Cisco MDS 9000 Family Configuration Guide, Release 1.3 (from Release 1.3(1) through Release 1.3(6))
Initial Configuration

Table Of Contents

Initial Configuration

Starting a Switch in the Cisco MDS 9000 Family

Initial Setup Routine

Preparing to Configure the Switch

Default Login

Setup Options

Assigning Setup Information

Configuring Out-of-Band Management

In-Band Management Configuration

Using the setup Command

Accessing the Switch

Assigning a Switch Name

Where Do You Go Next?

Verifying the Module Status

Configuring Date and Time

Configuring the Time Zone

Adjusting for Daylight Saving Time

NTP Configuration

Configuring NTP

NTP Configuration Guidelines

Management Interface Configuration

Obtaining Remote Management Access

Using the force Option

Default Gateway Configuration

Configuring the Default Gateway

Telnet Server Connection

Disabling a Telnet Connection

Working with Configuration Files

Displaying Configuration Files

Downloading Configuration Files to the Switch

From a Remote Server

From an External Flash (slot0:)

To a Remote Server

To an External CompactFlash Disk

Saving the Configuration

Copying Files

Backing Up the Current Configuration

Rolling Back to a Previous Configuration

Restoring the Configured Redundancy Mode

Downgrading from a Higher Release

Accessing Remote File Systems

Deleting Files

Configuring Console Settings

Verifying the Console Configuration

Configuring COM1 Settings

Verifying the COM1 Configuration

Configuring Modem Connections

Guidelines to Configure Modems

Enabling Modem Connections

Configuring the Initialization String

Configuring the Default Initialization String

Configuring a User-Specified Initialization String

Initializing a Modem in a Powered on Switch

Verifying the Modem Configuration

CDP Configuration

Configuring the CDP

Clearing CDP Configurations

Displaying CDP Protocol Settings


Initial Configuration


This chapter describes how to initially configure switches so they can be accessed by other devices. This chapter includes the following sections:

Starting a Switch in the Cisco MDS 9000 Family

Initial Setup Routine

Accessing the Switch

Assigning a Switch Name

Where Do You Go Next?

Verifying the Module Status

Configuring Date and Time

Management Interface Configuration

Telnet Server Connection

Working with Configuration Files

Deleting Files

Accessing Remote File Systems

Deleting Files

Configuring Console Settings

Configuring COM1 Settings

Configuring Modem Connections

CDP Configuration

Starting a Switch in the Cisco MDS 9000 Family

The following procedure is a review of the tasks you should have completed during hardware installation, including starting up the switch. These tasks must be completed before you can configure the switch.

Before you can configure a switch, follow these steps:


Step 1 Verify the following physical connections for the new Cisco MDS 9000 Family switch:

The console port is physically connected to a computer terminal (or terminal server).

The management 10/100 Ethernet port (mgmt0) is connected to an external hub, switch, or router.

Refer to the Cisco MDS 9000 Family Hardware Installation Guide (for the required product) for more information.


Tip Save the host ID information for future use (for example, to enable licensed features). The host ID information is provided in the Proof of Purchase document that accompanies the switch.


Step 2 Verify that the default console port parameters are identical to those of the computer terminal (or terminal server) attached to the switch console port:

9600 baud

8 data bits

1 stop bit

No parity

Step 3 Power on the switch. The switch boots automatically and the switch# prompt appears in your terminal window.


Initial Setup Routine

The first time that you access a switch in the Cisco MDS 9000 Family, it runs a setup program that prompts you for the IP address and other configuration information necessary for the switch to communicate over the supervisor module Ethernet interface. This information is required to configure and manage the switch.


Note The IP address can only be configured from the CLI. When you power up the switch for the first time assign the IP address. After you perform this step, the Cisco MDS 9000 Family Fabric Manager can reach the switch through the console port.


Preparing to Configure the Switch

Before you configure a switch in the Cisco MDS 9000 Family for the first time, you need the following information:

Administrator password, including:

Changing the default password (admin) for the administrator.

Creating an additional login account and password.

SNMPv3 user name and authentication password.

SNMP community string.

Switch name—This is your switch prompt.

IP address for the switch's management interface—The management interface can be an out-of-band Ethernet interface or an in-band Fibre Channel interface.

Subnet mask for the switch's management interface.

IP addresses, including:

Destination prefix, destination prefix subnet mask, and next hop IP address, if you want to enable IP routing. Also, provide the IP address of the default network.

Otherwise, provide an IP address of the default gateway.

DNS IP address (optional).

Default domain name (optional).

SSH service on the switch—To enable this service, select the type of SSH key (dsa/rsa/rsa1) and number of key bits (768 to 2048).

NTP server IP address (optional).


Note Be sure to configure the IP route, the IP default network address, and the IP default gateway address to enable SNMP access. If IP routing is enabled, the switch uses the IP route and the default network IP address. If IP routing is disabled, the switch uses the default gateway IP address.


Default Login

All Cisco MDS 9000 Family switches have the network administrator as a default user (admin) and a default password (admin). You can change the default password, if required, during the initial setup process. You cannot change the default user at any time.

During the initial setup process, you have the option to configure one additional user in the network administrator role. If you change the administrator password during the initial setup process and subsequently forget this new password, you have the option to recover this password.

See the "Role-Based CLI Authorization" section for information on default roles and permissions and see the "Recovering Administrator Password" section for information on changing the administrator password.

Setup Options

The setup scenario differs based on the subnet to which you are adding the new switch. You must configure a switch in the Cisco MDS 9000 Family with an IP address to enable management connections from outside of the switch.


Note Some concepts such as out-of-band management and in-band management are briefly explained here. These concepts are explained in more detail in subsequent chapters.


Out-of-band management—This feature provides a connection to the network through a supervisor module front panel Ethernet port (see Figure 4-1).

In-band management—This feature provides IP over Fibre Channel (IPFC) to manage the switches. The in-band management feature is transparent to the network management system (NMS). Instead of conventional Ethernet physical media, switches in the Cisco MDS 9000 Family use IPFC as the transport mechanism (see Figure 4-1 and "Configuring IP Services").

Figure 4-1 Management Access to Switches

Assigning Setup Information

This section describes how to initially configure the switch for both out-of-band and in-band management.


Note Press Ctrl-C at any prompt to skip the remaining configuration options and proceed with what is configured until that point.



Tip If you do not wish to answer a previously configured question, or if you wish to skip answers to any questions, press Enter. If a default answer is not available (for example, switch name), the switch uses what was previously configured and skips to the next question.


Configuring Out-of-Band Management


Note You can configure both in-band and out-of-band configuration together by entering Yes in both Step 11 and Step 12 in the following procedure.


To configure the switch for first time out-of-band access, follow these steps:


Step 1 Power on the switch. Switches in the Cisco MDS 9000 Family boot automatically.

Step 2 Enter yes to enter the setup mode.

This setup utility will guide you through the basic configuration of
the system. Setup configures only enough connectivity for management
of the system.

Press Enter incase you want to skip any dialog. Use ctrl-c at anytime
to skip away remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

The setup utility guides you through the basic configuration process. Press Ctrl-C at any prompt to end the configuration process.

Step 3 Enter the new password for the administrator (admin is the default).

Enter the password for admin: admin 

Step 4 Enter yes (no is the default) to create additional accounts.

Create another login account (yes/no) [n]: yes

While configuring your initial setup, you can create an additional user account (in the network-admin role) besides the administrator's account. See the "Role-Based CLI Authorization" section for information on default roles and permissions.

a. Enter the user login ID.

Enter the user login ID: user_name

b. Enter the user password.

Enter the password for user_name: user-password

Step 5 Enter yes (yes is the default) to create an SNMPv3 account.

Configure SNMPv3 Management parameters (yes/no) [y]: yes

a. Enter the user name (admin is the default).

SNMPv3 user name [admin]: admin

b. Enter the SNMPv3 password (minimum of eight characters).

SNMPv3 user authentication password: admin_pass


Note By default, if the admin password is at least eight characters, then the SNMP authentication password is the same as the admin password (at least eight characters). If the admin password is less than eight characters, then you need to provide a new password for SNMP.
The admin password can have a minimum of one character, but the SNMP authentication password must have a minimum of eight characters.


Step 6 Enter yes (no is the default) to configure read-only or read-write SNMP community string.

Configure read-only SNMP community string (yes/no) [n]: yes

a. Enter the SNMP community string.

SNMP community string: snmp_community

Step 7 Enter a name for the switch.


Note The switch name is limited to 32 alphanumeric characters.


Enter the switch name: switch_name

Step 8 Enter yes (yes is the default) to configure out-of-band management.

Continue with Out-of-band (mgmt0) management configuration? [yes/no]: yes

a. Enter the mgmt0 IP address.

Mgmt0 IP address: ip_address

b. Enter the mgmt0 subnet mask.

Mgmt0 IP netmask: subnet_mask

Step 9 Enter no (no is the default) at the in-band management configuration prompt.

Continue with in-band (VSAN1) management configuration? (yes/no) [no]: no

Step 10 Enter yes (yes is the default) to enable IP routing capabilities.

Enable the ip routing capabilities? (yes/no) [y]: yes 

Step 11 Enter yes (yes is the default) to configure a static route (recommended).

Configure static route: (yes/no) [y]: yes 

a. Enter the destination prefix.

Destination prefix: dest_prefix 

b. Type the destination prefix mask.

Destination prefix mask: dest_mask 

c. Type the next hop IP address.

Next hop ip address: next_hop_address 


Note Be sure to configure the IP route, the IP default network address, and the IP default gateway address to enable SNMP access. If IP routing is enabled, the switch uses the IP route and the default network IP address. If IP routing is disabled, the switch uses the default gateway IP address.


Step 12 Enter yes (yes is the default) to configure the default network (recommended).

Configure the default-network: (yes/no) [y]: yes 

a. Enter the default network IP address.


Note The default network address is the destination prefix provided earlier in Step 11 a.


Default network IP address: dest_prefix 

Step 13 Enter yes (yes is the default) to configure the default gateway (recommended).

Configure the default-gateway: (yes/no) [y]: yes 

a. Enter the default gateway IP address.

IP address of the default-gateway: default_gateway

Step 14 Enter yes (yes is the default) to configure the DNS IP address.

Configure the DNS IP address? (yes/no) [y]: yes

a. Enter the DNS IP address.

DNS IP address: name_server

Step 15 Enter yes (default is no) to configure the default domain name.

Configure the default domain name? (yes/no) [n]: yes

a. Enter the default domain name.

Default domain name: domain_name

Step 16 Enter yes (yes is the default) to enable Telnet service.

Enable the telnet service? (yes/no) [y]: yes

Step 17 Enter yes (no is the default) to enable the SSH service.

Enabled SSH service? (yes/no) [n]: yes

Step 18 Enter the SSH key type (see the "Generating the SSH Host Key Pair" section) that you would like to generate.

Type the SSH key you would like to generate (dsa/rsa/rsa1)? dsa

Step 19 Enter the number of key bits within the specified range.

Enter the number of key bits? (512 to 2048): 768

Step 20 Enter yes (no is the default) to configure the NTP server.

Configure NTP server? (yes/no) [n]: yes

a. Enter the NTP server IP address.

NTP server IP address: ntp_server_IP_address

Step 21 Enter shut (shut is the default) to configure the default switchport interface to the shut state.

Configure default switchport interface state (shut/noshut) [shut]: shut


Note The management ethernet interface is not shut down at this point—only the Fibre Channel, iSCSI, FCIP, and Gigabit Ethernet interfaces are shut down.


Step 22 Enter on (on is the default) to configure the switchport trunk mode.

Configure default switchport trunk mode (on/off/auto) [on]: on

Step 23 Enter deny (deny is the default) to deny a default zone policy configuration.

Configure default zone policy (permit/deny) [deny]: deny

Denies traffic flow to all members of the default zone.

Step 24 Enter no (no is the default) to disable a full zoneset distribution (see the "Zone Set Distribution" section).

Enable full zoneset distribution (yes/no) [n]: no 

Disables the switch-wide default for the full-zoneset distribution feature.

Step 25 Enter no (no is the default) to disable FC ID persistence in all VSANs in the switch (see the "Enabling Persistent FC IDs" section).

Enable FCID persistence in all the VSANs on this switch (yes/no) [n]: no

Disables FC ID persistence in all VSANs in the switch.

You see the new configuration.

Step 26 Review and edit the configuration that you have just entered.

Step 27 Enter no (no is the default) if you are satisfied with the configuration.

The following configuration will be applied:
  username admin password admin_pass role network-admin
  username user_name password user_pass role network-admin
  snmp-server user admin network-admin auth md5 admin_pass priv admin_pass 
  snmp-server community snmp_community ro
  switchname switch
  interface mgmt0
    ip address ip_address subnet_mask
    no shutdown
  ip routing
  ip route dest_prefix dest_mask dest_address
  ip default-network dest_prefix
  ip default-gateway default_gateway
  ip name-server name_server
  ip domain-name domain_name
  telnet server enable
  ssh key dsa 768 force
  ssh server enable
  ntp server ipaddr ntp_server
  no system default switchport shutdown
  system default switchport trunk mode auto
  no zone default-zone permit vsan 1-4093
  no zoneset distribute full vsan 1-4093
  no fcdomain fcid persistent global-enable

Would you like to edit the configuration? (yes/no) [n]: no

Step 28 Enter yes (yes is default) to use and save this configuration:

Use this configuration and save it? (yes/no) [y]: yes


Caution If you do not save the configuration at this point, none of your changes are updated the next time the switch is rebooted. Type yes in order to save the new configuration. This ensures that the kickstart and system boot images are also automatically configured (see "Software Images").


In-Band Management Configuration

The in-band management logical interface is VSAN 1. This management interface uses the Fibre Channel infrastructure to transport IP traffic. An interface for VSAN 1 is created on every switch in the fabric. Each switch should have its VSAN 1 interface configured with an IP address in the same subnetwork. A default route that points to the switch providing access to the IP network should be configured on every switch in the Fibre Channel fabric (see "Configuring and Managing VSANs").


Note You can configure both in-band and out-of-band configuration together by entering Yes in both Step 11 and Step 12 in the following procedure.


To configure a switch for first time in-band access, follow these steps:


Step 1 Power on the switch. Switches in the Cisco MDS 9000 Family boot automatically.

Step 2 Enter yes to enter the setup mode.

---- Basic System Configuration Dialog ----
This setup utility will guide you through the basic configuration of
the system. Setup configures only enough connectivity for management
of the system.

Press Enter incase you want to skip any dialog. Use ctrl-c at anytime
to skip away remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

The setup utility guides you through the basic configuration process. Press Ctrl-C from any prompt to end the configuration process.

Step 3 Enter the new password (admin is the default) for the administrator.

Enter the password for admin: new_password 

Step 4 Enter no (no is the default) if you do not wish to create additional accounts.

Create another login account (yes/no) [no]: no

Step 5 Enter yes (yes is the default) to create an SNMPv3 account.

Configure SNMPv3 Management parameters (yes/no) [y]: yes

a. Enter the user name (admin is the default).

SNMPv3 user name [admin]: user_name

By default, the SNMP user name is admin.

b. Enter the SNMPv3 password (minimum of eight characters).

SNMPv3 user authentication password [admin_pass]: admin_pass


Note By default, if the admin password is at least eight characters, then the SNMP authentication password is the same as the admin password (at least eight characters). If the admin password is less than eight characters, then you need to provide a new password for SNMP.
The admin password can have a minimum of one character, but the SNMP authentication password must have a minimum of eight characters.


Step 6 Configure read-only or read-write SNMP community string.

a. Enter no (no is the default) to avoid configuring read-only SNMP community string.

Configure read-only SNMP community string (yes/no) [n]: no

b. Enter no (no is the default) to configure read-only SNMP community string.

Configure read-only SNMP community string (yes/no) [n]: yes

c. Enter the SNMP community string.

SNMP community string: snmp_community

Step 7 Enter a name for the switch.


Note The switch name is limited to 32 alphanumeric characters.


Enter the switch name: switch_name

Step 8 Enter no (yes is the default) at the configuration prompt to configure out-of-band management.

Continue with Out-of-band (mgmt0) management configuration? [yes/no]: no

Step 9 Enter yes (no is the default) at the in-band management configuration prompt.

Continue with in-band (VSAN1) management configuration? (yes/no) [no]: yes

a. Enter the VSAN 1 IP address.

VSAN1 IP address: ip_address

b. Enter the subnet mask.

VSAN1 IP net mask: subnet_mask

Step 10 Enter yes (yes is the default) to enable IP routing capabilities.

Enable ip routing capabilities? (yes/no) [y]: yes

Step 11 Enter no (yes is the default) to configure a static route.

Configure static route: (yes/no) [y]: no 

Step 12 Enter yes (yes is the default) to configure the default network.

Configure the default-network: (yes/no) [y]: no 

Step 13 Enter yes (yes is the default) to configure the default gateway.

Configure the default-gateway: (yes/no) [y]: yes 

a. Enter the default gateway IP address.

IP address of the default-gateway: default_gateway

Step 14 Enter no (yes is the default) to configure the DNS IP address.

Configure the DNS IP address? (yes/no) [y]: no

Step 15 Enter no (no is the default) to skip the default domain name configuration.

Configure the default domain name? (yes/no) [n]: no

Step 16 Enter no (yes is the default) to disable Telnet service.

Enable the telnet service? (yes/no) [y]: no

Step 17 Enter yes (no is the default) to enable the SSH service.

Enabled SSH service? (yes/no) [n]: yes

Step 18 Enter the SSH key type (see the "Generating the SSH Host Key Pair" section) that you would like to generate.

Type the SSH key you would like to generate (dsa/rsa/rsa1)? rsa

Step 19 Enter the number of key bits within the specified range.

Enter the number of key bits? (512 to 1024): 1024

Step 20 Enter no (no is the default) to configure the NTP server.

Configure NTP server? (yes/no) [n]: no

Step 21 Enter shut (shut is the default) to configure the default switchport interface to the shut state.

Configure default switchport interface state (shut/noshut) [shut]: shut


Note The management ethernet interface is not shut down at this point—only the Fibre Channel, iSCSI, FCIP, and Gigabit Ethernet interfaces are shut down.


Step 22 Enter on (on is the default) to configure the switchport trunk mode.

Configure default switchport trunk mode (on/off/auto) [on]: on

Step 23 Enter deny (deny is the default) to deny a default zone policy configuration.

Configure default zone policy (permit/deny) [deny]: deny

Denies traffic flow to all members of the default zone.

Step 24 Enter no (no is the default) to disable a full zoneset distribution (see the "Zone Set Distribution" section).

Enable full zoneset distribution (yes/no) [n]: no 

Disables the switch-wide default for the full-zoneset distribution feature.

Step 25 Enter no (no is the default) to disable FC ID persistence in all VSANs in the switch (see the "Enabling Persistent FC IDs" section).

Enable FCID persistence in all the VSANs on this switch (yes/no) [n]: no

Disables FC ID persistence in all VSANs in the switch.

You see the new configuration.

Step 26 Review and edit the configuration that you have just entered.

Step 27 Enter no (no is the default) if you are satisfied with the configuration.

The following configuration will be applied:
  username admin password admin_pass role network-admin
  snmp-server user snmp_user network-admin auth md5 snmp_pass priv snmp_pass
  snmp-server community snmp_community rw
  switchname switch
  interface vsan1
    ip address ip_address subnet_mask
    no shutdown
  ip default-gateway default_gateway
  no telnet server enable
  ssh key rsa 1024 force
  ssh server enable
  no system default switchport shutdown
  system default switchport trunk mode auto
  no zone default-zone permit vsan 1-4093
  no zoneset distribute full vsan 1-4093
  no fcdomain fcid persistent global-enable

Would you like to edit the configuration? (yes/no) [n]: no

Step 28 Enter yes (yes is default) to use and save this configuration.

Use this configuration and save it? (yes/no) [y]: yes

Caution If you do not save the configuration at this point, none of your changes are updated the next time the switch is rebooted. Type yes in order to save the new configuration. This ensures that the kickstart and system boot images are also automatically configured (see "Software Images").


Using the setup Command

To make changes to the initial configuration at a later time, you can issue the setup command in EXEC mode.

switch# setup
---- Basic System Configuration Dialog ----
This setup utility will guide you through the basic configuration of
the system. Setup configures only enough connectivity for management
of the system.
*Note: setup always assumes a predefined defaults irrespective
of the current system configuration when invoked from CLI.

Press Enter incase you want to skip any dialog. Use ctrl-c at anytime
to skip away remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

The setup utility guides you through the basic configuration process.

Accessing the Switch

After initial configuration, you can access the switch in one of three ways (see Figure 4-2):

In-band IP (IPFC) access—You can use Telnet or SSH to access a switch in the Cisco MDS 9000 Family or use SNMP to connect to a Cisco MDS 9000 Fabric Manager application.

Out-of-band (10/100BASE-T Ethernet) access—You can use Telnet or SSH to access a switch in the Cisco MDS 9000 Family or use SNMP to connect to a Cisco MDS 9000 Fabric Manager application.


Note To use the Cisco Fabric Manager, refer to the Cisco MDS 9000 Family Fabric Manager Configuration Guide.


Serial console access—You can use a serial port connection to access the CLI.

Figure 4-2 Switch Access Options

Assigning a Switch Name

Each switch in the fabric requires a unique name. You can assign names to easily identify the switch by its physical location, its SAN association, or the organization to which it is deployed. The assigned name is displayed in the command-line prompt. The switch name is limited to 32 alphanumeric characters.


Note This guide refers to a switch in the Cisco MDS 9000 Family as switch, and it uses the switch# prompt.


To change the name of the switch, follow these steps:

 
Command
Purpose

Step 1 

switch# config t

Enters configuration mode.

Step 2 

switch(config)# switchname myswitch1
myswitch1(config)# 

Changes the switch name prompt as specified.

Step 3 

myswitch1(config)# no switchname
switch(config)#

Reverts the switch name prompt to its default (switch#).

Where Do You Go Next?

After reviewing the default configuration, you can change it or perform other configuration or management tasks. The initial setup can only be performed at the CLI. However, you can continue to configure other software features, or access the switch after initial configuration by using either the CLI or the Device Manager and Fabric Manager applications.

To use the Cisco MDS 9000 Fabric Manager, refer to the Cisco MDS 9000 Family Fabric Manager Configuration Guide.

Verifying the Module Status

Before you begin configuring the switch, you need to ensure that the modules in the chassis are functioning as designed. To verify the status of a module at any time, issue the show module command in EXEC mode. A sample output of the show module command follows:

switch# show module
Mod  Ports  Module-Type                      Model              Status
---  -----  -------------------------------- ------------------ ------------
1    0      Caching Services Module          DS-X9560-SMAP      ok
2    8      IP Storage Services Module       DS-X9308-SMIP      ok <-------IPS-8 module
4    16     2x1GE IPS, 14x1/2Gbps FC Module  DS-X9216i-K9-SUP   ok <-------MPS-14/2 module
5    0      Supervisor/Fabric-1              DS-X9530-SF1-K9    active *
6    0      Supervisor/Fabric-1              DS-X9530-SF1-K9    ha-standby
9    4      IP Storage Services Module       DS-X9304-SMIP      ok <---------IPS-4 module

Mod  Sw           Hw      World-Wide-Name(s) (WWN)
---  -----------  ------  --------------------------------------------------
1    2.0(1)       0.201   20:41:00:0b:fd:44:68:c0 to 20:48:00:0b:fd:44:68:c0
2    2.0(0.196)   0.206   20:41:00:0b:fd:44:68:c0 to 20:48:00:0b:fd:44:68:c0
4    2.0(1)       0.201   20:c1:00:05:30:00:07:1e to 20:d0:00:05:30:00:07:1e
5    2.0(1)       0.0     --
6    2.0(1)       0.0     --
9    2.0(1)       0.1     22:01:00:05:30:00:07:1e to 22:04:00:05:30:00:07:1e

Mod      Application Image Description       Application Image Version
-------- -----------------------------       -------------------------
1        svc-node1                           2.0(1)
1        svc-node2                           2.0(1)

Mod  MAC-Address(es)                         Serial-Num
---  --------------------------------------  ----------
1    00-05-30-01-49-c2 to 00-05-30-01-4a-46  JAB073907EP
2    00-05-30-00-9d-d2 to 00-05-30-00-9d-de  JAB064605a2
4    00-05-30-01-7f-32 to 00-05-30-01-7f-38  JAB081405AM
5    00-05-30-00-2c-4e to 00-05-30-00-2c-52  JAB06350B1M
6    00-05-30-00-19-66 to 00-05-30-00-19-6a  JAB073705GL
9    00-0d-bc-2f-d6-00 to 00-0d-bc-2f-d6-08  JAB080804TN

* this terminal session

If the status is OK or active, you can continue with your configuration (see "Managing Modules").

Configuring Date and Time

Switches in the Cisco MDS 9000 Family use Universal Coordinated Time (UTC), which is the same as Greenwich Mean Time (GMT). To change the default time on the switch, issue the clock command from EXEC mode.

switch# clock set <HH:MM:SS> <DD> <Month in words> <YYYY>

For example:

switch# clock set 15:58:09 23 September 2002 
Mon Sep 23 15:58:09 UTC 2002

Where HH represents hours in military format (15 for 3 p.m.), MM is minutes (58), SS is seconds (09), DD is the date (23), Month is the month in words (September), and YYYY is the year (2002).


Note The clock command changes are saved across system resets.


Configuring the Time Zone

You can specify a time zone for the switch.

To specify the local time without the daylight savings feature, follow these steps:

 
Command
Purpose

Step 1 

switch# config t

Enters configuration mode.

Step 2 

switch(config)# clock timezone <timezone 
name> <-23 to 23 hours offset from UTC time> 
<0 to 50 minutes offset from UTC>

Example:

switch(config)# clock timezone PST -8 0

Sets the time zone with a specified name, specified hours, and specified minutes.

This example sets the time zone to Pacific Standard Time (PST) and offsets the UTC time by negative eight hours and 0 minutes.

Step 3 

switch(config)# exit
switch# 

Returns to EXEC mode.

Step 4 

switch# show clock

Verifies the time zone configuration.

Step 5 

switch# show run

Displays changes made to the time zone configuration along with other configuration information.

Adjusting for Daylight Saving Time

Following U.S. standards, you can have the switch advance the clock one hour at 2:00 a.m. on the first Sunday in April and move back the clock one hour at 2:00 a.m. on the last Sunday in October. You can also explicitly specify the start and end dates and times and whether or not the time adjustment recurs every year.

To enable the daylight saving time clock adjustment according to the U.S. rules, follow these steps:

 
Command
Purpose

Step 1 

switch# config t

Enters configuration mode.

Step 2 

switch(config)# clock timezone 
timezone_name hour_offset_from_UTC 
minute_offset_from_UTC

Example:

switch(config)# clock timezone PST -8 0

Offsets the time zone as specified.


This example set the Pacific standard offset time as negative 8 hours and 0 minutes.

switch(config)# no clock timezone 

Disables the time zone adjustment feature.

Step 3 

switch(config)# clock summer-time 
daylight_timezone_name start_week 
start_day start_month start_time end_week 
end_day end_month end_time 
daylight_offset_inminutes 

Example:

switch(config)# clock summer-time PDT 1 
Sun Apr 02:00 5 Sun Oct 02:00 60
switch(config)#

Sets the daylight savings time for a specified time zone.

The start and end values are as follows:

Week ranging from 1 through 5

Day ranging from Sunday through Saturday

Month ranging from January through December

The daylight offset ranges from 1 through 1440 minutes which are added to the start time and deleted time from the end time.

This example adjusts the daylight savings time for the Pacific daylight time by 60 minutes starting the first Sunday in April at 2 a.m. and ending the last Sunday in October at 2 a.m.

switch(config)# no clock summer-time 

Disables the daylight saving time adjustment feature.

Step 4 

switch(config)# exit
switch# 

Returns to EXEC mode.

Step 5 

switch# show clock

Verifies the time zone configuration.

NTP Configuration

A Network Time Protocol (NTP) server provides a precise time source (radio clock or atomic clock) to synchronize the system clocks of network devices. NTP is transported over User Datagram Protocol UDP/IP. All NTP communications use UTC. An NTP server receives its time from a reference time source, such as a radio clock or atomic clock, attached to the time. NTP distributes this time across the network.

In a large enterprise network, having one time standard for all network devices is critical for management reporting and event logging functions when trying to correlate interacting events logged across multiple devices. Many enterprise customers with extremely mission-critical networks maintain their own stratum-1 NTP source.

Time synchronization happens when several frames are exchanged between clients and servers. The switches in client mode know the address of one or more NTP servers. The servers act as the time source and receive client synchronization requests.

By configuring an IP address as a peer, the switch will obtain and provide time as required. The peer is capable of providing time on its own and is capable of having a server configured. If both these instances point to different time servers, your NTP service is more reliable. Thus, even if the active server link is lost, you can still maintain the right time due to the presence of the peer.


Tip If an active server fails, a configured peer helps in providing the NTP time. Provide a direct NTP server association and configure a peer to ensure backup support if the active server fails.


If you only configure a peer, the most accurate peer takes on the role of the NTP server and the other peer(s) act as a peer(s). Both machines end at the right time if they have the right time source or if they point to the right NTP source.

Configuring NTP

To configure NTP in a server association, follow these steps:

 
Command
Purpose

Step 1 

switch# config t

Enters configuration mode.

Step 2 

switch(config)# ntp server 10.10.10.10
switch(config)#

Forms a server association with a server.

Step 3 

switch(config)# ntp peer 10.20.10.0
switch(config)#

Forms a peer association with a peer. You can specify multiple associations.

Step 4 

switch(config)# exit
switch# 

Returns to EXEC mode.

Step 5 

switch# copy running-config startup-config

Saves your configuration changes to NVRAM.

Tip This is one instance where you can save the configuration as a result of an NTP configuration change. You can issue this command at any time.

Step 6 

switch# show ntp peers 
--------------------------------------------
  Peer IP Address               Serv/Peer          
--------------------------------------------
  10.20.10.2                    Server 
  10.20.10.0                    Peer 

Displays the configured server and peer associations.

Note A domain name is resolved only when you have a DNS server configured.

NTP Configuration Guidelines

The following guidelines apply to all NTP configurations:

You should have a peer association with another switch only when you are sure that your clock is reliable (which means that you are a client of a reliable NTP server).

A peer configured alone takes on the role of a server and should be used as backup. If you have two servers, then you can have several switches point to one server, and the remaining switches to the other server. Then you would configure peer association between these two sets. This forces the clock to be more reliable.

If you only have one server, it's better for all the switches to have a client association with that server.

Not even a server down time will affect well-configured switches in the network. Figure 4-3 displays a network with two NTP stratum 2 servers and two switches.

Figure 4-3 NTP Peer and Server Association  

In this configuration, the switches were configured as follows:

Stratum 2 Server 1

IP address -10.10.10.10

Stratum-2 Server-2

IP address -10.10.10.9

Switch 1

Switch IP address -10.10.10.1

NTP configuration

NTP server 10.10.10.10

NTP peer 10.10.10.2

Switch 2

Switch IP address -10.10.10.2

NTP configuration

NTP server 10.10.10.9

NTP peer 10.10.10.1

Management Interface Configuration

On director class switches, a single IP address is used to manage the switch. The active supervisor module's management (mgmt0) interface uses this IP address. The mgmt0 interface on the standby supervisor module remains in an inactive state and cannot be accessed until a switchover happens. After a switchover, the mgmt0 interface on the standby supervisor module becomes active and assumes the same IP address as the previously active supervisor module.

The management interface on the switch allows multiple simultaneous Telnet or SNMP sessions. You can remotely configure the switch through the management interface, but first you must configure some IP parameters (IP address, subnet mask) so that the switch is reachable. You can manually configure the management interface from the CLI.

The management port (mgmt0) is autosensing and operates in full duplex mode at a speed of 10/100 Mbps. The speed and mode cannot be configured.


Note Before you begin to configure the management interface manually, obtain the switch's IP address and IP subnet mask. Also make sure the console cable is connected to the console port.


Obtaining Remote Management Access

In some cases, a switch interface might be administratively shut down. You can check the status of an interface at any time by using the show interface mgmt 0 command.

To obtain remote management access, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode. You can also abbreviate the command to config t.

Step 2 

switch(config)# interface mgmt 0

Enters the interface configuration mode on the specified interface (mgmt0).

You can use the management Ethernet interface on the switch to configure the management interface.

Step 3 

switch(config)# ip address 1.1.1.0 
255.255.255.0

Enters the IP address and IP subnet mask for the interface specified in Step 2.

Step 4 

switch(config-if)# no shutdown

Enables the interface.

Step 5 

switch(config-if)# exit

Returns to configuration mode.

Step 6 

switch(config)# ip default-gateway 1.1.1.1

Configures the default gateway address.

Using the force Option

When you try to shut down a management interface (mgmt0), a follow-up message confirms your action before performing the operation. You can use the force option to bypass this confirmation. The following example shuts down the interface without using the force option:

switch# config t
switch(config)# interface mgmt 0
switch(config-if)# shutdown
Shutting down this interface will drop all telnet sessions.
Do you wish to continue (y/n)? y

The following example shuts down the interface using the force option:

switch# config t
switch(config)# interface mgmt 0
switch(config-if)# shutdown force

Note You need to explicitly configure a default gateway to connect to the switch and send IP packets or add a route for each subnet.


Default Gateway Configuration

The supervisor module sends IP packets with unresolved destination IP addresses to the default gateway (see Figure 4-4).

Figure 4-4 Default Gateway

Configuring the Default Gateway

To configure the IP address of the default gateway, follow these steps:

 
Command
Purpose

Step 1 

switch# config t

Enters configuration mode.

Step 2 

switch(config)# ip default-gateway 172.16.1.1

Configures the 172.16.1.1 IP address.

Telnet Server Connection

The Telnet server is enabled by default on all switches in the Cisco MDS 9000 Family. If you require a secure SSH connection, you need to disable the default Telnet connection and then enable the SSH connection (see the "Enabling SSH Service" section).


Note For information on connecting a terminal to the supervisor module console port, refer to the Cisco MDS 9200 Series Hardware Installation Guide or the Cisco MDS 9500 Series Hardware Installation Guide.



Tip A maximum of 16 sessions are allowed in any Cisco MDS 9216 Switch or in any switch in the Cisco MDS 9500 Series.


Make sure the terminal is connected to the switch and that the switch and terminal are both powered on.

Disabling a Telnet Connection

To disable Telnet connections to the switch, follow these steps:

 
Command
Purpose

Step 1 

switch# config t

Enters configuration mode.

Step 2 

switch(config)# no telnet server enable 
updated

Disables the Telnet server.

switch(config)# telnet server enable 
updated

Enables the Telnet server to return a Telnet connection from a secure SSH connection.

Working with Configuration Files

Configuration files can contain some or all of the commands needed to configure one or more switches. For example, you might want to download the same configuration file to several switches that have the same hardware configuration so that they have identical module and port configurations.

This section describes how to work with configuration files and has the following topics:

Displaying Configuration Files

Downloading Configuration Files to the Switch

Saving the Configuration

Copying Files

Backing Up the Current Configuration

Rolling Back to a Previous Configuration

Displaying Configuration Files

Use the show running-config command to view the running configuration file.

switch# show running-config
Building Configuration ...
 interface port-channel 98
interface fc1/1
 interface fc1/2
interface mgmt0
ip address 172.22.95.112 255.255.255.0
no shutdown
vsan database
vsan 2 
clock summer-time Pacific 1 Sun Apr 02:00 5 Sun Oct 02:00 60
switchname switch112

Use the show startup-config command to view the startup configuration file.

switch# show startup-config
 interface port-channel 98
 interface fc1/1
channel-group 98 force
no shutdown
 interface mgmt0
ip address 172.22.95.112 255.255.255.0
boot system system-237; ep-41
boot kickstart boot-237 ep-41
ip domain-name cisco.com

Downloading Configuration Files to the Switch

You can configure a switch in the Cisco MDS 9000 Family by using configuration files you create or download from another switch. In addition, you can store configuration files on a bootflash device on the supervisor module and you can configure the switch using a configuration stored on an external CompactFlash disk.

Before you begin downloading a configuration file using a remote server, do the following:

Ensure the configuration file to be downloaded is in the correct directory on the remote server.

Ensure that the permissions on the file are set correctly. Permissions on the file should be set to world-read.

Ensure the switch has a route to the remote server. The switch and the remote server must be in the same subnetwork if you do not have a router or default gateway to route traffic between subnets.

Check connectivity to the remote server using the ping command.

From a Remote Server

To configure a switch in the Cisco MDS 9000 Family using a configuration file downloaded from a remote server using TFTP, FTP, SCP, or SFTP, follow these steps:


Step 1 Log into the switch through the console port or through a Telnet or SSH session.

Step 2 Configure the switch using the configuration file downloaded from the remote server using the
copy <scheme> :// <server address> system:running-config command, where scheme is TFTP, FTP, SCP, or SFTP.

The configuration file downloads and the commands are executed as the file is parsed line by line.


Use the following command to download a configuration file from a remote server to the running configuration.

switch# copy <scheme>://<url> system:running-config 

From an External Flash (slot0:)


Note The physical media must be inserted into slot0: after you log into the switch.


To configure a switch in the Cisco MDS 9000 Family using a configuration file stored on an external CompactFlash disk, follow these steps:


Step 1 Log into the switch through the console port or through a Telnet or SSH session.

Step 2 Locate the configuration file using the cd and dir commands. (See the "Copying Files" section.)

Step 3 Configure the switch using the configuration file stored on the external CompactFlash disk using the copy <source file> system:running-config command.

The commands are executed as the file is parsed line by line.


Use the following command to download a configuration file from an external CompactFlash to the running configuration:

switch copy slot0:dns-config.cfg system:running-config 

To a Remote Server

To save a configuration file to a remote server such as TFTP, FTP, SCP, or SFTP, follow these steps:


Step 1 Log into the switch through the console port or through a Telnet or SSH session.

Step 2 Save the configuration using the copy system:running-config <scheme> :// <url> command, where scheme is TFTP, FTP, SCP, or SFTP.

Step 3 Specify the IP address or host name of the remote server and the name of the file to download.

The configuration file is saved to the remote server.


Use the following command to save a running configuration file to a remote server:

switch# copy system:running-config <scheme>://<url>

Use the following command to save a startup configuration file to a remote server:

switch# copy nvram:startup-config <scheme>://<url>

To an External CompactFlash Disk

To save a configuration file on an external CompactFlash disk, follow these steps:


Step 1 Log into the switch through the console port or through a Telnet session.

Step 2 Locate the configuration file using the cd and dir commands. (See the "Copying Files" section.)

Step 3 Save the configuration file using the copy system:running-config <destination file> command.

The configuration file is saved to the CompactFlash disk.


Use the following command to save a running configuration file to an external CompactFlash disk:

switch# copy system:running-config slot0:dns-config.cfg

Use the following command to save a startup configuration file to an external CompactFlash disk:

switch# copy nvram:startup-config slot0:dns-config.cfg

Saving the Configuration

After you have created a configuration, you save the configuration using the following copy command:

switch# copy system:running-config nvram:startup-config 

The copy running-config startup-config command is an alias to the previous command and is used frequently throughout this guide.

Copying Files

The syntax for the copy command follows and is explained in Table 4-1.

switch# copy <scheme>://<username@><server>/<file name> 
<scheme>://<username@><server>/<file name>

Table 4-1 copy Command Syntax 

Scheme
Server
File Name

bootflash

sup-active
sup-standby
sup-1 or module-5
sup-2 or module-6
sup-local
sup-remote

User-specified

slot0

User-specified

volatile

User-specified

nvram

startup-config or snapshot-config

system

running-config

tftp1

IP address or DNS name

User-specified

ftp

scp (secure copy)

sftp

core

slot-number

Process identifier number

1 When downloading and uploading files, a TFTP limitation restricts a TFTP client to a 32 MB file size and some TFTP servers to a 16 MB file size.


This example shows how to copy a file from the active supervisor module's (sup-1 in slot 5) bootflash to the standby supervisor module's (sup-2 in slot 6) bootflash.

switch# copy bootflash:system_image bootflash://sup-2/system_image

This example shows how to overwrite the contents of an existing configuration in NVRAM.

switch# copy nvram:snapshot-config nvram:startup-config 
Warning: this command is going to overwrite your current startup-config. 
Do you wish to continue? {y/n} [y] y

This example shows how to copy a running configuration to the bootflash: directory.

switch# copy system:running-config bootflash:my-config 

This example shows how to copy a system image file from the SCP server to bootflash.

switch# copy scp://user@10.1.7.2/system-image bootflash:system-image

This example shows how to copy a script file from the SFTP server to the volatile: directory.

switch# copy sftp://172.16.10.100/myscript.txt volatile:myscript.txt

Note Use the show version image command to verify if the downloaded images are valid.


Backing Up the Current Configuration

Before installing or migrating to any software configuration, back up the startup configuration.

This example shows how to create a snapshot of the startup configuration in a predefined location on the switch (binary file).

switch# copy nvram:startup-config nvram:snapshot-config

This example shows how to back up the startup configuration copy in the bootflash: file system (ASCII file).

switch# copy nvram:startup-config bootflash:my-config

This example shows how to back up the startup configuration to the TFTP server (ASCII file).

switch# copy nvram:startup-config tftp://172.16.10.100/my-config

This example shows how to back up the running configuration to the bootflash: file system (ASCII file).

switch# copy system:running-config bootflash:my-config

Rolling Back to a Previous Configuration

All switch configurations reside in the internal bootflash: file system. If your internal bootflash: file system is corrupted, you could potentially lose your configuration. Save and back up your configuration file periodically.

This example shows how to roll back to a snapshot copy of a previously saved running configuration (binary file).

switch# copy nvram:snapshot-config nvram:startup-config


Note You can issue a rollback command only when a snapshot is already created. Otherwise, you will receive the No snapshot-config found error message.


This example shows how to roll back to a configuration copy that was previously saved in the bootflash: file system (ASCII file).

switch# copy bootflash:my-config nvram:startup-config 


Note Each time a copy running-config startup-config command is issued, a binary file is created and the ASCII file is updated. A valid binary configuration file reduces the overall boot time significantly. A binary file cannot be uploaded, but its contents can be used to overwrite the existing startup configuration. The write erase command clears the binary file.


Restoring the Configured Redundancy Mode


Tip If you configure the combined mode as the redundancy mode for power supplies on a Cisco MDS 9509 switch, exert care when using the write erase and reload command sequence before rolling back to a saved configuration.


By issuing the write erase command and the reload command, you restore the switch settings to their factory defaults. This sequence also restores the redundancy mode setting for the power supplies back to the redundant mode (default).

Depending on the type of power supply, the input voltage, and the number of modules (line cards) in the chassis, the redundancy mode may prevent the line cards from being powered on after a system reboot (see the "Configuring Power Supplies" section). If you use this sequence, the commands that apply to the powered down line cards will not be enforced on the switch (and will not be part of its running configuration).

If using the write erase and reload command sequence before rolling back to a saved configuration, follow these steps:


Step 1 Manually change (if originally configured) the redundant mode configuration to combined mode.

Step 2 Wait until all modules are back online—the module status displays ok in response to the show module command.

Step 3 Roll back to the saved configuration (see the "Rolling Back to a Previous Configuration" section).


Downgrading from a Higher Release

Use the install all command to gracefully reload the switch and handle configuration conversions. When downgrading any switch in the Cisco MDS 9000 Family, avoid using the reload command.

For example, to revert to Cisco MDS SAN-OS Release 1.0(4) or 1.0(3a) from Release 1.x, follow these steps:


Step 1 Save the configuration using the copy running-config startup-config command.

Step 2 Issue the install all command to downgrade the software (see the "Performing an Automated Upgrade" section).


Accessing Remote File Systems

To access contents of the standby supervisor module (remote), follow these steps:


Step 1 Verify if the standby supervisor module has sufficient space for new image files.

switch# dir bootflash://sup-remote
   12198912     Aug 27 17:21:10 2003  bootflash:boot-39a
   12198912     Aug 27 16:29:18 2003  bootflash:m9500-sf1ek9-kickstart-mzg.1.3.0.39a.bin
    1921922     Sep 14 19:58:12 2003  aOldImage
    1864931     Apr 29 12:41:50 2003  bOldImage
    1864931     Apr 29 12:41:59 2003  dplug2
      12288     Apr 18 20:23:11 2003  lost+found/
   12097024     Nov 21 16:34:18 2003  m9500-sf1ek9-kickstart-mz.1.3.1.1.bin
   41574014     Nov 21 16:34:47 2003  m9500-sf1ek9-mz.1.3.1.1.bin
       1024     Oct 28 20:24:59 2003  newer-fs/
    2021518     Oct 11 15:49:41 2003  plugin-69a
Usage for bootflash://sup-remote
  102081536 bytes used
   82478080 bytes free
  184559616 bytes total

Step 2 Delete files, if required, to make more space for the new image files.

switch# del aOldImage


Deleting Files

Assuming you are already in the bootflash: directory, use the delete command as follows:

This example shows how to delete a file from the bootflash: directory.

switch# delete dns_config.cfg 

This example shows how to delete a file from an external CompactFlash (slot0).

switch# delete slot0:dns_config.cfg 

This example shows how to delete the file named test from the Flash card inserted in slot 0.

switch# delete slot0:test 
Delete slot0:test? [confirm]

This example shows how to delete the entire my-dir directory and all its contents.

switch# delete bootflash:my-dir 

Configuring Console Settings

A console port is an asynchronous serial port that enables switches in the Cisco MDS 9000 Family to be set up for initial configuration through a standard RS-232 port with an RJ-45 connector. Any device connected to this port must be capable of asynchronous transmission. Connection to a terminal requires a terminal emulator to be configured as 9600 baud, 8 data bits, 1 stop bit, no parity.


Caution The console baud rate automatically reverts to the default rate (9600) after any BIOS upgrade.

To configure the console port parameters from the console terminal, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line console
switch(config-console)# 

Enters the line console configuration mode.

Step 3 

switch(config-console)# speed 
9600

Configures the port speed for the serial console. The default console baud rate is 9600 baud. The valid range is between 110 and 115,200 bps (110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 28800, 38400, 57600, 115200). Be sure to specify one of these exact values.

Step 4 

switch(config-console)# 
databits 8

Configures the data bits for the console connection. The default is 8 data bits and the valid range is between 5 and 8 data bits.

Step 5 

switch(config-console)# 
stopbits 1

Configures the stop bits for the console connection. The default is 1 stop bit and the valid values are 1 or 2 stop bits.

Step 6 

switch(config-console)# parity 
none

Configures the parity for the console connection. The default is no parity and the valid values are even or odd parity.

Verifying the Console Configuration

Use the show line console command to verify the configured console settings. This command also displays problems that may have occurred along with the other registration statistics.

switch# show line console
line Console:
    Speed:        9600 bauds
    Databits:     8 bits per byte
    Stopbits:     1 bit(s)
    Parity:       none
    Modem In: Enable
    Modem Init-String -
        default : ATE0Q1&D2&C1S0=1\015
    Statistics:  tx:12842     rx:366     Register Bits:RTS|CTS|DTR|DSR|CD|RI

Configuring COM1 Settings

A COM1 port is a RS-232 port with a DB-9 interface that enables you to connect to an external serial communication device such as a modem. Connection to a terminal requires the terminal emulator to be configured as 9600 baud, 8 data bits, 1 stop bit, no parity.

To configure the COM1 port parameters, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line com1
switch(config-com1)# 

Enters the COM1 port configuration mode.

Step 3 

switch(config-com1)# speed 9600

Configures the port speed for the COM1 connection. The default console baud rate is 9600 baud. The valid range is between 110 and 115,200 bps (110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 28800, 38400, 57600, 115200). Be sure to specify one of these exact values.

Note This configuration depends on the incoming speed of the modem connected to COM1.

Step 4 

switch(config-com1)# databits 8

Configures the data bits for the COM1 connection. The default is 8 data bits and the valid range is between 5 and 8 data bits.

Step 5 

switch(config-com1)# stopbits 1

Configures the stop bits for the COM1 connection. The default is 1 stop bits and the valid values are 1 or 2 stop bits.

Step 6 

switch(config-com1)# parity 
none

Configures the parity for the COM1 connection. The default is no parity and the valid values are even or odd parity.

Step 7 

switch(config-com1)# no 
flowcontrol hardware

Disables hardware flow control. By default, hardware flow control is enabled on all switches in the Cisco 9000 Family. When enabled, this option is useful in protecting data loss at higher baud rates.

Note This option is only available through the COM1 port.

Verifying the COM1 Configuration

Use the show line com1 command to verify the configured COM1 settings. This command also displays problems that may have occurred along with the other registration statistics.

switch# show line com1
line Aux:
    Speed:        9600 bauds
    Databits:     8 bits per byte
    Stopbits:     1 bit(s)
    Parity:       none
    Modem In: Enable
    Modem Init-String -
        default : ATE0Q1&D2&C1S0=1\015
    Statistics:  tx:17     rx:0     Register Bits:RTS|DTR

Configuring Modem Connections

Modems can only be configured if you are connected to the console or COM1 ports. A modem connection to a switch in the Cisco MDS 9000 Family does not affect switch functionality.


Note If you plan on connecting a modem to the console port or the COM1 port of a switch in the Cisco MDS 9000 Family, refer to the Cisco MDS 9216 Switch Hardware Installation Guide or the Cisco MDS 9500 Series Hardware Installation Guide. COM1 ports are not available on switches in the Cisco MDS 9100 Series. Refer to the Cisco MDS 9100 Series Hardware Installation Guide.


Guidelines to Configure Modems


Tip We recommend you use the COM1 port to connect the modem from a Cisco MDS 9216 switch or from any director in the Cisco MDS 9500 Family.


The following guidelines apply to modem configurations:

The following Cisco modems were tested to work in the Cisco SAN-OS environment:

MultiTech MT2834BA (http://www.multitech.com/PRODUCTS/Families/MultiModemII/)

Hayes Accura V.92 (http://www.hayesmicro.com/Products/accura-prod-v92.htm)

Connect the modem before attempting to configure the modem.

Do not connect a modem to the console port while the system is booting.

Follow the procedure specified in the "Initializing a Modem in a Powered on Switch" section.

Enabling Modem Connections

To configure a modem connection through the COM1 port, follow these steps:

 
Command
Command

Step 1 

switch# config t 
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line com1
switch(config-com1)# 

Enters the COM1 port configuration mode.

Step 3 

switch(config-com1)# modem in

Enables the COM1 port to only connect to a modem.

switch(config-com1)# no modem in

Disables (default) the current modem from executing its functions.

To configure a modem connection through the console port, follow these steps:

 
Command
Command

Step 1 

switch# config t 
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line console
switch(config-console)# 

Enters the console port configuration mode.

Step 3 

switch(config-console)# modem in

Enables the console port to only connect to a modem.

switch(config-console)# no modem 
in

Disables (default) the current modem from executing its functions.

Configuring the Initialization String

Switches in the Cisco MDS 9500 Family and the Cisco MDS 9216 switch have a default initialization string (ATE0Q1&D2&C1S0=1\015) to detect connected modems. The default string detects connected modems supported by Cisco Systems. The default string contents are as follows:

AT—Attention

E0 (required)—No echo

Q1—Result code on

&D2—Normal data terminal ready (DTR) option

&C1—Enable tracking the state of the data carrier.

S0=1—Pick up after one ring

\015 (required)—carriage return in octal

You may retain the default string or change it to another string (80 character limit) using the user-input option. This option is provided if you prefer to use a modem that is not supported or tested by Cisco systems. If you change the string, the changes you make are permanent and remain in effect unless you change them again. Rebooting the system or restarting the CLI does not change the modem initialization string. The switch is not affected even if the modem is not functioning.


Tip We recommend you use the default initialization string. If the required options are not provided in the user-input string, the initialization string is not processed.


The modem initialization string usage depends on the modem state when the switch boots:

If the modem is already attached to the switch during boot-up, the default initialization string is written to the modem (see the "Configuring the Default Initialization String" section).

If the modem is not attached to the switch during boot-up, then attach the modem as outlined in the Cisco MDS 9000 Family Hardware Installation Guide (depending on the product), and follow the procedure provided in this section (see the "Configuring a User-Specified Initialization String" section).


Note You can perform the configuration specified in this section only if you are connected to the console port or the COM1 port.


Configuring the Default Initialization String

To configure the default initialization string through the COM1 port, follow these steps:

 
Command
Command

Step 1 

switch# config t
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line com1
switch(config-com1)# 

Enters the COM1 port configuration mode.

Step 3 

switch(config-com1)# modem init-string 
default

Writes the default initialization string to the modem.

To configure the default initialization string through the console port, follow these steps:

 
Command
Command

Step 1 

switch# config t
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line com1
switch(config-console)# 

Enters the console port configuration mode.

Step 3 

switch(config-console)# modem 
init-string default

Writes the default initialization string to the modem.

Configuring a User-Specified Initialization String

To configure a user-specified initialization string through the COM1 port, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line com1
switch(config-com1)# 

Enters the COM1 port configuration mode.

Step 3 

switch(config-com1)# modem set-string 
user-input ATE0Q1&D2&C1S0=3\015

Assigns the user-specified initialization string to its corresponding profile.

Note You must first set the user-input string, before initializing the string.

switch(config-com1)# no modem set-string 

Reverts the configured initialization string to the factory default string.

Step 4 

switch(config-com1)# modem init-string 
user-input

Writes the user-specified initialization string to the modem.

To configure a user-specified initialization string through the console port, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# line com1
switch(config-console)# 

Enters the console port configuration mode.

Step 3 

switch(config-console)# modem set-string 
user-input ATE0Q1&D2&C1S0=3\015

Assigns the user-specified initialization string to its corresponding profile.

Note You must first set the user-input string, before initializing the string.

switch(config-console)# no modem 
set-string 

Reverts the configured initialization string to the factory default string.

Step 4 

switch(config-console)# modem 
init-string user-input

Writes the user-specified initialization string to the modem.

Initializing a Modem in a Powered on Switch

When a switch is already powered on and the modem is later connected to either the console port or the COM1 port, you can initialize the modem using the modem connect line command in EXEC mode. You can specify the com1 option if the modem is connected to the COM1 port, or the console option if the modem is connected to the console.

To connect a modem to a switch that is already powered on, follow these steps.


Step 1 Wait until the system has completed the boot sequence and the system image is running.

Step 2 Connect the modem to the switch as specified in the Cisco MDS 9216 Switch Hardware Guide or the Cisco MDS 9500 Series Hardware Installation Guide.

Step 3 Initialize the modem using the modem connect line command in EXEC mode.


Verifying the Modem Configuration

Use the show line command to verify the configured modem settings.

switch# show line 
line Console:
    Speed:        9600 bauds
    Databits:     8 bits per byte
    Stopbits:     1 bit(s)
    Parity:       none
    Modem In: Enable
    Modem Init-String -
        default : ATE0Q1&D2&C1S0=1\015
    Statistics:  tx:12842     rx:366     Register Bits:RTS|CTS|DTR|DSR|CD|RI
line Aux:
    Speed:        9600 bauds
    Databits:     8 bits per byte
    Stopbits:     1 bit(s)
    Parity:       none
    Modem In: Enable
    Modem Init-String -
        default : ATE0Q1&D2&C1S0=1\015
    Statistics:  tx:17     rx:0     Register Bits:RTS|DTR

CDP Configuration

The Cisco Discovery Protocol (CDP) is an advertisement protocol used by Cisco devices to advertise itself to other Cisco devices in the same network. CDP runs on the data link layer and is independent of Layer 3 protocols. Cisco devices that receive the CDP packets cache the information to make it is accessible through the CLI and SNMP.

CDP is supported on the management Ethernet interface on the supervisor module and the Gigabit Ethernet interface on the IPS module. The CDP daemon is restartable and switchable. The running and startup configurations are available across restarts and switchovers.

CDP version 1 (v1) and version 2 (v2) are supported in Cisco MDS 9000 Family switches. CDP packets with any other version number are silently discarded when received.

When the interface link is established, CDP is enabled by default and three CDP packets are sent at one-second intervals. Following this, the CDP frames are sent at the globally-configured refresh interval.

Configuring the CDP

To globally disable the CDP, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# no cdp enable
Operation in progress. Please check global 
parameters
switch(config-console)# 

Disables the CDP protocol on the switch. When CDP is disabled on an interface, one packet is sent to clear out the switch state with each of the receiving devices.

switch(config)# cdp enable
Operation in progress. Please check global 
parameters
switch(config)# 

Enables (default) the CDP protocol on the switch. When CDP is enabled on an interface, one packet is sent immediately. Subsequent packets are sent at the configured refresh time.

To disable the CDP protocol on a specific interface, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# interface gigbitethernet 
8/8
switch(config-if)# 

Configures the Gigabit Ethernet interface for the module in slot 8 port 8.

Step 3 

switch(config-if)# no cdp enable
Operation in progress. Please check 
interface parameters
switch(config-console)# 

Disables the CDP protocol on the selected interface. When CDP is disabled on an interface, one packet is sent to clear out the switch state with each of the receiving devices.

switch(config-if)# cdp enable
Operation in progress. Please check 
interface parameters
switch(config)# 

Enables (default) the CDP protocol on the selected interface. When CDP is enabled on an interface, one packet is sent immediately. Subsequent packets are sent at the configured refresh time.

To globally configure the refresh time interval for the CDP protocol, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# cdp timer 100
switch(config)# 

Sets the refresh time interval in seconds. The default is 60 seconds and the valid range is from 5 to 255 seconds.

switch(config)# no cdp timer 100
switch(config)# 

Reverts the refresh time interval to the factory default of 60 seconds.

To globally configure the hold time advertised in CDP packets, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# cdp holdtime 200
switch(config)# 

Sets the hold time advertised in CDP packets in seconds. The default is 180 seconds and the valid range is from 10 to 255 seconds.

switch(config)# no cdp holdtime 200
switch(config)# 

Reverts the hold time to the factory default of 180 seconds.

To globally configure the CDP version, follow these steps:

 
Command
Command

Step 1 

switch# config terminal
switch(config)#

Enters configuration mode.

Step 2 

switch(config)# cdp advertise v1
switch(config)# 

Sets the CDP version to be used. The default is version 2 (v2). The valid options are v1 and v2.

switch(config)# no advertise v1
switch(config)# 

Reverts the version to the factory default of v2.

Clearing CDP Configurations

Use the clear cdp counters command to clear CDP traffic counters for all interfaces. You can issue this command for a specified interface or for all interfaces (management and Gigabit Ethernet interfaces).

switch# clear cdp counters
switch#

Use the clear cdp table command to clear neighboring CDP entries for all interfaces. You can issue this command for a specified interface or for all interfaces (management and Gigabit Ethernet interfaces).

switch# clear cdp table interface gigabitethernet 4/1
switch#

Displaying CDP Protocol Settings

Use the show cdp command to display CDP entries. See Examples 4-1 to 4-11.

Example 4-1 Displays All CDP Capable Interfaces and Parameters

switch# show cdp all
GigabitEthernet4/1 is up
    CDP enabled on interface
    Sending CDP packets every 60 seconds
    Holdtime is 180 seconds
GigabitEthernet4/8 is down
    CDP enabled on interface
    Sending CDP packets every 60 seconds
    Holdtime is 180 seconds
mgmt0 is up
    CDP enabled on interface
    Sending CDP packets every 100 seconds
    Holdtime is 200 seconds

Example 4-2 Displays All CDP Neighbor Entries

switch# show cdp entry all
----------------------------------------
Device ID:069038747(Kiowa3)
Entry address(es):
    IP Address: 172.22.92.5
Platform: WS-C5500, Capabilities: Trans-Bridge Switch
Interface: mgmt0, Port ID (outgoing port): 5/22
Holdtime: 136 sec

Version:
WS-C5500 Software, Version McpSW: 2.4(3) NmpSW: 2.4(3)
Copyright (c) 1995-1997 by Cisco Systems

Advertisement Version: 1

Example 4-3 Displays the Specified CDP Neighbor

switch# show cdp entry name 0
----------------------------------------
Device ID:0
Entry address(es):
    IP Address: 0.0.0.0
Platform: DS-X9530-SF1-K9, Capabilities: Host
Interface: GigabitEthernet4/1, Port ID (outgoing port): GigabitEthernet4/1
Holdtime: 144 sec

Version:
1.1(0.144)

Advertisement Version: 2
Duplex: full

Example 4-4 Displays Global CDP Parameters

switch# show cdp global
Global CDP information:
    CDP enabled globally
    Sending CDP packets every 60 seconds
    Sending a holdtime value of 180 seconds
    Sending CDPv2 advertisements is enabled

Example 4-5 Displays CDP Parameters for the Management Interface

switch# show cdp interface mgmt 0
mgmt0 is up
    CDP enabled on interface
    Sending CDP packets every 60 seconds
    Holdtime is 180 seconds

Example 4-6 Displays CDP Parameters for the Gigabit Ethernet Interface

switch# show cdp interface gigabitethernet 4/1
GigabitEthernet4/1 is up
    CDP enabled on interface
    Sending CDP packets every 80 seconds
    Holdtime is 200 seconds

Example 4-7 Displays CDP Neighbors (in brief)

switch# show cdp neighbors
Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge
                  S - Switch, H - Host, I - IGMP, r - Repeater

Device ID        Local Intrfce   Hldtme  Capability  Platform      Port ID
0                Gig4/1          135     H           DS-X9530-SF1- Gig4/1
069038732(Kiowa2 mgmt0           132     T S         WS-C5500      8/11
069038747(Kiowa3 mgmt0           156     T S         WS-C5500      6/20
069038747(Kiowa3 mgmt0           158     T S         WS-C5500      5/22

Example 4-8 Displays CDP Neighbors (in detail)

switch# show CDP neighbor detail
----------------------------------------
Device ID:0
Entry address(es):
    IP Address: 0.0.0.0
Platform: DS-X9530-SF1-K9, Capabilities: Host
Interface: GigabitEthernet4/1, Port ID (outgoing port): GigabitEthernet4/1
Holdtime: 162 sec

Version:
1.1(0.144)

Advertisement Version: 2
Duplex: full
----------------------------------------
Device ID:069038732(Kiowa2)
Entry address(es):
    IP Address: 172.22.91.5
Platform: WS-C5500, Capabilities: Trans-Bridge Switch
Interface: mgmt0, Port ID (outgoing port): 8/11
Holdtime: 132 sec

Version:
WS-C5500 Software, Version McpSW: 2.4(3) NmpSW: 2.4(3)
Copyright (c) 1995-1997 by Cisco Systems
Advertisement Version: 1

Example 4-9 Displays the Specified CDP Neighbor (in detail)

switch# show CDP neighbors interface gigabitethernet 4/1 detail
----------------------------------------
Device ID:0
Entry address(es):
    IP Address: 0.0.0.0
Platform: DS-X9530-SF1-K9, Capabilities: Host
Interface: GigabitEthernet4/1, Port ID (outgoing port): GigabitEthernet4/1
Holdtime: 144 sec

Version:
1.1(0.144)

Advertisement Version: 2
Duplex: full

Example 4-10 Displays CDP Traffic Statistics for the Management Interface

switch# show cdp traffic interface mgmt 0
----------------------------------------
Traffic statistics for mgmt0
Input Statistics:
    Total Packets: 1148
    Valid CDP Packets: 1148
        CDP v1 Packets: 1148
        CDP v2 Packets: 0
    Invalid CDP Packets: 0
        Unsupported Version: 0
        Checksum Errors: 0
        Malformed Packets: 0
Output Statistics:
    Total Packets: 2329
        CDP v1 Packets: 1164
        CDP v2 Packets: 1165
    Send Errors: 0

Example 4-11 Displays CDP Traffic Statistics for the Gigabit Ethernet Interface

switch# show cdp traffic interface gigabitethernet 4/1
----------------------------------------
Traffic statistics for GigabitEthernet4/1
Input Statistics:
    Total Packets: 674
    Valid CDP Packets: 674
        CDP v1 Packets: 0
        CDP v2 Packets: 674
    Invalid CDP Packets: 0
        Unsupported Version: 0
        Checksum Errors: 0
        Malformed Packets: 0

Output Statistics:
    Total Packets: 674
        CDP v1 Packets: 0
        CDP v2 Packets: 674
    Send Errors: 0