Configuring Management Access

This chapter describes how to access the ASA for system management through Telnet, SSH, and HTTPS (using ASDM), how to authenticate and authorize users, how to create login banners, and how to customize CLI parameters.

This chapter includes the following sections:

- Configuring ASA Access for ASDM, Telnet, or SSH, page 37-1
- Configuring CLI Parameters, page 37-6
- Configuring ICMP Access, page 37-10
- Configuring Management Access Over a VPN Tunnel, page 37-12
- Configuring AAA for System Administrators, page 37-13
- Feature History for Management Access, page 37-33

Note: To access the ASA interface for management access, you do not also need an access list allowing the host IP address. You only need to configure management access according to the sections in this chapter.

Configuring ASA Access for ASDM, Telnet, or SSH

This section describes how to allow clients to access the ASA using ASDM, Telnet, or SSH and includes the following topics:

- Licensing Requirements for ASA Access for ASDM, Telnet, or SSH, page 37-2
- Guidelines and Limitations, page 37-2
- Configuring Telnet Access, page 37-3
- Using a Telnet Client, page 37-4
- Configuring SSH Access, page 37-4
- Using an SSH Client, page 37-5
- Configuring HTTPS Access for ASDM, page 37-6
Licensing Requirements for ASA Access for ASDM, Telnet, or SSH

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

This section includes the guidelines and limitations for this feature.

Context Mode Guidelines
Supported in single and multiple context mode.

Firewall Mode Guidelines
Supported in routed and transparent firewall mode.

IPv6 Guidelines
Supports IPv6.

Additional Guidelines
- You cannot use Telnet to the lowest security interface unless you use Telnet inside a VPN tunnel.
- Management access to an interface other than the one from which you entered the ASA is not supported. For example, if your management host is located on the outside interface, you can only initiate a management connection directly to the outside interface. The only exception to this rule is through a VPN connection. See the “Configuring Management Access Over a VPN Tunnel” section on page 37-12.
- The ASA allows:
 - A maximum of 5 concurrent Telnet connections per context, if available, with a maximum of 100 connections divided among all contexts.
 - A maximum of 5 concurrent SSH connections per context, if available, with a maximum of 100 connections divided among all contexts.
 - A maximum of 5 concurrent ASDM instances per context, if available, with a maximum of 32 ASDM instances among all contexts.
- The ASA supports the SSH remote shell functionality provided in SSH Versions 1 and 2 and supports DES and 3DES ciphers.
- XML management over SSL and SSH is not supported.
- (8.4 and later) The SSH default username is no longer supported. You can no longer connect to the ASA using SSH with the pix or asa username and the login password. To use SSH, you must configure AAA authentication using the aaa authentication ssh console LOCAL command; then define a local user by entering the username command. If you want to use a AAA server for authentication instead of the local database, we recommend also configuring local authentication as a backup method.
Configuring Telnet Access

To identify the client IP addresses allowed to connect to the ASA using Telnet, perform the following steps.

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>telnet source_IP_address mask source_interface</td>
</tr>
<tr>
<td>Example:</td>
<td><code>hostname(config)# telnet 192.168.1.2 255.255.255.255 inside</code></td>
</tr>
<tr>
<td></td>
<td>For each address or subnet, identifies the IP addresses from which the ASA accepts connections. If there is only one interface, you can configure Telnet to access that interface as long as the interface has a security level of 100.</td>
</tr>
<tr>
<td>Step 2</td>
<td>telnet timeout minutes</td>
</tr>
<tr>
<td>Example:</td>
<td><code>hostname(config)# telnet timeout 30</code></td>
</tr>
<tr>
<td></td>
<td>Sets the duration for how long a Telnet session can be idle before the ASA disconnects the session. Set the timeout from 1 to 1440 minutes. The default is 5 minutes. The default duration is too short in most cases and should be increased until all pre-production testing and troubleshooting have been completed.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to let a host on the inside interface with an address of 192.168.1.2 access the ASA:

`hostname(config)# telnet 192.168.1.2 255.255.255.255 inside`

The following example shows how to allow all users on the 192.168.3.0 network to access the ASA on the inside interface:

`hostname(config)# telnet 192.168.3.0 255.255.255.0 inside`
Using a Telnet Client

To gain access to the ASA CLI using Telnet, enter the login password set by the `password` command. If you configure Telnet authentication (see the “Configuring Authentication for CLI and ASDM Access” section on page 37-19), then enter the username and password defined by the AAA server or local database.

Configuring SSH Access

To identify the client IP addresses and define a user allowed to connect to the ASA using SSH, perform the following steps.

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>crypto key generate rsa modulus</code></td>
<td>Generates an RSA key pair, which is required for SSH.</td>
</tr>
<tr>
<td></td>
<td><code>modulus_size</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hostname(config)# crypto key generate rsa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>modulus 1024</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>write memory</code></td>
<td>Saves the RSA keys to persistent flash memory.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hostname(config)# write memory</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>aaa authentication ssh console LOCAL</code></td>
<td>Enables local authentication for SSH access. You can alternatively</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configure authentication using a AAA server. See the “Configuring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Authentication for CLI and ASDM Access” section on page 37-19 for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>more information.</td>
</tr>
<tr>
<td>4</td>
<td><code>username username password password</code></td>
<td>Creates a user in the local database that can be used for SSH access.</td>
</tr>
<tr>
<td>5</td>
<td><code>ssh source_IP_address mask source_interface</code></td>
<td>For each address or subnet, identifies the IP addresses from which</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the ASA accepts connections, and the interface on which you can SSH.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Unlike Telnet, you can SSH on the lowest security level interface.</td>
</tr>
<tr>
<td></td>
<td>hostname(config)# ssh 192.168.3.0 255.255.255.0 inside</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(Optional)</td>
<td>Sets the duration for how long an SSH session can be idle before the</td>
</tr>
<tr>
<td></td>
<td><code>ssh timeout minutes</code></td>
<td>ASA disconnects the session.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hostname(config)# ssh timeout 30</td>
<td></td>
</tr>
</tbody>
</table>
Examples

The following example shows how to generate RSA keys and let a host on the inside interface with an address of 192.168.1.2 access the ASA:

```
hostname(config)# crypto key generate rsa modulus 1024
hostname(config)# write memory
hostname(config)# aaa authentication ssh console LOCAL
WARNING: local database is empty! Use 'username' command to define local users.
hostname(config)# username exampleuser1 password examplepassword1
hostname(config)# ssh 192.168.1.2 255.255.255.255 inside
hostname(config)# ssh timeout 30
```

The following example shows how to allow all users on the 192.168.3.0 network to access the ASA on the inside interface:

```
hostname(config)# ssh 192.168.3.0 255.255.255.0 inside
```

Using an SSH Client

In the SSH client on your management host, enter the username and password that you configured in the “Configuring SSH Access” section on page 37-4. When starting an SSH session, a dot (.) displays on the ASA console before the following SSH user authentication prompt appears:

```
hostname(config)# .
```

The display of the dot does not affect the functionality of SSH. The dot appears at the console when generating a server key or decrypting a message using private keys during SSH key exchange before user authentication occurs. These tasks can take up to two minutes or longer. The dot is a progress indicator that verifies that the ASA is busy and has not hung.

Note

If more than one SSH configuration session exists and the configuration operation is carried through any file operations (such as copy, tftp, config net, context mode config file), even if it is a single CLI, it will be blocked with the response "Command Ignored, configuration in progress...". If the CLI is directly entered through a command prompt, it is not blocked.
Configuring HTTPS Access for ASDM

To use ASDM, you need to enable the HTTPS server, and allow HTTPS connections to the ASA. HTTPS access is enabled as part of the factory default configuration or when you use the `setup` command. This section describes how to manually configure ASDM access.

To configure HTTPS access for ASDM, perform the following steps:

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>http source_IP_address mask source_interface
Example:
hostname(config)# http 192.168.1.2 255.255.255.255 inside</td>
</tr>
<tr>
<td>Step 2</td>
<td>http server enable [port]
Example:
hostname(config)# http server enable 443</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable the HTTPS server and let a host on the inside interface with an address of 192.168.1.2 access ASDM:

hostname(config)# http server enable
hostname(config)# http 192.168.1.2 255.255.255.255 inside

The following example shows how to allow all users on the 192.168.3.0 network to access ASDM on the inside interface:

hostname(config)# http 192.168.3.0 255.255.255.0 inside

Configuring CLI Parameters

This section includes the following topics:

- Licensing Requirements for CLI Parameters, page 37-7
- Guidelines and Limitations, page 37-7
- Configuring a Login Banner, page 37-7
- Customizing a CLI Prompt, page 37-8
- Changing the Console Timeout, page 37-9
Licensing Requirements for CLI Parameters

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

This section includes the guidelines and limitations for this feature.

Context Mode Guidelines

Supported in single and multiple context mode.

Firewall Mode Guidelines

Supported in routed and transparent firewall mode.

Configuring a Login Banner

You can configure a message to display when a user connects to the ASA, before a user logs in, or before a user enters privileged EXEC mode.

Restrictions

After a banner is added, Telnet or SSH sessions to ASA may close if:

- There is not enough system memory available to process the banner message(s).
- A TCP write error occurs when trying to display banner message(s).

Guidelines

- From a security perspective, it is important that your banner discourage unauthorized access. Do not use the words “welcome” or “please,” as they appear to invite intruders in. The following banner sets the correct tone for unauthorized access:

 You have logged in to a secure device. If you are not authorized to access this device, log out immediately or risk possible criminal consequences.

- See RFC 2196 for guidelines about banner messages.
To configure a login banner, perform the following steps:

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`banner {exec</td>
<td>login</td>
</tr>
<tr>
<td></td>
<td>• Spaces are allowed, but tabs cannot be entered using the CLI.</td>
</tr>
<tr>
<td></td>
<td>• There are no limits for banner length other than those for RAM and flash memory.</td>
</tr>
<tr>
<td></td>
<td>• You can dynamically add the hostname or domain name of the ASA by including the strings <code>${hostname}</code> and <code>${domain}</code>.</td>
</tr>
<tr>
<td></td>
<td>• If you configure a banner in the system configuration, you can use that banner text within a context by using the <code>${system}</code> string in the context configuration.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to add a message-of-the-day banner:

```
hostname(config)# banner motd Welcome to `${hostname}`.
hostname(config)# banner motd Contact me at admin@example.com for any issues.
```

Customizing a CLI Prompt

The CLI Prompt pane lets you customize the prompt used during CLI sessions. By default, the prompt shows the hostname of the ASA. In multiple context mode, the prompt also displays the context name. You can display the following items in the CLI prompt:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>context</code></td>
<td>(Multiple mode only) Displays the name of the current context.</td>
</tr>
<tr>
<td><code>domain</code></td>
<td>Displays the domain name.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Displays the hostname.</td>
</tr>
</tbody>
</table>
Chapter 37 Configuring Management Access

Configuring CLI Parameters

Detailed Steps

To customize the CLI prompt, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>prompt [{hostname} [context] [domain] [slot] [state] [priority]}</td>
<td>Customizes the CLI prompt.</td>
</tr>
</tbody>
</table>

Example:
hostname(config)# firewall transparent

Changing the Console Timeout

The console timeout sets how long a connection can remain in privileged EXEC mode or configuration mode; when the timeout is reached, the session drops into user EXEC mode. By default, the session does not time out. This setting does not affect how long you can remain connected to the console port, which never times out.

To change the console timeout, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>console timeout number</td>
<td>Specifies the idle time in minutes (0 through 60) after which the privileged session ends. The default timeout is 0, which means the session does not time out.</td>
</tr>
</tbody>
</table>

Example:
hostname(config)# console timeout 0

Model License Requirement

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>
Configuring ICMP Access

By default, you can send ICMP packets to any ASA interface using either IPv4 or IPv6. This section tells how to limit ICMP management access to the ASA. You can protect the ASA from attacks by limiting the addresses of hosts and networks that are allowed to have ICMP access to the ASA.

Note

For allowing ICMP traffic through the ASA, see Chapter 32, “Configuring Access Rules.”

This section includes the following topics:
- Information About ICMP Access, page 37-10
- Licensing Requirements for ICMP Access, page 37-10
- Guidelines and Limitations, page 37-10
- Default Settings, page 37-11
- Configuring ICMP Access, page 37-11

Information About ICMP Access

ICMP in IPv6 functions the same as ICMP in IPv4. ICMPv6 generates error messages, such as ICMP destination unreachable messages and informational messages like ICMP echo request and reply messages. Additionally ICMP packets in IPv6 are used in the IPv6 neighbor discovery process and path MTU discovery.

We recommend that you always grant permission for the ICMP unreachable message type (type 3). Denying ICMP unreachable messages disables ICMP path MTU discovery, which can halt IPsec and PPTP traffic. See RFC 1195 and RFC 1435 for details about path MTU discovery.

If you configure ICMP rules, then the ASA uses a first match to the ICMP traffic followed by an implicit deny all entry. That is, if the first matched entry is a permit entry, the ICMP packet continues to be processed. If the first matched entry is a deny entry or an entry is not matched, the ASA discards the ICMP packet and generates a syslog message. An exception is when an ICMP rule is not configured; in that case, a permit statement is assumed.

Licensing Requirements for ICMP Access

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

This section includes the guidelines and limitations for this feature.

Context Mode Guidelines

Supported in single and multiple context mode.
Firewall Mode Guidelines
Supported in routed and transparent firewall mode.

IPv6 Guidelines
Supports IPv6.

Additional Guidelines
- The ASA does not respond to ICMP echo requests directed to a broadcast address.
- The ASA only responds to ICMP traffic sent to the interface that traffic comes in on; you cannot send ICMP traffic through an interface to a far interface.

Default Settings
By default, you can send ICMP packets to any ASA interface using either IPv4 or IPv6.

Configuring ICMP Access
To configure ICMP access rules, enter one of the following commands:

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>(For IPv4)</td>
<td>Creates an IPv4 ICMP access rule. If you do not specify an <code>icmp_type</code>, all types are identified. You can enter the number or the name. To control ping, specify echo-reply (0) (ASA-to-host) or echo (8) (host-to-ASA). See the “ICMP Types” section on page B-15 for a list of ICMP types.</td>
</tr>
<tr>
<td>`icmp {permit</td>
<td>deny} {host ip_address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>hostname(config)# icmp deny host 10.1.1.15 inside</code></td>
<td></td>
</tr>
<tr>
<td>(For IPv6)</td>
<td>Creates an IPv6 ICMP access rule. If you do not specify an <code>icmp_type</code>, all types are identified. You can enter the number or the name. To control ping, specify echo-reply (0) (ASA-to-host) or echo (8) (host-to-ASA). See the “ICMP Types” section on page B-15 for a list of ICMP types.</td>
</tr>
<tr>
<td>`ipv6 icmp {permit</td>
<td>deny} {ipv6-prefix/prefix-length</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>hostname(config)# icmp permit host fe80::20d:88ff:feee:6a82 outside</code></td>
<td></td>
</tr>
</tbody>
</table>

Examples
The following example shows how to allow all hosts except the one at 10.1.1.15 to use ICMP to the inside interface:

`hostname(config)# icmp deny host 10.1.1.15 inside`

`hostname(config)# icmp permit any inside`
The following example shows how to allow the host at 10.1.1.15 to use only ping to the inside interface, enter the following command:

```
hostname(config)# icmp permit host 10.1.1.15 inside
```

The following example shows how to deny all ping requests and permit all packet-too-big messages (to support path MTU discovery) at the outside interface:

```
hostname(config)# ipv6 icmp deny any echo-reply outside
hostname(config)# ipv6 icmp permit any packet-too-big outside
```

The following example shows how to permit host 2000:0:0:4::2 or hosts on prefix 2001::/64 to ping the outside interface:

```
hostname(config)# ipv6 icmp permit host 2000:0:0:4::2 echo-reply outside
hostname(config)# ipv6 icmp permit 2001::/64 echo-reply outside
hostname(config)# ipv6 icmp permit any packet-too-big outside
```

Configuring Management Access Over a VPN Tunnel

If your VPN tunnel terminates on one interface, but you want to manage the ASA by accessing a different interface, you can identify that interface as a management-access interface. For example, if you enter the ASA from the outside interface, this feature lets you connect to the inside interface using ASDM, SSH, Telnet, or SNMP; or you can ping the inside interface when entering from the outside interface.

Management access is available via the following VPN tunnel types: IPsec clients, IPsec site-to-site, and the AnyConnect SSL VPN client.

This section includes the following topics:

- Licensing Requirements for a Management Interface, page 37-12
- Guidelines and Limitations, page 37-12
- Configuring a Management Interface, page 37-13

Licensing Requirements for a Management Interface

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>

Guidelines and Limitations

This section includes the guidelines and limitations for this feature.

Context Mode Guidelines

Supported in single mode.

Firewall Mode Guidelines

Supported in routed mode.
IPv6 Guidelines
Supports IPv6.

Additional Guidelines
You can define only one management access interface.

Note
For the configurations that follow, 192.168.10.0/24 is the VPN pool for AnyConnect or IPsec VPN clients. Each configuration allows VPN client users to connect to ASDM or SSH to the ASA using the management interface IP address.

To allow only VPN client users access to ASDM or HTTP (and deny access to all other users), enter the following commands:

```
hostname(config)# http server enable
hostname(config)# http 192.168.10.0 255.255.255.0 management_interface
```

To allow only VPN client users access to the ASA using SSH (and deny access to all other users), enter the following command:

```
hostname(config)# ssh 192.168.10.0 255.255.255.0 management_interface
```

Configuring a Management Interface

To configure the management interface, enter the following command:

```
management access management_interface
```

The `management_interface` specifies the name of the management interface that you want to access when entering the ASA from another interface.

Configuring AAA for System Administrators

This section describes how to enable authentication and command authorization for system administrators. Before you configure AAA for system administrators, first configure the local database or AAA server according to procedures listed in Chapter 35, “Configuring AAA Servers and the Local Database.”

This section includes the following topics:

- Information About AAA for System Administrators, page 37-14
- Licensing Requirements for AAA for System Administrators, page 37-17
- Prerequisites, page 37-17
- Guidelines and Limitations, page 37-18
- Default Settings, page 37-18
- Configuring Authentication for CLI and ASDM Access, page 37-19
- Configuring Authentication to Access Privileged EXEC Mode (the enable Command), page 37-19
Information About AAA for System Administrators

This section describes AAA for system administrators and includes the following topics:

- Information About Management Authentication, page 37-14
- Information About Command Authorization, page 37-15

Information About Management Authentication

This section describes authentication for management access and includes the following topics:

- Comparing CLI Access with and without Authentication, page 37-14
- Comparing ASDM Access with and without Authentication, page 37-15

Comparing CLI Access with and without Authentication

How you log into the ASA depends on whether or not you enable authentication:

- If you do not enable any authentication for Telnet, you do not enter a username; you enter the login password (set with the `password` command). For SSH, you enter the username and the login password. You access user EXEC mode.
- If you enable Telnet or SSH authentication according to this section, you enter the username and password as defined on the AAA server or local user database. You access user EXEC mode.

To enter privileged EXEC mode after logging in, enter the `enable` command. How `enable` works depends on whether you enable authentication:

- If you do not configure enable authentication, enter the system enable password when you enter the `enable` command (set by the `enable password` command). However, if you do not use enable authentication, after you enter the `enable` command, you are no longer logged in as a particular user. To maintain your username, use enable authentication.
- If you configure enable authentication (see the Configuring Authentication to Access Privileged EXEC Mode (the enable Command), page 37-19), the ASA prompts you for your username and password again. This feature is particularly useful when you perform command authorization, in which usernames are important in determining the commands that a user can enter.

For enable authentication using the local database, you can use the `login` command instead of the `enable` command. `login` maintains the username but requires no configuration to turn on authentication. See the “Authenticating Users with the login Command” section on page 37-20 for more information.
Comparing ASDM Access with and without Authentication

By default, you can log into ASDM with a blank username and the enable password set by the `enable password` command. Note that if you enter a username and password at the login screen (instead of leaving the username blank), ASDM checks the local database for a match.

If you configure HTTP authentication, you can no longer use ASDM with a blank username and the enable password.

Information About Command Authorization

This section describes command authorization and includes the following topics:

- Supported Command Authorization Methods, page 37-15
- About Preserving User Credentials, page 37-15
- Security Contexts and Command Authorization, page 37-16

Supported Command Authorization Methods

You can use one of two command authorization methods:

- Local privilege levels—Configure the command privilege levels on the ASA. When a local, RADIUS, or LDAP (if you map LDAP attributes to RADIUS attributes) user authenticates for CLI access, the ASA places that user in the privilege level that is defined by the local database, RADIUS, or LDAP server. The user can access commands at the assigned privilege level and below. Note that all users access user EXEC mode when they first log in (commands at level 0 or 1). The user needs to authenticate again with the `enable` command to access privileged EXEC mode (commands at level 2 or higher), or they can log in with the `login` command (local database only).

 Note: You can use local command authorization without any users in the local database and without CLI or `enable` authentication. Instead, when you enter the `enable` command, you enter the system enable password, and the ASA places you in level 15. You can then create enable passwords for every level, so that when you enter `enable n` (2 to 15), the ASA places you in level n. These levels are not used unless you enable local command authorization (see the “Configuring Local Command Authorization” section on page 37-23). (See the command reference for more information about the `enable` command.)

- TACACS+ server privilege levels—On the TACACS+ server, configure the commands that a user or group can use after authenticating for CLI access. Every command that a user enters at the CLI is validated with the TACACS+ server.

About Preserving User Credentials

When a user logs into the ASA, that user is required to provide a username and password for authentication. The ASA retains these session credentials in case further authentication is needed later in the session.

When the following configurations are in place, a user needs only to authenticate with the local server for login. Subsequent serial authorization uses the saved credentials. The user is also prompted for the privilege level 15 password. When exiting privileged mode, the user is authenticated again. User credentials are not retained in privileged mode.

- The local server is configured to authenticate user access.
• Privilege level 15 command access is configured to require a password.
• The user account is configured for serial-only authorization (no access to console or ASDM).
• The user account is configured for privilege level 15 command access.

The following table shows how credentials are used in this case by the ASA.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Password</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Privileged Mode</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Password</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Security Contexts and Command Authorization

The following are important points to consider when implementing command authorization with multiple security contexts:

• AAA settings are discrete per context, not shared among contexts.

When configuring command authorization, you must configure each security context separately. This configuration provides you the opportunity to enforce different command authorizations for different security contexts.

When switching between security contexts, administrators should be aware that the commands permitted for the username specified when they login may be different in the new context session or that command authorization may not be configured at all in the new context. Failure to understand that command authorizations may differ between security contexts could confuse an administrator. This behavior is further complicated by the next point.

• New context sessions started with the change to command always use the default enable_15 username as the administrator identity, regardless of which username was used in the previous context session. This behavior can lead to confusion if command authorization is not configured for the enable_15 user or if authorizations are different for the enable_15 user than for the user in the previous context session.

This behavior also affects command accounting, which is useful only if you can accurately associate each command that is issued with a particular administrator. Because all administrators with permission to use the change to command can use the enable_15 username in other contexts, command accounting records may not readily identify who was logged in as the enable_15 username. If you use different accounting servers for each context, tracking who was using the enable_15 username requires correlating the data from several servers.

When configuring command authorization, consider the following:

• An administrator with permission to use the change to command effectively has permission to use all commands permitted to the enable_15 user in each of the other contexts.

• If you intend to authorize commands differently per context, ensure that in each context the enable_15 username is denied use of commands that are also denied to administrators who are permitted use of the change to command.

When switching between security contexts, administrators can exit privileged EXEC mode and enter the enable command again to use the username that they need.
Configuring AAA for System Administrators

Note
The system execution space does not support AAA commands; therefore, command authorization is not available in the system execution space.

Licensing Requirements for AAA for System Administrators

The following table shows the licensing requirements for this feature:

<table>
<thead>
<tr>
<th>Model</th>
<th>License Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All models</td>
<td>Base License.</td>
</tr>
</tbody>
</table>

Prerequisites

Depending on the feature, you can use the following:

- AAA server—See the “Configuring AAA Server Groups” section on page 35-11.
- Local Database—See the “Adding a User Account to the Local Database” section on page 35-20.

Prerequisites for Management Authentication

Before the ASA can authenticate a Telnet, SSH, or HTTP user, you must identify the IP addresses that are allowed to communicate with the ASA. For more information, see the “Configuring ASA Access for ASDM, Telnet, or SSH” section on page 37-1.

Prerequisites for Local Command Authorization

- Configure enable authentication. (See the “Configuring Authentication for CLI and ASDM Access” section on page 37-19.) enable authentication is essential for maintaining the username after the user accesses the enable command.

 Alternatively, you can use the login command (which is the same as the enable command with authentication; for the local database only), which requires no configuration. We do not recommend this option because it is not as secure as enable authentication.

 You can also use CLI authentication, but it is not required.

- See the following prerequisites for each user type:

 - Local database users—Configure each user in the local database at a privilege level from 0 to 15.
 - RADIUS users—Configure the user with Cisco VSA CVPN3000-Privilege-Level with a value between 0 and 15.
 - LDAP users—Configure the user with a privilege level between 0 and 15, and then map the LDAP attribute to Cisco VSA CVPN3000-Privilege-Level according to the “Configuring LDAP Attribute Maps” section on page 35-18.

Prerequisites for TACACS+ Command Authorization

- Configure CLI authentication (see the “Configuring Authentication for CLI and ASDM Access” section on page 37-19).
• Configure `enable` authentication (see the “Configuring Authentication to Access Privileged EXEC Mode (the `enable` Command)” section on page 37-19).

Prerequisites for Management Accounting
- Configure CLI authentication (see the “Configuring Authentication for CLI and ASDM Access” section on page 37-19).
- Configure `enable` authentication (see the “Configuring Authentication to Access Privileged EXEC Mode (the `enable` Command)” section on page 37-19).

Guidelines and Limitations

This section includes the guidelines and limitations for this feature.

Context Mode Guidelines
Supported in single and multiple context mode.

Firewall Mode Guidelines
Supported in routed and transparent firewall mode.

IPv6 Guidelines
Supports IPv6.

Default Settings

By default, the following commands are assigned to privilege level 0. All other commands are assigned to privilege level 15.

- `show checksum`
- `show curpriv`
- `enable`
- `help`
- `show history`
- `login`
- `logout`
- `pager`
- `show pager`
- `clear pager`
- `quit`
- `show version`

If you move any configure mode commands to a lower level than 15, be sure to move the `configure` command to that level as well, otherwise, the user will not be able to enter configuration mode.

To view all privilege levels, see the “Viewing Local Command Privilege Levels” section on page 37-26.
Configuring Authentication for CLI and ASDM Access

To configure management authentication, enter the following command:

```
hostname(config)# aaa authentication
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`aaa authentication {telnet</td>
<td>Authenticates users for management access. The telnet keyword controls</td>
</tr>
<tr>
<td>ssh</td>
<td>http</td>
</tr>
<tr>
<td>serial</td>
<td>console [LOCAL</td>
</tr>
<tr>
<td>server_group [LOCAL]}</td>
<td>pix are no longer supported.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Authentication to Access Privileged EXEC Mode (the enable Command)

You can configure the ASA to authenticate users with a AAA server or the local database when they enter the `enable` command. Alternatively, users are automatically authenticated with the local database when they enter the `login` command, which also accesses privileged EXEC mode depending on the user level in the local database.

This section includes the following topics:

- Configuring Authentication for the enable Command, page 37-20
- Authenticating Users with the login Command, page 37-20
Configuring Authentication for the enable Command

You can configure the ASA to authenticate users when they enter the `enable` command. See the “Comparing CLI Access with and without Authentication” section on page 37-14 for more information.

To authenticate users who enter the `enable` command, enter the following command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`aaa authentication enable console [LOCAL</td>
<td>server_group [LOCAL]]`</td>
</tr>
</tbody>
</table>

Authenticating Users with the login Command

From user EXEC mode, you can log in as any username in the local database using the `login` command.

This feature allows users to log in with their own username and password to access privileged EXEC mode, so you do not have to provide the system enable password to everyone. To allow users to access privileged EXEC mode (and all commands) when they log in, set the user privilege level to 2 (the default) through 15. If you configure local command authorization, then the user can only enter commands assigned to that privilege level or lower. See the “Configuring Local Command Authorization” section on page 37-23 for more information.

⚠️ Caution
If you add users to the local database who can gain access to the CLI and whom you do not want to enter privileged EXEC mode, you should configure command authorization. Without command authorization, users can access privileged EXEC mode (and all commands) at the CLI using their own password if their privilege level is 2 or greater (2 is the default). Alternatively, you can use a AAA server for authentication, or you can set all local users to level 1 so you can control who can use the system enable password to access privileged EXEC mode.

To log in as a user from the local database, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>login</code></td>
<td>Logs in as a user from the local database. The ASA prompts for your username and password. After you enter your password, the ASA places you in the privilege level that the local database specifies.</td>
</tr>
</tbody>
</table>

Example:
`hostname(config)# aaa authentication enable console LOCAL`
 Limiting User CLI and ASDM Access with Management Authorization

If you configure CLI or **enable** authentication, you can limit a local user, RADIUS, TACACS+, or LDAP user (if you map LDAP attributes to RADIUS attributes) from accessing the CLI, ASDM, or the **enable** command.

Note
Serial access is not included in management authorization, so if you configure the **aaa authentication serial console** command, then any user who authenticates can access the console port.

To limit user CLI and ASDM access, perform the following steps:

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>aaa authorization exec authentication-server</td>
</tr>
<tr>
<td>Example:</td>
<td>hostname(config)# aaa authorization exec authentication-server</td>
</tr>
<tr>
<td></td>
<td>Enables management authorization for local, RADIUS, LDAP (mapped), and TACACS+ users. Also enables support of administrative user privilege levels from RADIUS, which can be used in conjunction with local command privilege levels for command authorization. See the “Configuring Local Command Authorization” section on page 37-23 for more information. Use the aaa authorization exec LOCAL command to enable attributes to be taken from the local database.</td>
</tr>
</tbody>
</table>
Configuring AAA for System Administrators

Configuring Command Authorization

If you want to control access to commands, the ASA lets you configure command authorization, where you can determine which commands that are available to a user. By default when you log in, you can access user EXEC mode, which offers only minimal commands. When you enter the `enable` command (or the `login` command when you use the local database), you can access privileged EXEC mode and advanced commands, including configuration commands.

You can use one of two command authorization methods:

- Local privilege levels
- TACACS+ server privilege levels

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>To configure the user for management authorization, see the following requirements for each AAA server type or local user:</td>
</tr>
<tr>
<td>• RADIUS or LDAP (mapped) users—Use the IETF RADIUS numeric Service-Type attribute, which maps to one of the following values:</td>
<td></td>
</tr>
<tr>
<td>- Service-Type 6 (Administrative)—Allows full access to any services specified by the <code>aaa authentication console</code> commands.</td>
<td></td>
</tr>
<tr>
<td>- Service-Type 7 (NAS prompt)—Allows access to the CLI when you configure the `aaa authentication {telnet</td>
<td>ssh} console<code>command, but denies ASDM configuration access if you configure the</code>aaa authentication http console<code>command. ASDM monitoring access is allowed. If you configure</code>enable<code>authentication with the</code>aaa authentication enable console<code>command, the user cannot access privileged EXEC mode using the</code>enable` command.</td>
</tr>
<tr>
<td>- Service-Type 5 (Outbound)—Denies management access. The user cannot use any services specified by the <code>aaa authentication console</code> commands (excluding the <code>serial</code> keyword; serial access is allowed). Remote access (IPsec and SSL) users can still authenticate and terminate their remote access sessions.</td>
<td></td>
</tr>
<tr>
<td>Configure Cisco VSA CVNP3000-Privilege-Level with a value between 0 and 15 and then map the LDAP attributes to Cisco VAS CVNP3000-Privilege-Level using the <code>ldap map-attributes</code> command. For more information, see the “Configuring LDAP Attribute Maps” section on page 35-18.</td>
<td></td>
</tr>
<tr>
<td>• TACACS+ users—Authorization is requested with “service=shell,” and the server responds with PASS or FAIL.</td>
<td></td>
</tr>
<tr>
<td>- PASS, privilege level 1—Allows access to ASDM, with limited read-only access to the configuration and monitoring sections, and access for <code>show</code> commands that are privilege level 1 only.</td>
<td></td>
</tr>
<tr>
<td>- PASS, privilege level 2 and higher—Allows access to the CLI when you configure the `aaa authentication {telnet</td>
<td>ssh} console<code>command, but denies ASDM configuration access if you configure the</code>aaa authentication http console<code>command. ASDM monitoring access is allowed. If you configure</code>enable<code>authentication with the</code>aaa authentication enable console<code>command, the user cannot access privileged EXEC mode using the</code>enable<code>command. You are not allowed to access privileged EXEC mode using the</code>enable` command if your enable privilege level is set to 14 or less.</td>
</tr>
<tr>
<td>- FAIL—Denies management access. You cannot use any services specified by the <code>aaa authentication console</code> commands (excluding the <code>serial</code> keyword; serial access is allowed).</td>
<td></td>
</tr>
<tr>
<td>• Local users—Sets the <code>service-type</code> command. By default, the <code>service-type</code> is <code>admin</code>, which allows full access to any services specified by the <code>aaa authentication console</code> command. Uses the <code>username</code> command to configure local database users at a privilege level from 0 to 15. For more information, see the “Adding a User Account to the Local Database” section on page 35-20.</td>
<td></td>
</tr>
</tbody>
</table>
For more information about command authorization, see the “Information About Command Authorization” section on page 37-15.

This section includes the following topics:

- Configuring Local Command Authorization, page 37-23
- Viewing Local Command Privilege Levels, page 37-26
- Configuring Commands on the TACACS+ Server, page 37-26
- Configuring TACACS+ Command Authorization, page 37-29

Configuring Local Command Authorization

Local command authorization lets you assign commands to one of 16 privilege levels (0 to 15). By default, each command is assigned either to privilege level 0 or 15. You can define each user to be at a specific privilege level, and each user can enter any command at the assigned privilege level or below. The ASA supports user privilege levels defined in the local database, a RADIUS server, or an LDAP server (if you map LDAP attributes to RADIUS attributes. See the “Configuring LDAP Attribute Maps” section on page 35-18.)
To configure local command authorization, perform the following steps:

Detailed Steps

Step 1

Command

```
privilege [show | clear | cmd] level level [mode {enable | cmd}] command command
```

Purpose

Assigns a command to a privilege level.

Repeat this command for each command that you want to reassign.

The options in this command are the following:

- **show | clear | cmd**—These optional keywords let you set the privilege only for the show, clear, or configure form of the command. The configure form of the command is typically the form that causes a configuration change, either as the unmodified command (without the `show` or `clear` prefix) or as the `no` form. If you do not use one of these keywords, all forms of the command are affected.

- **level level**—A level between 0 and 15.

- **mode {enable | configure}**—If a command can be entered in user EXEC or privileged EXEC mode as well as configuration mode, and the command performs different actions in each mode, you can set the privilege level for these modes separately:
 - **enable**—Specifies both user EXEC mode and privileged EXEC mode.
 - **configure**—Specifies configuration mode, accessed using the `configure terminal` command.

- **command command**—The command you are configuring. You can only configure the privilege level of the main command. For example, you can configure the level of all `aaa` commands, but not the level of the `aaa authentication` command and the `aaa authorization` command separately.

Example:

```
hostname(config)# privilege show level 5 command filter
```

Step 2

Command

```
aaa authorization exec authentication-server
```

Purpose

Supports administrative user privilege levels from RADIUS.

Enforces user-specific access levels for users who authenticate for management access (see the `aaa authentication console LOCAL` command).

Without this command, the ASA only supports privilege levels for local database users and defaults all other types of users to level 15.

This command also enables management authorization for local, RADIUS, LDAP (mapped), and TACACS+ users.

Use the `aaa authorization exec LOCAL` command to enable attributes to be taken from the local database. See the “Limiting User CLI and ASDM Access with Management Authorization” section on page 37-21 for information about configuring a user on a AAA server to accommodate management authorization.

Example:

```
hostname(config)# aaa authorization exec authentication-server
```
Examples

The **filter** command has the following forms:

- **filter** (represented by the **configure** option)
- **show running-config filter**
- **clear configure filter**

You can set the privilege level separately for each form, or set the same privilege level for all forms by omitting this option. The following example shows how to set each form separately:

```bash
hostname(config)# privilege show level 5 command filter
hostname(config)# privilege clear level 10 command filter
hostname(config)# privilege cmd level 10 command filter
```

Alternatively, the following example shows how to set all filter commands to the same level:

```bash
hostname(config)# privilege level 5 command filter
```

The **show privilege** command separates the forms in the display.

The following example shows the use of the **mode** keyword. The **enable** command must be entered from user EXEC mode, while the **enable password** command, which is accessible in configuration mode, requires the highest privilege level:

```bash
hostname(config)# privilege cmd level 0 mode enable command enable
hostname(config)# privilege cmd level 15 mode cmd command enable
hostname(config)# privilege show level 15 mode cmd command enable
```

The following example shows an additional command, the **configure** command, which uses the **mode** keyword:

```bash
hostname(config)# privilege show level 5 mode cmd command configure
hostname(config)# privilege clear level 15 mode cmd command configure
hostname(config)# privilege cmd level 15 mode cmd command configure
hostname(config)# privilege cmd level 15 mode enable command configure
```

Note This last line is for the **configure terminal** command.
Viewing Local Command Privilege Levels

The following commands let you view privilege levels for commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config all privilege all</td>
<td>Shows all commands.</td>
</tr>
<tr>
<td>show running-config privilege level level</td>
<td>Shows commands for a specific level. The level is an integer between 0 and 15.</td>
</tr>
<tr>
<td>show running-config privilege command command</td>
<td>Shows the level of a specific command.</td>
</tr>
</tbody>
</table>

Examples

For the `show running-config all privilege all` command, the ASA displays the current assignment of each CLI command to a privilege level. The following is sample output from this command:

```
hostname(config)# show running-config all privilege all
privilege show level 15 command aaa
privilege clear level 15 command aaa
privilege configure level 15 command aaa
privilege show level 15 command aaa-server
privilege clear level 15 command aaa-server
privilege configure level 15 command aaa-server
privilege show level 15 command access-group
privilege clear level 15 command access-group
privilege configure level 15 command access-group
privilege show level 15 command access-list
privilege clear level 15 command access-list
privilege configure level 15 command access-list
privilege show level 15 command activation-key
privilege clear level 15 command activation-key
privilege configure level 15 command activation-key
```

The following example displays the command assignments for privilege level 10:

```
hostname(config)# show running-config privilege level 10
```

The following example displays the command assignments for the `access-list` command:

```
hostname(config)# show running-config privilege command access-list
```

Configuring Commands on the TACACS+ Server

You can configure commands on a Cisco Secure Access Control Server (ACS) TACACS+ server as a shared profile component, for a group, or for individual users. For third-party TACACS+ servers, see your server documentation for more information about command authorization support.

See the following guidelines for configuring commands in Cisco Secure ACS Version 3.1; many of these guidelines also apply to third-party servers:

- The ASA sends the commands to be authorized as shell commands, so configure the commands on the TACACS+ server as shell commands.
Note Cisco Secure ACS might include a command type called “pix-shell.” Do not use this type for ASA command authorization.

- The first word of the command is considered to be the main command. All additional words are considered to be arguments, which need to be preceded by `permit` or `deny`.

 For example, to allow the `show running-configuration aaa-server` command, add `show running-configuration` to the command field, and type `permit aaa-server` in the arguments field.

- You can permit all arguments of a command that you do not explicitly deny by checking the Permit Unmatched Args check box.

 For example, you can configure just the `show` command, and then all the `show` commands are allowed. We recommend using this method so that you do not have to anticipate every variant of a command, including abbreviations and `?`, which shows CLI usage (see Figure 37-1).

Figure 37-1 Permitting All Related Commands

- For commands that are a single word, you must permit unmatched arguments, even if there are no arguments for the command, for example `enable` or `help` (see Figure 37-2).

Figure 37-2 Permitting Single Word Commands

- To disallow some arguments, enter the arguments preceded by `deny`.
For example, to allow `enable`, but not `enable password`, enter `enable` in the commands field, and `deny password` in the arguments field. Be sure to check the Permit Unmatched Args check box so that `enable` alone is still allowed (see Figure 37-3).

Figure 37-3 Disallowing Arguments

- When you abbreviate a command at the command line, the ASA expands the prefix and main command to the full text, but it sends additional arguments to the TACACS+ server as you enter them.

 For example, if you enter `sh log`, then the ASA sends the entire command to the TACACS+ server, `show logging`. However, if you enter `sh log mess`, then the ASA sends `show logging mess` to the TACACS+ server, and not the expanded command `show logging message`. You can configure multiple spellings of the same argument to anticipate abbreviations (see Figure 37-4).

Figure 37-4 Specifying Abbreviations

- We recommend that you allow the following basic commands for all users:
 - `show checksum`
 - `show curpriv`
 - `enable`
 - `help`
 - `show history`
Configuring TACACS+ Command Authorization

If you enable TACACS+ command authorization, and a user enters a command at the CLI, the ASA sends the command and username to the TACACS+ server to determine if the command is authorized.

Before you enable TACACS+ command authorization, be sure that you are logged into the ASA as a user that is defined on the TACACS+ server, and that you have the necessary command authorization to continue configuring the ASA. For example, you should log in as an admin user with all commands authorized. Otherwise, you could become unintentionally locked out.

Do not save your configuration until you are sure that it works the way you want. If you get locked out because of a mistake, you can usually recover access by restarting the ASA. If you still get locked out, see the “Recovering from a Lockout” section on page 37-31.

Be sure that your TACACS+ system is completely stable and reliable. The necessary level of reliability typically requires that you have a fully redundant TACACS+ server system and fully redundant connectivity to the ASA. For example, in your TACACS+ server pool, include one server connected to interface 1, and another to interface 2. You can also configure local command authorization as a fallback method if the TACACS+ server is unavailable. In this case, you need to configure local users and command privilege levels according to procedures listed in the “Configuring Command Authorization” section on page 37-22.

To configure TACACS+ command authorization, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa authorization command tacacs+_server_group [LOCAL]</td>
<td>Performs command authorization using a TACACS+ server. You can configure the ASA to use the local database as a fallback method if the TACACS+ server is unavailable. To enable fallback, specify the server group name followed by LOCAL (LOCAL is case sensitive). We recommend that you use the same username and password in the local database as the TACACS+ server because the ASA prompt does not give any indication which method is being used. Be sure to configure users in the local database (see the “Adding a User Account to the Local Database” section on page 35-20) and command privilege levels (see the “Configuring Local Command Authorization” section on page 37-23).</td>
</tr>
</tbody>
</table>

Example:
hostname(config)# aaa authorization command group_1 LOCAL
Configuring Management Access Accounting

You can send accounting messages to the TACACS+ accounting server when you enter any command other than `show` commands at the CLI. You can configure accounting when users log in, when they enter the `enable` command, or when they issue commands.

For command accounting, you can only use TACACS+ servers.

To configure management access and enable command accounting, perform the following steps:

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
`aaa accounting {serial</td>
<td>telnet</td>
</tr>
<tr>
<td>Step 2
<code>aaa accounting command [privilege level] server-tag</code>
Example: <code>hostname(config)# aaa accounting command privilege 15 group_1</code></td>
<td>Enables command accounting. Only TACACS+ servers support command accounting.
Where <code>privilege level</code> is the minimum privilege level and <code>server-tag</code> is the name of the TACACS+ server group to which the ASA should send command accounting messages.</td>
</tr>
</tbody>
</table>

Viewing the Currently Logged-In User

To view the current logged-in user, enter the following command:

`hostname# show curpriv`
The following is sample output from the `show curpriv` command:

`hostname# show curpriv`
Username: admin
Current privilege level: 15
Current Mode/s: P_PRIV

Table 37-1 describes the `show curpriv` command output.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Username. If you are logged in as the default user, the name is enable_1 (user EXEC) or enable_15 (privileged EXEC).</td>
</tr>
</tbody>
</table>
Chapter 37 Configuring Management Access

Configuring AAA for System Administrators

Recovering from a Lockout

In some circumstances, when you turn on command authorization or CLI authentication, you can be locked out of the ASA CLI. You can usually recover access by restarting the ASA. However, if you already saved your configuration, you might be locked out. Table 37-2 lists the common lockout conditions and how you might recover from them.

Table 37-2 CLI Authentication and Command Authorization Lockout Scenarios

<table>
<thead>
<tr>
<th>Feature</th>
<th>Lockout Condition</th>
<th>Description</th>
<th>Workaround: Single Mode</th>
<th>Workaround: Multiple Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local CLI authentication</td>
<td>No users in the local database</td>
<td>If you have no users in the local database, you cannot log in, and you cannot add any users.</td>
<td>Log in and reset the passwords and aaa commands.</td>
<td>Session into the ASA from the switch. From the system execution space, you can change to the context and add a user.</td>
</tr>
<tr>
<td>TACACS+ command authorization</td>
<td>Server down or unreachable and you do not have the fallback method configured</td>
<td>If the server is unreachable, then you cannot log in or enter any commands.</td>
<td>1. Log in and reset the passwords and aaa commands.</td>
<td>1. If the server is unreachable because the network configuration is incorrect on the ASA, session into the ASA from the switch. From the system execution space, you can change to the context and reconfigure your network settings.</td>
</tr>
<tr>
<td>TACACS+ CLI authentication</td>
<td></td>
<td></td>
<td>2. Configure the local database as a fallback method so you do not get locked out when the server is down.</td>
<td>2. Configure the local database as a fallback method so you do not get locked out when the server is down.</td>
</tr>
<tr>
<td>RADIUS CLI authentication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Setting a Management Session Quota

An administrator can establish a maximum number of simultaneous management sessions. If the maximum is reached, no additional sessions are allowed and a syslog message is generated. To prevent a system lockout, the management session quota mechanism cannot block a console session.

To set a management session maximum, enter the following command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>quota management-session number</td>
<td>Sets the maximum number of simultaneous ASDM, SSH, and Telnet sessions that are allowed on the ASA. The no form of this command sets the quota value to 0, which means that there is no session limit.</td>
</tr>
</tbody>
</table>

Example:

```javascript
hostname(config)# quota management-session 1000
```
Feature History for Management Access

Table 37-3 lists each feature change and the platform release in which it was implemented.

Table 37-3 Feature History for Management Access

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Platform Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Access</td>
<td>7.0(1)</td>
<td>We introduced this feature. We introduced the following commands: show running-config all privilege all, show running-config privilege level, show running-config privilege command, telnet, telnet timeout, ssh, ssh timeout, , http, http server enable, asdm image disk, banner, console timeout, icmp, ipv6 icmp, management access, aaa authentication console, aaa authentication enable console, aaa authentication telnet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased SSH security; the SSH default username is no longer supported.</td>
<td>8.4(2)</td>
<td>Starting in 8.4(2), you can no longer connect to the ASA using SSH with the pix or asa username and the login password. To use SSH, you must configure AAA authentication using the aaa authentication ssh console LOCAL command (CLI) or Configuration > Device Management > Users/AAA > AAA Access > Authentication (ASDM); then define a local user by entering the username command (CLI) or choosing Configuration > Device Management > Users/AAA > User Accounts (ASDM). If you want to use a AAA server for authentication instead of the local database, we recommend also configuring local authentication as a backup method.</td>
</tr>
<tr>
<td>Common Criteria certification and FIPS support for maximum number of</td>
<td>8.4(4.1)</td>
<td>The maximum number of simultaneous ASDM, SSH, and Telnet sessions allowed was added. Support for Diffie-Hellman Key Exchange Group 14 for SSH was added. We introduced or modified the following commands: quota management-session, show running-config quota management-session, show quota management-session, ssh.</td>
</tr>
<tr>
<td>management sessions allowed and Diffie-Hellman Key Exchange Group 14 support</td>
<td></td>
<td>for SSH.</td>
</tr>
<tr>
<td>for SSH.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>