Best Practice Network Design for the Data Center

Mihai Dumitru, CCIE2 #16616
A Few Words about Cronus eBusiness:

- 39 employees, 3 national offices
- Focus on large enterprise customers from banking and retail, plus education
- Specializing in:
 - System integration (consulting, project management, network equipment sale and deployment, maintenance)
 - Managed services (operational support, network management, server hosting and business continuity)
- Cisco Gold Partner
 - One triple CCIE, one dual CCIE and more…
- Solarwinds Gold Partner
What We Will Cover In This Session:

- Classical Data Center Network Architecture
- Impact of new features and products on hierarchical design for data center networks
- Data center services insertion
- Layer 3 features and best practices
- Layer 2 features, enhancements and best practices
Hierarchical Design Network Layers:

Defining the Terms

- **Data Center Core**
 - Routed layer which is distinct from enterprise network core
 - Provides scalability to build multiple aggregation blocks

- **Aggregation Layer**
 - Provides the boundary between layer-3 routing and layer-2 switching
 - Point of connectivity for service devices (firewall, SLB, etc.)

- **Access Layer**
 - Provides point of connectivity for servers and shared resources
 - Typically layer-2 switching
Scaling the Topology With a Dedicated Data Center Core

- A dedicated Data Center Core provides layer-3 insulation from the rest of the network
- Switch port density in the DC Core is reserved for scaling additional DC Aggregation blocks or pods
- Provides single point of DC route summarization
Mapping Network Topology to the Physical Design

- Design the Data Center topology in a consistent, modular fashion for ease of scalability, support, and troubleshooting.
- Use a pod definition to map an aggregation block or other bounded unit of the network topology to a single pod.
- The server access connectivity model can dictate port count requirements in the aggregation and affect the entire design.
Traditional Data Center Server Access Models

- **End-of-Row (EoR)**

 High density chassis switch at end or middle of a row of racks, fewer overall switches

 Provides port scalability and local switching, may create cable management challenges

- **Top-of-Rack (ToR)**

 Small fixed or modular switch at the top of each rack, more devices to manage

 Significantly reduces bulk of cable by keeping connections local to rack or adjacent rack

- **Integrated Switching**

 Switches integrated directly into blade server chassis enclosure

 Maintaining feature consistency is critical to network management, sometimes pass-through modules are used
Impact of New Features and Products On Hierarchical Design for Data Center Networks
Building the Access Layer using Virtualized Switching

- **Virtual Access Layer**
 - Still a single logical tier of layer-2 switching
 - Common control plane with virtual hardware and software based I/O modules

- **Cisco Nexus 2000**
 - Switching fabric extender module
 - Acts as a virtual I/O module supervised by Nexus 5000

- **Nexus 1000v**
 - Software-based Virtual Distributed Switch for server virtualization environments.
Migration to a Unified Fabric at the Access Supporting Data and Storage

- Nexus 5000 Series switches support integration of both IP data and Fibre Channel over Ethernet at the network edge.
- FCoE traffic may be broken out on native Fibre Channel interfaces from the Nexus 5000 to connect to the Storage Area Network (SAN).
- Servers require Converged Network Adapters (CNAs) to consolidate this communication over one interface, saving on cabling and power.
Cisco Unified Computing System (UCS)

- A cohesive system including a virtualized layer-2 access layer supporting unified fabric with central management and provisioning
- Optimized for greater flexibility and ease of rapid server deployment in a server virtualization environment
- From a topology perspective, similar to the Nexus 5000 and 2000 series
Nexus 7000 Series Virtual Device Contexts (VDCs)

- **Virtualization of the Nexus 7000 Series Chassis**

 Up to 4 separate virtual switches from a single physical chassis with common supervisor module(s)

 Separate control plane instances and management/CLI for each virtual switch

 Interfaces only belong to one of the active VDCs in the chassis, external connectivity required to pass traffic between VDCs of the same switch

- **Designing with VDCs**

 VDCs serve a “role” in the topology similar to a physical switch; core, aggregation, or access

 Two VDCs from the same physical switch should not be used to build a redundant network layer – physical redundancy is more robust
Virtual Device Context Example:

Services VDC Sandwich

- Multiple VDCs used to “sandwich” services between switching layers

 Allows services to remain transparent (layer-2) with routing provided by VDCs

 Aggregation blocks only communicate through the core layer

- Design considerations:

 Access switches requiring services are connected to sub-aggregation VDC

 Access switches not requiring services may be connected to aggregation VDC

 Allows firewall implementations not to share interfaces for ingress and egress

 Facilitates virtualized services by using multiple VRF instances in the sub-aggregation VDC
Data Center Service Insertion
Data Center Service Insertion:

Direct Services Appliances

- Appliances directly connected to the aggregation switches

 Service device type and Routed or Transparent mode can affect physical cabling and traffic flows.

- Transparent mode

 ASA example:

 Each ASA dependant on one aggregation switch

 Separate links for fault tolerance and state traffic either run through aggregation or directly

 Dual-homed with interface redundancy feature is an option

 Currently no EtherChannel supported on ASA
Data Center Service Insertion:

External Services Chassis

- Dual-homed Catalyst 6500
 - Services do not depend on a single aggregation switch
 - Direct link between chassis for fault-tolerance traffic, may alternatively trunk these VLANs through Aggregation

- Dedicated integration point for multiple data center service devices
 - Provides slot real estate for 6500 services modules
 - Firewall Services Module (FWSM)
 - Application Control Engine (ACE) Module
 - Other services modules, also beneficial for appliances
Using Virtualization and Service Insertion to Build Logical Topologies

- Logical topology example using services VDC sandwich physical model

 Layer-2 only services chassis with transparent service contexts

 VLANs above, below, and between service modules are a single IP subnet

 Sub-aggregation VDC is a layer-3 hop running HSRP providing default gateway to server farm subnets

 Multiple server farm VLANS can be served by a single set of VLANs through the services modules

 Traffic between server VLANs does not need to transit services device, but may be directed through services using virtualization
Using Virtualization and Service Insertion to Build Logical Topologies

- **Logical Topology to support multi-tier application traffic flow**

 Same physical VDC services chassis sandwich model

 Addition of multiple virtual contexts to the transparent services modules

 Addition of VRF routing instances within the sub-aggregation VDC

 Service module contexts and VRFs are linked together by VLANs to form logical traffic paths

 Example Web/App server farm and Database server cluster homed to separate VRFs to direct traffic through the services

Using Virtualization and Service Insertion to Build Logical Topologies
Active-Active Solution Virtual Components

- **Nexus 7000**
 - VDCs, VRFs, SVIs

- **ASA 5580**
 - Virtual Contexts

- **ACE Service Module**
 - Virtual Contexts, Virtual IPs (VIPs)

- **IPS 4270**
 - Virtual Sensors

- **Virtual Access Layer**
 - Virtual Switching System
 - Nexus 1000v
 - Virtual Blade Switching

- (VDC max = 4)
- (ASA max = 50 VCs)
- (FWSM max = 250)
- (ACE max = 250 VCs)
- (ACE 4710 = 20 VCs)
- (VS max = 4)
Layer 3 Features and Best Practices
Layer-3 Feature Configuration in the Data Center

- Summarize IP routes at the DC Aggregation or Core to advertise fewer destinations to the enterprise core
- Avoid IGP peering of aggregation switches through the access layer by setting VLAN interfaces as passive
- Use routing protocol authentication to help prevent unintended peering
- If using OSPF, set consistent reference bandwidth at 10,000 or higher for support of 10 Gigabit Ethernet
- HSRP timers at hello-1 dead-3 provide a balance of fast failover without too much sensitivity to control plane load
IGP Hello and Dead/Hold Timers Behavior Over Shared Layer 2 Domain

- Routing protocols insert destinations into the routing table and maintain peer state based on receipt of continuous Hello packets.
- Upon device or link failure, routing protocol only removes the failed peer’s routes only after Dead/Hold timer is expired.
- Tuning Dead/Hold timers lower provides faster convergence over this type of topology.
- A firewall module running an IGP is an example of a Data Center device peering over a L2 domain, or any VLAN interface (SVI).
IGP Hello and Dead/Hold Timers Behavior Over Layer-3 Links

- Upon device or link failure, routing protocol immediately removes routes from failed peer based on interface down state.

- Tuning the IGP Hello and Dead/Hold timers lower is not required for convergence due to link or device failure.

- Transparent-mode services or using static routing with HSRP can help ensure all failover cases are based on point-to-point links.

- Note that static routing with HSRP is not a supported approach for IP multicast traffic.
Layer 2 Features, Enhancements and Best Practices
Classic Spanning Tree Topology “Looped Triangle” Access

- Layer-2 protocols are designed to be plug-and-play, and forward traffic without configuration.

- Stability is enhanced by controlling the location of the STP root switch, and using consistent topologies.

- Looped topologies are required to provide link redundancy and server mobility across access switches.

- Using STP to break the network loop reduces available bandwidth in a VLAN due to blocked links.

- Most STP issues result from undesired flooding due to link issues or software problems causing loss of BPDUs.
Spanning Tree Configuration Features:

Rootguard, Loopguard, Portfast, BPDUguard

These features allow STP to behave with more intelligence, but require manual configuration:

- Rootguard prevents a port from accepting a better path to root where this information should not be received.

- Loopguard restricts the transition of a port to a designated forwarding role without receiving a BPDU with an inferior path to root.

- Port fast (Edge Port) allows STP to skip the listening and learning stages on ports connected to end hosts.

- BPDUguard shuts down a port that receives a BPDU where none should be found, typically also used on ports facing end hosts.
Updated STP Features:

Bridge Assurance

- Specifies transmission of BPDUs on all ports of type “network”.
- Protects against unidirectional links and peer switch software issues (LoopGuard can only be enabled on root and alternate ports)
- Requires configuration, best practice is to set global default to type “network”, default is “normal”
- **IOS Example:**

  ```
  spanning-tree portfast network default
  ```

- **Caution:** Both ends of the link must have Bridge Assurance enabled (otherwise the port is blocked)
STP Configuration Feature Placement
In the Data Center

Bridge Assurance Replace the Requirement For Loopguard On Supported Switches
Redundant Paths Without STP Blocking:

Basic EtherChannel

- Bundles several physical links into a logical one
 - No blocked ports (redundancy not handled by STP)
 - Per frame (not per-vlan) load balancing

- Control protocols like PAgP (Port Aggregation Protocol) and LACP (Link Aggregation Control Protocol) handle the bundling process and monitor the health of the link

- Limited to parallel links between two switches

Channel looks like a single link to STP
Designs Not Relying on STP: Virtual Switching System (VSS)

- Merges two bridges into one, allowing Multi-Chassis EtherChannels
- Also merges Layer-3 and overall switch management
- Does not rely on STP for redundancy
- Limited to pair of switches

Redundancy handled by STP

Multi Chassis EtherChannel (STP logical view)
VSS Design

Data Center Core

Aggregation

Access

Network port
Edge port
Normal port type
BPDUguard
Rootguard
Loopguard

Layer 3
Layer 2 (STP + Bridge Assurance)
Layer 2 (STP + BA + Rootguard)
Layer 2 (STP + BPDUguard)
Designs Not Relying on STP: Virtual Port Channel (vPC)

- Appears as a single EtherChannel to the access layer
- Two independent control planes
- Active/active HSRP, separate Layer-3 and management
- Still no STP blocked ports
vPC Design
Summary

- Virtualization of the network infrastructure improves utilization and offers new deployment models in the data center.

- Best practice, flexible models are needed for application requirements.

- Case studies:
 - BRD - Groupe Société Générale (starting with 280 servers in 2007 at the new data center)
 - MOBIASBANCA - Groupe Société Générale
 - Carrefour Romania - Hiproma