DYNAMIC MULTIPOINT VPN SPOKE TO SPOKE DIRECT TUNNELING

NOVEMBER 2004
Direct Spoke To Spoke Tunnels

- Initially, spoke to spoke traffic can only travel via the hub
- In DMVPN, spokes can send packets directly to another spoke, if the routing table and NHRP table are available
- This does not change the principle so far
Routes and NHRP Between Two Spokes

Routing Table
- 192.168.0.0/24 -> Tunnel 0, via 10.0.0.1
- 192.168.2.0/24 -> Tunnel 0, via 10.0.0.12

NHRP Table
- 10.0.0.1 -> 172.17.0.1
- 10.0.0.12 -> 172.16.2.2

Tunnel addresses:
- Tunnel 0: 10.0.0.1/24
- Tunnel 0: 10.0.0.12/24

NBMA addresses:
- 172.16.1.2/24
- 172.17.0.1/24
- 172.16.2.2/24
- 172.16.2.2/24
Learning process

• In order to create a spoke to spoke tunnel, a spoke must

 Learn a routing entry to the destination network

 The next hop must be the remote spoke tunnel IP address

 The spoke must learn the NBMA address of this next hop

• The IPsec tunnel is only built after that
Route Learning

- The routing protocol is only between the hub and the spokes
- In order for spoke to spoke to work, the hub must preserve and advertise the private networks next hop as advertised by the spokes themselves
Route Learning (cont’d.)

- **RIP** keeps the next-hop information by **default**
 This can not be disabled
- The next-hop preservation in **EIGRP** is **not a default**
 It is turned on with the interface command
 `no ip next-hop-self eigrp <as>`
- Next hop preservation in **BGP** is **a default**
 It can be disabled with the BGP command
 `neighbor <n> next-hop-self`
- In **OSPF**, next-hop preservation happens **naturally** except in point-to-multipoint mode
NHRP Learning

• A spoke will send an NHRP resolution request to its NHS to learn an NBMA address

• The queried address can be a network address

• Ideally, the queried address should be a next-hop address

• The NHS will respond with an NBMA address from its cache

 The spoke will populate its cache with the answer
NHRP Learning (cont.)

- The resolution reply will have a lifetime set to the remaining lifetime in the hub cache.
- If the NHS does not have the entry in its cache, it returns an error and the spoke will install an incomplete entry and forward packets to the NHS.
- During the learning process, the spoke will forward all the packets to its NHS.

 This occurs in process switching.
Tunnel Buildup

• As soon as the NHRP entry is created but **NOT** inserted in the cache, an IPsec tunnel will be initiated

• The NHRP entry will **be inserted in the cache and used** when the IPsec tunnel is actually ready

• The IPsec tunnel will disappear when the NHRP entry times out
NHRP Registration
Dynamically Addressed Spokes

- Spoke A: 192.168.1.1/24, Physical: 172.17.0.1, Tunnel0: 10.0.0.1
- Spoke B: Physical: (dynamic), Tunnel0: 10.0.0.11, 10.0.0.12

NHRP mapping
Routing Table

- 192.168.0.1/24
- 192.168.0.0/24
- 192.168.1.0/24
- 192.168.2.0/24

- 10.0.0.11 -> 172.16.1.1
- 10.0.0.12 -> 172.16.2.1
- 192.168.0.0/24 -> Conn.
- 192.168.1.0/24 -> 10.0.0.11
- 192.168.2.0/24 -> 10.0.0.12

- Physical: 172.16.1.1, Tunnel0: 10.0.0.11
- Physical: 172.16.2.1, Tunnel0: 10.0.0.12

- 10.0.0.1 -> 172.17.0.1
- 10.0.0.12 -> 172.16.2.1
- 192.168.0.0/24 -> 10.0.0.1
- 192.168.1.0/24 -> Conn.
- 192.168.2.0/24 -> 10.0.0.12
Building Spoke-Spoke Tunnels

Host1 Spoke1 Hubs Spoke2 Host2

IKE Initialization

NHRP Resol. Req.

NHRP Resolution Replies

Encrypted

IKE/IPsec Established
IKE Call Access Control

- IKE Call Access Control (CAC) was introduced in Release 12.3(8)T
- This feature allows Cisco IOS® Software to limit the number of IKE/IPsec connections
- It prevents small platforms from opening dozens of spoke to spoke tunnels (e.g. worm attack)

```
crypto call admission limit ike sa <number>
```
DMVPN Hub Configuration

crypto ca trustpoint CA
 enrollment terminal
crl optional
 rsakeypair hub1

crypto ca certificate chain CA
 certificate 2368DB55000000000B4E
 certificate ca 1244325DE0369880465F977A18F61CA8
!
crypto isakmp policy 1
 encryption 3des
!
crypto ipsec transform-set ts esp-3des esp-sha-hmac
!
crypto ipsec profile prof
 set transform-set ts
!
interface Ethernet0/0
 ip address 192.168.0.1 255.255.255.0
!
interface Serial1/0
 ip address 172.17.0.1 255.255.255.252
interface Tunnel0
 bandwidth 1000
 ip address 10.0.0.1 255.255.255.0
 ip mtu 1416
 ip nhrp map multicast dynamic
 ip nhrp network-id 100000
 ip nhrp holdtime 3600
 no ip split-horizon eigrp 1
 no ip next-hop-self eigrp 1
 delay 1000
 tunnel source Serial1/0
 tunnel mode gre multipoint
 tunnel key 100000
 tunnel protection ipsec profile prof

router eigrp 1
 network 10.0.0.0 0.0.0.255
 network 192.168.0.0
 no auto-summary
DMVPN Spoke Configuration

crypto ca trustpoint CA
 enrollment terminal
crl optional
 rsa-keypair spoke1
crypto ca certificate chain CA
certificate 236FD38000000000B4F
certificate ca 1244325DE0369880465F977A18F61CA8

!
crypto isakmp policy 1
 encryption 3des

!
crypto ipsec transform-set ts esp-3des esp-sha-hmac

!
crypto ipsec profile prof
 set transform-set ts

!
interface Ethernet0/0
 ip address 192.168.1.1 255.255.255.0

!
interface Serial1/0
 ip address 172.16.1.1 255.255.255.252
interface Tunnel0
 bandwidth 1000
 ip address 10.0.0.11 255.255.255.0
 ip mtu 1416
 ip nhrp map multicast 172.17.0.1
 ip nhrp map 10.0.0.1 172.17.0.1
 ip nhrp network-id 100000
 ip nhrp holdtime 3600
 ip nhrp nhs 10.0.0.1
 ip nhrp server-only
 delay 1000
 tunnel source Serial1/0
 tunnel mode gre multipoint
 tunnel key 100000
 tunnel protection ipsec profile prof
!
router eigrp 1
 network 10.0.0.0 0.0.0.255
 network 192.168.1.0
 no auto-summary

For pure hub and spoke
Recommendation

• The use of wildcard pre-shared keys is strongly discouraged

• With such topologies, it is recommended to use a Public Key Infrastructure (PKI) to authenticate nodes