VRF-Aware Cisco IOS XE Firewall
ErrorMessage : Error while constructing the Hinav

null
Downloads: This chapterpdf (PDF - 1.59MB) The complete bookPDF (PDF - 7.07MB) | Feedback

VRF-Aware Cisco IOS XE Firewall

Contents

VRF-Aware Cisco IOS XE Firewall

The VRF-Aware Cisco IOS XE Firewall applies the Cisco IOS XE Firewall functionality to VPN Routing and Forwarding (VRF) interfaces when the firewall is configured on a service provider (SP) or large enterprise edge routers. SPs provide managed services to small and medium business markets.

The VRF-Aware Cisco IOS XE Firewall supports VRF-lite (also known as Multi-VRF CE) and Application Inspection and Control (AIC) for various protocols.

The VRF-aware firewall supports VRF-lite (also known as Multi-VRF CE) and Application Inspection and Control (AIC) for various protocols.


Note


Cisco IOS XE Releases do not support Context-Based Access Control (CBAC) firewalls.


Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/​go/​cfn. An account on Cisco.com is not required.

Prerequisites for VRF-Aware Cisco IOS XE Firewall

  • Understand Cisco IOS XE firewalls.

  • Configure VRFs.

Restrictions for VRF-Aware Cisco IOS XE Firewall

  • If two VPN networks have overlapping addresses, VRF-aware Network Address Translation (NAT) is required for them to support VRF-aware firewalls. NAT does not support inter-VRF routing. You can use the VRF-aware software infrastructure (VASI) for the inter-VRF routing functionality.

  • When crypto tunnels that belong to multiple VPNs terminate on a single interface, you cannot apply per-VRF firewall policies.

  • The same zone cannot be applied to interfaces that are configured on different VRFs.

Information About VRF-Aware Cisco IOS XE Firewall

VRF-Aware Cisco IOS XE Firewall

A VRF-aware firewall inspects IP packets that are sent or received within a VRF. VRF allows multiple instances of routing tables to coexist within a single router. This allows VPN segregation and the ability to have independent overlapping of IP address spaces. VRF allows traffic from the customers of one service provider to be isolated from another. The Cisco IOS XE VRF support splits the router into multiple routing domains, with each routing domain consisting of its own set of interfaces and routing and forwarding tables. Each routing domain is referenced by a unique identifier called the table ID. The global routing domain and the default routing domain (that is not associated with any VRF) is addressed with the table ID, zero. VRF supports overlapping of IP address space, thereby allowing the traffic from nonintersecting VRFs to have the same IP address.

The VRF-Aware Cisco IOS XE Firewall provides the following benefits:

  • Scalable deployment—Scales to meet any network’s bandwidth and performance requirements.

  • VPN support—Provides a complete VPN solution based on Cisco IOS XE IPsec and other software-based technologies, including Layer 2 Tunneling Protocol (L2TP) tunneling, and quality of service (QoS).

  • AIC support—Provides policy maps for the Internet Message Access Protocol (IMAP), Post Office Protocol 3 (POP3), Simple Mail Transfer Protocol (SMTP), and Sun Remote Procedure Call (SUN RPC)

  • Allows users to configure a per-VRF firewall. The firewall inspects IP packets that are sent and received within a VRF. The firewall also inspects traffic between two different VRFs (intersecting VRFs).

  • Allows SPs to deploy the firewall on the provider edge (PE) router.

  • Supports overlapping IP address space, thereby allowing traffic from nonintersecting VRFs to have the same IP address.

  • Supports VRF (not global) firewall command parameters and Denial-of-Service (DoS) parameters so that the VRF-aware firewall can run as multiple instances (with VRF instances) that are allocated to various VPN customers.

  • Generates high-speed logging (HSL) messages that contain the VRF ID; however these messages are collected by a single collector.

The VRF-aware firewall allows you to limit the number of firewall sessions. If the firewall sessions are not limited, it would be difficult for VRFs to share router resources because one VRF may consume a maximum amount of resources, leaving few resources for other VRFs and thereby causing the denial of service to other VRFs.


Note


On the Cisco ASR 1000 Series Aggregation Services Routers the firewall supports a maximum of 4000 VRFs.

Address Space Overlap

A VRF splits the device into multiple routing domains. Each of these routing domains contain their own set of interfaces and routing tables. A routing table is referenced by using a per-VRF unique table ID. Zero is the default global routing table ID that is not associated with a VPN routing and forwarding (VRF).

Nonintersecting VRFs are allowed to have overlapping address spaces (that is, the IP address of one VRF may be contained in others).

VRF

VPN routing and forwarding (VRF) allows multiple instances of routing tables to coexit within a single device. A VRF contains a template of a VRF table in a provider edge (PE) device.

The overlapping addresses, usually resulting from the use of private IP addresses in customer networks, are one of the major obstacles to the successful deployment of a peer-to-peer (P2P) VPN implementation. You can use the Multiprotocol Label Switching (MPLS) VPN technology to overcome the overlapping addresses issue.

Each VPN has its own routing and forwarding table in the device so that any customer or site that belongs to a VPN is provided access only to the set of routes contained within that table. Any PE device in the MPLS VPN network therefore contains a number of per-VPN routing tables and a global routing table that is used to reach other devices in the service provider (SP) network. Effectively, a number of virtual devices are created in a single physical device.

VRF-Lite

The VRF-Lite Aware Firewall feature, also called the VRF without MPLS-aware firewall, allows a firewall zone to be applied to non-MPLS-enabled VPN routing and forwarding (VRF) interfaces.

The VRF-Lite Aware Firewall feature enables a service provider (SP) to support two or more VPNs, in which IP addresses can be overlapped among VPNs. VRF-lite uses input interfaces to distinguish routes for different VPNs and forms virtual packet forwarding tables by associating one or more Layer 3 interfaces with each VRF. Interfaces in a VRF can be physical, such as Ethernet ports, or logical, such as VLAN switched virtual interfaces (SVIs). However, a Layer 3 interface cannot belong to more than one VRF at a time.


Note


All VRF-lite interfaces must be Layer 3 interfaces.


VRF-lite includes the following devices:

  • Customer edge (CE) devices provide customers access to the SP network over a data link. The CE device advertises the site’s local routes to the provider edge (PE) device and learns about the remote VPN routes from the PE device.

  • PE devices exchange routing information with CE devices by using static routing or a routing protocol such as Border Gateway Protocol (BGP), Routing Information Protocol Version 1 (RIPv1), or RIPv2.

  • PE devices (or core devices) are any devices in the SP network that are not attached to CE devices.

  • A PE device is only required to maintain VPN routes for those VPNs to which it is directly attached, eliminating the need for the PE device to maintain all the SP VPN routes. Each PE device maintains a VRF for each of its directly connected sites. Multiple interfaces on a PE device can be associated with a single VRF, if all of these sites are part of the same VPN. Each VPN is mapped to a specified VRF. After learning local VPN routes from CE devices, a PE device exchanges VPN routing information with other PE devices by using internal BGP (iBPG).

With VRF-lite, multiple customers can share one CE device, and only one physical link is used between the CE device and the PE device. The shared CE device maintains a separate VRF table for each customer, and switches or routes packets for each customer based on its own routing table. VRF-lite extends the limited PE device functionality to a CE device, giving it the ability to maintain separate VRF tables to extend the privacy and security of a VPN to the branch office.

Figure 1. Firewall in a VRF-to-VRF Scenario

MPLS VPN

The Multiprotocol Label Switching (MPLS) VPN Feature allows multiple sites to interconnect transparently through a service provider (SP)network. One SP network can support several IP VPNs. Each VPN appears to its users as a private network, separate from all other networks. Within a VPN, each site can send IP packets to any other site in the same VPN.

Each VPN is associated with one or more VPN routing and forwarding (VRF) instances. A VRF consists of an IP routing table, a derived Cisco Express Forwarding table, and a set of interfaces that use the forwarding table.

The device maintains a separate routing and Cisco Express Forwarding table for each VRF. This prevents information from being sent outside the VPN and allows the same subnet to be used in several VPNs without causing duplicate IP address problems.

The device using Multiprotocol BGP (MP-BGP) distributes the VPN routing information using the MP-BGP extended communities.

VRF-Aware NAT

Network Address Translation (NAT) allows a single device, such as a device, to act as an agent between the Internet (or public network) and a local (or private) network. Although NAT systems can provide broad levels of security advantages, their main objective is to economize on address space.

NAT allows organizations to resolve the problem of IP address depletion when they have existing networks and need to access the Internet. Sites that do not possess Network Information Center (NIC)-registered IP addresses must acquire them. NAT eliminates the concern of NIC-registered IP addresses by dynamically mapping thousands of hidden internal addresses to a range of easy-to-get addresses.

A NAT system makes it difficult for an attacker to determine the following:

  • Number of systems running on a network.

  • Type of machines and operating systems running on the network.

  • Network topology and arrangement.

NAT integration with Multiprotocol Label Switching (MPLS) VPNs allows multiple MPLS VPNs to be configured on a single device to work together. NAT can differentiate the MPLS VPNs from which it receives the IP traffic, even if all MPLS VPNs use the same IP addressing scheme. This enables multiple MPLS VPN customers to share services while ensuring that each MPLS VPN is completely separate from the other.

To provide value-added services, such as, Internet connectivity, domain name servers (DNS), and VoIP service to customers, MPLS service providers must use NAT. NAT helps MPLS VPN customers to use overlapped IP addresses in their network.

NAT can be implemented on a customer edge (CE) device or on a provider edge (PE) device. The NAT integration with MPLS VPNs feature enables the implementation of NAT on a PE device in an MPLS cloud.

VRF-Aware ALG

An application-layer gateway (ALG) is an application that translates the IP address information inside the payload of an application packet. The ALGs identify the address information in the packet payload that needs to be overwritten by NAT and supply the address information to NAT and firewall to create subordinate flows or doors to allow data to flow properly (an example of data flow is FTP data flow. Doors are transient structures that allow incoming traffic that matches a specific criterion. A door is created when there is not enough information to create a complete NAT session entry. A door contains information about the source and destination IP address and the destination port. However, it does not have information about the source port. When media data arrives, the source port information is known and the door is promoted to a real NAT session.

VRF-Aware IPsec

The VRF-Aware IPsec feature maps an IPsec tunnel to a Multiprotocol Label Switching (MPLS) VPN. Using the VRF-Aware IPsec feature, you can map IPsec tunnels to VPN routing and forwarding (VRF) instances using a single public-facing IP address.

Each IPsec tunnel is associated with two VRF domains. The outer encapsulated packet belongs to a VRF domain called the Front Door VRF (FVRF). The inner, protected IP packet belongs to a domain called the Inside VRF (IVRF). In other words, the local endpoint of the IPsec tunnel belongs to the FVRF, whereas source and destination addresses of the inside packet belong to the IVRF.

One or more IPsec tunnels can terminate on a single interface. The FVRF of all these tunnels is the same and is set to the VRF that is configured on that interface. The IVRF of these tunnels can be different and depends on the VRF that is defined in the Internet Security Association and Key Management Protocol (ISAKMP) profile that is attached to a crypto map entry.

The following figure illustrates a scenario showing IPsec to MPLS and Layer 2 VPNs.

Figure 2. IPsec-to-MPLS and Layer 2 VPNs

VRF-Aware Software Infrastructure

The VRF-Aware Software Infrastructure (VASI) allows you to apply services such as access control lists (ACLs), NAT, policing, and zone-based firewalls to traffic that is flowing across two different VRF instances. The VASI interfaces support redundancy of the Route Processor (RP) and Forwarding Processor (FP). This feature supports IPv4 and IPv6 unicast traffic on VASI interfaces.

The primary use of VASI is to allow better isolation of VRFs. The VASI allows for per-VRF-specific features to be applied to the VASI interface without any impact to other VRFs that may share a common interface (for example, all VRFs may share the same interface to the Internet). For the firewall, this feature allows zones to be applied to the VASI.

VASI is implemented by using virtual interface pairs, where each of the interfaces in the pair is associated with a different VRF. The VASI virtual interface is the next hop interface for any packet that needs to be switched between these two VRFs. VASI interfaces provide the framework necessary to support NAT between two VRFs.

Each interface pair is associated with two different VRF instances. The two virtual interfaces, called vasileft and vasiright, in a pair are logically wired back-to-back and are completely symmetrical. Each interface has an index. The association of the pairing is done automatically based on the two interface indexes such that vasileft automatically gets paired to vasiright. You can configure either static routing or dynamic routing with BGP, Enhanced Interior Gateway Routing Protocol (EIGRP), or Open Shortest Path First (OSPF). BGP dynamic routing protocol restrictions and configuration are valid for BGP routing configurations between VASI interfaces. For more information on VASI, see the “Configuring the VRF-Aware Software Infrastructure” feature.

Security Zones

A security zone is a group of interfaces to which a policy can be applied.

Grouping interfaces into zones involves two procedures:

  • Creating a zone so that interfaces can be attached to it.

  • Configuring an interface to be a member of a given zone.

By default, traffic flows among interfaces that are members of the same zone.

When an interface is a member of a security zone, all traffic (except traffic going to the device or initiated by the device) between that interface and an interface within a different zone is dropped by default. To permit traffic to and from a zone-member interface and another interface, you must make that zone part of a zone pair and apply a policy to that zone pair. If the policy permits traffic through inspect or pass actions, traffic can flow through the interface.

The following are basic rules to consider when setting up zones:

  • Traffic from a zone interface to a nonzone interface or from a nonzone interface to a zone interface is always dropped; unless default zones are enabled (default zone is a nonzone interface).

  • Traffic between two zone interfaces is inspected if there is a zone pair relationship for each zone and if there is a configured policy for that zone pair.

  • By default, all traffic between two interfaces in the same zone is always allowed.

  • A zone pair can be configured with a zone as both source and destination zones. An inspect policy can be configured on this zone pair to inspect or drop the traffic between two interfaces in the same zone.

  • An interface can be a member of only one security zone.

  • When an interface is a member of a security zone, all traffic to and from that interface is blocked unless you configure an explicit interzone policy on a zone pair involving that zone.

  • Traffic cannot flow between an interface that is a member of a security zone and an interface that is not a member of a security zone because a policy can be applied only between two zones.

  • For traffic to flow among all interfaces in a device, these interfaces must be members of one security zone or another. It is not necessary for all device interfaces to be members of security zones.

The figure below illustrates the following:

  • Interfaces E0 and E1 are members of security zone Z1.

  • Interface E2 is a member of security zone Z2.

  • Interface E3 is not a member of any security zone.

Figure 3. Security Zone Restrictions

The following situations exist:

  • The zone pair and policy are configured in the same zone. Traffic flows freely between interfaces E0 and E1 because they are members of the same security zone (Z1).

  • If no policies are configured, traffic will not flow between any other interfaces (for example, E0 and E2, E1 and E2, E3 and E1, and E3 and E2).

  • Traffic can flow between E0 or E1 and E2 only when an explicit policy permitting traffic is configured between zone Z1 and zone Z2.

  • Traffic can never flow between E3 and E0/E1/E2 unless default zones are enabled.


Note


On the Cisco ASR 1000 Series Aggregation Services Routers the firewall supports a maximum of 4000 zones.

VRF-Aware Cisco Firewall Deployment

A firewall can be deployed at many points within the network to protect VPN sites from shared service (or the Internet) and vice versa. This section describes the following firewall deployment scenarios:

Distributed Network Inclusion of VRF-Aware Cisco Firewall

The following figure illustrates a typical situation in which a service provider (SP) offers firewall services to VPN customers VPN1 and VPN2, thereby protecting VPN sites from an external network (for example, shared services and the Internet) and vice versa.

Figure 4. Distributed Network

In this example, VPN1 has two sites, Site A and Site B, that span across the Multiprotocol Label Switching (MPLS) core. Site A is connected to PE1, and Site B is connected to PE2. VPN2 has only one site that is connected to PE2. Each VPN has a VLAN segment in the shared service that is connected to the corresponding VLAN subinterface on PE3.

Each of the VPNs (VPN1 and VPN2) has two firewall rules—one to protect the VPN site from the shared service and another to protect the shared service from the VPN site. The firewall that protects the VPN site from the shared service is called the VPN firewall, and the firewall that protects the shared service from the VPN site is called the shared service firewall. Both firewall rules are applied on the VPN routing and forwarding (VRF) interface of each ingress provider edge (PE) device that is connected to the VPN site. The VPN firewall rule is applied in the ingress direction, because the VRF interface is ingress to the VPN site; and the shared service firewall rule is applied in the egress direction, because the VRF interface is egress to the shared service.

The benefits of using a distributed network are as follows:
  • Because the firewall deployment is distributed across a Multiprotocol Label Switching (MPLS) cloud, the firewall processing load is distributed to all ingress PE devices.

  • The shared service is protected from VPN sites at the ingress PE device, and hence malicious packets from VPN sites are filtered at the ingress PE device before they enter the MPLS cloud.

  • VPN firewall features can be deployed in the ingress direction.

Hub-and-Spoke Network Inclusion of VRF-Aware Cisco Firewall

The following figure illustrates a hub-and-spoke network where firewalls for all VPN sites are applied on the egress PE device, PE3, which is connected to the shared service.

Figure 5. Hub-and-Spoke Network

Typically, each VPN has a VLAN and/or a VPN routing and forwarding (VRF) subinterface that is connected to the shared service. When a packet arrives at a Multiprotocol Label Switching (MPLS) interface, MPLS routes the packet to the corresponding subinterface that is connected to the shared service. Firewall policies on each VPN are applied on the corresponding subinterface (VRF interface) as shown in the above figure. The VPN firewall rule is applied in the egress direction because the subinterface is egress to the VPN site. And the shared service firewall rule is applied in the ingress direction because the subinterface is ingress to the shared service.

The benefits of a hub-and-spoke network are as follows:
  • Because the firewall deployment is centralized to the egress provider edge (PE) device (PE3), deploying and managing the firewall is easy.

  • The shared service firewall feature can be applied in the ingress direction.

  • The VPN site is protected from the shared service at the egress PE device, and hence malicious packets from the shared service are filtered at the PE device before they enter the MPLS cloud.

How to Configure VRF-Aware Cisco IOS XE Firewall

Defining VRFs, Class Maps, and Policy Maps

SUMMARY STEPS

    1.    enable

    2.    configure terminal

    3.    ip vrf vrf-name

    4.    rd route-distinguisher

    5.    route-target export route-target-ext-community

    6.    route-target import route-target-ext-community

    7.    exit

    8.    class-map type inspect match-any class-map-name

    9.    match protocol tcp

    10.    match protocol h323

    11.    exit

    12.    policy-map type inspect policy-map-name

    13.    class type inspect class-map-name

    14.    inspect [parameter-map-name]

    15.    exit

    16.    class class-default

    17.    end


DETAILED STEPS
     Command or ActionPurpose
    Step 1 enable


    Example:
    Router> enable
     
    Enables privileged EXEC mode.
    • Enter your password if prompted.

     
    Step 2configure terminal


    Example:
    Router# configure terminal
     

    Enters global configuration mode.

     
    Step 3ip vrf vrf-name


    Example:
    Router(config)# ip vrf vrf1
     

    Defines a VRF instance and to enter VRF configuration mode.

     
    Step 4rd route-distinguisher


    Example:
    Router(config-vrf)# rd 10:1
     

    Specifies a route distinguisher (RD) for a VRF instance.

     
    Step 5route-target export route-target-ext-community


    Example:
    Router(config-vrf)# route-target export 10:1
     

    Creates a route-target extended community for a VRF instance and exports routing information to the target VPN extended community.

     
    Step 6route-target import route-target-ext-community


    Example:
    Router(config-vrf)# route-target import 10:1
     

    Creates a route-target extended community for a VRF instance and imports routing information to the target VPN extended community.

     
    Step 7exit


    Example:
    Router(config-vrf)# exit
     

    Exits VRF configuration mode and enters global configuration mode.

     
    Step 8class-map type inspect match-any class-map-name


    Example:
    Router(config)# class-map type inspect match-any class-map1
     

    Creates a Layer 3 and Layer 4 (application-specific) inspect type class map and enters class-map configuration mode.

     
    Step 9match protocol tcp


    Example:
    Router(config-cmap)# match protocol tcp 
     

    Configures the match criterion for a class map on the basis of the specified protocol.

     
    Step 10match protocol h323


    Example:
    Router(config-cmap)# match protocol h323 
     

    Configures the match criterion for a class map on the basis of the specified protocol.

     
    Step 11exit


    Example:
    Router(config-cmap)# exit
     

    Exits class-map configuration mode and enters global configuration mode.

     
    Step 12policy-map type inspect policy-map-name


    Example:
    Router(config)# policy-map type inspect global-vpn1-pmap
     

    Creates a Layer 3 and Layer 4 (protocol-specific) inspect type policy map and enters policy-map configuration mode.

     
    Step 13 class type inspect class-map-name


    Example:
    Router(config-pmap)# class type inspect class-map1
     

    Specifies the traffic (class) on which an action is to be performed and enters policy-map-class configuration mode.

     
    Step 14 inspect [parameter-map-name]


    Example:
    Router(config-pmap-c)# inspect class-map1
     

    Enables Cisco IOS XE stateful packet inspection.

     
    Step 15exit


    Example:
    Router(config-pmap-c)# exit
     

    Exits policy-map-class configuration mode and enters policy-map configuration mode.

     
    Step 16class class-default


    Example:
    Router(config-pmap)# class class-default
     

    Specifies the default class so that you can configure or modify its policy.

    • The class-default class is defined by default. Configure the class class-default command to change the default drop attribute that is associated with the class-default.

     
    Step 17end


    Example:
    Router(config-pmap)# end
     

    Exits policy-map configuration mode and enters global configuration mode.

     

    Defining Zones and Zone Pairs

    SUMMARY STEPS

      1.    enable

      2.    configure terminal

      3.    zone security security-zone-name

      4.    exit

      5.    zone security security-zone-name

      6.    exit

      7.    zone-pair security zone-pair-name source source-zone destination destination-zone

      8.    service-policy type inspect policy-map-name

      9.    end


    DETAILED STEPS
       Command or ActionPurpose
      Step 1 enable


      Example:
      Router> enable
       
      Enables privileged EXEC mode.
      • Enter your password if prompted.

       
      Step 2 configure terminal


      Example:
      Router# configure terminal
       

      Enters global configuration mode.

       
      Step 3 zone security security-zone-name


      Example:
      Router(config)# zone security vpn1-zone
       

      Creates a security zone and enters security zone configuration mode.

       
      Step 4 exit


      Example:
      Router(config-sec-zone)# exit
       

      Exits security zone configuration mode and enters global configuration mode.

       
      Step 5 zone security security-zone-name


      Example:
      Router(config)# zone security global-zone
       

      Creates a security zone and enters security zone configuration mode.

       
      Step 6 exit


      Example:
      Router(config-sec-zone)# exit
       

      Exits security zone configuration mode and enters global configuration mode.

       
      Step 7 zone-pair security zone-pair-name source source-zone destination destination-zone


      Example:
      Router(config)# zone-pair security vpn1-global-zone-pair source vpn1-zone destination global-zone 
       
      Creates a zone pair and enters security zone-pair configuration mode.
      • zone-pair-name--Name of the zone being attached to an interface.

      • source source-zone--Specifies the name of the router from which traffic is originating.

      • destination destination-zone--Specifies the name of the router to which traffic is bound.

       
      Step 8 service-policy type inspect policy-map-name


      Example:
      Router(config-sec-zone-pair)# service-policy type inspect global-vpn1-pmap
       

      Attaches a Layer 7 policy map to a top-level policy map.

       
      Step 9 end


      Example:
      Router(config-sec-zone-pair)# end
       

      Exits zone-pair configuration mode and enters privileged EXEC mode.

       

      Applying Zones to Interfaces and Defining Routes

      SUMMARY STEPS

        1.    enable

        2.    configure terminal

        3.    interface type number

        4.    ip vrf forwarding name

        5.    ip address ip-address mask

        6.    zone-member security zone-name

        7.    negotiation auto

        8.    exit

        9.    interface type number

        10.    ip address ip-address mask

        11.    zone-member security zone-name

        12.    negotiation auto

        13.    exit

        14.    ip route vrf vrf-name destination-ip-address destination-prefix interface-type number [global]

        15.    end


      DETAILED STEPS
         Command or ActionPurpose
        Step 1 enable


        Example:
        Router> enable
         
        Enables privileged EXEC mode.
        • Enter your password if prompted.

         
        Step 2 configure terminal


        Example:
        Router# configure terminal
         

        Enters global configuration mode.

         
        Step 3 interface type number


        Example:
        Router(config)# interface gigabitethernet 0/0/0
         

        Configures an interface and enters interface configuration mode.

         
        Step 4 ip vrf forwarding name


        Example:
        Router(config-if)# ip vrf forwarding vrf1
         

        Associates a VRF with an interface or subinterface.

         
        Step 5 ip address ip-address mask


        Example:
        Router(config-if)# ip address 10.1.1.1 255.255.255.0
         

        Sets a primary or secondary IP address for an interface.

         
        Step 6 zone-member security zone-name


        Example:
        Router(config-if)# zone-member security  vpn1-zone
         

        Attaches an interface to a security zone.

         
        Step 7 negotiation auto


        Example:
        Router(config-if)# negotiation auto
         

        Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.

         
        Step 8 exit


        Example:
        Router(config-if)# exit
         

        Exits interface configuration mode and enters global configuration mode.

         
        Step 9 interface type number


        Example:
        Router(config)# interface gigabitethernet 1/1/1
         

        Configures an interface and enters interface configuration mode.

         
        Step 10 ip address ip-address mask


        Example:
        Router(config-if)# ip address 10.111.111.111 255.255.255.0
         

        Sets a primary or secondary IP address for an interface.

         
        Step 11 zone-member security zone-name


        Example:
        Router(config-if)# zone-member security global-zone
         

        Attaches an interface to a security zone.

         
        Step 12 negotiation auto


        Example:
        Router(config-if)# negotiation auto
         

        Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.

         
        Step 13 exit


        Example:
        Router(config-if)# exit
         

        Exits interface configuration mode and enters global configuration mode.

         
        Step 14 ip route vrf vrf-name destination-ip-address destination-prefix interface-type number [global]


        Example:
        Router(config)# ip route vrf vpn1 10.111.111.0 255.255.255.0 gigabitethernet 1/1/1 global
         

        Establishes static routes for a VRF instance.

         
        Step 15 end


        Example:
        Router(config)# end
         

        Exits global configuration mode and enters privileged EXEC mode.

         

        Configuration Examples for VRF-Aware Cisco IOS XE Firewall

        Example: Defining VRFs, Class Maps, and Policy Maps

        Router# configure terminal
        Router(config)# ip vrf vrf1
        Router(config-vrf)# rd 10:1
        Router(config-vrf)# route-target export 10:1
        Router(config-vrf)# route-target import 10:1
        Router(config-vrf)# exit
        Router(config)# class-map type inspect match-any class-map1
        Router(config-cmap)# match protocol tcp
        Router(config-cmap)# match protocol h323
        Router(config-cmap)# exit
        Router(config)# policy-map type inspect global-vpn1-pmap
        Router(config-pmap)# class type inspect match-acl-111
        Router(config-pmap-c)# inspect match-acl-111
        Router(config-pmap-c)# exit
        Router(config-pmap)# class class-default
        Router(config-pmap)# end
              

        Example: Defining Policy Maps, Zones, and Zone Pairs

        Router# configure terminal
        Router(config)# zone security vpn1-zone
        Router(config-sec-zone)# exit
        Router(config)# zone security global-zone
        Router(config-sec-zone)# exit
        Router(config)# zone-pair security vpn1-global-zone-pair source vpn1-zone destination global-zone 
        Router(config-sec-zone-pair)# service-policy type inspect vpn1-global-pmap
        Router(config-sec-zone-pair)# end
        

        Example: Applying Zones to Interfaces and Defining Routes

        Router# configure terminal
        Router(config)# interface gigabitethernet 0/0/0
        Router(config-if)# ip vrf forwarding vrf1
        Router(config-if)# ip address 10.1.1.1 255.255.255.0 
        Router(config-if)# zone-member security vpn1-zone
        Router(config-if)# negotiation auto
        Router(config-if)# exit
        Router(config)# interface gigabitethernet 1/1/1
        Router(config-if)# ip address 10.111.111.111 255.255.255.0
        Router(config-if)# zone-member security global-zone
        Router(config-if)# negotiation auto
        Router(config-if)# exit 
        Router(config)# ip route vrf vpn1 10.111.111.0 255.255.255.0 gigabitethernet 1/1/1 global
        Router(config)# end

        Additional References for VRF-Aware Cisco IOS XE Firewall

        Technical Assistance

        Description

        Link

        The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

        http:/​/​www.cisco.com/​cisco/​web/​support/​index.html

        Feature Information for VRF-Aware Cisco IOS XE Firewall

        The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

        Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/​go/​cfn. An account on Cisco.com is not required.

        Table 1 Feature Information for VRF-Aware Cisco IOS XE Firewall

        Feature Name

        Releases

        Feature Information

        VRF-Aware Cisco IOS XE Firewall

        Cisco IOS XE Release 2.5

        The VRF-Aware Cisco IOS XE Firewall feature applies the Cisco IOS XE Firewall functionality to VRF interfaces when the firewall is configured on an SP or large enterprise edge router.

        Firewall--VRF-Aware ALG Support

        Cisco IOS XE Release 2.5

        The Firewall--VRF-Aware ALG Support feature allows ALG to extract the correct IP address and VRF ID from cached information when creating ALG tokens that require correct IP address VRF ID pairs.

        Glossary

        C3PL --Cisco Common Classification Policy Language. Structured, feature-specific configuration commands that use policy maps and class maps to create traffic policies based on events, conditions, and actions.

        EHLO --Extended HELO substitute command for starting the capability negotiation. This command identifies the sender (client) connecting to the remote SMTP server by using the ESMTP protocol.

        ESMTP --Extended Simple Mail Transfer Protocol. Extended version of the Simple Mail Transfer Protocol (SMTP), which includes additional functionality, such as delivery notification and session delivery. ESMTP is described in RFC 1869, SMTP Service Extensions.

        HELO --Command that starts the SMTP capability negotiation. This command identifies the sender (client) connecting to the remote SMTP server by its fully qualified DNS hostname.

        MAIL FROM --Start of an e-mail message that identifies the sender e-mail address (and name, if used), which appears in the From: field of the message.

        MIME --Multipurpose Internet Mail Extension. Standard for transmitting nontext data (or data that cannot be represented in plain ASCII code) in e-mail, such as binary, foreign language text (such as Russian or Chinese), audio, or video data. MIME is defined in RFC 2045.

        RCPT TO --Recipient e-mail address (and name, if used) that can be repeated multiple times for a likely message to deliver a single message to multiple recipients.

        SMTP --Simple Mail Transfer Protocol. Internet protocol providing e-mail services.