Configuring STP

Finding Feature Information

Your software release may not support all the features documented in this chapter. For the latest feature information and caveats, see the release notes for your platform and software release.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring STP

When you configure VTP, you must configure a trunk port so that the switch can send and receive VTP advertisements to and from other switches in the domain.

For more information, see the “Configuring an Ethernet Interface as a Trunk Port” section.

Restrictions for Configuring STP

  • If you are configuring VTP on a cluster member switch to a VLAN, use the rcommand privileged EXEC command to log in to the member switch.
  • In VTP versions 1 and 2, when you configure extended-range VLANs on the switch, the switch must be in VTP transparent mode. VTP version 3 also supports creating extended-range VLANs in client or server mode.

Information About Configuring STP

This chapter describes how to configure the Spanning Tree Protocol (STP) on port-based VLANs on the switch. The switch can use either the per-VLAN spanning-tree plus (PVST+) protocol based on the IEEE 802.1D standard and Cisco proprietary extensions, or the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol based on the IEEE 802.1w standard.

STP

STP is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

The STP uses a spanning-tree algorithm to select one switch of a redundantly connected network as the root of the spanning tree. The algorithm calculates the best loop-free path through a switched Layer 2 network by assigning a role to each port based on the role of the port in the active topology:

  • Root—A forwarding port elected for the spanning-tree topology
  • Designated—A forwarding port elected for every switched LAN segment
  • Alternate—A blocked port providing an alternate path to the root bridge in the spanning tree
  • Backup—A blocked port in a loopback configuration

The switch that has all of its ports as the designated role or as the backup role is the root switch. The switch that has at least one of its ports in the designated role is called the designated switch.

Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames but use them to construct a loop-free path. BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.

When two ports on a switch are part of a loop, the spanning-tree port priority and path cost settings control which port is put in the forwarding state and which is put in the blocking state. The spanning-tree port priority value represents the location of a port in the network topology and how well it is located to pass traffic. The path cost value represents the media speed.


Note The default is for the switch to send keepalive messages (to ensure the connection is up) only on interfaces that do not have small form-factor pluggable (SFP) modules. You can use the [no] keepalive interface configuration command to change the default for an interface.


Spanning-Tree Topology and BPDUs

The stable, active spanning-tree topology of a switched network is controlled by these elements:

  • The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch.
  • The spanning-tree path cost to the root switch.
  • The port identifier (port priority and MAC address) associated with each Layer 2 interface.

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

  • The unique bridge ID of the switch that the sending switch identifies as the root switch
  • The spanning-tree path cost to the root
  • The bridge ID of the sending switch
  • Message age
  • The identifier of the sending interface
  • Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:

  • One switch in the network is elected as the root switch (the logical center of the spanning-tree topology in a switched network).

For each VLAN, the sw itch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID, as shown in Table 20-1.

  • A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.
  • The shortest distance to the root switch is calculated for each switch based on the path cost.
  • A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.

All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.

Bridge ID, Switch Priority, and Extended System ID

The IEEE 802.1D standard requires that each switch has an unique bridge identifier (bridge ID), which controls the selection of the root switch. Because each VLAN is considered as a different logical bridge with PVST+ and rapid PVST+, the same switch must have a different bridge IDs for each configured VLAN. Each VLAN on the switch has a unique 8-byte bridge ID. The 2 most-significant bytes are used for the switch priority, and the remaining 6 bytes are derived from the switch MAC address.

The switch supports the IEEE 802.1t spanning-tree extensions, and some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the uniqueness of the bridge ID. As shown in Table 20-1 , the 2 bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID.

 

Table 20-1 Switch Priority Value and Extended System ID

Switch Priority Value
Extended System ID (Set Equal to the VLAN ID)
Bit 16
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1

32768

16384

8192

4096

2048

1024

512

256

128

64

32

16

8

4

2

1

Spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For example, when you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability. For more information, see the “Configuring the Root Switch” section, the “Configuring a Secondary Root Switch” section, and the “Configuring Optional STP Parameters” section.

Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

  • Blocking—The interface does not participate in frame forwarding.
  • Listening—The first transitional state after the blocking state when the spanning tree decides that the interface should participate in frame forwarding.
  • Learning—The interface prepares to participate in frame forwarding.
  • Forwarding—The interface forwards frames.
  • Disabled—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.

An interface moves through these states:

  • From initialization to blocking
  • From blocking to listening or to disabled
  • From listening to learning or to disabled
  • From learning to forwarding or to disabled
  • From forwarding to disabled

Figure 20-1 Figure 20-1 illustrates how an interface moves through the states.

Figure 20-1 Spanning-Tree Interface States

 

When you power up the switch, spanning tree is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to move the interface to the blocking state.

2. While spanning tree waits the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.

3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.

4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.

Blocking State

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPDU is sent to each switch interface. A switch initially functions as the root until it exchanges BPDUs with other switches. This exchange establishes which switch in the network is the root or root switch. If there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interface moves to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs these functions:

  • Discards frames received on the interface
  • Discards frames switched from another interface for forwarding
  • Does not learn addresses
  • Receives BPDUs

Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree decides that the interface should participate in frame forwarding.

An interface in the listening state performs these functions:

  • Discards frames received on the interface
  • Discards frames switched from another interface for forwarding
  • Does not learn addresses
  • Receives BPDUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs these functions:

  • Discards frames received on the interface
  • Discards frames switched from another interface for forwarding
  • Learns addresses
  • Receives BPDUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs these functions:

  • Receives and forwards frames received on the interface
  • Forwards frames switched from another interface
  • Learns addresses
  • Receives BPDUs

Disabled State

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs these functions:

  • Discards frames received on the interface
  • Discards frames switched from another interface for forwarding
  • Does not learn addresses
  • Does not receive BPDUs

How a Switch or Port Becomes the Root Switch or Root Port

If all switches in a network are enabled with default spanning-tree settings, the switch with the lowest MAC address becomes the root switch. In Figure 20-2, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

Figure 20-2 Spanning-Tree Topology

 

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet port to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet port becomes the new root port.

Spanning Tree and Redundant Connectivity

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices, as shown in Figure 20-3. Spanning tree automatically disables one interface but enables it if the other one fails. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds are the same, the port priority and port ID are added together, and spanning tree disables the link with the lowest value.

Figure 20-3 Spanning Tree and Redundant Connectivity

 

You can also create redundant links between switches by using EtherChannel groups. For more information, see Chapter40, “Configuring EtherChannels”

Spanning-Tree Address Management

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180C2000000 to 0x0180C2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed.

Regardless of the spanning-tree state, each switch receives but does not forward packets destined for addresses between 0x0180C2000000 and 0x0180C200000F.

If spanning tree is enabled, the CPU on the switch receives packets destined for 0x0180C2000000 and 0x0180C2000010. If spanning tree is disabled, the switch forwards those packets as unknown multicast addresses.

Accelerated Aging to Retain Connectivity

The default for aging dynamic addresses is 5 minutes, the default setting of the mac address-table aging-time global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (spanning-tree vlan vlan-id forward-time seconds global configuration command) when the spanning tree reconfigures.

Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.

Spanning-Tree Modes and Protocols

The switch supports these spanning-tree modes and protocols:

  • PVST+—This spanning-tree mode is based on the IEEE 802.1D standard and Cisco proprietary extensions. It is the default spanning-tree mode used on all Ethernet port-based VLANs. The PVST+ runs on each VLAN on the switch up to the maximum supported, ensuring that each has a loop-free path through the network.

The PVST+ provides Layer 2 load balancing for the VLAN on which it runs. You can create different logical topologies by using the VLANs on your network to ensure that all of your links are used but that no one link is oversubscribed. Each instance of PVST+ on a VLAN has a single root switch. This root switch propagates the spanning-tree information associated with that VLAN to all other switches in the network. Because each switch has the same information about the network, this process ensures that the network topology is maintained.

  • Rapid PVST+—This spanning-tree mode is the same as PVST+ except that is uses a rapid convergence based on the IEEE 802.1w standard. To provide rapid convergence, the rapid PVST+ immediately deletes dynamically learned MAC address entries on a per-port basis upon receiving a topology change. By contrast, PVST+ uses a short aging time for dynamically learned MAC address entries.

The rapid PVST+ uses the same configuration as PVST+ (except where noted), and the switch needs only minimal extra configuration. The benefit of rapid PVST+ is that you can migrate a large PVST+ install base to rapid PVST+ without having to learn the complexities of the MSTP configuration and without having to reprovision your network. In rapid-PVST+ mode, each VLAN runs its own spanning-tree instance up to the maximum supported.

  • MSTP—This spanning-tree mode is based on the IEEE 802.1s standard. You can map multiple VLANs to the same spanning-tree instance, which reduces the number of spanning-tree instances required to support a large number of VLANs. The MSTP runs on top of the RSTP (based on IEEE 802.1w), which provides for rapid convergence of the spanning tree by eliminating the forward delay and by quickly transitioning root ports and designated ports to the forwarding state. You cannot run MSTP without RSTP.

The most common initial deployment of MSTP is in the backbone and distribution layers of a Layer 2 switched network. For more information, see Chapter21, “Configuring MSTP”

For information about the number of supported spanning-tree instances, see the next section.

Supported Spanning-Tree Instances

In PVST+ or rapid-PVST+ mode, the switch supports up to 128 spanning-tree instances.

In MSTP mode, the switch supports up to 65 MST instances. The number of VLANs that can be mapped to a particular MST instance is unlimited.

For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “Changing the Spanning-Tree Mode” section.

Spanning-Tree Interoperability and Backward Compatibility

Table 20-2 lists the interoperability and compatibility among the supported spanning-tree modes in a network.

 

Table 20-2 PVST+, MSTP, and Rapid-PVST+ Interoperability

PVST+
MSTP
Rapid PVST+

PVST+

Yes

Yes (with restrictions)

Yes (reverts to PVST+)

MSTP

Yes (with restrictions)

Yes

Yes (reverts to PVST+)

Rapid PVST+

Yes (reverts to PVST+)

Yes (reverts to PVST+)

Yes

In a mixed MSTP and PVST+ network, the common spanning-tree (CST) root must be inside the MST backbone, and a PVST+ switch cannot connect to multiple MST regions.

When a network contains switches running rapid PVST+ and switches running PVST+, we recommend that the rapid-PVST+ switches and PVST+ switches be configured for different spanning-tree instances. In the rapid-PVST+ spanning-tree instances, the root switch must be a rapid-PVST+ switch. In the PVST+ instances, the root switch must be a PVST+ switch. The PVST+ switches should be at the edge of the network.

STP and IEEE 802.1Q Trunks

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through IEEE 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an IEEE 802.1Q trunk, the Cisco switch uses PVST+ to provide spanning-tree interoperability. If rapid PVST+ is enabled, the switch uses it instead of PVST+. The switch combines the spanning-tree instance of the IEEE 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco IEEE 802.1Q switch.

However, all PVST+ or rapid-PVST+ information is maintained by Cisco switches separated by a cloud of non-Cisco IEEE 802.1Q switches. The non-Cisco IEEE 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

PVST+ is automatically enabled on IEEE 802.1Q trunks, and no user configuration is required. The external spanning-tree behavior on access ports is not affected by PVST+.

VLAN-Bridge Spanning Tree

Cisco VLAN-bridge spanning tree is used with the fallback bridging feature (bridge groups), which forwards non-IP protocols such as DECnet between two or more VLAN bridge domains or routed ports. The VLAN-bridge spanning tree allows the bridge groups to form a spanning tree on top of the individual VLAN spanning trees to prevent loops from forming if there are multiple connections among VLANs. It also prevents the individual spanning trees from the VLANs being bridged from collapsing into a single spanning tree.

To support VLAN-bridge spanning tree, some of the spanning-tree timers are increased.

Default Spanning-Tree Settings

 

Table 20-3 Default Spanning-Tree Settings

Feature
Default Setting

Enable state

Enabled on VLAN 1.

Spanning-tree mode

PVST+. (Rapid PVST+ and MSTP are disabled.)

Switch priority

32768.

Spanning-tree port priority (configurable on a per-interface basis)

128.

Spanning-tree port cost (configurable on a per-interface basis)

1000 Mb/s: 4.

100 Mb/s: 19.

10 Mb/s: 100.

Spanning-tree VLAN port priority (configurable on a per-VLAN basis)

128.

Spanning-tree VLAN port cost (configurable on a per-VLAN basis)

1000 Mb/s: 4.

100 Mb/s: 19.

10 Mb/s: 100.

Spanning-tree timers

Hello time: 2 seconds.

Forward-delay time: 15 seconds.

Maximum-aging time: 20 seconds.

Transmit hold count: 6 BPDUs

Disabling Spanning Tree

Spanning tree is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit specified in the “Supported Spanning-Tree Instances” section. Disable spanning tree only if you are sure there are no loops in the network topology.


Caution When spanning tree is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.

Root Switch

The switch maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For each VLAN, the switch with the lowest bridge ID becomes the root switch for that VLAN.

To configure a switch to become the root for the specified VLAN, use the spanning-tree vlan vlan-id root global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the software checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 20-1.)


Note The spanning-tree vlan vlan-id root global configuration command fails if the value necessary to be the root switch is less than 1.



Note If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.



Note The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.


Use the diameter keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the hello keyword to override the automatically calculated hello time.


Note After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time through the spanning-tree vlan vlan-id hello-time, spanning-tree vlan vlan-id forward-time, and the spanning-tree vlan vlan-id max-age global configuration commands.


Secondary Root Switch

When you configure a switch as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the spanning-tree vlan vlan-id root primary global configuration command.

Port Priority

If a loop occurs, spanning tree uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Path Cost

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Spanning-Tree Timers

 

Table 20-4 Spanning-Tree Timers

Variable
Description

Hello timer

Controls how often the switch broadcasts hello messages to other switches.

Forward-delay timer

Controls how long each of the listening and learning states last before the interface begins forwarding.

Maximum-age timer

Controls the amount of time the switch stores protocol information received on an interface.

Transmit hold count

Controls the number of BPDUs that can be sent before pausing for 1 second.

Spanning-Tree Configuration Guidelines

If more VLANs are defined in the VTP than there are spanning-tree instances, you can enable PVST+ or rapid PVST+ on only 128 VLANs on the switch. The remaining VLANs operate with spanning tree disabled. However, you can map multiple VLANs to the same spanning-tree instances by using MSTP. For more information, see Chapter21, “Configuring MSTP”

If 128 instances of spanning tree are already in use, you can disable spanning tree on one of the VLANs and then enable it on the VLAN where you want it to run. Use the no spanning-tree vlan vlan-id global configuration command to disable spanning tree on a specific VLAN, and use the spanning-tree vlan vlan-id global configuration command to enable spanning tree on the desired VLAN.


Caution Switches that are not running spanning tree still forward BPDUs that they receive so that the other switches on the VLAN that have a running spanning-tree instance can break loops. Therefore, spanning tree must be running on enough switches to break all the loops in the network; for example, at least one switch on each loop in the VLAN must be running spanning tree. It is not absolutely necessary to run spanning tree on all switches in the VLAN. However, if you are running spanning tree only on a minimal set of switches, an incautious change to the network that introduces another loop into the VLAN can result in a broadcast storm.


Note If you have already used all available spanning-tree instances on your switch, adding another VLAN anywhere in the VTP domain creates a VLAN that is not running spanning tree on that switch. If you have the default allowed list on the trunk ports of that switch, the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that will not be broken, particularly if there are several adjacent switches that have all run out of spanning-tree instances. You can prevent this possibility by setting up allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances. Setting up allowed lists is not necessary in many cases and can make it more labor-intensive to add another VLAN to the network.


Spanning-tree commands control the configuration of VLAN spanning-tree instances. You create a spanning-tree instance when you assign an interface to a VLAN. The spanning-tree instance is removed when the last interface is moved to another VLAN. You can configure switch and port parameters before a spanning-tree instance is created; these parameters are applied when the spanning-tree instance is created.

The switch supports PVST+, rapid PVST+, and MSTP, but only one version can be active at any time. (For example, all VLANs run PVST+, all VLANs run rapid PVST+, or all VLANs run MSTP.) For information about the different spanning-tree modes and how they interoperate, see the “Spanning-Tree Interoperability and Backward Compatibility” section.

For configuration information about UplinkFast and BackboneFast, see the “Information About Configuring the Optional Spanning-Tree Features” section.


Caution Loop guard works only on point-to-point links. We recommend that each end of the link has a directly connected device that is running STP.

How to Configure STP

Changing the Spanning-Tree Mode

 

Command
Purpose

Step 1

configure terminal

Enters global configuration mode.

Step 2

spanning-tree mode { pvst | mst | rapid-pvst }

Configures a spanning-tree mode.

  • pvst —Enables PVST+ (the default setting).
  • mst —Enables MSTP (and RSTP). For more configuration steps, see Chapter21, “Configuring MSTP”
  • rapid-pvst —Enables rapid PVST+.

Step 3

interface interface-id

(Recommended for rapid-PVST+ mode only) Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports, VLANs, and port channels.

Step 4

spanning-tree link-type point-to-point

(Recommended for rapid-PVST+ mode only) Specifies that the link type for this port is point-to-point.

If you connect this port (local port) to a remote port through a point-to-point link and the local port becomes a designated port, the switch negotiates with the remote port and rapidly changes the local port to the forwarding state.

Step 5

end

Returns to privileged EXEC mode.

Step 6

clear spanning-tree detected-protocols

(Recommended for rapid-PVST+ mode only) Restarts the protocol migration process on the entire switch if any port on the switch is connected to a port on a legacy IEEE 802.1D switch,

This step is optional if the designated switch detects that this switch is running rapid PVST+.

Configuring the Root Switch

 

Command
Purpose

Step 1

configure terminal

Enters global configuration mode.

Step 2

spanning-tree vlan vlan-id root primary [ diameter net-diameter [ hello-time seconds ]]

Configures a switch to become the root for the specified VLAN.

  • vlan-id —Specifies a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma.
  • (Optional) diameter net-diameter —Specifies the maximum number of switches between any two end stations.
  • (Optional) hello-time seconds —Specifies the interval in seconds between the generation of configuration messages by the root switch.

Step 3

end

Returns to privileged EXEC mode.

Configuring a Secondary Root Switch

 

Command
Purpose

Step 1

configure terminal

Enters global configuration mode.

Step 2

spanning-tree vlan vlan-id root secondary [ diameter net-diameter [ hello-time seconds ]]

Configures a switch to become the secondary root for the specified VLAN.

  • vlan-id —Specifies a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4096.
  • (Optional) diameter net-diameter —Specifies the maximum number of switches between any two end stations. The range is 2 to 7.
  • (Optional) hello-time seconds —Specifies the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10; the default is 2.

Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section.

Step 3

end

Returns to privileged EXEC mode.

Configuring Port Priority

 

Command
Purpose

Step 1

configure terminal

Enters global configuration mode.

Step 2

interface interface-id

Specifies an interface to configure, and enters interface configuration mode.

Valid interfaces include physical ports and port-channel logical interfaces (port-channel port-channel-number).

Step 3

spanning-tree port-priority priority

Configures the port priority for an interface.

Step 4

spanning-tree vlan vlan-id port-priority priority

Configures the port priority for a VLAN.

Step 5

end

Returns to privileged EXEC mode.

Configuring Path Cost

 

Command
Purpose

Step 1

configure terminal

Enters global configuration mode.

Step 2

interface interface-id

Specifies an interface to configure, and enters interface configuration mode. Valid interfaces include physical ports and port-channel logical interfaces (port-channel port-channel-number).

Step 3

spanning-tree cost cost

Configures the cost for an interface.

Step 4

spanning-tree vlan vlan-id cost cost

Configures the cost for a VLAN.

If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.

Step 5

end

Returns to privileged EXEC mode.

Configuring Optional STP Parameters

Before You Begin

Exercise care when configuring the priority, and hello time for STP.

For most situations, we recommend that you use the spanning-tree vlan vlan-id root primary and the spanning-tree vlan vlan-id root secondary global configuration commands to modify the switch priority.

 

Command
Purpose

Step 1

configure terminal

Enters global configuration mode.

Step 2

spanning-tree vlan vlan-id priority priority

Configures the switch priority of a VLAN.

Step 3

spanning-tree vlan vlan-id hello-time seconds

Configures the hello time of a VLAN.

Step 4

spanning-tree vlan vlan-id max-age seconds

Configures the maximum-aging time of a VLAN.

Step 5

spanning-tree vlan vlan-id forward-time seconds

Configures the forward time of a VLAN.

Step 6

spanning-tree vlan vlan-id max-age seconds

Configures the maximum-aging time of a VLAN.

Step 7

spanning-tree transmit hold-count value

Configures the number of BPDUs that can be sent before pausing for 1 second.

Note Changing this parameter to a higher value can have a significant impact on CPU utilization, especially in Rapid-PVST mode. Lowering this value can slow down convergence in certain scenarios. We recommend that you maintain the default setting.

Step 8

end

Returns to privileged EXEC mode.

Monitoring and Maintaining STP

 

Command
Purpose

show spanning-tree active

Displays spanning-tree information on active interfaces only.

show spanning-tree detail

Displays a detailed summary of interface information.

show spanning-tree interface interface-id

Displays spanning-tree information for the specified interface.

show spanning-tree summary

Displays a summary of interface states.

show spanning-tree vlan vlan-id

Displays spanning-tree VLAN entries.

copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Additional References

The following sections provide references related to switch administration:

Related Documents

Related Topic
Document Title

Cisco IE 2000 commands

Cisco IE 2000 Switch Command Reference, Release 15.0(1)EY

Cisco IOS basic commands

Cisco IOS Configuration Fundamentals Command Reference

VLAN configuration

Chapter 17, “Configuring VLANs”

Multiple Spanning Tree Protocol configuration

Chapter 21, “Configuring MSTP”

Optional Spanning-Tree configuration

Chapter 22, “Configuring Optional Spanning-Tree Features”

Standards

Standards
Title

No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.

MIBs

MIBs
MIBs Link

To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

RFCs

RFCs
Title

No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.