Performing Device Setup Configuration

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Performing Device Setup Configuration

Review the sections in this module before performing your initial device configuration tasks that include IP address assignments and DHCP autoconfiguration.

Device Boot Process

To start your device, you need to follow the procedures in the hardware installation guide for installing and powering on the device and setting up the initial device configuration (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth).

The normal boot process involves the operation of the boot loader software and includes these activities:

  • Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.

  • Performs power-on self-test (POST) for the CPU subsystem and tests the system DRAM.

  • Initializes the file systems on the system board.

  • Loads a default operating system software image into memory and boots up the device.

The boot loader provides access to the file systems before the operating system is loaded. Normally, the boot loader is used only to load, decompress, and start the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.

The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door mechanism provides enough access to the system so that if it is necessary, you can reinstall the operating system software image by using the Xmodem Protocol, recover from a lost or forgotten password, and finally restart the operating system.

Before you can assign device information, make sure you have connected a PC or terminal to the console port or a PC to the Ethernet management port, and make sure you have configured the PC or terminal-emulation software baud rate and character format to match these of the device console port:

  • Baud rate default is 9600.

  • Data bits default is 8.


    Note

    If the data bits option is set to 8, set the parity option to none.


  • Stop bits default is 2 (minor).

  • Parity settings default is none.

Software Installer Features

The following software installer features are supported on your switch:

  • Software bundle installation on a standalone switch, a switch stack, or a subset of switches in a stack. The default is installation on all the switches if a switch stack is configured.

  • In a stack of switches, Cisco recommends all switches in install mode.

  • Software rollback to a previously installed package set.

  • Emergency installation in the event that no valid installed packages reside on the boot flash.

  • Auto-upgrade of a switch that joins the switch stack with incompatible software.

  • Installation using packages on one switch as the source for installing packages on another switch in the switch stack.


Note

Software installation and rollback must be performed while running only in installed mode. You can use the software expand EXEC command to convert bundle boot mode to install mode.


Software Boot Modes

Your device supports two modes to boot the software packages:

  • Installed mode

  • Bundle mode

Installed Boot Mode

You can boot your device in installed mode by booting the software package provisioning file that resides in flash:

device: boot flash:packages.conf

The provisioning file contains a list of software packages to boot, mount, and run. The ISO file system in each installed package is mounted to the root file system directly from flash.


Note

The packages and provisioning file used to boot in installed mode must reside in flash. Booting in installed mode from usbflash0: or tftp: is not supported.


Bundle Boot Mode

You can boot your device in bundle boot mode by booting the bundle (.bin) file:

switch:  boot flash:cat3850-universalk9.SSA.03.08.83.EMD.150-8.83.EMD.bin

The provisioning file contained in a bundle is used to decide which packages to boot, mount, and run. Packages are extracted from the bundle and copied to RAM. The ISO file system in each package is mounted to the root file system.

Unlike install boot mode, additional memory that is equivalent to the size of the bundle is used when booting in bundle mode.

Unlike install boot mode, bundle boot mode is available from several locations:
  • flash:

  • usbflash0:

  • tftp:


Note

Auto install and smart install functionality is not supported in bundle boot mode.



Note

The AP image pre-download feature is not supported in bundle boot mode. For more information about the pre-download feature see the Cisco WLC 5700 Series Preloading an Image to Access Points chapter.


Boot Mode for a Switch Stack

All the switches in a stack must be running in installed mode or bundle boot mode. A mixed mode stack is not supported. If a new switch tries to join the stack in a different boot mode then the active switch, the new switch is given a V-mismatch state.

If a mixed mode switch stack is booted at the same time, then all the switches except for the active switch is given a V-mismatch state. If the boot mode does not support auto-upgrade, then the switch stack members must be re-booted in the same boot mode as the active switch.

If the stack is running in installed mode, the auto-upgrade feature can be used to automatically upgrade the new switch that is attempting to join the switch stack.

The auto-upgrade feature changes the boot mode of the new switch to installed mode. If the stack is running in bundle boot mode, the auto-upgrade feature is not available. You will be required to use the bundle mode to boot the new switch so that it can join the switch stack.

This is an example of the state of a switch that attempts to join the switch stack when the boot mode is not compatible with the active switch:


Device# show switch

Switch/Stack Mac Address : 6400.f125.1100 - Local Mac Address
Mac persistency wait time: Indefinite
H/W Current
Switch#   Role   Mac Address    Priority Version   State
------------------------------------------------------------
 1       Member 6400 f125.1a00   1        0        V-Mismatch
*2       Active 6400.f125.1100   1        V01      Ready
Device

 

Devices Information Assignment

You can assign IP information through the device setup program, through a DHCP server, or manually.

Use the device setup program if you want to be prompted for specific IP information. With this program, you can also configure a hostname and an enable secret password.

It gives you the option of assigning a Telnet password (to provide security during remote management) and configuring your switch as a command or member switch of a cluster or as a standalone switch.

Use a DHCP server for centralized control and automatic assignment of IP information after the server is configured.


Note

If you are using DHCP, do not respond to any of the questions in the setup program until the device receives the dynamically assigned IP address and reads the configuration file.


If you are an experienced user familiar with the device configuration steps, manually configure the device. Otherwise, use the setup program described in the Boot Process section.

Default Switch Information

Table 1. Default Switch Information

Feature

Default Setting

IP address and subnet mask

No IP address or subnet mask are defined.

Default gateway

No default gateway is defined.

Enable secret password

No password is defined.

Hostname

The factory-assigned default hostname is Device.

Telnet password

No password is defined.

Cluster command switch functionality

Disabled.

Cluster name

No cluster name is defined.

DHCP-Based Autoconfiguration Overview

DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and an operation for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices. The device can act as both a DHCP client and a DHCP server.

During DHCP-based autoconfiguration, your device (DHCP client) is automatically configured at startup with IP address information and a configuration file.

With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your device. However, you need to configure the DHCP server for various lease options associated with IP addresses.

If you want to use DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.


Note

We recommend a redundant connection between a switch stack and the DHCP, DNS, and TFTP servers. This is to help ensure that these servers remain accessible in case one of the connected stack members is removed from the switch stack.


The DHCP server for your device can be on the same LAN or on a different LAN than the device. If the DHCP server is running on a different LAN, you should configure a DHCP relay device between your device and the DHCP server. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your device.

DHCP Client Request Process

When you boot up your device, the DHCP client is invoked and requests configuration information from a DHCP server when the configuration file is not present on the device. If the configuration file is present and the configuration includes the ip address dhcp interface configuration command on specific routed interfaces, the DHCP client is invoked and requests the IP address information for those interfaces.

This is the sequence of messages that are exchanged between the DHCP client and the DHCP server.

Figure 1. DHCP Client and Server Message Exchange

The client, Device A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.

In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the device receives depends on how you configure the DHCP server.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address. If the device accepts replies from a BOOTP server and configures itself, the device broadcasts, instead of unicasts, TFTP requests to obtain the device configuration file.

The DHCP hostname option allows a group of devices to obtain hostnames and a standard configuration from the central management DHCP server. A client (device) includes in its DCHPDISCOVER message an option 12 field used to request a hostname and other configuration parameters from the DHCP server. The configuration files on all clients are identical except for their DHCP-obtained hostnames.

If a client has a default hostname (the hostname name global configuration command is not configured or the no hostname global configuration command is entered to remove the hostname), the DHCP hostname option is not included in the packet when you enter the ip address dhcp interface configuration command. In this case, if the client receives the DCHP hostname option from the DHCP interaction while acquiring an IP address for an interface, the client accepts the DHCP hostname option and sets the flag to show that the system now has a hostname configured.

DHCP-based Autoconfiguration and Image Update

You can use the DHCP image upgrade features to configure a DHCP server to download both a new image and a new configuration file to one or more devices in a network. Simultaneous image and configuration upgrade for all switches in the network helps ensure that each new device added to a network receives the same image and configuration.

There are two types of DHCP image upgrades: DHCP autoconfiguration and DHCP auto-image update.

Restrictions for DHCP-based Autoconfiguration

  • The DHCP-based autoconfiguration with a saved configuration process stops if there is not at least one Layer 3 interface in an up state without an assigned IP address in the network.

  • Unless you configure a timeout, the DHCP-based autoconfiguration with a saved configuration feature tries indefinitely to download an IP address.

  • The auto-install process stops if a configuration file cannot be downloaded or if the configuration file is corrupted.

  • The configuration file that is downloaded from TFTP is merged with the existing configuration in the running configuration but is not saved in the NVRAM unless you enter the write memory or copy running-configuration startup-configuration privileged EXEC command. If the downloaded configuration is saved to the startup configuration, the feature is not triggered during subsequent system restarts.

DHCP Autoconfiguration

DHCP autoconfiguration downloads a configuration file to one or more devices in your network from a DHCP server. The downloaded configuration file becomes the running configuration of the device. It does not over write the bootup configuration saved in the flash, until you reload the device.

DHCP Auto-Image Update

You can use DHCP auto-image upgrade with DHCP autoconfiguration to download both a configuration and a new image to one or more devices in your network. The device (or devices) downloading the new configuration and the new image can be blank (or only have a default factory configuration loaded).

If the new configuration is downloaded to a switch that already has a configuration, the downloaded configuration is appended to the configuration file stored on the switch. (Any existing configuration is not overwritten by the downloaded one.)

To enable a DHCP auto-image update on the device, the TFTP server where the image and configuration files are located must be configured with the correct option 67 (the configuration filename), option 66 (the DHCP server hostname) option 150 (the TFTP server address), and option 125 (description of the Cisco IOS image file) settings.

After you install the device in your network, the auto-image update feature starts. The downloaded configuration file is saved in the running configuration of the device, and the new image is downloaded and installed on the device. When you reboot the device, the configuration is stored in the saved configuration on the device.

DHCP Server Configuration Guidelines

Follow these guidelines if you are configuring a device as a DHCP server:

  • You should configure the DHCP server with reserved leases that are bound to each device by the device hardware address.

  • If you want the device to receive IP address information, you must configure the DHCP server with these lease options:
    • IP address of the client (required)

    • Subnet mask of the client (required)

    • DNS server IP address (optional)

    • Router IP address (default gateway address to be used by the device) (required)

  • If you want the device to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:
    • TFTP server name (required)

    • Boot filename (the name of the configuration file that the client needs) (recommended)

    • Hostname (optional)

  • Depending on the settings of the DHCP server, the device can receive IP address information, the configuration file, or both.

  • If you do not configure the DHCP server with the lease options described previously, it replies to client requests with only those parameters that are configured. If the IP address and the subnet mask are not in the reply, the device is not configured. If the router IP address or the TFTP server name are not found, the device might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

  • The device can act as a DHCP server. By default, the Cisco IOS DHCP server and relay agent features are enabled on your device but are not configured. (These features are not operational.)

Purpose of the TFTP Server

Based on the DHCP server configuration, the device attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the device with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the device attempts to download the specified configuration file from the specified TFTP server.

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the device attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the device’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).

For the device to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:

  • The configuration file named in the DHCP reply (the actual device configuration file).

  • The network-confg or the cisconet.cfg file (known as the default configuration files).

  • The router-confg or the ciscortr.cfg file (These files contain commands common to all devices. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the device, or if it is to be accessed by the device through the broadcast address (which occurs if the DHCP server response does not contain all the required information described previously), a relay must be configured to forward the TFTP packets to the TFTP server. The preferred solution is to configure the DHCP server with all the required information.

Purpose of the DNS Server

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP address map on the DNS server. The TFTP server contains the configuration files for the device.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database.

The DNS server can be on the same LAN or on a different LAN from the device. If it is on a different LAN, the device must be able to access it through a router.

How to Obtain Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the device obtains its configuration information in these ways:

  • The IP address and the configuration filename is reserved for the device and provided in the DHCP reply (one-file read method).

    The device receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The device sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server and upon receipt, it completes its boot up process.

  • The IP address and the configuration filename is reserved for the device, but the TFTP server address is not provided in the DHCP reply (one-file read method).

    The device receives its IP address, subnet mask, and the configuration filename from the DHCP server. The device sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, it completes its boot-up process.

  • Only the IP address is reserved for the device and provided in the DHCP reply. The configuration filename is not provided (two-file read method).

    The device receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The device sends a unicast message to the TFTP server to retrieve the network-confg or cisconet.cfg default configuration file. (If the network-confg file cannot be read, the device reads the cisconet.cfg file.)

    The default configuration file contains the hostnames-to-IP-address mapping for the device. The device fills its host table with the information in the file and obtains its hostname. If the hostname is not found in the file, the device uses the hostname in the DHCP reply. If the hostname is not specified in the DHCP reply, the device uses the default Switch as its hostname.

    After obtaining its hostname from the default configuration file or the DHCP reply, the device reads the configuration file that has the same name as its hostname (hostname-confg or hostname.cfg, depending on whether network-confg or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.

    If the device cannot read the network-confg, cisconet.cfg, or the hostname file, it reads the router-confg file. If the device cannot read the router-confg file, it reads the ciscortr.cfg file.


Note

The device broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.


How to Control Environment Variables

With a normally operating device, you enter the boot loader mode only through the console connection configured for 9600 bps. Unplug the device power cord, and press the Mode button while reconnecting the power cord. You can release the Mode button after all the amber system LEDs turn on and remain solid. The boot loader device prompt then appears.

The device boot loader software provides support for nonvolatile environment variables, which can be used to control how the boot loader, or any other software running on the system, operates. Boot loader environment variables are similar to environment variables that can be set on UNIX or DOS systems.

Environment variables that have values are stored in flash memory outside of the flash file system.

Each line in these files contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not present; it has a value if it is listed even if the value is a null string. A variable that is set to a null string (for example, “ ”) is a variable with a value. Many environment variables are predefined and have default values.

You can change the settings of the environment variables by accessing the boot loader or by using Cisco IOS commands. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

Common Environment Variables

This table describes the function of the most common environment variables.

Table 2. Common Environment Variables

Variable

Boot Loader Command

Cisco IOS Global Configuration Command

BOOT

set BOOT filesystem :/ file-url ...

A semicolon-separated list of executable files to try to load and execute when automatically booting.

boot system {filesystem : /file-url ... | switch {number | all}}

Specifies the Cisco IOS image to load during the next boot cycle and the stack members on which the image is loaded. This command changes the setting of the BOOT environment variable.

The package provisioning file, also referred to as the packages.conf file, is used by the system to determine which software packages to activate during boot up.
  • When booting in installed mode, the package provisioning file specified in the boot command is used to determine which packages to activate. For example boot flash:packages.conf .

  • When booting in bundle mode, the package provisioning file contained in the booted bundle is used to activate the packages included in the bundle. For example, boot flash:image.bin .

MANUAL_BOOT

set MANUAL_BOOT yes

Decides whether the switch automatically or manually boots.

Valid values are 1, yes, 0, and no. If it is set to no or 0, the boot loader attempts to automatically boot up the system. If it is set to anything else, you must manually boot up the switch from the boot loader mode.

boot manual

Enables manually booting the switch during the next boot cycle and changes the setting of the MANUAL_BOOT environment variable.

The next time you reboot the system, the switch is in boot loader mode. To boot up the system, use the boot flash: filesystem :/ file-url boot loader command, and specify the name of the bootable image.

CONFIG_FILE

set CONFIG_FILE flash:/ file-url

Changes the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration.

boot config-file flash:/ file-url

Specifies the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration. This command changes the CONFIG_FILE environment variable.

SWITCH_NUMBER

set SWITCH_NUMBER stack-member-number

Changes the member number of a stack member.

switch current-stack-member-number renumber new-stack-member-number

Changes the member number of a stack member.

SWITCH_PRIORITY

set SWITCH_PRIORITY stack-member-number

Changes the priority value of a stack member.

switch stack-member-number priority priority-number

Changes the priority value of a stack member.

BAUD

set BAUD baud-rate

line console 0

speed speed-value

Configures the baud rate.

ENABLE_BREAK

set ENABLE_BREAK yes/no

boot enable-break switch yes/no

Enables a break to the auto-boot cycle. You have 5 seconds to enter the break command.

Environment Variables for TFTP

When the switch is connected to a PC through the Ethernet management port, you can download or upload a configuration file to the boot loader by using TFTP. Make sure the environment variables in this table are configured.

Table 3. Environment Variables for TFTP

Variable

Description

MAC_ADDR

Specifies the MAC address of the switch.

Note 

We recommend that you do not modify this variable.

However, if you modify this variable after the boot loader is up or the value is different from the saved value, enter this command before using TFTP.

IP_ADDR

Specifies the IP address and the subnet mask for the associated IP subnet of the switch.

DEFAULT_ROUTER

Specifies the IP address and subnet mask of the default gateway.

Scheduled Reload of the Software Image

You can schedule a reload of the software image to occur on the device at a later time (for example, late at night or during the weekend when the device is used less), or you can synchronize a reload network-wide (for example, to perform a software upgrade on all devices in the network).


Note

A scheduled reload must take place within approximately 24 days.


You have these reload options:

  • Reload of the software to take affect in the specified minutes or hours and minutes. The reload must take place within approximately 24 hours. You can specify the reason for the reload in a string up to 255 characters in length.

  • Reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight.

The reload command halts the system. If the system is not set to manually boot up, it reboots itself.

If your device is configured for manual booting, do not reload it from a virtual terminal. This restriction prevents the device from entering the boot loader mode and then taking it from the remote user’s control.

If you modify your configuration file, the device prompts you to save the configuration before reloading. During the save operation, the system requests whether you want to proceed with the save if the CONFIG_FILE environment variable points to a startup configuration file that no longer exists. If you proceed in this situation, the system enters setup mode upon reload.

To cancel a previously scheduled reload, use the reload cancel privileged EXEC command.

How to Perform Device Setup Configuration

Using DHCP to download a new image and a new configuration to a device requires that you configure at least two devices. One device acts as a DHCP and TFTP server and the second device (client) is configured to download either a new configuration file or a new configuration file and a new image file.

Configuring DHCP Autoconfiguration (Only Configuration File)

This task describes how to configure DHCP autoconfiguration of the TFTP and DHCP settings on an existing device in the network so that it can support the autoconfiguration of a new device.

SUMMARY STEPS

  1. configure terminal
  2. ip dhcp pool poolname
  3. boot filename
  4. network network-number mask prefix-length
  5. default-router address
  6. option 150 address
  7. exit
  8. tftp-server flash:filename.text
  9. interface interface-id
  10. no switchport
  11. ip address address mask
  12. end

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 2

ip dhcp pool poolname

Example:


Device(config)# ip dhcp pool pool

Creates a name for the DHCP server address pool, and enters DHCP pool configuration mode.

Step 3

boot filename

Example:


Device(dhcp-config)# boot config-boot.text

Specifies the name of the configuration file that is used as a boot image.

Step 4

network network-number mask prefix-length

Example:


Device(dhcp-config)# network 10.10.10.0 255.255.255.0

Specifies the subnet network number and mask of the DHCP address pool.

Note 

The prefix length specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).

Step 5

default-router address

Example:


Device(dhcp-config)# default-router 10.10.10.1

Specifies the IP address of the default router for a DHCP client.

Step 6

option 150 address

Example:


Device(dhcp-config)# option 150 10.10.10.1

Specifies the IP address of the TFTP server.

Step 7

exit

Example:


Device(dhcp-config)# exit

Returns to global configuration mode.

Step 8

tftp-server flash:filename.text

Example:


Device(config)# tftp-server flash:config-boot.text

Specifies the configuration file on the TFTP server.

Step 9

interface interface-id

Example:


Device(config)# interface gigabitethernet1/0/4

Specifies the address of the client that will receive the configuration file.

Step 10

no switchport

Example:


Device(config-if)# no switchport

Puts the interface into Layer 3 mode.

Step 11

ip address address mask

Example:


Device(config-if)# ip address 10.10.10.1 255.255.255.0

Specifies the IP address and mask for the interface.

Step 12

end

Example:


Device(config-if)# end

Returns to privileged EXEC mode.

Configuring DHCP Auto-Image Update (Configuration File and Image)

This task describes DHCP autoconfiguration to configure TFTP and DHCP settings on an existing device to support the installation of a new switch.

Before you begin

You must first create a text file (for example, autoinstall_dhcp) that will be uploaded to the device. In the text file, put the name of the image that you want to download (forexample, c3750e-ipservices-mz.122-44.3.SE.tarc3750x-ipservices-mz.122-53.3.SE2.tar). This image must be a tar and not a bin file.

SUMMARY STEPS

  1. configure terminal
  2. ip dhcp pool poolname
  3. boot filename
  4. network network-number mask prefix-length
  5. default-router address
  6. option 150 address
  7. option 125 hex
  8. copy tftp flash filename.txt
  9. copy tftp flash imagename.bin
  10. exit
  11. tftp-server flash: config.text
  12. tftp-server flash: imagename.bin
  13. tftp-server flash: filename.txt
  14. interface interface-id
  15. no switchport
  16. ip address address mask
  17. end
  18. copy running-config startup-config

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 2

ip dhcp pool poolname

Example:


Device(config)# ip dhcp pool pool1

Creates a name for the DHCP server address pool and enter DHCP pool configuration mode.

Step 3

boot filename

Example:


Device(dhcp-config)# boot config-boot.text

Specifies the name of the file that is used as a boot image.

Step 4

network network-number mask prefix-length

Example:


Device(dhcp-config)# network 10.10.10.0 255.255.255.0

Specifies the subnet network number and mask of the DHCP address pool.

Note 

The prefix length specifies the number of bits that comprise the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/).

Step 5

default-router address

Example:


Device(dhcp-config)# default-router 10.10.10.1

Specifies the IP address of the default router for a DHCP client.

Step 6

option 150 address

Example:


Device(dhcp-config)# option 150 10.10.10.1

Specifies the IP address of the TFTP server.

Step 7

option 125 hex

Example:


Device(dhcp-config)# option 125 hex 0000.0009.0a05.08661.7574.6f69.6e73.7461.6c6c.5f64.686370

Specifies the path to the text file that describes the path to the image file.

Step 8

copy tftp flash filename.txt

Example:


Device(config)# copy tftp flash image.bin

Uploads the text file to the device.

Step 9

copy tftp flash imagename.bin

Example:


Device(config)# copy tftp flash image.bin

Uploads the tar file for the new image to the device.

Step 10

exit

Example:


Device(dhcp-config)# exit

Returns to global configuration mode.

Step 11

tftp-server flash: config.text

Example:


Device(config)# tftp-server flash:config-boot.text

Specifies the Cisco IOS configuration file on the TFTP server.

Step 12

tftp-server flash: imagename.bin

Example:


Device(config)# tftp-server flash:image.bin

Specifies the image name on the TFTP server.

Step 13

tftp-server flash: filename.txt

Example:


Device(config)# tftp-server flash:boot-config.text

Specifies the text file that contains the name of the image file to download

Step 14

interface interface-id

Example:


Device(config)# interface gigabitEthernet1/0/4

Specifies the address of the client that will receive the configuration file.

Step 15

no switchport

Example:


Device(config-if)# no switchport

Puts the interface into Layer 3 mode.

Step 16

ip address address mask

Example:


Device(config-if)# ip address 10.10.10.1 255.255.255.0

Specifies the IP address and mask for the interface.

Step 17

end

Example:


Device(config-if)# end

Returns to privileged EXEC mode.

Step 18

copy running-config startup-config

Example:


Device(config-if)# end

(Optional) Saves your entries in the configuration file.

Configuring the Client to Download Files from DHCP Server


Note

You should only configure and enable the Layer 3 interface. Do not assign an IP address or DHCP-based autoconfiguration with a saved configuration.


SUMMARY STEPS

  1. configure terminal
  2. boot host dhcp
  3. boot host retry timeout timeout-value
  4. banner config-save ^C warning-message ^C
  5. end
  6. show boot

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 2

boot host dhcp

Example:


Device(conf)# boot host dhcp

Enables autoconfiguration with a saved configuration.

Step 3

boot host retry timeout timeout-value

Example:


Device(conf)# boot host retry timeout 300

(Optional) Sets the amount of time the system tries to download a configuration file.

Note 

If you do not set a timeout, the system will try indefinitely to obtain an IP address from the DHCP server.

Step 4

banner config-save ^C warning-message ^C

Example:


Device(conf)# banner config-save ^C Caution - Saving Configuration File 
to NVRAM May Cause You to No longer Automatically Download Configuration Files at Reboot^C

(Optional) Creates warning messages to be displayed when you try to save the configuration file to NVRAM.

Step 5

end

Example:


Device(config-if)# end

Returns to privileged EXEC mode.

Step 6

show boot

Example:


Device# show boot

Verifies the configuration.

Manually Assigning IP Information to Multiple SVIs

This task describes how to manually assign IP information to multiple switched virtual interfaces (SVIs):

SUMMARY STEPS

  1. configure terminal
  2. interface vlan vlan-id
  3. ip address ip-address subnet-mask
  4. exit
  5. ip default-gateway ip-address
  6. end
  7. show interfaces vlan vlan-id
  8. show ip redirects

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:


Device# configure terminal

Enters global configuration mode.

Step 2

interface vlan vlan-id

Example:


Device(config)# interface vlan 99

Enters interface configuration mode, and enters the VLAN to which the IP information is assigned. The range is 1 to 4094.

Step 3

ip address ip-address subnet-mask

Example:


Device(config-vlan)# ip address 10.10.10.2 255.255.255.0

Enters the IP address and subnet mask.

Step 4

exit

Example:


Device(config-vlan)# exit

Returns to global configuration mode.

Step 5

ip default-gateway ip-address

Example:


Device(config)# ip default-gateway 10.10.10.1

Enters the IP address of the next-hop router interface that is directly connected to the device where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the device.

Once the default gateway is configured, the device has connectivity to the remote networks with which a host needs to communicate.

Note 

When your device is configured to route with IP, it does not need to have a default gateway set.

Note 

The device capwap relays on default-gateway configuration to support routed access point join the device.

Step 6

end

Example:


Device(config)# end

Returns to privileged EXEC mode.

Step 7

show interfaces vlan vlan-id

Example:


Device# show interfaces vlan 99

Verifies the configured IP address.

Step 8

show ip redirects

Example:


Device# show ip redirects

Verifies the configured default gateway.

Modifying the Device Startup Configuration

Specifying the Filename to Read and Write the System Configuration

By default, the Cisco IOS software uses the config.text file to read and write a nonvolatile copy of the system configuration. However, you can specify a different filename, which will be loaded during the next boot cycle.

Before you begin

Use a standalone device for this task.

SUMMARY STEPS

  1. configure terminal
  2. boot flash:/file-url
  3. end
  4. show boot
  5. copy running-config startup-config

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

boot flash:/file-url

Example:

Device(config)# boot flash:config.text

Specifies the configuration file to load during the next boot cycle.

file-url —The path (directory) and the configuration filename.

Filenames and directory names are case-sensitive.

Step 3

end

Example:

Device(config)# end

Returns to privileged EXEC mode.

Step 4

show boot

Example:

Device# show boot

Verifies your entries.

The boot global configuration command changes the setting of the CONFIG_FILE environment variable.

Step 5

copy running-config startup-config

Example:

Device# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Manually Booting the Switch

By default, the switch automatically boots up; however, you can configure it to manually boot up.

Before you begin

Use a standalone switch for this task.

SUMMARY STEPS

  1. configure terminal
  2. boot manual
  3. end
  4. show boot
  5. copy running-config startup-config

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

boot manual

Example:

Device(config)# boot manual

Enables the switch to manually boot up during the next boot cycle.

Step 3

end

Example:

Device(config)# end

Returns to privileged EXEC mode.

Step 4

show boot

Example:

Device# show boot

Verifies your entries.

The boot manual global command changes the setting of the MANUAL_BOOT environment variable.

The next time you reboot the system, the switch is in boot loader mode, shown by the switch: prompt. To boot up the system, use the boot filesystem:/file-url boot loader command.

  • filesystem :—Uses flash: for the system board flash device.
    device: boot flash:
  • For file-url —Specifies the path (directory) and the name of the bootable image.

Filenames and directory names are case-sensitive.

Step 5

copy running-config startup-config

Example:

Device# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Booting the Device in Installed Mode

SUMMARY STEPS

  1. cp source_file_path destination_file_path
  2. software expand file source_file_path
  3. reload
  4. boot flash:packages.conf
  5. show version

DETAILED STEPS

  Command or Action Purpose
Step 1

cp source_file_path destination_file_path

Example:
Device# 
copy
tftp://10.0.0.6/cat3k_caa-universalk9.SSA.03.12.02.EZP.150-12.02.EZP.150-12.02.EZP.bin
flash:

(Optional) Copies the bin file (image.bin) from the FTP or TFTP server to flash or USB flash.

Step 2

software expand file source_file_path

Example:
Expanding the bin file from the TFTP server:
Switch# software expand file tftp://10.0.0.2/cat3k_caa-universalk9.SSA.03.09.37.EXP.150-9.37.EXP.bin to flash:
Preparing expand operation ...
[1]: Downloading file tftp://10.0.0.2/cat3k_caa-universalk9.SSA.03.09.37.EXP.150-9.37.EXP.bin to active switch 1
[1]: Finished downloading file tftp://10.0.0.2/cat3k_caa-universalk9.SSA.03.09.37.EXP.150-9.37.
EXP.bin to active switch 1
[1]: Copying software from active switch 1 to switch 2
[1]: Finished copying software to switch 2
[1 2]: Expanding bundle cat3k_caa-universalk9.SSA.03.09.37.EXP.150-9.37.EXP.bin
[1 2]: Copying package files
[1 2]: Package files copied
[1 2]: Finished expanding bundle cat3k_caa-universalk9.SSA.03.09.37.EXP.150-9.37.EXP.bin

   18  -rw-    74387812   Dec 7 2012 05:55:43 +00:00  cat3k_caa-base.SSA.03.09.37.EXP.pkg
   19  -rw-     2738868   Dec 7 2012 05:55:44 +00:00  cat3k_caa-drivers.SSA.03.09.37.EXP.pkg
   20  -rw-    32465772   Dec 7 2012 05:55:44 +00:00  cat3k_caa-infra.SSA.03.09.37.EXP.pkg
   21  -rw-    30389036   Dec 7 2012 05:55:44 +00:00  cat3k_caa-iosd-universalk9.SSA.150-9.37.EXP.pkg
   22  -rw-    18342624   Dec 7 2012 05:55:44 +00:00  cat3k_caa-platform.SSA.03.09.37.EXP.pkg
   23  -rw-    63374028   Dec 7 2012 05:55:44 +00:00  cat3k_caa-wcm.SSA.10.0.10.14.pkg
   17  -rw-        1239   Dec 7 2012 05:56:29 +00:00  packages.conf
Expands the bin file stored in flash, FTP, TFTP, HTTP, or HTTPS server on the booted device.
Note 

Ensure that the packages.conf file is available in the expanded list.

Step 3

reload

Example:
Device: reload

Reloads the device.

Note 

You can boot the device manually or automatically using the packages.conf file. If you are booting manually, you can proceed to Step 4. Otherwise, the device boots up automatically.

Step 4

boot flash:packages.conf

Example:
switch: boot flash:packages.conf

Boots the device with the packages.conf file.

Step 5

show version

Example:
switch# show version

Switch Ports Model              SW Version        SW Image              Mode   
------ ----- -----              ----------        ----------            ----   
     1 6     WS-C3850-6DS-S     03.09.26.EXP      ct3850-ipservicesk9   INSTALL

Verifies that the device is in the INSTALL mode.

Booting the Device in Bundle Mode

There are several methods by which you can boot the device—either by copying the bin file from the TFTP server and then boot the device, or by booting the device straight from flash or USB flash using the commands boot flash:<image.bin> or boot usbflash0:<image.bin> .

The following procedure explains how to boot the device from th TFTP server in the bundle mode.

SUMMARY STEPS

  1. cp source_file_path destination_file_path
  2. switch:BOOT=<source path of .bin file>
  3. boot
  4. show version

DETAILED STEPS

  Command or Action Purpose
Step 1

cp source_file_path destination_file_path

Example:
Device# copy
tftp://10.0.0.6/cat3k_caa-universalk9.SSA.03.12.02.EZP.150-12.02.EZP.150-12.02.EZP.bin
flash:

(Optional) Copies the bin file (image.bin) from the FTP or TFTP server to flash or USB flash.

Step 2

switch:BOOT=<source path of .bin file>

Example:
Device: switch:BOOT=tftp://10.0.0.2/cat3k_caa-universalk9.SSA.03.09.37.EXP.150-9.37.EXP.bin

Sets the boot parameters.

Step 3

boot

Example:
switch: boot

Boots the device.

Step 4

show version

Example:
switch# show version
Switch Ports Model              SW Version        SW Image              Mode   
------ ----- -----              ----------        ----------            ----   
     1 6     WS-C3850-6DS-S     03.09.40.EXP      ct3850-ipservicesk9   BUNDLE 

Verifies that the device is in the BUNDLE mode.

Booting a Specific Software Image On a Switch Stack

By default, the switch attempts to automatically boot up the system using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory. However, you can specify a specific image to boot up.

SUMMARY STEPS

  1. configure terminal
  2. boot system switch {number | all}
  3. end
  4. show boot system
  5. copy running-config startup-config

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

boot system switch {number | all}

Example:

Switch(config)# boot system switch 2 flash:cat3850-universalk9.SSA.03.08.83.EMD.150-8.83.EMD.bin 

(Optional) For switches in a stack, specifies the switch members on which the system image is loaded during the next boot cycle:

  • Use number to specify a stack member. (Specify only one stack member.)

  • Use all to specify all stack members.

If you enter on a Catalyst 3750-X stack master or member, you can only specify the switch image for other Catalyst 3750-X stack members.

If you enter on a Catalyst 3750-E stack master or member, you can only specify the switch image for other Catalyst 3750-E stack members.

If you want to specify the image for a Catalyst 3750 switch, enter this command on the Catalyst 3750 stack member.

Step 3

end

Example:

Device(config)# end

Returns to privileged EXEC mode.

Step 4

show boot system

Example:

Device# show boot system 

Verifies your entries.

The boot system global command changes the setting of the BOOT environment variable.

During the next boot cycle, the switch attempts to automatically boot up the system using information in the BOOT environment variable.

Step 5

copy running-config startup-config

Example:

Device# copy running-config startup-config

(Optional) Saves your entries in the configuration file.

Configuring a Scheduled Software Image Reload

This task describes how to configure your device to reload the software image at a later time.

SUMMARY STEPS

  1. configure terminal
  2. copy running-config startup-config
  3. reload in [hh:]mm [text]
  4. reload slot [stack-member-number]
  5. reload at hh: mm [month day | day month] [text]
  6. reload cancel
  7. show reload

DETAILED STEPS

  Command or Action Purpose
Step 1

configure terminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 2

copy running-config startup-config

Example:
copy running-config startup-config

Saves your device configuration information to the startup configuration before you use the reload command.

Step 3

reload in [hh:]mm [text]

Example:

Device(config)# reload in 12

 System configuration has been modified. Save? [yes/no]: y

Schedules a reload of the software to take affect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days. You can specify the reason for the reload in a string up to 255 characters in length.

Step 4

reload slot [stack-member-number]

Example:

Device(config)# reload slot 6

Proceed with reload? [confirm] y

Schedules a reload of the software in a switch stack.

Step 5

reload at hh: mm [month day | day month] [text]

Example:

Device(config)# reload at 14:00

Specifies the time in hours and minutes for the reload to occur.

Note 

Use the at keyword only if the device system clock has been set (through Network Time Protocol (NTP), the hardware calendar, or manually). The time is relative to the configured time zone on the device. To schedule reloads across several devices to occur simultaneously, the time on each device must be synchronized with NTP.

Step 6

reload cancel

Example:

Device(config)# reload cancel
Cancels a previously scheduled reload.
Step 7

show reload

Example:
show reload

Displays information about a previously scheduled reload or identifies if a reload has been scheduled on the device.

Monitoring Device Setup Configuration

Example: Verifying the Device Running Configuration


Device# show running-config
Building configuration...

Current configuration: 1363 bytes
!
version 12.4
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Stack1
!
enable secret 5 $1$ej9.$DMUvAUnZOAmvmgqBEzIxE0
!
.
<output truncated>
.
interface gigabitethernet6/0/2
mvr type source

<output truncated>

...!
interface VLAN1
 ip address 172.20.137.50 255.255.255.0
 no ip directed-broadcast
!
ip default-gateway 172.20.137.1 !
!
snmp-server community private RW
snmp-server community public RO
snmp-server community private@es0 RW
snmp-server community public@es0 RO
snmp-server chassis-id 0x12
! 
end 

Examples: Displaying Software Bootup in Install Mode

This example displays software bootup in install mode:
switch: boot flash:packages.conf

Getting rest of image
Reading full image into memory....done
Reading full base package into memory...: done = 74596432
Nova Bundle Image
--------------------------------------
Kernel Address : 0x6042f354
Kernel Size : 0x318412/3245074
Initramfs Address : 0x60747768
Initramfs Size : 0xdc08e8/14420200
Compression Format: .mzip

Bootable image at @ ram:0x6042f354
Bootable image segment 0 address range [0x81100000, 0x81b80000] is in range [0x80180000, 0x90000000].
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@boot_system: 377
Loading Linux kernel with entry point 0x811060f0 ...
Bootloader: Done loading app on core_mask: 0xf

### Launching Linux Kernel (flags = 0x5)

All packages are Digitally Signed
Starting System Services
Nov 7 09:57:05 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-DISC_START: Switch 2 is starting stack discovery
#######################################################################################################################
Nov 7 09:59:07 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-DISC_DONE: Switch 2 has finished stack discovery
Nov 7 09:59:07 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-SWITCH_ADDED: Switch 2 has been added to the stack
Nov 7 09:59:14 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-ACTIVE_ELECTED: Switch 2 has been elected ACTIVE

Restricted Rights Legend

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706



Cisco IOS Software, IOS-XE Software, Catalyst L3 Switch Software (CAT3K_CAA-UNIVERSALK9-M), 
Version 03.09.12.EMD EARLY DEPLOYMENT ENGINEERING NOVA_WEEKLY BUILD, synced to DSGS_PI2_POSTPC_FLO_DSBU7_NG3K_1105
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Sun 04-Nov-12 22:53 by gereddy
License level to iosd is ipservices


This example display software bootup in bundle mode:
switch: boot flash:cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin


Reading full image into memory..................................................................done
Nova Bundle Image
--------------------------------------
Kernel Address : 0x6042ff38
Kernel Size : 0x318412/3245074
Initramfs Address : 0x6074834c
Initramfs Size : 0xdc08e8/14420200
Compression Format: .mzip

Bootable image at @ ram:0x6042ff38
Bootable image segment 0 address range [0x81100000, 0x81b80000] is in range [0x80180000, 0x90000000].
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
File "flash:cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin" uncompressed and installed, entry point: 0x811060f0
Loading Linux kernel with entry point 0x811060f0 ...
Bootloader: Done loading app on core_mask: 0xf

### Launching Linux Kernel (flags = 0x5)

All packages are Digitally Signed
Starting System Services
Nov 7 09:45:49 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-DISC_START: Switch 2 is starting stack discovery
#######################################################################################################################
Nov 7 09:47:50 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-DISC_DONE: Switch 2 has finished stack discovery
Nov 7 09:47:50 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-SWITCH_ADDED: Switch 2 has been added to the stack
Nov 7 09:47:58 %IOSXE-1-PLATFORM: process stack-mgr: %STACKMGR-1-ACTIVE_ELECTED: Switch 2 has been elected ACTIVE

Restricted Rights Legend

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706



Cisco IOS Software, IOS-XE Software, Catalyst L3 Switch Software (CAT3K_CAA-UNIVERSALK9-M), Version 03.09.12.EMD 
EARLY DEPLOYMENT ENGINEERING NOVA_WEEKLY BUILD, synced to DSGS_PI2_POSTPC_FLO_DSBU7_NG3K_1105
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Sun 04-Nov-12 22:53 by gereddy
License level to iosd is ipservices


Example: Emergency Installation

This sample output is an example when the emergency-install boot command is initiated:

switch: emergency-install tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin


The bootflash will be erased during install operation, continue (y/n)?y
Starting emergency recovery (tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin)...
Reading full image into memory......................done
Nova Bundle Image
--------------------------------------
Kernel Address : 0x6042e5cc
Kernel Size : 0x318261/3244641
Initramfs Address : 0x60746830
Initramfs Size : 0xdb0fb9/14356409
Compression Format: .mzip

Bootable image at @ ram:0x6042e5cc
Bootable image segment 0 address range [0x81100000, 0x81b80000] is in range [0x80180000, 0x90000000].
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
File "sda9:c3850-recovery.bin" uncompressed and installed, entry point: 0x811060f0
Loading Linux kernel with entry point 0x811060f0 ...
Bootloader: Done loading app on core_mask: 0xf

### Launching Linux Kernel (flags = 0x5)



Initiating Emergency Installation of bundle tftp://172.19.211.47/cstohs/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin


Downloading bundle tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin...
Validating bundle tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin...
Installing bundle tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin...
Verifying bundle tftp://192.0.2.47/cat3k/cat3k_caa-universalk9.SSA.03.09.12.EMD.150-9.12.EMD.bin...
Package cat3k_caa-base.SSA.03.09.12.EMD.pkg is Digitally Signed
Package cat3k_caa-drivers.SSA.03.09.12.EMD.pkg is Digitally Signed
Package cat3k_caa-infra.SSA.03.09.12.EMD.pkg is Digitally Signed
Package cat3k_caa-iosd-universalk9.SSA.150-9.12.EMD.pkg is Digitally Signed
Package cat3k_caa-platform.SSA.03.09.12.EMD.pkg is Digitally Signed
Package cat3k_caa-wcm.SSA.03.09.12.EMD.pkg is Digitally Signed
Preparing flash...
Syncing device...
Emergency Install successful... Rebooting
Restarting system.



Booting...(use DDR clock 667 MHz)Initializing and Testing RAM +++@@@@####...++@@++@@++@@++@

Configuration Examples for Performing Device Setup

Example: Configuring a Device as a DHCP Server


Device# configure terminal
Device(config)# ip dhcp pool pool1
Device(dhcp-config)# network 10.10.10.0 255.255.255.0
Device(dhcp-config)# boot config-boot.text 
Device(dhcp-config)# default-router 10.10.10.1
Device(dhcp-config)# option 150 10.10.10.1
Device(dhcp-config)# exit
Device(config)# tftp-server flash:config-boot.text
Device(config)# interface gigabitethernet1/0/4 
Device(config-if)# no switchport
Device(config-if)# ip address 10.10.10.1 255.255.255.0
Device(config-if)# end

Example: Configuring DHCP Auto-Image Update


Device# configure terminal
Device(config)# ip dhcp pool pool1
Device(dhcp-config)# network 10.10.10.0 255.255.255.0
Device(dhcp-config)# boot config-boot.text 
Device(dhcp-config)# default-router 10.10.10.1
Device(dhcp-config)# option 150 10.10.10.1
Device(dhcp-config)# option 125 hex 0000.0009.0a05.08661.7574.6f69.6e73.7461.6c6c.5f64.686370 
Device(dhcp-config)# exit
Device(config)# tftp-server flash:config-boot.text
Device(config)# tftp-server flash:image_name
Device(config)# tftp-server flash:boot-config.text
Device(config)# tftp-server flash: autoinstall_dhcp
Device(config)# interface gigabitethernet1/0/4
Device(config-if)# no switchport
Device(config-if)# ip address 10.10.10.1 255.255.255.0
Device(config-if)# end

Example: Configuring a Device to Download Configurations from a DHCP Server

This example uses a Layer 3 SVI interface on VLAN 99 to enable DHCP-based autoconfiguration with a saved configuration:


Device# configure terminal 
Device(config)# boot host dhcp
Device(config)# boot host retry timeout 300
Device(config)# banner config-save ^C Caution - Saving Configuration File to NVRAM May Cause You to No longer Automatically Download Configuration Files at Reboot^C
Device(config)# vlan 99
Device(config-vlan)# interface vlan 99
Device(config-if)# no shutdown
Device(config-if)# end
Device# show boot
BOOT path-list:
Config file:          flash:/config.text
Private Config file:  flash:/private-config.text
Enable Break:         no
Manual Boot:          no
HELPER path-list:
NVRAM/Config file
      buffer size:    32768
Timeout for Config
          Download:    300 seconds
Config Download
       via DHCP:       enabled (next boot: enabled)
Device#

Examples: Scheduling Software Image Reload

This example shows how to reload the software on the device on the current day at 7:30 p.m:


Device# reload at 19:30
Reload scheduled for 19:30:00 UTC Wed Jun 5 2013 (in 2 hours and 25 minutes)
Proceed with reload? [confirm]

This example shows how to reload the software on the device at a future time:


Device# reload at 02:00 jun 20
Reload scheduled for 02:00:00 UTC Thu Jun 20 2013 (in 344 hours and 53 minutes)
Proceed with reload? [confirm]

Additional References For Performing Device Setup

Related Documents

Related Topic Document Title

Device setup commands

Boot loader commands

System Management Command Reference (Catalyst 3850 Switches)

Pre-download feature

System Management Configuration Guide (Cisco WLC 5700 Series)

IOS XE DHCP configuration

IP Addressing Configuration Guide Library, Cisco IOS XE Release 3S (Catalyst 3850 Switches)

Hardware installation

Catalyst 3850 Switch Hardware Installation Guide

Platform-independent command references

Configuration Fundamentals Command Reference, Cisco IOS XE Release 3S (Catalyst 3850 Switches)

Platform-independent configuration information

Configuration Fundamentals Configuration Guide, Cisco IOS XE Release 3S (Catalyst 3850 Switches)

Standards and RFCs

Standard/RFC Title
None

MIBs

MIB MIBs Link

All supported MIBs for this release.

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Technical Assistance

Description Link

The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.

To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.

http://www.cisco.com/support

Installing WCM Sub-Package

This document explains the process to install wireless control module (WCM) sub-package in Cisco Catalyst 3850 and 3650 Series Switches.

The WCM sub-package, which consists of WCM module and AP images, upgrades features, supports new APs, and fixes known issues. It eliminates the need for a full image upgrade and the resulting network downtime by upgrading only the WCM portion of the image. For example, if the WCM fails to allow a new AP to join the network due to image version mis-match, you can upgrade only the WCM portion of the image to add support for the new AP. When the WCM is upgraded, all the APs in the network are automatically upgraded to the newer image.

Benefits

  • Fixes WCM bugs

  • Supports new APs

  • Updates features available in WCM

Prerequisites

  • The controller must be booted in install mode.

  • WCM sub-package should be available in any of the sources supported by installer. For example, flash or TFTP or USB.

Restrictions

  • WCM sub-package can only be installed on previous minor versions of the 16.1 image (for example, WCM package from 16.01.YY(cat3k_caa-wcm.16.01.YY.SSA.pkg) can be installed on 16.01.01 to 16.01.YY super package (cat3k_caa-universalk9.16.01.[01-to-YY].SSA.bin).

  • You should reboot the switch after an upgrade.

Installing WCM Sub-Package

Procedure


Step 1

Upgrade controller WCM package.

request platform software package install switch all file flash: wcm_sub_package.pkg auto-copy
Step 2

(Optional) Download and install the AP image. This procedure reduces network downtime by pre-downloading and pre-programming APs with new image. Otherwise, when the controller reloads there will be a version mis-match between controller and APs and the APs will start to upgrade themselves using the new AP image, which may lead to longer downtime on the network.

Note 

After the download and install, wait for 30 seconds to ensure that the CLIs reach the AP.

  1. Push the new image to all connected APs.

    ap image predownload
  2. Monitor the progress of the download.

    show ap image
  3. Point the boot variable of all APs to the new image.

    ap image swap
  4. Reset the APs.

    ap image reset
Step 3

Reload the controller. After the reload, the controller reloads with new WCM package and APs reloads with new AP image and they will start joining the upgraded controller.

reload

Feature History and Information For Performing Device Setup Configuration

Command History

Release

Modification

Cisco IOS XE 3.2SE

This feature was introduced.