OSRI
controller Oms R/S/I/P 
egress-ampli-osri
ingress-ampli-osri
Use this configuration to enable or Disable Optical Safety Remote Interlock (OSRI) on the amplifiers located on COM-Tx and COM-Rx ports. The default value is 'Off'. The show controller oms output can be used for finding the OSRI configuration and status.

Verify Rx VOA fixed ratio to zero

Use this task to configure the Rx VOA attenuation to a fixed ratio of zero, effectively disabling the Rx VOA entirely.


Warning


Disabling Rx VOA attenuation in certain scenarios may destabilize the network. Practice caution and contact the Cisco TAC team for more information.


Procedure


Run the configure command to enter the global configuration mode.

Example:

This is a sample configuration which sets the rx-voa fixed-ratio to zero.

RP/0/RP0/CPU0:NE80#configur
Tue Aug 6 07:44:28.125 UTC
Current Configuration Session  Line       User     Date                     Lock
00001000-00001569-00000000 vty0 cisco Tue Aug 6 05:33:16 2024
RP/0/RP0/CPU0:NE80(config)#controller optics 0/2/0/0 rx-voa fixed-ratio 0
RP/0/RP0/CPU0:NE80(config)#controller optics 0/2/0/7 rx-voa fixed-ratio 0
RP/0/RP0/CPU0:NE80(config)#commit
Tue Aug 6 07:44:48.545 UTC
RP/0/RP0/CPU0:NE80(config)#end

Verify Rx VOA fixed ratio to zero

Use this task to verify the Rx VOA attenuation to a fixed ratio of zero, effectively disabling the Rx VOA entirely.


Warning


Disabling Rx VOA attenuation in certain scenarios may destabilize the network. Practice caution and contact the Cisco TAC team for more information.


Procedure


Step 1

Run the show running-config controller command to verify the rx-voa fixed ratio is set to fixed ratio zero.

Example:


RP/0/RP0/CPU0:N112#show running-config controller optics 0/2/0/0
Thu May 16 09:19:51.223 UTC
description optics0/2/0/0
dwdm-carrier 100MHz-grid frequency 1909000
rx-voa fixed-ratio 0

Step 2

Run the show controllers optics command to verify whether the rx-voa fixed-ratio is set to fixed ratio zero.

Example:


RP/0/RP0/CPU0:123#show controllers optics 0/2/0/0
Controller State: Up 
Transport Admin State: In Service 
Laser State: On 
LED State: Green 
Optics Status 
Optics Type: CIM8 DWDM
DWDM carrier Info: C BAND, MSA ITU Channel=61, Frequency=193.10THz,
Wavelength=1552.524nm 
Alarm Status:
-------------
Detected Alarms: None
LOS/LOL/Fault Status:
Alarm Statistics:
-------------
HIGH-RX-PWR = 0 LOW-RX-PWR = 0 
HIGH-TX-PWR = 0 LOW-TX-PWR = 0 
HIGH-LBC = 0 HIGH-DGD = 0 
OOR-CD = 0 OSNR = 0 
WVL-OOL = 0 MEA = 0 
IMPROPER-REM = 0 
TX-POWER-PROV-MISMATCH = 0 
Laser Bias Current = 0.0 %
Actual TX Power = 2.00 dBm 
RX Power = -0.01 dBm 
RX Signal Power = 1.94 dBm 
Frequency Offset = 0 MHz 
Performance Monitoring: Enable 
THRESHOLD VALUES
----------------
Parameter High Alarm Low Alarm High Warning Low Warning
------------------------ ---------- --------- ------------ -----------
Rx Power Threshold(dBm) 13.0 -17.0 0.0 0.0
Tx Power Threshold(dBm) 5.0 -13.0 0.0 0.0
LBC Threshold(mA) N/A N/A 0.00 0.00
LBC High Threshold = 90 % 
Configured Tx Power = 2.00 dBm 
Configured CD High Threshold = 180000 ps/nm 
Configured CD lower Threshold = -180000 ps/nm 
Configured OSNR lower Threshold = 20.40 dB 
Configured DGD Higher Threshold = 88.00 ps 
Baud Rate = 137.9783940000 GBd
Bits per Symbol = 3.5200000000 bits/symbol 
Modulation Type: PCS 
Chromatic Dispersion 0 ps/nm 
Configured CD-MIN -10000 ps/nm CD-MAX 48000 ps/nm 
Polarization Mode Dispersion = 0.0 ps 
Second Order Polarization Mode Dispersion = 44.00 ps^2 
Optical Signal to Noise Ratio = 36.60 dB 
SNR = 18.20 dB 
Polarization Dependent Loss = 0.40 dB 
Polarization Change Rate = 4639.00 rad/s 
Differential Group Delay = 2.00 ps 
Filter Roll Off Factor : 0.100 
Rx VOA Fixed Ratio : 0.00 dB
NLEQ Compensation Mode : 0
Cross Polarization Gain Mode : 10
Proprietary Submarine Parameters
Type : 1 Value : 0
Type : 2 Value : 0
Type : 3 Value : 0
Type : 4 Value : 0
Type : 5 Value : 10485760
Transceiver Vendor Details
Form Factor : CIM8
Name : ACACIA 
Part Number : 10-100508-01
Rev Number : 10
Serial Number : N/A
PID : CIM8-CE-K9
VID : VES1
Firmware Version : Major.Minor.Build
Active : 80.130.19
Inactive : 80.130.19
Date Code(yy/mm/dd) : 24/06/18
Fiber Connector Type: LC 
Otn Application Code: Not Set 
Sonet Application Code: Not Set 
Ethernet Compliance Code: Not set 
Transceiver Temperature : 36 Celsius
AINS Soak : None 
AINS Timer : 0h, 0m
AINS remaining time : 0 seconds