802.11 parameters and Band Selection

Information About Configuring Band Selection, 802.11 Bands, and Parameters

Band Select

Band select enables client radios that are capable of dual-band (2.4 and 5-GHz) operations to move to a less congested 5-GHz access point. The 2.4-GHz band is often congested. Clients on this band typically experience interference from Bluetooth devices, microwave ovens, and cordless phones as well as co-channel interference from other access points because of the 802.11b/g limit of 3 nonoverlapping channels. To prevent these sources of interference and improve overall network performance, configure band selection on the device.

Band select works by regulating probe responses to clients and it can be enabled on a per-WLAN basis. It makes 5-GHz channels more attractive to clients by delaying probe responses to clients on 2.4-GHz channels. In an access point, the band select table can be viewed by running the show dot11 band-select command. It can also be viewed by running the show cont d0/d1 | begin Lru command.

Band Select Algorithm

The band select algorithm affects clients that use 2.4-GHz band. Initially, when a client sends a probe request to an access point, the corresponding client probe’s Active and Count values (as seen from the band select table) become 1. The algorithm functions based on the following scenarios:

  • Scenario1: Client RSSI (as seen from the show cont d0/d1 | begin RSSI command output) is greater than both Mid RSSI and Acceptable Client RSSI.

    • Dual-band clients: No 2.4-GHz probe responses are seen at any time; 5-GHz probe responses are seen for all 5-GHz probe requests.

    • Single-band (2.4-GHz) clients: 2.4-GHz probe responses are seen only after the probe suppression cycle.

    • After the client’s probe count reaches the configured probe cycle count, the algorithm waits for the Age Out Suppression time and then marks the client probe’s Active value as 0. Then, the algorithm is restarted.

  • Scenario2: Client RSSI (as seen from show cont d0/d1 | begin RSSI ) lies between Mid-RSSI and Acceptable Client RSSI.

    • All 2.4-GHz and 5-GHz probe requests are responded to without any restrictions.

    • This scenario is similar to the band select disabled.


Note


The client RSSI value (as seen in the sh cont d0 | begin RSSI command output) is the average of the client packets received, and the Mid RSSI feature is the instantaneous RSSI value of the probe packets. As a result, the client RSSI is seen as weaker than the configured Mid RSSI value (7-dB delta). The 802.11b probes from the client are suppressed to push the client to associate with the 802.11a band.

802.11 Bands

You can configure the 802.11b/g/n (2.4 GHz) and 802.11a/n (5 GHz) bands for the controller to comply with the regulatory requirements in your country. By default, both 802.11b/g/n and 802.11a/n are enabled.

This section contains the following subsections:

802.11n Parameters

This section provides instructions for managing 802.11n access points on your network. The 802.11n devices support the 2.4 and 5-GHz bands and offer high throughput data rates.

The 802.11n high throughput rates are available on all the 802.11n access points for the WLANs using WMM with no Layer 2 encryption or with WPA2/AES encryption enabled.


Note


To disable MCS rates for 802.11n, 802.11ac and 802.11ax, ensure that at least one MCS rate is enabled. To disable 802.11n on the controller to force APs to use only legacy 802.11a/b/g rates, first disable 802.11ax and 802.11ac on the controller for a particular band. Irrespective of the APs mapped to a Custom-RF-Profile, disabling 802.11n globally on the controller applies to all the APs.


802.11h Parameters

802.11h informs client devices about channel changes and can limit the transmit power of those client devices.

Restrictions for Band Selection, 802.11 Bands, and Parameters

  • Band selection-enabled WLANs do not support time-sensitive applications such as voice and video because of roaming delays.

  • Band selection is supported only on Cisco Wave 2 and 802.11ax APs.

    For more information about support on specific APs, see https://www.cisco.com/c/en/us/td/docs/wireless/access_point/feature-matrix/ap-feature-matrix.html.

  • Band selection operates only on APs that are connected to a controller. A FlexConnect AP without a controller connection does not perform band selection after a reboot.

  • The band-selection algorithm directs dual-band clients only from the 2.4-GHz radio to the 5-GHz radio of the same AP, and it only runs on an AP when both the 2.4-GHz and 5-GHz radios are up and running.

  • It is not possible to enable or disable band selection and client load balancing globally through the controller GUI or CLI. You can, however, enable or disable band selection and client load balancing for a particular WLAN. Band selection and client load balancing are enabled globally by default.

How to Configure 802.11 Bands and Parameters

Configuring Band Selection (GUI)

Before you begin

Ensure that you have configured an AP Join Profile prior to configuring the primary and backup controllers.

Procedure


Step 1

Choose Configuration > Wireless Advanced > Band Select.

Step 2

In the Cycle Count field, enter a value between 1 and 10. The cycle count sets the number of suppression cycles for a new client. The default cycle count is 2.

Step 3

In the Cycle Threshold (milliseconds) field, enter a value between 1 and 1000 milliseconds for the scan cycle period threshold. This setting determines the time threshold during which new probe requests from a client come from a new scanning cycle. The default cycle threshold is 200 milliseconds.

Step 4

In the Age Out Suppression (seconds) field, enter a value between 10 and 200 seconds. Age-out suppression sets the expiration time for pruning previously known 802.11b/g/n clients. The default value is 20 seconds. After this time elapses, clients become new and are subject to probe response suppression.

Step 5

In the Age Out Dual Band (seconds) field, enter a value between 10 and 300 seconds. The age-out period sets the expiration time for pruning previously known dual-band clients. The default value is 50 seconds. After this time elapses, clients become new and are subject to probe response suppression.

Step 6

In the Client RSSI (dbm) field, enter a value between -90 to -20. This is the average of the client packets received.

Step 7

In the Client Mid RSSI (dbm) field, enter a value between -90 to -20. This the instantaneous RSSI value of the probe packets.

Step 8

On the AP Join Profile page, click the AP Join Profile name.

Step 9

Click Apply.


Configuring Band Selection (CLI)

Procedure

  Command or Action Purpose

Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

wireless client band-select cycle-count cycle_count

Example:

Device(config)# wireless client band-select cycle-count 3

Sets the probe cycle count for band select. Valid range is between 1 and 10.

Step 3

wireless client band-select cycle-threshold milliseconds

Example:

Device(config)# wireless client band-select cycle-threshold 5000

Sets the time threshold for a new scanning cycle period. Valid range is between 1 and 1000.

Step 4

wireless client band-select expire suppression seconds

Example:

Device(config)# wireless client band-select expire suppression 100

Sets the suppression expire to the band select. Valid range is between 10 and 200.

Step 5

wireless client band-select expire dual-band seconds

Example:

Device(config)# wireless client band-select expire dual-band 100

Sets the dual band expire. Valid range is between 10 and 300.

Step 6

wireless client band-select client-rssi client_rssi

Example:

Device(config)# wireless client band-select client-rssi 40

Sets the client RSSI threshold. Valid range is between 20 and 90.

Step 7

wlan wlan_profile_name wlan_ID SSID_network_name band-select

Example:

Device(config)# wlan wlan1 25 ssid12
Device(config-wlan)# band-select

Configures band selection on specific WLANs. Valid range is between 1 and 512. You can enter up to 32 alphanumeric characters for SSID_network_name parameter.

Configuring the 802.11 Bands (GUI)

Procedure


Step 1

Choose Configuration > Radio Configurations > Network.

Step 2

Click either 5 GHz Band or 2.4 GHz Band.

Step 3

Uncheck the Network Status check box to disable the network in order to be able to configure the network parameters.

Step 4

In the Beacon Interval field, enter the rate at which the SSID is broadcast by the APs, from 100 to 600 milliseconds. The default is 100 milliseconds.

Step 5

For 802.11b/g/n (2.4-GHz) radios, to enable short preamble on the radio, check the Short Preamble check box. A short preamble improves throughput performance.

Step 6

In the Fragmentation Threshold (in bytes) field, enter a value between 256 to 2346 bytes. Packets larger than the size you specify here will be fragmented.

Step 7

Check the DTPC Support check box to advertise the transmit power level of the radio in the beacons and the probe responses. Client devices using dynamic transmit power control (DTPC) receive the channel and power level information from the access points and adjust their settings automatically. For example, a client device used primarily in Japan could rely on DTPC to adjust its channel and power settings automatically when it travels to Italy and joins a network there. You cannot configure a power constraint value on your 802.11a/n/ac (5-GHz) radio network if the DTPC Support check box is checked.

Step 8

Click Apply.

Step 9

In the CCX Location Measurement section, check the Mode check box to globally enable CCX radio management for the network. This parameter causes the APs connected to this device to issue broadcast radio measurement requests to clients running CCX v2 or later releases.

Step 10

In the Interval field, enter a value to specify how often the APs must issue broadcast radio measurement requests.

Step 11

Click Apply.

Step 12

In the Data Rates section, choose a value to specify the rates at which data can be transmitted between the access point and the client:

  • Mandatory: Clients must support this data rate in order to associate to an access point on the controller embedded wireless controller.
  • Supported: Any associated clients that support this data rate may communicate with the access point using that rate.
  • Disabled: The clients specify the data rates used for communication.

Step 13

Click Apply.

Step 14

Save the configuration.


Configuring the 802.11 Bands (CLI)

Follow the procedure given below to configure 802.11 bands and parameters:

Procedure

  Command or Action Purpose

Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

ap dot11 5ghz shutdown

Example:

Device(config)# ap dot11 5ghz shutdown

Disables the 802.11a band.

Note

 

You must disable the 802.11a band before configuring the 802.11a network parameters.

Step 3

ap dot11 24ghz shutdown

Example:

Device(config)# ap dot11 24ghz shutdown

Disables the 802.11b band.

Note

 

You must disable the 802.11b band before configuring the 802.11b network parameters.

Step 4

ap dot11 {5ghz | 24ghz } beaconperiod time_unit

Example:

Device(config)# ap dot11 5ghz beaconperiod 500

Specifies the rate at which the SSID is broadcast by the corresponding access point.

The beacon interval is measured in time units (TUs). One TU is 1024 microseconds. You can configure the access point to send a beacon every 20 to 1000 milliseconds.

Step 5

ap dot11 {5ghz | 24ghz } fragmentation threshold

Example:

Device(config)# ap dot11 5ghz fragmentation 300

Specifies the size at which packets are fragmented.

The threshold is a value between 256 and 2346 bytes (inclusive). Specify a low number for areas where communication is poor or where there is a great deal of radio interference.

Step 6

[no] ap dot11 {5ghz | 24ghz } dtpc

Example:

Device(config)# ap dot11 5ghz dtpc 
Device(config)# no ap dot11 24ghz dtpc

Enables access points to advertise their channels and transmit the power levels in beacons and probe responses.

The default value is enabled. Client devices using dynamic transmit power control (DTPC) receive the channel-level and power-level information from the access points and adjust their settings automatically. For example, a client device used primarily in Japan can rely on DTPC to adjust its channel and power settings automatically when it travels to Italy and joins a network there.

The no form of the command disables the DTPC setting.

Step 7

wireless client association limit number interval milliseconds

Example:

Device(config)# wireless client association limit 50 interval 1000

Specifies the maximum allowed clients that can be configured.

You can configure the maximum number of association requests on a single access point slot at a given interval. The range of association limit that you can configure is from 1 to 100.

The association request limit interval is measured between 100 to 10000 milliseconds.

Step 8

ap dot11 {5ghz | 24ghz} rate rate {disable | mandatory | supported}

Example:

Device(config)# ap dot11 5ghz rate 36 mandatory

Specifies the rate at which data can be transmitted between the controller embedded wireless controller and the client.

  • disable: Defines that the clients specify the data rates used for communication.

  • mandatory: Defines that the clients support this data rate in order to associate to an access point on the controller embedded wireless controller.

  • supported: Any associated clients that support this data rate can communicate with the access point using that rate. However, the clients are not required to use this rate in order to associate.

  • rate: Specifies the rate at which data is transmitted. For the 802.11a and 802.11b bands, the data is transmitted at the rate of 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, or 54 Mbps.

Step 9

no ap dot11 5ghz shutdown

Example:

Device(config)# no ap dot11 5ghz shutdown

Enables the 802.11a band.

Note

 

The default value is enabled.

Step 10

no ap dot11 24ghz shutdown

Example:

Device(config)# no ap dot11 24ghz shutdown

Enables the 802.11b band.

Note

 

The default value is enabled.

Step 11

ap dot11 24ghz dot11g

Example:

Device(config)# ap dot11 24ghz dot11g

Enables or disables 802.11g network support.

The default value is enabled. You can use this command only if the 802.11b band is enabled. If you disable this feature, the 802.11b band is enabled without 802.11g support.

Step 12

end

Example:

Device(config)# end

Returns to privileged EXEC mode.

Configuring a Band-Select RF Profile (GUI)

Procedure


Step 1

Choose Configuration > Wireless > Advanced.

Step 2

In the Band Select tab, enter a value between 1 and 10 in the Cycle Count field. The cycle count sets the number of suppression cycles for a new client. The default cycle count is 2.

Step 3

In the Cycle Threshold field, enter a value between 1 and 1000 milliseconds for the scan cycle period threshold. This setting determines the time threshold during which new probe requests from a client come from a new scanning cycle. The default cycle threshold is 200 milliseconds.

Step 4

In the Age Out Suppression field, enter a value between 10 and 200 seconds. Age-out suppression sets the expiration time for pruning previously known 802.11b/g/n clients. The default value is 20 seconds. After this time elapses, clients become new and are subject to probe response suppression.

Step 5

In the Age Out Dual Band field, enter a value between 10 and 300 seconds. The age-out period sets the expiration time for pruning previously known dual-band clients. The default value is 50 seconds. After this time elapses, clients become new and are subject to probe response suppression.

Step 6

In the Client RSSI field, enter a value between -90 dBm and -20 dBm. This is the minimum RSSI for a client to respond to a probe.

Step 7

In the Client Mid RSSI field, enter a value between –20 dBm and –90 dBm. This parameter sets the mid-RSSI, whose value can be used for toggling 2.4 GHz probe suppression based on the RSSI value.

Step 8

Click Apply.


Configuring 802.11n Parameters (GUI)

Procedure


Step 1

Choose Configuration > Tags & Profiles > RF.

Step 2

Click Add to view the Add RF Profile window.

Step 3

In the 802.11 tab, proceed as follows:

  1. Choose the required operational rates.

  2. Select the required 802.11n MCS Rates by checking the corresponding check boxes.

Step 4

Click Save & Apply to Device.


Configuring 802.11n Parameters (CLI)

Procedure

  Command or Action Purpose

Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

ap dot11 {5ghz | 24ghz} dot11n

Example:

Device(config)# ap dot11 5ghz dot11n

Enables 802.11n support on the network.

The no form of this command disables the 802.11n support on the network.

Step 3

ap dot11 {5ghz | 24ghz} dot11n mcs tx rtu

Example:

Device(config)# ap dot11 5ghz dot11n mcs tx 20

Specifies the modulation and coding scheme (MCS) rates at which data can be transmitted between the access point and the client.

rtu-The valid range is between 0 and 23.

The no form of this command disables the MCS rates that are configured.

Step 4

wlanwlan_profile_name wlan_ID SSID_network_name wmm require

Example:

Device(config)# wlan wlan1 25 ssid12
Device(config-wlan)# wmm require

Enables WMM on the WLAN and uses the 802.11n data rates that you configured.

The require keyword requires client devices to use WMM. Devices that do not support WMM cannot join the WLAN.

Step 5

ap dot11 {5ghz | 24ghz} shutdown

Example:

Device(config)# ap dot11 5ghz shutdown

Disables the network.

Step 6

{ap | no ap} dot11 {5ghz | 24 ghz} dot11n a-mpdu tx priority {all | 0-7}

Example:

Device(config)# ap dot11 5ghz dot11n a-mpdu tx priority all

Specifies the aggregation method used for 802.11n packets.

Aggregation is the process of grouping packet data frames together, rather than transmitting them separately. Two aggregation methods are available: Aggregated MAC Protocol Data Unit (A-MPDU) and Aggregated MAC Service Data Unit (A-MSDU). Both A-MPDU and A-MSDU are performed in the software.

You can specify the aggregation method for various types of traffic from the access point to the clients.

The list defines the priority levels (0-7) assigned per traffic type.

  • 0—Best effort

  • 1—Background

  • 2—Spare

  • 3—Excellent effort

  • 4—Controlled load

  • 5—Video, less than 100-ms latency and jitter

  • 6—Voice, less than 100-ms latency and jitter

  • 7—Network control

You can configure each priority level independently, or you can use the all the parameters to configure all the priority levels at once. You can configure priority levels so that the traffic uses either A-MPDU transmission or A-MSDU transmission.

  • When you use the ap command along with the other options, the traffic associated with that priority level uses A-MPDU transmission.

  • When you use the no ap command along with the other options, the traffic associated with that priority level uses A-MSDU transmission.

    Configure the priority levels to match the aggregation method used by the clients. By default, A-MPDU is enabled for priority level 0, 4, and 5, and the rest are disabled. By default, A-MPDU is enabled for all priorities except 6 and 7.

Step 7

no ap dot11 {5ghz | 24ghz} shutdown

Example:

Device(config)# no ap dot11 5ghz shutdown

Re-enables the network.

Step 8

ap dot11 {5ghz | 24ghz} dot11n guard-interval {any | long}

Example:

Device(config)# ap dot11 5ghz dot11n guard-interval long

Configures the guard interval for the network.

Step 9

ap dot11 {5ghz | 24ghz} dot11n rifs rx

Example:

Device(config)# ap dot11 5ghz dot11n rifs rx

Configures the Reduced Interframe Space (RIFS) for the network.

Step 10

end

Example:

Device(config)# end

Returns to privileged EXEC mode. Alternatively, you can also press Ctrl-Z to exit global configuration mode.

Configuring 802.11h Parameters (CLI)

Procedure

  Command or Action Purpose

Step 1

ap dot11 5ghz shutdown

Example:

Device(config)# ap dot11 5ghz shutdown

Disables the 802.11 network.

Step 2

{ap | no ap} dot11 5ghz channelswitch mode switch_mode

Example:

Device(config)# ap dot11 5ghz channelswitch mode 0

Enables or disables the access point to announce when it is switching to a new channel.

switch_mode--Enter 0 or 1 to specify whether transmissions are restricted until the actual channel switch (0) or are not restricted (1). The default value is disabled.

Step 3

ap dot11 5ghz power-constraint value

Example:

Device(config)# ap dot11 5ghz power-constraint 200

Configures the 802.11h power constraint value in dB. The valid range is from 0 to 255.

The default value is 3.

Step 4

no ap dot11 5ghz shutdown

Example:

Device(config)# no ap dot11 5ghz shutdown

Re-enables the 802.11a network.

Monitoring Configuration Settings for Band Selection, 802.11 Bands, and Parameters

Verifying Configuration Settings Using Band Selection and 802.11 Bands Commands

The following commands can be used to verify band selection, 802.11 bands, and parameters on the embedded wireless controller.

Table 1. Monitoring Configuration Settings Using Band Selection and 802.11 Band Commands

Command

Purpose

show ap dot11 5ghz network

Displays 802.11a band network parameters, 802.11a operational rates, 802.11n MCS settings, and 802.11n status information.

show ap dot11 24ghz network

Displays 802.11b band network parameters, 802.11b/g operational rates, 802.11n MCS settings, and 802.11n status information.

show wireless dot11h

Displays 802.11h configuration parameters.

show wireless band-select

Displays band-select configuration settings.

Example: Viewing the Configuration Settings for the 5-GHz Band


Device# show ap dot11 5ghz network
802.11a Network : Enabled
11nSupport : Enabled
  802.11a Low Band : Enabled
  802.11a Mid Band : Enabled
  802.11a High Band : Enabled

802.11a Operational Rates
  802.11a 6M : Mandatory
  802.11a 9M : Supported
  802.11a 12M : Mandatory
  802.11a 18M : Supported
  802.11a 24M : Mandatory
  802.11a 36M : Supported
  802.11a 48M : Supported
  802.11a 54M : Supported
802.11n MCS Settings:
  MCS 0 : Supported
  MCS 1 : Supported
  MCS 2 : Supported
  MCS 3 : Supported
  MCS 4 : Supported
  MCS 5 : Supported
  MCS 6 : Supported
  MCS 7 : Supported
  MCS 8 : Supported
  MCS 9 : Supported
  MCS 10 : Supported
  MCS 11 : Supported
  MCS 12 : Supported
  MCS 13 : Supported
  MCS 14 : Supported
  MCS 15 : Supported
  MCS 16 : Supported
  MCS 17 : Supported
  MCS 18 : Supported
  MCS 19 : Supported
  MCS 20 : Supported
  MCS 21 : Supported
  MCS 22 : Supported
  MCS 23 : Supported
802.11n Status:
  A-MPDU Tx:
    Priority 0 : Enabled
    Priority 1 : Disabled
    Priority 2 : Disabled
    Priority 3 : Disabled
    Priority 4 : Enabled
    Priority 5 : Enabled
    Priority 6 : Disabled
    Priority 7 : Disabled
  A-MSDU Tx:
    Priority 0 : Enabled
    Priority 1 : Enabled
    Priority 2 : Enabled
    Priority 3 : Enabled
    Priority 4 : Enabled
    Priority 5 : Enabled
    Priority 6 : Disabled
    Priority 7 : Disabled
Guard Interval : Any
  Rifs Rx : Enabled
Beacon Interval : 100
CF Pollable mandatory : Disabled
CF Poll Request Mandatory : Disabled
CFP Period : 4
CFP Maximum Duration : 60
Default Channel : 36
Default Tx Power Level : 1
DTPC Status : Enabled
Fragmentation Threshold : 2346
Pico-Cell Status : Disabled
Pico-Cell-V2 Status : Disabled
TI Threshold : 0
Legacy Tx Beamforming setting : Disabled
Traffic Stream Metrics Status : Disabled
Expedited BW Request Status : Disabled
EDCA profile type check : default-wmm
Call Admision Control (CAC) configuration
Voice AC
  Voice AC - Admission control (ACM) : Disabled
  Voice Stream-Size : 84000
  Voice Max-Streams : 2
  Voice Max RF Bandwidth : 75
  Voice Reserved Roaming Bandwidth : 6
  Voice Load-Based CAC mode : Enabled
  Voice tspec inactivity timeout : Enabled
CAC SIP-Voice configuration
  SIP based CAC : Disabled
  SIP Codec Type : CODEC_TYPE_G711
  SIP call bandwidth : 64
  SIP call bandwith sample-size : 20
Video AC
  Video AC - Admission control (ACM) : Disabled
  Video max RF bandwidth : Infinite
  Video reserved roaming bandwidth : 0

Example: Viewing the Configuration Settings for the 2.4-GHz Band


Device# show ap dot11 24ghz network
802.11b Network : Enabled
11gSupport : Enabled
11nSupport : Enabled

  802.11b/g Operational Rates
  802.11b 1M : Mandatory
  802.11b 2M : Mandatory
  802.11b 5.5M : Mandatory
  802.11g 6M : Supported
  802.11g 9M : Supported
  802.11b 11M : Mandatory
  802.11g 12M : Supported
  802.11g 18M : Supported
  802.11g 24M : Supported
  802.11g 36M : Supported
  802.11g 48M : Supported
  802.11g 54M : Supported
802.11n MCS Settings:
  MCS 0 : Supported
  MCS 1 : Supported
  MCS 2 : Supported
  MCS 3 : Supported
  MCS 4 : Supported
  MCS 5 : Supported
  MCS 6 : Supported
  MCS 7 : Supported
  MCS 8 : Supported
  MCS 9 : Supported
  MCS 10 : Supported
  MCS 11 : Supported
  MCS 12 : Supported
  MCS 13 : Supported
  MCS 14 : Supported
  MCS 15 : Supported
  MCS 16 : Supported
  MCS 17 : Supported
  MCS 18 : Supported
  MCS 19 : Supported
  MCS 20 : Supported
  MCS 21 : Supported
  MCS 22 : Supported
  MCS 23 : Supported
802.11n Status:
  A-MPDU Tx:
    Priority 0 : Enabled
    Priority 1 : Disabled
    Priority 2 : Disabled
    Priority 3 : Disabled
    Priority 4 : Enabled
    Priority 5 : Enabled
    Priority 6 : Disabled
    Priority 7 : Disabled
  A-MSDU Tx:
    Priority 0 : Enabled
    Priority 1 : Enabled
    Priority 2 : Enabled
    Priority 3 : Enabled
    Priority 4 : Enabled
    Priority 5 : Enabled
  Priority 6 : Disabled
    Priority 7 : Disabled
  Guard Interval : Any
  Rifs Rx : Enabled
Beacon Interval : 100
CF Pollable Mandatory : Disabled
CF Poll Request Mandatory : Disabled
CFP Period : 4
CFP Maximum Duration : 60
Default Channel : 11
Default Tx Power Level : 1
DTPC Status : true
Call Admission Limit : 105
G711 CU Quantum : 15
ED Threshold : -50
Fragmentation Threshold : 2346
PBCC Mandatory : Disabled
Pico-Cell Status : Disabled
Pico-Cell-V2 Status : Disabled
RTS Threshold : 2347
Short Preamble Mandatory : Enabled
Short Retry Limit : 7
Legacy Tx Beamforming setting : Disabled
Traffic Stream Metrics Status : Disabled
Expedited BW Request Status : Disabled
EDCA profile type : default-wmm
Call Admision Control (CAC) configuration
Voice AC
  Voice AC - Admission control (ACM) : Disabled
  Voice Stream-Size : 84000
  Voice Max-Streams : 2
  Voice Max RF Bandwidth : 75
  Voice Reserved Roaming Bandwidth : 6
  Voice Load-Based CAC mode : Enabled
  Voice tspec inactivity timeout : Enabled
CAC SIP-Voice configuration
  SIP based CAC : Disabled
  SIP Codec Type : CODEC_TYPE_G711
  SIP call bandwidth : 64
  SIP call bandwith sample-size : 20
Video AC
  Video AC - Admission control (ACM) : Disabled
  Video max RF bandwidth : Infinite
  Video reserved roaming bandwidth : 0

Example: Viewing the status of 802.11h Parameters


Device# show wireless dot11h
Power Constraint: 0
Channel Switch: 0
Channel Switch Mode: 0

Example: Verifying the Band-Selection Settings

The following example displays a band-select configuration:


Device# show wireless band-select

Band Select Probe Response   : per WLAN enabling
Cycle Count                  : 2
Cycle Threshold (millisec)   : 200
Age Out Suppression (sec)    : 20
Age Out Dual Band (sec)      : 60
Client RSSI (dBm)            : -80
Client Mid RSSI (dBm)        : -80

Configuration Examples for Band Selection, 802.11 Bands, and Parameters

Examples: Band Selection Configuration

This example shows how to set the probe cycle count and time threshold for a new scanning cycle period for band select:

Device# configure terminal
Device(config)# wireless client band-select cycle-count 3
Device(config)# wireless client band-select cycle-threshold 5000
Device(config)# end
This example shows how to set the suppression expiry time to the band select:

Device# configure terminal
Device(config)# wireless client band-select expire suppression 100 
Device(config)# end
This example shows how to set the dual-band expiry time for the band select:

Device# configure terminal
Device(config)# wireless client band-select expire dual-band 100
Device(config)# end
This example shows how to set the client RSSI threshold for the band select:

Device# configure terminal
Device(config)# wireless client band-select client-rssi 40
Device(config)# end
This example shows how to configure band selection on specific WLANs:

Device# configure terminal
Device(config)# wlan wlan1 25 ssid12
Device(config-wlan)# band-select
Device(config)# end

Examples: 802.11 Bands Configuration

This example shows how to configure 802.11 bands using beacon interval, fragmentation, and dynamic transmit power control:

Device# configure terminal
Device(config)# ap dot11 5ghz shutdown
Device(config)# ap dot11 24ghz shutdown
Device(config)# ap dot11 5ghz beaconperiod 500
Device(config)# ap dot11 5ghz fragmentation 300
Device(config)# ap dot11 5ghz dtpc
Device(config)# wireless client association limit 50 interval 1000
Device(config)# ap dot11 5ghz rate 36 mandatory
Device(config)# no ap dot11 5ghz shutdown
Device(config)# no ap dot11 24ghz shutdown
Device(config)# ap dot11 24ghz dot11g
Device(config)#end

Examples: 802.11n Configuration

This example shows how to configure 802.11n parameters for 5-GHz band using aggregation method:

Device# configure terminal
Device(config)# ap dot11 5ghz dot11n
Device(config)# ap dot11 5ghz dot11n mcs tx 20
Device(config)# wlan wlan1 25 ssid12
Device(config-wlan)# wmm require\
Device(config-wlan)# exit
Device(config)# ap dot11 5ghz shutdown
Device(config)# ap dot11 5ghz dot11n a-mpdu tx priority all
Device(config)# no ap dot11 5ghz shutdown
Device(config)#exit
This example shows how to configure the guard interval for 5-GHz band:

Device# configure terminal
Device(config)# ap dot11 5ghz dot11n
Device(config)# ap dot11 5ghz dot11n mcs tx 20
Device(config)# wlan wlan1 25 ssid12
Device(config-wlan)# wmm require\
Device(config-wlan)# exit
Device(config)# no ap dot11 5ghz shutdown
Device(config)# ap dot11 5ghz dot11n guard-interval long
Device(config)#end
This example shows how to configure the RIFS for 5-GHz band:

Device# configure terminal
Device(config)# ap dot11 5ghz dot11n
Device(config)# ap dot11 5ghz dot11n mcs tx 20
Device(config)# wlan wlan1 25 ssid12
Device(config-wlan)# wmm require\
Device(config-wlan)# exit
Device(config)# ap dot11 5ghz shutdown
Device(config)# ap dot11 5ghz dot11n rifs rx
Device(config)#end

Examples: 802.11h Configuration

This example shows how to configure the access point to announce when it is switching to a new channel using restriction transmission:

Device# configure terminal
Device(config)# ap dot11 5ghz shutdown
Device(config)# ap dot11 5ghz channelswitch mode 0
Device(config)# no ap dot11 5ghz shutdown
Device(config)#end
This example shows how to configure the 802.11h power constraint for 5-GHz band:

Device# configure terminal
Device(config)# ap dot11 5ghz shutdown
Device(config)# ap dot11 5ghz power-constraint 200
Device(config)# no ap dot11 5ghz shutdown
Device(config)#end