- Information About QoS
- MQC
- System Classes
- Default System Classes
- Policy Types
- Link-Level Flow Control
- Priority Flow Control
- MTU
- Trust Boundaries
- Ingress Queuing Policies
- Ingress Classification Policies
- Egress Queuing Policies
- QoS for Multicast Traffic
- Policy for Fibre Channel Interfaces
- QoS for Traffic Directed to the CPU
- QoS Configuration Guidelines and Limitations
- Configuring Priority Flow Control and Link-Level Flow Control
- Verifying QoS Configuration
Configuring QoS
This chapter describes how to configure quality of service (QoS) on Cisco Nexus 5000 Series switches. It contains the following sections:
- Information About QoS
- QoS Configuration Guidelines and Limitations
- Configuring Priority Flow Control and Link-Level Flow Control
- Verifying QoS Configuration
- MQC
- System Classes
- Default System Classes
- Policy Types
- Link-Level Flow Control
- Priority Flow Control
- MTU
- Trust Boundaries
- Ingress Queuing Policies
- Ingress Classification Policies
- Egress Queuing Policies
- QoS for Multicast Traffic
- Policy for Fibre Channel Interfaces
- QoS for Traffic Directed to the CPU
- Configuring Class Maps
- Configuring Policy Maps
- Attaching the System Service Policy
- Restoring the Default System Service Policies
- Enabling the Jumbo MTU
- Verifying the Jumbo MTU
- Configuring Untagged CoS
- Configuring Interface Service Policy
- Configuring Priority Flow Control
- Configuring Link-Level Flow Control
- QoS Example 1
- QoS Example 2
- QoS Example 3
Information About QoS
The configurable Cisco NX-OS QoS features on the Cisco Nexus 5000 Series switch allow you to classify the network traffic, police and prioritize the traffic flow, and provide congestion avoidance.
The default QoS configuration on the switch provides lossless service for Fibre Channel and Fibre Channel Over Ethernet (FCoE) traffic and best-effort service for Ethernet traffic. QoS can be configured to provide additional classes of service for Ethernet traffic. Cisco Nexus 5000 Series QoS features are configured using Cisco Modular QoS CLI (MQC).
Note |
Standard Ethernet is a best-effort medium which means that it lacks any form of flow control. In the event of congestion or collisions, Ethernet will drop packets. The higher level protocols detect the missing data and retransmit the dropped packets. Fibre Channel requires a reliable transport system that guarantees the delivery of every packet. To properly support FCoE, Ethernet has been enhanced with a priority flow control (PFC) mechanism to prevent congestion. |
- MQC
- System Classes
- Default System Classes
- Policy Types
- Link-Level Flow Control
- Priority Flow Control
- MTU
- Trust Boundaries
- Ingress Queuing Policies
- Ingress Classification Policies
- Egress Queuing Policies
- QoS for Multicast Traffic
- Policy for Fibre Channel Interfaces
- QoS for Traffic Directed to the CPU
MQC
The Cisco Modular QoS CLI (MQC) provides a standard set of commands for configuring QoS.
You can use MQC to define additional traffic classes and to configure QoS policies for the whole system and for individual interfaces. Configuring a QoS policy with MQC consists of the following steps:
- Define traffic classes.
- Associate policies and actions with each traffic class.
- Attach policies to logical or physical interfaces as well as at the global system level.
MQC provides two command types to define traffic classes and policies:
-
class-map—Defines a class map that represents a class of traffic based on packet-matching criteria. Class maps are referenced in policy maps.
The class map classifies incoming packets based on matching criteria, such as the IEEE 802.1p CoS value. Unicast and multicast packets are classified.
-
policy-map—Defines a policy map that represents a set of policies to be applied on a class-by-class basis to class maps.
The policy map defines a set of actions to take on the associated traffic class, such as limiting the bandwidth or dropping packets.
You define the following class-map and policy-map object types when you create them:
-
network-qos—Defines MQC objects that you can use for system level related actions.
-
qos—Defines MQC objects that you can use for classification.
-
queuing—Defines MQC objects that you can use for queuing and scheduling.
Note |
The qos type is the default for the class-map and policy-map commands, but not for the service-policy which requires that you specify an explicit type. |
You can attach policies to interfaces or EtherChannels as well as at the global system level by using the service-policy command.
You can view all or individual values for MQC objects by using the show class-map and show policy-map commands.
An MQC target is an entity (such as an Ethernet interface) that represents a flow of packets. A service policy associates a policy map with an MQC target, and specifies whether to apply the policy on incoming or outgoing packets. This mapping enables the configuration of QoS policies such as marking, bandwidth allocation, buffer allocation, and so on.
System Classes
The system qos is a type of MQC target. You use a service-policy to associate a policy map with the system qos target. A system qos policy applies to all interfaces on the switch unless a specific interface has an overriding service-policy configuration. The system qos policies are used to define system classes, the classes of traffic across the entire switch, and their attributes. To ensure QoS consistency (and for ease of configuration), the switch distributes the system class parameter values to all its attached network adapters using the Data Center Bridging Exchange (DCBX) protocol.
If service policies are configured at the interface level, the interface-level policy always takes precedence over system class configuration or defaults.
On the Cisco Nexus 5000 Series switch, a system class is uniquely identified by a qos-group value. A total of six system classes are supported. Two of the six system classes are defaults and are always present on the switch. Up to four additional system classes can be created by the administrator.
Default System Classes
The Cisco Nexus 5000 Series switch provides the following default system classes:
-
Drop system class
By default, the software classifies all unicast and multicast Ethernet traffic into the default drop system class. This class is identified by qos-group 0.
This class is created automatically when the system starts up (the class is named class-default in the CLI). You cannot delete this class and you cannot change the match criteria associated with the default class.
-
FCoE system class
All Fibre Channel and FCoE control and data traffic is automatically classified into the FCoE system class, which provides no-drop service.
This class is created automatically when the system starts up (the class is named class-fcoe in the CLI). You cannot delete this class, and you can only modify the IEEE 802.1p CoS value to associate with this class. This class is identified by qos-group 1.
The switch classifies packets into the FCoE system class as follows:
Policy Types
The Cisco Nexus 5000 Series switch supports a number of policy types. You create class maps in the policy types.
There are three policy types. The following QoS parameters can be specified for each type of class:
-
Type network-qos—A network-qos policy is used to instantiate system classes and associate parameters with those classes that are of system-wide scope.
-
Classification—The traffic that matches this class are as follows:
-
Policy—The actions that are performed on the matching traffic are as follows:
Note
A network-qos policy can only be attached to the system qos target.
-
MTU—The MTU that needs to be enforced for the traffic that is mapped to a system class. Each system class has a default MTU and the system class MTU is configurable.
-
Multicast optimization—This configuration specifies if the performance of multicast traffic mapped to this class will be optimized.
-
Pause no-drop—No drop specifies lossless service for the system class. Drop specifies that tail drop is used (arriving packets are dropped when the queue reaches its allocated size) when a queue for this system class is full.
An additional parameter pfc-cos can be configured. This parameter identifies the class of service (CoS) values to assert priority flow control (PFC) when traffic for a no-drop system class is not mapped based purely on CoS experiences congestion.
-
Queue Limit—This configuration specifies the number of buffers that need to be reserved to the queues of this system class. This option is not configurable for no-drop system classes.
-
Set CoS value—This configuration is used to mark 802.1p values for all traffic mapped to this system class. The marking value for a system class needs to be unique and cannot be used as a marking value for any other system class.
-
-
-
Type queuing—A type queuing policy is used to define the scheduling characteristics of the queues associated with system classes.
Note
Some configuration parameters when applied to an EtherChannel are not reflected on the configuration of the member ports.
-
Classification—The traffic that matches this class are as follows:
-
Policy—The actions that are performed on the matching traffic are as follows:
Note
These policies can be attached to the system qos target or to any interface. The output queueing policy is used to configure output queues on the switch associated with system classes. The input queuing policy is used to configure scheduling for queues in the CNA. The input queuing policy parameters are signalled to the CNA over the DCBX protocol.
-
-
Type qos—A type qos policy is used to classify traffic that is based on various Layer 2, Layer 3, and Layer 4 fields in the frame and to map it to system classes.
Note
Some configuration parameters when applied to an EtherChannel are not reflected on the configuration of the member ports.
-
Classification—The traffic that matches this class are as follows:
-
Access Control Lists—Classifies traffic based on the criteria in existing ACLs.
-
Class of Service—Matches traffic based on the CoS field in the frame header.
-
DSCP—Classifies traffic based on the Differentiated Services Code Point (DSCP) value in the DiffServ field of the IP header.
-
IP Real Time Protocol—Classifies traffic on the port numbers used by real-time applications.
-
Precedence—Classifies traffic based on the precedence value in the type of service (ToS) field of the IP header.
-
Protocol—Classifies traffic based on the protocol field of the IP header.
-
-
Policy—The actions that are performed on the matching traffic are as follows:
Note
This policy can be attached to the system or to any interface. It applies to input traffic only.
-
Link-Level Flow Control
IEEE 802.3x link-level flow control allows a congested receiver to communicate a transmitter at the other end of the link to pause its data transmission for a short period of time. The link-level flow control feature applies to all the traffic on the link.
The transmit and receive directions are separately configurable. By default, link-level flow control is disabled for both directions.
On the Cisco Nexus 5000 Series switch, Ethernet interfaces do not automatically detect the link-level flow control capability. You must configure the capability explicitly on the Ethernet interfaces.
On each Ethernet interface, the switch can enable either priority flow control or link-level flow control (but not both).
Priority Flow Control
Priority flow control (PFC) allows you to apply pause functionality to specific classes of traffic on a link instead of all the traffic on the link. PFC applies pause functionality based on the IEEE 802.1p CoS value. When the switch enables PFC, it communicates to the adapter which CoS values to apply the pause.
Ethernet interfaces use PFC to provide lossless service to no-drop system classes. PFC implements pause frames on a per-class basis and uses the IEEE 802.1p CoS value to identify the classes that require lossless service.
In the switch, each system class has an associated IEEE 802.1p CoS value that is assigned by default or configured on the system class. If you enable PFC, the switch sends the no-drop CoS values to the adapter, which then applies PFC to these CoS values.
The default CoS value for the FCoE system class is 3. This value is configurable.
By default, the switch negotiates to enable the PFC capability. If the negotiation succeeds, PFC is enabled and link-level flow control remains disabled regardless of its configuration settings. If the PFC negotiation fails, you can either force PFC to be enabled on the interface or you can enable IEEE 802.x link-level flow control.
If you do not enable PFC on an interface, you can enable IEEE 802.3X link-level pause. By default, link-level pause is disabled.
MTU
The Cisco Nexus 5000 Series switch is a Layer 2 switch, and it does not support packet fragmentation. A maximum transmission unit (MTU) configuration mismatch between ingress and egress interfaces may result in packets being truncated.
When configuring MTU, follow these guidelines:
-
MTU is specified per system class. The system class allows a different MTU for each class of traffic but they must be consistent on all ports across the entire switch. You cannot configure MTU on the interfaces.
-
Fibre Channel and FCoE payload MTU is 2112 bytes across the switch. As a result, the rxbufsize for Fibre Channel interfaces is fixed at 2112 bytes. If the Cisco Nexus 5000 Series switch receives an rxbufsize from a peer that is different than 2112 bytes, it will fail the exchange of link parameters (ELP) negotiation and not bring the link up.
-
Enter the system jumbomtu command to define the upper bound of any MTU in the system. The system jumbo MTU has a default value of 9216 bytes. The minimum MTU is 2240 bytes and the maximum MTU is 9216 bytes.
-
The system class MTU sets the MTU for all packets in the class. The system class MTU cannot be configured larger than the global jumbo MTU.
-
The FCoE system class (for Fibre Channel and FCoE traffic) has a default MTU of 2240 bytes. This value cannot be modified.
-
The default drop system class has a default MTU of 1538 bytes. You can configure this value.
-
The switch sends the MTU configuration to network adapters that support DCBX.
Note
MTU is not supported in Converged Enhanced Ethernet (CEE) mode for DCBX.
Trust Boundaries
The trust boundary is enforced by the incoming interface as follows:
-
All Fibre Channel and virtual Fibre Channel interfaces are automatically classified into the FCoE system class.
-
By default, all Ethernet interfaces are trusted interfaces. A packet tagged with an 802.1p CoS value is classified into a system class using the value in the packet.
-
Any packet that is not tagged with an 802.1p CoS value is classified into the default drop system class. If the untagged packet is sent over a trunk, it is tagged with the default untagged CoS value, which is zero.
-
You can override the default untagged CoS value for an Ethernet interface or port channel.
After the system applies the untagged CoS value, QoS functions the same as for a packet that entered the system tagged with the CoS value.
Ingress Queuing Policies
You can associate an ingress policy map with an Ethernet interface to guarantee bandwidth for the specified traffic class or to specify a priority queue.
The ingress policy is applied in the adapter to all outgoing traffic that matches the specified CoS value.
When you configure an ingress policy for an interface, the switch sends the configuration data to the adapter. If the adapter does not support the DCBX protocol or the ingress policy type-length-value (TLV), the ingress policy configuration is ignored.
Ingress Classification Policies
You use classification to partition traffic into classes. You classify the traffic based on the port characteristics (CoS field) or the packet header fields that include IP precedence, Differentiated Services Code Point (DSCP), and Layer 2 to Layer 4 parameters. The values used to classify traffic are called match criteria. When you define a traffic class, you can specify multiple match criteria, you can choose to not match on a particular criterion, or you can determine traffic class by matching any or all criteria.
Traffic that fails to match any class is assigned to a default class of traffic called class-default.
Egress Queuing Policies
You can associate an egress policy map with an Ethernet interface to guarantee the bandwidth for the specified traffic class or to configure the egress queues.
The bandwidth allocation limit applies to all traffic on the interface including any FCoE traffic.
Each Ethernet interface supports up to six queues, one for each system class. The queues have the following default configuration:
-
In addition to the six queues, control traffic that is destined for the CPU uses strict priority queues. These queues are not accessible for user configuration.
-
FCoE traffic (traffic that maps to the FCoE system class) is assigned a queue. This queue uses weighted round-robin (WRR) scheduling with 50 percent of the bandwidth.
-
Standard Ethernet traffic in the default drop system class is assigned a queue. This queue uses WRR scheduling with 50 percent of the bandwidth.
If you add a system class, a queue is assigned to the class. You must reconfigure the bandwidth allocation on all affected interfaces. Bandwidth is not dedicated automatically to user-defined system classes.
You can configure a strict priority queue. This queue is serviced before all other queues except the control traffic queue (which carries control rather than data traffic).
QoS for Multicast Traffic
The system provides six multicast queues per interface and allocates one queue for each system class. By default, all multicast Ethernet traffic is classified into the default drop system class. This traffic is serviced by one multicast queue.
Optimized multicasting allows use of the unused multicast queues to achieve better throughput for multicast frames. If optimized multicast is enabled for the default drop system class, the system will use all six queues to service the multicast traffic (all six queues are given equal priority).
If you define a new system class, a dedicated multicast queue is assigned for this class. This queue is removed from the set of queues available for the optimized multicast class.
Optimized multicasting achieves better throughput and improves performance for multicast frames.
The system provides two predefined class maps for matching broadcast or multicast traffic. These class maps are convenient for creating separate policy maps for unicast and multicast traffic. The predefined class maps are as follows:
-
class-all-flood
The class-all-flood class map matches all broadcast, multicast, and unknown unicast traffic (across all CoS values). If you configure a policy map with the class-all-flood class map, the system automatically uses all available multicast queues for this traffic.
-
class-ip-multicast
The class-ip-multicast class map matches all IP multicast traffic. Policy options configured in this class map apply to traffic across all Ethernet CoS values. For example, if you enable optimized multicast for this class, the IP multicast traffic for all CoS values is optimized.
Note |
If you configure either of these predefined class maps as a no-drop class, the priority flow control capability is applied across all Ethernet CoS values. In this configuration, pause will be applied to unicast and multicast traffic. |
Policy for Fibre Channel Interfaces
The egress queues are not configurable for native Fibre Channel interfaces. Two queues are available as follows:
QoS for Traffic Directed to the CPU
The switch automatically applies QoS policies to traffic that is directed to the CPU to ensure that the CPU is not flooded with packets. Control traffic, such as BPDU frames, is given higher priority to ensure delivery.
QoS Configuration Guidelines and Limitations
Switch resources (such as buffers, virtual output queues, and egress queues) are partitioned based on the default and user-defined system classes. Cisco NX-OS automatically adjusts the resource allocation to accommodate the configured system classes.
To maintain optimal switch performance, follow these guidelines when configuring system classes and policies:
-
If less than four Ethernet classes are defined, up to two of these classes can be configured as no-drop classes. If more than three Ethernet classes are defined, only one of these classes can be configured as a no-drop class. The default drop class is counted as an Ethernet class.
-
If priority flow control is enabled on an Ethernet interface, pause will never be applied to traffic with a drop system class. PFC does not apply pause to drop classes and the link-level pause feature is never enabled on an interface with PFC.
-
All FCoE traffic on an Ethernet interface is mapped to one no-drop system class. By default, this class is associated with CoS value 3, although you can configure a different value. If you configure standard Ethernet traffic to use the same CoS value as FCoE, this traffic is still mapped to the FCoE system class and the switch will apply priority flow control on the FCoE CoS value.
-
When a Cisco Nexus 2148T Fabric Extender is connected and in use, data traffic should never be marked with a CoS value of 7. CoS 7 is reserved for control traffic transiting the Fabric Extender.
Note |
Type qos policies can be activated only on Cisco Nexus 5000 Series interfaces and Cisco Nexus 2000 Series Fabric Extender interfaces. Type qos policies on Fabric Extender fabric interfaces or Fabric Extender fabric EtherChannel interfaces are ineffective, though the Cisco NX-OS CLI does not reject the configuration. We recommend that you do not configure type qos policy-maps on Fabric Extender fabric interfaces or Fabric Extender fabric EtherChannel interfaces to avoid wasting hardware resources. |
When configuring EtherChannels, note the following guidelines:
Configuring System Classes
Configuring Class Maps
You can create or modify a class map with the class-map command. The class map is a named object that represents a class of traffic. In the class map, you specify a set of match criteria for classifying the packets. You can then reference class maps in policy maps.
2.
switch(config)# class-map [type {network-qos | qos | queuing}] class-name
3.
(Optional) switch(config)# no class-map [type {network-qos | queuing | qos | queuing}] class-name
DETAILED STEPS
- Configuring ACL Classification
- Configuring CoS Classification
- Configuring DSCP Classification
- Configuring IP RTP Classification
- Configuring Precedence Classification
- Configuring Protocol Classification
- Configuring QoS Group Classification
Configuring ACL Classification
You can classify traffic by matching packets based on an existing access control list (ACL). Traffic is classified by the criteria defined in the ACL. The permit and deny ACL keywords are ignored in the matching; even if a match criteria in the access-list has a deny action, it is still used for matching for this class.
2.
switch(config)# class-map type qos class-name
3.
switch(config-cmap-qos)# match access-group name acl-name
4.
(Optional) switch(config-cmap-qos)# no match access-group name acl-name
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# class-map type qos class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
||
Step 3 | switch(config-cmap-qos)# match access-group name acl-name |
Configures a traffic class by matching packets based on the acl-name. The permit and deny ACL keywords are ignored in the matching.
|
||
Step 4 | switch(config-cmap-qos)# no match access-group name acl-name |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic by matching packets based on existing ACLs:
switch# configure terminal
switch(config)# class-map type qos class_acl
switch(config-cmap-qos)# match access-group name acl-01
Use the show class-map command to display the ACL class-map configuration:
switch# show class-map class_acl
Configuring CoS Classification
You can classify traffic based on the class of service (CoS) in the IEEE 802.1Q header. This 3-bit field is defined in IEEE 802.1p to support QoS traffic classes. CoS is encoded in the high order 3 bits of the VLAN ID Tag field and is referred to as user_priority.
If a system class is configured with a no-drop function, the match cos command serves an additional purpose. The switch sends the CoS value to the adapter so that the adapter will apply a PFC pause for this CoS value.
The FCoE system class has a default CoS value of 3. You can add a match cos configuration to the FCoE system class to set a different CoS value. A PFC pause will be applied to traffic that matches the new value.
2.
switch(config)# class-map type qos class-name
3.
switch(config-cmap-qos)# match cos cos-value
4.
(Optional) switch(config-cmap-qos)# no match cos cos-value
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# class-map type qos class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
||
Step 3 | switch(config-cmap-qos)# match cos cos-value |
Specifies the CoS value to match for classifying packets into this class. You can configure a CoS value in the range of 0 to 7.
|
||
Step 4 | switch(config-cmap-qos)# no match cos cos-value |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic by matching packets based on a defined CoS value:
switch# configure terminal
switch(config)# class-map type qos class_cos
switch(config-cmap-qos)# match cos 4, 5-6
Use the show class-map command to display the CoS value class-map configuration:
switch# show class-map class_cos
Configuring DSCP Classification
You can classify traffic based on the Differentiated Services Code Point (DSCP) value in the DiffServ field of the IP header (either IPv4 or IPv6). The standard DSCP values are listed in the following table:
Value |
List of DSCP Values |
---|---|
af11 |
AF11 dscp (001010)—decimal value 10 |
af12 |
AF12 dscp (001100)—decimal value 12 |
af13 |
AF13 dscp (001110)—decimal value 14 |
af21 |
AF21 dscp (010010)—decimal value 18 |
af22 |
AF22 dscp (010100)—decimal value 20 |
af23 |
AF23 dscp (010110)—decimal value 22 |
af31 |
AF31 dscp (011010)—decimal value 26 |
af32 |
AF40 dscp (011100)—decimal value 28 |
af33 |
AF33 dscp (011110)—decimal value 30 |
af41 |
AF41 dscp (100010)—decimal value 34 |
af42 |
AF42 dscp (100100)—decimal value 36 |
af43 |
AF43 dscp (100110)—decimal value 38 |
cs1 |
CS1 (precedence 1) dscp (001000)—decimal value 8 |
cs2 |
CS2 (precedence 2) dscp (010000)—decimal value 16 |
cs3 |
CS3 (precedence 3) dscp (011000)—decimal value 24 |
cs4 |
CS4 (precedence 4) dscp (100000)—decimal value 32 |
cs5 |
CS5 (precedence 5) dscp (101000)—decimal value 40 |
cs6 |
CS6 (precedence 6) dscp (110000)—decimal value 48 |
cs7 |
CS7 (precedence 7) dscp (111000)—decimal value 56 |
default |
Default dscp (000000)—decimal value 0 |
ef |
EF dscp (101110)—decimal value 46 |
2.
switch(config)# class-map type qos class-name
3.
switch(config-cmap-qos)# match dscp dscp-list
4.
(Optional) switch(config-cmap-qos)# no match dscp dscp-list
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# class-map type qos class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
Step 3 | switch(config-cmap-qos)# match dscp dscp-list |
Configures the traffic class by matching packets based on the values in the dscp-list . The standard DSCP values are shown in the preceding table. |
Step 4 | switch(config-cmap-qos)# no match dscp dscp-list |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic by matching packets based on the DSCP value in the DiffServ field of the IP header:
switch# configure terminal
switch(config)# class-map type qos class_dscp
switch(config-cmap-qos)# match dscp af21, af32
Use the show class-map command to display the DSCP class-map configuration:
switch# show class-map class_dscp
Configuring IP RTP Classification
The IP Real-time Transport Protocol (RTP) is a transport protocol for real-time applications that transmits data such as audio or video and is defined by RFC 3550. Although RTP does not use a common TCP or UDP port, you typically configure RTP to use ports 16384 to 32767. UDP communications use an even port and the next higher odd port is used for RTP Control Protocol (RTCP) communications.
You can classify based on UDP port ranges, which are likely to target applications using RTP.
2.
switch(config)# class-map type qos class-name
3.
switch(config-cmap-qos)# match ip rtp port-number
4.
(Optional) switch(config-cmap-qos)# no match ip rtp port-number
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# class-map type qos class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
Step 3 | switch(config-cmap-qos)# match ip rtp port-number |
Configures the traffic class by matching packets based on a range of lower and upper UDP port numbers, which is likely to target applications using RTP. Values can range from 2000 to 65535. |
Step 4 | switch(config-cmap-qos)# no match ip rtp port-number |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic by matching packets based on UDP port ranges that are typically used by RTP applications:
switch# configure terminal
switch(config)# class-map type qos class_rtp
switch(config-cmap-qos)# match ip rtp 2000-2100, 4000-4100
Use the show class-map command to display the RTP class-map configuration:
switch# show class-map class_rtp
Configuring Precedence Classification
You can classify traffic based on the precedence value in the type of service (ToS) byte field of the IP header (either IPv4 or IPv6). The following table shows the precedence values:
Value |
List of Precedence Values |
---|---|
<0-7> |
IP precedence value |
critical |
Critical precedence (5) |
flash |
Flash precedence (3) |
flash-override |
Flash override precedence (4) |
immediate |
Immediate precedence (2) |
internet |
Internetwork control precedence (6) |
network |
Network control precedence (7) |
priority |
Priority precedence (1) |
routine |
Routine precedence (0) |
2.
switch(config)# class-map type qos class-name
3.
switch(config-cmap-qos)# match precedence precedence-values
4.
(Optional) switch(config-cmap-qos)# no match precedence precedence-values
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# class-map type qos class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
Step 3 | switch(config-cmap-qos)# match precedence precedence-values |
Configures the traffic class by matching packets based on precedence-values . Values are shown in the preceding table. |
Step 4 | switch(config-cmap-qos)# no match precedence precedence-values |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic by matching packets based on the precedence value in the ToS byte field of the IP header:
switch# configure terminal
switch(config)# class-map type qos class_precedence
switch(config-cmap-qos)# match precedence 1-2, critical
Use the show class-map command to display the IP precedence value class-map configuration:
switch# show class-map class_precedence
Configuring Protocol Classification
You can classify traffic based on the protocol field in the IP header. The following table shows the protocol arguments:
Argument |
Description |
---|---|
arp |
Address Resolution Protocol (ARP) |
clns_es |
CLNS End Systems |
clns_is |
CLNS Intermediate System |
dhcp |
Dynamic Host Configuration (DHCP) |
ldp |
Label Distribution Protocol (LDP) |
netbios |
NetBIOS Extended User Interface (NetBEUI) |
2.
switch(config)# class-map type qos class-name
3.
switch(config-cmap-qos)# match protocol {arp | clns_es | clns_is | dhcp | ldp | netbios}
4.
(Optional) switch(config-cmap-qos)# no match protocol {arp | clns_es | clns_is | dhcp | ldp | netbios}
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# class-map type qos class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
Step 3 | switch(config-cmap-qos)# match protocol {arp | clns_es | clns_is | dhcp | ldp | netbios} |
Configures the traffic class by matching packets based on the specified protocol. |
Step 4 | switch(config-cmap-qos)# no match protocol {arp | clns_es | clns_is | dhcp | ldp | netbios} |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic by matching packets based on the protocol field:
switch# configure terminal
switch(config)# class-map type qos class_protocol
switch(config-cmap-qos)# match protocol arp
Use the show class-map command to display the protocol class-map configuration:
switch# show class-map class_protocol
Configuring QoS Group Classification
You can classify traffic based on the value of the QoS group internal label, that represents a system class. You can set the value of the QoS group within a policy map using the set qos-group command.
2.
switch(config)# class-map type {network-qos | queuing} class-name
3.
switch(config-cmap-que)# match qos-group qos-group-value
4.
(Optional) switch(config-cmap-que)# no match qos-group qos-group-value
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# class-map type {network-qos | queuing} class-name |
Creates a named object that represents a class of traffic. Class-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
||
Step 3 | switch(config-cmap-que)# match qos-group qos-group-value |
Configures the traffic class by matching packets based on a list of QoS group values. Values can range from 0 to 5. QoS group 0 is equivalent to class-default and QoS group 1 is equivalent to class-fcoe.
|
||
Step 4 | switch(config-cmap-que)# no match qos-group qos-group-value |
(Optional) Removes the match from the traffic class. |
This example shows how to classify traffic based on the value of the QoS group:
switch# configure terminal
switch(config)# class-map type queuing class_qos_group
switch(config-cmap-que)# match qos-group 4
Use the show class-map command to display the QoS group class-map configuration:
switch# show class-map class_qos_group
Configuring Policy Maps
The policy-map command is used to create a named object that represents a set of policies that are to be applied to a set of traffic classes.
The switch provides two default system classes: a no-drop class for lossless service (class-fcoe) and a drop class for best-effort service (class-default). You can define up to four additional system classes for Ethernet traffic.
The following predefined policy maps are used as default service policies:
-
network-qos: default-nq-policy
-
Input qos: default-in-policy
-
Input queuing: default-in-policy
-
Output queuing: default-out-policy
You need to create a policy map to specify the policies for any user-defined class. In the policy map, you can configure the QoS parameters for each class. You can use the same policy map to modify the configuration of the default classes.
The switch distributes all the policy-map configuration values to the attached network adapters.
Before creating the policy map, define a class map for each new system class.
2.
switch(config)# policy-map [type {network-qos | qos | queuing}] policy-name
3.
(Optional) switch(config)# no policy-map [type {network-qos | qos | queuing}] policy-name
4.
switch(config-pmap)# class [type {network-qos | qos | queuing}] class-name
5.
(Optional) switch(config-pmap)# no class [type {network-qos | qos | queuing}] class-name
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# policy-map [type {network-qos | qos | queuing}] policy-name |
Creates a named object representing a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. The three policy-map configuration modes are as follows: |
||
Step 3 | switch(config)# no policy-map [type {network-qos | qos | queuing}] policy-name |
(Optional) Deletes the specified policy map. |
||
Step 4 | switch(config-pmap)# class [type {network-qos | qos | queuing}] class-name |
Associates a class map with the policy map, and enters configuration mode for the specified system class. The three class-map configuration modes are as follows:
|
||
Step 5 | switch(config-pmap)# no class [type {network-qos | qos | queuing}] class-name |
(Optional) Deletes the class map association. |
- Configuring Type Network QoS Policies
- Configuring Type Queuing Policies
- Configuring Type QoS Policies
Configuring Type Network QoS Policies
Type network qos policies can only be configured on the system qos attachment point. They are applied to the entire switch for a particular class.
2.
switch(config)# policy-map type network-qos policy-name
3.
switch(config-pmap-nq)# class type network-qos class-name
4.
switch(config-pmap-c-nq)# mtu mtu-value
5.
(Optional) switch(config-pmap-c-nq)# no mtu
6.
switch(config-pmap-c-nq)# multicast-optimize
7.
(Optional) switch(config-pmap-c-nq)# no multicast-optimize
8.
switch(config-pmap-c)# pause no-drop [pfc-cos pfc-cos-value]
9.
(Optional) switch(config-pmap-c-nq)# no pause no-drop
10.
switch(config-pmap-c-nq)# queue-limit number-bytes bytes
11.
(Optional) switch(config-pmap-c-nq)# no queue-limit number-bytes bytes
12.
switch(config-pmap-c-nq)# set cos cos-value
13.
(Optional) switch(config-pmap-c-nq)# no set cos cos-value
DETAILED STEPS
Command or Action | Purpose | |||||
---|---|---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||||
Step 2 | switch(config)# policy-map type network-qos policy-name |
Creates a named object that represents a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
||||
Step 3 | switch(config-pmap-nq)# class type network-qos class-name |
Associates a class map with the policy map, and enters configuration mode for the specified system class.
|
||||
Step 4 | switch(config-pmap-c-nq)# mtu mtu-value |
Specifies the MTU value in bytes.
|
||||
Step 5 | switch(config-pmap-c-nq)# no mtu |
(Optional) Resets the MTU value in this class. |
||||
Step 6 | switch(config-pmap-c-nq)# multicast-optimize |
Enables multicast optimization. Multicast traffic in this class will be served by all available multicast queues.
|
||||
Step 7 | switch(config-pmap-c-nq)# no multicast-optimize |
(Optional) Disables multicast optimization. |
||||
Step 8 | switch(config-pmap-c)# pause no-drop [pfc-cos pfc-cos-value] |
Configures a no-drop class. If you do not specify this command, the default policy is drop.
The pfc-cos-value range is from 0 to 7. This option is supported only for for a ACL-based system class (which filters traffic using criteria other than cos-based matches).
|
||||
Step 9 | switch(config-pmap-c-nq)# no pause no-drop |
(Optional) Removes the no-drop option from this class. |
||||
Step 10 | switch(config-pmap-c-nq)# queue-limit number-bytes bytes |
Specifies the tail drop threshold on this interface. The threshold range is from 20480 to 204800 bytes.
|
||||
Step 11 | switch(config-pmap-c-nq)# no queue-limit number-bytes bytes |
(Optional) Disables the queue limit specification in this class. |
||||
Step 12 | switch(config-pmap-c-nq)# set cos cos-value |
Specifies a 802.1Q CoS value which is used to mark packets on this interface. The value range is from 0 to 7. |
||||
Step 13 | switch(config-pmap-c-nq)# no set cos cos-value |
(Optional) Disables the marking operation in this class. |
This example shows how to define a type network-qos policy map:
switch# configure terminal
switch(config)# policy-map type network-qos policy-que1
switch(config-pmap-nq)# class type network-qos class-que1
switch(config-pmap-c-nq)# mtu 5000
switch(config-pmap-c-nq)# pause no-drop pfc-cos 1-3,5
switch(config-pmap-c-nq)# set cos 4
Configuring Type Queuing Policies
Type queuing policies are used for scheduling and buffering the traffic of a specific system class. A type queuing policy is identified by its qos-group and can be attached to the system or to individual interfaces (except for Fabric Extender host interfaces) for input or output traffic.
2.
switch(config)# policy-map type queuing policy-name
3.
switch(config-pmap-que)# class type queuing class-name
4.
switch(config-pmap-c-que)# bandwidth percent percentage
5.
(Optional) switch(config-pmap-c-que)# no bandwidth percent percentage
6.
switch(config-pmap-c-que)# priority
7.
(Optional) switch(config-pmap-c-que)# no priority
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# policy-map type queuing policy-name |
Creates a named object that represents a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
||
Step 3 | switch(config-pmap-que)# class type queuing class-name |
Associates a class map with the policy map, and enters configuration mode for the specified system class. |
||
Step 4 | switch(config-pmap-c-que)# bandwidth percent percentage |
Specifies the guaranteed percentage of interface bandwidth allocated to this class. By default, no bandwidth is specified for a class.
|
||
Step 5 | switch(config-pmap-c-que)# no bandwidth percent percentage |
(Optional) Removes the bandwidth specification from this class. |
||
Step 6 | switch(config-pmap-c-que)# priority |
Specifies that traffic in this class is mapped to a strict priority queue.
|
||
Step 7 | switch(config-pmap-c-que)# no priority |
(Optional) Removes the strict priority queuing from the traffic in this class. |
This example shows how to define a type queuing policy map:
switch# configure terminal
switch(config)# policy-map type queuing policy-queue1
switch(config-pmap-que)# class type queuing class-queue1
switch(config-pmap-c-que)# bandwidth 20
Configuring Type QoS Policies
Type qos policies are used for classifying the traffic of a specific system class identified by a unique qos-group value. A type qos policy can be attached to the system or to individual interfaces (including Fabric Extender host interfaces) for input traffic only.
2.
switch(config)# policy-map type qos policy-name
3.
switch(config-pmap-qos)# class type qos class-name
4.
switch(config-pmap-c-qos)# set qos-group qos-group-value
5.
(Optional) switch(config-pmap-c-qos)# no set qos-group qos-group-value
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# policy-map type qos policy-name |
Creates a named object that represents a set of policies that are to be applied to a set of traffic classes. Policy-map names can contain alphabetic, hyphen, or underscore characters, are case sensitive, and can be up to 40 characters. |
||
Step 3 | switch(config-pmap-qos)# class type qos class-name |
Associates a class map with the policy map, and enters configuration mode for the specified system class.
|
||
Step 4 | switch(config-pmap-c-qos)# set qos-group qos-group-value |
Configures one or more qos-group values to match on for classification of traffic into this class map. The range of qos-group-value is from 2 to 5. There is no default value.
|
||
Step 5 | switch(config-pmap-c-qos)# no set qos-group qos-group-value |
(Optional) Removes the qos-group values from this class. |
This example shows how to define a type qos policy map:
switch# configure terminal
switch(config)# policy-map type qos policy-s1
switch(config-pmap-qos)# class type qos class-s1
switch(config-pmap-c-qos)# set qos-group 2
Attaching the System Service Policy
You can use the service-policy command to associate the system class policy map as the service policy for the system.
3.
switch(config-sys-qos)# service-policy type {network-qos | qos | queuing} [input | output] policy-name
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# system qos |
Enters system class configuration mode. |
||
Step 3 | switch(config-sys-qos)# service-policy type {network-qos | qos | queuing} [input | output] policy-name |
Specifies the policy map to use as the service policy for the system. There are three policy-map configuration modes:
|
This example shows how to set a no-drop Ethernet policy map as the system class:
switch(config)# class-map type network-qos ethCoS4
switch(config-cmap-nq)# match cos 4
switch(config-cmap-nq)# exit
switch(config)# policy-map type network-qos ethNoDrop
switch(config-pmap-nq)# class type network-qos ethCoS4
switch(config-pmap-c-nq)# pause no-drop
switch(config-pmap-c-nq)# exit
switch(config-pmap-nq)# exit
switch(config)# system qos
switch(config-sys-qos)# service-policy type network-qos ethNoDrop
Restoring the Default System Service Policies
If you have created and attached new policies to the system qos configuration, you must reapply the default policies to restore the system.
3.
switch(config-sys-qos)# service-policy type qos input default-in-policy
4.
switch(config-sys-qos)# service-policy type network-qos default-nq-policy
5.
switch(config-sys-qos)# service-policy type queuing output default-out-policy
6.
switch(config-sys-qos)# service-policy type queuing input default-in-policy
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# system qos |
Enters system class configuration mode. |
Step 3 | switch(config-sys-qos)# service-policy type qos input default-in-policy |
Resets the classification mode policy map. This policy-map configuration is for system qos input or interface input only: |
Step 4 | switch(config-sys-qos)# service-policy type network-qos default-nq-policy |
Resets the network-wide policy map. |
Step 5 | switch(config-sys-qos)# service-policy type queuing output default-out-policy |
Resets the output queuing mode policy map. |
Step 6 | switch(config-sys-qos)# service-policy type queuing input default-in-policy |
Resets the input queuing mode policy map. |
This example shows how to reset the system qos configuration:
switch# configure terminal
switch(config)# system qos
switch(config-sys-qos)# service-policy type qos input default-in-policy
switch(config-sys-qos)# service-policy type network-qos default-nq-policy
switch(config-sys-qos)# service-policy type queuing output default-out-policy
switch(config-sys-qos)# service-policy type queuing input default-in-policy
The default service policies are shown in this example:
switch# show policy-map
Type qos policy-maps
====================
policy-map type qos default-in-policy
class type qos class-fcoe
set qos-group 1
class type qos class-default
set qos-group 0
Type queuing policy-maps
========================
policy-map type queuing default-in-policy
class type queuing class-fcoe
bandwidth percent 50
class type queuing class-default
bandwidth percent 50
policy-map type queuing default-out-policy
class type queuing class-fcoe
bandwidth percent 50
class type queuing class-default
bandwidth percent 50
Type network-qos policy-maps
===============================
policy-map type network-qos default-nq-policy
class type network-qos class-fcoe
pause no-drop
mtu 2240
class type network-qos class-default
mtu 1538
Enabling the Jumbo MTU
You can enable the jumbo MTU for the whole switch by setting the MTU to its maximum size (9216 bytes) in the policy map for the default Ethernet system class (class-default).
This example shows how to configure the default Ethernet system class to support the jumbo MTU:
switch(config)# policy-map type network-qos jumbo
switch(config-pmap-nq)# class type network-qos class-default
switch(config-pmap-c-nq)# mtu 9216
switch(config-pmap-c-nq)# exit
switch(config-pmap-nq)# exit
switch(config)# system qos
switch(config-sys-qos)# service-policy type network-qos jumbo
Note |
The system jumbomtu command defines the maximum MTU size for the switch. However, jumbo MTU is only supported for system classes that have MTU configured. |
Verifying the Jumbo MTU
To verify that the jumbo MTU is enabled, enter the show interface ethernet slot/port command for an Ethernet interface that carries traffic with jumbo MTU.
This example shows how to display summary jumbo MTU information for Ethernet 1/2 (the relevant part of the output is shown in bold font):
switch# show interface ethernet 1/2
Ethernet1/2 is up
...
Rx
1547805598 Input Packets 1547805596 Unicast Packets 0 Multicast Packets
0 Broadcast Packets 1301767362 Jumbo Packets 33690 Storm Suppression Packets
7181776513802 Bytes
Tx
1186564478 Output Packets 7060 Multicast Packets
0 Broadcast Packets 997813205 Jumbo Packets
4813632103603 Bytes
...
This example shows how to display detailed jumbo MTU information for Ethernet 1/2 (the relevant part of the output is shown in bold font):
switch# show interface ethernet 1/2 counters detailed
Rx Packets: 1547805598
Rx Unicast Packets: 1547805596
Rx Jumbo Packets: 1301767362
Rx Bytes: 7181776513802
Rx Storm Suppression: 33690
Rx Packets from 0 to 64 bytes: 169219
Rx Packets from 65 to 127 bytes: 10657133
Rx Packets from 128 to 255 bytes: 21644488
Rx Packets from 256 to 511 bytes: 43290596
Rx Packets from 512 to 1023 bytes: 86583071
Rx Packets from 1024 to 1518 bytes: 83693729
Rx Trunk Packets: 1547805596
Tx Packets: 1186564481
Tx Unicast Packets: 1005445334
Tx Multicast Packets: 7063
Tx Jumbo Packets: 997813205
Tx Bytes: 4813632103819
Tx Packets from 0 to 64 bytes: 137912
Tx Packets from 65 to 127 bytes: 8288443
Tx Packets from 128 to 255 bytes: 16596457
Tx Packets from 256 to 511 bytes: 33177999
Tx Packets from 512 to 1023 bytes: 66363944
Tx Packets from 1024 to 1518 bytes: 64186521
Tx Trunk Packets: 1005451729
Configuring QoS on Interfaces
Configuring Untagged CoS
Any incoming packet not tagged with an 802.1p CoS value is assigned the default untagged CoS value of zero (which maps to the default Ethernet drop system class). You can override the default untagged CoS value for an Ethernet or EtherChannel interface.
Note |
Untagged CoS and type qos input policies are mutually exclusive on an Ethernet or EtherChannel interface. If a type qos policy is configured at the interface, untagged frames received over that interface will not match any match cos 0 commands in the policy. |
2.
switch(config)# interface {ethernet [chassis/]slot/port | port-channel channel-number}
3.
switch(config-if)# untagged cos cos-value
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# interface {ethernet [chassis/]slot/port | port-channel channel-number} |
Enters configuration mode for the specified interface or port channel. |
Step 3 | switch(config-if)# untagged cos cos-value |
Configures the untagged CoS value. |
Configuring Interface Service Policy
An input qos policy is a service policy applied to incoming traffic on an Ethernet interface for classification. For type queuing, the output policy is applied to all outgoing traffic that matches the specified class. When you configure an input queuing policy on an interface or EtherChannel, the switch sends the configuration data to the adapter using the DCBX protocol.
Note |
Type qos policies can be activated only on Cisco Nexus 5000 Series interfaces and Cisco Nexus 2000 Series Fabric Extender interfaces. Type qos policies on Fabric Extender fabric interfaces or Fabric Extender fabric EtherChannel interfaces are ineffective, though the Cisco NX-OS CLI does not reject the configuration. We recommend that you do not configure type qos policy-maps on Fabric Extender fabric interfaces or Fabric Extender fabric EtherChannel interfaces to avoid wasting hardware resources. |
2.
switch(config)# interface {ethernet [chassis/]slot/port | port-channel channel-number}
3.
switch(config-if)# service-policy [type {qos | queuing}] [input | output]policy-name
4.
switch(config-if)# service-policy input policy-name
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
||
Step 2 | switch(config)# interface {ethernet [chassis/]slot/port | port-channel channel-number} |
Enters configuration mode for the specified interface.
|
||
Step 3 | switch(config-if)# service-policy [type {qos | queuing}] [input | output]policy-name |
Specifies the policy map to use as the service policy for the system. There are two policy-map configuration modes:
|
||
Step 4 | switch(config-if)# service-policy input policy-name |
Applies the policy map to the interface.
|
This example shows how to apply a policy to an Ethernet interface:
switch# configure terminal
switch(config)# interface ethernet 1/1
switch(config-if)# service-policy type qos input policy1
Configuring Priority Flow Control and Link-Level Flow Control
Cisco Nexus 5000 Series switches support priority flow control (PFC) and Link-Level Flow Control (LLC) on Ethernet interfaces. The Ethernet interface can operate in two different modes: FCoE mode or standard Ethernet mode.
If the interface is operating in FCoE mode, the Ethernet link is connected at the server port using a converged network adapter (CNA).
If the interface is operating in a standard Ethernet mode, the Ethernet link is connected at the server port with a standard Ethernet network adapter (NIC). The network adapter must support the Data Center Bridging Exchange protocol (DCBX) for PFC or ingress policing to be supported on the interface.
Note |
You must configure a system class with the pause no-drop parameter for PFC to operate on Ethernet traffic (PFC will be applied to traffic that matches the CoS value configured for this class). |
Configuring Priority Flow Control
By default, Ethernet interfaces negotiate PFC with the network adapter using the DCBX protocol. When PFC is enabled, PFC is applied to traffic that matches the CoS value configured for the no-drop class.
You can override the negotiation result by forcing the interface to enable PFC.
2.
switch(config)# interface type slot/port
3.
switch(config-if)# priority-flow-control mode {auto | on}
4.
(Optional) switch(config-if)# no priority-flow-control mode on
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# interface type slot/port |
Specifies the interface to be changed. |
Step 3 | switch(config-if)# priority-flow-control mode {auto | on} |
Sets PFC mode for the selected interface. Specifies auto to negotiate PFC capability. This is the default. Specifies on to force-enable PFC. |
Step 4 | switch(config-if)# no priority-flow-control mode on |
(Optional) Disables the PFC setting for the selected interface. |
This example shows how to force-enable PFC on an interface:
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# priority-flow-control mode on
Configuring Link-Level Flow Control
By default, LLC on Ethernet interfaces is disabled. You can enable LLC for the transmit and receive directions.
2.
switch(config)# interface type slot/port
3.
switch(config-if)# flowcontrol [receive {on | off}] [transmit {on | off}]
4.
(Optional) switch(config-if)# no flowcontrol [receive {on | off}] [transmit {on | off}]
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | switch# configure terminal |
Enters configuration mode. |
Step 2 | switch(config)# interface type slot/port |
Specifies the interface to be changed. |
Step 3 | switch(config-if)# flowcontrol [receive {on | off}] [transmit {on | off}] |
Enables LLC for the selected interface. Set receive and/or transmit on or off. |
Step 4 | switch(config-if)# no flowcontrol [receive {on | off}] [transmit {on | off}] |
(Optional) Disables LLC for the selected interface. |
This example shows how to enable LLC on an interface:
switch# configure terminal
switch(config)# interface ethernet 1/2
switch(config-if)# flowcontrol receive on transmit on
Verifying QoS Configuration
To verify QoS configuration information, perform one of these tasks:
Command |
Purpose |
---|---|
switch# show class-map | Displays the class maps defined on the switch. |
switch# show policy-map [name] | Displays the policy maps defined on the switch. Optionally, you can display the named policy only. |
switch# show policy-map interface [interface number] | Displays the policy map settings for an interface or all interfaces. |
switch# show policy-map system | Displays the policy map settings attached to the system qos. |
switch# show policy-map type {network-qos | qos | queuing} [name] | Displays the policy map settings for a specific policy type. Optionally, you can display the named policy only. |
switch# show queuing interface [interface number] | Displays the queue configuration and statistics. |
You can clear the QoS policy statistics.
Command |
Purpose |
---|---|
switch# clear qos statistics | Clears the policy statistics. |
This example shows how to display the class maps defined on the switch:
switch# show class-map
Type qos class-maps
===================
class-map type qos c1
match cos 0,7
class-map type qos c2
match protocol ldp
match ip rtp 2000-65535
match dscp 10,12
match precedence 6-7
match protocol dhcp
match protocol arp
class-map type qos c3
match cos 2,4-6
class-map type qos c4
match access-group name ipv4
class-map type qos class-fcoe
match cos 3
class-map type qos class-default
match any
class-map type qos class-ip-multicast
match ip multicast
Type queuing class-maps
=======================
class-map type queuing c1
match qos-group 2
class-map type queuing c2
match qos-group 3
class-map type queuing c3
match qos-group 4
class-map type queuing class-fcoe
match qos-group 1
class-map type queuing class-default
match qos-group 0
Type network-qos class-maps
==============================
class-map type network-qos c1
match qos-group 2
class-map type network-qos c2
match qos-group 3
class-map type network-qos c3
match qos-group 4
class-map type network-qos c4
match qos-group 5
class-map type network-qos class-fcoe
match qos-group 1
class-map type network-qos class-default
match qos-group 0
This example shows how to display the policy maps defined on the switch:
switch# show policy-map
Type qos policy-maps
====================
policy-map type qos p1
class type qos c1
set qos-group 2
class type qos c3
set qos-group 4
class type qos c4
set qos-group 5
class type qos c2
set qos-group 3
class type qos c22
set qos-group 3
class type qos class-fcoe
set qos-group 1
class type qos class-default
set qos-group 0
Type queuing policy-maps
========================
policy-map type queuing p1
class type queuing c2
bandwidth percent 10
class type queuing c4
bandwidth percent 25
class type queuing c1
bandwidth percent 20
class type queuing c3
bandwidth percent 5
class type queuing class-fcoe
bandwidth percent 30
class type queuing class-default
bandwidth percent 10
Type network-qos policy-maps
===============================
policy-map type network-qos p1
class type network-qos c1
mtu 5000
class type network-qos c2
mtu 9216
queue-limit 30000 bytes
class type network-qos c3
mtu 8000
class type network-qos c4
pause no-drop
class type network-qos class-fcoe
pause no-drop
mtu 2240
class type network-qos class-default
mtu 1538
This example shows how to display the policy maps attached on the system qos:
switch# show policy-map system
Type network-qos policy-maps
===============================
policy-map type network-qos p1
class type network-qos c1 match qos-group 2
mtu 5000
class type network-qos c2 match qos-group 3
mtu 9216
queue-limit 30000 bytes
class type network-qos c3 match qos-group 4
mtu 8000
class type network-qos c4 match qos-group 5
pause no-drop
class type network-qos class-fcoe match qos-group 1
pause no-drop
mtu 2240
class type network-qos class-default match qos-group 0
mtu 1538
Service-policy (queuing) input: p1
policy statistics status: disabled
Class-map (queuing): c2 (match-any)
Match: qos-group 3
bandwidth percent 10
Class-map (queuing): c4 (match-any)
Match: qos-group 5
bandwidth percent 25
Class-map (queuing): c1 (match-any)
Match: qos-group 2
bandwidth percent 20
Class-map (queuing): c3 (match-any)
Match: qos-group 4
bandwidth percent 5
Class-map (queuing): class-fcoe (match-any)
Match: qos-group 1
bandwidth percent 30
Class-map (queuing): class-default (match-any)
Match: qos-group 0
bandwidth percent 10
Service-policy (queuing) output: default-out-policy
policy statistics status: disabled
Class-map (queuing): class-fcoe (match-any)
Match: qos-group 1
bandwidth percent 50
Class-map (queuing): class-default (match-any)
Match: qos-group 0
bandwidth percent 50
This example shows how to display the policy maps attached to an interface:
switch# show policy-map interface ethernet 1/1
Global statistics status : disabled
Ethernet1/1
Service-policy (qos) input: p2
policy statistics status: disabled
Class-map (qos): c1 (match-any)
Match: cos 0,7
set qos-group 2
Class-map (qos): c2 (match-any)
Match: protocol ldp
Match: ip rtp 2000-65535
Match: dscp 10,12
Match: precedence 6-7
Match: protocol dhcp
Match: protocol arp
set qos-group 3
Class-map (qos): c3 (match-any)
Match: cos 2,4-6
set qos-group 4
Class-map (qos): class-ip-multicast (match-any)
Match: ip multicast
set qos-group 5
Class-map (qos): class-fcoe (match-any)
Match: cos 3
set qos-group 1
Class-map (qos): class-default (match-any)
Match: any
set qos-group 0
Service-policy (queuing) input: p1
policy statistics status: disabled
Class-map (queuing): c2 (match-any)
Match: qos-group 3
bandwidth percent 10
Class-map (queuing): c4 (match-any)
Match: qos-group 5
bandwidth percent 25
Class-map (queuing): c1 (match-any)
Match: qos-group 2
bandwidth percent 20
Class-map (queuing): c3 (match-any)
Match: qos-group 4
bandwidth percent 5
Class-map (queuing): class-fcoe (match-any)
Match: qos-group 1
bandwidth percent 30
Class-map (queuing): class-default (match-any)
Match: qos-group 0
bandwidth percent 10
Service-policy (queuing) output: p2
policy statistics status: disabled
Class-map (queuing): c1 (match-any)
Match: qos-group 2
bandwidth percent 5
priority
Class-map (queuing): c2 (match-any)
Match: qos-group 3
bandwidth percent 20
Class-map (queuing): c3 (match-any)
Match: qos-group 4
bandwidth percent 20
Class-map (queuing): c4 (match-any)
Match: qos-group 5
bandwidth percent 40
Class-map (queuing): class-fcoe (match-any)
Match: qos-group 1
bandwidth percent 10
Class-map (queuing): class-default (match-any)
Match: qos-group 0
bandwidth percent 5
This example shows how to display the queue configuration and statistics:
switch# show queuing interface ethernet 1/1
Interface Ethernet1/1 TX Queuing
qos-group sched-type oper-bandwidth
0 WRR 5
1 WRR 10
2 priority 5
3 WRR 20
4 WRR 20
5 WRR 40
Interface Ethernet1/1 RX Queuing
qos-group 0:
q-size: 21120, MTU: 1538
drop-type: drop, xon: 0, xoff: 132
Statistics:
Pkts received over the port : 1265258330
Ucast pkts sent to the cross-bar : 0
Mcast pkts sent to the cross-bar : 2883444539
Ucast pkts received from the cross-bar : 0
Pkts sent to the port : 367529517
Pkts discarded on ingress : 781087 (36419)
Per-priority-pause status : Rx (Inactive), Tx (Inactive)
qos-group 1:
q-size: 76800, MTU: 2240
drop-type: no-drop, xon: 128, xoff: 240
Statistics:
Pkts received over the port : 0
Ucast pkts sent to the cross-bar : 0
Mcast pkts sent to the cross-bar : 0
Ucast pkts received from the cross-bar : 0
Pkts sent to the port : 0
Pkts discarded on ingress : 0 (0)
Per-priority-pause status : Rx (Inactive), Tx (Inactive)
qos-group 2:
q-size: 20480, MTU: 5000
drop-type: drop, xon: 0, xoff: 128
Statistics:
Pkts received over the port : 0
Ucast pkts sent to the cross-bar : 0
Mcast pkts sent to the cross-bar : 0
Ucast pkts received from the cross-bar : 0
Pkts sent to the port : 0
Pkts discarded on ingress : 0 (0)
Per-priority-pause status : Rx (Inactive), Tx (Inactive)
qos-group 3:
q-size: 30080, MTU: 9216
drop-type: drop, xon: 0, xoff: 188
Statistics:
Pkts received over the port : 0
Ucast pkts sent to the cross-bar : 0
Mcast pkts sent to the cross-bar : 0
Ucast pkts received from the cross-bar : 0
Pkts sent to the port : 0
Pkts discarded on ingress : 0 (0)
Per-priority-pause status : Rx (Inactive), Tx (Inactive)
qos-group 4:
q-size: 20480, MTU: 8000
drop-type: drop, xon: 0, xoff: 128
Statistics:
Pkts received over the port : 0
Ucast pkts sent to the cross-bar : 0
Mcast pkts sent to the cross-bar : 0
Ucast pkts received from the cross-bar : 0
Pkts sent to the port : 0
Pkts discarded on ingress : 0(0)
Per-priority-pause status : Rx (Inactive), Tx (Inactive)
qos-group 5:
q-size: 76800, MTU: 1538
drop-type: no-drop, xon: 128, xoff: 242
Statistics:
Pkts received over the port : 0
Ucast pkts sent to the cross-bar : 0
Mcast pkts sent to the cross-bar : 0
Ucast pkts received from the cross-bar : 0
Pkts sent to the port : 0
Pkts discarded on ingress : 0(0)
Per-priority-pause status : Rx (Inactive), Tx (Inactive)
Total Multicast crossbar statistics:
Mcast pkts received from the cross-bar : 557155515
Example QoS Configurations
QoS Example 1
This example shows how to configure traffic in the entire system matching an access control list to have the frame CoS fields rewritten to the value 5.
1. Set up the ingress classification policy (the access control list was defined previously).
2. Attach the classification policy to the system.
3. Set up the system class allocation and rewrite policy. Allocate the system class for qos-group 4 and define the rewrite action.
4. Attach the allocation and rewrite policy to the system.
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | Set up the ingress classification policy (the access control list was defined previously). | (config)# class-map type qos cmap-qos-acl (config-cmap-qos)# match access-group ACL-CoS (config-cmap-qos)# exit (config)# policy-map type qos pmap-qos-acl (config-pmap-qos)# class cmap-qos-acl (config-pmap-c-qos)# set qos-group 4 (config-pmap-c-qos)# exit (config-pmap-qos)# exit |
Step 2 | Attach the classification policy to the system. | (config)# system qos (config-sys-qos)# service-policy type qos input pmap-qos-acl (config-sys-qos)# exit |
Step 3 | Set up the system class allocation and rewrite policy. Allocate the system class for qos-group 4 and define the rewrite action. | (config)# class-map type network-qos cmap-nq-acl (config-cmap-nq)# match qos-group 4 (config-cmap-nq)# exit (config)# policy-map type network-qos pmap-nq-acl (config-pmap-nq)# class type network-qos cmap-nq-acl (config-pmap-c-nq)# set cos 5 (config-pmap-c-nq)# exit (config-pmap-nq)# exit |
Step 4 | Attach the allocation and rewrite policy to the system. | (config)# system qos (config-sys-qos)# service-policy type network-qos pmap-nq-acl (config-sys-qos)# exit |
QoS Example 2
This example shows how to use an access control list to apply 50% bandwidth to traffic on Ethernet interface 1/3 that matches traffic on Ethernet interface 1/1.
1. Set up the ingress classification policy.
2. Attach the classification policy to the interface Ethernet 1/1.
3. Set up the system-wide definition of the qos-group first.
4. Set up the egress bandwidth policy.
5. Attach the bandwidth policy to the egress interface.
6. Allocate the system class for qos-group 2.
7. Set up the network-qos policy.
8. Attach the network-qos policy to the system.
DETAILED STEPS
Command or Action | Purpose | |||
---|---|---|---|---|
Step 1 | Set up the ingress classification policy. | (config)# class-map type qos cmap-qos-bandwidth (config-cmap-qos)# match access-group ACL-bandwidth (config-cmap-qos)# exit (config)# policy-map type qos pmap-qos-eth1-1 (config-pmap-qos)# class cmap-qos-bandwidth (config-pmap-c-qos)# set qos-group 2 (config-pmap-c-qos)# exit (config-pmap-qos)# exit |
||
Step 2 | Attach the classification policy to the interface Ethernet 1/1. | (config)# interface ethernet 1/1 (config-if)# service-policy type qos input pmap-qos-eth1-1 (config-if)# exit |
||
Step 3 | Set up the system-wide definition of the qos-group first. | (config)# class-map type queuing cmap-que-bandwidth (config-cmap-que)# match qos-group 2 (config-cmap-que)# exit |
||
Step 4 | Set up the egress bandwidth policy. |
(config)# policy-map type queuing pmap-que-eth1-2 (config-pmap-que)# class type queuing class-default (config-pmap-c-que)# bandwidth percent 10 (config-pmap-c-que)# exit (config-pmap-que)# class type queuing class-fcoe (config-pmap-c-que)# bandwidth percent 40 (config-pmap-c-que)# exit (config-pmap-que)# class type queuing cmap-que-bandwidth (config-pmap-c-que)# bandwidth percent 50 (config-pmap-c-que)# exit (config-pmap-que)# exit |
||
Step 5 | Attach the bandwidth policy to the egress interface. | (config)# interface ethernet 1/3 (config-if)# service-policy type queuing output pmap-que-eth1-2 (config-if)# exit |
||
Step 6 | Allocate the system class for qos-group 2. | (config)# class-map type network-qos cmap-nq-bandwidth (config-cmap-nq)# match qos-group 2 (config-cmap-nq)# exit |
||
Step 7 | Set up the network-qos policy. | (config)# policy-map type network-qos pmap-nq-bandwidth (config-pmap-nq)# class type network-qos cmap-nq-bandwidth (config-pmap-c-nq)# exit (config-pmap-nq)# exit |
||
Step 8 | Attach the network-qos policy to the system. | (config)# system qos (config-sys-qos)# service-policy type network-qos pmap-nq-bandwidth (config-sys-qos)# exit |
QoS Example 3
This example shows how to attach a 802.1p tag with a CoS value of 3 to incoming untagged packets, and force priority-flow-control negotiation on Ethernet interface 1/15.
1. Set up the ingress classification policy (the access control list was defined previously).
DETAILED STEPS
Command or Action | Purpose | |
---|---|---|
Step 1 | Set up the ingress classification policy (the access control list was defined previously). | (config)# interface Ethernet 1/15 (config-if)# untagged cos 3 (config-if)# priority-flow-control mode on (config-if)# exit |