Nexus 9000/3000 Graceful Insertion and Removal (GIR)

White Paper

September 2016
Contents

Introduction .. 3
Target Audience ... 3
Graceful Insertion and Removal (GIR) Overview ... 3
GIR Maintenance Mode and Profiles ... 4
GIR with User-Defined Profiles ... 6
GIR Snapshots and Verification ... 9
GIR Case Studies .. 10
 General Topology ... 10
 Case Study 1 (Isolating OSPF on S1) ... 11
 Case Study 2 (Isolating EIGRP on S1) .. 12
 Case Study 3 (Isolating BGP on S1) ... 14
 Case Study 4 (Isolating BGP for VxLAN EVPN on S1) ... 15
 Case Study 5 (Isolating vPC on L1) .. 17
 Case Study 6 (Isolating PIM in vPC on L1) .. 19
Conclusion .. 21
Additional Resources ... 21
Introduction

The datacenter network is a platform that connects all application end points and delivers network services. With the ongoing trends around datacenter consolidation, increasing adoption of cloud and virtualization, the network layer has become important, so has its reliability and availability. There are various methods and best practices to maintain network availability while network devices undergo software or hardware maintenance, such as In Service Software Upgrade (ISSU) and Graceful Insertion and Removal (GIR).

ISSU provides device-level high availability during software upgrade. On an ISSU capable network device, such as a Nexus 9000 Series switch running NX-OS with ISSU, the device can remain in service for data forwarding during a software upgrade.

GIR provides an alternative method to minimize network service impact caused by device maintenance. GIR leverages redundant paths in the network to smoothly remove a device under maintenance, out of service, and insert it back to service when the maintenance is complete. Similar methodologies have been adopted by many organizations as part of their network maintenance best practices, but the removal and insertion of a device are typically performed manually. As an effort to automate this process, Cisco NX-OS Software Release 7.0(3)I2(1) introduces the Graceful Insertion and Removal (GIR) function on the Nexus 9000 and Nexus 3000 switch platforms. GIR changes the multi-step manual removal and insertion process to an automated and optimized operation that is triggered using a single command. It provides easier integration of network device maintenance into the overall network operation work flow.

This white paper provides guidelines for implementing Graceful Insertion and Removal (GIR) mode on Cisco Nexus 3000 and Nexus 9000 Family switches for a variety of customer profiles.

Target Audience

This document is for planning, implementation, and maintenance in DevOps teams.

Graceful Insertion and Removal (GIR) Overview

Cisco® NX-OS Software Release 7.0(3)I2(1) for Cisco Nexus 3000 and 9000 Series Switches introduces the Graceful Insertion and Removal (GIR) function. GIR provides an easy method for isolating a switch for maintenance windows and then bringing it back into service.

By utilizing the switch maintenance mode, GIR can systematically eject a Nexus 3000 or 9000 series switch from the network with zero or minimal disruption to the network service. When a switch is in maintenance mode, it is isolated from the active forwarding paths in the network. Maintenance tasks, such as real-time debugging, hardware replacement, or software upgrade/downgrade, can be performed without affecting the production traffic. When maintenance tasks are completed, the graceful insertion function places the switch back into the network without impact.

The following protocols are currently supported by GIR (for both IPv4 and IPv6 address families):

- Border Gateway Protocol (BGP)
- Enhanced Interior Gateway Routing Protocol (EIGRP)
- Intermediate System-to-Intermediate System (ISIS)
- Open Shortest Path First (OSPF)
- Routing Information Protocol (RIP)
Virtual Port-Channel (vPC)

Protocol Independent Multicast (PIM) with vPC topology

Note: Graceful insertion and removal for the PIM protocol is **only** supported in vPC environments. During graceful removal, the vPC forwarding role is transferred to the vPC peer for all northbound sources of multicast traffic.

When a Nexus 9000 or Nexus 3000 series switch is transitioning to Maintenance Mode for graceful removal, the routing protocols running on the switch modify the routing metrics so that the neighboring devices view the switch as the least favorable candidate in their route calculation, and reroute traffic away from the switch to alternative paths in the network. As a result, this switch is now ‘out of service’.

When the switch is phasing out of Maintenance Mode for graceful insertion, the routing protocols reverse the changes, and advertise the switch as normal. The neighboring devices perform a new route calculation and start to forward traffic to the switch if it offers the best path.

In case of vPC deployment, GIR on a vPC switch will gracefully shut down the vPC domains to have traffic flow towards the remaining vPC peer. In graceful insertion, GIR performs “no shut down” on the vPC domain, the switch returns to the service as the vPC operationally secondary node.

GIR Maintenance Mode and Profiles

A device gets into Maintenance Mode after GIR isolates it from the network forwarding paths. Therefore, a device in Maintenance Mode is not in network service. Hardware or software maintenance can be done on the device without impacting the network performance.

It takes one NX-OS configuration command, “system mode maintenance”, to move a Nexus 9000 or 3000 series switch into maintenance mode. This simple step allows easy operation and integration into the overall network maintenance work flow. This command triggers the maintenance configuration profile to be deployed on the switch.

GIR uses two profiles, maintenance-mode profile and normal-mode profile, to manage the cause of actions for graceful removal and graceful insertion.

- **Maintenance-mode profile**—Contains all the commands that are executed during graceful removal, when the switch enters maintenance mode.
- **Normal-mode profile**—Contains all the commands that are executed during graceful insertion, when the switch returns to normal mode.

The system can generate a default maintenance-mode profile and a default normal-mode profile. This is done when the switch moves into maintenance mode for the first time with the CLI “system mode maintenance”.

In the default maintenance profile, the active forwarding protocols on the switch are placed in “isolate” state. Below is an example to move a switch in and out of maintenance mode using the default profile. The switch in this example is running BGP, OSPF, PIM and vPC.

To move a switch into Maintenance Mode:

```
switch(config)# system mode maintenance
```

Following configuration will be applied:
ip pim isolate
router bgp 1
 isolate
router ospf 1
 isolate
vpc domain 1
 shutdown

Do you want to continue (yes/no)? [no] yes

Generating a snapshot before going into maintenance mode

Starting to apply commands...

Applying : ip pim isolate
Applying : router bgp 1
Applying : isolate
Applying : router ospf 1
Applying : isolate
Applying : vpc domain 1
Applying : shutdown

Maintenance mode operation successful.

To move a switch out of Maintenance Mode:

```
switch(config)# no system mode maintenance
```

Following configuration will be applied:

```
vpc domain 1
    no shutdown
router ospf 1
    no isolate
router bgp 1
    no isolate
no ip pim isolate
```

Do you want to continue (yes/no)? [no] yes

Starting to apply commands...

Applying : vpc domain 1
Applying : no shutdown
Applying : router ospf 1
Applying : no isolate
Applying : router bgp 1
Applying : no isolate
Applying : no ip pim isolate

Maintenance mode operation successful.

Generating Current Snapshot

Please use 'show snapshots compare before_maintenance after_maintenance' to check the health of the system

In the default maintenance profile, forwarding protocols use different methods to isolate the switch from the active forwarding path. The following table shows the mechanisms used by each protocol. The goal of the mechanism is to influence the forwarding decision on the remaining devices so that they don’t choose this switch as part of the best path.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Graceful Removal Mechanism</th>
<th>Graceful Insertion Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF</td>
<td>Send LSAs with max metric</td>
<td>Refresh LSAs with original metric</td>
</tr>
<tr>
<td>EIGRP</td>
<td>Poison route with highest metric</td>
<td>Advertise routes with original metric</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Refresh LSPs with Overload bit on</td>
<td>Refresh LSPs with Overload bit off</td>
</tr>
<tr>
<td>BGP</td>
<td>Withdraw BGP route advertisements</td>
<td>Re-inserts routes</td>
</tr>
<tr>
<td>RIP</td>
<td>Poison route with highest metric</td>
<td>Advertise routes with original metric</td>
</tr>
<tr>
<td>PIM (in vPC)</td>
<td>vPC forwarding role transfer</td>
<td></td>
</tr>
<tr>
<td>vPC</td>
<td>shutdown CLI to bring down VPC domain</td>
<td>no shutdown CLI to bring up VPC domain</td>
</tr>
</tbody>
</table>

GIR with User-Defined Profiles

In addition to the default profiles, NX-OS for Nexus 9000 and 3000 series switches also provides the flexibility to allow users to define their own profiles that define their methods of choice to perform graceful removal and insertion on a switch, which can have additional steps in addition to the steps in the default profile, or can negate the steps in the default profile and then define new steps. For instance, instead of using LSA with max metric to isolate the switch in OSPF, a user can define the action to shut down the OSPF process in the maintenance-mode profile for graceful removal, and re-activate it in the normal-mode profile for graceful insertion.

Using the CLI command, “configure maintenance profile maintenance-mode” or “configure maintenance normal-mode”, a user can start to customize the maintenance mode profile or the normal-mode profile. In case that system-created default profiles exist, the customization will be added to the default profiles. If there are no existing default profiles prior to the customization, only the user configuration goes into the profiles.

Below are examples of modifying the default maintenance-mode profile. In the first example, a system-created default maintenance profile exists. The customization is to add the step to shut down the OSPF process 1 after OSPF isolates the switch. In the second example, there is no pre-existing default maintenance profile. A fresh profile is created based on the user configuration. The profile shuts down the OSPF process immediately while moving the switch into the maintenance mode.
Example 1: User defined maintenance-mode profile without a pre-existing default profile

```
switch# configure maintenance profile maintenance-mode
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-mm-profile)# router ospf 1
switch(config-mm-profile-router)# shutdown
switch(config-mm-profile-router)# end
Exit maintenance profile mode.
```

```
switch# show maintenance profile maintenance-mode
[Maintenance Mode]
router ospf 1
shutdown
```

Example 2: User defined maintenance-mode profile with an existing default profile:

```
switch# configure maintenance profile maintenance-mode
Enter configuration commands, one per line. End with CNTL/Z.
switch(config-mm-profile)# router ospf 1
switch(config-mm-profile-router)# shutdown
switch(config-mm-profile-router)# end
Exit maintenance profile mode.
```

```
switch# show maintenance profile maintenance-mode
[Maintenance Mode]
ip pim isolate
router bgp 100
isolate
router eigrp 1
isolate
router ospf 1
isolate
shutdown
vpc domain 1
shutdown
```

Similarly, the normal-mode profile can be customized as well. Below is an example:

```
switch# configure maintenance profile normal-mode
Enter configuration commands, one per line. End with CNTL/Z.
switch#(config-mm-profile)# router ospf 1
switch# config-mm-profile-router)# no shut
By default, when the command “system mode maintenance” is issued and confirmed for operation on a switch, the system will first create a default profile that put the active network protocols in the isolate mode, and deploy this profile to the system when moving it into the maintenance mode. If there is a user defined maintenance profile, the system-generated profile will overwrite it. If a user desires to maintain and use a user defined maintenance profile, the key word “don’t-generate-profile” needs to be added to the “system mode maintenance” command. With the “don’t-generate-profile” keyword, the system does not create a default maintenance profile and deploys the user defined profile when moving the switch into maintenance mode. Alternatively, a user can add “system mode maintenance always-use-custom-profile” to the switch running configuration so that the system always skips the step of generating a system default profile, and always uses the user defined profile. Below is an example to move a switch into the maintenance mode using a user -defined maintenance profile:

```
switch(config)# system mode maintenance dont-generate-profile
```

Following configuration will be applied:

```
router eigrp 1
 address-family ipv6 unicast
 shutdown
router bgp 1
 shutdown
vpc domain 1
 shutdown
ip pim isolate
```
Do you want to continue (yes/no)? [no] yes

Generating a snapshot before going into maintenance mode

Starting to apply commands...

Applying : router eigrp 1
Applying :   address-family ipv6 unicast
Applying :     shutdown
Applying : router bgp 1
Applying :     shutdown
Applying : vpc domain 1
Applying :     shutdown
Applying : ip pim isolate

Maintenance mode operation successful.

GIR Snapshots and Verification

Cisco NX-OS uses system-generated snapshots to record the state of a switch before and after a GIR operation. A snapshot of the system status, called “before_maintenance”, is automatically generated before the switch enters GIR maintenance mode, and another snapshot, called “after_maintenance”, is automatically generated after the switch exits the GIR maintenance mode, i.e. returns to the normal mode. The details of the snapshots can be viewed by users, or exported in XML format. The system also provides an easy way to compare the snapshots before and after the GIR maintenance operation. This offers a method to quickly evaluate the health of the switch and to verify if the switch has been inserted back to service as it should be.

Below is a sample output of the snapshots comparison. It displays the number of interfaces, VLANs, routes, etc, before and after the GIR maintenance operation.

Switch# show snapshots compare before_maintenance after_maintenance summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>before_maintenance</th>
<th>after_maintenance</th>
<th>changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of interfaces</td>
<td>67</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td># of vlans</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td># of ipv4 routes, vrf default</td>
<td>42</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td># of ipv4 paths, vrf default</td>
<td>43</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td># of ipv4 routes, vrf management</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td># of ipv4 paths, vrf management</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td># of ipv6 routes, vrf default</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td># of ipv6 paths, vrf default</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>interfaces</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td># of eth interfaces up</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td># of eth interfaces other</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td># of vlan interfaces</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td># of vlan interfaces up</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td># of vlan interfaces other</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**GIR Case Studies**

This section demonstrates GIR operation for different network protocols using the system default profiles.

**General Topology**

The following topology is used for the case studies of GIR for different network protocols.

**Figure 1.** General Topology for GIR Cases Studies for Different Network Protocols.
Case Study 1 (Isolating OSPF on S1)

OSPF Graceful Removal is done by refreshing the LSAs with max metric of 65535. OSPF Graceful Insertion is done by refreshing the LSAs with their original metric.

In this example, OSPF area 0 is configured between all layer 3 nodes. L4 switch is learning the remote prefix 172.16.100.100 from both S1 and S2 switches. After Graceful Removal on S1 with “system mode maintenance” command, all remote subnets are advertised with max metric of 65535; however, the connected subnets to S1 will have the original metric. This will force L4 to remove the external route to 172.16.100.100 that was pointing to S1 from its routing table. The S1 OSPF Router-ID is 10.1.1.1:

<table>
<thead>
<tr>
<th>S1 in Normal Mode</th>
<th>S1 in Maintenance Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4# show ip route 172.16.100.100</td>
<td>L4# show ip route 172.16.100.100</td>
</tr>
<tr>
<td>IP Route Table for VRF &quot;default&quot;</td>
<td>IP Route Table for VRF &quot;default&quot;</td>
</tr>
<tr>
<td>‘*' denotes best ucast next-hop</td>
<td>‘*' denotes best ucast next-hop</td>
</tr>
<tr>
<td>'***' denotes best mcast next-hop</td>
<td>'***' denotes best mcast next-hop</td>
</tr>
<tr>
<td>'[x/y]' denotes [preference/metric]</td>
<td>'[x/y]' denotes [preference/metric]</td>
</tr>
<tr>
<td>'%&lt;string&gt;' in via output denotes VRF</td>
<td>'%&lt;string&gt;' in via output denotes VRF</td>
</tr>
</tbody>
</table>

172.16.100.100/32, ubest/mbest: 2/0
*via 192.167.21.1, Eth1/50, [110/20], 00:22:57, ospf-1, type-2
*via 192.168.21.1, Eth1/49, [110/20], 00:22:57, ospf-1, type-2

L4# show ip ospf database router 10.1.1.1 detail
OSPF Router with ID (10.1.1.21) (Process ID 1 VRF default)
(Router Link States)

(Area 0.0.0.0)

<snip>
Number of links: 11

Link connected to: a Stub Network
(Link ID) Network/Subnet Number: 10.1.1.1
(Link Data) Network Mask: 255.255.255.255
Number of TOS metrics: 0
TOS 0 Metric: 1

Link connected to: a Router
(point-to-point)
(Link ID) Neighboring Router ID:

L4# show ip ospf database router 10.1.1.1 detail
OSPF Router with ID (10.1.1.21) (Process ID 1 VRF default)
(Router Link States)

(Area 0.0.0.0)

<snip>
Number of links: 11

Link connected to: a Stub Network
(Link ID) Network/Subnet Number: 10.1.1.1
(Link Data) Network Mask: 255.255.255.255
Number of TOS metrics: 0
TOS 0 Metric: 1

Link connected to: a Router
(point-to-point)
(Link ID) Neighboring Router ID:
Case Study 2 (Isolating EIGRP on S1)
EIGRP Graceful Removal is done by poisoning routes with the highest metric. EIGRP Graceful Insertion is done by advertising the routes with their original metric.

In this example, EIGRP AS 1 is configured between all Layer 3 nodes. L3 switch is learning the remote external prefix 172.16.100.100 from both S1 and S2 switches. After Graceful Removal on S1 with “system mode maintenance” command, all remote subnets will be advertised with the max metric; however, the connected subnets to S1 will have the original metric. L3 will remove the route pointing to S1 from its routing table and the EIGRP topology table:

<table>
<thead>
<tr>
<th>S1 in Normal Mode</th>
<th>S1 in Maintenance Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3# show ip route 172.16.100.100</td>
<td>L3# show ip route 172.16.100.100</td>
</tr>
<tr>
<td>&lt;Snip&gt;</td>
<td>&lt;snip&gt;</td>
</tr>
<tr>
<td>172.16.100.100/32, ubest/mbest: 2/0</td>
<td>172.16.100.100/32, ubest/mbest: 2/0</td>
</tr>
<tr>
<td>*via 192.167.20.1, Eth1/50, [170/51968], 00:08:06, eigrp-1, external</td>
<td>*via 192.167.20.1, Eth1/50, [170/51968], 00:08:06, eigrp-1, external</td>
</tr>
<tr>
<td>*via 192.168.20.1, Eth1/49, [170/51968], 00:08:06, eigrp-1, external</td>
<td></td>
</tr>
<tr>
<td>L3# show ip eigrp topology 172.16.100.100/32</td>
<td>L3# show ip eigrp topology 172.16.100.100/32</td>
</tr>
<tr>
<td>IP-EIGRP (AS 1): Topology entry for 172.16.100.100/32</td>
<td>IP-EIGRP (AS 1): Topology entry for 172.16.100.100/32</td>
</tr>
<tr>
<td>State is Passive, Query origin flag is 1, 1 Successor(s), FD is 51968</td>
<td>State is Passive, Query origin flag is 1, 1 Successor(s), FD is 51968</td>
</tr>
<tr>
<td>Routing Descriptor Blocks: 192.167.20.1 (Ethernet1/50), from</td>
<td></td>
</tr>
</tbody>
</table>
is 1, 2 Successor(s), FD is 51968
Routing Descriptor Blocks:

**192.168.20.1 (Ethernet1/49)**, from 192.168.20.1, Send flag is 0x0
Composite metric is (51968/51712), Route is External
Vector metric:
- Minimum bandwidth is 100000 Kbit
- Total delay is 1030 microseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1492
- Hop count is 3
- Internal tag is 0
External data:
- Originating router is 10.20.1.2
- AS number of route is 0
- External protocol is Connected, external metric is 0
- Administrator tag is 0 (0x00000000)

**192.167.20.1 (Ethernet1/50)**, from 192.167.20.1, Send flag is 0x0
Composite metric is (51968/51712), Route is External
Vector metric:
- Minimum bandwidth is 100000 Kbit
- Total delay is 1030 microseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1492
- Hop count is 3
- Internal tag is 0
External data:
- Originating router is 10.20.1.2
- AS number of route is 0
- External protocol is Connected, external metric is 0
- Administrator tag is 0 (0x00000000)

**192.167.20.1**, Send flag is 0x0
Composite metric is (51968/51712), Route is External
Vector metric:
- Minimum bandwidth is 100000 Kbit
- Total delay is 1030 microseconds
- Reliability is 255/255
- Load is 1/255
- Minimum MTU is 1492
- Hop count is 3
- Internal tag is 0
External data:
- Originating router is 10.20.1.2
- AS number of route is 0
- External protocol is Connected, external metric is 0
- Administrator tag is 0 (0x00000000)
Case Study 3 (Isolating BGP on S1)

BGP Graceful Removal is done by withdrawing the BGP routes. BGP re-advertises the routes with Graceful Insertion.

In this example, eBGP is configured between layer 3 nodes. L1 is learning the 56.1.9.0/24 prefixes from both S1 and S2 switches. After Graceful Removal on S1 with "system mode maintenance" command, all BGP prefixes will be removed from BGP advertised routes. L1 will removed the BGP prefix from its routing and BGP table:

<table>
<thead>
<tr>
<th>S1 in Normal Mode</th>
<th>S1 in Maintenance Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1# show ip route 56.1.9.0</td>
<td>L1# show ip route 56.1.9.0</td>
</tr>
<tr>
<td>IP Route Table for VRF &quot;default&quot;</td>
<td>IP Route Table for VRF &quot;default&quot;</td>
</tr>
<tr>
<td>'*' denotes best ucast next-hop</td>
<td>'*' denotes best ucast next-hop</td>
</tr>
<tr>
<td>*** denotes best mcast next-hop</td>
<td>*** denotes best mcast next-hop</td>
</tr>
<tr>
<td>'[x/y]' denotes [preference/metric]</td>
<td>'[x/y]' denotes [preference/metric]</td>
</tr>
<tr>
<td>'%&lt;string&gt;' in via output denotes VRF</td>
<td>'%&lt;string&gt;' in via output denotes VRF</td>
</tr>
<tr>
<td>56.1.9.0/24, ubest/mbest: 2/0</td>
<td>56.1.9.0/24, ubest/mbest: 1/0</td>
</tr>
<tr>
<td>*via 192.167.11.1, [20/51712], 00:22:37, bgp-100, external, tag 65001.2</td>
<td>*via 192.168.11.1, [20/51712], 00:30:18, bgp-100, external, tag 65001.2</td>
</tr>
<tr>
<td>L1# show ip bgp 56.1.9.0/24</td>
<td>L1# show ip bgp 56.1.9.0/24</td>
</tr>
<tr>
<td>BGP routing table information for VRF default, address family IPv4 Unicast</td>
<td>BGP routing table information for VRF default, address family IPv4 Unicast</td>
</tr>
<tr>
<td>BGP routing table entry for 56.1.9.0/24, version 138</td>
<td>BGP routing table entry for 56.1.9.0/24, version 263</td>
</tr>
<tr>
<td>Paths: (2 available, best #2)</td>
<td>Paths: (1 available, best #1)</td>
</tr>
<tr>
<td>Flags: (0x00041a) on xmit-list, is in urib, is best urib route, is in HW, Multipath: eBGP iBGP</td>
<td>Flags: (0x00041a) on xmit-list, is in urib, is best urib route, is in HW, Multipath: eBGP iBGP</td>
</tr>
<tr>
<td>Path type: external, path is valid, not best reason: newer EBGP path, multipath, no labeled nexthop, in rib</td>
<td>Advertised path-id 1</td>
</tr>
<tr>
<td>AS-Path: 65001.2, path sourced external to AS</td>
<td>Path type: external, path is valid, is best path, no labeled nexthop, in rib</td>
</tr>
<tr>
<td>192.168.11.1 (metric 0) from 192.168.11.1 (10.1.1.2)</td>
<td>AS-Path: 65001.2, path sourced external to AS</td>
</tr>
<tr>
<td>Origin incomplete, MED 51712, localpref 100, weight 0</td>
<td>192.168.11.1 (metric 0) from 192.168.11.1 (10.1.1.2)</td>
</tr>
<tr>
<td>Advertised path-id 1</td>
<td>Origin incomplete, MED 51712, localpref 100, weight 0</td>
</tr>
<tr>
<td>Path type: external, path is valid, is best path, no labeled nexthop, in rib</td>
<td>Path-id 1 not advertised to any peer</td>
</tr>
</tbody>
</table>
Case Study 4 (Isolating BGP for VxLAN EVPN on S1)

VxLAN EVPN isolation is done by BGP. BGP Graceful Removal is done by withdrawing the BGP EVPN routes. BGP re-advertises the EVPN routes with Graceful Insertion.

In this example, eBGP is configured between Leaf (L1, L2, L3, L4) and Spine (S1, S2) switches. L1 is advertising the 21.0.0.0/24 subnet to S1 and S2 Spines and are advertising the EVPN route to L3 Leaf switch. The BGP EVPN prefix is pointing to both S1 and S2 prior to S1 going to maintenance mode. After Graceful Removal on S1 with “system mode maintenance” command, S1 withdraws the EVPN prefix and L3 removes it from the EVPN table:

<table>
<thead>
<tr>
<th>S1 in Normal Mode</th>
<th>S1 in Maintenance Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3# show bgp l2vpn evpn 21.0.0.0 &lt;snip&gt;</td>
<td>L3# show bgp l2vpn evpn 21.0.0.0 &lt;snip&gt;</td>
</tr>
<tr>
<td>Route Distinguisher: 10.1.1.11:4</td>
<td>Route Distinguisher: 10.1.1.11:4</td>
</tr>
<tr>
<td>BGP routing table entry for [5]:[0]:[0]:[16]:[21.0.0.0]:[0.0.0.0]/24, version 169</td>
<td>BGP routing table entry for [5]:[0]:[0]:[16]:[21.0.0.0]:[0.0.0.0]/24, version 179</td>
</tr>
<tr>
<td>Paths: (2 available, best #1)</td>
<td>Paths: (1 available, best #1)</td>
</tr>
<tr>
<td>Flags: (0x0000002) on xmit-list, is not in 12rib/evpn, is not in HW, , is locked</td>
<td>Flags: (0x0000002) on xmit-list, is not in 12rib/evpn, is not in HW, , is locked</td>
</tr>
<tr>
<td>Advertised path-id 1</td>
<td>Advertised path-id 1</td>
</tr>
<tr>
<td>Path type: external, path is valid, is best path, no labeled nexthop</td>
<td>Path type: external, path is valid, is best path, no labeled nexthop</td>
</tr>
<tr>
<td>AS-Path: 4259905538 100 , path sourced external to AS</td>
<td>AS-Path: 4259905538 100 , path sourced external to AS</td>
</tr>
<tr>
<td>10.1.1.11 (metric 0) from 192.167.13.1 (10.1.1.2)</td>
<td>10.1.1.11 (metric 0) from 192.168.13.1 (10.1.1.2)</td>
</tr>
<tr>
<td>Origin IGP, MED not set, localpref 100, weight 0</td>
<td>Origin IGP, MED not set, localpref 100, weight 0</td>
</tr>
<tr>
<td>Received label 39010</td>
<td>Received label 39010</td>
</tr>
<tr>
<td>Extcommunity: RT:100:39010</td>
<td>Extcommunity: RT:100:39010</td>
</tr>
<tr>
<td>RT:39010:39010 ENCAP:8 Router MAC:7c69.f6df.e597</td>
<td>RT:39010:39010 ENCAP:8 Router MAC:7c69.f6df.e597</td>
</tr>
<tr>
<td>Path type: external, path is valid, not best reason: Router Id, no labeled nexthop</td>
<td>Path type: external, path is valid, not best reason: Router Id, no labeled nexthop</td>
</tr>
<tr>
<td>AS-Path: 4259905538 100 , path sourced external to AS</td>
<td>AS-Path: 4259905538 100 , path sourced external to AS</td>
</tr>
<tr>
<td>10.1.1.11 (metric 0) from</td>
<td>10.1.1.11 (metric 0) from</td>
</tr>
<tr>
<td>Path-id 1 not advertised to any peer</td>
<td>Path-id 1 not advertised to any peer</td>
</tr>
</tbody>
</table>
192.168.13.1 (10.1.1.2)

- Origin IGP, MED not set, localpref 100, weight 0
- Received label 39010
- MAC:7c69.f6df.e597
- Path-id 1 not advertised to any peer

Route Distinguisher: 10.1.1.13:4 (L3VNI 39010)

BGP routing table entry for [5]:[0]:[0]:[16]:[21.0.0.0]:[0.0.0.0]/24, version 171
- Paths: (1 available, best #1)
  - Flags: (0x00001a) on xmit-list, is in l2rib/evpn, is not in HW,
    - Advertised path-id 1
- Path type: external, path is valid, is best path, no labeled nexthop
  - Importe from 10.1.1.11:4:[5]:[0]:[0]:[16]:[21.0.0.0]:[0.0.0.0]/120
  - AS-Path: 4259905538 100 , path sourced external to AS
    - 10.1.1.11 (metric 0) from 192.168.13.1 (10.1.1.1)
      - Origin IGP, MED not set, localpref 100, weight 0
      - Received label 39010
        - MAC:7c69.f6df.e597
      - Path-id 1 not advertised to any peer
Case Study 5 (Isolating vPC on L1)
The case study for vPC GIR is based on the topology below.

Figure 2. Topology for Virtual Port-Channel (vPC) GIR Case Study.

vPC Graceful Removal is done by shutting down the vPC domain. When vPC domain is shut, vPC Peer-link as well as all downstream vPC port-channels are suspended and traffic from end hosts go through the vPC peer. vPC Graceful Insertion brings back all the Port-channels and vPC domain.

In this example, L1 is the “operational primary” vPC peer. After Graceful Removal on L1 with “system mode maintenance” command, L1 shuts down the vPC domain and the vPC port-channel member link. vPC also goes down on L2 switch as the peer link goes down; however, the vPC member port-channel stays up:

<table>
<thead>
<tr>
<th>L1 in Normal Mode</th>
<th>L1 in Maintenance Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1# show vpc</td>
<td>L1(config)# show vpc</td>
</tr>
<tr>
<td>Legend:</td>
<td>Legend:</td>
</tr>
<tr>
<td>(*) - local vPC is down, forwarding via vPC peer-link</td>
<td>(*) - local vPC is down, forwarding via vPC peer-link</td>
</tr>
<tr>
<td>vPC domain id     : 10</td>
<td>vPC domain id          : 10</td>
</tr>
<tr>
<td>Peer status       :</td>
<td>Peer status            :</td>
</tr>
<tr>
<td>peer adjacency formed ok</td>
<td>peer link down, vPC shutdown configured</td>
</tr>
<tr>
<td>vPC keep-alive status :</td>
<td>vPC keep-alive status :</td>
</tr>
<tr>
<td>peer is alive     : success</td>
<td>peer is alive          : shutdown</td>
</tr>
<tr>
<td>Configuration consistency status : success</td>
<td>Configuration consistency status : success</td>
</tr>
</tbody>
</table>
Per-vlan consistency status : success
Type-2 consistency status : success
vPC role : secondary, operational primary
Number of vPCs configured : 1
Peer Gateway : Enabled
Dual-active excluded VLANs : -
Graceful Consistency Check : Enabled
Auto-recovery status : Disabled
Delay-restore status : Timer is off.(timeout = 30s)
Delay-restore SVI status : Timer is off.(timeout = 10s)

vPC Peer-link status
---------------------------------------
----------------------
id   Port   Status   Active vlans
----------------------
      ----   ------ ---------------
1    Po1 down  -

Per-vlan consistency status : success
Type-2 consistency status : success
vPC role : secondary, operational primary
Number of vPCs configured : 1
Peer Gateway : Enabled
Dual-active excluded VLANs : -
Graceful Consistency Check : Enabled
Auto-recovery status : Disabled
Delay-restore status : Timer is off.(timeout = 30s)
Delay-restore SVI status : Timer is off.(timeout = 10s)

vPC Peer-link status
---------------------------------------
----------------------
id   Port   Status   Active vlans
----------------------
      ----   ------ ---------------
1    Po1    down  -

vPC status
---------------------------------------
----------------------
id   Port   Status Consistency Reason Active vlans
----------------------
      ----   ------ ----------------- ------
200  Po200 down success success 1,110-129

vPC peer-link is also down on L2 side; however, vPC member Port-channel is up and forwarding traffic to the host

L2# show vpc
Legend:
(*) - local vPC is down, forwarding via vPC peer-link
vPC domain id : 10
Case Study 6 (Isolating PIM in vPC on L1)

In a vPC Multicast topology, when a receiver is located in a vPC VLAN, the IGMP reports are synchronized, and Layer 3 forwarding entries (*, G) are created on both vPC peers. Both vPC peers send PIM (*, G) joins to the upstream rendezvous point. As a result, both vPC peer switches draw traffic, causing temporary duplicates.
After a multicast source starts sending traffic, only one vPC peer becomes the forwarder for a given source and sends (S, G) joins. The choice of the forwarder is based on the distance to the source (if the distances are identical, the vPC primary is chosen) and converges on the designated data forwarder for these VLANs on a per-stream basis, to prevent duplicates.

During graceful removal, the vPC forwarding role is transferred to the vPC peer for all northbound sources of multicast traffic. The vPC forwarding is transferred before vPC shutdown, therefore “ip pim isolate” command is executed before the vPC shutdown.

In this example, L1 has the vPC forwarding role prior to the Graceful removal. The mroute for 225.0.1.1 group has Vlan 100 under its OIL (outgoing interface list). vPC peer L2 has no Vlan listed under its mroute OIL. After Graceful Removal on L1 with “system mode maintenance” command, L2 inserts the Vlan 100 to its mroute OIL as L2 becomes the active forwarder.

<table>
<thead>
<tr>
<th>L1 in Normal Mode</th>
<th>L1 in Maintenance Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1# show ip mroute 225.0.1.1</td>
<td>With Graceful removal on S1, first the active forwarder is transferred to L2, then the vPC will be shut down.</td>
</tr>
<tr>
<td>IP Multicast Routing Table for VRF &quot;default&quot;</td>
<td></td>
</tr>
<tr>
<td>(*, 225.0.1.1/32), uptime: 00:01:11, igmp ip pim</td>
<td>L2# show ip mroute 225.0.1.1</td>
</tr>
<tr>
<td>Incoming interface: Ethernet1/50, RPF nbr: 192.167.20.1, uptime: 00:01:11</td>
<td>IP Multicast Routing Table for VRF &quot;default&quot;</td>
</tr>
<tr>
<td>Outgoing interface list: (count: 1)</td>
<td></td>
</tr>
<tr>
<td>Vlan100, uptime: 00:01:11, igmp</td>
<td>(*, 225.0.1.1/32), uptime: 00:44:44, igmp ip pim</td>
</tr>
<tr>
<td>(10.20.21.2/32, 225.0.1.1/32), uptime: 00:00:48, ip mrib pim</td>
<td>Incoming interface: Ethernet1/49, RPF nbr: 192.168.21.1, uptime: 00:00:35</td>
</tr>
<tr>
<td>Incoming interface: Ethernet1/49, RPF nbr: 192.168.20.1, uptime: 00:00:48</td>
<td></td>
</tr>
<tr>
<td>Outgoing interface list: (count: 1)</td>
<td>Vlan100, uptime: 00:44:44, igmp</td>
</tr>
<tr>
<td>Vlan100, uptime: 00:00:48, mrib</td>
<td>(10.20.21.2/32, 225.0.1.1/32), uptime: 00:00:35, ip mrib pim</td>
</tr>
</tbody>
</table>

| L2# show ip mroute 225.0.1.1 | |
| IP Multicast Routing Table for VRF "default" | |
| (*, 225.0.1.1/32), uptime: 00:00:58, igmp ip pim | |
| Incoming interface: Ethernet1/49, RPF nbr: 192.168.21.1, uptime: 00:00:58 | |
| Outgoing interface list: (count: 1) | |
| Vlan100, uptime: 00:00:58, igmp | (10.20.21.2/32, 225.0.1.1/32), uptime: 00:00:35, ip mrib pim |
| (10.20.21.2/32, 225.0.1.1/32), uptime: 00:00:35, ip mrib pim | |

L2# show ip mroute 225.0.1.1
IP Multicast Routing Table for VRF "default"
(*, 225.0.1.1/32), uptime: 00:00:58, igmp ip pim
Incoming interface: Ethernet1/49, RPF nbr: 192.168.21.1, uptime: 00:00:58
Outgoing interface list: (count: 1)
Vlan100, uptime: 00:00:58, igmp
(10.20.21.2/32, 225.0.1.1/32), uptime: 00:00:35, ip mrib pim
Incoming interface: Ethernet1/50, RPF
 nbr: 192.167.21.1, uptime: 00:00:35
Outgoing interface list: (count: 0)

**Note:** In any upstream PIM router, “system mode maintenance” command also removes the mroute from the mroute table; however, this is done by Unicast routing removal and “ip pim isolate” command only changing the Multicast forwarder in vPC topology.

**Conclusion**

The GIR-mode feature lets the network operator define an operational mode for Cisco Nexus devices that allows the operator to perform graceful removal and insertion of devices with little service disruption. When a device is in GIR mode and not actively forwarding any traffic, the network operator can perform tasks such as control-plane debugging and device upgrade and reload processes. Without the GIR feature, network operators need to perform many steps and enter many commands manually to isolate and then return Cisco Nexus devices to the network which is a cumbersome and error-prone process.

**Additional Resources**

Cisco Nexus 9000 Series NX-OS System Management Configuration Guide


Cisco Nexus 3000 Series NX-OS System Management Configuration Guide