Ethernet OAM
To configure Ethernet OAM (EOAM), you should understand the following concepts:
Ethernet Link OAM
Ethernet as a Metro Area Network (MAN) or a Wide Area Network (WAN) technology benefits greatly from the implementation of Operations, Administration and Maintenance (OAM) features. Ethernet Link OAM (ELO) features allow you to monitor the quality of the connections on a MAN or a WAN. ELO operates on a single physical link, and it can be configured to monitor either side or both sides of that link.
ELO can be configured in the following ways:
-
Using an ELO profile: An ELO profile can be configured to set the parameters for multiple interfaces. This simplifies the process of configuring Ethernet Link OAM features on multiple interfaces. An ELO profile and its features can be referenced by other interfaces, allowing them to inherit those features. This is the preferred method of configuring custom ELO settings.
-
Configuring directly on an interface: Individual ELO features can be configured directly on an interface without being part of a profile. When an interface uses an ELO profile, specific parameters can still be overridden by configuring different values directly on the interface. In such cases, the individually configured features take precedence over the profile settings.
When an ELO packet is received on any one of the Attachment Circuit (AC) interfaces where ELO is not configured, the AC interface multicasts the received packets to other AC interfaces that are part of the Ethernet Virtual Private Network Broadcast Domain (EVPN-BD) to reach the peer. An ELO can be configured on any physical Ethernet interface, including bundle members.
These standard Ethernet Link OAM features are supported on the router:
EFD
Ethernet Fault Detection (EFD) is a mechanism that allows Ethernet OAM protocols, such as CFM, to control the line protocol
state of an interface.
Unlike many other interface types, Ethernet interfaces do not have a line protocol, whose state is independent from that of the interface. For Ethernet interfaces, this role is handled by the physical-layer Ethernet protocol itself, and therefore if the interface is physically up, then it is available and traffic can flow.
EFD changes this to allow CFM to act as the line protocol for Ethernet interfaces. This allows CFM to control the interface state so that if a CFM defect (such as AIS or loss of continuity) is detected with an expected peer MEP, the interface can be shut down. This not only stops traffic flow, but also triggers actions in any higher-level protocols to route around the problem. For example, in the case of Layer 2 interfaces, the MAC table would be cleared and MSTP would reconverge. For Layer 3 interfaces, the ARP cache would be cleared and potentially the IGP would reconverge.
![]() Note |
EFD can only be used for down MEPs. When EFD is used to shut down the interface, the CFM frames continue to flow. This allows CFM to detect when the problem has been resolved, and thus bring the interface backup automatically. |
This figure shows CFM detection of an error on one of its sessions EFD signaling an error to the corresponding MAC layer for the interface. This triggers the MAC to go to a down state, which further triggers all higher level protocols (Layer 2 pseudowires, IP protocols, and so on) to go down and also trigger a reconvergence where possible. As soon as CFM detects there is no longer any error, it can signal to EFD and all protocols will once again go active.

How to Configure Ethernet OAM
This section provides these configuration procedures: