CONTENTS

CHAPTER 1
Router Overview 1
 Introduction 1
 Features 1
 Performance Features 1
 Management Options 2
 Manageability Features 2
 Security Features 3
 Quality of Service and Class of Service Features 3
 Layer 3 Features 4
 Layer 3 VPN Services 4
 Monitoring Features 5

CHAPTER 2
Licensing 7
 Finding Feature Information 7
 Feature Overview 7
 Licenses Supported on Router 8
 License Types 8
 Image Level License 8
 Features Supported 8
 Feature Based License 9
 Port Based/Mode License 9
 1588BC License 9
 Port or Interface Behavior 10
 Port Based License 10
 Example: When Port Based License is not Installed 10
 Example: When Port Based License is Installed 10
Contents

10gigUpgrade License 11
- Example: When 10gigUpgrade License is not Installed 11
- Example: When 10gigUpgrade License is Installed 12

Flexi License 12
- Example: When Flexi License is not Installed 13
- Example: When Flexi License is Installed 13

1588BC License 13
- Example: When 1588BC License is not Installed 13
- Example: When 1588BC License is Installed 14

Removing the License 14

Generating the License 16

Installing the License 16

Changing the License 17

Verifying the License 18

Where to Go Next 18

Additional References 18

Feature Information for Licensing 19

CHAPTER 3

First-Time Configuration 21

Setup Mode 21
- Before Starting Your Router 21
- Using Setup Mode 21
 - Configuring Global Parameters 22
 - Completing the Configuration 23
- Verifying the Cisco IOS Software Version 24
- Configuring the Hostname and Password 25
 - Verifying the Hostname and Password 26

CHAPTER 4

Managing and Monitoring Network Management Features 29

Finding Feature Information 29

Network Management Features for the 29
 - Cisco Active Network Abstraction (ANA) 30
 - SNMP MIB Support 30
 - Cisco Networking Services (CNS) 30
How to Configure Network Management Features on

Configuring SNMP Support 30
Configuring Remote Network Management 34
Enabling Cisco Networking Services (CNS) and Zero-Touch Deployment 36
 Zero-Touch Deployment 36
 Image Download 37
Configuring a DHCP Server 38
Configuring a TFTP Server 40
 Creating a Bootstrap Configuration 40
 Enabling a TFTP Server on the Edge Router 40
Configuring the Cisco Configuration Engine 40
Configuration Examples 41
 Example: Configuring SNMP Support 41
 Example: Configuring Remote Network Management 41
 Example: Configuring a DHCP Server 41
 Example: Zero-touch Deployment 41
Where to Go Next 41
Additional References 42
Feature Information for Monitoring and Managing the Router 43

CHAPTER 5

Using the Command-Line Interface 45
 Understanding Command Modes 45
 Understanding the Help System 47
 Understanding Abbreviated Commands 47
 Understanding no and default Forms of Commands 48
 Understanding CLI Error Messages 48
Using Command History 48
 Changing the Command History Buffer Size 49
 Recalling Commands 49
 Disabling the Command History Feature 49
Using Editing Features 50
 Enabling and Disabling Editing Features 50
 Editing Commands through Keystrokes 50
 Editing Command Lines that Wrap 52
Searching and Filtering Output of show and more Commands 52
Accessing the CLI 53
 Accessing the CLI through a Console Connection or through Telnet 53
Saving Configuration Changes 53

CHAPTER 6
Software Upgrade 55
 Selecting a Cisco IOS Image 55
 Upgrading the Cisco IOS image 55
 Auto Upgrading the MCU 58
 Manually Upgrading the ROMMON 58
 Auto Upgrade of ROMMON 59

CHAPTER 7
Configuring Gigabit Ethernet Interfaces 61
 Configuring the Interface 61
 Setting the Speed and Duplex Mode 62
 Enabling the Interface 63
 Modifying MTU Size on the Interface 64
 Verifying the MTU Size 65
 MAC Flap Control 65
 Configuring MAC FLap Control 66
 Configuring a Combo Port 66
 Verifying the Media Type 68

CHAPTER 8
Configuring Ethernet Virtual Connections 71
 Finding Feature Information 71
 Supported EVC Features 72
 Understanding EVC Features 72
 Ethernet Virtual Connections 72
 Service Instances and EFPs 73
 Encapsulation 73
 VLAN Counters 74
 Bridge Domains 75
 DHCP Client on Switch Virtual Interface 75
 Split-Horizon 75
Contents

Rewrite Operations 76
DHCP Snooping with Option 82 on EVC 76
DHCP Client FORCERENEW Message Overview 77
 DHCP Forcereenew Limitations 77
Configuring EFPs 77
 Default EVC Configuration 78
Configuring VLAN Counters on SVI 78
 Verifying VLAN Counters Configuration on SVI 79
Configuration Guidelines 79
Creating Service Instances 80
Configuring DHCP Snooping with Option-82 on EVC 82
Forcing a Release or Renewal of a DHCP Lease for a DHCP Client 83
Configuring FORCERENEW Message Handling 83
Configuring Per-Port Rate Limit 85
Verifying DHCP Snooping with Option 82 on EVC 86
Example: Configuring DHCP Snooping with Option 82 on EVC 87
Configuration Examples of Supported Features 88
 Example: Configuring a Service Instance 88
 Example: Encapsulation Using a VLAN Range 88
 Example: Configuring VLAN Counters on SVI 88
 Example: Two Service Instances Joining the Same Bridge Domain 89
 Example: Bridge Domains and VLAN Encapsulation 89
 Example: Rewrite 89
 Example: Split Horizon 89
 Examples: Releasing a DHCP Lease 90
 Examples: Renewing a DHCP Lease 90
How to Configure EVC Default Encapsulation 91
 Configuring EVC Default Encapsulation with Bridge-Domain 91
 Configuring EVC Default Encapsulation with Xconnect 92
 Verifying EVC Default Encapsulation with Bridge-Domain 93
 Verifying EVC Default Encapsulation with Xconnect 93
 Configuration Examples for EVC Default Encapsulation 93
 Example: Configuring EVC Default Encapsulation with Bridge-Domain 93
 Example: Configuring EVC Default Encapsulation with Xconnect 94
CHAPTER 9

Configuring Other Features on EFPs 94
EFPs and EtherChannels 94
 MAC Address Forwarding, Learning and Aging on EFPs 94
 Disabling MAC Address Learning on an Interface or Bridge Domain 95
Example: Configuring EFP and EtherChannels 96
Verification 96
Configuring IEEE 802.1Q Tunneling using EFPs 97
Restrictions 98
 802.1Q Tunneling (QinQ) 98
Example: Configuring IEEE 802.1Q Tunneling Using EFPs 99
Routed QinQ 100
Restrictions 100
 Configuration Examples for Routed QinQ 100
Bridge Domain Routing 101
Restrictions 101
 Example: Configuring Bridge-Domain Routing 101
How to Configure DHCP Client on SVI 101
 Configuring DHCP Client on SVI 101
 Verifying DHCP Client on SVI 103
 Example: Configuring DHCP Client on SVI 103
EFPs and MAC Addresses 103
EFPs and MSTP 103
Monitoring EVC 104
Configuring Switchport to EVC Mapping 105
 Example: Configuring Switchport to EVC Mapping 106
Troubleshooting DHCP Snooping with Option-82 on EVC 107
Additional References 108
Feature Information for Configuring Ethernet Virtual Connections 109
Chapter 10: Configuring Ethernet OAM

Configuring Ethernet OAM 125

Understanding Ethernet CFM 126

IP SLA Support for CFM 126

Configuring Ethernet CFM 126

Default Ethernet CFM Configuration 126

Ethernet CFM Configuration Restrictions and Guidelines 127

Configuring the CFM Domain 127

Configuring Multi-UNI CFM MEPs in the Same VPN 131

Configuration Examples for Multi-UNI CFM MEPs 134

Verification 135

Configuring Ethernet CFM Crosscheck 135

Configuring Static Remote MEP 137

Configuring a Port MEP 138

CFM with Hardware Offloading for G.8032 140

Restrictions 141
Configuring Two-Way Delay Measurement 202
What to Do Next 205
Configuring Two-Way Delay Measurement on Xconnect (EoMPLS) 205
Example: Verifying Y.1731 Two Way ETH-DM on Xconnect (EoMPLS) 206
Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS) 207
Configuring Single-Ended Synthetic Loss Measurement 209
What to Do Next 213
Scheduling IP SLAs Operations 213
Verifying the Frame Delay and Synthetic Loss Measurement Configurations 215
Example: Verifying Sender MEP for a Two-Way Delay Measurement Operation 215
Example: Verifying Receiver MEP for a Two-Way Delay Measurement Operation 215
Example: Verifying Sender MEP for a Synthetic Loss Measurement Operation 216
Example: Verifying Ethernet CFM Performance Monitoring 216
Example: Verifying History for IP SLAs Operations 217
How to Configure IP SLAs Y.1731 On-Demand and Concurrent Operations 218
Configuring Direct On-Demand Operation on a Sender MEP 218
Configuring Referenced On-Demand Operation on a Sender MEP 219
Configuring IP SLAs Y.1731 Concurrent Operation on a Sender MEP 219
Configuration Examples for IP SLAs Y.1731 On-Demand Operations 220
Example: On-Demand Operation in Direct Mode 220
Example: On-Demand Operation in Referenced Mode 220
Additional References 221
Feature Information for ITU-T Y.1731 Performance Monitoring 222

CHAPTER 12
Configuring Resilient Ethernet Protocol 225
Understanding Resilient Ethernet Protocol 225
Overview 225
Restrictions 227
Link Integrity 227
Fast Convergence 228
VLAN Load Balancing (VLB) 228
Spanning Tree Interaction 229
REP Ports 230
Configuring Resilient Ethernet Protocol 230
CHAPTER 13
Configuring MST on EVC Bridge Domain 251

Overview of MST and STP 251
Overview of MST on EVC Bridge Domain 252
Restrictions and Guidelines 252
Configuring MST on EVC Bridge Domain 254

Configuration Example for MST on EVC Bridge Domain 255

Verification 256

Troubleshooting Tips 258

CHAPTER 14
Configuring Multiprotocol Label Switching 259

Configuring Multiprotocol Label Switching 259

CHAPTER 15
Configuring EoMPLS 261

Understanding EoMPLS 261

Restrictions for EoMPLS 262

Configuring EoMPLS 262

EoMPLS Configuration Example 264
Configuring EVC Default Encapsulation with xconnect 265
Verifying EVC Default Encapsulation with xconnect 266
Configuration Example for EVC Default Encapsulation with Xconnect 266
Configuring Pseudowire Redundancy 267
Configuration Commands 267
Port-Based EoMPLS 268
Feature Information for Configuring EoMPLS 269

CHAPTER 16
Configuring MPLS VPNs 271
Understanding MPLS VPNs 271
Configuring MPLS VPNs 272
Configuration Examples for MPLS VPN 272

CHAPTER 17
Configuring MPLS OAM 279
Understanding MPLS OAM 279
LSP Ping 279
LSP Traceroute 280
LSP Ping over Pseudowire 280
How to Configure MPLS OAM 280
Using LSP Ping for LDP IPv4 FEC 280
Using LSP Traceroute for LDP IPv4 FEC 281
Using LSP Ping for Pseudowire 281
Using LSP Traceroute over Pseudowire 281
Displaying AToM VCCV capabilities 281

CHAPTER 18
Configuring Routing Protocols 283
Configuring Routing Protocols 283
Changing Default Hashing Algorithm for ECMP 284

CHAPTER 19
Configuring Bidirectional Forwarding Detection 285
Understanding BFD 285
Configuring BFD 285
BFD Configuration Guidelines and Restrictions 285
Configuring BFD for OSPF 286
Verifying PTP Configuration on the 1588V2 Slave in Multicast Mode 343
Verifying PTP Configuration on the 1588V2 Master in Unicast Mode 346
Verifying PTP Configuration on the 1588V2 Master in Multicast Mode 347
PTP Hybrid Clock 350
 Configuring a Hybrid Ordinary Clock 350
 Configuring a Hybrid Boundary Clock 353
 Verifying Hybrid modes 356
Configuration Examples for BMCA 356
 Example: Configuring a Slave Ordinary Clock in BMCA 356
 Example: Configuring a Boundary Clock in BMCA 357
SSM and PTP Interaction 357
ClockClass Mapping 357
 Telecom Profiles 358
PTP Redundancy 358
 Configuring Telecom Profile in Slave Ordinary Clock 358
 Configuring Telecom Profile in Master Ordinary Clock 360
 Verifying Telecom profile 362
 Setting the TimeProperties 363
 Negotiation Mechanism 363
 Static Unicast Mode 363
VRF-Aware Precision Time Protocol 364
 Configuring VRF-Aware Precision Time Protocol 364
 Examples 366
Configuring ToD on 1588V2 Slave 367
1588v2 Phase Asymmetry Correction 367
 Configuring Asymmetry Correction 370
 Verifying 1588v2 Phase Asymmetry Correction 371
 Example: Configuring 1588v2 Phase Asymmetry Correction 371
Troubleshooting Tips 371

CHAPTER 22
Cisco IOS IP SLA 373
 Configuring IPSLA Path Discovery 373
 Example for IPSLA Path Discovery 375
 Two-Way Active Measurement Protocol 377
Conﬁguring TWAMP 378
Conﬁguring the TWAMP Server 378
Conﬁguring the TWAMP Reflector 379
Conﬁguring the TWAMP Reflector 379
Conﬁguration Examples for TWAMP 380
 Example: Conﬁguring the Router as an IP SLA TWAMP server 380
 Example: Conﬁguring the Router as an IP SLA TWAMP Reflector 380

C H A P T E R 2 3 Conﬁguring QoS 381
Finding Feature Information 381
Understanding QoS 382
Modular QoS CLI 383
Input and Output Policies 384
 Input Policy Maps 385
 Output Policy Maps 385
Access Control Lists 386
 Restrictions 386
Classiﬁcation 386
 Class Maps 387
 The match Command 388
Classification Based on Layer 2 CoS 388
Classification Based on IP Precedence 388
Classification Based on IP DSCP 389
Classification Comparisons 389
Classification Based on QoS Groups 390
Classification Based on VLAN IDs 391
Classification Based on ACL 393
Table Maps 393
Policing 394
 Individual Policing 394
 Unconditional Priority Policing 396
Egress Policing 397
Marking 397
Congestion Management and Scheduling 398
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Shaping</td>
<td>399</td>
</tr>
<tr>
<td>Class-Based Weighted Fair Queuing</td>
<td>400</td>
</tr>
<tr>
<td>Priority Queuing</td>
<td>402</td>
</tr>
<tr>
<td>Ingress and Egress QoS Functions</td>
<td>404</td>
</tr>
<tr>
<td>Configuring QoS</td>
<td>404</td>
</tr>
<tr>
<td>QoS Limitations</td>
<td>405</td>
</tr>
<tr>
<td>General QoS Limitations</td>
<td>405</td>
</tr>
<tr>
<td>Statistics Limitations</td>
<td>406</td>
</tr>
<tr>
<td>Propagation Limitations</td>
<td>406</td>
</tr>
<tr>
<td>Classification Limitations</td>
<td>406</td>
</tr>
<tr>
<td>Marking Limitations</td>
<td>408</td>
</tr>
<tr>
<td>Congestion Management Limitations</td>
<td>408</td>
</tr>
<tr>
<td>ACL-based QoS Restrictions</td>
<td>410</td>
</tr>
<tr>
<td>Improving Feature Scalability</td>
<td>411</td>
</tr>
<tr>
<td>TCAM with QoS</td>
<td>411</td>
</tr>
<tr>
<td>QoS for MPLS over MLPPP and IP over MLPPP</td>
<td>411</td>
</tr>
<tr>
<td>QoS for CPU-Generated Traffic</td>
<td>411</td>
</tr>
<tr>
<td>QoS Configuration Guidelines</td>
<td>412</td>
</tr>
<tr>
<td>Sample QoS Configuration</td>
<td>412</td>
</tr>
<tr>
<td>Configuring Classification</td>
<td>414</td>
</tr>
<tr>
<td>Creating a Class Map for Classifying Network Traffic</td>
<td>414</td>
</tr>
<tr>
<td>Creating a Policy Map for Applying a QoS Feature to Network Traffic</td>
<td>415</td>
</tr>
<tr>
<td>Attaching the Policy Map to an Interface</td>
<td>416</td>
</tr>
<tr>
<td>Attaching a Policy Map to a Cross-Connect EVC</td>
<td>418</td>
</tr>
<tr>
<td>Configuring Marking</td>
<td>419</td>
</tr>
<tr>
<td>Creating a Class Map for Marking Network Traffic</td>
<td>420</td>
</tr>
<tr>
<td>Creating a Policy Map for Applying a QoS Feature to Network Traffic</td>
<td>421</td>
</tr>
<tr>
<td>Attaching the Policy Map to an Interface</td>
<td>422</td>
</tr>
<tr>
<td>Configuring MPLS Exp Bit Marking using a Pseudowire</td>
<td>423</td>
</tr>
<tr>
<td>Configuring Congestion Management</td>
<td>425</td>
</tr>
<tr>
<td>Configuring Low Latency Queueing</td>
<td>425</td>
</tr>
<tr>
<td>Configuring Multiple Priority Queueing</td>
<td>426</td>
</tr>
<tr>
<td>Configuration Examples</td>
<td>427</td>
</tr>
<tr>
<td>Configuring Class-Based Weighted Fair Queuing (CBFQ)</td>
<td>428</td>
</tr>
</tbody>
</table>
Contents

Weighted Random Early Detection (WRED) 429
Configuring Shaping 431
 Configuring Class-Based Traffic Shaping in a Primary-Level (Parent) Policy Map 431
 Configuring the Secondary-Level (Child) Policy Map 432
Configuring Ethernet Trusted Mode 433
Creating IP Extended ACLs 433
Using Class Maps to Define a Traffic Class 435
Creating a Named Access List 437
 What to do Next 439
 TCAM with ACL 439
Verifying Named Access List 440
Configuration Example for Named Access List 440
Access Control Lists for IPv6 Traffic Filtering 446
 Creating and Configuring an IPv6 ACL for Traffic Filtering 446
 Applying the IPv6 ACL to an Interface 448
QoS Treatment for Performance-Monitoring Protocols 449
Cisco IP-SLAs 449
QoS Treatment for IP-SLA Probes 449
 Marking 449
 Queuing 450
QoS Marking for CPU-Generated Traffic 450
QoS Queuing for CPU-Generated Traffic 450
Extending QoS for MLPPP 451
 Configuring Class-map for Matching MPLS EXP Bits 451
 Configuring Class-map for Matching IP DSCP Value 452
 Configuring Class-map for Matching MPLS EXP Bits or IP DSCP Value 453
 Configuring a Policy-map 454
 Attaching the Policy-map to MLPPP Interface 457
 Re-marking IP DSCP Values of CPU Generated Traffic 459
 Re-marking MPLS EXP Values of CPU Generated Traffic 459
 Configuring a Policy-map to Match on CS5 and EXP4 460
 Attaching the Policy-map to Match on CS5 and EXP4 to MLPPP Interface 463
Configuration Examples for Extending QoS for MPLS over MLPPP 463
 Configuring Class-map for Matching MPLS EXP Bits 463
Configuring Class-map for Matching IP DSCP Value 463
Configuring Class-map for Matching MPLS EXP Bits or IP DSCP Value 463
Configuring a Policy-map 464
Configuring a Policy-map to Match on CS5 and EXP 4 464
Attaching the Policy-map to MLPPP Interface 464
Verifying MPLS over MLPPP Configuration 465
Configuration Guidelines 466
ICMP-based ACL 467
ICMP-based ACL Overview 467
ICMP-based ACL Restrictions 467
Configuring IPv4 Port ACL for ICMP-based ACL 467
Configuring IPv4 Router ACL for ICMP-based ACL 468
Configuring ACL-based QoS for ICMP-based ACL 469
Configuring IPv6 Router ACL for ICMP-based ACL 470
Verifying ICMP based ACL Configuration 471
Policy for DHCP Control Packet 472
Troubleshooting Tips 473
Additional References 477
Feature Information for Configuring QoS 478

CHAPTER 24
Onboard Failure Logging 481
Understanding OBFL 481
Configuring OBFL 481
Verifying OBFL Configuration 482

CHAPTER 25
Hot Standby Router Protocol and Virtual Router Redundancy Protocol 485
Finding Feature Information 485
Information About HSRP and VRRP 486
Overview of HSRP and VRRP 486
Text Authentication 486
Preemption 486
How to Configure HSRP 487
Configuring HSRP 487
Configuration Examples for HSRP 489
CHAPTER 27 Configuring Multihop Bidirectional Forwarding Detection 505
Finding Feature Information 505
Restrictions for Multihop BFD 505
Information About Multihop BFD 506
Overview of Multihop BFD 506
How to Configure Multihop BFD 506
 Configuring Multihop BFD Template 506
 Configuring a Multihop BFD Map 507
Configuration Examples for Multihop BFD 508
 Example: Configuring Multihop BFD 508
Where to Go Next 509
Additional References 509
Feature Information for Multihop BFD 510

CHAPTER 28 Microwave ACM Signaling and EEM Integration 513
Finding Feature Information 513
Prerequisites for Microwave ACM Signaling and EEM Integration 513
Feature Overview 514
 Benefits 515
How to Configure Microwave ACM Signaling and EEM Integration 515
 Configuring Connectivity Fault Management 515
Configuring EEP Applet Using CLIs 518
Configuring Event Handler 520
Verifying Microwave Microwave ACM Signaling and EEM Integration Configuration 521
Configuration Examples for Microwave ACM Signaling and EEM Integration 522
 Example: Configuring CFM 522
Example: Configuring EEP Applet 522
Example: Configuring Event Handler 525
Additional References 525
Feature Information for Microwave ACM Signaling and EEM Integration 526

CHAPTER 29 IPv6 Support on the Router 529
Finding Feature Information 529
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associating an IPv6 Static Route with a BFDv6 Neighbor</td>
<td>549</td>
</tr>
<tr>
<td>Configuring BFDv6 and OSPFv3</td>
<td>550</td>
</tr>
<tr>
<td>Configuring BFDv6 for BGP</td>
<td>552</td>
</tr>
<tr>
<td>Implementing QoS for IPv6</td>
<td>553</td>
</tr>
<tr>
<td>Verifying the Configuration of IPv6 Support on the Cisco ASR 901 Router</td>
<td>553</td>
</tr>
<tr>
<td>Verifying IPv6 Addressing Routing</td>
<td>553</td>
</tr>
<tr>
<td>Verifying a Static IPv6 Route</td>
<td>554</td>
</tr>
<tr>
<td>Verifying a Stateless Auto-Configuration</td>
<td>554</td>
</tr>
<tr>
<td>Verifying IPv6 Implementation on VLAN Interfaces</td>
<td>555</td>
</tr>
<tr>
<td>Verifying IPv6 Implementation on Loopback Interfaces</td>
<td>555</td>
</tr>
<tr>
<td>Verifying ICMPv6 Configuration</td>
<td>556</td>
</tr>
<tr>
<td>Verifying IPv6 Duplicate Address Detection Configuration</td>
<td>557</td>
</tr>
<tr>
<td>Verifying IPv6 Neighbor Discovery Configuration</td>
<td>558</td>
</tr>
<tr>
<td>Verifying IPv6 and IPv4 Dual-Stack Configuration</td>
<td>558</td>
</tr>
<tr>
<td>Verifying OSPFv3 for IPv6 Configuration</td>
<td>560</td>
</tr>
<tr>
<td>Verifying IS-IS for IPv6 Configuration</td>
<td>560</td>
</tr>
<tr>
<td>Verifying Multiprotocol-BGP for IPv6 Configuration</td>
<td>560</td>
</tr>
<tr>
<td>Verifying BFD for IPv6 Configuration</td>
<td>562</td>
</tr>
<tr>
<td>Verifying BFDv6 and OSPFv3 Configuration</td>
<td>563</td>
</tr>
<tr>
<td>Verifying BFDv6 for BGP Configuration</td>
<td>563</td>
</tr>
<tr>
<td>Configuration Examples for IPv6 Support on the Router</td>
<td>564</td>
</tr>
<tr>
<td>Example: IPv6 Addressing on VLAN Interfaces</td>
<td>564</td>
</tr>
<tr>
<td>Example: IPv6 Addressing on Loopback Interfaces</td>
<td>564</td>
</tr>
<tr>
<td>Example: Customizing ICMPv6</td>
<td>564</td>
</tr>
<tr>
<td>Example: Configuring IPv6 Duplicate Address Detection</td>
<td>565</td>
</tr>
<tr>
<td>Example: Configuring IPv6 Neighborhood Discovery</td>
<td>565</td>
</tr>
<tr>
<td>Example: Enabling IPv6 Stateless Address Autoconfiguration</td>
<td>565</td>
</tr>
<tr>
<td>Example: Configuring the IPv4 and IPv6 Dual-Stack</td>
<td>565</td>
</tr>
<tr>
<td>Example: Configuring IPv6 Static Routing</td>
<td>566</td>
</tr>
<tr>
<td>Example: Configuring BFD and Static Routing for IPv6</td>
<td>566</td>
</tr>
<tr>
<td>Example: Configuring OSPFv3 for IPv6</td>
<td>566</td>
</tr>
<tr>
<td>Example: Configuring BFD and OSPFv3 for IPv6</td>
<td>567</td>
</tr>
<tr>
<td>Example: Configuring IS-IS for IPv6</td>
<td>567</td>
</tr>
<tr>
<td>Example: Configuring Multiprotocol-BGP for IPv6</td>
<td>568</td>
</tr>
</tbody>
</table>
Enabling BFD Triggered FRR on an SVI Interface 596
Enabling BFD Triggered FRR on a Router 597
Verification Examples 597
Verifying MPLS TE-FRR Configuration 597
Verifying Primary One-hop Auto-Tunnels 599
Verifying Backup Auto-Tunnels 600
Verifying BFD Triggered FRR Configuration 601
Configuration Examples 604
Example: Configuring MPLS TE-FRR 604
Example: Configuring Primary One-hop Auto-Tunnels 604
Example: Configuring Backup Auto-Tunnels 604
Example: Configuring BFD Triggered FRR 604
Additional References 604
Feature Information for MPLS Traffic Engineering - Fast Reroute Link Protection 605

CHAPTER 32
Layer 2 Control Protocol Peering, Forwarding, and Tunneling 607
Finding Feature Information 607
Prerequisites for Layer 2 Control Protocol Peering, Forwarding, and Tunneling 607
Restrictions for Layer 2 Control Protocol Peering, Forwarding, and Tunneling 608
Layer 2 Control Protocol Forwarding 608
Layer 2 Control Protocol Tunneling 608
How to Configure Layer 2 Control Protocol Peering, Forwarding, and Tunneling 609
Configuring Layer 2 Peering 609
Configuring Layer 2 Forwarding 611
Configuring Layer 2 Tunneling 613
Verifying Layer 2 Peering 615
Verifying Layer 2 Forwarding 615
Verifying Layer 2 Tunneling 615
Configuration Examples 616
Example: Configuring Layer 2 Peering 616
Example: Configuring Layer 2 Forwarding 616
Example: Configuring Layer 2 Tunneling 618
Additional References 619
Feature Information for Layer 2 Control Protocol Peering, Forwarding, and Tunneling 620
IPv6 over MPLS: 6PE and 6VPE

Finding Feature Information

- **Prerequisites**
- **Restrictions**
- **Feature Overview**
 - Benefits of 6PE and 6VPE
 - IPv6 on Provider Edge Routers
 - IPv6 on VPN Provider Edge Routers
 - Components of MPLS-based 6VPE Network
- **Supported Features**
- **Scalability Numbers**
- **How to Configure IPv6 over MPLS: 6PE and 6VPE**
 - Configuring 6PE
 - Configuring 6VPE
 - Setting up IPv6 Connectivity from PE to CE Routers
 - Setting up MP-BGP Peering to the Neighboring PE
 - Setting up MPLS/IPv4 Connectivity with LDP
 - Creating IPv6 VRFs on PE Routers
 - Verifying IPv6 over MPLS: 6PE and 6VPE Configuration
- **Configuration Examples**
 - Example: Configuring 6PE
 - Example: Configuring 6VPE
- **Additional References**

Storm Control

- **Finding Feature Information**
- **Prerequisites for Storm Control**
- **Restrictions for Storm Control**
- **Information About Storm Control**
- **Configuring Storm Control**
- **Verifying Storm Control**
- **Configuring Error Disable Recovery**
Configuring Remote LFA-FRR on an SVI Interface 669
Configuring Remote LFA-FRR on IS-IS 670
Configuring LFA-FRR for EoMPLS 674
Configuring LFA-FRR for ATM/IMA 676
Configuring LFA-FRR for CESoPSN 678
Configuring LFA-FRR for SAToP 680
Verification Examples for Remote LFA-FRR 682
Verifying Remote LFA-FRR Configuration 682
Verifying Remote LFA-FRR Configuration for EoMPLS on a GigabitEthernet Interface 685
Verifying Remote LFA-FRR Configuration for EoMPLS on an EVC Interface 686
Verifying Remote LFA-FRR Configuration on IS-IS 687
Verifying Remote LFA-FRR Configuration on ATM/IMA 687
Verifying Remote LFA-FRR Configuration on CESoPSN 688
Verifying Remote LFA-FRR Configuration on SAToP 689
Configuration Examples for Remote LFA-FRR 689
Example: Configuring Remote LFA-FRR for IS-IS 689
Example: Configuring Remote LFA-FRR for OSPF 690
Example: Configuring Remote LFA-FRR Globally 690
Example: Configuring Remote LFA-FRR on a GigabitEthernet Interface 690
Example: Configuring Remote LFA-FRR on an SVI Interface 691
Example: Configuring EoMPLS Pseudowire Redundancy over FRR 691
Example: Configuring LFA-FRR on ATM/IMA 691
Example: Configuring LFA-FRR on CESoPSN 691
Example: Configuring LFA-FRR on SAToP 692
Additional References 692
Feature Information for Remote Loop-Free Alternate - Fast Reroute 693

CHAPTER 37

Digital Optical Monitoring 695
Finding Feature Information 695
Feature Overview 695
How to Enable Transceiver Monitoring 696
Examples 697
Example: Displaying Transceiver Information 697
Example: Displaying Detailed Transceiver Information 697
Example: Displaying List of Supported Transceivers 698
Example: Displaying Threshold Tables 699
Example: Displaying Threshold Violations 701
Example: Displaying Threshold Violations on a Specific Interface 701
Example: When Transceiver Monitoring is Disabled 702
Example: Displaying SFP Details 702
Additional References 703
Feature Information for Digital Optical Monitoring 704

CHAPTER 38 Autonomic Networking Infrastructure 705
Autonomic Networking 705
Finding Feature Information 705
Prerequisites for Autonomic Networking 705
Restrictions for Autonomic Networking 706
Information About Autonomic Networking 706
Overview of Autonomic Networking 706
Autonomic Networking Infrastructure 707
Working of the Registrar 708
Channel Discovery in Autonomic Networking 709
Service Discovery in Autonomic Networking 709
Autonomic Control Plane 709
How to Configure Autonomic Networking 710
Configuring the Registrar 710
Verifying and Monitoring Autonomic Networking Configuration 711
Additional References for Autonomic Networking 713
Feature Information for Autonomic Networking 714

CHAPTER 39 IPv4 Multicast 715
Finding Feature Information 715
Prerequisites for IPv4 Multicast 715
Restrictions for IPv4 Multicast 716
Information About IPv4 Multicast 716
Supported Protocols 717
PIM SSM for IPv4 717
Example: IPv4 Multicast Routing 742
Example: Configuring PIM SSM 742
Example: Configuring PIM SSM Mapping 743
Example: Configuring Rendezvous Point 743
Example: Configuring Multicast Receivers in the VRF Interface 743
Example: Configuring IGMP Snooping 743
Example: Configuring IPv4 Multicast Routing for VRF Lite 744
Example: Configuring PIM BFD on an IPv4 Interface 744
Troubleshooting Tips 746
Additional References 746
Feature Information for IPv4 Multicast 747

CHAPTER 40
IPv6 Multicast 751
Prerequisites for IPv6 Multicast 751
Restrictions for IPv6 Multicast 751
Information About IPv6 Multicast 752
IPv6 Multicast Groups 752
IPv6 Multicast Routing Implementation 752
Multicast Listener Discovery Protocol for IPv6 753
MLD Snooping 754
MLD Snooping Support 754
Protocol Independent Multicast 755
PIM Source Specific Multicast 755
Source Specific Multicast Mapping for IPv6 755
PIM-Sparse Mode 756
Rendezvous Point 756
IPv6 Multicast VRF Lite 756
PIM BFD 756
Configuring IPv6 Multicast 757
Enabling IPv6 Multicast Routing 757
Disabling IPv6 Multicast Forwarding 758
Disabling MLD Device-Side Processing 758
Configuring MLD Protocol on an Interface 759
Configuring MLD Snooping 761
Enabling MLDSnooping Globally
- Enabling MLDSnooping on a VLAN
- Configuring a Static Multicast Group
- Configuring a Multicast Router Port
- Enabling MLD Immediate Leave
- Configuring an MLDSnooping Query
- Disabling MLDSnooping Listener Message Suppression
- Configuring a Rendezvous Point
- Configuring PIMSSM Options
- Disabling PIMSSM Multicast on an Interface
- Configuring IPv6SSM Mapping
- Configuring IPv6 Multicast Routing for VRF Lite
- Enabling VRF Under a VLAN Interface
- Configuring PIM BFD on an IPv6 Interface
- Verifying IPv6 Multicast
- Verifying MLDSnooping
- Verifying IPv6 Multicast Routing for VRF Lite
- Verifying PIM BFD Support

Configuration Examples for IPv6 Multicast
- Example: Enabling IPv6 Multicast Routing
- Example: Configuring IPv6 SSM Mapping
- Example: Configuring IPv6 MLDSnooping
- Example: Configuring Rendezvous Point
- Example: Configuring IPv6 Multicast Routing for VRF Lite
- Example: Configuring BFD PIM on an IPv6 Interface

Troubleshooting Tips

Chapter 41: Configuring Switched Port Analyzer
- Finding Feature Information
- SPAN Limitations and Configuration Guidelines
- Understanding SPAN
 - Overview
 - SPAN Session
 - Source Interface
IP Security

CHAPTER 42

- Prerequisites for IP Security 805
- Restrictions for IP Security 805
- Information About IP Security 806
 - IKE Security Protocol 806
 - Advanced Encryption Standard 806
 - Triple DES Encryption 806
 - Encrypted Preshared Key 806
 - IKE Modes 807
 - Supported Components 807
- Configuring IP Security 808
 - Creating a Preshared Key 808
 - Creating an ISAKMP Policy 809
 - Creating an ISAKMP Profile 810
 - Defining an IPsec Transform Set 811
 - Creating an IPsec Profile 812
 - Creating a VPN Tunnel Interface 813
 - Configuring Static Routing 814
 - Verifying Static Routing 815
 - Enabling Dynamic Routing 816
 - Verifying Dynamic Routing 817
- Configuration Examples for IP Security 818
 - Example: Creating a Preshared Key 818
Example: Creating an ISAKMP Policy 818
Example: Creating an ISAKMP Profile 818
Example: Defining an IPsec Transform Set 819
Example: Creating an IPsec Profile 819
Example: Creating a VPN Tunnel Interface 819
Example: Configuring Static Routing 819
Example: Enabling Dynamic Routing 820

NAT Traversal 820
Restrictions for NAT Traversal 820
Information About NAT Traversal 821
Feature Design of IPsec NAT Traversal 821

Additional References 826
Related Documents 826
Standards 826
MIBs 826
RFCs 826
Technical Assistance 827

Feature Information for IP Security 827

CHAPTER 43
ITU-T G.8032 Ethernet Ring Protection Switching 829
Finding Feature Information 829
Prerequisites for Configuring ITU-T G.8032 Ethernet Ring Protection Switching 829
Restrictions for Configuring ITU-T G.8032 Ethernet Ring Protection Switching 830
Information About Configuring ITU-T G.8032 Ethernet Ring Protection Switching 830
G.8032 Overview 830
ITU-T G.8032 Ethernet Ring Protection Switching Functionality 831
Single-Ring Topology 832
Multiple-Rings Topology 832
R-APS Control Messages 833
CFM Protocols and Link Failures 834
G.8032 Ring-Supported Commands and Functionality 834
G.8032 ERP Timers 835
Protection Switching Functionality in a Single Link Failure and Recovery 835
How to Configure ITU-T G.8032 Ethernet Ring Protection Switching 838
Configuring the Ethernet Ring Profile 838
Configuring an Ethernet Protection Ring 839
Configuring Topology Change Notification Propagation 842
Verifying Ethernet Ring Protection Configuration 843
Troubleshooting Tips 846
Configuration Examples for ITU-T G.8032 Ethernet Ring Protection Switching 847
 Example: Configuration for Ethernet Ring Protection 847
Additional References 849
 Related Documents 849
 Standards 849
 RFCs 849
 Technical Assistance 849
Feature Information for Configuring ITU-T G.8032 Ethernet Ring Protection Switching 850

CHAPTER 44 Configuring NAT for IP Address Conservation 853
 Finding Feature Information 853
 Prerequisites for Configuring NAT for IP Address Conservation 854
 Restrictions for Configuring NAT for IP Address Conservation 854
 Information About Configuring NAT for IP Address Conservation 854
 Overview 854
 How NAT Works 855
 Types of NAT 855
 NAT Inside and Outside Addresses 856
 Static IP Address Support 856
 Supported Components 856
 How to Configure NAT for IP Address Conservation 857
 Configuring an Inside Source Address 857
 Configuring Dynamic Translation of Inside Source Addresses Without Overload 858
 Configuring Dynamic Translation of Inside Source Addresses with Overload 861
 Configuring Static PAT 863
 Verifying Configuration of NAT for IP Address Conservation 864
 Configuration Examples for NAT for IP Address Conservation 865
 Example: Configuring Inside Source Address 865
 Example: Configuring Dynamic Translation of Inside Source Addresses Without Overload 865
CHAPTER 1

Router Overview

The router helps enable a variety of RAN solutions by extending IP connectivity to devices using Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), Node Bs using HSPA or LTE, Base Transceiver Stations (BTSs) using Enhanced Data Rates for GSM Evolution (EDGE), Code Division Multiple Access (CDMA), CDMA-2000, EVDO, or WiMAX, and other cell-site equipment.

The router transparently and efficiently transports cell-site voice, data, and signaling traffic over IP including leased line, microwave, and satellite. It also supports alternative backhaul networks, including Carrier Ethernet and Ethernet in the First Mile (EFM).

The router also supports standards-based Internet Engineering Task Force (IETF) Internet protocols over the RAN transport network, including those standardized at the Third-Generation Partnership Project (3GPP) for IP RAN transport.

The router supports Ethernet Virtual Circuits (EVC) only. Metro-Ethernet Forum (MEF) defines an Ethernet Virtual Connection as an association between two or more user network interfaces identifying a point-to-point or multipoint-to-multipoint path within the service provider network. An EVC is a conceptual service pipe within the service provider network.

For more information on EVCs, see Configuring Ethernet Virtual Connections, on page 71.

- Introduction, on page 1
- Features, on page 1

Introduction

Features

This section contains the following topics:

Performance Features

- Autosensing of port speed and autonegotiation of duplex mode on all ports for optimizing bandwidth.
- Automatic-medium-dependent interface crossover (auto-MDIX) capability on 100 and 100/1000 Mbps interfaces and on 100/1000 BASE-T/TX small form-factor pluggable (SFP) module interfaces that enables
the interface to automatically detect the required cable connection type (straight-through or crossover) and to configure the connection appropriately.

- EtherChannel for enhanced fault tolerance and for providing up to 8 Gbps (Gigabit EtherChannel) or 800 Mbps (Fast EtherChannel) full duplex of bandwidth between switches, routers, and servers.
- Link Aggregation Control Protocol (LACP) for automatic creation of EtherChannel links (supported only on NNIs or ENIs).
- Forwarding of Layer 2 and Layer 3 packets at Gigabit line rate.

Management Options

- CLI—You can access the CLI either by connecting your management station directly to the router console port or by using Telnet from a remote management station. For more information about the CLI, see Using the Command-Line Interface, on page 45
- Cisco Configuration Engine—The Cisco Configuration Engine is a network management device that works with embedded Cisco IOS CNS Agents in the Series Aggregation Services Router software. You can automate initial configurations and configuration updates by generating router-specific configuration changes, sending them to the router, executing the configuration change, and logging the results.
- SNMP—SNMP management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView. You can manage from an SNMP-compatible management station that is running platforms such as HP OpenView or SunNet Manager.

For the list of MIBs that router supports, see the Release Notes for router.

Manageability Features

- Address Resolution Protocol (ARP) for identifying a router through its IP address and its corresponding MAC address.
- Cisco Discovery Protocol (CDP) Versions 1 and 2 for network topology discovery and mapping between the router and other Cisco devices on the network (supported on NNIs by default, can be enabled on ENIs, not supported on UNIs).
- Network Time Protocol (NTP) for providing a consistent time stamp to all routers from an external source.
- Cisco IOS FileSystem (IFS) for providing a single interface to all file systems that the router uses.
- In-band management access for up to five simultaneous Telnet connections for multiple CLI-based sessions over the network. Effective with Cisco IOS Release 15.3(2)S1, in-band management access for up to 98 simultaneous Telnet connections for multiple CLI-based sessions over the network.
- In-band management access for up to five simultaneous, encrypted Secure Shell (SSH) connections for multiple CLI-based sessions over the network.
- In-band management access through SNMP Versions 1 and 2c get and set requests.
• Out-of-band management access through the router console port to a directly attached terminal or to a remote terminal through a serial connection or a modem.

• User-defined command macros for creating custom router configurations for simplified deployment across multiple routers.

• Support for metro Ethernet operation, administration, and maintenance (OAM) IEEE 802.1ag Connectivity Fault Management (CFM), Ethernet Line Management Interface (E-LMI) on customer-edge and provider-edge devices, and IEEE 802.3ah Ethernet OAM discovery, link monitoring, remote fault detection, and remote loopback, and IEEE 802.3ah Ethernet OAM discovery, link monitoring, remote fault detection, and remote loopback (requires the metro IP access or metro access image).

• Configuration replacement and rollback to replace the running configuration on a router with any saved Cisco IOS configuration file.

• CPU utilization threshold logs.

Security Features

• Password-protected access (read-only and read-write access) to management interfaces for protection against unauthorized configuration changes.

• Configuration file security so that only authenticated and authorized users have access to the configuration file, preventing users from accessing the configuration file by using the password recovery process.

• Multilevel security for a choice of security level, notification, and resulting actions.

• Automatic control-plane protection to protect the CPU from accidental or malicious overload due to Layer 2 control traffic on UNIs or ENIs.

• TACACS+, a proprietary feature for managing network security through a TACACS server.

• RADIUS for verifying the identity of, granting access to, and tracking the actions of remote users through authentication, authorization, and accounting (AAA) services.

• Extended IP access control lists for defining security policies in the inbound direction on physical ports.

• Extended IP access control lists for defining security policies in the inbound and outbound direction on SVIs.

Quality of Service and Class of Service Features

• Configurable control-plane queue assignment to assign control plane traffic for CPU-generated traffic to a specific egress queue.

• Cisco modular quality of service (QoS) command-line (MQC) implementation

• Classification based on IP precedence, Differentiated Services Code Point (DSCP), and IEEE 802.1p class of service (CoS) packet fields, or assigning a QoS label for output classification

• Policing
 • One-rate policing based on average rate and burst rate for a policer
 • Two-color policing that allows different actions for packets that conform to or exceed the rate
Layer 3 Features

- Aggregate policing for policers shared by multiple traffic classes
- Table maps for mapping CoS, and IP precedence values
- Queuing and Scheduling
 - Class-based traffic shaping to specify a maximum permitted average rate for a traffic class
 - Port shaping to specify the maximum permitted average rate for a port
 - Class-based weighted queuing (CBWFQ) to control bandwidth to a traffic class
 - Low-latency priority queuing to allow preferential treatment to certain traffic
- Per-port, per-VLAN QoS to control traffic carried on a user-specified VLAN for a given interface.

Layer 3 Features

- IP routing protocols for load balancing and for constructing scalable, routed backbones:
 - OSPF
 - BGP Version 4
 - IS-IS dynamic routing
 - BFD protocol Bidirectional Forwarding Detection (BFD) Protocol to detect forwarding-path failures for OSPF, IS-IS, and BGP routing protocols
- IP routing between VLANs (inter-VLAN routing) for full Layer 3 routing between two or more VLANs, allowing each VLAN to maintain its own autonomous data-link domain
- Static IP routing for manually building a routing table of network path information
- Equal-cost routing for load balancing and redundancy
- Internet Control Message Protocol (ICMP) and ICMP Router Discovery Protocol (IRDP) for using router advertisement and router solicitation messages to discover the addresses of routers on directly attached subnets

Layer 3 VPN Services

These features are available only when the router is running the Advance Metro IP services.

- Multiple VPN routing/forwarding (multi-VRF) instances in customer edge devices (multi-VRF CE) to allow service providers to support multiple virtual private networks (VPNs) and overlap IP addresses between VPNs.
- MPLS VPN is supported.
Monitoring Features

- Syslog facility for logging system messages about authentication or authorization errors, resource issues, and time-out events
- Enhanced object tracking for HSRP clients (requires metro IP access image)
- IP Service Level Agreements (IP SLAs) support to measure network performance by using active traffic monitoring (requires metro IP access or metro access image)
- IP SLAs EOT to use the output from IP SLAs tracking operations triggered by an action such as latency, jitter, or packet loss for a standby router failover takeover (requires metro IP access or metro access image)
- EOT and IP SLAs EOT static route support to identify when a preconfigured static route or a DHCP route goes down (requires metro IP access or metro access image)
- Embedded event manager (EEM) for device and system management to monitor key system events and then act on them though a policy (requires metro IP access or metro access image)
This feature module describes the licensing aspects of the Series Aggregation Services Router.

- Finding Feature Information, on page 7
- Feature Overview, on page 7
- Licenses Supported on Router, on page 8
- License Types, on page 8
- Port or Interface Behavior, on page 10
- Generating the License, on page 16
- Installing the License, on page 16
- Changing the License, on page 17
- Verifying the License, on page 18
- Where to Go Next, on page 18
- Additional References, on page 18
- Feature Information for Licensing, on page 19

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for Licensing, on page 19.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Overview

The router license is similar to any other software license in Cisco. It is tied to the Unique Device Identifier (UDI)—where the license is integrated to the PID (Product Identifier) and SN (Serial Number). A license generated for one router cannot be shared or installed in any other router.

Complete these steps to obtain the license file:

1. Purchase the required Product Authorization Key (PAK).
2. Get the UDI from the device.
3. Enter the UDI and PAK in the Cisco’s licensing portal.
 You will receive a license file through email.
1. Install the licenses on the device. For more information on how to install the license, see Installing the License, on page 16.
 In addition to using the router CLI, you can install the license using the Cisco License Manager (CLM) or the Callhome interface.

Licenses Supported on Router

The following licenses are supported:
You should install only a supported license for the proper chassis PID. You will get a “Not Supported” message while trying to install a wrong license. However, license installation process will go through and a confirmation message is displayed. When you run the `show license` command to display the details of this license, the output shows license state as “NOT IN USE”, and you cannot make it “IN USE”.

The following is a sample confirmation message that is displayed on the router when you try to install a wrong license.

License Types

The router supports the following types of licenses:

- Image Level License
- Feature Based License

Image Level License

An Image level license corresponds to the level of the IOS image that comes up based on the licenses present on the router. This license is enforced while booting and it uses a universal image. It activates all the subsystems corresponding to the license that you purchased. Image based licenses need rebooting of the router.

Features Supported

In, and AdvancedMetroIPAccess (SL-A901-A) are permanent; once installed they do not expire. Trial or temporary licenses are not supported on the router.

<table>
<thead>
<tr>
<th>License</th>
<th>Features</th>
</tr>
</thead>
</table>
| /SL-A901-B | • L2, EVC, 802.1Q, 802.1ad, QinQ, 802.3ah, H-Qos, IPv4 static routes, routing protocols, host connectivity, ACL, REP, VRF-Lite
 • E-OAM—CFM (BD, port level), IPSLA (barring LSP)
 • Clocking—SyncE, 1588-OC Slave, 10M, G.781 Priority based Clock Selection (no ESMC/SSM)
 Note: Time-division multiplexing (TDM) is unavailable. |
Feature Based License

Port Based/Mode License

The following table lists the port number, type, and the required license for those ports:

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Port Type</th>
<th>Chassis PID</th>
<th>License PIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td>Copper</td>
<td>A901-4C-FT-D</td>
<td>FLS-A901-4T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-4C-F-D</td>
<td></td>
</tr>
<tr>
<td>4-7</td>
<td>Combo</td>
<td></td>
<td>No license is required. These ports are enabled by default.</td>
</tr>
<tr>
<td>8-11</td>
<td>Small Form-Factor Pluggable(SFP)</td>
<td>A901-4C-FT-D</td>
<td>FLS-A901-4S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-4C-F-D</td>
<td></td>
</tr>
<tr>
<td>0-3 and 8-11</td>
<td>Copper and SFP</td>
<td>A901-6CZ-FT-A</td>
<td>FLS-A901-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-6CZ-FT-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-6CZ-F-A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-6CZ-F-D</td>
<td></td>
</tr>
<tr>
<td>TenGig0/1, TenGig0/2</td>
<td>SFP+</td>
<td>A901-6CZ-FT-A</td>
<td>FLS-A901-2Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-6CZ-FT-D</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-6CZ-F-A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A901-6CZ-F-D</td>
<td></td>
</tr>
</tbody>
</table>

By default, ports 4 to 7 are enabled on the router. When you purchase the copper or SFP port license, the corresponding ports are only enabled. Copper and SFP port licenses can co-exist.

1588BC License

1588BC (SL-A901-T) license is a feature based license. This license does not need rebooting of the router for activation. The following table lists the features supported:

<table>
<thead>
<tr>
<th>License PID</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL-A901-T</td>
<td>Clocking—1588V2 PTP boundary clock</td>
</tr>
</tbody>
</table>
Port or Interface Behavior

The following sections describe the port or interface behavior of the licenses:

Port Based License

When a port-based license is not present, ports 4 to 7 are enabled. Ports 0 to 3, and ports 8 to 11 are disabled. This is the expected behavior. Interfaces that are disabled are in the administrative down state.

Example: When Port Based License is not Installed

The following error message appears when the port-based license is not installed and you use the **no shutdown** command on the interface:

```
Router# show ip interface brief
Interface       IP-Address OK? Method Status              Protocol
GigabitEthernet0/0 unassigned YES unset administratively down down
GigabitEthernet0/1 unassigned YES unset administratively down down
GigabitEthernet0/2 unassigned YES unset administratively down down
GigabitEthernet0/3 unassigned YES unset administratively down down
GigabitEthernet0/4 unassigned YES unset down           down
GigabitEthernet0/5 unassigned YES unset down           down
GigabitEthernet0/6 unassigned YES unset down           down
GigabitEthernet0/7 unassigned YES unset down           down
GigabitEthernet0/8 unassigned YES unset administratively down down
GigabitEthernet0/9 unassigned YES unset administratively down down
GigabitEthernet0/10 unassigned YES unset administratively down down
GigabitEthernet0/11 unassigned YES unset administratively down down
FastEthernet0/0 unassigned YES NVRAM administratively down down
Vlan1         unassigned YES unset down                  down
```

Example: When Port Based License is Installed

The following example shows how to install the port-based license:

```
Router(config-if)# interface gigabitEthernet 0/0
Router(config-if)# no shutdown

*Oct 5 14:22:27.743: %LICENSE-1-REQUEST_FAILED: License request for feature fls-a901-4t 1.0 failed. UDI=MWR-3941:FMK13101A1

Router# show interface gigabitEthernet 0/0
GigabitEthernet0/0 is administratively down, line protocol is down (disabled)
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full Duplex, 1000Mbps, link type is force-up, media type is RJ45
out put flow-control is unsupported, input flow-control is unsupported
LICENSE not available! Interface disabled
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
```
Router# `license install flash: FHAK13101A1_20110811190230024_flsl-a901-4t.lic`

Installing licenses from "flash: FHAK13101A1_20110811190230024_flsl-a901-4t.lic"
1/1 licenses were successfully installed
0/1 licenses were existing licenses
0/1 licenses were failed to install

Router# Oct 5 17:23:14.487: %LICENSE-6-INSTALL: Feature Flsl-a901-4t was installed in this device. UDI=MWR-3941-TEST: FHAK13101A1; StoreIndex=2:Primary License Storage

Router(config)# interface gig 0/0
Router(config-if)# no shutdown

When the port based license is installed for copper or SFP ports, the corresponding ports are enabled. Following is a sample output from the `show ip interface` command:

Router# `show ip interface brief`

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK?</th>
<th>Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/0</td>
<td>unassigned</td>
<td>YES</td>
<td>unset</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/1</td>
<td>unassigned</td>
<td>YES</td>
<td>unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0/2</td>
<td>unassigned</td>
<td>YES</td>
<td>unset</td>
<td>administratively down</td>
<td>down</td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

Combo ports are either copper or SFP ports depending on the configuration specified in the media-type command.

10gigUpgrade License

When you do not have the 10gigUpgrade license, the 10 Gigabit Ethernet ports are enabled in 1 Gigabit Ethernet mode. Install the 10gigUpgrade license to enable new 10 Gigabit Ethernet ports in 10Gigabit Ethernet mode. To enable 1 Gigabit Ethernet mode, 1 Gigabit Ethernet SFPs have to be used on both the ends. There is no speed command to control the speed and this depends on the type of the SFP. The 10 Gigabit Ethernet ports does not support 100M speed. You can connect 10 Gigabit Ethernet SFP+ to 10 Gigabit Ethernet ports only.

Example: When 10gigUpgrade License is not Installed

The following error message appears when the 10gigUpgrade license is not installed and you use the `show interface` command:

Router# `show interface Ten0/1`

TenGigabitEthernet0/1 is down, line protocol is down (notconnect)
Hardware is TenGigabit Ethernet, address is 2c54.2dd6.c10e (bia 2c54.2dd6.c10e)
MTU 9216 bytes, BW 10000000 Kbit/sec, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, Loopback not set
Keepalive set (10 sec)
Unknown, Unknown, media type is H10GB-CU3M
output flow-control is unsupported, input flow-control is unsupported
LICENSE not available or 1G SFP (Interface in 1G mode)
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
Example: When 10gigUpgrade License is Installed

The following example shows how to install the 10gigUpgrade license:

Router# license install flash:10G-ac.lic

Installing licenses from "flash:10G-ac.lic"
Installing...Feature:10gigUpgrade...Successful:Supported
1/1 licenses were successfully installed
0/1 licenses were existing licenses
0/1 licenses were failed to install

Following is a sample output from the show license command:

Router# show license

Index 1 Feature: AdvancedMetroIPAccess
 Period left: Life time
 License Type: Permanent
 License State: Active, In Use
 License Count: Non-Counted
 License Priority: Medium
Index 2 Feature: IPBase
Index 3 Feature: Gige4portflexi
Index 4 Feature: 10gigUpgrade
 Period left: Life time
 License Type: Permanent
 License State: Active, In Use
 License Count: Non-Counted
 License Priority: Medium

Flexi License

When a flexi license is not present, ports 4 to 7 are enabled. Ports 0 to 3, and ports 8 to 11 are disabled. This is the expected behavior. Interfaces that are disabled are in the administrative down state.

FLS-A901-4 flexi license is a combination of copper and SFP ports. This license is not tied to any port types. If you purchase a single FL-A901-4 license and install it, four ports are enabled and if you have two licenses, all the eight ports are enabled. You can purchase and install two flexi licenses in a router.
Flexi license is also called Count-based license, with a maximum count of two. In a normal license, if the license is already installed and when you try to install the same license again, the installation fails and router displays *Duplicate License* error message. With flexi license (as it is count based), you can install the same license twice. Anything above this will throw an error.

Example: When Flexi License is not Installed

The following error message appears when the flexi license is not installed and you use the `show ip interface` command on the interface:

```
Router# show ip interface brief
Interface       IP-Address  OK? Method Status     Protocol
GigabitEthernet0/0 unassigned YES unset administratively down down
GigabitEthernet0/1 unassigned YES unset administratively down down
GigabitEthernet0/2 unassigned YES unset administratively down down
GigabitEthernet0/3 unassigned YES unset administratively down down
GigabitEthernet0/4 unassigned YES unset administratively down down
GigabitEthernet0/5 unassigned YES unset administratively down down
GigabitEthernet0/6 unassigned YES unset administratively down down
GigabitEthernet0/7 unassigned YES unset administratively down down
GigabitEthernet0/8 unassigned YES unset administratively down down
GigabitEthernet0/9 unassigned YES unset administratively down down
GigabitEthernet0/10 unassigned YES unset administratively down down
GigabitEthernet0/11 unassigned YES unset administratively down down
FastEthernet0/0 unassigned YES unset administratively down down
Vlan1           unassigned YES unset administratively down down
```

Example: When Flexi License is Installed

Following is a sample output from the `show license` command:

```
Router# show license
Index 1 Feature: AdvancedMetroIPAccess
    Period left: Life time
    License Type: Permanent
    License State: Active, In Use
    License Count: Non-Counted
    License Priority: Medium
Index 2 Feature: IPBase
Index 3 Feature: Gige4portflexi Version: 1.0
    License Type: Permanent
    License State: Active, Not In Use
    License Count: 2/0/0 (Active/In-use/Violation)
    License Priority: Medium
    Store Index: 1
    Store Name: Primary License Storage
```

1588BC License

When the 1588BC license is not installed, the PTP boundary clock cannot be configured. For more information on configuring the PTP boundary clock, see *PTP Boundary Clock, on page 334*.

Example: When 1588BC License is not Installed

The following error message appears on configuring the PTP boundary clock, when the 1588BC license is not installed:
Though an error message appears on configuring the PTP boundary clock, the running-config file accepts the PTP boundary clock configuration. This configuration can be saved. However, the PTP boundary clock is not configured in the hardware, and is inactive.

```
Router(config)# ptp clock boundary domain 0
%ERROR: Boundary Clock needs a separate license. Please install license and reconfigure PTP.
Router(config-ptp-clk)#
```

Example: When 1588BC License is Installed

The following example shows how to install the 1588BC license:

```
Router# license install flash:CAT1632U029_2012100513805577.lic
Installing licenses from "flash:CAT1632U029_2012100513805577.lic"
Installing...Feature:1588BC...Successful:Supported
1/1 licenses were successfully installed
0/1 licenses were existing licenses
0/1 licenses were failed to install
```

Following is a sample output from the `show license` command:

```
Router# show license
Index 1 Feature: AdvancedMetroIPAccess
Index 2 Feature: IPBase
Index 3 Feature: Gige4portflexi
Index 4 Feature: 10gigUpgrade
Index 5 Feature: 1588BC
  Period left: Life time
  License Type: Permanent
  License State: Active, In Use
  License Count: Non-Counted
  License Priority: Medium
```

Removing the License

If PTP boundary clock is configured, then the following error message appears when removing the 1588BC license:
Removing license is mainly used for development purpose.

Router# yes
Feature: 1588BC
 License Type: Permanent
 License State: Active, In Use
 License Addition: Exclusive
 License Count: Non-Counted
 Comment:
 Store Index: 2
 Store Name: Primary License Storage

Are you sure you want to clear? (yes/[no]): &;
Handling Event, Unknown event type: 3
% Error: Could not delete in-use license

Complete the following steps to remove the license.

SUMMARY STEPS

1. Use the yes command to remove the PTP boundary clock configuration.
2. Use the license clear command to remove the 1588BC license.

DETAILED STEPS

Step 1 Use the yes command to remove the PTP boundary clock configuration.
Router(config-ptp-clk)# yes

Step 2 Use the license clear command to remove the 1588BC license.
Router# yes
Feature: 1588BC
 License Type: Permanent
 License State: Active, Not in Use
 License Addition: Exclusive
 License Count: Non-Counted
 Comment:
 Store Index: 3
 Store Name: Primary License Storage

Are you sure you want to clear? (yes/[no]): &;
Generating the License

Complete the following steps to generate the license:

SUMMARY STEPS

1. Use the `show license udi` command on the router
2. Save the output.
4. Enter the PAK and UDI.
5. Click Submit.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Use the <code>show license udi</code> command on the router</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Save the output.</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Go to the SWIFT tool at https://tools.cisco.com/SWIFT/Licensing/PrivateRegistrationServlet.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enter the PAK and UDI.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Submit.</td>
<td></td>
</tr>
</tbody>
</table>

Installing the License

Complete the following steps to install the license:

SUMMARY STEPS

1. `enable`
2. `license install ?`
3. `copy tftp: flash:`
4. `show flash:`
5. `license install &;`
6. `reload`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

• Enter your password if prompted.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 license install ?</td>
<td>(Optional) License can be installed either by placing the license file in the tftp boot directory or by copying the license to the flash: directory.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# license install ?</td>
<td></td>
</tr>
<tr>
<td>Step 3 copy tftp: flash:</td>
<td>Copies the license file to the flash: directory.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# copy tftp: flash:</td>
<td></td>
</tr>
<tr>
<td>Step 4 show flash:</td>
<td>Displays the contents of the flash: directory.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show flash:</td>
<td></td>
</tr>
<tr>
<td>Step 5 license install &;</td>
<td>Installs the license from the flash: directory.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# license install FHK10LLL021_20110530015634482.lic</td>
<td></td>
</tr>
<tr>
<td>Step 6 reload</td>
<td>Reboots the system to activate the new license.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# reload</td>
<td></td>
</tr>
</tbody>
</table>

Note

The license boot level command is used only to select the required image-based licensing. For the Series Routers, only one image-based license (AdvancedMetroIPAccess) is available. Installing this license and reloading the router takes care of this license. If the license install does not work properly, use the license boot level command for AdvancedMetroIPAccess in the global configuration mode, to change the license and reboot the system to activate the new license.

Note

If you do not install a license, the router starts with the lowest level license by default.

Note

After installing the AdvancedMetroIPAccess license and reloading the router, the AdvancedMetroIPAccess license will be activated by default.
Verifying the License

To verify the new license, use the **show license** command.

```bash
Router# show license
Index 1 Feature: AdvancedMetroIPAccess
    Period left: Lifetime
    License Type: Permanent
    License State: Active, In Use
    License Priority: High
    License Count: 1/1/0 (Active/In-use/Violation)

Index 2 Feature:......
    Period left: 0 minute 0 second
```

Where to Go Next

For additional information on Licensing, see the documentation listed in the Additional References section.

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component</td>
<td>Cisco IOS Interface and Hardware Component Command</td>
</tr>
<tr>
<td>Commands</td>
<td>Reference</td>
</tr>
<tr>
<td>Cisco Software Licensing Concepts</td>
<td>Cisco IOS Software Activation Conceptual Overview</td>
</tr>
<tr>
<td>Software Configuration Guide</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Title</td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Licensing

The following table lists the release history for this feature and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licensing</td>
<td>15.2(2)SNH1</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Licenses Supported on Router, on page 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• License Types, on page 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Port or Interface Behavior, on page 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Generating the License, on page 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Installing the License, on page 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changing the License, on page 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Return Materials Authorization License Process</td>
</tr>
<tr>
<td>1588BC Licensing</td>
<td>15.2(2)SNI</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Licenses Supported on Router, on page 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• License Types, on page 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Port or Interface Behavior, on page 10</td>
</tr>
<tr>
<td>Licensing</td>
<td>15.4(2)S</td>
<td>New PID s were added to the document.</td>
</tr>
</tbody>
</table>
First-Time Configuration

This chapter describes the actions to take before turning on your router for the first time.

- Setup Mode, on page 21
- Verifying the Cisco IOS Software Version, on page 24
- Configuring the Hostname and Password, on page 25

Setup Mode

The setup mode guides you through creating a basic router configuration. If you prefer to configure the router manually or to configure a module or interface that is not included in setup mode, go to Using the Command-Line Interface, on page 45 to familiarize yourself with the CLI.

Before Starting Your Router

Complete the following steps before you power on your router and begin using the setup mode:

SUMMARY STEPS

1. Set up the hardware and connect the console and network cables as described in the “Connecting Cables” section of the .
2. Configure your PC terminal emulation program for 9600 baud, 8 data bits, no parity, and 1 stop bit.

DETAILED STEPS

Step 1 Set up the hardware and connect the console and network cables as described in the “Connecting Cables” section of the .

Step 2 Configure your PC terminal emulation program for 9600 baud, 8 data bits, no parity, and 1 stop bit.

Using Setup Mode

The setup command facility appears in your PC terminal emulation program window. To create a basic configuration for your router, perform the following:
If you made a mistake while using the setup command facility, exit the facility and run it again. Press Ctrl-C, and type setup at the enable mode prompt (1900#).

Configuring Global Parameters

Complete the following steps to configure global parameters.

SUMMARY STEPS

2. To begin the initial configuration dialog, enter `yes` when the following message appears:
3. Enter a hostname for the router (this example uses 901-1).
4. Enter an enable secret password. This password is encrypted (more secure) and cannot be seen when viewing the configuration.
5. Enter an enable password that is different from the enable secret password. This password is not encrypted (less secure) and can be seen when viewing the configuration.
6. To prevent unauthenticated access to the router through ports other than the console port, enter the virtual terminal password.
7. Respond to the following prompts as appropriate for your network:
8. The summary of interfaces appears. This list varies, depending on the network modules installed in your router.
9. Specify the interface to be used to connect to the network management system.
10. Configure the specified interface as prompted.

DETAILED STEPS

Step 1

Power on the router. Messages appear in the terminal emulation program window.

Caution *Do not press any keys on the keyboard until the messages stop.* Any keys that you press during this time are interpreted as the first command entered after the messages stop, which might cause the router to power off and start over. Wait a few minutes. The messages stop automatically.

The messages look similar to the following:

Note The messages vary, depending on the Cisco IOS software image and interface modules in your router. This section is for reference only, and output might not match the messages on your console.

Step 2

To begin the initial configuration dialog, enter `yes` when the following message appears:

Example:

```
Would you like to enter the initial configuration dialog? [yes/no]: yes
Would you like to enter basic management setup? [yes/no]: yes
Configuring global parameters:
```

Step 3

Enter a hostname for the router (this example uses 901-1).

Example:

-
Configuring global parameters:
Enter host name [Router]: 901-1

Step 4 Enter an enable secret password. This password is encrypted (more secure) and cannot be seen when viewing the configuration.

Example:

The enable secret is a password used to protect access to privileged EXEC and configuration modes. This password, after entered, becomes encrypted in the configuration.
Enter enable secret: ciscoenable

Note When you enter the enable secret password, the password is visible as you type it. Once you enter the password, it becomes encrypted in the configuration.

Step 5 Enter an enable password that is different from the enable secret password. This password is not encrypted (less secure) and can be seen when viewing the configuration.

Example:

The enable password is used when you do not specify an enable secret password, with some older software versions, and some boot images.
Enter enable password: ciscoenable

Step 6 To prevent unauthenticated access to the router through ports other than the console port, enter the virtual terminal password.

Example:

The virtual terminal password is used to protect access to the router over a network interface.
Enter virtual terminal password: ciscoterminal

Step 7 Respond to the following prompts as appropriate for your network:

Example:

Configure System Management? [yes/no]: no
Configure SNMP Network Management? [yes]:
Community string [public]: public

Step 8 The summary of interfaces appears. This list varies, depending on the network modules installed in your router.

Step 9 Specify the interface to be used to connect to the network management system.

Step 10 Configure the specified interface as prompted.

Completing the Configuration

When you have provided all of the information prompted for by the setup command facility, the configuration appears. Messages similar to the following appear:

```
The following configuration command script was created:
!
hostname 901-1
```
enable secret 5 $1$5fH0$Z6Pr5EgtR5iNJ2nBg3i6y1 enable password ciscoenable line vty 0 98
password ciscoenablesnmp-server community public !
no ip routing
! interface GigabitEthernet0/1
 shutdown
!
end

Complete the following steps to configure the router:

SUMMARY STEPS

1. The setup command facility displays the following prompt.
2. When the messages stop displaying in your window, press **Return** to view the command line prompt.

DETAILED STEPS

Step 1

The setup command facility displays the following prompt.

Example:

[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.
Enter your selection [2]: 2
Building configuration...
[OK]
Use the enabled mode 'configure' command to modify this configuration.
Press RETURN to get started!

If you answer:

- 0—The configuration information that you entered is *not* saved, and you return to the router enable prompt. To return to the system configuration dialog, enter setup.
- 1—The configuration is not saved, and you return to the EXEC prompt.

The 901-1> prompt appears indicating that you are at the CLI and you completed a basic router configuration.

Note The basic configuration is not a complete configuration.

Step 2

When the messages stop displaying in your window, press **Return** to view the command line prompt.

Verifying the Cisco IOS Software Version

To verify the version of Cisco IOS software, use the show version command. The show version command displays the configuration of the system hardware, the software version, the names and sources of the configuration files, and the boot images.
Configuring the Hostname and Password

First configure the hostname and set an encrypted password. Configuring a hostname allows you to distinguish multiple Cisco routers from each other. Setting an encrypted password allows you to prevent unauthorized configuration changes.

Note

In the following procedure, press the Return key after each step unless otherwise noted. At any time, you can exit the privileged level and return to the user level by entering disable at the Router# prompt.

Complete the following steps to configure a hostname and to set an encrypted password:

SUMMARY STEPS

1. Enter enable mode.
2. Enter global configuration mode.
3. Change the name of the router to a meaningful name. Substitute your hostname for Router.
4. Enter an enable secret password. This password provides access to privileged EXEC mode. When you type enable at the EXEC prompt (Router>), you must enter the enable secret password to access configuration mode. Enter your secret password.
5. Exit back to global configuration mode.

DETAILED STEPS

Step 1 Enter enable mode.

Example:

Router> enable

The Password prompt appears. Enter your password.

Example:

Password: password

When the prompt changes to Router, you have entered enable mode.

Step 2 Enter global configuration mode.

Example:

Router# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

When the prompt changes to Router(config), you have entered global configuration mode.

Step 3 Change the name of the router to a meaningful name. Substitute your hostname for Router.

Example:

Router(config)# hostname Router
Step 4 Enter an enable secret password. This password provides access to privileged EXEC mode. When you type enable at the EXEC prompt (Router>), you must enter the enable secret password to access configuration mode. Enter your secret password.

Example:

Router(config)# enable secret secret password

Step 5 Exit back to global configuration mode.

Example:

Router(config)# exit

Verifying the Hostname and Password

Complete the following steps to verify that you have correctly configured the hostname and password:

SUMMARY STEPS

1. Enter the `show config` command:
2. Check the hostname and encrypted password, which appear near the top of the command output.
3. Exits the global configuration mode and attempt to re-enter it using the new enable password:

DETAILED STEPS

Step 1 Enter the `show config` command:

Example:

Router# show config
Using 1888 out of 126968 bytes
!
version XX.X
!
hostname Router
!
enable secret 5 $1$60L4$X2JY0woDc0.kqalloO/w8/
!

Step 2 Check the hostname and encrypted password, which appear near the top of the command output.

Step 3 Exits the global configuration mode and attempt to re-enter it using the new enable password:

Example:

Router# exit
.
.Router con0 is now available
Press **RETURN**
 to get started.
Router> **enable**
Password: **password**
Router#
Managing and Monitoring Network Management Features

This feature module describes how to monitor, manage and deploy a variety of network management features, including Cisco Active Network Abstraction (ANA), Simple Network Management Protocol (SNMP) and Cisco Networking Services (CNS). The CNS software agent on the router can communicate with a Cisco Configuration Engine to allow the router to be deployed in the field without having to pre-stage it for configuration or image upgrade. The Zero-touch deployment capability enables the router to auto configure itself, download an updated image, connect to the network, and start the operation as soon as it is cabled and powered up.

- Finding Feature Information, on page 29
- Network Management Features for the, on page 29
- How to Configure Network Management Features on, on page 30
- Configuration Examples, on page 41
- Where to Go Next, on page 41
- Additional References, on page 42
- Feature Information for Monitoring and Managing the Router, on page 43

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Network Management Features for the

The following sections describe the network management features available on the router.
Cisco Active Network Abstraction (ANA)

Cisco ANA is a powerful, next-generation network resource management solution designed with a fully distributed OSS mediation platform that abstracts the network, its topology and its capabilities from the physical elements. Its virtual nature provides customers with a strong and reliable platform for service activation, service assurance and network management. For more information about ANA, see http://www.cisco.com/en/US/products/ps6776/tsd_products_support_series_home.html.

SNMP MIB Support

To view the current MIBs that the supports, see http://www.cisco.com/go/mibs.

Cisco Networking Services (CNS)

Cisco Networking Services (CNS) is a collection of services that can provide remote configuration of Cisco IOS networking devices, remote execution of CLI commands, and image downloads by communicating with a Cisco Configuration Engine application running on a server. CNS enables the zero-touch deployment for the router by automatically downloading its configuration and upgrading its image if needed.

Note

The only supports CNS over motherboard Ethernet interfaces.

For more information about CNS configuration, see Enabling Cisco Networking Services (CNS) and Zero-Touch Deployment, on page 36.

How to Configure Network Management Features on

This section contains the following procedures:

Configuring SNMP Support

Use the following to configure SNMP support for

- Setting up the community access
- Establishing a message queue for each trap host
- Enabling the router to send SNMP trap messages
- Enabling SNMP trap messages for alarms
- Enabling trap messages for a specific environment.

Note

In the following procedure, press the Return key after each step unless otherwise noted. At any time, you can exit the privileged level and return to the user level by entering disable at the Router# prompt.

Complete the following steps to configure SNMP:
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `snmp-server community string [view view-name] [ro | rw] [number]`
4. `snmp-server queue-length length`
5. `snmp-server enable traps [notification-type] [notification-option]`
6. `snmp-server enable traps envmon`
7. `snmp-server host host-address [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type]`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example: Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example: Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Sets up the community access string to permit access to SNMP. The no form of this command removes the specified community string.</td>
</tr>
<tr>
<td>`snmp-server community string [view view-name] [ro</td>
<td>rw] [number]`</td>
</tr>
<tr>
<td>Step 4</td>
<td>Establishes the message queue length for each trap host.</td>
</tr>
<tr>
<td><code>snmp-server queue-length length</code></td>
<td>Example: Router(config)# snmp-server queue-length 100</td>
</tr>
</tbody>
</table>

- **string**—Community string is the password to access the SNMP protocol.
- **view view-name**—(Optional) Previously defined view. The view defines the objects available to the community.
- **ro**—(Optional) Specifies read-only access. Authorized management stations are able only to retrieve MIB objects.
- **rw**—(Optional) Specifies read-write access. Authorized management stations are able to both retrieve and modify MIB objects.
- **number**—(Optional) Specifies an access list of IP addresses allowed to use the community string to gain access to the SNMP agent. Values range from 1 to 99.
- **length**—Specifies the number of trap events that can be held before the queue must be emptied.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5**

snmp-server enable traps [notification-type]
[notification-option]

Example:

Router(config)# snmp-server enable traps
snmp linkdown linkup coldstart warmstart

Purpose: Enables the router to send SNMP traps messages. Use the no form of this command to disable SNMP notifications.

- **notification-type**—`snmp [authentication]`—Enables RFC 1157 SNMP notifications. Note that use of the `authentication` keyword produces the same effect as not using the `authentication` keyword. Both the `snmp-server enable traps snmp` and `snmp-server enable traps snmp authentication` forms of this command globally enable (or, if using the no form, disable) the following SNMP traps:
 - authentication failure
 - linkup
 - linkdown
 - coldstart
 - warmstart

- **notification-option**—(Optional) `atm pvc [interval seconds] [fail-interval seconds]`—The optional interval seconds keyword/argument combination specifies the minimum period between successive traps, in the range from 1 to 3600. Generation of PVC traps is dampened by the notification interval to prevent trap storms. No traps are sent until the interval lapses. The default interval is 30.

The optional fail-interval seconds keyword/argument combination specifies the minimum period for storing the failed time stamp, in the range from 0 to 3600. The default fail-interval is 0.

| **Step 6**

snmp-server enable traps envmon

Example:

Router(config)# snmp-server enable traps envmon

Purpose: Enables SNMP trap messages for a specific environment.

- **envmon [voltage | shutdown | supply | fan | temperature]**—When the envmon keyword is used, you can enable a specific environmental notification type, or accept all notification types from the environmental monitor system. If no option is specified, all environmental notifications are enabled. The option can be one or more of the following keywords: voltage, shutdown, supply, fan, and temperature.

| **Step 7**

snmp-server host host-address [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]]] [community-string]
[udp-port port] [notification-type]

Example:

Router(config)# snmp-server host 10.20.30.40 version 2c

Purpose: Specifies the recipient of an SNMP trap messages. To remove the specified host, use the no form of this command.

- **host-address traps envmon** host-address—Name or Internet address of the host (the targeted recipient).
- **traps**—Sends SNMP trap messages to this host. This is the default.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• informs—(Optional) Sends SNMP informs to this host.</td>
<td></td>
</tr>
<tr>
<td>• version—(Optional) Version of the SNMP used to send the traps. Version 3 is the most secure model because allows packet encryption with the priv keyword. If you use the version keyword, one of the following must be specified:</td>
<td></td>
</tr>
<tr>
<td>• 1—SNMP version 1. This option is not available with informs.</td>
<td></td>
</tr>
<tr>
<td>• 2c—SNMP version 2C.</td>
<td></td>
</tr>
<tr>
<td>• 3—SNMP version 3. The following three optional keywords can follow the version 3 keyword:</td>
<td></td>
</tr>
<tr>
<td>• auth—(Optional). Enables Message Digest 5 (MD5) and Secure Hash Algorithm (SHA) packet authentication.</td>
<td></td>
</tr>
<tr>
<td>• noauth—(Default). The no authentication-no privileges security level is the default if the auth</td>
<td>noauth</td>
</tr>
<tr>
<td>• priv—(Optional). Enables Data Encryption Standard (DES) packet encryption.</td>
<td></td>
</tr>
<tr>
<td>• community-string—Password-like community string sent with the notification operation. Though you can set this string using the snmp-server host command by itself, we recommend you define this string using the snmp-server community command before using the snmp-server host command.</td>
<td></td>
</tr>
<tr>
<td>• port—UDP port of the host. The default value is 162.</td>
<td></td>
</tr>
<tr>
<td>• notification-type—(Optional) Type of notification to be sent to the host. If no type is specified, all notifications are sent. The notification type can be one or more of the following keywords:</td>
<td></td>
</tr>
<tr>
<td>• aaa_server—Enables SNMP AAA Server traps.</td>
<td></td>
</tr>
<tr>
<td>• config—Enables SNMP config traps.</td>
<td></td>
</tr>
<tr>
<td>• config-copy—Enables SNMP config-copy traps.</td>
<td></td>
</tr>
<tr>
<td>• cpu—Allow cpu related traps.</td>
<td></td>
</tr>
<tr>
<td>• ds1—Enables SNMP DS1 traps.</td>
<td></td>
</tr>
<tr>
<td>• eigrp—Enables SNMP EIGRP traps.</td>
<td></td>
</tr>
<tr>
<td>• entity—Enables SNMP entity traps.</td>
<td></td>
</tr>
<tr>
<td>• envmon—Enables SNMP environmental monitor traps.</td>
<td></td>
</tr>
<tr>
<td>• flash—Enables SNMP FLASH notifications.</td>
<td></td>
</tr>
<tr>
<td>• frame-relay—Enables SNMP frame-relay traps.</td>
<td></td>
</tr>
<tr>
<td>• hsrp—Enables SNMP HSRP traps.</td>
<td></td>
</tr>
<tr>
<td>• ipmulticast—Enables SNMP ipmulticast traps.</td>
<td></td>
</tr>
<tr>
<td>• ipsla—Enables SNMP IP SLA traps.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Remote Network Management

Complete the following steps to configure remote network management on the router:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip host host-name ip-address`
4. `interface loopback number`
5. `ip-address ip-address subnet-mask`
6. `end`
7. `snmp-server host hostname [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type]`
8. `snmp-servercommunity public ro`
9. `snmp-servercommunity private rw`
10. `snmp-serverenable traps`
11. `snmp-server trap-source loopback number`
12. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Remote Network Management

Complete the following steps to configure remote network management on the router:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip host host-name ip-address
4. interface loopback number
5. ip-address ip-address subnet-mask
6. end
7. snmp-server host hostname [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type]
8. snmp-servercommunity public ro
9. snmp-servercommunity private rw
10. snmp-serverenable traps
11. snmp-server trap-source loopback number
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
</tbody>
</table>

Exits global configuration mode.

Example:

```
Router(config)# end
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2**

 configure terminal

 Example:

 Router# configure terminal

| Enters global configuration mode. |

| **Step 3**

 ip host host-name ip-address

 Example:

 Router(config)# ip host om-work 10.0.0.1

| Assigns a host name to each of the network management workstations, where hostname is the name assigned to the Operations and Maintenance (OAM) workstation and ip_address is the address of the network management workstation. |

| **Step 4**

 interface loopback number

 Example:

 Router(config-if)# interface loopback 5005

| Creates a loopback interface for OAM. |

| **Step 5**

 ip-address ip-address subnet-mask

 Example:

 Router(config-if)# ip-address 10.10.12.10 23

| Configures the interval at which packets are sent to refresh the MAC cache when HSRP is running. |

| **Step 6**

 end

 Example:

 Router(config-if)# end

| Exits interface configuration mode. |

| **Step 7**

 snmp-server host hostname [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]]] community-string [udp-port port] [notification-type]

 Example:

 Router(config)# snmp-server host snmp1 version 3 auth

| Specifies the recipient of a Simple Network Management Protocol (SNMP) notification operation.
The hostname is the name assigned to the Cisco Info Center workstation with the *ip host* command in Step 3. |

| **Step 8**

 snmp-server community public ro

 Example:

 Router(config)# snmp-server community snmppubliccom RO

| Specifies the public SNMP community name. |

| **Step 9**

 snmp-server community private rw

 Example:

 Router(config)# snmp-server community snmpprivatecom RW

| Specifies the private SNMP community name. |
Enabling Cisco Networking Services (CNS) and Zero-Touch Deployment

Enabling Cisco Networking Services (CNS) and Zero-Touch Deployment

To enable CNS and Zero-Touch deployment, you need the following servers:

- A DHCP server (standalone or enabled on the carrier edge router)
- A TFTP server (standalone or enabled on the carrier edge router)
- A server running the Cisco Configuration Engine (formerly known as the CNS-CE server)

Enabling and Specifying a Loopback Interface

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>snmp-server enable traps</td>
<td>Enables the transmission of SNMP traps messages.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>snmp-server enable traps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>snmp-server trap-source loopback number</td>
<td>Specifies the loopback interface from which SNMP traps messages originate, where number is the number of the loopback interface you configured for the O&M in Step 4.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>snmp-server trap-source loopback 5005</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

Enabling Cisco Networking Services (CNS) and Zero-Touch Deployment

Enabling Cisco Networking Services (CNS) and Zero-Touch Deployment

To enable CNS and Zero-Touch deployment, you need the following servers:

- A DHCP server (standalone or enabled on the carrier edge router)
- A TFTP server (standalone or enabled on the carrier edge router)
- A server running the Cisco Configuration Engine (formerly known as the CNS-CE server)

Note

The only supports CNS over motherboard Ethernet interfaces.

This section contains the following procedures:

Zero-Touch Deployment

Zero-touch deployment feature gives the router the ability to retrieve its configuration file from the remote server during initial router deployment with no end-user intervention.

Figure 1: Zero-touch Deployment

The following steps provide an overview of events that take place during zero-touch deployment.

Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide
SUMMARY STEPS

1. Connect the without any configurations to an upstream router.
2. The auto-senses the management VLAN of the upstream router for IP connectivity by listening to the traffic it receives on the connected interface.
3. The sends DHCP discover messages using the discovered VLAN tag. If the upstream router is not using a management VLAN, untagged DHCP discover messages are sent.
4. The DHCP server responds with a DHCP offer.
5. The sends a DHCP request message to the DHCP server. The DHCP server then sends the DHCP ACK message.
6. The requests network-config file via TFTP.
7. The TFTP server sends the a network-config file.
8. The sends an HTTP request to the CNS-CE server.
9. The CNS-CE server sends a configuration template to the .

DETAILED STEPS

Step 1 Connect the without any configurations to an upstream router.
Step 2 The auto-senses the management VLAN of the upstream router for IP connectivity by listening to the traffic it receives on the connected interface.
Step 3 The sends DHCP discover messages using the discovered VLAN tag. If the upstream router is not using a management VLAN, untagged DHCP discover messages are sent.
Step 4 The DHCP server responds with a DHCP offer.
Step 5 The sends a DHCP request message to the DHCP server. The DHCP server then sends the DHCP ACK message.

Note Step 6 and 7 are used only when Option 43 is not configured.

Step 6 The requests network-config file via TFTP.
Step 7 The TFTP server sends the a network-config file.
Step 8 The sends an HTTP request to the CNS-CE server.
Step 9 The CNS-CE server sends a configuration template to the .
Step 10 Publish success event.

Image Download

The following events take place when a CNS-enabled downloads a new image:

SUMMARY STEPS

1. The CNS-CE server requests inventory (disk/flash info) from the
2. The sends an inventory.
3. The CNS-CE server sends an image location.
4. The sends a TFTP image request.
5. The downloads an image from the TFTP server.
6. Refresh the CNS-CE server to check whether the image download is complete.
7. Associate the .inv template in the CNS-CE server. Based on the boot variable, the reboot with the copied image.
8. The CNS-CE server reboots the router.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>The CNS-CE server requests inventory (disk/flash info) from the</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>The sends an inventory.</td>
</tr>
<tr>
<td>Step 3</td>
<td>The CNS-CE server sends an image location.</td>
</tr>
<tr>
<td>Step 4</td>
<td>The sends a TFTP image request.</td>
</tr>
<tr>
<td>Step 5</td>
<td>The downloads an image from the TFTP server.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Refresh the CNS-CE server to check whether the image download is complete.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Associate the .inv template in the CNS-CE server. Based on the boot variable, the reboot with the copied image.</td>
</tr>
<tr>
<td>Step 8</td>
<td>The CNS-CE server reboots the router.</td>
</tr>
</tbody>
</table>

Configuring a DHCP Server

The requires a DHCP server for zero-touch deployment. Complete the following steps to configure a Cisco router as a DHCP server.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp excluded-address dhcp-server-ip-address
4. ip dhcp excluded-address ip-address subnet-mask
5. ip dhcp pool pool-name
6. network ip-address subnet-mask
7. default-router ip-address
8. Do one of the following:
 • option 43 ascii string
 • option 150 ip <TFTP-server-ip-address>
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Configuring a DHCP Server

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 2 | configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| Step 3 | **ip dhcp excluded-address dhcp-server-ip-address**
Example:
Router# ip dhcp excluded-address 30.30.1.6 | Specifies to exclude IP address of the DHCP server. |
| Step 4 | **ip dhcp excluded-address ip-address subnet-mask**
Example:
Router# ip dhcp excluded-address 30.30.1.20 30.30.1.255 | Assigns IP addresses with an exception of 30.30.1.6, which is the IP address of the DHCP server. |
| Step 5 | **ip dhcp pool pool-name**
Example:
Router# ip dhcp pabudhcp2 | Specifies the DHCP pool name. |
| Step 6 | **network ip-address subnet-mask**
Example:
Router# network 160.100.100.0 255.255.255.252 | Specifies the IP address and subnet mask of the network. |
| Step 7 | **default-router ip-address**
Example:
Router# default-router 30.30.1.6 | Specifies the IP address of the default router. |
| Step 8 | Do one of the following:
- **option 43 ascii string**
- **option 150 ip <TFTP-server-ip-address>**
Example:
Router# option 43 ascii 3A1D;A3;B161.100.100.2 | Specifies Option 43 and a string value that has the CNS details, serial number of the hardware, and the code for CE IP address or Option 150 and the IP address of the TFTP server.
For more information on Option 43, see Constructing a DHCP Option 43 Message. Series Routers supports only few letter code options mentioned in this link. |
| Step 9 | **end**
Example:
Router(config-if)# end | Exits configuration mode. |
Configuring a TFTP Server

You need to set up a TFTP server to provide a bootstrap configuration to the routers when they boot using option 150.

Creating a Bootstrap Configuration

Create or download a file with the initial bootstrap configuration on the TFTP server. An example of the configuration file is shown below:

```
hostname test-router
!
cns trusted-server all-agents 30.30.1.20
cns event 30.30.1.20 11011 keepalive 60 3
cns config initial 30.30.1.20 80
cns config partial 30.30.1.20 80
cns id hostname
cns id hostname event
cns id hostname image
!
end
```

Enabling a TFTP Server on the Edge Router

The requires a TFTP server for zero-touch deployment while using option 150. The TFTP server is typically implemented on the carrier edge router. You can use the following global configuration commands to enable a TFTP server on the edge router that can send the initial configuration to the router.

```
tftp-server sup-bootflash:network-config
```

After the boots with this configuration, it can connect to the CNS-CE server.

Configuring the Cisco Configuration Engine

The Cisco Configuration Engine (formerly known as the Cisco CNS Configuration Engine) allows you to remotely manage configurations and IOS software images on Cisco devices including the .

When the downloads the bootstrap configuration and connects to the Cisco Configuration Engine server, you can use the server to download a full configuration to the router. You can also use the CNS-CE server to complete any of the following tasks:

- Manage configuration templates—The CNS-CE server can store and manage configuration templates.
- Download a new image—You can use the CNS-CE server to load a new IOS image on a router.
- Loading a new config—You can use the CNS-CE server to load a new configuration file on a router.
- Enable identification—You can use a unique CNS agent ID to verify the identity of a host device prior to communication with the CNS-CE server.
- Enable authentication—You can configure the CNS-CE server to require a unique password from the router as part of any communication handshake.
- Enable encryption—You can enable Secure Socket Layer (SSL) encryption for the HTTP sessions between the CNS agent devices (routers) and the CNS-CE server.

Configuration Examples

This section provides the following configuration examples:

Example: Configuring SNMP Support

```
! snmp-server community xxxxx RO
snmp-server queue-length 100
snmp-server enable traps snmp linkdown linkup coldstart warmstart
snmp-server enable traps envmon
snmp-server host 10.20.30.40 version 2c
```

Example: Configuring Remote Network Management

```
cns trusted-server all-agents 30.30.1.20
cns event 30.30.1.20 11011 keepalive 60 3
cns config initial 30.30.1.20 80
```

Example: Configuring a DHCP Server

Example: Zero-touch Deployment

The following configuration example sets the to boot using configurations stored on a CNS–CE server with the IP address 30.30.1.20.

```
```

Note

This section provides partial configurations intended to demonstrate a specific feature.

Where to Go Next

For additional information on monitoring and managing the router, see the documentation listed in the Additional References section.
Additional References

The following sections provide references related to LLDP feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Monitoring and Managing the Router

Table 2: Feature Information for Monitoring and Managing the Router, on page 43 lists the release history for this feature and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 2: Feature Information for Monitoring and Managing the Router, on page 43 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring and Managing the Router</td>
<td>15.2(2)SN</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td>SNI</td>
<td>• Network Management Features for the , on page 29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How to Configure Network Management Features on , on page 30</td>
</tr>
<tr>
<td>Dry Contact Alarm Port</td>
<td>15.5(1)S</td>
<td>This feature was introduced on the Cisco ASR 901 Series Routers.</td>
</tr>
</tbody>
</table>
Using the Command-Line Interface

This chapter describes the Cisco IOS command-line interface (CLI) and how to use it to configure the router.

- Understanding Command Modes, on page 45
- Understanding the Help System, on page 47
- Understanding Abbreviated Commands, on page 47
- Understanding no and default Forms of Commands, on page 48
- Understanding CLI Error Messages, on page 48
- Using Command History, on page 48
- Using Editing Features, on page 50
- Searching and Filtering Output of show and more Commands, on page 52
- Accessing the CLI, on page 53
- Saving Configuration Changes, on page 53

Understanding Command Modes

The Cisco IOS user interface is divided into different modes. The commands depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands for each command mode.

When you start a session on the router, you begin in the user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as `show` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the router reboots.

To gain access to all the commands, enter privileged EXEC mode. You need to enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. When you save the configuration, these commands are stored and used for router reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.

Table 3: Command Mode Summary, on page 46 describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the hostname `Router`.
For more detailed information on the command modes, see the command reference guide for this release.

Table 3: Command Mode Summary

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Router Prompt Displayed</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the <code>logout</code> command.</td>
<td>Use this mode to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the <code>enable</code> command.</td>
<td>Router#</td>
<td>To go to user EXEC mode, use the <code>disable</code>, <code>exit</code>, or <code>logout</code> command.</td>
<td>Use this mode to verify commands that you have entered. Use a password to protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From the privileged EXEC mode, use the <code>configure terminal</code> command.</td>
<td>Router (config)#</td>
<td>To go to privileged EXEC mode, use the <code>exit</code> or <code>end</code> command, or press <code>Ctrl-Z</code>.</td>
<td>Use this mode to configure parameters that apply to the entire router.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From the global configuration mode, use the <code>interface</code> command (with a specific interface).</td>
<td>Router (config-if)#</td>
<td>To go to global configuration mode, use the <code>exit</code> command. To return directly to privileged EXEC mode, press <code>Ctrl-Z</code>.</td>
<td>Use this mode to configure parameters for the Ethernet ports.</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td>Router(config-vlan)#</td>
<td>To go to global configuration mode, enter the <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or use the <code>end</code> command.</td>
<td>Use this mode to configure VLAN parameters.</td>
</tr>
<tr>
<td>Line configuration</td>
<td>While in global configuration mode, specify a line by using the <code>line vty</code> or <code>line console</code> command.</td>
<td>Router(config-line)#</td>
<td>To go to global configuration mode, use the <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or enter <code>end</code>.</td>
<td>Use this mode to configure parameters for the terminal line.</td>
</tr>
</tbody>
</table>
Understanding the Help System

Enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command, as shown in Table 4: Help Summary, on page 47.

Table 4: Help Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Obtain a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
<td>Obtain a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Router# di?</td>
</tr>
<tr>
<td></td>
<td>dir disable disconnect</td>
</tr>
<tr>
<td>abbreviated-command-entry <Tab></td>
<td>Complete a partial command name.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Router# sh conf</td>
</tr>
<tr>
<td></td>
<td><tab></td>
</tr>
<tr>
<td></td>
<td>Router# show configuration</td>
</tr>
<tr>
<td>?</td>
<td>List all commands available for a particular command mode.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Router> ?</td>
</tr>
<tr>
<td>command ?</td>
<td>List the associated keywords for a command.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
</tbody>
</table>
| | Router> show ?
| command keyword ? | List the associated arguments for a keyword. |
| | For example: |
| | Router(config)# cdp holdtime ? <10-255> Length of time (in sec) that receiver must keep this packet |

Understanding Abbreviated Commands

You need to enter only enough characters for the router to recognize the command as unique.

This example shows how to use the show configuration privileged EXEC command in an abbreviated form:
Understanding no and default Forms of Commands

Almost every configuration command also has a no form. In general, use the no form to disable a feature or function, or reverse the action of a command. For example, the no shutdown interface configuration command reverses the shutdown of an interface. Use the command without the keyword no to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a default form. The default form of a command returns the command setting to its default. Most commands are disabled by default, so the default form is the same as the no form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the default command enables the command and sets variables to their default values.

Understanding CLI Error Messages

The following table lists some error messages that you might encounter while using the CLI to configure your router.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: "show con"</td>
<td>You did not enter enough characters for your router to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command appear.</td>
</tr>
<tr>
<td>% Invalid input detected at '^' marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command appear.</td>
</tr>
</tbody>
</table>

Using Command History

The software provides a history or record of commands that you entered. The command history feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize this feature to suit your needs as described in these sections:
Changing the Command History Buffer Size

By default, the router records ten command lines in its history buffer. You can alter this number for a current terminal session or for all sessions on a particular line. These procedures are optional.

Beginning in privileged EXEC mode, enter this command to change the number of command lines that the router records during the current terminal session:

Router# terminal history size number-of-lines

The range is from 0 to 256.

Beginning in line configuration mode, enter this command to configure the number of command lines the router records for all sessions on a particular line:

Router(config-line)# history | size number-of-lines

The range is from 0 to 256.

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in Table 6: Recalling Commands, on page 49. These actions are optional.

Table 6: Recalling Commands

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
<td>Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
<td>Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
<tr>
<td>show history</td>
<td>While in privileged EXEC mode, list the last several commands that you just entered. The number of commands that appear is controlled by the setting of the terminal history global configuration command and the history line configuration command.</td>
</tr>
</tbody>
</table>

1 The arrow keys function only on ANSI-compatible terminals such as VT100s.

Disabling the Command History Feature

The command history feature is automatically enabled. You can disable it for the current terminal session or for the command line. These procedures are optional.

To disable the feature during the current terminal session, use the terminal no history privileged EXEC command.
To disable command history for the line, use the `no history` line configuration command.

Using Editing Features

This section contains the following the editing features that can help you manipulate the command line.

Enabling and Disabling Editing Features

Although the enhanced editing mode is automatically enabled, you can disable it, re-enable it, or configure a specific line to have enhanced editing. These procedures are optional.

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Router (config-line)# no editing
```

To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

```
Router# terminal editing
```

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

```
Router(config-line)# editing
```

Editing Commands through Keystrokes

Table 7: Editing Commands through Keystrokes, on page 50 shows the keystrokes that you need to edit command lines. These keystrokes are optional.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make changes or corrections.</td>
<td>Press Ctrl-B, or press the left arrow key.</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-F, or press the right arrow key.</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-A.</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-E.</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Esc B.</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td></td>
<td>Press Esc F.</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-T.</td>
<td>Transpose the character to the left of the cursor with the character located at the cursor.</td>
</tr>
<tr>
<td>Capability</td>
<td>Keystroke³</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Recall commands from the buffer and paste them in the command line. The router provides a buffer with the last ten items that you deleted.</td>
<td>Press Ctrl-Y.</td>
<td>Recall the most recent entry in the buffer.</td>
</tr>
<tr>
<td></td>
<td>Press Esc Y.</td>
<td>Recall the next buffer entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The buffer contains only the last 10 items that you have deleted or cut. If you press Esc Y more than ten times, you cycle to the first buffer entry.</td>
</tr>
<tr>
<td>Delete entries if you make a mistake or change your mind.</td>
<td>Press the Delete or Backspace key.</td>
<td>Erase the character to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-D.</td>
<td>Delete the character at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-K.</td>
<td>Delete all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Delete all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-W.</td>
<td>Delete the word to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc D.</td>
<td>Delete from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Capitalize or lower the case or capitalize a set of letters.</td>
<td>Press Esc C.</td>
<td>Capitalize at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc L.</td>
<td>Change the word at the cursor to lowercase.</td>
</tr>
<tr>
<td></td>
<td>Press Esc U.</td>
<td>Capitalize letters from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Designate a particular keystroke as an executable command, perhaps as a shortcut.</td>
<td>Press Ctrl-V or Esc Q.</td>
<td></td>
</tr>
<tr>
<td>Scroll down a line or screen on displays that are longer than the terminal screen can display.</td>
<td>Press the Return key.</td>
<td>Scroll down one line.</td>
</tr>
<tr>
<td>Note</td>
<td>Press the Space bar.</td>
<td>Scroll down one screen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The More prompt is used for any output that has more lines than can be displayed on the terminal screen, including show command output. You can use the Return and Space bar keystrokes whenever you see the More prompt.</td>
</tr>
</tbody>
</table>
Editing Command Lines that Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command. The keystroke actions are optional.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

The arrow keys function only on ANSI-compatible terminals such as VT100s.

Note

In this example, the `access-list` global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

```plaintext
Router(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
Router(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1 20 255.25
Router(config)# $ t tcp 131.108.2.5 255.255.255.0 131.108.1 20 255.255.255.0 eq
Router(config)# $ 108.2.5 255.255.255.0 131.108.1 20 255.255.255.0 eq 45
```

After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right:

```plaintext
Router(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1$
```

The software assumes you have a terminal screen that is 80 columns wide. If you have a width other than that, use the `terminal width` privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries. For information about recalling previous command entries, see the *Editing Commands through Keystrokes*, on page 50.

Searching and Filtering Output of show and more Commands

You can search and filter the output for `show` and `more` commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see. Using these commands is optional.
Accessing the CLI

You can access the CLI through a console connection, through Telnet, or by using the browser.

Accessing the CLI through a Console Connection or through Telnet

Before accessing the CLI, you must connect a terminal or PC to the router console port and power on the router as described in the hardware installation guide that shipped with your router.

If your router is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your router must first be configured for this type of access.

You can use one of these methods to establish a connection with the router:

- Connect the router console port to a management station or dial-up modem. For information about connecting to the console port, see the router hardware installation guide.
- Use any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The router must have network connectivity with the Telnet or SSH client, and the router must have an enable secret password configured.

The router supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

The router supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through a Telnet session or through an SSH session, the user EXEC prompt appears on the management station.

Saving Configuration Changes

To save your configuration changes to NVRAM, so that the changes are not lost during a system reload or power outage, enter the `copy running-config startup-config` command. For example:

```
Router# copy running-config startup-config
Router# write memory
Building configuration...
```
It might take a few minutes to save the configuration to NVRAM. After the configuration has been saved, the following message appears:

[OK]
Router#

For additional information about using the Cisco IOS Release 15.1SNG, see the guides listed at:

Software Upgrade

This chapter explains how to upgrade the Cisco IOS image installed on the router.

- Selecting a Cisco IOS Image, on page 55
- Upgrading the Cisco IOS image, on page 55
- Auto Upgrading the MCU, on page 58
- Manually Upgrading the ROMMON, on page 58
- Auto Upgrade of ROMMON, on page 59

Selecting a Cisco IOS Image

When you select the Cisco IOS image for upgrade, consider the following:

- Memory requirement—The router should have sufficient disk or flash memory to store the Cisco IOS. The router should also have sufficient memory (DRAM) to run the Cisco IOS. The recommended logging buffer in DRAM ranges from 8 kilobytes to 64 kilobytes. If the router does not have sufficient memory (DRAM), the router will have boot problems when it boots through the new Cisco IOS.

- Interfaces and modules support—You must ensure that the new Cisco IOS supports all the interfaces and modules in the router.

- Software feature support—You must ensure that the new Cisco IOS supports the features used with the old Cisco IOS.

- Security image—ASR 901 does not support loading security images in the non-secure environment or node. Loading the security images affect the functionality.

Upgrading the Cisco IOS image

Complete the following steps to upgrade the Cisco IOS image:

SUMMARY STEPS

1. Download the Cisco IOS software image to the TFTP server.
2. Identify the file system to copy the image.
3. Prepare for the upgrade.
4. Verify that the TFTP server has IP connectivity to the router.
5. Copy the IOS Image from the TFTP server.
6. Verify the Cisco IOS image in the file system.
7. Verify the Configuration Register.
8. Verify the Boot Variable
9. Save the configuration and reload the router.
10. Verify the Cisco IOS upgrade.

DETAILED STEPS

Step 1
Download the Cisco IOS software image to the TFTP server.
Download the Cisco IOS software image onto your workstation or PC from the Download Software Area (registered customers only).

Step 2
Identify the file system to copy the image.
The file system type ‘flash’ is used to store the Cisco IOS image. The `show file system` command lists the file systems available on the router. The file system should have sufficient space to store the Cisco IOS image. You can use the `show file system` or the `dir file_system` command in order to find the free space.

Example:

```bash
Router# show file system
File Systems:
Size(b) Free(b) Type Flags Prefixes
262144 240157 nvram rw nvram:
    -    opaque rw system:
    -    opaque rw tmpsys:
    -    opaque rw null:
    -    opaque ro tar:
    -    network rw tftp:
    -    opaque wo syslog:
* 100401148 39104096 flash rw flash:
67108860 67108860 flash rw ramdisk:
    -    network rw rcp:
    -    network rw ftp:
    -    network rw http:
    -    network rw scp:
    -    opaque ro cns:
```

Step 3
Prepare for the upgrade.
You should consider these items before you upgrade the Cisco IOS:

- Store both the old Cisco IOS and the new Cisco IOS, if the router has sufficient memory. You can boot the router in the ROMMON mode and boot the old Cisco IOS, in case of boot failure with new Cisco IOS. This method saves time if you want to roll back the Cisco IOS.
- Backup the configuration from the router because some of the Cisco IOS releases add default configurations. This newly added configuration may conflict with your current configuration. Compare the configuration of the router after the Cisco IOS upgrade with the configuration backed up before the upgrade. If there are differences in the configuration, you must ensure they do not affect your requirements.

Step 4
Verify that the TFTP server has IP connectivity to the router.
The TFTP server must have a network connection to the router and must be able to ping the IP address of the router targeted for a TFTP software upgrade. In order to achieve this connection, the router interface and the TFTP server must have an IP address in the same range or a default gateway configured. Check the IP address of the TFTP server in order to verify this configuration.

Step 5
Copy the IOS Image from the TFTP server.

Before you copy the image, ensure that you have started the TFTP server software on your PC, and that you have the file name mentioned in the TFTP server root directory. Cisco recommends that you keep a backup of the router and access server configuration before you upgrade. The upgrade does not affect the configuration, which is stored in nonvolatile RAM [NVRAM]. However, this situation might happen if the right steps are not followed properly.

Example:

Step 6
Verify the Cisco IOS image in the file system.

Example:

Example:

File system hash verification successful.

Step 7
Verify the Configuration Register.

Use the `show version` command to check the config-register value. The value is displayed in the last line of the `show version` output. It should be set to 0x2102.

Example:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# config-register 0x2102
Router(config)#^Z
```

Step 8
Verify the Boot Variable

The router tries to boot with the first file in the Flash. If the first file is not the Cisco IOS Software image, you need to configure a boot system statement in order to boot the specified image. If there is only one file in Flash and it is the Cisco IOS Software image, this step is not necessary.

Example:

Step 9
Save the configuration and reload the router.

Example:

```
Router# write memory
Router# reload
Proceed with reload? [confirm]
```

Step 10
Verify the Cisco IOS upgrade.

After the reload is complete, the router should run the desired Cisco IOS Software image. Use the `show version` command in order to verify the Cisco IOS software.

Example:
Auto Upgrading the MCU

Upgradable MCU is bundled with the IOS image. You can upgrade the MCU using one of the following ways:

• MCU Auto upgrade can be enabled or disabled by setting the ROMMON variable AUTO_UPGRADE_ROMMON to TRUE or FALSE:
 • From the ROMMON:
 rommon> AUTO_UPGRADE_MCUS=TRUE | FALSE
 • From the IOS:
 Router# upgrade mcu preference [enable | disable]

Once the MCU is upgraded, the router is not reloaded. Subsequent reload versions are compared; if the versions are same, then the MCU is not upgraded.

• If the AUTO_UPGRADE_ROMMON variable is set to FALSE, then the MCU can be upgraded as follows:
 Router# upgrade mcu file flash:image.hex

Manually Upgrading the ROMMON

Complete the following steps to manually upgrade the router ROMMON:

SUMMARY STEPS

1. Load the IOS image.
2. Copy the upgradable ROMMON file ASR901_RM2.srec, to the flash memory.
3. Upgrade the ROMMON using the following command:
4. Check the status of the currently running ROMMON using any one of the following commands:

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Load the IOS image.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Copy the upgradable ROMMON file ASR901_RM2.srec, to the flash memory.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Upgrade the ROMMON using the following command:</td>
</tr>
<tr>
<td></td>
<td>Router# upgrade rom-monitor file flash:image.hex</td>
</tr>
<tr>
<td></td>
<td>The router reloads and comes up with upgradable ROMMON.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Check the status of the currently running ROMMON using any one of the following commands:</td>
</tr>
<tr>
<td></td>
<td>• From the ROMMON:</td>
</tr>
<tr>
<td></td>
<td>• rommon>rommon-pref readonly</td>
</tr>
<tr>
<td></td>
<td>• From the IOS:</td>
</tr>
</tbody>
</table>
• router> show rom-monitor

Note While upgrade is in progress, if something goes wrong like power-off or power cycler removed, or if the erase program is not done properly, you can reset the board. It falls back to the read-only rommon.

What to do next

After the ROMMON upgrade, if you need to fall back to either the read-only ROMMON, or the upgrade ROMMON, use any one of the following commands:

- From the IOS:
  ```
  Router# upgrade rom-monitor preference readonly | upgrade
  ```

- From the ROMMON:
  ```
  rommon> rommon-pref readonly
  ```

Auto Upgrade of ROMMON

Upgradable rommon is bundled with the IOS image. You can do an auto upgrade of the ROMMON using one of the following ways:

- Rommon Auto upgrade can be enabled or disabled with by setting the rommon variable AUTO_UPGRADE_ROMMON to TRUE or FALSE using the following commands:
  ```
  rommon> AUTO_UPGRADE_ROMMON=TRUE | FALSE
  ```

- From the IOS:
  ```
  Router# upgrade rom-monitor preference autoupgrade enable | disable
  ```

By default, the upgrade variable is set to be TRUE.

Once the ROMMON is upgraded, the IOS falls back to the ROMMON. Subsequent reload versions are compared; if the version is the same, then the ROMMON will not be upgraded.

- If the AUTO_UPGRADE_ROMMON variable is set to FALSE, use the following command in IOS, to upgrade:
  ```
  Router# upgrade rom-monitor internal
  ```
Auto Upgrade of ROMMON
CHAPTER 7

Configuring Gigabit Ethernet Interfaces

This chapter explains how to configure the Gigabit Ethernet (GE) interface on the router.

- Configuring the Interface, on page 61
- Setting the Speed and Duplex Mode, on page 62
- Enabling the Interface, on page 63
- Modifying MTU Size on the Interface, on page 64
- MAC Flap Control, on page 65
- Configuring a Combo Port, on page 66

Configuring the Interface

To configure the GE interface, complete the following steps:

![Note]

In the following procedure, press the Return key after each step unless otherwise noted. At any time, you can exit the privileged level and return to the user level by entering disable at the Router# prompt.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabit ethernet slot/port
4. cdp enable
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enters enable mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
Setting the Speed and Duplex Mode

The Gigabit Ethernet ports of the Router can run in full or half-duplex mode—100 Mbps or 1000 Mbps (1 Gbps). The router has an auto-negotiation feature that allows the router to negotiate the speed and duplex mode with the corresponding interface at the other end of the connection.

Auto-negotiation is the default setting for the speed and transmission mode.

When you configure an interface speed and duplex mode, follow these guidelines:

- If both ends of the line support auto-negotiation, use the default auto-negotiation settings.
- When auto-negotiation is turned on, it auto-negotiates both speed and the duplex mode.
- If one interface supports auto-negotiation, and the interface at the other end does not, configure the duplex mode and speed on both interfaces. If you use the auto-negotiation setting on the supported side, the duplex mode setting is set at half-duplex.
- Auto-negotiation must be enabled for 1000M full duplex Gigabit Ethernet devices; otherwise behavior is unpredictable.
- To configure different speed (100M), auto-negotiation should be disabled.

Note

In the following procedure, press the **Return** key after each step unless otherwise noted. At any time, you can exit the privileged level and return to the user level by entering **disable** at the **Router#** prompt.

To configure speed and duplex operation, complete these steps in the interface configuration mode:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal Example: Router# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 3 interface gigabit ethernet slot/port Example: Router(config)# interface gigabit ethernet 0/1</td>
<td>Specifies the port adapter type and the location of the interface to be configured. The slot is always 0 and the port is the number of the port.</td>
</tr>
<tr>
<td>Step 4 cdp enable Example: Router(config-if)# cdp enable</td>
<td>Enables Cisco Discovery Protocol on the router, use the cdp enable command.</td>
</tr>
<tr>
<td>Step 5 end Example: Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. duplex [half | full]
2. speed [1000 | 100 | 10]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Specify the duplex operation.</td>
</tr>
<tr>
<td>duplex [half</td>
<td>full]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# duplex half</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Specify the speed.</td>
</tr>
<tr>
<td>speed [1000</td>
<td>100</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# speed 1000</td>
<td></td>
</tr>
</tbody>
</table>

Enabling the Interface

To enable the interface, complete these steps:

In the following procedure, press the Return key after each step unless otherwise noted. At any time, you can exit the privileged level and return to the user level by entering disable at the Router# prompt.

SUMMARY STEPS

1. no shutdown
2. no shutdown

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Specify the port adapter type and the location of the interface to be configured. The type number is always 0 and the type number is the number of the port.</td>
</tr>
<tr>
<td>no shutdownno shutdown</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enable the gigabit Ethernet interface using the no shutdown command.</td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
</tbody>
</table>
Modifying MTU Size on the Interface

Complete the following steps to modify the MTU size on Gigabit Ethernet interface:

Note

To configure mtu under SVI interface, use mtu bytes command since ip mtu bytes command is not supported under SVI interface.

Note

Maximum frame size allowed is calculated as the sum of configured MTU value and size of Layer 2 header.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface gigabitethernet slot/port**
4. **mtu bytes**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Selects a Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>slot/port</code>—Specifies the slot and port number.</td>
</tr>
<tr>
<td><code>interface gigabitethernet slot/port</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface gigabitethernet 0/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures the MTU size for Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>bytes</code>—The range is from 1500 to 9216. The default is 9216.</td>
</tr>
<tr>
<td><code>mtu bytes</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# mtu 6000</code></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>To set the MTU size to its default value, use the <code>no mtu</code> or <code>default mtu</code> command.</td>
</tr>
<tr>
<td>Note</td>
<td>Maximum frame size allowed is calculated as the sum of configured MTU value and size of Layer 2 header.</td>
</tr>
</tbody>
</table>
Verifying the MTU Size

To verify the MTU size, use the `show interface gigabitethernet` and `show interface mtu` commands.

```
Router# show interface gigabitethernet 0/1
GigabitEthernet0/1 is up, line protocol is up (connected)
    Hardware is Gigabit Ethernet, address is 4055.398d.bd05 (bia 4055.398d.bd05)
    MTU 6000 bytes
        , BW 1000000 Kbit/sec, DLY 10 usec,
        reliability 255/255, txload 1/255, rxload 1/255
        Encapsulation ARPA, loopback not set
        Keepalive set (10 sec)
        Full Duplex, 1000Mbps, link type is auto, media type is RJ45
        output flow-control is unsupported, input flow-control is unsupported
        ARP type: ARPA, ARP Timeout 04:00:00
        Last input never, output never, output hang never
    Last clearing of "show interface" counters 21:01:41
    Input queue: 0/200/0/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
        5 minute input rate 0 bits/sec, 0 packets/sec
        0 packets input, 0 bytes, 0 no buffer
        Received 0 broadcasts (0 IP multicasts)
        0 runs, 0 giants, 0 throttles
        0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
        0 watchdog, 0 multicast, 0 pause input
        0 packets output, 0 bytes, 0 underruns
```

MAC Flap Control

A MAC flap occurs when a switch receives packets from two different interfaces, with the same source MAC address. This happens when wrong configurations such as loops are introduced in networks. MAC flapping can cause CPU hogs and software induced crashes, if preventive action is not taken.

The two main aspects of MAC flap control feature are:

- Identification of MAC Flapping—Identified when MAC movement counter threshold is hit at specified time intervals.
- Preventive Action—Err-Disabling is done in one of the ports that has MAC flapping.

This feature is disabled by default and can be enabled or disabled through the CLI. You can configure the maximum number of MAC movements that are allowed in a specified time interval, beyond which the MAC movement is termed as flapping.

Once the port is err-disabled, it can be administratively brought up using the `shut` and `no shut` commands.

Restrictions and Limitations

- If MAC learning is done in tens of thousands, the CPU may slow down. This feature does not address the slow down or CPU hog due to MAC learning.
- When the router is learning tens of thousands of MACs, and there are a couple of genuine MAC movements (not due to a loop), they are not tagged as MAC flapping since these are valid MAC movements.
- Average MAC Movement issue
For example, let us assume that MAC movement counter is configured for a maximum of 5 MAC movements in 10 seconds.

If 2000 MACs have contributed for 4 MAC movements each in 10 seconds, the total number of AC movements will be 8000. Since the individual MAC threshold is not hit in this case, the router does not take any preventive action. However, this condition may not really occur in practice.

Configuring MAC Flap Control

Complete the following steps to configure MAC Flap control:

SUMMARY STEPS

1. configure terminal
2. mac-flap-ctrl on per-mac mac-movement time-interval

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| configure terminal |
| Example:
| Router# configure terminal |
| **Step 2**
| mac-flap-ctrl on per-mac mac-movement time-interval |
| Example:
| Router(config)# mac-flap-ctrl on per-mac 20 10 |

Enables MAC flap control.

- **mac-movement**—Maximum number of MAC movements that are allowed in the specified time.
- **time-interval**—Time interval that can elapse before the MAC movements are tagged as flapping.

If values are not specified for the above parameters, the default values are taken by the router. The default values for the counters are five and ten; that is five movements in ten seconds.

The no form of the command disables this feature.

Configuring a Combo Port

A combo port is considered as a single interface with dual front ends (an RJ-45 connector and an SFP module connector). The dual front ends of a combo port are non-redundant interfaces; the Router activates only one connector of the pair. Combo ports can be configured as copper ports or small form-factor pluggable (SFP) module ports.

By default, the Router selects the RJ-45 connector. However, you can use the media-type command to manually select the media type. When the media type is auto-select, the router gives preference to SFP module if both copper and fiber-optic signals are simultaneously detected.
When DOM is enabled on a port (with active SFP link status) and the SFP encounters violations of any kind, an error message is displayed, irrespective of the port being combo or non-combo.

When the media type is auto-select, the Router configures both types with auto negotiation of speed and duplex.

When the media type is auto-select, you cannot use 100M SFPs.

When the media type is auto-select, you cannot use the `speed` and `duplex` commands.

When the media type is auto-select, the Router uses the following criteria to select the type:

- If only one connector is installed, that interface is active and remains active until the media is removed or the router is reloaded.
- If both media are installed in the combo port, the router gives preference to the SFP module interface.
- If both media are installed in the combo port, when the SFP module interface is inactive, the RJ-45 connector is selected. When the SFP module interface recovers and becomes active, the RJ-45 connector is disabled and the router gives preference to the SFP module interface.
- If both media are installed in the combo port, and the router is reloaded or the port is disabled and then re-enabled through the `shutdown` and the `no shutdown` interface configuration commands, the router gives preference to the SFP module interface.
- Copper SFPs are not supported on combo ports in Router

Note: Copper SFPs auto-negotiation is not mandatory for 1000Base-T devices.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/port`
4. `media-type {auto-select | rj45 | sfp}`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Selects a Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface gigabitethernet slot/port</code></td>
<td>- slot/port—Specifies the slot and port number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface gigabitethernet 0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures the media type.</td>
</tr>
<tr>
<td>`media-type {auto-select</td>
<td>rj45</td>
</tr>
<tr>
<td>- rj45—Specifies an RJ-45 physical connection.</td>
<td></td>
</tr>
<tr>
<td>- sfp—Specifies an SFP physical connection for fiber media.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# media-type rj45</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits interface configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Example: Router(config-if)# end</td>
</tr>
</tbody>
</table>

Verifying the Media Type

To verify the media type, use the `show interface gigabitethernet` command.

Following is a sample output when the media type is RJ-45:

```
Router# show interface gigabitethernet 0/1
GigabitEthernet0/1 is up, line protocol is up (connected)
    Hardware is Gigabit Ethernet, address is 4055.398d.bd05 (bia 4055.398d.bd05)
    MTU 9216 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
        reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full Duplex, 1000Mbps, link type is auto, media type is RJ45
    output flow-control is unsupported, input flow-control is unsupported
```

Following is a sample output when fiber-optic is selected as the physical connection:

```
Router# show interface gigabitethernet 0/7
GigabitEthernet0/7 is up, line protocol is up (connected)
    Hardware is Gigabit Ethernet, address is 4055.398d.bd0b (bia 4055.398d.bd0b)
    MTU 9216 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
        reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full Duplex, 1000Mbps, link type is auto, media type is SX
    output flow-control is unsupported, input flow-control is unsupported
```

Following is a sample output when the media type is auto-select and the interface is down:

```
Router# show interface gigabitethernet 0/7
GigabitEthernet0/7 is down, line protocol is down (notconnect)
    Hardware is Gigabit Ethernet, address is 0000.0000.0000 (bia 0000.0000.0000)
    MTU 9216 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
        reliability 255/255, txload 1/255, rxload 1/255
```
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full Duplex, 1000Mbps, link type is auto, media type is unknown
output flow-control is unsupported, input flow-control is unsupported
Verifying the Media Type
CHAPTER 8

Configuring Ethernet Virtual Connections

Metro-Ethernet Forum (MEF) defines Ethernet Virtual Connection (EVC) as an association between two or more user network interfaces that identifies a point-to-point or multipoint-to-multipoint path within the service provider network. An EVC is a conceptual service pipe within the service provider network. A bridge domain is a local broadcast domain that is VLAN-ID-agnostic. An ethernet flow point (EFP) service instance is a logical interface that connects a bridge domain to a physical port or to an EtherChannel group in a router.

An EVC broadcast domain is determined by a bridge domain and the EFPs connected to it. An incoming frame is matched against EFP matching criteria on the interface, learned on the matching EFP, and forwarded to one or more EFPs in the bridge domain. If there are no matching EFPs, the frame is dropped.

Note

router does not support switch port configuration.

- Finding Feature Information, on page 71
- Supported EVC Features, on page 72
- Understanding EVC Features, on page 72
- Configuring EFPs, on page 77
- Verifying DHCP Snooping with Option 82 on EVC, on page 86
- Example: Configuring DHCP Snooping with Option 82 on EVC, on page 87
- Configuration Examples of Supported Features, on page 88
- How to Configure EVC Default Encapsulation, on page 91
- Configuring Other Features on EFPs, on page 94
- Monitoring EVC, on page 104
- Configuring Switchport to EVC Mapping, on page 105
- Troubleshooting DHCP Snooping with Option-82 on EVC, on page 107
- Additional References, on page 108
- Feature Information for Configuring Ethernet Virtual Connections, on page 109

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for Configuring Ethernet Virtual Connections, on page 109.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Supported EVC Features

This section contains the following supported EVC features:

- Service instance—create, delete, and modify EFP service instances on Ethernet interfaces.
- Bridge domains—configure EFPs as members of a bridge domain (up to 64 EFPs per bridge domain).
- Rewrite (VLAN translation)
 - Pop symmetric only—the supported rewrite configuration implies egress pushing (adding a tag)
 - pop 1 removes the outermost tag
 - pop symmetric adds a tag on egress for a push operation
 - QinQ with rewrite
 - Ingress rewrite is not supported
- EVC forwarding
- MAC address learning and aging
- EVCs on EtherChannels
- Split horizon
- MSTP (MST on EVC bridge domain)
- QoS aware EVC/EFP per service instance
- Pop 2 configuration supports layer 2 and layer 3 operations.

Understanding EVC Features

This section contains the following topics:

- Ethernet Virtual Connections, on page 72
- Service Instances and EFPs, on page 73
- Encapsulation, on page 73
- Bridge Domains, on page 75
- DHCP Client on Switch Virtual Interface, on page 75
- Configuring Other Features on EFPs, on page 94
- Rewrite Operations, on page 76

Ethernet Virtual Connections

Use the `ethernet evc evc-id` global configuration command to create an EVC. The `evc-id` or name is a text string from 1 to 100 bytes. Using this command moves the device into service configuration mode (config-srv) where you configure all parameters that are common to an EVC.

In this mode you can use these commands:

- default—Sets a command to its defaults
• **exit**—Exits EVC configuration mode
• **no**—Negates a command or sets its defaults
• **oam**—Specifies the OAM Protocol
• **uni**—Configures a count UNI under EVC

Service Instances and EFPs

Configuring a service instance on a Layer 2 port or EtherChannel creates an EFP on which you configure EVC features. Each service instance has a unique number per interface, but you can use the same number on different interfaces because service instances on different ports are not related.

If you have defined an EVC by using the `ethernet evc evc-id` global configuration command, you can associate the EVC with the service instance (optional). There is no default behavior for a service instance. You can configure a service instance on an EtherChannel group.

Use the `service instance number ethernet [name]` interface configuration command to create an EFP on a Layer 2 interface or EtherChannel and to enter service instance configuration mode. You should use service instance configuration mode to configure all management and control data plane attributes and parameters that apply to the service instance on a per-interface basis.

- **The service instance number** is the EFP identifier, an integer from 1 to 8000.
- The optional `ethernet name` is the name of a previously configured EVC. You do not need to enter an `EVC name`, but you must enter `ethernet`. Different EFPs can share the same name when they correspond to the same EVC. EFPs are tied to a global EVC through the common name.

When you enter service instance configuration mode, you can configure these options:

- **default**—Sets a command to its defaults
- **description**—Adds a service instance specific description
- **encapsulation**—Configures Ethernet frame match criteria
- **ethernet**—Configures Ethernet-lmi parameters
- **exit**—Exits from service instance configuration mode
- **no**—Negates a command or sets its defaults
- **service-policy**—Attaches a policy-map to an EFP
- **shutdown**—Takes the service instance out of service

Enter the `[no] shutdown` service-instance configuration mode to shut down or bring up a service instance.

Encapsulation

Encapsulation defines the matching criteria that maps a VLAN, a range of VLANs, Ethertype, or a combination of these to a service instance. Configure encapsulation in the service instance configuration mode. You must configure one encapsulation command per EFP (service instance).

Use the `encapsulation` command in service-instance configuration mode to set the encapsulation criteria. Different types of encapsulations are dot1q, dot1ad, and untagged. Valid Ethertype is IPv4.

Note

The router does not support dot1ad encapsulation on Layer 3 service.

Encapsulation classification options also include:
• outer tag VLAN
• inner tag VLAN

After you enter an encapsulation method, these keyword options are available in service instance configuration mode:

• **bridge-domain**—Configures a bridge domain
• **rewrite**—Configures Ethernet rewrite criteria

Table 8: Supported Encapsulation Types

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| `encapsulation dot1q vlan-id [vlan-id [-vlan-id]]` | Defines the matching criteria to be used to map 802.1Q frames ingress on an interface to the appropriate EFP. The options are a single VLAN, a range of VLANs, or lists of VLANs or VLAN ranges. VLAN IDs are 1 to 4094.
 • Enter a single VLAN ID for an exact match of the outermost tag.
 • Enter a VLAN range for a ranged outermost match.
 Note VLAN IDs 4093, 4094, and 4095 are reserved for internal usage. |
| `encapsulation dot1q second-dot1q vlan-id [vlan-id [-vlan-id]]` | Double-tagged 802.1Q encapsulation. Matching criteria to be used to map QinQ frames ingress on an interface to the appropriate EFP. The outer tag is unique and the inner tag can be a single VLAN, a range of VLANs or lists of VLANs or VLAN ranges.
 • Enter a single VLAN ID in each instance for an exact match of the outermost two tags.
 • Enter a VLAN range for **second-dot1q** for an exact outermost tag and a ranged second tag. |
| `encapsulation dot1ad vlan-id` | Defines the matching criteria to be used in order to map single-tagged 802.1ad frames ingress on an interface to the appropriate service instance. |
| `encapsulation untagged` | Matching criteria to be used to map untagged (native) Ethernet frames entering an interface to the appropriate EFP.
 Only one EFP per port can have untagged encapsulation. However, a port that hosts EFP matching untagged traffic can also host other EFPs that match tagged frames. |
| `encapsulation default` | Configures default encapsulation. |

If a packet entering or leaving a port does not match any of the encapsulations on that port, the packet is dropped, resulting in *filtering* on ingress. The encapsulation must match the packet *on the wire* to determine filtering criteria. *On the wire* refers to packets ingressing the router before any rewrites and to packets egressing the router after all rewrites.

VLAN Counters

supports counters for Switch Virtual Interface (SVI) Statistics.

Restrictions

• Only Bytes counters are supported in SVI Statistics.
Bridge Domains

A service instance must be attached to a bridge domain. Flooding and communication behavior of a bridge domain is similar to that of a VLAN domain. Bridge-domain membership is determined by which service instances have joined it (based on encapsulation criteria), while VLAN domain membership is determined by the VLAN tag in the packet.

Note

You must configure encapsulation before you can configure the bridge domain.

Use the `bridge-domain bridge-id service-instance` command in the configuration mode to bind the EFP to a bridge domain instance. The `bridge-id` is the identifier for the bridge domain instance, a number ranging from 1 to 4094.

DHCP Client on Switch Virtual Interface

The DHCP client retrieves the host information from the DHCP server and configures the SVI interface of the router. If the DHCP server is unable to provide the requested configuration parameters from its database to the DHCP client, it forwards the request to one or more secondary DHCP servers defined by the network administrator. DHCP helps you to dynamically assign reusable IP addresses to clients.

Hosts are connected to secondary VLANs, and the DHCP server assigns them IP addresses from the block of addresses assigned to the primary VLAN. When new devices are added, the DHCP server assigns them the next available address from a large pool of subnet addresses. In router, the DHCP client is supported only on SVI interfaces and for IPv4 addresses.

Split-Horizon

The split-horizon feature allows service instances in a bridge domain to join groups. Service instances in the same bridge domain and split-horizon group cannot forward data between each other, but can forward data between other service instances that are in the same bridge domain, but not in the same split-horizon group.

Service instances do not have to be in a split-horizon group. If a service instance does not belong to a group, it can send and receive from all ports within the bridge domain. A service instance cannot join more than one split-horizon group.

Use the `bridge-domain bridge-id split-horizon group group_id service-instance` command in the configuration mode to configure a split-horizon group. The `group_id` is a number from 0 to 31. All members of the bridge-domain configured with the same `group_id` are part of the same split-horizon group. EFPs that are not configured with an explicit `group_id` do not belong to any group.

You can configure no more than 12 service instances per bridge domain. When a bridge domain contains a service instance that is part of a split-horizon group, this decreases the number of service instances allowed to be configured in that split-horizon group. The router supports up to 32 split-horizon groups plus the default (no group).

If a service instance joins split-horizon group, it can have no more than 12 members in split horizon group in the same bridge domain. We recommend that you add split horizon groups in numerical order to maximize the number of service instances that can belong to a group.
Rewrite Operations

Use the `rewrite` command to modify packet VLAN tags. You can also use this command to emulate traditional 802.1Q tagging, where packets enter a router on the native VLAN and VLAN tagging properties are added on egress. You can also use the `rewrite` command to facilitate VLAN translation and QinQ.

Use the `rewrite ingress tag pop 1 symmetric` service-instance configuration mode command to specify the encapsulation adjustment to be performed on the frame ingress to the EFP. Entering `pop 1` pops (removes) the outermost tag.

Note

The `symmetric` keyword is required to complete the `rewrite` configuration.

When you enter the `symmetric` keyword, the egress counterpart performs the inverse action and pushes (adds) the encapsulation VLAN. You can use the `symmetric` keyword only with ingress rewrites and only when single VLANs are configured in encapsulation. If you configure a list of VLANs or a VLAN range or `encapsulation default`, the `symmetric` keyword is not accepted for rewrite operations.

The router supports only the following `rewrite` commands.

- `rewrite ingress tag pop 1 symmetric`
- `rewrite ingress tag pop 2 symmetric`

The router does not support `rewrite` commands for `ingress push` and `translate` in this release. However, you can use the `rewrite ingress tag pop symmetric` command to achieve translation. Possible translation combinations are 1-to-1, 1-to-2, and 2-to-1.

The Series Aggregation Services Router does not support egress rewrite operations beyond the second VLAN that a packet carries into a router. See the Configuring Other Features on EFPs, on page 94.

DHCP Snooping with Option 82 on EVC

DHCP snooping is a DHCP security feature that determines whether traffic sources are trusted or untrusted. By intercepting all the DHCP messages bridging within the Layer 2 VLAN domain, DHCP snooping acts as `mini security firewall` between clients and the DHCP server. It provides a mechanism to differentiate untrusted port of a switch connected to an end user (client) from the trusted port of a switch connected to a server or another switch or router.

DHCP snooping is one of the features that is supported on the Routers when these routers function as Layer 2 switches.

The DHCP relay agent, which runs at Layer 3, forwards DHCP queries in subnets where DHCP servers located. DHCP relay agent would function exclusive of DHCP snooping functioning in Layer 2 switch mode.

Note

DHCP relay with DHCP Authentication is not supported.
DHCP Snooping Support

The following functionalities are supported on the Series Routers as part of DHCP snooping support:

• DHCP snooping is supported on the bridge-domains in the Layer 2 mode.
• DHCP rate limit is supported per-port.

DHCP Client FORCERENEW Message Overview

The Cisco DHCP Client FORCERENEW Message feature provides entity authentication and message authentication, in accordance with RFC 3118, by which Dynamic Host Configuration Protocol (DHCP) clients and servers authenticate the identity of other DHCP entities and verify that the content of a DHCP message has not been changed during delivery through the network.

The message authentication mechanism allows servers to determine whether a request for DHCP information comes from a client that is authorized to use the network. It also allows clients to verify that a DHCP server can be trusted to provide valid configuration.

The Cisco DHCP Client FORCERENEW Message feature requires authentication, and all client-server exchanges must be authenticated. The `ip dhcp client authentication mode` and `keychain` commands must be configured.

When the client gets a FORCERENEW message, the client does the following:

• Authenticates the message according to the authentication mode specified in the `ip dhcp client authentication mode` command. The Cisco DHCP Client FORCERENEW Message feature supports both token-based and message digest algorithm 5 (MD5)-based authentication:
 • Token-based authentication is useful only for basic protection against inadvertently instantiated DHCP servers. Tokens are transmitted in plain text; they provide weak authentication and do not provide message authentication.
 • MD5-based authentication provides better message and entity authentication because it contains a single-use value generated by the source as a message authentication code.

• Changes its state to RENEW.
• Tries to renew its lease according to normal DHCP procedures.

The client discards any multicast FORCERENEW message or message that fails authentication.

DHCP Forcereenew Limitations

The following are the limitations of DHCP Forcereenew.

• DHCP Forcereenew is not supported for the IPv6.
• DHCP Forcereenew is not supported with the DHCP relay agent. ASR 901 Relay agent is not supported by the RFC 3118 Authentication.

Configuring EFPs

This section contains the following topics:
Default EVC Configuration

Cisco IOS Release 15.3(2)S introduces support for EVC default encapsulation on the routers. This feature matches and forwards all the ingress traffic on the port. The default service instance on a port is configured using the encapsulation default command.

All traffic coming to the interface with default encapsulation is matched and forwarded. This includes untagged, single tagged, and double tagged traffic. For example, when an untagged EFP is configured, all the traffic except the untagged traffic matches the default EFP.

All Layer 2 features are supported on the default EVC.

Note

Before Cisco IOS Release 15.3(2)S, EFPs or service instances or bridge domains were not configured.

Configuring VLAN Counters on SVI

To configure VLAN-counters on SVI, complete the following steps.

Note

SVI counters are not supported for MPLS packets.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface vlan vlan-id**
4. **ip address ip-address [subnet mask]**
5. **vlan-counter [egress | ingress]**
6. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface vlan vlan-id</td>
<td>Configures the VLAN interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# interface vlan 100</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip address ip-address [subnet mask]</td>
<td>Assigns an IP address to the multilink interface.</td>
</tr>
</tbody>
</table>
| Example: Router(config-if)# ip address 20.1.1.1 255.255.255.255 | - ip-address—IP address.
- subnet mask—Network mask of IP address. |
| **Step 5** vlan-counter [egress |Checks the SVI counters for the bytes flow through the output or input interface. |
| Example: | |
| Router(config-if)# vlan-counter egress | |
| **Step 6** exit | Exits interface configuration mode and enters global configuration mode. |
| Example: | |
| Router(config-if)# exit | |

Verifying VLAN Counters Configuration on SVI

To verify the VLAN Counters configuration on SVI, use the `show interface vlan vlan-id` command:

```
Router #show interface vlan 89 | in bytes
MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
24 packets input, 3243732 bytes, 0 no buffer
36 packets output, 305561626 bytes, 0 underruns
```

Configuration Guidelines

- You can configure up to 4000 bridge domains on the Router.
- You must configure encapsulation on a service instance before configuring bridge domain.
- ISL trunk encapsulation is not supported.
- The router does not support overlapping configurations on the same interface and same bridge domain. If you have configured a VLAN range encapsulation, or encapsulation default on service instance 1, you cannot configure any other encapsulations that also match previous encapsulations in the same interface and bridge domain.
- Default encapsulation is supported only on the physical interface and port channel interface.
- If default encapsulation EVC is configured on the interface, only the untagged encapsulation is accepted and all other encapsulation commands are rejected.
- Default EFP under xconnect and untagged EFP under bridge-domain on the same interface is not supported.
- The rewrite command on encapsulation default EVC is rejected.
- Supports only untagged EFPs on the port with default encapsulation.
- Egress filtering is not supported. All unlearned traffic ingress on the default encapsulation interface is flooded to other interfaces that are part of the same bridge-domain.
- Layer 3 routing is not supported only under default encapsulation. Layer 2 VPN is supported on the default encapsulation EFP.
- QinQ configuration for Layer3 is not possible with pop1 rewrite. However pop2 configured routed QinQ is supported.
• Default xconnect MTU is 9216.
• The traffic packets more than 1522 are classified as Giant packets.
• For interoperability with other routers for an xconnect session, ensure that the MTU on both PE routers is same before the xconnect session is established.
• MPLS is not supported over routed QinQ.
• VLAN IDs 4093, 4094, and 4095 are reserved for internal usage.
• Traffic with tag protocol identifier (TPID) value of 9200 will pass through Xconnect and BD irrespective of the TPID value configured on them.
• Effective with Cisco IOS Release 15.4(3)S, you can configure both single-tag and priority-tag EFP with the rewrite option, on the same bridge domain.
• As untagged EFP does not support CoS, remember to set CoS value as 0 in IP SLA configuration.
• Xconnect over priority tagged EVC configuration is not supported.
• The `bandwidth` command on PoCH interface is not supported.
• Maximum 8 VLAN per interface and 128 VLAN per box are supported in Cisco ASR 901 Router.

Creating Service Instances

Complete the following steps to create an EFP service instance:

SUMMARY STEPS

1. `configure terminal`
2. `interface [name]`
3. `service instance ethernet`
4. `encapsulation {dot1q | dot1ad | untagged | default}`
5. `bridge-domain bridge-id [split-horizon group group-id]`
6. `rewrite ingress tag pop 1 symmetric`
7. `end`
8. `show ethernet service instance`
9. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter the global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface [name]</td>
<td>Specify the interface, and enter interface configuration mode. Valid interfaces are physical ports.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 service instance ethernet</td>
<td>Configure an EFP (service instance) and enter service instance configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The number is the EFP identifier, an integer from 1 to 4096.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) ethernet name is the name of a previously configured EVC. You do not need to use an EVC name in a service instance.</td>
</tr>
<tr>
<td>Step 4 encapsulation {dot1q</td>
<td>dot1ad</td>
</tr>
<tr>
<td></td>
<td>• dot1q—Configure 802.1Q.</td>
</tr>
<tr>
<td></td>
<td>• dot1ad—Configure 802.1ad encapsulation.</td>
</tr>
<tr>
<td></td>
<td>• untagged—Map to untagged VLANs. Only one EFP per port can have untagged encapsulation.</td>
</tr>
<tr>
<td></td>
<td>• default—Configures default encapsulation.</td>
</tr>
<tr>
<td>Step 5 bridge-domain bridge-id [split-horizon group group-id]</td>
<td>(Optional) Configure the bridge domain ID. The range is from 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• split-horizon group group-id—Configure a split-horizon group. The group ID is from 0 to 31. EFPs in the same bridge domain and split-horizon group cannot forward traffic between each other, but can forward traffic between other EFPs in the same bridge domain but not in the same split-horizon group.</td>
</tr>
<tr>
<td></td>
<td>Note You must configure encapsulation before the bridge-domain keyword is available.</td>
</tr>
<tr>
<td>Step 6 rewrite ingress tag pop 1 symmetric</td>
<td>(Optional) Specify that encapsulation modification to occur on packets at ingress.</td>
</tr>
<tr>
<td></td>
<td>• pop 1—Pop (remove) the outermost tag.</td>
</tr>
<tr>
<td></td>
<td>• symmetric—Configure the packet to undergo the reverse of the ingress action at egress. If a tag is popped at ingress, it is pushed (added) at egress.</td>
</tr>
<tr>
<td></td>
<td>Note Although the symmetric keyword appears to be optional, you must enter it for rewrite to function correctly.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Return to the privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8 show ethernet service instance</td>
<td>(Optional) Verify your entries.</td>
</tr>
<tr>
<td>Step 9 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring DHCP Snooping with Option-82 on EVC

To enable DHCP snooping with option-82 on EVC, perform this task:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp snooping`
4. `ip dhcp snooping bridge-domain bridge-id`
5. `interface type number`
6. `ip dhcp snooping trust`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip dhcp snooping</code></td>
<td>Enables DHCP snooping.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip dhcp snooping</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip dhcp snooping bridge-domain bridge-id</code></td>
<td>Enables DHCP snooping on the specified bridge domain.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip dhcp snooping bridge-domain 5</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>interface type number</code></td>
<td>Specifies the interface type and number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface GigabitEthernet1/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ip dhcp snooping trust</code></td>
<td>Configures the selected port as trusted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip dhcp snooping trust</code></td>
<td></td>
</tr>
</tbody>
</table>

Note Use the `no` form of the `ip dhcp snooping trust` command to configure a port as untrusted.
Forcing a Release or Renewal of a DHCP Lease for a DHCP Client

SUMMARY STEPS

1. enable
2. release dhcp type number
3. renew dhcp type number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>release dhcp type number</td>
<td>Performs an immediate release of the Dynamic Host Configuration Protocol (DHCP) lease for the interface and deconfigures the IP address for the interface.</td>
</tr>
<tr>
<td>Example: Device# release dhcp vlan 10</td>
<td></td>
</tr>
<tr>
<td>renew dhcp type number</td>
<td>Forces the DHCP timer to advance to the next stage, at which point a DHCP REQUEST packet is sent to renew or rebind the lease.</td>
</tr>
<tr>
<td>Example: Device# renew dhcp vlan 10</td>
<td></td>
</tr>
</tbody>
</table>

Configuring FORCERENEW Message Handling

Perform this task to specify the type of authentication to be used in Dynamic Host Configuration Protocol (DHCP) messages on the interface, specify the key chain to be used in authenticating a request, and enable FORCERENEW message handling on the DHCP client when authentication is enabled.

SUMMARY STEPS

1. interface type number
2. ip dhcp client client-id hex-string client-id
3. ip dhcp client authentication key-chain name
4. ip dhcp client authentication mode {token|md5}
5. exit
6. key chain name-of-chain
7. key key-id
8. key-string text
9. exit
10. exit
11. ip dhcp-client forcerenew
12. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 interface type number
 Example:

 `Device(config)# interface vlan 10`
 | Configures an interface type and enters interface configuration mode. |
| **Step 2**
 ip dhcp client client-id hex-string client-id
 Example:

 `Device(config-if)# ip dhcp client client-id hex 1234`
 | Specifies the hex-string client-id including type octet of 00 or 01. |
| **Step 3**
 ip dhcp client authentication key-chain name
 Example:

 `Device(config-if)# ip dhcp client authentication key-chain dhcp1`
 | Specifies the key chain to be used in authenticating a request. |
| **Step 4**
 ip dhcp client authentication mode {token | md5}
 Example:

 `Device(config-if)# ip dhcp client authentication mode token`
 | Specifies the type of authentication to be used in DHCP messages on the interface.
 - Token: Authentication Mode token
 - MD5: Authentication Mode message digest algorithm 5 (MD5) |
| **Step 5**
 exit
 Example:

 `Device(config-if)# exit`
 | Exits interface configuration mode. |
| **Step 6**
 key chain name-of-chain
 Example:

 `Device(config)# key chain dhcp1`
 | Defines an authentication key chain needed to enable authentication and enters key-chain configuration mode. |
| **Step 7**
 key key-id
 Example:

 `Device(config-keychain)# key 1234`
 | Identifies an authentication key on a key chain and enters key-chain key configuration mode. |
| **Step 8**
 key-string text
 Example:

 `Device(config-keychain-key)# key-string secret`
 | Specifies the authentication string for a key. |
| **Step 9**
 exit
 Example:

 `Device(config)# exit`
 | Returns to key-chain configuration mode. |
Configuring Per-Port Rate Limit

To configure per-port rate limit for DHCP snooping with Option 82 on EVC, perform this task:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp snooping`
4. `interface type number`
5. `ip dhcp snooping limit rate rate-limit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp snooping</td>
<td>Enables DHCP snooping.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ip dhcp snooping</code></td>
<td></td>
</tr>
</tbody>
</table>
Verifying DHCP Snooping with Option 82 on EVC

To verify DHCP snooping configuration with Option 82 on EVC, use the show commands listed in the following examples.

To display the DHCP snooping configuration, use the show command given in the following example:

Router# show ip dhcp snooping

Switch DHCP snooping is enabled
DHCP snooping is configured on following bridge-domains:
 5
DHCP snooping is operational on following bridge-domains:
 none
DHCP snooping is configured on the following L3 Interfaces:

 Insertion of option 82 is enabled
 circuit-id format: bd-mod-port
 remote-id format: MAC
 Option 82 on untrusted port is not allowed
 Verification of hwaddr field is enabled
 Verification of giaddr field is enabled
 DHCP snooping trust/rate is configured on the following Interfaces:

 Interface Trusted Rate limit (pps)
 ----------------- --------- ----------------
 GigabitEthernet0/1 yes 100

To display the status of the DHCP snooping database agent, use the show command given in the following example:

Router# show ip dhcp snooping database detail

Agent URL :
Write delay Timer : 300 seconds
Abort Timer : 300 seconds

Agent Running : No
Delay Timer Expiry : Not Running
Abort Timer Expiry : Not Running

Last Succeeded Time : None
Last Failed Time : None
Last Failed Reason : No failure recorded.

 Total Attempts : 0 Startup Failures : 0
 Successful Transfers : 0 Failed Transfers : 0
Successful Reads : 0 Failed Reads : 0
Successful Writes : 0 Failed Writes : 0
Media Failures : 0

First successful access: None

Last ignored bindings counters:
Binding Collisions : 0 Expired leases : 0
Invalid interfaces : 0 Unsupported vlans : 0
Parse failures : 0
Last Ignored Time : None

Total ignored bindings counters:
Binding Collisions : 0 Expired leases : 0
Invalid interfaces : 0 Unsupported vlans : 0
Parse failures : 0

To display the DHCP snooping binding entries, use the `show command given in the following example:

Router# `show ip dhcp snooping binding`

<table>
<thead>
<tr>
<th>MacAddress</th>
<th>IP Address</th>
<th>Lease(seconds)</th>
<th>Type</th>
<th>VLAN</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.0100.0201</td>
<td>10.0.0.1</td>
<td>600</td>
<td>dhcp-snooping</td>
<td>100</td>
<td>GigabitEthernet0/1</td>
</tr>
</tbody>
</table>

Example: Configuring DHCP Snooping with Option 82 on EVC

Building configuration...

Current configuration : 2387 bytes

!
!
!
!
!
ip dhcp pool pool1
network 10.0.0.0 255.255.255.0
default-router 10.0.0.1
dns-server 1.1.1.1

!
!
ip dhcp snooping bridge-domain 5
ip dhcp snooping

no ipv6 cef

!
! multilink bundle-name authenticated
l3-over-l2 flush buffers
asr901-storm-control-bpdu 1000

!
! spanning-tree mode pvst

!
interface GigabitEthernet0/1
no ip address
negotiation auto
ip dhcp snooping limit rate 100
ip dhcp snooping trust
!
interface Port-channel2
no ip address
negotiation auto
ip dhcp snooping limit rate 100
ip dhcp snooping trust
!
!
end

Configuration Examples of Supported Features

- Example: Configuring a Service Instance, on page 88
- Example: Encapsulation Using a VLAN Range, on page 88
- Example: Two Service Instances Joining the Same Bridge Domain, on page 89
- Example: Bridge Domains and VLAN Encapsulation, on page 89
- Example: Rewrite, on page 89
- Example: Split Horizon, on page 89

Example: Configuring a Service Instance

Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 22 Ethernet evc_name[name]
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# bridge-domain 10

Example: Encapsulation Using a VLAN Range

Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 22 Ethernet
Router(config-if-srv)# encapsulation dot1q 22-44
Router(config-if-srv)# bridge-domain 10

Example: Configuring VLAN Counters on SVI

Router (config)# interface gigabitethernet0/2
Router (config-if)# service instance 1 Ethernet
Router (config-if-srv)# encapsulation dot1q 10
Router (config-if-srv)# rewrite ingress tag pop 1 symmetric
Router (config-if-srv)# bridge-domain 100
Router (config)# interface vlan 100
Router (config-if)# ip address 20.1.1.1 255.255.255.255
Router (config-if)# vlan-counter egress
Router (config-if)# vlan-counter ingress
Example: Two Service Instances Joining the Same Bridge Domain

In this example, service instance 1 on interfaces Gigabit Ethernet 0/1 and 0/2 can bridge between each other.

```plaintext
Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# bridge-domain 10
Router(config)# interface gigabitethernet0/2
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# bridge-domain 10
```

Example: Bridge Domains and VLAN Encapsulation

Unlike VLANs, the bridge-domain number does not need to match the VLAN encapsulation number.

```plaintext
Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# bridge-domain 4000
Router(config)# interface gigabitethernet0/2
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# bridge-domain 4000
```

Example: Rewrite

In this example, a packet that matches the encapsulation will have one tag removed (popped off). The **symmetric** keyword allows the reverse direction to have the inverse action: a packet that egresses out this service instance will have the encapsulation (VLAN 10) added (pushed on).

```plaintext
Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 4000
```

Example: Split Horizon

In this example, service instances 1 and 2 cannot forward and receive packets from each other. Service instance 3 can forward traffic to any service instance in bridge domain 4000 since it has not joined any split-horizon groups.

```plaintext
Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress pop 1 symmetric
Router(config-if-srv)# bridge-domain 4000 split-horizon group 1
Router(config-if-srv)# exit
Router(config)# interface gigabitethernet0/2
```
Examples: Releasing a DHCP Lease

In the following example, a Dynamic Host Configuration Protocol (DHCP) release is performed on an interface that was originally assigned an IP address by the DHCP server:

```
Device# release dhcp vlan 10
```

In the following example, an attempt is made to release the DHCP lease on an interface that was not originally assigned an IP address by the DHCP server:

```
Device# release dhcp vlan 10
Interface does not have a DHCP originated address
```

In the following example, the `release dhcp` command is executed without specifying the `type` and `number` arguments:

```
Device# release dhcp
Incomplete command.
```

Examples: Renewing a DHCP Lease

In the following example, a Dynamic Host Configuration Protocol (DHCP) lease is renewed on an interface that was originally assigned an IP address by the DHCP server:

```
Device# renew dhcp vlan 10
```

In the following example, an attempt is made to renew the DHCP lease on an interface that was not originally assigned an IP address by the DHCP server:

```
Device# renew dhcp vlan 10
Interface does not have a DHCP originated address
```

In the following example, the `renew dhcp` command is executed without specifying the `type` and `number` arguments:

```
Device# renew dhcp
Incomplete command.
```
How to Configure EVC Default Encapsulation

Configuring EVC Default Encapsulation with Bridge-Domain

Complete the following steps to configure EVC default encapsulation for a bridge-domain.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance instance-id ethernet
5. encapsulation default
6. bridge-domain bridge-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. • Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface GigabitEthernet0/4</td>
<td></td>
</tr>
<tr>
<td>Step 4 service instance instance-id ethernet</td>
<td>Creates a service instance on an interface and defines the matching criteria. • instance-id—Integer that uniquely identifies a service instance on an interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation default</td>
<td>Configures the default service instance.</td>
</tr>
<tr>
<td>Example: Router(config-if-srv)# encapsulation default</td>
<td></td>
</tr>
<tr>
<td>Step 6 bridge-domain bridge-id</td>
<td>Binds the service instance to a bridge domain instance using an identifier.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring EVC Default Encapsulation with Xconnect

Complete the following steps to configure EVC default encapsulation for xconnect.

Note When default encapsulation is configured on xconnect, the router does not support untagged encapsulation on the bridge-domain of the same interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `service instance instance-id ethernet`
5. `encapsulation default`
6. `xconnect peer-ip-address vc-id encapsulation mpls`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface GigabitEthernet0/4</td>
<td></td>
</tr>
<tr>
<td>Step 4 service instance instance-id ethernet</td>
<td>Creates a service instance on an interface and defines the matching criteria.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 10 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation default</td>
<td>Configures the default service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Ethernet Virtual Connections

Verifying EVC Default Encapsulation with Bridge-Domain

To verify the configuration of EVC default encapsulation with bridge-domain, use the `show` command shown below.

Verifying EVC Default Encapsulation with Xconnect

To verify the configuration of EVC default encapsulation with xconnect, use the show command shown below.

```plaintext
Router# show running-config interface gigabitEthernet 0/4
Building configuration...
Current configuration : 181 bytes
!
interface GigabitEthernet0/4
no ip address
negotiation auto
no keepalive
service instance 1 ethernet
encapsulation default
xconnect 2.2.2.2 100 encapsulation mpls
!
end
```

Configuration Examples for EVC Default Encapsulation

Example: Configuring EVC Default Encapsulation with Bridge-Domain

```plaintext
! interface GigabitEthernet
service instance 1 ethernet
encapsulation default
bridge-domain 99
!
```
Example: Configuring EVC Default Encapsulation with Xconnect

```
interface GigabitEthernet0/4
  service instance 10 ethernet
    encapsulation default
    xconnect 1.1.1.1 100 encapsulation mpls
```

Configuring Other Features on EFPs

This section contains the following topics:

EFPs and EtherChannels

You can configure EFP service instances on EtherChannel port channels, but EtherChannels are not supported on ports configured with service instances. Load-balancing on port channels is based on the MAC address or IP address of the traffic flow on the EtherChannel interface.

Configuration Example

This example configures a service instance on an EtherChannel port channel. Configuration on the ports in the port channel are independent from the service instance configuration.

```
Router (config)# interface port-channel 4
Router (config-if)# service instance2ethernet
Router (config-if-srv)# encapsulation dot1q 20
Router (config-if-srv)# bridge-domain 2
```

MAC Address Forwarding, Learning and Aging on EFPs

- Layer 2 forwarding is based on the bridge domain ID and the destination MAC address. The frame is forwarded to an EFP if the binding between the bridge domain, destination MAC address, and EFP is known. Otherwise, the frame is flooded to all the EFPs or ports in the bridge domain.

- MAC address learning is based on bridge domain ID, source MAC addresses, and logical port number. MAC addresses are managed per bridge domain when the incoming packet is examined and matched against the EFPs configured on the interface.

 If there is no EFP configured, the bridge domain ID equal to the outer-most VLAN tag is used as forwarding and learning look-up key. For native VLAN frames, the bridge domain equal to the access VLAN configured in the interface is used. If there is no matching entry in the Layer 2 forwarding table for the ingress frame, the frame is flooded to all the ports within the bridge domain. Flooding within the bridge domain occurs for unknown unicast, and broadcast.

- Dynamic addresses are addresses learned from the source MAC address when the frame enters the router. All unknown source MAC addresses are sent to the CPU along with ingress logical port number and bridge domain ID for learning. Once the MAC address is learned, the subsequent frame with the destination MAC address is forwarded to the learned port. When a MAC address moves to a different port, the Layer 2 forwarding entry is updated with the corresponding port.
• Dynamic addresses are aged out if there is no frame from the host with the MAC address. If the aged-out frame is received by the router, it is flooded to the EFPs in the bridge domain and the Layer 2 forwarding entry is created again. The default for aging dynamic addresses is 5 minutes.

You can configure dynamic address aging time by entering the **mac address-table aging time [0 | 10-1000000]**. The range is in seconds. An aging time of 0 means that the address aging is disabled.

• MAC address movement is detected when the host router moves from one port to another. If a host moves to another port or EFP, the learning lookup for the installed entry fails because the ingress logical port number does not match and a new learning cache entry is created. The detection of MAC address movement is disabled for static MAC addresses where the forwarding behavior is configured by the user.

• You should configure static MAC address before configuring static ARP (configure **mac-address-table static mac-address vlan vlan-id interface interface-number** command followed by **arp ip-address hardware-address encap-type** command). This is because the Layer 2 MAC address and interface information are required to program static ARP in hardware.

Disabling MAC Address Learning on an Interface or Bridge Domain

By default, MAC address learning is enabled on all interfaces and bridge domains or VLANs on the router. You can control MAC address learning on an interface or VLAN to manage the available MAC address table space by controlling which interfaces or VLANs can learn MAC addresses. When you disable MAC address learning for a BD/VLAN or interface, the router that receives packet from any source on the BD, VLAN or interface, the addresses are not learned. Since addresses are not learned, all IP packets floods into the Layer 2 domain.

Complete the following steps to disable MAC address learning on a VLAN:

Before you begin

You can disable MAC address learning on a single VLAN ID from 2 to 4092 (for example, no mac-address-table learning vlan 10). If the MAC address learning is disabled for a VLAN or interface, the already learnt addresses for that VLAN or interface are immediately removed from the MAC address table. However, you cannot disable MAC learning for the reserved 4093, 4094, and 4095 VLAN IDs. If the VLAN ID that you enter is a reserved VLAN, the switch generates an error message and rejects the command.

Note

• We recommend that you disable MAC address learning only in VLANs with two ports. If you disable MAC address learning on a VLAN with more than two ports, every packet entering the switch is flooded in that VLAN domain.

• You cannot disable MAC address learning on a VLAN that is used internally by the router. VLAN ID 1 is used internally by the router. If the VLAN ID that you enter is an internal VLAN, the switch generates an error message and rejects the command.

SUMMARY STEPS

1. configure terminal
2. no mac-address-table learning vlan vlan-id [interface interface-type slot/port]
3. end
4. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 no mac-address-table learning vlan vlan-id | interface type slot/port

Example:

Router(config)# no mac-address-table learning vlan 10

- **vlan vlan-id**—Specifies the VLAN ID which ranges from 2 to 4094. It cannot be an internal VLAN or reserved VLAN.
- **interface type slot/port**—Specifies the location of the interface and its type.

Step 3 end

Return to the privileged EXEC mode.

Step 4 copy running-config startup-config

(Optional) Save your entries in the configuration file.

What to do next

To reenable MAC address learning, use the `mac-address-table learning` global configuration command. The command causes the configuration to appear in the `show running-config` privileged EXEC command display.

Example: Configuring EFP and EtherChannels

This example shows how to disable MAC address learning on VLAN 10:

Router(config)# no mac-address-table learning vlan 10

This example shows how to disable MAC-address learning for all modules on a specific routed interface:

Router(config)# no mac-address-table learning interface GigabitEthernet 0/5

This example shows how to disable MAC address learning for port-channel interface:

Router(config)# no mac-address-table learning interface port-channel 1

Verification

The following are the examples of the outputs using the show commands.

```
Router# show mac-address-table
Mac Address Table
-------------------
Vlan  Mac Address   Type    Ports
-----  --------      ------  -----  
 20    2222.2222.2222 STATIC G10/2
 10    0000.0700.0a00 DYNAMIC G10/9
```
In the above example, the show mac-address-table command displays both the dynamically and statically learned addresses.

Following is an example for show mac-address-table dynamic command which displays only dynamically learned addresses.

```
Router# show mac-address-table dynamic
Mac Address Table
-------------------------------------------
Vlan  Mac Address  Type  Ports
----  -----------  ----  -----
10    0000.0700.0a00  DYNAMIC  Gi0/9
10    0000.0700.0b00  DYNAMIC  Gi0/1
Total Mac Addresses for this criterion: 2
```

Following is an example for show mac-address-table vlan 10 command which displays only the addresses learned on a particular VLAN/BD.

```
Router# show mac-address-table vlan 10
Mac Address Table
-------------------------------------------
Vlan  Mac Address  Type  Ports
----  -----------  ----  -----
10    0000.0700.0a00  DYNAMIC  Gi0/9
10    0000.0700.0b00  DYNAMIC  Gi0/1
Total Mac Addresses for this criterion: 2
```

Following is an example for show mac-address-table interface g0/9 command which displays only the addresses learned on a particular VLAN/BD interface.

```
Router# show mac-address-table interface 0/9
Mac Address Table
-------------------------------------------
Vlan  Mac Address  Type  Ports
----  -----------  ----  -----
10    0000.0700.0a00  DYNAMIC  Gi0/9
Total Mac Addresses for this criterion: 1
```

Following is an example for show mac-address-table interface port-channel command which displays only the addresses learned on a particular port-channel interface.

```
Router# show mac-address-table interface port-channel 1
Mac Address Table
-------------------------------------------
Vlan  Mac Address  Type  Ports
----  -----------  ----  -----
10    0000.0700.0b00  DYNAMIC  Po1
Total Mac Addresses for this criterion: 1
```

Configuring IEEE 802.1Q Tunneling using EFPs

Tunneling is a feature used by service providers whose networks carry traffic of multiple customers and who are required to maintain the VLAN and Layer 2 protocol configurations of each customer without impacting the traffic of other customers. The router uses EFPs to support QinQ and Layer 2 protocol tunneling.

This section contains the following topics:
Restrictions

- Inner VLAN range filtering for QinQ traffic from Network-to-Network Interface (NNI) to User-to-Network Interface (UNI) is not enforced if the range is more than 1000.
- Egress VLAN range filtering for traffic coming from NNI to UNI, is not supported on UNI.
- Single-tagged EVC with VLAN range is not supported on the port channel.
- In case of vlan based REP/STP/G8032 ring, while trying to apply same encapsulation on both ring and non-ring interfaces, you must configure first ring interface. You can ignore the error message displayed on non-ring interface. It does not have any functional effect.

802.1Q Tunneling (QinQ)

Service provider customers often have specific requirements for VLAN IDs and the number of VLANs to be supported. The VLAN ranges required by different customers in the same service-provider network might overlap, and traffic of customers through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed the VLAN limit (4096) of the 802.1Q specification.

Using the EVCs, service providers can encapsulate packets that enter the service-provider network with multiple custom VLAN IDs (C-VLANs) and a single 0x8100 Ethertype VLAN tag with a service provider VLAN (S-VLAN). Within the service provider network, packets are switched based on the S-VLAN. When the packets egress the service provider network onto the customer network, the S-VLAN tag is decapsulated and the original customer packet is restored.

Figure 2: Original (Normal), 802.1Q, and Double-Tagged Ethernet Packet Formats, on page 98 shows the tag structures of the double-tagged packets.

Figure 3: 802.1Q Tunnel Ports in a Service-Provider Network, on page 99 Customer A is assigned VLAN 30, and Customer B is assigned VLAN 40. Packets entering the edge routers with 802.1Q tags are double-tagged when they enter the service-provider network, with the outer tag containing VLAN ID 30 or 40, appropriately,
and the inner tag containing the original VLAN number, for example, VLAN 100. Even if both Customers A and B have VLAN 100 in their networks, the traffic remains segregated within the service-provider network because the outer tag is different. Each customer controls its own VLAN numbering space, which is independent of the VLAN numbering space used by other customers and the VLAN numbering space used by the service-provider network. At the outbound port, the original VLAN numbers on the customer's network are recovered.

![Figure 3: 802.1Q Tunnel Ports in a Service-Provider Network](image)

You can use EFPs to configure 802.1Q tunneling in two ways:

Example: Configuring IEEE 802.1Q Tunneling Using EFPs

In this example, for Customer A, interface Gigabit Ethernet 0/1 is the customer-facing port, and Gigabit Ethernet 0/2 is a trunk port facing the service provider network. For Customer B, Gigabit Ethernet 0/3 is the customer-facing port, and Gigabit Ethernet 0/4 is the trunk port facing the service provider network.

Customer A

```plaintext
Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 1-100
Router(config-if-srv)# bridge-domain 500
Router(config)# interface gigabitethernet0/2
Router(config-if)# service instance 2 Ethernet
Router(config-if-srv)# encapsulation dot1q 30 second-dot1q 1-100
Router(config-if-srv)# rewrite ingress pop 1 symmetric
Router(config-if-srv)# bridge-domain 500
```

For Customer A, service instance 1 on Gigabit Ethernet port 0/1 is configured with the VLAN encapsulations used by the customer: C-VLANs 1–100. These are forwarded on bridge-domain 500. The service provider facing port is configured with a service instance on the same bridge-domain and with an `encapsulation dot1q` command matching the S-VLAN. The `rewrite ingress pop 1 symmetric` command also implies a push of
the configured encapsulation on egress packets. Therefore, the original packets with VLAN tags between 1 and 100 are encapsulated with another S-VLAN (VLAN 30) tag when exiting Gigabit Ethernet port 0/2.

Similarly, for double-tagged (S-VLAN = 30, C-VLAN = 1–100) packets coming from the provider network, using the `rewrite ingress pop 1 symmetric` command enables the outer S-VLAN tag and forwards the original C-VLAN tagged frame over bridge-domain 500 out to Gigabit Ethernet port 0/1.

Customer B

```plaintext
Router(config)# interface gigabitethernet0/3
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 1-200
Router(config-if-srv)# bridge-domain 500
Router(config)# interface gigabitethernet0/4
Router(config-if)# service instance 2 Ethernet
Router(config-if-srv)# encapsulation dot1q 40 second-dot1q 1-200
Router(config-if-srv)# rewrite ingress pop 1 symmetric
Router(config-if-srv)# bridge-domain 500
```

Routed QinQ

router supports pop 2 configuration.

Restrictions

- Pop 2 is not supported for MPLS, L2VPN, and MPLS VPN deployments.
- ACL and QOS configurations for pop2 EVC scenarios are not supported.

Configuration Examples for Routed QinQ

This section provides the following sample configuration examples for routed QinQ on the router:

Example: User to Network Interface

```
Gig 0/1 (Connected to BTS)
interface GigabitEthernet0/1
service instance 1 ethernet
encapsulation dot1q 10
rewrite ingress tag pop 1 symmetric
bridge-domain 100
int vlan 100
ip address 1.1.1.1 255.255.255.0
```

Example: Network to Network Interface/Core Router

```
interface GigabitEthernet0/2
service instance 2 ethernet
encapsulation dot1q 20 second-dot1q 30
rewrite ingress tag pop 2 symmetric
bridge-domain 101
int vlan 101
ip address 2.2.2.2 255.255.255.0
```

In the above example:
• The traffic coming from the Base Transceiver Station (BTS) through the GigabitEthernet interface 0/1 has the VLAN tag 10, which is popped and hits the Switch Virtual Interface (SVI) 100. This gets routed to SVI 101 depending on the destination address.
• At the egress on the core interface, two tags (20 and 30) are pushed and sent out of GigabitEthernet interface 0/2, for SVI 101.
• The traffic coming from the core router through GigabitEthernet interface 0/2, is destined to the BTS and has two tags (20,30); both tags get popped and hit SVI 101. This gets routed to SVI 100, which sends the traffic out of GigabitEthernet interface 0/1 with VLAN 10.
• GigabitEthernet interface 0/2 can have multiple service instances and the traffic egresses out of the corresponding service instance depending on the SVI it gets routed to.

Bridge Domain Routing

The router supports IP routing for bridge domains, including Layer 3 and Layer 2 VPNs, using the SVI model.

Restrictions

• You must configure SVIs for bridge-domain routing.
• The bridge domain must be in the range of 1 to 4094 to match the supported VLAN range.
• You cannot have any Layer 2 switchports in the VLAN (bridge domain) used for routing.
• You can use bridge domain routing with only native packets.
• MPLS is supported on EFP with SVI.
• Scale limit for EFPs reduces if you use the second-dot1q command. Use the second-dot1q any command to maintain this limit.

Example: Configuring Bridge-Domain Routing

This is an example of configuring bridge-domain routing with a single tag EFP:

```bash
Router(config)# interface gigabitethernet0/2
Router(config-if)# service instance 1 Ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 100
Router(config)# interface vlan 100
Router(config-if)# ip address 20.1.1.1 255.255.255.255
```

How to Configure DHCP Client on SVI

This section contains the following topics:

Configuring DHCP Client on SVI

To configure the DHCP client, the IP address, mask, broadcast address, and default gateway address of the SVI are retrieved from the server.

Complete the following steps to configure the DHCP client on SVI.

SUMMARY STEPS

1. enable
2. `configure terminal`
3. `interface vlan vlan-id`
4. `ip address dhcp`
5. `interface type-number`
6. `service instance instance-id ethernet encapsulation dot1q vlan-id`
7. `rewrite ingress tag pop [1 | 2] symmetric`
8. `bridge-domain bridge-id`

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
 `Example:`
 `Router> enable`
 * Enter your password if prompted. |
| 2 | `configure terminal` | Enters global configuration mode.
 `Example:`
 `Router# configure terminal` |
| 3 | `interface vlan vlan-id` | Configures the VLAN interface and enters interface configuration mode.
 `Example:`
 `Router(config)# interface vlan 15` |
| 4 | `ip address dhcp` | Specifies an IP address through DHCP.
 `Example:`
 `Router(config-if)# ip address dhcp` |
| 5 | `interface type-number` | Specifies an interface type number.
 `Example:`
 `Router(config-if)# interface GigabitEthernet` |
| 6 | `service instance instance-id ethernet encapsulation dot1q vlan-id` | Creates a service instance on an interface and defines the matching criteria to be used in order to map the ingress dot1q frames to the appropriate service instance.
 `Example:`
 `Router(config-if)# service instance 10 ethernet encapsulation dot1q 15`
 * `instance-id`—Integer that uniquely identifies a service instance on an interface.
 * `vlan-id`—VLAN range is between 1 to 4094. You cannot use the same VLAN ID for more than one domain at the same level. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 rewrite ingress tag pop [1</td>
<td>2] symmetric</td>
</tr>
<tr>
<td>Example: Router(config-if)# rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
<tr>
<td>Step 8 bridge-domain bridge-id</td>
<td>Binds the service instance to a bridge domain instance using an identifier.</td>
</tr>
<tr>
<td>Example: Router(config-if)# bridge-domain 15</td>
<td></td>
</tr>
</tbody>
</table>

Verifying DHCP Client on SVI

To verify the configuration of DHCP client on SVI, use the `show` command described below.

```
Router# show ip-address interface brief | include vlan15
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan15</td>
<td>15.0.0.2</td>
<td>YES</td>
<td>DHCP</td>
<td>up</td>
</tr>
</tbody>
</table>

Example: Configuring DHCP Client on SVI

```
Router(config)# interface Vlan 15
Router(config-if)# ip address dhcp
Router(config-if)# interface GigabitEthernet
Router(config-if)# negotiation auto
Router(config-if)# service instance 10 ethernet
Router(config-if-srv)# encapsulation dot1q 15
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 15
```

EFPs and MAC Addresses

To see MAC address information for VLANs 1 to 4094, use the `show mac address-table vlan` privileged EXEC command. For VLANs 4096 to 8000, use the `show mac address-table bridge-domain` privileged EXEC command. All other `show mac address-table` commands also support bridge domains as well as VLANs.

When an EFP property changes (bridge domain, rewrite, encapsulation, split-horizon, secured or unsecured, or a state change), the old dynamic MAC addresses are removed from their existing tables. This is to prevent old invalid entries from getting retained.

EFPs and MSTP

EFP bridge domains are supported by the Multiple Spanning Tree Protocol (MSTP). These restrictions apply when running MSTP with bridge domains:

- All incoming VLANs (outer-most or single) mapped to a bridge domain must belong to the same MST instance or loops could occur.
• For all EFPs that are mapped to the same MST instance, you must configure backup EFPs on every redundant path to prevent loss of connectivity due to STP blocking a port.
• EVC only supports MSTP.

Monitoring EVC

Note
Statistics are not available in the service instance command. To look at flow statistics, you need to configure a class default policy on the service instance.

Table 9: Supported show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ethernet service evc [id evc-id</td>
<td>interface interface-id] [detail]</td>
</tr>
<tr>
<td>show ethernet service instance [id instance-id</td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
| show bridge-domain [n] | Displays all the members of the specified bridge-domain, if a bridge-domain with the specified number exists.
 If you do not enter n, the command displays all the members of all bridge-domains in the system. |
| show bridge-domain n split-horizon [group {group_id | all}] | Displays all the members of bridge-domain n that belong to split horizon group 0, when you do not specify a group group_id with this command.
 If you specify a numerical group_id, this command displays all the members of the specified group id.
 When you enter group all, the command displays all members of any split horizon group. |
| show ethernet service instance detail | This command displays detailed service instance information, including Layer 2 protocol information. This is an example of the output: |

Router# show ethernet service instance detail
Service Instance ID: 1
Associated Interface: Ethernet0/0
Associated EVC:
L2protocol tunnel lACP
CE-Vlans:
State: Up
EFP Statistics:
 Pkts In Bytes In Pkts Out Bytes Out
 0 0 0 0
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mac address-table</code></td>
<td>This command displays dynamically learned or statically configured MAC security addresses.</td>
</tr>
<tr>
<td><code>show mac address-table bridge-domain bridge-domain id</code></td>
<td>This command displays MAC address table information for the specified bridge domain.</td>
</tr>
<tr>
<td><code>show mac address-table count bridge-domain bridge-domain id</code></td>
<td>This command displays the number of addresses present for the specified bridge domain.</td>
</tr>
<tr>
<td><code>show mac address-table learning bridge-domain bridge-domain id</code></td>
<td>This command displays the learning status for the specified bridge domain.</td>
</tr>
</tbody>
</table>

Example

This is an example of output from the `show ethernet service instance detail` command:

```
Router# show ethernet service  instance id 1 interface gigabitEthernet 0/1 detail
Service Instance ID: 1
Associated Interface: GigabitEthernet
Associated EVC: EVC_P2P_10
L2protocol drop
CE-Vlans:
Encapsulation: dot1q 10 vlan protocol type 0x8100
Interface Dot1q Tunnel Ethertype: 0x8100
State: Up
EFP Statistics:
    Pkts In  Bytes In  Pkts Out  Bytes Out
          214 15408 97150 6994800
EFP Microblocks:
                        ***************
Microblock type: Bridge-domain
Bridge-domain: 10
```

This is an example of output from the `show ethernet service instance statistics` command:

```
Router# show ethernet service  instance id 1 interface gigabitEthernet stats
Service Instance 1, Interface GigabitEthernet
Pkts In  Bytes In  Pkts Out  Bytes Out
          214 15408 97150 6994800
```

This is an example of output from the `show mac-address table count` command:

```
Router# show mac address-table count bridge-domain 10
Mac Entries for BD 10:
------------------------
Dynamic Address Count : 20
Static Address Count  : 0
Total Mac Addresses  : 20
```

Configuring Switchport to EVC Mapping

This example illustrates EVC in a UNI layer, 802.1q tunneling towards aggregation and QoS classification with marking and policing at ingress port. A two level HQoS policy is applied on the ingress.
In this example, all the switchport configurations of the ME3400/MWR2941 have been converted into EVC based equivalent configuration for GigabitEthernet interface 0/0. This is the ingress port connected to the nodes. Therefore, instead of `switchport access vlan` there is an EVC configured using the `service instance` command under the physical interface.

The GigabitEthernet interface has the egress port configuration which has 802.1q tunneling configured. This port is connected to the aggregation device. This is the fundamental difference in configuration between the Cisco ME34xx devices and the router. All configurations can be modeled along this sample working configuration.

Example: Configuring Switchport to EVC Mapping

```plaintext
class-map match-any CELL-TRFC
  match vlan 2615 3615
!
policy-map INPUT-SUBMAP
  class CELL-TRFC
    police cir 60000000 bc 1875000
    conform-action transmit
    exceed-action drop
!
policy-map INPUT-TOPMAP
  class class-default
    police cir 90000000 conform-action transmit exceed-action drop
    service-policy INPUT-SUBMAP

policy-map INPUT-MAP
  class class-default
    police cir 60000000 bc 1875000
    conform-action transmit
    exceed-action drop
!

interface GigabitEthernet0/0
  no negotiation auto
  service instance 2615 ethernet
  encapsulation dot1q 2615
  service-policy input INPUT-TOPMAP
  bridge-domain 2615
!
  service instance 3615 ethernet
  encapsulation dot1q 3615
  service-policy input INPUT-MAP
  bridge-domain 3615
!

interface GigabitEthernet0/1
  no negotiation auto
!

interface GigabitEthernet0/2
  no negotiation auto
!

interface GigabitEthernet0/3
  no negotiation auto
!

interface GigabitEthernet0/4
  no negotiation auto
!

interface GigabitEthernet0/5
  no negotiation auto
```

In this example, all the switchport configurations of the ME3400/MWR2941 have been converted into EVC based equivalent configuration for GigabitEthernet interface 0/0. This is the ingress port connected to the nodes. Therefore, instead of `switchport access vlan` there is an EVC configured using the `service instance` command under the physical interface.

The GigabitEthernet interface has the egress port configuration which has 802.1q tunneling configured. This port is connected to the aggregation device. This is the fundamental difference in configuration between the Cisco ME34xx devices and the router. All configurations can be modeled along this sample working configuration.

Example: Configuring Switchport to EVC Mapping

```plaintext
class-map match-any CELL-TRFC
  match vlan 2615 3615
!
policy-map INPUT-SUBMAP
  class CELL-TRFC
    police cir 60000000 bc 1875000
    conform-action transmit
    exceed-action drop
!
policy-map INPUT-TOPMAP
  class class-default
    police cir 90000000 conform-action transmit exceed-action drop
    service-policy INPUT-SUBMAP
policy-map INPUT-MAP
  class class-default
    police cir 60000000 bc 1875000
    conform-action transmit
    exceed-action drop
!

interface GigabitEthernet0/0
  no negotiation auto
  service instance 2615 ethernet
  encapsulation dot1q 2615
  service-policy input INPUT-TOPMAP
  bridge-domain 2615
!
  service instance 3615 ethernet
  encapsulation dot1q 3615
  service-policy input INPUT-MAP
  bridge-domain 3615
!

interface GigabitEthernet0/1
  no negotiation auto
!

interface GigabitEthernet0/2
  no negotiation auto
!

interface GigabitEthernet0/3
  no negotiation auto
!

interface GigabitEthernet0/4
  no negotiation auto
!

interface GigabitEthernet0/5
  no negotiation auto
```
service instance 2615 ethernet
capsulation dot1q 100 second-dot1q 2615
rewrite ingress tag pop 1 symmetric
bridge-domain 2615
!
service instance 3615 ethernet
capsulation dot1q 100 second-dot1q 3615
rewrite ingress tag pop 1 symmetric
bridge-domain 3615
!
!
interface FastEthernet0/0
full-duplex
!
interface Vlan1
!
ip forward-protocol nd
!
!
no ip http server
!
logging esm config
!
!
control-plane
!
!
line con 0
line con 1
transport preferred lat pad telnet rlogin udptn mop ssh
transport output lat pad telnet rlogin udptn mop ssh
line vty 0 4
login
!
exception data-corruption buffer truncate
exception crashinfo buffersize 128
!
end

Troubleshooting DHCP Snooping with Option-82 on EVC

Use the following debug commands to troubleshoot the DHCP Snooping with Option-82 on EVC feature configuration on the router:

We suggest you do not use the debug command without TAC supervision.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ip dhcp snooping</td>
<td></td>
</tr>
</tbody>
</table>

Additional References

The following sections provide references related to Configuring EVC feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| None| To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
http://www.cisco.com/go/mibs |

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Feature Information for Configuring Ethernet Virtual Connections

The following table lists the features in this module and provides links to specific configuration information. Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 10: Feature Information for Configuring Ethernet Virtual Connections

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Ethernet Virtual Connections</td>
<td>15.2(2)SNH1</td>
<td>See the following links for more information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supported EVC Features, on page 72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Understanding EVC Features, on page 72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring EFPs, on page 77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring Other Features on EFPs, on page 94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitoring EVC, on page 104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring Switchport to EVC Mapping, on page 105</td>
</tr>
<tr>
<td>EVC Default Encapsulation</td>
<td>15.3(2)S</td>
<td>See the following links for more information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Default EVC Configuration, on page 78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How to Configure EVC Default Encapsulation, on page 91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring EVC Default Encapsulation with Xconnect, on page 92</td>
</tr>
<tr>
<td>DHCP Snooping with Option-82 on EVC</td>
<td>15.4(3)S</td>
<td>See the following links for more information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DHCP Snooping with Option 82 on EVC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring DHCP Snooping with Option-82 on EVC</td>
</tr>
</tbody>
</table>
CHAPTER 9

Configuring EtherChannels

This chapter describes how to configure EtherChannels on the router Layer 2 or Layer 3 LAN ports.

- Understanding How EtherChannels Work, on page 111
- EtherChannel Configuration Guidelines and Restrictions, on page 114
- Configuring Etherchannels, on page 115
- EVC On Port-Channel, on page 121

Understanding How EtherChannels Work

This section contains the following topics:

EtherChannel Feature Overview

An EtherChannel bundles individual Ethernet links into a single logical link that provides the aggregate bandwidth of up to eight physical links.

The router supports a maximum of eight EtherChannels with a maximum eight member links in each EtherChannel.

You can form an EtherChannel with up to eight compatibly configured LAN ports in a . All LAN ports in each EtherChannel must be of the same speed and must all be configured as Layer 2 LAN ports.

Note

The network device to which a is connected may impose its own limits on the number of ports in an EtherChannel.

If a segment within an EtherChannel fails, traffic previously carried over the failed link switches to the remaining segments within the EtherChannel. When a failure occurs, the EtherChannel feature sends a trap that identifies the router, the EtherChannel, and the failed link. Inbound broadcast packets on one segment in an EtherChannel are blocked from returning on any other segment of the EtherChannel.

Understanding How EtherChannels Are Configured

This section contains the following topics:
EtherChannel Configuration Overview

You can configure EtherChannels manually or use the Link Aggregation Control Protocol (LACP) to form EtherChannels. The EtherChannel protocols allow ports with similar characteristics to form an EtherChannel through dynamic negotiation with connected network devices. LACP is defined in IEEE 802.3ad.

Table 11: EtherChannel Modes, on page 112 lists the user-configurable EtherChannel modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>This is the mode that forces the LAN port to channel unconditionally. In the on mode, a usable EtherChannel exists only when a LAN port group in the on mode is connected to another LAN port group in the on mode. Because ports configured in the on mode do not negotiate, there is no negotiation traffic between the ports. You cannot configure the on mode with an EtherChannel protocol.</td>
</tr>
<tr>
<td>passive</td>
<td>(Default for LACP) LACP mode that places a port into a passive negotiating state, in which the port responds to LACP packets it receives but does not initiate LACP negotiation.</td>
</tr>
<tr>
<td>active</td>
<td>LACP mode that places a port into an active negotiating state, in which the port initiates negotiations with other ports by sending LACP packets.</td>
</tr>
</tbody>
</table>

Understanding Manual EtherChannel Configuration

Manually configured EtherChannel ports do not exchange EtherChannel protocol packets. A manually configured EtherChannel forms only when you enter configure all ports in the EtherChannel compatibly.

Understanding IEEE 802.3ad LACP EtherChannel Configuration

LACP supports the automatic creation of EtherChannels by exchanging LACP packets between LAN ports. LACP packets are exchanged only between ports in passive and active modes.

The protocol learns the capabilities of LAN port groups dynamically and informs the other LAN ports. Once LACP identifies correctly matched Ethernet links, it facilitates grouping the links into an EtherChannel. The EtherChannel is then added to the spanning tree as a single bridge port.

Both the passive and active modes allow LACP to negotiate between LAN ports to determine if they can form an EtherChannel, based on criteria such as port speed and trunking state. Layer 2 EtherChannels also use VLAN numbers.

LAN ports can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- A LAN port in active mode can form an EtherChannel successfully with another LAN port that is in active mode.
- A LAN port in active mode can form an EtherChannel with another LAN port in passive mode.
- A LAN port in passive mode cannot form an EtherChannel with another LAN port that is also in passive mode, because neither port will initiate negotiation.

Table 12: LACP EtherChannel Modes, on page 113 provides a summary of these combinations.
Table 12: LACP EtherChannel Modes

<table>
<thead>
<tr>
<th>Router A</th>
<th>Router B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive mode</td>
<td>passive mode</td>
<td>No EtherChannel group is created.</td>
</tr>
<tr>
<td>passive mode</td>
<td>active mode</td>
<td>EtherChannel group is created.</td>
</tr>
<tr>
<td>active mode</td>
<td>passive mode</td>
<td>EtherChannel group is created.</td>
</tr>
<tr>
<td>active mode</td>
<td>active mode</td>
<td>EtherChannel group is created.</td>
</tr>
</tbody>
</table>

LACP uses the following parameters:

- The LACP system ID is the combination of the LACP system priority value and the MAC address of the router.

- Port priority is only effective when it is configured on a device with an LACP system priority higher than the peer.

 • LACP administrative key—LACP automatically configures an administrative key value equal to the channel group identification number on each port configured to use LACP. The administrative key defines the ability of a port to aggregate with other ports. A port’s ability to aggregate with other ports is determined by these factors:
 • Port physical characteristics, such as data rate, duplex capability, and point-to-point or shared medium
 • Configuration restrictions that you establish

On ports configured to use LACP, LACP tries to configure the maximum number of compatible ports in an EtherChannel, up to the maximum allowed by the hardware (eight ports). If LACP cannot aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), then all the ports that cannot be actively included in the channel are put in hot standby state and are used only if one of the channeled ports fails. You can configure an additional 8 standby ports (total of 16 ports associated with the EtherChannel).

Understanding Port-Channel Interfaces

Each EtherChannel has a numbered port-channel interface. The configuration that you apply to the port-channel interface affects all LAN ports assigned to the port-channel interface.

After you configure an EtherChannel, the configuration that you apply to the port-channel interface affects the EtherChannel; the configuration that you apply to the LAN ports affects only the LAN port to which you apply the configuration. To change the parameters of all ports in an EtherChannel, apply the configuration...
commands to the port-channel interface, for example, Spanning Tree Protocol (STP) commands or commands to configure a Layer 2 EtherChannel as a trunk.

Understanding Load Balancing

An EtherChannel balances the traffic load across the links in an EtherChannel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. EtherChannel load balancing can use MAC addresses or IP addresses. EtherChannel load balancing can use either source or destination or both source and destination addresses or ports. The selected mode applies to all EtherChannels configured on the router. EtherChannel load balancing can use MPLS Layer 2 information. Use the option that provides the balance criteria with the greatest variety in your configuration. For example, if the traffic on an EtherChannel is going only to a single MAC address and you use the destination MAC address as the basis of EtherChannel load balancing, the EtherChannel always chooses the same link in the EtherChannel; using source addresses or IP addresses might result in better load balancing.

EtherChannel Configuration Guidelines and Restrictions

When EtherChannel interfaces are configured improperly, they are disabled automatically to avoid network loops and other problems.

- The commands in this chapter can be used on all LAN ports in the.
- Configure all LAN ports in an EtherChannel to use the same EtherChannel protocol; you cannot run two EtherChannel protocols in one EtherChannel.
- Configure all LAN ports in an EtherChannel to operate at the same speed and in the same duplex mode.
- LACP does not support half-duplex. Half-duplex ports in an LACP EtherChannel are put in the suspended state.
- Enable all LAN ports in an EtherChannel. If you shut down a LAN port in an EtherChannel, it is treated as a link failure and its traffic is moved to one of the remaining ports in the EtherChannel.
- An EtherChannel will not form if one of the LAN ports is a Switched Port Analyzer (SPAN) destination port.
- For Layer 2 EtherChannels:
 - Assign all LAN ports in the EtherChannel to the same VLAN or configure them as trunks.
 - If you configure an EtherChannel from trunking LAN ports, verify that the trunking mode is the same on all the trunks. LAN ports in an EtherChannel with different trunk modes can operate unpredictably.
 - An EtherChannel supports the same allowed range of VLANs on all the LAN ports in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the LAN ports do not form an EtherChannel.
 - LAN ports with different STP port path costs can form an EtherChannel as long as they are compatibly configured with each other. If you set different STP port path costs, the LAN ports are still compatible for the formation of an EtherChannel.
 - An EtherChannel will not form if protocol filtering is set differently on the LAN ports.
- You can configure a maximum of eight port-channel interfaces, numbered from 1 to 8.
• After you configure an EtherChannel, the configuration that you apply to the port-channel interface affects the EtherChannel. The configuration that you apply to the LAN ports affects only those LAN ports to which you apply the configuration.
• Enable Bidirectional Forwarding Detection (BFD) for a port channel on Switch Virtual Interface (SVI) to achieve better convergence during failover.

Configuring Etherchannels

This section contains the following topics:

Note

Ensure that the LAN ports are configured correctly (see the EtherChannel Configuration Guidelines and Restrictions, on page 114).

Configuring Channel Groups

Note

When configuring Layer 2 EtherChannels, configure the LAN ports with the `channel-group` command as described in this section, which automatically creates the port-channel logical interface. You cannot add Layer 2 LAN ports into a manually created port-channel interface.

• To create port-channel interfaces for Layer 2 EtherChannels, the Layer 2 LAN ports must be connected and functioning.

To configure channel groups, complete the following steps for each LAN port in interface configuration mode:

SUMMARY STEPS

1. Router(config)# interface type slot/port
2. Router(config-if)# no ip address
3. Router(config-if)# channel-protocol lacp
4. Router(config-if)# channel-group number mode {active | on | passive}
5. Router(config-if)# lacp port-priority priority_value
6. Router(config-if)# end
7. Router# show running-config interface type slot/port

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface type slot/port</td>
<td>Selects a LAN port to configure.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# no ip address</td>
<td>Ensures that there is no IP address assigned to the LAN port.</td>
</tr>
</tbody>
</table>
Configuring EtherChannels

Configuring the LACP System Priority and System ID

The LACP system ID is the combination of the LACP system priority value and the MAC address of the router. To configure the LACP system priority and system ID, complete the following tasks:

SUMMARY STEPS

1. `lacp system-priority priority_value`
2. `end`
3. `show lacp sys-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

`lacp system-priority priority_value`

Example:

Router(config)# lacp system-priority 23456

(Optional for LACP) Valid values are 1 through 65535. Higher numbers have lower priority. The default is 32768. |
| **Step 2**

`end`

Example:

Router(config)# end

Exits configuration mode. |
| **Step 3**

`show lacp sys-id`

Example:

Verifies the configuration. |
What to do next

Configuration examples for LACP system priority
This example shows how to configure the LACP system priority:

Router# configure terminal
Router(config)# lACP system-priority 23456
Router(config)# end

This example shows how to verify the configuration:

Router# show lACP sys-id

23456,0050.3e8d.6400

The system priority is displayed first, followed by the MAC address of the router.

Configuring the LACP Transmit Rate

To configure the rate at which Link Aggregation Control Protocol (LACP) control packets are transmitted to an LACP-supported interface, complete the following tasks:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. lACP rate {fast | normal}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the LACP Transmit Rate

To verify the LACP control packet transmission rate, use the following show command:

```
Router# show lacp internal
Flags:  S - Device is requesting Slow LACPDUs
       F - Device is requesting Fast LACPDUs
       A - Device is in Active mode      P - Device is in Passive mode
```

<table>
<thead>
<tr>
<th>Channel group 5</th>
<th>LACP port</th>
<th>Admin</th>
<th>Oper</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Flags</td>
<td>State</td>
<td>Priority</td>
<td>Key</td>
<td>Key</td>
</tr>
<tr>
<td>G10/1</td>
<td>FA</td>
<td>bndl</td>
<td>32768</td>
<td>0xA</td>
<td>0xA</td>
</tr>
</tbody>
</table>

Verifying EtherChannel Load Balancing

To configure EtherChannel load balancing, complete the following steps:

SUMMARY STEPS

1. `Router(config)# port-channel load-balance {src-mac | dst-mac | src-dst-mac | src-ip | dst-ip | src-dst-ip}`
2. `Router(config)# end`
3. `Router# show etherchannel load-balance`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# port-channel load-balance {src-mac</td>
<td>dst-mac</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modifying MTU Size on Port-Channel

Complete the following steps to modify MTU size on the port-channel interface:

1. **enable**
2. **configure terminal**
3. **interface port-channel number**
4. **mtu bytes**

Summary Steps

- If the MTU size of a port-channel member link is different from the MTU size of the port-channel interface, the member link is not bundled.

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Command or Action

Example:

```
Router> enable
```

Purpose:

- Enter your password if prompted.

Step 2

configure terminal

Example:

```
Router# configure terminal
```

Enters the global configuration mode.

Step 3

interface port-channel number

Example:

```
Router(config)# interface port-channel 1
```

Selects a port-channel interface and enters interface configuration mode.

- **number**—Specifies the port-channel interface number.

 The range is from 1 to 8.

Step 4

mtu bytes

Example:

```
Router(config-if)# mtu 4000
```

Configures the MTU size for port-channel interface.

- **bytes**—The range is from 1500 to 9216. The default is 9216.

Note

To set the MTU size to its default value, use the `no mtu` or `default mtu` command.

Verifying the MTU Size on Port-Channel

To verify the MTU size on port-channel interface, use the `show interface port-channel` command.

```
Router# show interface port-channel 1
Port-channel1 is up, line protocol is up (connected)
  Hardware is EtherChannel, address is 4055.3989.4a15 (bia 4055.3989.4a15)
  MTU 4000 bytes
  BW 2000000 Kbit/sec, DLY 1000 usec,
  reliability 255/255, txload 1/255, rxload 0/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
  0 packets input, 0 bytes, 0 no buffer
  Received 0 broadcasts (0 IP multicasts)
  0 runs, 0 giants, 0 throttles
  0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
  0 watchdog, 0 multicast, 0 pause input
  0 packets output, 0 bytes, 0 underruns
  0 output errors, 0 collisions, 1 interface resets
  0 unknown protocol drops
```
EVC On Port-Channel

An EtherChannel bundles individual Ethernet links into a single logical link that provides the aggregate bandwidth of up to eight physical links. The EVC EtherChannel feature provides support for EtherChannels on Ethernet Virtual Connection Services (EVCS) service instances.

The EVC EtherChannel feature supports MPBE, local connect, and xconnect service types.

Load balancing is accomplished on an Ethernet flow point (EFP) basis where a number of EFPs exclusively pass traffic through member links. In a default load balancing, you have no control over how the EFPs are grouped together, and sometimes the EFP grouping may not be ideal. To avoid this, use manual load balancing to control the EFP grouping.

Restrictions for EVC EtherChannel

The following restrictions apply to EVC EtherChannel:

- Bridge-domains, EVCs, and IP subinterfaces are allowed over the port-channel interface and the main interface.
- If you configure a physical port as part of a channel group, you cannot configure EVCs under that physical port.
- If port-channel is configured on an MPLS core, the encapsulation ID should be the same as the bridge domain.
- A physical port that is part of an EVC port-channel cannot have EVC configuration.
- Statically configuring port-channel membership with LACP is not supported.
- You can apply QoS policies under EVCs on a port-channel.
- You cannot use the police percent commands on EVC port-channels in flat policy-maps or in parent of HQoS policy-maps.

Configuring EVC on Port-Channel

To configure the EVC on port-channel, complete these steps in the interface configuration mode:

SUMMARY STEPS

1. interface port-channel number
2. [no] service instance id ethernet service-name
3. encapsulation {untagged | dot1q vlan-id [second-dot1q vlan-id]}
4. rewrite ingress tag pop 1 symmetric
5. [no] bridge-domain bridge-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>interface port-channel number</td>
<td>Creates the port-channel interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Configuration

Use the following commands to verify the configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ethernet service evc [id evc-id</td>
<td>interface interface-id] [detail]</td>
</tr>
<tr>
<td>Router# show ethernet service instance interface port-channel number [summary]</td>
<td>Displays the summary of all the configured EVCs within the interface.</td>
</tr>
<tr>
<td>Router# show ethernet service instance [id instance-id interface interface-id</td>
<td>interface interface-id] [detail]</td>
</tr>
<tr>
<td>Router# show mpls l2 transport vc detail</td>
<td>Displays detailed information related to the virtual connection (VC).</td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mpls forwarding</td>
<td>Displays the contents of the Multiprotocol Label Switching (MPLS) Label Forwarding Information Base (LFIB). Note Output should have the label entry l2ckt.</td>
</tr>
<tr>
<td>Router# show etherchannel summary</td>
<td>Displays view all EtherChannel groups states and ports.</td>
</tr>
<tr>
<td>Router# show policy-map interface service instance</td>
<td>Displays the policy-map information for a given service instance.</td>
</tr>
</tbody>
</table>

Troubleshooting Scenarios for EVC on a Port-Channel

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port data block issues in port-channel</td>
<td>Use the show ethernet service interface [interface-id] [detail] command to view information on the port data. Share the output with TAC for further investigation.</td>
</tr>
<tr>
<td>Issues with platform events or errors</td>
<td>Use the debug platform npc custom-ether client [event, error] command to debug and trace platform issues. Share the output with TAC for further investigation.</td>
</tr>
</tbody>
</table>
CHAPTER 10

Configuring Ethernet OAM

Ethernet Operations, Administration, and Maintenance (OAM) is a protocol for installing, monitoring, and troubleshooting Ethernet networks, to increase management capability within the context of the overall Ethernet infrastructure.

The router supports:

- IEEE 802.3ah Ethernet OAM discovery, link monitoring, remote fault detection, and remote loopback.
- IEEE 802.1ag Connectivity Fault Management (CFM)
- Ethernet Local Management Interface (E-LMI)
- IP Service Level Agreements (SLAs) for CFM
- ITU-T Y.1731 fault management

This chapter provides information about configuring the Ethernet OAM, CFM and E-LMI and also enabling Ethernet Loopback.

For complete command and configuration information for Ethernet OAM see the Cisco IOS Carrier Ethernet Configuration Guide at this URL:

The router does not necessarily support all of the commands listed in the Cisco IOS Carrier Ethernet documentation.

Note: The router does not support CFM pre-draft version.

Note: does not support CFM pre-draft version.

- Understanding Ethernet CFM, on page 126
- Configuring Ethernet CFM, on page 126
- Configuring CFM over EFP with Cross Connect, on page 150
- Configuring CFM with EVC Default Encapsulation, on page 155
- Verifying CFM with EVC Default Encapsulation, on page 156
- Configuring Y.1731 Fault Management, on page 157
- Managing and Displaying Ethernet CFM Information, on page 162
- Understanding the Ethernet OAM Protocol, on page 164
- Setting Up and Configuring Ethernet OAM, on page 167
- Understanding E-LMI, on page 181
Understanding Ethernet CFM

Ethernet CFM is an end-to-end per-service-instance (per VLAN) Ethernet layer OAM protocol that includes proactive connectivity monitoring, fault verification, and fault isolation. End-to-end can be provider-edge-to-provider-edge (PE-to-PE) device. Ethernet CFM, as specified by IEEE 802.1ag, is the standard for Layer 2 ping, Layer 2 traceroute, and end-to-end connectivity check of the Ethernet network.

For more information about ethernet CFM, see Ethernet Connectivity Fault Management.

IP SLA Support for CFM

The router supports CFM with IP Service Level Agreements (SLA), which provides the ability to gather Ethernet layer network performance metrics. Available statistical measurements for the IP SLA CFM operation include round-trip time, jitter (interpacket delay variance), and packet loss. You can schedule multiple IP SLA operations and use Simple Network Management Protocol (SNMP) trap notifications and syslog messages for proactive threshold violation monitoring.

IP SLA integration with CFM gathers Ethernet layer statistical measurements by sending and receiving Ethernet data frames between CFM MEPs. Performance is measured between the source MEP and the destination MEP. Unlike other IP SLA operations that provide performance metrics for only the IP layer, IP SLA with CFM provides performance metrics for Layer 2.

You can manually configure individual Ethernet ping or jitter operations. You can also configure an IP SLA automatic Ethernet operation that queries the CFM database for all MEPs in a given maintenance domain and VLAN. The operation then automatically creates individual Ethernet ping or jitter operations based on the discovered MEPs.

Because IP SLA is a Cisco proprietary feature, interoperability between CFM draft 1 and CFM 802.1ag is handled automatically by the router.

For more information about IP SLA operation with CFM, see the IP SLAs for Metro-Ethernet feature module at this URL:

Configuring Ethernet CFM

Configuring Ethernet CFM requires configuring the CFM domain. You can optionally configure and enable other CFM features such as crosschecking, remote MEP, port MEPs, SNMP traps, and fault alarms. Note that some of the configuration commands and procedures differ from those used in CFM draft 1.

This section contains the following topics:

Default Ethernet CFM Configuration

- CFM is globally disabled.
- CFM is enabled on all interfaces when CFM is globally enabled.
- A port can be configured as a flow point (MIP/MEP), a transparent port, or disabled (CFM disabled).

By default, ports are transparent ports until configured as MEP, MIP, or disabled.
• There are no MEPs or MIPs configured.
• When configuring a MEP, if you do not configure direction, the default is up (inward facing) which is not supported for CFM hardware offload sessions.
• For Multi-UNI CFM MEPs (with up direction), port-based model for MAC address assignment is used instead of bridge brain model.

Ethernet CFM Configuration Restrictions and Guidelines

• You cannot configure CFM on VLAN interfaces.
• CFM is configurable only under EVC and physical or port channel interfaces.
• CFM is supported on ports running MSTP.
• You must configure a port MEP at a lower level than any service (VLAN) MEPs on an interface.

Configuring the CFM Domain

Complete the following steps to configure the Ethernet CFM domain, configure a service to connect the domain to a VLAN, or configure a port to act as a MEP. You can also enter the optional commands to configure other parameters, such as continuity checks.

Note
You do not need to enter the `ethernet cfm ieee` global configuration command to configure the CFM version as IEEE 802.1ag; the CFM version is always 802.1ag and the command is automatically generated when you enable CFM.

SUMMARY STEPS

1. configure terminal
2. ethernet cfm global
3. ethernet cfm traceroute cache [size entries | hold-time minutes]
4. ethernet cfm mip auto-create level level-id vlan vlan-id
5. ethernet cfm mip filter
6. ethernet cfm domain domain-name level level-id
7. id {mac-address domain_number | dns name | null}
8. service {ma-name | ma-number | vpn-id vpn} {vlan vlan-id [direction down] | port}
9. continuity-check
10. continuity-check interval value
11. continuity-check loss-threshold threshold-value
12. maximum meps value
13. sender-id chassis none
14. mip auto-create [lower-mep-only | none]
15. exit
16. mip auto-create [lower-mep-only]
17. mep archive-hold-time minutes
18. exit
19. interface interface-id
Configuring the CFM Domain

20. `service instance number ethernet name`
21. `cfm mip level level-id`
22. `cfm mep domain domain-name mpid identifier`
23. `cos value`
24. `end`
25. `show ethernet cfm maintenance-points {local | remote}`
26. `show ethernet cfm errors [configuration]`
27. `copy running-config startup-config`

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ethernet cfm global</td>
</tr>
<tr>
<td>Step 3</td>
<td>**ethernet cfm traceroute cache [size entries</td>
</tr>
<tr>
<td>Step 4</td>
<td>ethernet cfm mip auto-create level level-id vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>ethernet cfm mip filter</td>
</tr>
<tr>
<td>Step 6</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>**id {mac-address domain_number</td>
</tr>
</tbody>
</table>

- **mac-address domain_number** — Enter the MAC address and a domain number. The number can be from 0 to 65535.
- **dns name** — Enter a DNS name string. The name can be a maximum of 43 characters.
- **null** — Assign no domain name.
Configuring Ethernet OAM

Configuring the CFM Domain

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 8 | `service {ma-name | ma-number | vpn-id vpn } {vlan vlan-id [direction down] | port}` | Define a customer service maintenance association (MA) name or number or VPN ID to be associated with the domain, a VLAN ID or port MEP, and enter ethernet-cfm-service configuration mode.
 - `ma-name` — a string of no more than 100 characters that identifies the MAID.
 - `ma-number` — a value from 0 to 65535.
 - `vpn-id vpn` — enter a VPN ID as the `ma-name`.
 - `vlan vlan-id` — VLAN range is from 1 to 4094. You cannot use the same VLAN ID for more than one domain at the same level.
 - (Optional) `direction down` — specify the service direction as down.
 - `port` — Configure port MEP, a down MEP that is untagged and not associated with a VLAN. |
| 9 | `continuity-check` | Enable sending and receiving of continuity check messages. |
| 10 | `continuity-check interval value` | (Optional) Set the interval at which continuity check messages are sent. The available values are 100 ms, 1 second, 10 seconds, 1 minute and 10 minutes. The default is 10 seconds.
 - **Note** Because faster CCM rates are more CPU-intensive, we do not recommend configuring a large number of MEPs running at 100 ms intervals. |
| 11 | `continuity-check loss-threshold threshold-value` | (Optional) Set the number of continuity check messages to be missed before declaring that an MEP is down. The range is 2 to 255; the default is 3. |
| 12 | `maximum meps value` | (Optional) Configure the maximum number of MEPs allowed across the network. The range is from 1 to 65535. The default is 100. |
| 13 | `sender-id chassis none` | (Optional) Include the sender ID TLVs, attributes containing type, length, and values for neighbor devices.
 - `chassis` — Send the chassis ID (host name).
 - `none` — Do not include information in the sender ID. |
| 14 | `mip auto-create [lower-mep-only | none]` | (Optional) Configure auto creation of MIPs for the service.
 - `lower-mep-only` — Create a MIP only if there is a MEP for the service in another domain at the next lower active level.
 - `none` — No MIP auto-create. |
<p>| 15 | <code>exit</code> | Return to ethernet-cfm configuration mode. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>mip auto-create [lower-mep-only]</td>
<td>(Optional) Configure auto creation of MIPs for the domain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• lower-mep-only—Create a MIP only if there is a MEP for the service in another domain at the next lower active level.</td>
</tr>
<tr>
<td>17</td>
<td>mep archive-hold-time minutes</td>
<td>(Optional) Set the number of minutes that data from a missing maintenance end point is kept before it is purged. The range is 1 to 65535; the default is 100 minutes.</td>
</tr>
<tr>
<td>18</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>19</td>
<td>interface interface-id</td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>20</td>
<td>service instance number ethernet name</td>
<td>Specify the service instance number and the name of the EVC.</td>
</tr>
<tr>
<td>21</td>
<td>cfm mip level level-id</td>
<td>(Optional) Configure a customer level or service-provider level maintenance intermediate point (MIP) for the interface. The MIP level range is 0 to 7.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: This step is not required if you have entered the cfm mip auto-create global configuration command or the cfm mip auto-create ethernet-cfm or ethernet-cfm-srv configuration mode.</td>
</tr>
<tr>
<td>22</td>
<td>cfm mep domain domain-name mpid identifier</td>
<td>Configure maintenance end points for the domain, and enter Ethernet cfm mep mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• domain domain-name —Specify the name of the created domain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mpid identifier—Enter a maintenance end point identifier. The identifier must be unique for each VLAN (service instance). The range is 1 to 8191.</td>
</tr>
<tr>
<td>23</td>
<td>cos value</td>
<td>(Optional) Specify the class of service (CoS) value to be sent with the messages. The range is 0 to 7.</td>
</tr>
<tr>
<td>24</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>25</td>
<td>show ethernet cfm maintenance-points {local</td>
<td>remote}</td>
</tr>
<tr>
<td>26</td>
<td>show ethernet cfm errors [configuration]</td>
<td>(Optional) Display the configuration error list.</td>
</tr>
<tr>
<td>27</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
What to do next

Use the `no` form of each command to remove the configuration or return to the default configurations.

Example for Basic CFM configuration

```
Router(config)# ethernet cfm ieee
Router(config)# ethernet cfm global
Router(config)# ethernet cfm domain abc level 3
Router(config-ecfm)# service test evc EVC1 vlan 5
Router(config-ecfm-srv)# continuity-check
Router(config-ecfm-srv)# exit
Router(config-ecfm)# exit
Router(config)# ethernet evc EVC1
Router(config)# interface gigabitethernet 0/1
Router(config-if)# service instance 1 ethernet EVC1

Router(config-if-srv)# encapsulation dot1q 5
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge domain 5
Router(config-if-srv)# cfm mep domain abc mpid 100
Router(config-if-ecfm-mep)# exit
```

Configuring Multi-UNI CFM MEPs in the Same VPN

Effective with Cisco IOS Release 15.3(2)S, services are configured such that two or more bridge domains (BDs) are used to achieve UNI isolation and backhauling towards provider edge (PE) device. Local MEPs (with up direction) need to be configured on the UNIs (with the associated BDs) to monitor the service backhaul connection. To achieve this, use the alias command to configure a CFM MA, MA2, as an alias to another MA, MA1. As a result, MA1 behaves as though it is configured as MA2 on a different Bridge Domain (BD) associated with it. MA1 and MA2 function as if they are part of the same service, thus associating the same CFM MA to two different BDs and UNI isolation.

The following figure shows the configuring Mutli-NNI CFM in the same VPN.

Restrictions:

- Two MAs can be configured such that MA2 connected with different BD will act as a proxy (alias) for MA1 only for the MEPs which have the service direction as Up.
- Y1731-PM is not supported with Multi-NNI CFM.

Complete these steps to configure Multi-UNI CFM MEPs in the same VPN.

SUMMARY STEPS

1. configure terminal
2. ethernet cfm global
3. ethernet cfm domain `domain-name level level-id`
4. service `{ma-name | ma-number | vpn-id vpn}` `{vlan vlan-id [direction down] | port`
5. continuity-check
6. continuity-check interval `value`
7. continuity-check loss-threshold `threshold-value`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 ethernet cfm global</td>
<td>Globally enable Ethernet CFM on the router.</td>
</tr>
<tr>
<td>Example: Router(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Define a CFM domain, set the domain level, and enter ethernet-CFM configuration mode for the domain. The maintenance level number range is 0 to 7.</td>
</tr>
<tr>
<td>Example: Router(config)# ethernet cfm domain MD6 level 6</td>
<td></td>
</tr>
<tr>
<td>Step 4 service {ma-name</td>
<td>ma-number</td>
</tr>
<tr>
<td>Example: Router(config-ecfm)# service MA6 evc evc30 vlan 30</td>
<td></td>
</tr>
</tbody>
</table>

- **ma-name** — a string of no more than 100 characters that identifies the MAID.
- **ma-number** — a value from 0 to 65535.
- **vpn-id vpn** — enter a VPN ID as the ma-name.
- **vlan vlan-id** — VLAN range is from 1 to 4094. You cannot use the same VLAN ID for more than one domain at the same level.
- (Optional) **direction down** — specify the service direction as down.

Note Two MAs can be configured such that MA2 connected with different BD will act as a proxy (alias) for MA1 only for the MEPs which have the service direction as Up.

- **port** — Configure port MEP, a down MEP that is untagged and not associated with a VLAN.
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><code>continuity-check</code></td>
<td>Enable sending and receiving of continuity check messages.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm-srv)# continuity-check</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>continuity-check interval value</code></td>
<td>(Optional) Set the interval at which continuity check messages are sent. The available values are 100 ms, 1 second, 10 seconds, 1 minute, and 10 minutes. The default is 10 seconds. Note: Because faster CCM rates are more CPU-intensive, we do not recommend configuring a large number of MEPs running at 100 ms intervals.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm-srv)# continuity-check interval 1s</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>continuity-check loss-threshold threshold-value</code></td>
<td>(Optional) Set the number of continuity check messages to be missed before declaring that an MEP is down. The range is 2 to 255; the default is 3.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm-srv)# continuity-check loss-threshold 4</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>`alias (alias-short-ma-name</td>
<td>icc icc-code meg-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm-srv)# alias MA6</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>exit</code></td>
<td>Return to ethernet-CFM configuration mode.</td>
</tr>
<tr>
<td>10</td>
<td><code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>11</td>
<td><code>interface interface-id</code></td>
<td>Specify an interface to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface gigabitethernet 0/4</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>service instance number ethernet name</code></td>
<td>Specify the service instance number and the name of the EVC.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# service instance 30 ethernet EVC30</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 13 cfm mep domain domain-name mpid identifier</td>
<td>Configure maintenance end points for the domain, and enter Ethernet cfm mep mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# cfm mep domain MD6 mpid 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Step 14** end | Return to privileged EXEC mode. |

- **Step 15** show ethernet cfm maintenance-points {local | remote} | Verify the configuration. |

- **Step 16** show ethernet cfm errors [configuration] | (Optional) Display the configuration error list. |

- **Step 17** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

Configuration Examples for Multi-UNI CFM MEPs

Example Configuration for Multi-UNI CFM MEPs in the same VPN

```plaintext
Router(config)# ethernet cfm ieee
Router(config)# ethernet cfm global
Router(config)# ethernet cfm domain MD6 level 6
Router(config-ecfm)# service MA6 evc evc30 vlan 30
Router(config-ecfm-srv)# cfm mep domain MD6 mpid 30
Router(config-ecfm-srv)# continuity-check
Router(config-ecfm-srv)# service MA6 alias evc evc40 vlan 40
Router(config-ecfm-srv)# cfm mep domain MD6 mpid 30
Router(config-ecfm-srv)# alias MA6
Router(config-ecfm-srv)# exit
Router(config-ecfm)# exit
Router(config)# ethernet evc EVC30
Router(config-ifs)# interface gigabitethernet
Router(config-if)# service instance 30 ethernet EVC30
Router(config-if-srv)# encapsulation dot1q 30
Router(config-if-srv)# cfm mep domain MD6 mpid 30
Router(config-if-srv)# exit
Router(config-if)# exit
Router(config)# ethernet evc EVC40
Router(config-ifs)# interface gigabitethernet
Router(config-if)# service instance 30 ethernet EVC40
Router(config-if-srv)# encapsulation dot1q 30
Router(config-if-srv)# cfm mep domain MD6 mpid 40
Router(config-if-srv)# exit
Router(config-if)# exit
Router(config)# interface gigabitethernet
Router(config-if)# service instance 30 ethernet
Router(config-if-srv)# encapsulation dot1q 100 second-dot1q 30
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge domain 30
Router(config-if-srv)# exit
```
Verification

Use the following commands to verify a configuration:

- Use the show ethernet cfm maintenance-point local command to verify the Multi-UNI CFMs over EVC configuration. This command shows the basic configuration information for Multi-UNI CFM.

Router# show ethernet cfm maintenance-points local
Local MEPs:

<table>
<thead>
<tr>
<th>MPID</th>
<th>Domain Name</th>
<th>Lvl</th>
<th>MacAddress</th>
<th>Type</th>
<th>CC</th>
<th>Ofld</th>
<th>Domain Id</th>
<th>Dir</th>
<th>Port Id</th>
<th>SrvcInst</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>MD6</td>
<td>6</td>
<td>4055.3989.7869</td>
<td>BD-V</td>
<td>Y</td>
<td>No</td>
<td>MD6</td>
<td>Up</td>
<td>G10/4</td>
<td>30</td>
<td>Static</td>
</tr>
<tr>
<td>40</td>
<td>MD6</td>
<td>6</td>
<td>4055.3989.7869</td>
<td>BD-V</td>
<td>Y</td>
<td>No</td>
<td>MA6_alias (MA6)</td>
<td>Up</td>
<td>G10/5</td>
<td>40</td>
<td>Static</td>
</tr>
</tbody>
</table>

Total Local MEPs: 2
Local MIPs: None

- Use the show ethernet cfm maintenance-point remote to verify the MEP configuration:

Router# show ethernet cfm maintenance-points remote

<table>
<thead>
<tr>
<th>MPID</th>
<th>Domain Name</th>
<th>MacAddresses</th>
<th>IfSt</th>
<th>PtSt</th>
<th>Lvl</th>
<th>Domain ID</th>
<th>MA Name</th>
<th>Type</th>
<th>Id</th>
<th>SrvcInst</th>
<th>Local MEP Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>MD6</td>
<td>4055.3989.7869</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>MD6</td>
<td>MA6</td>
<td>BD-V</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MD6</td>
<td>4055.3989.7868</td>
<td>Up</td>
<td>Up</td>
<td>6</td>
<td>MD6</td>
<td>MA6_alias (MA6)</td>
<td>BD-V</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Total Remote MEPs: 2

Configuring Ethernet CFM Crosscheck

Complete the following steps to configure Ethernet CFM crosscheck:
SUMMARY STEPS

1. configure terminal
2. ethernet cfm mep crosscheck start-delay delay
3. ethernet cfm domain domain-name level level-id
4. service {ma-name | ma-number | vpn-id vpn} {vlan vlan-id}
5. mep mpid identifier
6. end
7. ethernet cfm mep crosscheck {enable | disable} domain domain-name {vlan {vlan-id | any} | port}
8. show ethernet cfm maintenance-points remote crosscheck
9. show ethernet cfm errors [configuration]
10. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ethernet cfm mep crosscheck start-delay delay</td>
<td>Configure the number of seconds that the device waits for remote MEPs to come up before the crosscheck is started. The range is 1 to 65535; the default is 30 seconds.</td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Define a CFM domain, set the domain level, and enter ethernet-cfm configuration mode for the domain. The maintenance level number range is 0 to 7.</td>
</tr>
<tr>
<td>Step 4 service {ma-name</td>
<td>ma-number</td>
</tr>
<tr>
<td></td>
<td>• ma-name — a string of no more than 100 characters that identifies the MAID.</td>
</tr>
<tr>
<td></td>
<td>• ma-number — a value from 0 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• vpn-id vpn — enter a VPN ID as the ma-name.</td>
</tr>
<tr>
<td></td>
<td>• vlan vlan-id — VLAN range is from 1 to 4094. You cannot use the same VLAN ID for more than one domain at the same level.</td>
</tr>
<tr>
<td>Step 5 mep mpid identifier</td>
<td>Define the MEP maintenance end point identifier in the domain and service. The range is 1 to 8191</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 ethernet cfm mep crosscheck {enable</td>
<td>disable} domain domain-name {vlan {vlan-id</td>
</tr>
<tr>
<td></td>
<td>• domain domain-name — Specify the name of the created domain.</td>
</tr>
<tr>
<td></td>
<td>• vlan {vlan-id</td>
</tr>
</tbody>
</table>
Configuring Static Remote MEP

Complete the following steps to configure Ethernet CFM static remote MEP:

SUMMARY STEPS

1. configure terminal
2. ethernet cfm domain *domain-name* level *level-id*
3. service { short-ma-name | number *MA-number* | vlan-id primary-vlan-id | vpn-id vpn-id } {vlan vlan-id | port | evc evc-name }
4. continuity-check
5. mep mpid *identifier*
6. continuity-check static rmep
7. end
8. show ethernet cfm maintenance-points remote static
9. show ethernet cfm errors [configuration]
10. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ethernet cfm domain domain-name level level-id</td>
<td>Define a CFM domain, set the domain level, and enter ethernet-cfm configuration mode for the domain. The maintenance level number range is 0 to 7.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>4</td>
<td>`service { short-ma-name</td>
</tr>
<tr>
<td>5</td>
<td><code>mep mpid identifier</code></td>
</tr>
<tr>
<td>6</td>
<td><code>continuity-check static rmep</code></td>
</tr>
<tr>
<td>7</td>
<td><code>end</code></td>
</tr>
<tr>
<td>8</td>
<td><code>show ethernet cfm maintenance-points remote static</code></td>
</tr>
<tr>
<td>9</td>
<td><code>show ethernet cfm errors [configuration]</code></td>
</tr>
<tr>
<td>10</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Purpose

- **Step 3**: Configure the maintenance association and set a universally unique ID for a customer service instance (CSI) or the service number. Configure the VLAN and VPN ID within a maintenance domain in Ethernet connectivity fault management (CFM) configuration mode.
- **Step 4**: Enable sending and receiving of continuity check messages.
- **Step 5**: Define the static remote maintenance end point identifier. The range is 1 to 8191.
- **Step 6**: Enable checking of the incoming continuity check message from a remote MEP that is configured in the MEP list.
- **Step 7**: Return to privileged EXEC mode.
- **Step 8**: Verify the configuration.
- **Step 9**: Enter this command after you enable CFM cross-check to display the results of the cross-check operation. Enter the `configuration` keyword to display the configuration error list.
- **Step 10**: (Optional) Save your entries in the configuration file.

What to do next

- **Note**: Use the `no` form of each command to remove a configuration or to return to the default settings.

Configuring a Port MEP

A port MEP is a down MEP that is not associated with a VLAN and uses untagged frames to carry CFM messages. You configure port MEPs on two connected interfaces. Port MEPs are always configured at a lower domain level than native VLAN MEPs.

Complete the following steps to configure Ethernet CFM port MEPs:

SUMMARY STEPS

1. `configure terminal`
2. `ethernet cfm domain domain-name level level-id`
3. `service { ma-name | ma-number | vpn-id } port`
4. `mep mpid identifier`
5. `continuity-check`
6. `continuity-check interval value`
7. `continuity-check loss-threshold threshold-value`
8. continuity-check static rmep
9. exit
10. exit
11. interface interface-id
12. ethernet cfm mep domain domain-name mpid identifier port
13. end
14. show ethernet cfm maintenance-points remote static
15. show ethernet cfm errors [configuration]
16. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Define a CFM domain, set the domain level, and enter ethernet-cfm configuration mode for the domain. The maintenance level number range is 0 to 7.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>service {ma-name</td>
</tr>
<tr>
<td>Define a customer service maintenance association name or number or VPN ID to be associated with the domain, define a port MEP, and enter ethernet-cfm-service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>• ma-name — a string of no more than 100 characters that identifies the MAID.</td>
<td></td>
</tr>
<tr>
<td>• ma-number — a value from 0 to 65535.</td>
<td></td>
</tr>
<tr>
<td>• vpn-id vpn — enter a VPN ID as the ma-name.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mep mpid identifier</td>
</tr>
<tr>
<td>Define the static remote maintenance end point identifier in the domain and service. The range is 1 to 8191.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>continuity-check</td>
</tr>
<tr>
<td>Enable sending and receiving of continuity check messages.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>continuity-check interval value</td>
</tr>
<tr>
<td>(Optional) Set the interval at which continuity check messages are sent. The available values are 100 ms, 1 second, 10 seconds, 1 minute and 10 minutes. The default is 10 seconds.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Because faster CCM rates are more CPU-intensive, we do not recommend configuring a large number of MEPs running at 100 ms intervals.</td>
</tr>
<tr>
<td>Step 7</td>
<td>continuity-check loss-threshold threshold-value</td>
</tr>
<tr>
<td>(Optional) Set the number of continuity check messages to be missed before declaring that an MEP is down. The range is 2 to 255; the default is 3.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>continuity-check static rmep</td>
</tr>
<tr>
<td>Enable checking of the incoming continuity check message from a remote MEP that is configured in the MEP list.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Return to ethernet-cfm configuration mode.</td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 11 interface interface-id</td>
<td>Identify the port MEP interface and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 12 ethernet cfm mep domain domain-name mpid identifier port</td>
<td>Configure the interface as a port MEP for the domain.</td>
</tr>
<tr>
<td>• domain domain-name — Specify the name of the created domain.</td>
<td></td>
</tr>
<tr>
<td>• mpid identifier — Enter a maintenance endpoint identifier. The identifier must be unique for each VLAN (service instance). The range is 1 to 8191.</td>
<td></td>
</tr>
<tr>
<td>Step 13 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 14 show ethernet cfm maintenance-points remote static</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 15 show ethernet cfm errors [configuration]</td>
<td>Enter this command after you enable CFM crosscheck to display the results of the crosscheck operation. Enter the configuration keyword to display the configuration error list.</td>
</tr>
<tr>
<td>Step 16 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

What to do next

| Note | Use the no form of each command to remove a configuration or to return to the default settings. |

This is a sample configuration for a port MEP:

```plaintext
Router(config)# ethernet cfm domain abc level 3
Router(config-ecfm)# service PORTMEP port
Router(config-ecfm-srv)# mep mpid 222
Router(config-ecfm-srv)# continuity-check
Router(config-ecfm-srv)# continuity-check static rmep
Router(config-ecfm-srv)# exit
Router(config)# interface gigabitethernet 0/1
Router(config-if)# ethernet cfm domain abc mpid 111 port
Router(config-if)# end
```

CFM with Hardware Offloading for G.8032

To support ITU-T G.8032 Ethernet Ring Protection Switching, the remote CFM fault detection needs to be faster using CFM continuity check messages (CCM). Earlier to Cisco IOS Release 15.4(3)S, the CFM sessions flap with CCM interval less than 1s. All the CFM operations such as CCM packet forward, drop, and processing are taking place at CPU, and this leads to heavy CPU usage with lower CCM intervals. Effective from Cisco IOS Release 15.4(3)S, the Router supports CFM hardware offloading. Configuring Ethernet CFM for offload...
CFM session requires configuring the CFM domain with the supported offload CCM intervals 3.3 ms, 10 ms, and 100 ms. You can optionally configure the sampling rate for the offload cfm sessions and the default sampling rate is 20000.

The `efd notify g8032` command is optional for offload cfm sessions. This command must be used under CFM configuration to notify G.8032 of failures, if any.

Restrictions

- CFM offload is not supported on up MEPs.
- CFM offload is not supported on xconnect EVC.
- Loopback reply (LBR) and loopback trace (LTR) packets are generated at CPU for offloaded sessions.
- CFM offload is supported on port-channel EVC and port MEP from Cisco IOS XE Release 3.14 onwards.
- CFM offload is not supported on following EVC encapsulation types:
 - Dot1Q without rewrite
 - QinQ with Pop1
 - Default EFP
 - Dot1ad-dot1Q with Pop1
 - Untagged EVC

 - Delay Measurement Message (DMM) is supported for CFM offload sessions from Cisco IOS XE Release 3.15 onwards.
 - MIP is not supported for CFM offload sessions.
 - MIP configured for offloaded MEP does not identify remote MEPs. This affects the traceroute and loopback CFM protocols because the CPU does not receive CCM for the offloaded MEP.

Configuring CFM with Hardware Offloading for G.8032

Complete the following steps to configure the CFM with hardware offloading for G.8032.

SUMMARY STEPS

1. configure terminal
2. ethernet cfm global
3. `ethernet cfm domain domain-name level level-id`
4. `service {ma-name | ma-number | vpn-id vpn} {vlan vlan-id [direction down] | port}`
5. continuity-check
6. continuity-check interval value
7. continuity-check loss-threshold threshold-value
8. offload sampling value
9. efd notify g8032
10. exit
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ethernet cfm global</td>
<td>Globally enables Ethernet CFM on the router.</td>
</tr>
<tr>
<td>3</td>
<td>ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM domain, set the domain level, and enter ethernet-cfm configuration mode for the domain. The maintenance level number range is 0 to 7.</td>
</tr>
<tr>
<td>4</td>
<td>service {ma-name</td>
<td>ma-number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ma-name — a string of no more than 100 characters that identifies the MAID.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ma-number — a value from 0 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• vpn-id vpn — enter a VPN ID as the ma-name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• vlan vlan-id — VLAN range is from 1 to 4094. You cannot use the same VLAN ID for more than one domain at the same level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) direction down — Specifies the service direction as down.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• port — Configures port MEP, a down MEP that is untagged and not associated with a VLAN.</td>
</tr>
<tr>
<td>5</td>
<td>continuity-check</td>
<td>Enables sending and receiving of continuity check messages.</td>
</tr>
<tr>
<td>6</td>
<td>continuity-check interval value</td>
<td>(Optional) Sets the interval at which continuity check messages are sent. The available values are 100 ms, 10 ms, 3.3 ms, 1 second, 10 seconds, 1 minute and 10 minutes. The default is 10 seconds.</td>
</tr>
<tr>
<td>7</td>
<td>continuity-check loss-threshold threshold-value</td>
<td>(Optional) Sets the number of continuity check messages to be missed before declaring that an MEP is down. The range is 2 to 255; the default is 3.</td>
</tr>
<tr>
<td>8</td>
<td>offload sampling value</td>
<td>Defines the sampling rate for the offloaded CFM session. The default is 20,000. The range is 5000 to 65535.</td>
</tr>
<tr>
<td>9</td>
<td>efd notify g8032</td>
<td>Monitors and notifies G.8032 for failures.</td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>
Verifying the CFM Configuration with Hardware Offloading for G.8032

To verify the maintenance points configured on a device, use the `show ethernet cfm maintenance-points local detail` command, as shown in this example:

```
Router# show ethernet cfm maintenance-points local detail

Local MEPs:
-----------
MPID: 2051
DomainName: d7
MA Name: s7
Level: 7
Direction: Down
EVC: e7
Bridge Domain: 200
Service Instance: 100
Interface: Gi0/6
CC Offload: Yes
CC Offload Status: Succeeded
CC Offload Sampling: 20000 (default)
CC-Status: Enabled
CC Loss Threshold: 3
MAC: c067.afdf.321a
LCK-Status: Enabled
LCK Period: 60000(ms)
LCK Expiry Threshold: 3.5
Level to transmit LCK: Default
Defect Condition: No Defect
presentRDI: FALSE
AIS-Status: Enabled
AIS Period: 60000(ms)
AIS Expiry Threshold: 3.5
Level to transmit AIS: Default
Suppress Alarm configuration: Enabled
Suppressing Alarms: No
Source: Static

MIP Settings:
-------------
Local MIPs: None
```

To verify the information about a remote maintenance point domains or levels or details in the CFM database, use the `show ethernet cfm maintenance-points remote` command, as shown in this example:

```
Router# show ethernet cfm maintenance-points remote

MPID Domain ID Lvl RDI MA Name EVC Name Local MEP Info
----- ----- ---- ---- ---- -------
2039 d7 7 7cad.749d.9276 Up Up
  d7 G10/6
  s7 BD-V 200 7s
MPID: 2051 Domain: d7 MA: s7

Total Remote MEPs: 1
```
Configuration Examples for CFM with Hardware Offloading for G.8032

The following is a sample configuration of CFM with hardware offloading for G.8032.

Figure 4: Sample G.8032 Topology with CFM Hardware Offload

The following sample configuration shows how to configure CFM with hardware offloading for G.8032.

Down MEP between Node 3 and Node 6

```
! interface GigabitEthernet0/6
no ip address
media-type auto-select
negotiation auto
service instance 2 ethernet
  encapsulation dot1q 50
  rewrite ingress tag pop 1 symmetric
  bridge-domain 50
!
service instance 100 ethernet e7
  encapsulation dot1q 200
  rewrite ingress tag pop 1 symmetric
  bridge-domain 200
  cfm mep domain d7 mpid 2051
!
end
```

Configuring SNMP Traps

To configure traps for Ethernet CFM, complete the following steps:

SUMMARY STEPS

1. `configure terminal`
2. `snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]`
3. `snmp-server enable traps ethernet cfm crosscheck [mep-unknown] [mep-missing] [service-up]`
4. `end`
5. `show running-config`
6. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server enable traps ethernet cfm crosscheck [mep-unknown] [mep-missing] [service-up]</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

What to do next

Use the no form of each command to remove a configuration or to return to the default settings.

Configuring IP SLA CFM Operation

You can manually configure an individual IP SLA ethernet ping, or jitter echo operation, or you can configure IP SLA ethernet operation with endpoint discovery. You can also configure multiple operation scheduling. For accurate one-way delay statistics, the clocks on the endpoint switches must be synchronized. You can configure the endpoint switches with Network Time Protocol (NTP) so that the switches are synchronized to the same clock source.

For more information about configuring IP SLA ethernet operations, see the IP SLAs Configuration Guide, Cisco IOS Release 15.0S. For detailed information about commands for IP SLAs, see the Cisco IOS IP SLAs Command Reference.

Note

The does not necessarily support all of the commands listed in the Cisco IOS IP SLA documentation.

This section includes these procedures:

Manually Configuring an IP SLA CFM Probe or Jitter Operation

To manually configure an IP SLA ethernet echo (ping) or jitter operation, complete the following steps:

SUMMARY STEPS

1. configure terminal
2. ip sla operation-number
3. Do one of the following:
 - ethernet echo mpid type number domain type number number vlan type number
 - ethernet jitter type number mpid type number domain vlan type number interval type number num-frames type number

4. cos operation-number
5. frequency operation-number
6. history operation-number
7. owner operation-number
8. request-data-size operation-number
9. tag operation-number
10. threshold operation-number
11. timeout operation-number
12. exit
13. ip sla schedule operation-number [ageout operation-number] [life {forever | operation-number}] [recurring] [start-time {operation-number} [operation-number] | pending | now | after operation-number]
14. end
15. show ip sla configuration [operation-number]
16. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip sla operation-number</td>
<td>Create an IP SLA operation, and enter IP SLA configuration mode.</td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Configure the IP SLA operation as an echo (ping) or jitter operation, and enter IP SLA ethernet echo configuration mode.</td>
</tr>
<tr>
<td>• ethernet echo mpid type number domain type number number vlan type number</td>
<td>• Enter echo for a ping operation or jitter for a jitter operation.</td>
</tr>
<tr>
<td>• ethernet jitter type number mpid type number domain vlan type number [interval type number] num-frames type number</td>
<td>• For mpid identifier, enter a maintenance endpoint identifier. The identifier must be unique for each VLAN (service instance). The range is 1 to 8191.</td>
</tr>
<tr>
<td>•</td>
<td>• For domain type number, enter the CFM domain name.</td>
</tr>
<tr>
<td>•</td>
<td>• For vlan vlan-id, the VLAN range is from 1 to 4095.</td>
</tr>
<tr>
<td>•</td>
<td>• (Optional—for jitter only) Enter the interval between sending of jitter packets.</td>
</tr>
<tr>
<td>•</td>
<td>• (Optional—for jitter only) Enter the num-frames and the number of frames to be sent.</td>
</tr>
<tr>
<td>Step 4 cos operation-number</td>
<td>(Optional) Set a class of service value for the operation.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 5 frequency<operation-number></td>
<td>(Optional) Set the rate at which the IP SLA operation repeats. The range is from 1 to 604800 seconds; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 6 history<operation-number></td>
<td>(Optional) Specify parameters for gathering statistical history information for the IP SLA operation.</td>
</tr>
<tr>
<td>Step 7 owner<operation-number></td>
<td>(Optional) Configure the SNMP owner of the IP SLA operation.</td>
</tr>
<tr>
<td>Step 8 request-data-size<operation-number></td>
<td>(Optional) Specify the protocol data size for an IP SLA request packet. The range is from 0 to the maximum size allowed by the protocol being used; the default is 66 bytes.</td>
</tr>
<tr>
<td>Step 9 tag<operation-number></td>
<td>(Optional) Create a user-specified identifier for an IP SLA operation.</td>
</tr>
<tr>
<td>Step 10 threshold<operation-number></td>
<td>(Optional) Specify the upper threshold value in milliseconds (ms) for calculating network monitoring statistics. The range is 0 to 2147483647; the default is 5000.</td>
</tr>
<tr>
<td>Step 11 timeout<operation-number></td>
<td>(Optional) Specify the amount of time in ms that the IP SLA operation waits for a response from its request packet. The range is 0 to 604800000; the default value is 5000.</td>
</tr>
<tr>
<td>Step 12 exit</td>
<td>Return to the global configuration mode.</td>
</tr>
<tr>
<td>Step 13 ip sla schedule<operation-number>{ageout operation-number} [life {forever</td>
<td>operation-number}] [recurring] [start-time {operation-number} [operation-number</td>
</tr>
</tbody>
</table>
- operation-number — Enter the IP SLA operation number.
- (Optional) ageout operation-number — Enter the number of seconds to keep the operation in memory when it is not actively collecting information. The range is 0 to 2073600 seconds. The default is 0 seconds.
- (Optional) life — Set the operation to run indefinitely (forever) or for a specific number of seconds. The range is from 0 to 2147483647. The default is 3600 seconds (1 hour)
- (Optional) recurring — Set the probe to be automatically scheduled every day.
- (Optional) start-time — Enter the time for the operation to begin collecting information:
 - To start at a specific time, enter the hour, minute, second (in 24-hour notation), and day of the month.
 - Enter pending to select no information collection until a start time is selected.
Configuring an IP SLA Operation with Endpoint Discovery

To automatically discover the CFM endpoints for a domain and VLAN ID, using IP SLAs, complete the steps given below. You can configure ping or jitter operations to the discovered endpoints.

SUMMARY STEPS

1. `configure terminal`
2. `ip sla ethernet-monitor operation-number`
3. `type echo domain domain-name vlan vlan-id [exclude-mpids mp-ids]`
4. `cos cos-value`
5. `owner owner-id`
6. `request-data-size bytes`
7. `tag text`
8. `threshold milliseconds`
9. `timeout milliseconds`
10. `exit`
11. `ip sla schedule operation-number [ageout seconds] [life {forever | seconds }] [recurring] [start-time {hh:mm:ss} {month day | day month} | pending | now | after hh:mm:ss]`
12. `end`
13. `show ip sla configuration [operation-number]`
14. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip sla ethernet-monitor operation-number</td>
<td>Begin configuration of an IP SLA automatic ethernet operation, and enter IP SLA ethernet monitor configuration mode.</td>
</tr>
</tbody>
</table>
Purpose
Configure the automatic Ethernet operation to create echo (ping) or jitter operation and enter IP SLA ethernet echo configuration mode.

- Enter `type echo` for a ping operation or `type jitter` for a jitter operation.
- For `mpid` identifier, enter a maintenance endpoint identifier. The range is 1 to 8191.
- For `domain domain-name`, enter the CFM domain name.
- For `vlan vlan-id`, the VLAN range is from 1 to 4095.
- (Optional) Enter `exclude-mpids mp-ids` to exclude the specified maintenance endpoint identifiers.
- (Optional—for jitter only) Enter the `interval` between sending of jitter packets.
- (Optional—for jitter only) Enter the `num-frames` and the number of frames to be sent.

Command or Action
<table>
<thead>
<tr>
<th>Step 3</th>
<th><code>type echo domain domain-name vlan vlan-id [exclude-mpids mp-ids]</code></th>
<th>Configure the automatic Ethernet operation to create echo (ping) or jitter operation and enter IP SLA ethernet echo configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example: <code>type jitter domain domain-name vlan vlan-id [exclude-mpids mp-ids] [interval interpacket-interval] [num-frames number-of frames transmitted]</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 4
cos cos-value
(Optional) Set a class of service value for the operation.

Before configuring the `cos` parameter, you must globally enable QoS by entering the `mls qos` global configuration command.

Step 5
owner owner-id
(Optional) Configure the SNMP owner of the IP SLA operation.

Step 6
request-data-size bytes
(Optional) Specify the protocol data size for an IP SLA request packet. The range is from 0 to the maximum size allowed by the protocol being used; the default is 66 bytes.

Step 7
tag text
(Optional) Create a user-specified identifier for an IP SLA operation.

Step 8
threshold milliseconds
(Optional) Specify the upper threshold value in milliseconds for calculating network monitoring statistics. The range is 0 to 2147483647; the default is 5000.

Step 9
timeout milliseconds
(Optional) Specify the amount of time in milliseconds that the IP SLA operation waits for a response from its request packet. The range is 0 to 604800000; the default value is 5000.

Step 10
exit
Return to global configuration mode.

Step 11
ip sla schedule operation-number [ageout seconds] [life {forever | seconds }] [recurring] [start-time [hh:mm [:ss] [month day | day month] | pending | now | after hh:mm:ss]]
Schedule the time parameters for the IP SLA operation.

- `operation-number`—Enter the IP SLA operation number.
- (Optional) `ageout seconds`—Enter the number of seconds to keep the operation in memory when it is
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>not actively collecting information. The range is 0 to 2073600 seconds. The default is 0 seconds.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) life—Set the operation to run indefinitely (forever) or for a specific number of seconds. The range is from 0 to 2147483647. The default is 3600 seconds (1 hour)</td>
<td></td>
</tr>
<tr>
<td>• (Optional) recurring—Set the probe to be automatically scheduled every day.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) start-time—Enter the time for the operation to begin collecting information:</td>
<td></td>
</tr>
<tr>
<td>• To start at a specific time, enter the hour, minute, second (in 24-hour notation), and day of the month.</td>
<td></td>
</tr>
<tr>
<td>• Enter pending to select no information collection until a start time is selected.</td>
<td></td>
</tr>
<tr>
<td>• Enter now to start the operation immediately.</td>
<td></td>
</tr>
<tr>
<td>• Enter after hh:mm:ss to show that the operation should start after the entered time has elapsed.</td>
<td></td>
</tr>
</tbody>
</table>

Step 12
end
Return to privileged EXEC mode.

Step 13
show ip sla configuration [operation-number]
Show the configured IP SLA operation.

Step 14
copy running-config startup-config
(Optional) Save your entries in the configuration file.

What to do next
To remove an IP SLA operation, enter the **no ip sla operation-number** global configuration command.

Configuring CFM over EFP with Cross Connect

The CFM over EFP Interface with cross connect feature allows you to:

• Forward continuity check messages (CCM) towards the core over cross connect pseudowires.

To know more about pseudowires, see

• Receive CFM messages from the core.
• Forward CFM messages to the access side (after Continuity Check Database [CCDB] based on maintenance point [MP] filtering rules).

This section contains the following topics:

Configuring CFM over EFP Interface with Cross Connect

To configure CFM over EFP Interface with cross connect, complete the following steps.
SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class *[pw-class-name]*
4. encapsulation mpls
5. exit
6. interface {gigabitethernet *slot/port* | tengigabitethernet *slot/port*}
7. service instance id ethernet [service-name]
8. encapsulation {untagged | dot1q vlan-id | default}
9. xconnect peer-ip-address vc-id {encapsulation {l2tpv3 [manual] | mpls [manual]} | pw-class *pw-class-name*} [pw-class *pw-class-name*] [sequencing {transmit | receive | both}]
10. cfm mep domain domain-name [up | down] mpid *mpid-value* [cos *cos-value*]
11. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 pseudowire-class [pw-class-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enter pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class vlan-xconnect</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits the pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 interface {gigabitethernet slot/port</td>
<td>tengigabitethernet slot/port}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# interface Gi2/0/2</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>service instance id ethernet [service-name]</td>
<td>Creates a service instance (an instantiation of an EVC) on an interface and sets the device into the config-if-srv submode.</td>
</tr>
<tr>
<td>Example</td>
<td>Router(config-if-srv)# service instance 101 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>encapsulation {untagged</td>
<td>dot1q vlan-id</td>
</tr>
<tr>
<td>Example</td>
<td>Router(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>dot1q range and second-dot1q are not supported for EFP Interface with Cross Connect.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>xconnect peer-ip-address vc-id</td>
<td>encapsulation {l2tpv3 [manual]</td>
</tr>
<tr>
<td>Example</td>
<td>Router(config-if-srv)# xconnect 10.0.3.201 123</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>cfm mep domain domain-name [up</td>
<td>down] mpid mpid-value [cos cos-value]</td>
</tr>
<tr>
<td>Example</td>
<td>Router(config-if-srv)# cfm mep down mpid 100</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>exit</td>
<td>Exits the interface configuration mode.</td>
</tr>
<tr>
<td>Example</td>
<td>Router(config-if-srv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure CFM over EVC using cross connect.

```
ASR901(config)#ethernet cfm ieee
ASR901(config)#ethernet cfm global
ASR901(config)#ethernet cfm domain L5 level 5
ASR901(config-ecfm)# service s1 evc e711
ASR901(config-ecfm-srv)# continuity-check
ASR901(config-ecfm-srv)#exit
ASR901(config-ecfm)#exit
```
Configuring CFM over EFP Interface with Cross Connect—Port Channel-Based Cross Connect Tunnel

This section describes how to configure CFM over EFP Interface with Port Channel-Based cross connect Tunnel.

Examples

This example shows how to configure CFM over EFP Interface with Port Channel-Based cross connect Tunnel:

```
ASR901(config)#ethernet cfm ieee
ASR901(config)#ethernet cfm global
ASR901(config)#ethernet cfm domain L5 level 5
ASR901(config-ecfm)# service a1 evc e711
ASR901(config-ecfm-srv)#  continuity-check
ASR901(config-ecfm-srv)#exit
ASR901(config-ecfm)#exit
ASR901(config)#interface GigabitEthernet0/1
ASR901(config-if)# negotiation auto
ASR901(config-if)# no keepalive
ASR901(config-if)# channel-group 1 mode on
ASR901(config-if)#exit
ASR901(config)#interface GigabitEthernet
ASR901(config-if)# negotiation auto
ASR901(config-if)# channel-group 1 mode on
ASR901(config-if)#exit
ASR901(config)#int port-channel 1
ASR901(config-if)#service instance 711 ethernet e711
ASR901(config-if-srv)# encapsulation dot1q 711
ASR901(config-if-srv)# xconnect 3.3.3.3 3 encapsulation mpls
ASR901(config-if-ether-vc-xconn)# mtu 1500
ASR901(config-if-ether-vc-xconn)# cfm mep domain L5 mpid 511
```

Verification

Use the following commands to verify a configuration:

```
```

Example for untagged Encapsulation

```
ASR901(config)#int g0/1
ASR901(config-if)#service instance 711 ethernet e711
ASR901(config-if-srv)#encapsulation untagged
ASR901(config-if-srv)# xconnect 3.3.3.3 3 encapsulation mpls
ASR901(config-if-ether-vc-xconn)# mtu 1500
ASR901(config-if-ether-vc-xconn)# cfm mep domain L5 mpid 511
```

Example for single tag Encapsulation

```
ASR901(config)#int g0/1
ASR901(config-if)#service instance 711 ethernet e711
ASR901(config-if-srv)# encapsulation dot1q 711
ASR901(config-if-srv)# xconnect 3.3.3.3 3 encapsulation mpls
ASR901(config-if-ether-vc-xconn)# mtu 1500
ASR901(config-if-ether-vc-xconn)# cfm mep domain L5 mpid 511
```
• Use the show ethernet cfm maintenance-point local command to verify the CFM over EVC configuration.
 This command shows the basic configuration information for CFM.

```
Router-30-PE1#show ethernet cfm maintenance-point local
Local MEPs:
--------------------------------------------------------------------------------
MPID Domain Name Lvl Domain Id Domain Name MA Name Type Id CC
Dir Port IdSvcInst
--------------------------------------------------------------------------------
1 L6 6 000a.f393.56d0 XCON Y
   L6 Down G10/2 N/A 1
   bbb
   bbb
3 L5 5 0007.8478.4410 XCON Y
   L5 Up G10/2 N/A 1
   bbb
   bbb
Total Local MEPs: 2
Local MIPs:
* = MIP Manually Configured
--------------------------------------------------------------------------------
Level Port MacAddress SrvcInst Type Id
--------------------------------------------------------------------------------
7 G10/2 0007.8478.4410 1 XCON N/A
Total Local MIPs: 1
```

• Use the show ethernet cfm maintenance-point remote to verify the MEP configuration:

```
Router-30-PE1#show ethernet cfm maintenance-point remote
--------------------------------------------------------------------------------
MPID Domain Name MacAddress Version
Lvl Domain ID Ingress
RDI MA Name Type Id SrvcInst
EVC Name
--------------------------------------------------------------------------------
4 L5 000a.f393.56d0 IEEE-CFM
   L5 Up Up
   - bbb XCON N/A 1
   bbb
2 L6 000a.f393.56d0 Up Up
   L6 Te2/0/0:(2.2.2.2, 1)
   - bbb XCON N/A 9s
   bbb
6 L6 000a.f393.56d0 Up Up
   L6 Te2/0/0:(2.2.2.2, 1)
   - bbb XCON N/A 1
   bbb
Total Remote MEPs: 2
```

• Use the show ethernet cfm mpdb command to verify the catalogue of CC with MIP in intermediate routers.

```
PE2#show ethernet cfm mpdb
* = Can Ping/Traceroute to MEP
--------------------------------------------------------------------------------
MPID Domain Name MacAddress Version
Lvl Domain ID Ingress
Expd MA Name Type Id SrvcInst
EVC Name
--------------------------------------------------------------------------------
600 * L6 0021.d8ca.d7d0 IEEE-CFM
6 L6 Te2/1:(2.2.2.2, 1)
   s1 XCON N/A 1
   1
```

Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide

OL-30498-03
Configuring CFM with EVC Default Encapsulation

Complete the following steps to configure CFM with EVC default encapsulation:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance instance-id ethernet evc-name
5. encapsulation default
6. bridge-domain bridge-id
7. cfm encapsulation \{dot1ad vlan-id \| dot1q vlan-id\} [dot1q vlan-id \| second-dot1q vlan-id]
8. cfm mep domain domain-id mpid mpid-value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface GigabitEthernet0/9</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 4

service instance instance-id ethernet evc-name

Example:

Router(config-if)# service instance 1 ethernet evc100

Purpose: Creates a service instance on an interface and defines the matching criteria.

- **instance-id**—Integer that uniquely identifies a service instance on an interface.
- **evc-name**—String that associates an EVC to the service instance. Maximum byte size is 100.

Step 5

encapsulation default

Example:

Router(config-if-srv)# encapsulation default

Purpose: Configures the default service instance.

Step 6

bridge-domain bridge-id

Example:

Router(config-if-srv)# bridge-domain 99

Purpose: Binds the service instance to a bridge domain instance using an identifier.

Step 7

cfm encapsulation \{dot1ad vlan-id | dot1q vlan-id\} [dot1q vlan-id | second-dot1q vlan-id]

Example:

Router(config-if-srv)# cfm encapsulation dot1q 75

Purpose: Configures connectivity fault management (CFM) Ethernet frame encapsulation.

- **dot1ad**—Indicates the 802.1ad provider bridges encapsulation type.
- **dot1q**—Supports the IEEE 802.1q standard for encapsulation of traffic and specifies the outer dot1q encapsulation tag.
- **second-dot1q**—Specifies the inner dot1q encapsulation tag. Valid option only when you first select the outer dot1q encapsulation tag. When the dot1ad encapsulation type is selected first, dot1q is a valid option.
- **vlan-id**—Integer from 1 to 4094 that specifies the VLAN on which to send CFM frames.

Step 8

cfm mep domain domain-id mpid mpid-value

Example:

Router(config-if-srv)# cfm mep domain md2 mpid 111

Purpose: Configures a maintenance endpoint (MEP) for a domain.

- **domain-name**—String from 1 to 154 characters that identifies the domain name.
- **mpid**—Indicates the maintenance point ID (MPID).
- **mpid-value**—Integer from 1 to 8191 that identifies the MPID.

Verifying CFM with EVC Default Encapsulation

To verify the configuration of CFM with EVC default encapsulation, use the show command shown below.
Example: Configuring CFM with EVC Default Encapsulation

interface GigabitEthernet
service instance 1 ethernet evc100
 encapsulation default
 bridge-domain 99
 cfm encapsulation dot1q 75
 cfm mep domain md2 mpid 111

Configuring Y.1731 Fault Management

The ITU-T Y.1731 feature provides new CFM functionality for fault and performance management for service providers in large network. The router supports Ethernet Alarm Indication Signal (ETH-AIS) and Ethernet Remote Defect Indication (ETH-RDI) functionality for fault detection, verification, and isolation.

To configure Y.1731 fault management, you must enable CFM and configure MIPs on the participating interfaces. AIS messages are generated only on interfaces with a configured MIP.

This section contains the following topics:

Default Y.1731 Configuration

- ETH-AIS is enabled by default when CFM is enabled.
- When you configure ETH-AIS, you must configure CFM before ETH-AIS is operational.
- ETH-RDI is set automatically when continuity check messages are enabled.

Configuring ETH-AIS

Complete the following steps to configure ETH-AIS on the router:

SUMMARY STEPS

1. configure terminal
2. ethernet cfm ais link-status global
3. level level-id or disable
4. period value
5. exit
6. ethernet cfm domain domain-name level level-id
7. service {short-ma-name | number MA-number | vlan-id primary-vlan-id | vpn-id vpn-id} {vlan vlan-id | port | evc evc-name}
8. ais level level-id
9. ais period value
10. ais expiry-threshold value
11. no ais suppress-alarms
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ethernet cfm ais link-status global</td>
<td>Configure AIS-specific SMEP commands by entering config-ais-link-cfm mode.</td>
</tr>
<tr>
<td>3</td>
<td>level level-id or disable</td>
<td>Configure the maintenance level for sending AIS frames transmitted by the SMEP. The range is 0 to 7. or Disable generation of ETH-AIS frames.</td>
</tr>
<tr>
<td>4</td>
<td>period value</td>
<td>Configure the SMEP AIS transmission period interval. Allowable values are 1 second or 60 seconds.</td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>6</td>
<td>ethernet cfm domain domain-name level level-id</td>
<td>Define a CFM domain, set the domain level, and enter ethernet-cfm configuration mode for the domain. The maintenance level number range is 0 to 7.</td>
</tr>
<tr>
<td>7</td>
<td>service {short-ma-name</td>
<td>number MA-number</td>
</tr>
<tr>
<td>8</td>
<td>ais level level-id</td>
<td>(Optional) Configure the maintenance level for sending AIS frames transmitted by the MEP. The range is 0 to 7.</td>
</tr>
<tr>
<td>9</td>
<td>ais period value</td>
<td>(Optional) Configure the MEP AIS transmission period interval. Allowable values are 1 second or 60 seconds.</td>
</tr>
<tr>
<td>10</td>
<td>ais expiry-threshold value</td>
<td>(Optional) Set the expiring threshold for the MA as an integer. The range is 2 to 255. The default is 3.5.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 11 no ais suppress-alarms</td>
<td>(Optional) Override the suppression of redundant alarms when the MEP goes into an AIS defect condition after receiving an AIS message.</td>
<td></td>
</tr>
<tr>
<td>Step 12 exit</td>
<td>Return to ethernet-cfm configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 13 exit</td>
<td>Return to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 14 interface interface-id</td>
<td>Specify an interface ID, and enter interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 15 [no] ethernet cfm ais link-status</td>
<td>Enable or disable sending AIS frames from the SMEP on the interface.</td>
<td></td>
</tr>
<tr>
<td>Step 16 ethernet cfm ais link-status period value</td>
<td>Configure the ETH-AIS transmission period generated by the SMEP on the interface. Allowable values are 1 second or 60 seconds.</td>
<td></td>
</tr>
<tr>
<td>Step 17 ethernet cfm ais link-status level level-id</td>
<td>Configure the maintenance level for sending AIS frames transmitted by the SMEP on the interface. The range is 0 to 7.</td>
<td></td>
</tr>
<tr>
<td>Step 18 end</td>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 19 show ethernet cfm smep [interface interface-id]</td>
<td>Verify the configuration.</td>
<td></td>
</tr>
<tr>
<td>Step 20 show ethernet cfm error</td>
<td>Display received ETH-AIS frames and other errors.</td>
<td></td>
</tr>
<tr>
<td>Step 21 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Use the `no` form of this commands to return to the default configuration or to remove a configuration. To disable the generation of ETH-AIS frames, enter the `disable config-ais-link-cfm` mode command.

This is an example of the output from the `show ethernet cfm smep` command when Ethernet AIS has been enabled:

```
Router# show ethernet cfm smep
SMEP Settings:  
----------------
Interface: GigabitEthernet1/0/3
LCK-Status: Enabled
LCK Period: 60000 (ms)
Level to transmit LCK: Default
AIS-Status: Enabled
AIS Period: 60000 (ms)
Level to transmit AIS: Default
Defect Condition: AIS
```

Configuring ETH-LCK

Complete the following steps to configure ethernet locked signal on a switch:
SUMMARY STEPS

1. configure terminal
2. ethernet cfm lck link-status global
3. level level-id or disable
4. period value
5. exit
6. ethernet cfm domain domain-name level level-id
7. service {ma-name | ma-number | vpn-id vpn} {vlan vlan-id [direction down] | port}
8. lck level level-id
9. lck period value
10. lck expiry-threshold value
11. exit
12. exit
13. interface interface-id
14. [no] ethernet cfm lck link-status
15. ethernet cfm lck link-status period value
16. ethernet cfm lck link-status level level-id
17. end
18. ethernet cfm lck start interface interface-id direction {up | down} {drop l2-bpdu}
19. show ethernet cfm smep [interface interface-id]
20. show ethernet cfm error
21. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ethernet cfm lck link-status global</td>
</tr>
<tr>
<td>Step 3</td>
<td>level level-id or disable</td>
</tr>
<tr>
<td>Step 4</td>
<td>period value</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>service {ma-name</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| ID or VPN-ID, and enter ethernet-cfm-service configuration mode. | • **ma-name** — a string of no more than 100 characters that identifies the MAID.
• **ma-number** — a value from 0 to 65535.
• **vpn-id** — enter a VPN ID as the **ma-name**.
• **vlan vlan-id** — VLAN range is from 1 to 4094. You cannot use the same VLAN ID for more than one domain at the same level.
• (Optional) **direction down** — specify the service direction as down.
• **port** — Configure port MEP, a down MEP that is untagged and not associated with a VLAN. |
| **Step 8** lck level **level-id** | (Optional) Configure the maintenance level for sending ETH-LCK frames sent by the MEP. The range is 0 to 7. |
| **Step 9** lck period **value** | (Optional) Configure the MEP ETH-LCK frame transmission period interval. Allowable values are 1 second or 60 seconds. |
| **Step 10** lck expiry-threshold **value** | (Optional) Set the expiring threshold for the MA. The range is 2 to 255. The default is 3.5. |
| **Step 11** exit | Return to ethernet-cfm configuration mode. |
| **Step 12** exit | Return to global configuration mode. |
| **Step 13** interface **interface-id** | Specify an interface ID, and enter interface configuration mode. |
| **Step 14** [no] ethernet cfm lck link-status | Enable or disable sending ETH-LCK frames from the SMEP on the interface. |
| **Step 15** ethernet cfm lck link-status period **value** | Configure the ETH-LCK transmission period generated by the SMEP on the interface. Allowable values are 1 second or 60 seconds. |
| **Step 16** ethernet cfm lck link-status level **level-id** | Configure the maintenance level for sending ETH-LCK frames sent by the SMEP on the interface. The range is 0 to 7. |
| **Step 17** end | Return to privileged EXEC mode. |
| **Step 18** ethernet cfm lck start interface **interface-id** {up | down} {drop l2-bpdu} | (Optional) Apply the LCK condition to an interface.
• **interface interface-id** — Specify the interface to be put in LCK condition.
• **directioninward** — The LCK is in the direction toward the relay; that is, within the switch. |
Managing and Displaying Ethernet CFM Information

Use the following commands in the privileged EXEC mode to clear Ethernet CFM information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ethernet cfm ais domain domain-name mpid id {vlan vlan-id</td>
<td>port}</td>
</tr>
<tr>
<td>clear ethernet cfm ais link-status interface interface-id</td>
<td>Clear a SMEP out of AIS defect condition.</td>
</tr>
<tr>
<td>clear ethernet cfm error</td>
<td>Clear all CFM error conditions, including AIS.</td>
</tr>
</tbody>
</table>

To remove the LCK condition from MEP, enter the `ethernet cfm lck stop mpid local-mpid domain domain-name vlan vlan-id` privileged EXEC command. To put an interface out of LCK condition, enter the `ethernet cfm lck start interface interface-id direction {inward | outward}` privileged EXEC command.

This is an example of the output from the `show ethernet cfm smep` command when ethernet LCK has been enabled:

```
Switch# show ethernet cfm smep  
SMEP Settings:  
----------------  
Interface: GigabitEthernet0/3  
LCK-Status: Enabled  
LCK Period: 60000 (ms)  
Level to transmit LCK: Default  
AIS-Status: Enabled  
AIS Period: 60000 (ms)  
Level to transmit AIS: Default  
Defect Condition: AIS
```

Table 13: Clearing CFM Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ethernet cfm ais domain domain-name mpid id {vlan vlan-id</td>
<td>port}</td>
</tr>
<tr>
<td>clear ethernet cfm ais link-status interface interface-id</td>
<td>Clear a SMEP out of AIS defect condition.</td>
</tr>
<tr>
<td>clear ethernet cfm error</td>
<td>Clear all CFM error conditions, including AIS.</td>
</tr>
</tbody>
</table>
Table 14: Displaying CFM Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ethernet cfm domain [brief]</td>
<td>Displays CFM domain information or brief domain information.</td>
</tr>
<tr>
<td>show ethernet cfm errors [configuration</td>
<td>domain-id]</td>
</tr>
<tr>
<td>show ethernet cfm maintenance-points local [detail</td>
<td>domain</td>
</tr>
<tr>
<td>show ethernet cfm maintenance-points remote [crosscheck</td>
<td>detail</td>
</tr>
<tr>
<td>show ethernet cfm mpdb</td>
<td>Displays information about entries in the MIP continuity-check database.</td>
</tr>
<tr>
<td>show ethernet cfm smep interface interface-id</td>
<td>Displays Ethernet CFM SMEP information.</td>
</tr>
<tr>
<td>show ethernet cfm traceroute-cache</td>
<td>Displays the contents of the traceroute cache.</td>
</tr>
<tr>
<td>show platform cfm</td>
<td>Displays platform-independent CFM information.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show ethernet cfm domain brief` command:

```
Router# show ethernet cfm domain brief
Domain Name     Index Level Services Archive(min)
level5          1  5  1  100
level3          2  3  1  100
   test         3  3  3  100
   name         4  3  1  100
   test1        5  2  1  100
   lck          6  1  1  100Total Services : 1
```

This is an example of output from the `show ethernet cfm errors` command:

```
Router# show ethernet cfm errors
-------------------------------------------------------------------
MPID Domain Id MAName   Mac Address Type Id Lvl Reason Age
-------------------------------------------------------------------
6307 level3          0021.d7ee.fe80 Vlan  7  3  Receive RDI 5s
   vlan7
```

This is an example of output from the `show ethernet cfm maintenance-points local detail` command:

```
Router# show ethernet cfm maintenance-points local detail
Local MEPS:
----------
MPID: 7307
   DomainName: level3
   Level: 3
   Direction: Up
   Vlan: 7
   Interface: Gi0/3
   CC-Status: Enabled
   CC Loss Threshold: 3
```
Understanding the Ethernet OAM Protocol

The Ethernet OAM protocol for installing, monitoring, and troubleshooting Metro Ethernet networks and Ethernet WANs relies on an optional sublayer in the data link layer of the OSI model. Normal link operation does not require Ethernet OAM. You can implement Ethernet OAM on any full-duplex point-to-point or emulated point-to-point Ethernet link for a network or part of a network (specified interfaces).

OAM frames, called OAM protocol data units (OAM PDUs) use the slow protocol destination MAC address 0180.c200.0002. They are intercepted by the MAC sublayer and cannot propagate beyond a single hop within an Ethernet network. Ethernet OAM is a relatively slow protocol, with a maximum transmission rate of 10 frames per second, resulting in minor impact to normal operations. However, when you enable link monitoring,
because the CPU must poll error counters frequently, the number of required CPU cycles is proportional to the number of interfaces that must be polled.

Ethernet OAM has two major components:

- The OAM client establishes and manages Ethernet OAM on a link and enables and configures the OAM sublayer. During the OAM discovery phase, the OAM client monitors OAM PDUs received from the remote peer and enables OAM functionality. After the discovery phase, it manages the rules of response to OAM PDUs and the OAM remote loopback mode.
- The OAM sublayer presents two standard IEEE 802.3 MAC service interfaces facing the superior and inferior MAC sublayers. It provides a dedicated interface for the OAM client to pass OAM control information and PDUs to and from the client. It includes these components:
 - The control block provides the interface between the OAM client and other OAM sublayer internal blocks.
 - The multiplexer manages frames from the MAC client, the control block, and the parser and passes OAM PDUs from the control block and loopback frames from the parser to the subordinate layer.
 - The parser classifies frames as OAM PDUs, MAC client frames, or loopback frames and sends them to the appropriate entity: OAM PDUs to the control block, MAC client frames to the superior sublayer, and loopback frames to the multiplexer.

Benefits of Ethernet OAM

Ethernet OAM provides the following benefits:

- Competitive advantage for service providers
- Standardized mechanism to monitor the health of a link and perform diagnostics

OAM Features

The following OAM features are defined by IEEE 802.3ah:

Discovery

Discovery is the first phase of Ethernet OAM and it identifies the devices in the network and their OAM capabilities. Discovery uses information OAM PDUs. During the discovery phase, the following information is advertised within periodic information OAM PDUs:

- OAM mode—Conveyed to the remote OAM entity. The mode can be either active or passive and can be used to determine device functionality.
- OAM configuration (capabilities)—Advertises the capabilities of the local OAM entity. With this information a peer can determine what functions are supported and accessible; for example, loopback capability.
- OAM PDU configuration—Includes the maximum OAM PDU size for receipt and delivery. This information along with the rate limiting of 10 frames per second can be used to limit the bandwidth allocated to OAM traffic.
- Platform identity—A combination of an organization unique identifier (OUI) and 32-bits of vendor-specific information. OUI allocation, controlled by the IEEE, is typically the first three bytes of a MAC address.

Discovery includes an optional phase in which the local station can accept or reject the configuration of the peer OAM entity. For example, a node may require that its partner support loopback capability to be accepted into the management network. These policy decisions may be implemented as vendor-specific extensions.
Link Monitoring

Link monitoring in Ethernet OAM detects and indicates link faults under a variety of conditions. Link monitoring uses the event notification OAMPDU and sends events to the remote OAM entity when there are problems detected on the link. The error events include the following:

- **Error Symbol Period (error symbols per second)**—The number of symbol errors that occurred during a specified period exceeded a threshold. These errors are coding symbol errors.
- **Error Frame (error frames per second)**—The number of frame errors detected during a specified period exceeded a threshold.
- **Error Frame Period (error frames per n frames)**—The number of frame errors within the last n frames has exceeded a threshold.
- **Error Frame Seconds Summary (error seconds per m seconds)**—The number of error seconds (1-second intervals with at least one frame error) within the last m seconds has exceeded a threshold.

Since IEEE 802.3ah OAM does not provide a guaranteed delivery of any OAMPDU, the event notification OAMPDU may be sent multiple times to reduce the probability of a lost notification. A sequence number is used to recognize duplicate events.

Remote Failure Indication

Faults in Ethernet connectivity that are caused by slowly deteriorating quality are difficult to detect. Ethernet OAM provides a mechanism for an OAM entity to convey these failure conditions to its peer via specific flags in the OAMPDU. The following failure conditions can be communicated:

- **Link Fault**—Loss of signal is detected by the receiver; for instance, the peer's laser is malfunctioning. A link fault is sent once per second in the information OAMPDU. Link fault applies only when the physical sublayer is capable of independently transmitting and receiving signals.
- **Dying Gasp**—This notification is sent for power failure, link down, router reload and link administratively down conditions. This type of condition is vendor specific. A notification about the condition may be sent immediately and continuously.
- **Critical Event**—An unspecified critical event occurs. This type of event is vendor specific. A critical event may be sent immediately and continuously.

Remote Loopback

An OAM entity can put its remote peer into loopback mode using the loopback control OAMPDU. Loopback mode helps an administrator ensure the quality of links during installation or when troubleshooting. In loopback mode, every frame received is transmitted back on the same port except for OAMPDUs and pause frames. The periodic exchange of OAMPDUs must continue during the loopback state to maintain the OAM session.

The loopback command is acknowledged by responding with an information OAMPDU with the loopback state indicated in the state field. This acknowledgement allows an administrator, for example, to estimate if a network segment can satisfy a service-level agreement. Acknowledgement makes it possible to test delay, jitter, and throughput.

When an interface is set to the remote loopback mode the interface no longer participates in any other Layer 2 or Layer 3 protocols; for example Spanning Tree Protocol (STP) or Open Shortest Path First (OSPF). The reason is that when two connected ports are in a loopback session, no frames other than the OAMPDUs are sent to the CPU for software processing. The non-OAMPDU frames are either looped back at the MAC level or discarded at the MAC level.

From a user's perspective, an interface in loopback mode is in a link-up state.
Cisco Vendor-Specific Extensions

Ethernet OAM allows vendors to extend the protocol by allowing them to create their own type-length-value (TLV) fields.

OAM Messages

Ethernet OAM messages or OAM PDUs are standard length, untagged Ethernet frames within the normal frame length bounds of 64 to 1518 bytes. The maximum OAM PDU frame size exchanged between two peers is negotiated during the discovery phase.

OAM PDUs always have the destination address of slow protocols (0180.c200.0002) and an Ethertype of 8809. OAM PDUs do not go beyond a single hop and have a hard-set maximum transmission rate of 10 OAM PDUs per second. Some OAM PDU types may be transmitted multiple times to increase the likelihood that they will be successfully received on a deteriorating link.

Four types of OAM messages are supported:

• Information OAMPDU—A variable-length OAMPDU that is used for discovery. This OAMPDU includes local, remote, and organization-specific information.
• Event notification OAMPDU—A variable-length OAMPDU that is used for link monitoring. This type of OAMPDU may be transmitted multiple times to increase the chance of a successful receipt; for example, in the case of high-bit errors. Event notification OAMPDUs also may include a time stamp when generated.
• Loopback control OAMPDU—An OAMPDU fixed at 64 bytes in length that is used to enable or disable the remote loopback command.
• Vendor-specific OAMPDU—A variable-length OAMPDU that allows the addition of vendor-specific extensions to OAM.

For instructions on how to configure Ethernet Link OAM, see Setting Up and Configuring Ethernet OAM, on page 167.

Setting Up and Configuring Ethernet OAM

This section includes the following topics:

Default Ethernet OAM Configuration

• Ethernet OAM is disabled on all interfaces.
• When Ethernet OAM is enabled on an interface, link monitoring is automatically turned on.
• Remote loopback is disabled.
• No Ethernet OAM templates are configured.

Restrictions and Guidelines

Follow these guidelines when configuring Ethernet OAM:

• The router does not support monitoring of egress frames sent with cyclic redundancy code (CDC) errors. The ethernet oam link-monitor transmit crc interface-configuration or template-configuration commands are visible but are not supported on the router. The commands are accepted, but are not applied to an interface.
For a remote failure indication, the router does not generate link fault or Critical Event OAM PDUs. However, if these PDUs are received from a link partner, they are processed. The router supports generating and receiving Dying Gasp OAMPDUs when Ethernet OAM is disabled, the interface is shut down, the interface enters the error-disabled state, the router is reloading, or during power failure.

- Effective with Cisco IOS Release 15.3(2)S, the router supports sub-second OAM timers.
- The router supports up to two Ethernet OAM sessions with sub-second OAM timers.
- Ethernet OAM sessions with sub-second OAM timers reduce the scalability for Ethernet CFM sessions.

Enabling Ethernet OAM on an Interface

Complete the following steps to enable Ethernet OAM on an interface:

SUMMARY STEPS

1. `configure terminal`
2. `interface interface-id`
3. `ethernet oam`
4. `ethernet oam [max-rate oampdus | min-rate seconds ms mode {active passive} timeout seconds [ms]]`
5. `end`
6. `show ethernet oam status [interface interface-id]`
7. `copy running-config startup-config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Defines an interface to configure as an Ethernet OAM interface, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ethernet oam</td>
<td>Enables Ethernet OAM on the interface.</td>
</tr>
</tbody>
</table>
| **Step 4** ethernet oam [max-rate oampdus | min-rate seconds ms mode {active passive} timeout seconds [ms]] | Configures the OAM parameters:
 - `max-rate`—(Optional) Configures the maximum number of OAM PDUs sent per second.
 - `oampdus`—The range is from 1 to 10.
 - `min-rate`—(Optional) Configures the minimum transmission rate when one OAM PDU is sent per second.
 - `seconds`—The range is as follows:
 - 1 to 10 seconds
 - 100 to 900 milliseconds (multiples of 100)
 - `ms`—Specifies the minimum transmission rate value in milliseconds.
 - `mode active`—(Optional) Sets OAM client mode to active. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mode passive — (Optional) Sets OAM client mode to passive.</td>
<td></td>
</tr>
<tr>
<td>Note When Ethernet OAM mode is enabled on two interfaces passing traffic, at least one must be in the active mode.</td>
<td></td>
</tr>
<tr>
<td>• timeout — (Optional) Sets a time for OAM client timeout.</td>
<td></td>
</tr>
<tr>
<td>• seconds — The range is as follows:</td>
<td></td>
</tr>
<tr>
<td>• 2 to 30 seconds</td>
<td></td>
</tr>
<tr>
<td>• 500 to 1900 milliseconds (multiples of 100)</td>
<td></td>
</tr>
<tr>
<td>• ms — Specifies the timeout value in milliseconds.</td>
<td></td>
</tr>
</tbody>
</table>

Step 5 end

Returns to privileged EXEC mode.

Step 6 show ethernet oam status [interface interface-id]

Verifies the configuration.

Step 7 copy running-config startup-config

(Optional) Saves your entries in the configuration file.

What to do next

Use the `no ethernet oam` interface configuration command to disable Ethernet OAM on the interface.

Configuration Example

The following example shows how to configure an Ethernet OAM session with sub-second OAM timers on an interface:

```
Router> enable
Router# configure terminal
Router(config)# interface gigabitethernet 0/1
Router(config-if)# ethernet oam
Router(config-if)# ethernet oam min-rate 100 ms
Router(config-if)# ethernet oam timeout 500 ms
Router(config-if)# end
```

Enabling Ethernet OAM Remote Loopback

Enable Ethernet OAM remote loopback on an interface for the local OAM client to initiate OAM remote loopback operations. Changing this setting causes the local OAM client to exchange configuration information with its remote peer. Remote loopback is disabled by default.

Restrictions

- Internet Group Management Protocol (IGMP) packets are not looped back.
- If dynamic ARP inspection is enabled, ARP or reverse ARP packets are not looped or dropped.

Complete the following steps to enable Ethernet OAM remote loopback on an interface:
SUMMARY STEPS

1. configure terminal
2. interface type number
3. ethernet oam remote-loopback {supported | timeout type number}
4. end
5. ethernet oam remote-loopback {start | stop} {interface type number}
6. show ethernet oam status [interface type number]
7. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet oam remote-loopback {supported</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>ethernet oam remote-loopback {start</td>
</tr>
<tr>
<td>Step 6</td>
<td>show ethernet oam status [interface type number]</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

What to do next

Use the no ethernet oam remote-loopback {supported | timeout} interface configuration command to disable remote loopback support or remove the timeout setting.

Configuring Ethernet OAM Link Monitoring

You can configure high and low thresholds for link-monitoring features. If no high threshold is configured, the default is none — no high threshold is set. If you do not set a low threshold, it defaults to a value lower than the high threshold.

Complete the following steps to configure Ethernet OAM link monitoring on an interface:

SUMMARY STEPS

1. configure terminal
2. interface interface-id
Configuring Ethernet OAM Link Monitoring

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet oam link-monitor supported</td>
</tr>
<tr>
<td>Step 4</td>
<td>ethernet oam link-monitor high-threshold action `error-disable-interface</td>
</tr>
<tr>
<td>Step 5</td>
<td>ethernet oam link-monitor symbol-period `threshold high</td>
</tr>
</tbody>
</table>

References
- [Show Ethernet OAM Status](#)
- [Copy Running-Config Startup-Config](#)
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 6</td>
<td>Step 6</td>
</tr>
<tr>
<td>ethernet oam link-monitor frame {{threshold {high {high-frames</td>
<td>none}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide

OL-30498-03

172
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| (Optional) Configure high and low thresholds for the frame-seconds error that triggers an error-frame-seconds link event. | - Enter **threshold high** *high-frames* to set a high error frame-seconds threshold in number of seconds. The range is 1 to 900. The default is none.
- Enter **threshold high** *none* to disable the high threshold if it was set. This is the default.
- Enter **threshold low** *low-frames* to set a low threshold in number of frames. The range is 1 to 900. The default is 1.
- Enter **window frames** to set the a polling window size in number of milliseconds. The range is 100 to 9000; each value is a multiple of 100 milliseconds. The default is 1000. |

Step 9
ethernet oam link-monitor receive-crc {threshold {high {high-frames none} | low {low-frames}}} | **Note** | Repeat this step to configure both high and low thresholds.
(Optional) Configure thresholds for monitoring ingress frames received with cyclic redundancy code (CRC) errors for a period of time.
- Enter **threshold high** *high-frames* to set a high threshold for the number of frames received with CRC errors. The range is 1 to 65535 frames.
- Enter **threshold high** *none* to disable the high threshold.
- Enter **threshold low** *low-frames* to set a low threshold in number of frames. The range is 0 to 65535. The default is 1.
- Enter **window milliseconds** to set the a window and period of time during which frames with CRC errors are counted. The range is 10 to 1800 and represents the number of milliseconds in multiples of 100. The default is 100. |

Step 10
ethernet oam link-monitor transmit-crc {threshold {high {high-frames none} | low low-frames} | window milliseconds} | Use the **ethernet oam link-monitor transmit-crc** command to configure an Ethernet OAM interface to monitor egress frames with CRC errors for a period of time.

Step 11
[no] ethernet link-monitor on | (Optional) Start or stop (when the **no** keyword is entered) link-monitoring operations on the interface. Link monitoring operations start automatically when support is enabled. |

Step 12
end | Return to privileged EXEC mode. |

Step 13
show ethernet oam status [interface interface-id] | Verify the configuration. |
Configuring Ethernet OAM Remote Failure Indications

You can configure an error-disable action to occur on an interface if one of the high thresholds is exceeded, if the remote link goes down, if the remote device is rebooted, if the remote device disables Ethernet OAM on the interface, or if the power failure occurs on the remote device.

Complete the following steps to enable Ethernet OAM remote-failure indication actions on an interface:

SUMMARY STEPS

1. *configure terminal*
2. *interface interface-id*
3. *ethernet oam remote-failure {critical-event | dying-gasp | link-fault} action error-disable-interface*
4. *end*
5. *show ethernet oam status [interface interface-id]*
6. *copy running-config startup-config*

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Define an interface, and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
| 3 | *ethernet oam remote-failure {critical-event | dying-gasp | link-fault} action error-disable-interface* | Configure the Ethernet OAM remote-failure action on the interface. You can configure disabling the interface for one of these conditions:
- Select **critical-event** to shut down the interface when an unspecified critical event has occurred.
- Select **dying-gasp** to shut down the interface when Ethernet OAM is disabled or the interface enters the error-disabled state.
- Select **link-fault** to shut down the interface when the receiver detects a loss of signal. |
| 4 | *end* | Return to privileged EXEC mode. |
| 5 | *show ethernet oam status [interface interface-id]* | Verify the configuration. |
| 6 | *copy running-config startup-config* | (Optional) Save your entries in the configuration file. |
The router does not generate Link Fault or Critical Event OAMP DUs. However, if these PDUs are received from a link partner, they are processed. The router supports sending and receiving Dying Gasp OAMP DUs when Ethernet OAM is disabled, the interface is shut down, the interface enters the error-disabled state, or the router is reloading. It can respond to and generate Dying Gasp PDUs based on loss of power. Use the `no ethernet remote-failure {critical-event | dying-gasp | link-fault} action` command to disable the remote failure indication action.

Configuring Ethernet OAM Templates

You can create a template for configuring a common set of options on multiple Ethernet OAM interfaces. The template can be configured to monitor frame errors, frame-period errors, frame-second errors, received CRS errors, and symbol-period errors and thresholds. You can also set the template to put the interface in error-disabled state if any high thresholds are exceeded. These steps are optional and can be performed in any sequence or repeated to configure different options.

Complete the following steps to configure an Ethernet OAM template and to associate it with an interface:

SUMMARY STEPS

1. configure terminal
2. template template-name
3. ethernet oam link-monitor receive-crc {threshold {high high-frames | none} | low {low-frames} | window milliseconds}
4. ethernet oam link-monitor symbol-period {threshold {high {high symbols | none} | low {low-symbols} | window symbols}
5. ethernet oam link-monitor frame {threshold {high {high-frames | none} | low {low-frames} | window milliseconds}
6. ethernet oam link-monitor frame-period {threshold {high {high-frames | none} | low {low-frames} | window frames}
7. ethernet oam link-monitor frame-seconds {threshold {high {high-seconds | none} | low {low-seconds} | window milliseconds}
8. ethernet oam link-monitor high threshold action error-disable-interface
9. exit
10. interface interface-id
11. source-template template-name
12. end
13. show ethernet oam status [interface interface-id]
14. copy running-config startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 template template-name</td>
<td>Create a template, and enter template configuration mode.</td>
</tr>
<tr>
<td>Step 3 ethernet oam link-monitor receive-crc {threshold {high high-frames</td>
<td>none}</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>PurposeCommand or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>• Enter the <code>threshold high high-frames</code> command to set a high threshold for the number of frames received with CRC errors. The range is 1 to 65535 frames.</td>
<td>• Enter the <code>threshold high high-frames</code> command to set a high threshold for the number of frames received with CRC errors. The range is 1 to 65535 frames.</td>
</tr>
<tr>
<td>• Enter the <code>threshold high none</code> command to disable the high threshold.</td>
<td>• Enter the <code>threshold high none</code> command to disable the high threshold.</td>
</tr>
<tr>
<td>• Enter the <code>threshold low low-frames</code> command to set a low threshold in number of frames. The range is 0 to 65535. The default is 1.</td>
<td>• Enter the <code>threshold low low-frames</code> command to set a low threshold in number of frames. The range is 0 to 65535. The default is 1.</td>
</tr>
<tr>
<td>• Enter the <code>window milliseconds</code> command to set the a window and period of time during which frames with CRC errors are counted. The range is 10 to 1800 and represents the number of milliseconds in multiples of 100. The default is 100.</td>
<td>• Enter the <code>window milliseconds</code> command to set the a window and period of time during which frames with CRC errors are counted. The range is 10 to 1800 and represents the number of milliseconds in multiples of 100. The default is 100.</td>
</tr>
</tbody>
</table>

Step 4

```
ethernet oam link-monitor symbol-period {threshold {high {high symbols | none} | low {low-symbols}} | window symbols}
```

(Optional) Configure high and low thresholds for an error-symbol period that triggers an error-symbol period link event.

- Enter the `threshold high high-symbols` command to set a high threshold in number of symbols. The range is 1 to 65535.
- Enter the `threshold high none` command to disable the high threshold.
- Enter the `threshold low low-symbols` command to set a low threshold in number of symbols. The range is 0 to 65535. It must be lower than the high threshold.
- Enter the `window symbols` command to set the window size (in number of symbols) of the polling period. The range is 1 to 65535 symbols.

Step 5

```
ethernet oam link-monitor frame {threshold {high {high-frames | none} | low {low-frames}} | window milliseconds}
```

(Optional) Configure high and low thresholds for error frames that trigger an error-frame link event.

- Enter the `threshold high high-frames` command to set a high threshold in number of frames. The range is 1 to 65535. You must enter a high threshold.
- Enter the `threshold high none` command to disable the high threshold.
- Enter the `threshold low low-frames` command to set a low threshold in number of frames. The range is 0 to 65535. The default is 1.
- Enter the `window milliseconds` command to set the a window and period of time during which error frames are counted. The range is 10 to 600 and represents the number of milliseconds in a multiple of 100. The default is 100.

Step 6

```
ethernet oam link-monitor frame-period {threshold {high {high-frames | none} | low {low-frames}} | window frames}
```

(Optional) Configure high and low thresholds for the error-frame period that triggers an error-frame-period link event.
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 ethernet oam link-monitor frame-seCONDS</td>
<td>(Optional) Configure frameCONDS high and low thresholds for triggering an error-frameCONDS link event.</td>
</tr>
<tr>
<td>{threshold [high {high-seconds</td>
<td>none}</td>
</tr>
<tr>
<td>Step 8 ethernet oam link-monitor high threshold</td>
<td>(Optional) Configure the router to move an interface to the error disabled state when a high threshold for an error is exceeded.</td>
</tr>
<tr>
<td>action error-disable-interface</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 10 interface interface-id</td>
<td>Define an Ethernet OAM interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 11 source-template template-name</td>
<td>Associate the template to apply the configured options to the interface.</td>
</tr>
<tr>
<td>Step 12 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 13 show ethernet oam status [interface</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>interface interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 14 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The router does not support monitoring egress frames with CRC errors. The `ethernet oam link-monitor transmit-crc {threshold [high {high-frames | none} | low low-frames } | window milliseconds} command is visible on the router and you can enter it, but it is not supported. Use the **no** form of each command to
remove the option from the template. Use the no source-template template-name to remove the source template association.

Configuration Example

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# interface gigabitEthernet
Router(config-if)# ethernet oam

Router(config-if)# ethernet oam link-monitor symbol-period threshold high 299
Router(config-if)# ethernet oam link-monitor frame window 399
Router(config-if)# ethernet oam link-monitor frame-period threshold high 599
Router(config-if)# ethernet oam link-monitor frame-seconds window 699
Router(config-if)# ethernet oam link-monitor receive-crc window 99
Router(config-if)# ethernet oam link-monitor transmit-crc threshold low 199
Router(config-if)# ethernet oam link-monitor high-threshold action error-disable-interface
Router(config-if)# end
Router# show running-config
interface gigabitEthernet
Building configuration...
Current configuration : 478 bytes
!
interface GigabitEthernet
no ip address
negotiation auto
ethernet oam link-monitor symbol-period threshold high 299
ethernet oam link-monitor frame window 399
ethernet oam link-monitor frame-period threshold high 599
ethernet oam link-monitor frame-seconds window 699
ethernet oam link-monitor receive-crc window 99
ethernet oam link-monitor transmit-crc threshold low 199
ethernet oam link-monitor high-threshold action error-disable-interface
ethernet oam
end

Displaying Ethernet OAM Protocol Information

Use these commands in the privileged EXEC to display the Ethernet OAM protocol information.

Table 16: Displaying Ethernet OAM Protocol Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ethernet oam discovery [interface interface-id]</td>
<td>Displays discovery information for all Ethernet OAM interfaces or the specified interface.</td>
</tr>
<tr>
<td>show ethernet oam statistics [interface interface-id]</td>
<td>Displays detailed information about Ethernet OAM packets.</td>
</tr>
<tr>
<td>show ethernet oam status [interface interface-id]</td>
<td>Displays Ethernet OAM configuration for all interfaces or the specified interface.</td>
</tr>
<tr>
<td>show ethernet oam summary</td>
<td>Displays active Ethernet OAM sessions on the router.</td>
</tr>
</tbody>
</table>
Verifying Ethernet OAM Configuration

Verifying an OAM Session

To verify an OAM session, use the `show ethernet oam summary` command.

In the following example, the local client interface is in session with a remote client with MAC address 442b.0348.bc60 and organizationally unique identifier (OUI) 00000C, which is the OUI for Cisco Systems. The remote client is in active mode, and has established capabilities for link monitoring and remote loopback for the OAM session.

```
Router# show ethernet oam summary
Symbols:  * - Master Loopback State,  # - Slave Loopback State
        & - Error Block State
Capability codes:  L - Link Monitor,  R - Remote Loopback
                  U - Unidirection,  V - Variable Retrieval
Local    Remote
Interface  MAC Address  OUI  Mode  Capability
Gi0/8     442b.0348.bc60  00000C  active  L R
```

Verifying OAM Discovery Status

To verify OAM Discovery status on the local client and remote peer, use the `show ethernet oam discovery` command as shown in the following example:

```
Router# show ethernet oam discovery interface gigabitethernet
GigabitEthernet0/8
Local client
-------------
Administrative configurations:
  Mode: active
  Unidirection: not supported
  Link monitor: supported (on)
  Remote loopback: not supported
  MIB retrieval: not supported
  Mtu size: 1500
Operational status:
  Port status: operational
  Loopback status: no loopback
  PDU revision: 0
Remote client
-------------
MAC address: 442b.0348.bc60
Vendor(oui): 00000C(cisco)
Administrative configurations:
  PDU revision: 0
  Mode: active
  Unidirection: not supported
  Link monitor: supported
  Remote loopback: not supported
  MIB retrieval: not supported
  Mtu size: 1500
```

Verifying Information OAMPDU and Fault Statistics

To verify statistics for information OAMPDUs and local and remote faults, use the `show ethernet oam statistics` command as shown in the following example:
Router# show ethernet oam statistics interface gigabitethernet
GigabitEthernet0/8
Counters: ---------
Information OAMPDU Tx : 5549
Information OAMPDU Rx : 5914
Unique Event Notification OAMPDU Tx : 0
Unique Event Notification OAMPDU Rx : 0
Duplicate Event Notification OAMPDU TX : 0
Duplicate Event Notification OAMPDU RX : 0
Loopback Control OAMPDU Tx : 0
Loopback Control OAMPDU Rx : 0
Variable Request OAMPDU Tx : 0
Variable Request OAMPDU Rx : 0
Variable Response OAMPDU Tx : 0
Variable Response OAMPDU Rx : 0
Cisco OAMPDU Tx : 1
Cisco OAMPDU Rx : 0
Unsupported OAMPDU Tx : 0
Unsupported OAMPDU Rx : 0
Frames Lost due to OAM : 0
Local Faults: -------------
0 Link Fault records
1 Dying Gasp records
 Total dying gasps : 1
 Time stamp : 23:27:13
0 Critical Event records
Remote Faults: -------------
0 Link Fault records
0 Dying Gasp records
0 Critical Event records
Local event logs: -------------
0 Errored Symbol Period records
0 Errored Frame records
0 Errored Frame Period records
0 Errored Frame Second records
Remote event logs: -------------
0 Errored Symbol Period records
0 Errored Frame records
0 Errored Frame Period records
0 Errored Frame Second records

Verifying Link Monitoring Configuration and Status

To verify link monitoring configuration and status on the local client, use the `show ethernet oam status` command. The Status field in the following example shows that link monitoring status is supported and enabled (on).

Router# show ethernet oam status interface gigabitethernet
GigabitEthernet0/8
General

Admin state: enabled
Mode: active
PDU max rate: 10 packets per second
PDU min rate: 1 packet per 1000 ms
Link timeout: 5000 ms
高中阈值动作：错误禁用接口
链路故障动作：无动作
窒息性喘息动作：无动作
严重事件动作：无动作
链路监视

状态：支持（开启）
符号周期误差
窗口：100 x 1048576 符号
低阈值：1 误差符号
高阈值：299 误差符号
帧误差
窗口：400 x 100 毫秒
低阈值：1 误差帧
高阈值：无
帧周期误差
窗口：1000 x 10000 帧
低阈值：1 误差帧
高阈值：599 误差帧
帧秒误差
窗口：700 x 100 毫秒
低阈值：1 误差秒
高阈值：无

验证远程OAM客户端的状态

要验证远程OAM客户端的状态，请使用show ethernet oam summary和show ethernet oam status命令。

要验证远程客户端的模式和能力，使用show ethernet oam summary命令并观察Mode和Capability字段的值。以下示例显示本地客户端（本地接口Gi0/8）连接到远程客户端。

```
Router# show ethernet oam summary
Symbols: * - Master Loopback State, # - Slave Loopback State
& - Error Block State
Capability codes: L - Link Monitor, R - Remote Loopback
U - Unidirection, V - Variable Retrieval
Local Interface MAC Address OUI Mode Capability
Gi0/8 442b.0348.bc60 00000C active L R
```

理解E-LMI

以太网本地管理接口（E-LMI）是CE设备和PE设备之间的一个协议。它仅在PE-CE UNI链路上运行，并通知CE设备连接状态和配置参数的以太网服务可提供在CE端口。E-LMI与OAM协议，如CFM，在提供网络内运行以收集OAM状态。CFM运行在提供维护级别（UPE到UPE内）的UNI端口。

OAM管理器，它使两个OAM协议之间的交互流畅，用于处理CFM和E-LMI之间的交互。这种交互是单向的，仅由OAM管理器在E-LMI的UPE侧的路由器上运行。信息交换取决于OAM请求或由OAM触发的变化。这种类型的OAM信息可以传输：

- EVC名称和可用性状态
- 远程UNI名称和状态

```
Understanding E-LMI

以太网本地管理接口（E-LMI）是CE设备和PE设备之间的一个协议。它仅在PE-CE UNI链路上运行，并通知CE设备连接状态和配置参数的以太网服务可提供在CE端口。E-LMI与OAM协议，如CFM，在提供网络内运行以收集OAM状态。CFM运行在提供维护级别（UPE到UPE内）的UNI端口。

OAM管理器，它使两个OAM协议之间的交互流畅，用于处理CFM和E-LMI之间的交互。这种交互是单向的，仅由OAM管理器在E-LMI的UPE侧的路由器上运行。信息交换取决于OAM请求或由OAM触发的变化。这种类型的OAM信息可以传输：

- EVC名称和可用性状态
- 远程UNI名称和状态
```
• Remote UNI counts

You can configure Ethernet virtual connections (EVCs), service VLANs, UNI ids (for each CE-to-PE link), and UNI count and attributes. You need to configure CFM to notify the OAM manager of any change to the number of active UNIs and or the remote UNI ID for a given S-VLAN domain.

You can configure the router as a provider-edge device.

Restrictions

E-LMI is not supported for the service instances in which the pseudowire cross-connects are configured.

Configuring E-LMI

For E-LMI to work with CFM, you configure EVCs, EFPs, and E-LMI customer VLAN mapping. Most of the configuration occurs on the PE device on the interfaces connected to the CE device. On the CE device, you only need to enable E-LMI on the connecting interface. Note that you must configure some OAM parameters, for example, EVC definitions, on PE devices on both sides of a metro network.

This section contains the following topics:

Default E-LMI Configuration

Ethernet LMI is globally disabled by default. When enabled, the router is in provider-edge (PE) mode by default.

When you globally enable E-LMI by entering the `ethernet lmi global` global configuration command, it is automatically enabled on all interfaces. You can also enable or disable E-LMI per interface to override the global configuration. The E-LMI command that is given last is the command that has precedence.

There are no EVCs, EFP service instances, or UNIs defined.

UNI bundling service is bundling with multiplexing.

Enabling E-LMI

You can enable E-LMI globally or on an interface and you can configure the router as a PE device. Beginning in privileged EXEC mode, follow these steps to enable for E-LMI on the router or on an interface. Note that the order of the global and interface commands determines the configuration. The command that is entered last has precedence.

SUMMARY STEPS

1. configure terminal
2. ethernet lmi global
3. interface type number
4. ethernet lmi interface
5. ethernet lmi {n391type number | n393type number| t391 value | t392type number}
6. end
7. show ethernet lmi evc
8. copy running-config startup-config
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ethernet lmi global</td>
<td>Globally enable E-LMI on all interfaces. By default, the router is a PE device.</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Define an interface to configure as an E-LMI interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 ethernet lmi interface</td>
<td>Configure Ethernet LMI on the interface. If E-LMI is enabled globally, it is enabled on all interfaces unless you disable it on specific interfaces. If E-LMI is disabled globally, you can use this command to enable it on specified interfaces.</td>
</tr>
<tr>
<td>Step 5 ethernet lmi {n391 type number</td>
<td>Configure E-LMI parameters for the UNI. The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td>n393 type number</td>
</tr>
<tr>
<td></td>
<td>• n391 type number—Set the event counter on the customer equipment. The counter polls the status of the UNI and all Ethernet virtual connections (EVCs). The range is from 1 to 65000; the default is 360.</td>
</tr>
<tr>
<td></td>
<td>• n393 type number—Set the event counter for the metro Ethernet network. The range is from 1 to 10; the default is 4.</td>
</tr>
<tr>
<td></td>
<td>• t391 type number—Set the polling timer on the customer equipment. A polling timer sends status enquiries and when status messages are not received, records errors. The range is from 5 to 30 seconds; the default is 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>• t392 type number—Set the polling verification timer for the metro Ethernet network or the timer to verify received status inquiries. The range is from 5 to 30 seconds, or enter 0 to disable the timer. The default is 15 seconds.</td>
</tr>
<tr>
<td></td>
<td>Note The t392 keyword is not supported when the router is in CE mode.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to the privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show ethernet lmi evc</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

What to do next

Use the **no ethernet lmi** global configuration command to globally disable E-LMI. Use the **no** form of the **ethernet lmi** interface configuration command with keywords to disable E-LMI on the interface or to return the timers to the default settings.
Use the `show ethernet lmi` commands to display information that was sent to the CE from the status request poll. Use the `show ethernet service` commands to show current status on the device.

Displaying E-LMI Information

Use the following commands in privileged EXEC mode to display E-LMI information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show ethernet lmi evc [detail evc-id [interface interface-id]</td>
<td>map interface type number]`</td>
</tr>
<tr>
<td><code>show ethernet lmi parameters interface interface-id</code></td>
<td>Displays Ethernet LMI interface parameters sent to the CE from the status request poll.</td>
</tr>
<tr>
<td><code>show ethernet lmi statistics interface interface-id</code></td>
<td>Displays Ethernet LMI interface statistics sent to the CE from the status request poll.</td>
</tr>
<tr>
<td><code>show ethernet lmi uni map interface [interface-id]</code></td>
<td>Displays information about the E-LMI UNI VLAN map sent to the CE from the status request poll.</td>
</tr>
<tr>
<td>`show ethernet service instance detail</td>
<td>id efp-identifier interface interface-id</td>
</tr>
</tbody>
</table>

Understanding Ethernet Loopback

The local aggregated Ethernet, Fast Ethernet, Tri-Rate Ethernet copper, and Gigabit Ethernet interfaces connect to a remote system. The Loopback command is used to place the interface in loopback mode. You can use per-port and per EFP Ethernet loopback to test connectivity at initial startup, to test throughput, and to test quality of service in both directions. The RFC2544 for latency testing specifies that the throughput must be measured by sending frames at increasing rate, representing the percentage of frames received as graphs, and reporting the frames dropping rate. This rate is dependent on the frame size. This throughput measurement at traffic generator requires the ethernet loopback support on the responder.

Ethernet loopback can be achieved with External or Internal loopback. External loopback is the process of looping frames coming from the port on the wire side. Internal loopback is the process of looping frames coming from the port on the relay side.

Configuring Ethernet Loopback

This section contains the following topics:

Restrictions

- Ethernet loopback is not supported on a routed port.
- A single terminal session is initiated at a time over a cross connect or bridge domain.
- The maximum total traffic that can be looped back across all sessions combined, is 1GB.
- For an internal loopback over bridge domain, the traffic for loopback must have encapsulation that matches the egress encapsulation. If there is a rewrite operation on the egress EFP, the traffic post the operation must match the EFP encapsulation.
- Dot1q tag-based filtering is not available on the router.
- Internal Loopback over bridge domain cannot be initiated if SPAN is already active.
- Internal Loopback over bridge domain cannot be initiated if Traffic generator is already active.
- Loopback is not supported on Fast Ethernet interface.
- External loopback is not supported on EFP with VLAN range.
- Source and destination address specified in the EXEC command are the MAC fields. These addresses are used for MAC swap. The source and destination MAC addresses cannot be identical or multicast MAC addresses.
- Source MAC address is mandatory.
- External loopback is only supported over bridge domain.
- Internal loopback is not supported over a port-channel interface
- When Ethernet Loopback is enabled, the L2CP forward and L2CP tunnel protocols are not functional on any ports.
- Internal loopback over cross connect cannot be initiated if the Traffic Generator is already active.

Enabling Ethernet Loopback

Complete the following steps to configure Ethernet Loopback on the router:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `service instance instance-number ethernet`
5. `encapsulation dot1q-number`
6. `rewrite ingress tag pop 1 symmetric`
7. `bridge domain-number`
8. `xconnect peer-ip-address vc-id encapsulation mpls`
9. `ethernet loopback permit external`
10. `ethernet loopback permit internal`
11. `end`
12. `ethernet loopback start local interface type number service instance instance-number { external | internal } source mac-address source mac-address [destination mac-address destination-mac-address] [timeout {time-in-seconds | none}]`
13. `ethernet loopback stop local interface type number id session id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface type number</td>
<td>Specifies an interface type and number to enter the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface gigabitEthernet0/1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>service instance instance-number ethernet</td>
<td>Creates a service instance on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# service instance 10 ethernet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>encapsulation dot1q-number</td>
<td>Defines the matching criteria to be used in order to map the ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-srv)# encapsulation dot1q 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rewrite ingress tag pop 1 symmetric</td>
<td>Specifies the tag manipulation that is to be performed on the frame ingress to the service instance. Go to Step 7 if you want to configure Ethernet loopback for a bridge-domain. Go to Step 8 if you want to configure Ethernet loopback for cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-srv)# rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bridge domain-number</td>
<td>Binds the service instance to a bridge domain. Perform this step if you want to configure Ethernet loopback for a bridge-domain.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-srv)# bridge domain 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>xconnect peer-ip-address vc-id encapsulation mpls</td>
<td>Binds an attachment circuit to a pseudowire, and to configure an Any Transport over MPLS (AToM) static pseudowire. Perform this step if you want to configure Ethernet loopback for cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-srv)# xconnect 1.1.1.1 100 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

- **peer-ip-address**—IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable.
- **vc-id**—The 32-bit identifier of the virtual circuit (VC) between the PE routers.
- **encapsulation**—Specifies the tunneling method to encapsulate the data in the pseudowire.
- **mpls**—Specifies MPLS as the tunneling method.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>ethernet loopback permit external</td>
<td>Configures Ethernet permit external loopback on an interface. External loopback allows loopback of traffic from the wire side. This command is supported under a service instance and interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-srv)# ethernet loopback permit external</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ethernet loopback permit internal</td>
<td>Configures Ethernet permit internal loopback on an interface. Internal loopback allows loopback of traffic from the relay side. This command is supported under a service instance and interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-srv)# ethernet loopback permit internal</code></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>end</code></td>
<td>Returns to the privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-srv)# end</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ethernet loopback start local interface type number service instance instance-number { external</td>
<td>internal } source mac-address source mac-address [destination mac-address destination-mac-address] [timeout {time-in-seconds</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# ethernet loopback start local interface gigabitEthernet 0/1 service instance 10 external source mac-address 0123.4567.89ab destination mac-address 255.255.255 timeout 9000</code></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ethernet loopback stop local interface type number id session id</td>
<td>Stops Ethernet loopback.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# ethernet loopback stop local interface gigabitEthernet 0/1 id 3</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Example

This example shows how to configure Ethernet External Loopback for a bridge-domain:

```
!
interface GigabitEthernet0/0
service instance 201 ethernet evc201
encapsulation dot1q 201
rewrite ingress tag pop 1 symmetric
bridge-domain 201
ethernet loopback permit external
```

Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide

OL-30498-03
ethernet loopback permit internal
!
ethernet loopback start local interface GigabitEthernet0/0 service instance 201 external
 source mac-address 5000.10a1.6ab8 destination mac-address 0000.0000.0202 timeout 9000
 !
ethernet loopback stop local interface gigabitEthernet 0/0 id 1
!

This example shows how to configure Ethernet Internal Loopback for cross connect:

!
interface GigabitEthernet0/0
service instance 201 ethernet evc201
encapsulation dot1q 201
rewrite ingress tag pop 1 symmetric
xconnect 2.2.2.2 10 encapsulation mpls
ethernet loopback permit external
ethernet loopback permit internal
!
ethernet loopback start local interface GigabitEthernet0/0 service instance 201 internal
 source mac-address 5000.10a1.6ab8 destination mac-address 0000.0000.0202 timeout 9000
 !
ethernet loopback stop local interface gigabitEthernet 0/0 id 1
!

This following is the example of the output from the show ethernet loopback command:

Router# show ethernet loopback active interface GigabitEthernet0/0 service instance 201
Loopback Session ID : 1
Interface : GigabitEthernet0/0
Service Instance : 201
Direction : Internal
Time out(sec) : 300
Status : on
Start time : 12:06:35.300 IST Mon Sep 23 2013
Time left : 00:03:28
Dot1q/Dot1ad(s) : 201
Second-dot1q(s) :
Source Mac Address : 5000.10a1.6ab8
Destination Mac Address : 0000.0000.0202
Ether Type : Any
Class of service : Any
Llc-oui : Any
Total Active Session(s): 1
Total Internal Session(s): 1
Total External Session(s): 0

Configuring Y.1564 to Generate Ethernet Traffic

Y.1564 is an Ethernet service activation or performance test methodology for turning up, installing, and troubleshooting Ethernet-based services. This test methodology allows for complete validation of Ethernet service-level agreements (SLAs) in a single test. Using traffic generator performance profile, you can create the traffic based on your requirements. The network performance like throughput, loss, and availability are analyzed using Layer 2 traffic with various bandwidth profiles. Availability is inversely proportional to frame loss ratio.

The following figure shows the Traffic Generator topology over bridge domain describing the traffic flow in the external and internal modes. The traffic is generated at the wire-side of network to network interface (NNI)
and is transmitted to the responder through the same interface for the external mode. The traffic is generated at the user to network interface (UNI) and transmitted to the responder through NNI respectively for the internal mode. External mode is used to measure the throughput and loss at the NNI port where as internal mode is used to measure the throughput and loss at the UNI port. During traffic generation, traffic at other ports is not impacted by the generated traffic and can continue to switch network traffic.

Figure 5: Traffic Generator Topology over Bridge Domain

Effective with Cisco IOS release 15.4.(01)S, traffic can be generated over cross connect interface. The following figure shows the Traffic Generator topology over cross connect describing the traffic flow in the external and internal modes.
Figure 6: Traffic Generator Topology over cross connect

To generate traffic using Y.1564, complete the following tasks:

- Configure EVC on the interface path such that the Layer 2/L2VPN path should be complete between transmitter and receiver.
- Configure Traffic Generator on the transmitter.
- Configure ethernet loopback on the receiver. For information on Ethernet loopback, see Understanding Ethernet Loopback, on page 184.
- Start the IP SLA session.

Note
Using traffic generator, a maximum traffic of 1GB is generated.

Restrictions

- A single traffic session is generated.
- Traffic generation will not be supported on VLAN interface.
- One-way traffic generation and passive measurement features are not supported.
- Payload signature verification is not supported.
- The QoS functions like classification and policing are supported on the ingress EVC.
- Internal mode traffic generation cannot be configured on port channel interfaces.
- Maximum throughput rate is 1GB.
- SPAN and Traffic generator cannot be used simultaneously since both uses the mirror mechanism.
- For Traffic generation over cross connect port-channel will not be supported for both internal and external modes.
- Ethernet loopback and Traffic generator cannot be used simultaneously.
- After reload, the Traffic generator over cross connect should be rescheduled (stop and start).
• After cross connect flaps, the Traffic generator over cross connect should be rescheduled (stop and start).

Configuring IP SLA for Traffic Generation

Complete these steps to configure IP SLA for traffic generation.

SUMMARY STEPS

1. configure terminal
2. ip sla sla_id
3. service-performance type ethernet dest-mac-addr destination mac-address interface type number service-instance number
4. aggregation | default | description | duration | exit | frequency | measurement-type direction | no | profile | signature
5. default | exit | loss | no | throughput
6. exit
7. default | exit | inner-cos | inner-vlan | no | outer-cos | outer-vlan | packet-size | src-mac-addr
8. exit
9. direction {external | internal}
10. Do one of the following:
 • default
 • exit
 • no
 • rate-step
11. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>ip sla sla_id</td>
</tr>
<tr>
<td>Example:</td>
<td>Specify the SLA ID to start the IP SLA session.</td>
</tr>
<tr>
<td>Router(config)# ip sla 100p sla 100</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>service-performance type ethernet dest-mac-addr destination mac-address interface type number service-instance number</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the service performance type as ethernet and the destination MAC address in H.H.H format.</td>
</tr>
<tr>
<td>Router(config-ip-sla)# service-performance type ethernet dest-mac-addr 0001.0001.0001 interface gigabitEthernet service-instance 10</td>
<td>Specifies an interface type and number which traffic generator uses to send the packets. Also, specifies the service instance number that is required to create a service instance on an interface. The range is 1 to 4096.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specify the type of service performance. The following are the options:</td>
</tr>
<tr>
<td>aggregation</td>
<td>Represents the statistics aggregation.</td>
</tr>
<tr>
<td>default</td>
<td>Set a command to its defaults.</td>
</tr>
<tr>
<td>description</td>
<td>Description of the operation.</td>
</tr>
<tr>
<td>duration</td>
<td>Sets the service performance duration configuration.</td>
</tr>
<tr>
<td>exit</td>
<td>Represents the scheduled frequency. The options available are iteration and time. The range is 20 to 65535 seconds.</td>
</tr>
<tr>
<td>frequency</td>
<td>Represents the scheduled frequency. The options available are external or internal; the default option is Internal. If you use this option, go to Step 5.</td>
</tr>
<tr>
<td>measurement-type</td>
<td>Specifies the statistics to measure traffic. The options available are external or internal; the default option is Internal. If you use this option, go to Step 5.</td>
</tr>
<tr>
<td>direction</td>
<td>Specifies the payload contents.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-ip-sla-service-performance)# profile traffic direction external
```

Step 5	Specifies the measurement type based on which the service performance is calculated. The following are the options:
default	Set a command to its defaults
exit	Specifies the measurement such as frame loss.
loss	Specifies the measurement such as average rate of successful frame delivery.
no	Specifies the measurement such as average rate of successful frame delivery.
throughput	Specifies the payload contents.

Example:

```
Router(config-ip-sla-service-performance-measurement)# throughput
```

| **Step 6** | Exits the measurement mode. |
| exit | |

Step 7	Specifies the packet type. The following are the options:
default	Set a command to its defaults
inner-cos	Specify the class of service (CoS) value for the inner VLAN tag of the interface from which the message will be sent.
inner-vlan	Specify the VLAN ID for the inner vlan tag of the interface from which the message will be sent.
no	Specify the CoS value which will be filled in the outer VLAN tag of the packet.
outer-cos	Specify the VLAN ID which will be filled in the outer VLAN tag of the packet.
outer-vlan	Specify the packet size; the default size is 64 bytes. The supported packet size are 64 bytes, 128 bytes, 256 bytes, 512 bytes, 1280 bytes, and 1518 bytes.
packet-size	Specifies the source MAC address in H.H format.

Example:

```
Router(config-ip-sla-service-performance-packet)# src-mac-addr 4055.3989.7b56
```
Configuration Examples

This section shows sample configuration examples for traffic generation on router:

```plaintext
ip sla 10
  service-performance type ethernet dest-mac-addr 0001.0001.0001 interface TenGigabitEthernet0/0 service instance 30
  measurement-type direction external
  loss
  throughput
  profile packet
  outer-vlan 30
  packet-size 512
  src-mac-addr d48c.b544.93dd
  profile traffic direction external
  rate-step kbps 1000
  frequency time 35
```

Example: Two-Way Measurement

The following is a sample configuration for two-way measurement to measure throughput, loss, tx, rx, txbytes, and rxbytes.

```plaintext
INTERNAL: (to test UNI scenario)
ip sla 2
  service-performance type ethernet dest-mac-addr aaaa.bbbb.cccc interface GigabitEthernet0/0
  service instance 2
  measurement-type direction internal
  loss
  throughput
  profile packet
  outer-vlan 10
  packet-size 512
```
Example: Traffic Generation Mode

The following is a sample configuration for traffic generation mode to measure tx and txbytes.

INTERNAL: (to test UNI scenario)

```
src-mac-addr d48c.b544.9600
profile traffic direction internal
rate-step kbps 1000 2000 3000
frequency time 95
ip sla 2
service-performance type ethernet dest-mac-addr aaaa.bbbb.cccc interface GigabitEthernet
service instance 2
measurement-type direction internal
profile packet
outer-vlan 10
packet-size 512
src-mac-addr d48c.b544.9600
profile traffic direction internal
rate-step kbps 1000 2000 3000
frequency time 95
```

EXTERNAL: (to test NNI scenario)

```
src-mac-addr d48c.b544.9600
profile traffic direction external
rate-step kbps 1000 2000 3000
frequency time 95
```

The following is an example of the output from the `show ip sla statistics` command.

```
show ip sla statistics 10
IPSLAs Latest Operation Statistics
IPSLA operation id: 10
Type of operation: Ethernet Service Performance
Test mode: Traffic Generator
Steps Tested (kbps): 1000
Test duration: 30 seconds
Latest measurement: 01:34:08.636 IST Wed Sep 25 2013
Latest return code: OK
Step 1 (1000 kbps):
Stats:
```
Note

Statistics are cumulative over a period of time and not specific to any particular time instance.
Example: Traffic Generation Mode
CHAPTER 11

ITU-T Y.1731 Performance Monitoring

This chapter provides information on the ITU-T Y.1731 Performance Monitoring for the Series Aggregation Services Router.

• Finding Feature Information, on page 197
• Prerequisites for ITU-T Y.1731 Performance Monitoring, on page 197
• Restrictions for ITU-T Y.1731 Performance Monitoring, on page 197
• Information About ITU-T Y.1731 Performance Monitoring, on page 198
• How to Configure ITU-T Y.1731 Performance Monitoring, on page 202
• Verifying the Frame Delay and Synthetic Loss Measurement Configurations, on page 215
• How to Configure IP SLAs Y.1731 On-Demand and Concurrent Operations, on page 218
• Configuration Examples for IP SLAs Y.1731 On-Demand Operations, on page 220
• Additional References, on page 221
• Feature Information for ITU-T Y.1731 Performance Monitoring, on page 222

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for ITU-T Y.1731 Performance Monitoring, on page 222.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for ITU-T Y.1731 Performance Monitoring

• Configure and enable IEEE-compliant connectivity fault management (CFM) for Y.1731 performance monitoring to function.

Restrictions for ITU-T Y.1731 Performance Monitoring

• One-way delay measurement (1DM) is not supported.
• Loss Measurement Message (LMM) is not supported.
• Delay Measurement Message (DMM) is supported only from Cisco IOS Release 15.5(2)S.
• Synthetic Loss Measurement (SLM) is not supported on the port level cross connect.
• You can configure only a maximum of 100 DMM responders.

• Multi-NNI Connectivity Fault Management (CFM) and SLM are not supported over the cross-connect Ethernet flow point (EFP) simultaneously. However, you can enable Multi-NNI CFM or SLM over the cross-connect EFP function in a node.
• Two-way Ethernet frame Delay Measurement (ETH-DM) on Port maintenance endpoint (MEP) is not supported.
• For Two-way ETH-DM on DOWN MEP CFM, one index is reserved to be used by bridge-domain. If this index has to be used as a bridge-domain on any port, the DMM session should be un-configured.
• More than one DMM session on a single EFP with same direction (UP or DOWN), with different level, is not supported.

• DOWN MEP DMM with untagged encapsulation (encapsulation default without any cfm encapsulation configuration) over Xconnect is not supported. Also, Xconnect DMM with encapsulation dot1ad command and without rewrite ingress tag command is not supported.

The following encapsulations for xconnect DMM are not supported:
 • dot1ad without rewrite
 • untagged for DOWN MEP
 • default without CFM encapsulation command for DOWN MEP

• The following delays are observed for 2DM:
 • Queuing delay from where DMM is originated and terminated.
 • Queuing delay of DMR packet at the node where DMM is looped back.
 • Queuing delay when DMR packet is received at the node where DMM was originated.

• Do not use clock command for DMM or SLM, as it results in junk values in delay, as time stamping is done at the BCM level.
• When you configure DMM and SLM with different frame sizes, the latency may vary.
• Offloading is not supported for xconnect.
• There is no special group for DMM over Xconnect feature in TCAM; FP entries are seen in TCAM, under storm-control slice.

Information About ITU-T Y.1731 Performance Monitoring

When service providers sell connectivity services to a subscriber, a Service Level Agreement (SLA) is reached between the buyer and seller of the service. The SLA defines the attributes offered by a provider and serves as a legal obligation on the service provider. As the level of performance required by subscribers rises, service providers need to monitor the performance parameters being offered. Various standards, such as IEEE 802.1ag and ITU-T Y.1731, define the methods and frame formats used to measure performance parameters.
ITU-T Y.1731 performance monitoring provides standards-based Ethernet performance monitoring as outlined in the ITU-T Y-1731 specification and interpreted by the Metro Ethernet Forum (MEF). It includes the measurement of Ethernet frame delay, frame delay variation, frame loss, and throughput.

To measure SLA parameters such as frame delay or frame delay variation, a small number of synthetic frames are transmitted along with the service to the end point of the maintenance region, where the Maintenance End Point (MEP) responds to the synthetic frame.

The following figure illustrates Maintenance Entities (ME) and MEP typically involved in a point-to-point metro ethernet deployment for the Y.1731 standard.

Figure 7: A Point-to-Point Metro Ethernet Deployment with Typical Maintenance Entities and Maintenance Points

Frame Delay and Frame-Delay Variation

Ethernet frame Delay Measurement (ETH-DM) is used for on-demand Ethernet Operations, Administration & Maintenance (OAM) to measure frame delay and frame-delay variation.

Ethernet frame delay and frame delay variation are measured by sending periodic frames with ETH-DM information to the peer MEP in the same maintenance entity. Peer MEPs perform frame-delay and frame-delay variation measurements through this periodic exchange during the diagnostic interval.

Ethernet frame delay measurement supports hardware-based timestamping in the ingress direction.

These are the two methods of delay measurement, as defined by the ITU-T Y.1731 standard, One-way ETH-DM (1DM) and Two-way ETH-DM (2DM). However, the router supports only Two-way ETH-DM.

Two-way Delay Measurement

Two-way frame delay and variation can be measured using DMM and Delay Measurement Reply (DMR) frames.
Starting with Cisco IOS Release 15.4(2)S, the DMM sessions are enhanced from 32 to 100.

In two-way delay measurements, the sender MEP transmits a frame containing ETH-DM request information and TxTimeStamp, where TxTimeStamp is the timestamp of the time at which the DMM is sent.

When the receiver MEP receives the frame, it records RxTimeStamp, where RxTimeStamp is the timestamp of the time at which the frame with ETH-DM request information is received.

The receiver MEP responds with a frame containing ETH-DM reply information and TxTimeStamp, where TxTimeStamp is the timestamp of the time at which the frame with ETH-DM reply information is sent.

When the sender MEP receives this frame, it records RxTimeStamp, where RxTimeStamp is the timestamp of the time at which the frame containing ETH-DM reply information is received.

Two-way frame delay is calculated as:

\[
\text{Frame delay} = (\text{RxTimeStamp} - \text{TxTimeStamp}) - (\text{TxTimeStamp} - \text{RxTimeStamp})
\]

Discard the frame delay and frame delay variation measurements when known network topology changes occur or when continuity and availability faults occur.

For more information on ITU-T Y.1731 performance monitoring, see Configuring IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations in the IP SLAs Configuration Guide.

Frame Loss Ratio

Ethernet Frame Loss Ratio (ETH-LM: FLR), also known as frame loss, measures the availability of synthetic frames in the network. Availability is defined in terms of the ratio of frames lost to frames sent, or Frame Loss Ratio (FLR).

Ethernet Synthetic Loss Measurement (ETH-SLM) is used to collect counter values applicable for ingress and egress synthetic frames where the counters maintain a count of transmitted and received synthetic frames between a pair of MEPs.

ETH-SLM transmits synthetic frames with ETH-SLM information to a peer MEP and similarly receives synthetic frames with ETH-SLM information from the peer MEP. Each MEP performs frame loss measurements, which contribute to unavailable time. A near-end frame loss refers to frame loss associated with ingress data frames. A far-end frame loss refers to frame loss associated with egress data frames. Both near-end and far-end frame loss measurements contribute to near-end severely errored seconds and far-end severely errored seconds, which together contribute to unavailable time. ETH-SLM is measured using SLM and SLR frames.

There are the two methods of frame loss measurement, defined by the ITU-T Y.1731 standard ETH-LM and ETH-SLM. However, the router supports only single-ended ETH-SLM.

Single-ended ETH-SLM

Each MEP transmits frames with the ETH-SLM request information to its peer MEP and receives frames with ETH-SLR reply information from its peer MEP to carry out synthetic loss measurements.
On-Demand and Concurrent Operations

On-demand IP SLAs SLM operations enable users without configuration access to perform real-time troubleshooting of Ethernet services. There are two operational modes for on-demand operations: direct mode that creates and runs an operation immediately and referenced mode that starts and runs a previously configured operation.

- In the direct mode, a single command can be used to create multiple pseudo operations for a range of class of service (CoS) values to be run, in the background, immediately. A single command in privileged EXEC mode can be used to specify frame size, interval, frequency, and duration for the direct on-demand operation. Direct on-demand operations start and run immediately after the command is issued.
- In the referenced mode, you can start one or more already-configured operations for different destinations, or for the same destination, with different CoS values. Issuing the privileged EXEC command creates a pseudo version of a proactive operation that starts and runs in the background, even while the proactive operation is running.
- After an on-demand operation is completed, statistical output is displayed on the console. On-demand operation statistics are not stored and are not supported by the statistic history and aggregation functions.
- After an on-demand operation is completed, and the statistics handled, the direct and referenced on-demand operation is deleted. The proactive operations are not deleted and continue to be available to be run in referenced mode, again.

A concurrent operation consists of a group of operations, all configured with the same operation ID number, that run concurrently. Concurrent operations are supported for a given EVC, CoS, and remote MEP combination, or for multiple MEPs for a given multipoint EVC, for delay or loss measurements.

The router also supports burst mode for concurrent operations, one-way dual-ended, single-ended delay and delay variation operations, and single-ended loss operations.

Supported Interfaces

The router supports ITU-T Y.1731 performance monitoring on the following interfaces:

- DMM and SLM support on the EVC bridge domain (BD)
- DMM and SLM support on the Port-Channel EVC BD
- DMM and SLM support on the EVC cross connect
- DMM and SLM support on the Port-Channel EVC cross connect
- DMM and SLM support on the EVC BD for both the up and down MEPS
- SLM support on the EVC cross connect for both the up and down MEPs

Note

SLM and DMM can be configured for the same EVCs over CFM session. The combined number of CFM, DMM, and SLM sessions must be within the scale limits, otherwise DMM/SLM probes might get dropped resulting in a few incomplete measurements.

Benefits of ITU-T Y.1731 Performance Monitoring

Combined with IEEE-compliant CFM, Y.1731 performance monitoring provides a comprehensive fault management and performance monitoring solution for service providers. This comprehensive solution in turn lessens service providers' operating expenses, improves their SLAs, and simplifies their operations.
How to Configure ITU-T Y.1731 Performance Monitoring

Configuring Two-Way Delay Measurement

To display information about remote (target) MEPs on destination devices, use the `show ethernet cfm maintenance-points remote` command.

Complete the following steps to configure two-way delay measurement.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip sla operation-number`
4. `ethernet y1731 delay DMM domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} cos cos {source {mpid source-mp-id | mac-address source-address}}`
5. `aggregate interval seconds`
6. `distribution {delay | delay-variation} {one-way | two-way} number-of-bins boundary[,...,boundary]`
7. `frame interval milliseconds`
8. `frame offset offset-value`
9. `frame size bytes`
10. `history interval intervals-stored`
11. `max-delay milliseconds`
12. `owner owner-id`
13. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip sla operation-number</td>
<td>Configures an IP SLA operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ip sla 10</td>
<td>• <code>operation-number</code>—Identifies the IP SLAs operation you want to configure.</td>
</tr>
</tbody>
</table>
Purpose

Configures two-way delay measurement and enters IP SLA Y.1731 delay configuration mode.

- **DMM**—Specifies that the frames sent are Delay Measurement Message (DMM) synthetic frames.
- **domain domain-name**—Specifies the name of the Ethernet maintenance Operations, Administration & Maintenance (OAM) domain.
- **evc evc-id**—Specifies the EVC identification name.
- **vlan vlan-id**—Specifies the VLAN identification number. The range is from 1 to 4096.
- **mpid target-mp-id**—Specifies the maintenance endpoint identification numbers of the MEP at the destination. The range is from 1 to 8191.
- **mac-address target-address**—Specifies the MAC address of the MEP at the destination.
- **cos cos**—Specifies, for this MEP, the class of service (CoS) that will be sent in the Ethernet message. The range is from 0 to 7.
- **source**—Specifies the source MPID or MAC address.
- **mpid source-mp-id**—Specifies the maintenance endpoint identification numbers of the MEP being configured. The range is from 1 to 8191.
- **mac-address source-address**—Specifies the MAC address of the MEP being configured.

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet y1731 delay DMM domain domain-name {evc evc-id</td>
<td>vlan vlan-id} {mpid target-mp-id</td>
</tr>
</tbody>
</table>

Example:

Router(config-ip-sla)# ethernet y1731 delay DMM domain xxx evc yyy mpid 101 cos 4 source mpid 100

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregate interval seconds</td>
<td>(Optional) Configures the length of time during which the performance measurements are conducted and the results stored.</td>
</tr>
</tbody>
</table>

Example:

Router(config-sla-y1731-delay)# aggregate interval 900

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution {delay</td>
<td>delay-variation} {one-way</td>
</tr>
</tbody>
</table>

Example:

Router(config-sla-y1731-delay)# distribution delay-variation delay-variation two-way 5 5000, 10000,15000,20000,-1
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>boundary [,...,boundary]—Lists upper boundaries for bins in microseconds. Minimum number of boundaries required is one. Maximum allowed value for the uppermost boundary is -1 microsecond. Multiple values must be separated by a comma (,). The default value is 5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, -1.</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 7** frame interval *milliseconds*
 Example:
 Router(config-sla-y1731-delay)# frame interval 100 | (Optional) Sets the gap between successive frames.
 milliseconds—Specifies the length of time in milliseconds (ms) between successive synthetic frames. The range is from 100 to 10000. The default is 1000. |
| **Step 8** frame offset *offset-value*
 Example:
 Router(config-sla-y1731-delay)# frame offset 1 | (Optional) Sets a value for calculating delay variation values.
 offset-value—The range is from 1 to 10. The default is 1. |
| **Step 9** frame size *bytes*
 Example:
 Router(config-sla-y1731-delay)# frame size 32 | (Optional) Configures padding size for frames.
 bytes—Specifies the padding size, in four-octet increments, for the synthetic frames. The range is from 64 to 384. The default is 64. |
| **Step 10** history interval *intervals-stored*
 Example:
 Router(config-sla-y1731-delay)# history interval 2 | (Optional) Sets the number of statistics distributions kept during the lifetime of an IP SLAs Ethernet operation.
 intervals-stored—Specifies the number of statistics distributions. The range is from 1 to 10. The default is 2. |
| **Step 11** max-delay *milliseconds*
 Example:
 Router(config-sla-y1731-delay)# max-delay 5000 | (Optional) Sets the amount of time an MEP waits for a frame.
 milliseconds—Specifies the maximum delay in milliseconds (ms). The range is from 1 to 65535. The default is 5000. |
| **Step 12** owner *owner-id*
 Example:
 Router(config-sla-y1731-delay)# owner admin | (Optional) Configures the owner of an IP SLAs operation.
 owner-id—Specifies the name of the SNMP owner. The value is from 0 to 255 ASCII characters. |
| **Step 13** end
 Example:
 Router(config-sla-y1731-delay)# end | Exits IP SLA Y.1731 delay configuration mode and enters privileged EXEC mode. |
What to Do Next

After configuring two-way delay measurement, see the Scheduling IP SLAs Operations, on page 213 to schedule the operation.

Configuring Two-Way Delay Measurement on Xconnect (EoMPLS)

Complete the following steps to configure two-way delay measurement on xconnect.

Before you begin

CFM configuration on the interface is mandatory to achieve DMM without CCM exchange.

Port-channel with static mac-address is supported at both the responder and source end.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip sla operation-number`
4. `ethernet y1731 delay DMM domain domain-name {evc evc-id mac-address target-address cos cos source mac-address source-address}
5. `max-delay delay-period`
6. `frame interval interval`
7. `distribution delay-variation two-way number-of-bins boundary [....,boundary]`
8. `ip slaschedule operation-number life forever start-time now`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| Example:
 Router> enable | |
| **Step 2** configure terminal | Enters the global configuration mode. |
| Example:
 Router# configure terminal | |
| **Step 3** ip sla operation-number | Configures an IP SLA operation and enters IP SLA configuration mode. |
| Example:
 Router(config)# ip sla 11 | |
| **Step 4** ethernet y1731 delay DMM domain domain-name {evc evc-id mac-address target-address cos cos source mac-address source-address} | Configures two-way delay measurement and enters IP SLA Y.1731 delay configuration mode. |
Example: Verifying Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

To verify whether the local MEP is up, use the `show ethernet cfm maintenance-points local` command as given in the following example:

```
Router# show ethernet cfm maintenance-points local

The output should show the source mac-address (for example, the mac-address used in the configuration example, which is: 18e7.280b.5883)
```

To verify whether the remote MEP is learnt or not, use the `show ethernet cfm maintenance-points remote` command as given in the following example:
Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)

Example: Configuring Y.1731 Two Way ETH-DM on Xconnect (EoMPLS)

The topology used in the following configuration example is as follows:

Router1: (gigabitethernet 0/2)----------------------(gigabitethernet 0/8) - xconnect

Router2: gigabitethernet(0/10)------------------(gigabitethernet 0/10)

Router3: (gigabitethernet 0/11)(xconnect) down mep --------------------------(gigabitethernet 0/11)

Router4 (down mep)
Router 2
! configuration to be applied on this router is given below

configure terminal
interface loopback 0
ip address 2.2.2.2 255.255.255.255
mpls ip

interface vlan 40
ip address 10.8.8.2 255.255.255.0
mpls ip
exit

interface gigabitethernet 0/10
service instance 1 ethernet
encapsulation dot1q 40
rewrite ingress tag pop1 symmetric
bridge-domain 40

interface gigabitethernet 0/8
service instance 1 ethernet
encapsulation dot1q 100
xconnect 3.3.3.3 100 encapsulation mpls
mtu 1500
exit

router ospf 1
router-id 2.2.2.2
network 10.8.8.0 0.0.0.255 area 0
network 2.2.2.2 0.0.0.0 area 0

Router 3
! configuration to be applied on this router is given below

configure terminal
ethernet cfm ieee
ethernet cfm global
ethernet cfm domain cisco level 6
service test evc evc10 direction down
continuity-check
continuity-check interval 1s

interface loopback 0
ip address 3.3.3.3 255.255.255.255
mpls ip

interface vlan 40
ip address 10.8.8.3 255.255.255.0
mpls ip
exit

interface gigabitethernet 0/10
service instance 1 ethernet
encap dot1q 40
rewrite ingress tag pop1 symmetric
bridge-domain 40
interface gigabitethernet 0/11
service instance 1 ethernet
encapsulation dot1q 100
xconnect 2.2.2.2 100 encapsulation mpls
mtu 1500
cfm mep domain cisco mpid 101
dmm responder hardware timestamp

exit

router ospf 1
router-id 3.3.3.3
network 10.8.8.0 0.0.0.255 area 0
network 3.3.3.3 0.0.0.0 area 0

Router 4
! configuration to be applied on this router is given below

configure terminal

ethernet cfm ieee
ethernet cfm global
ethernet cfm domain cisco level 6
service test evc evc10 vlan 100 direction down
continuity-check
continuity-check interval 1s

interface vlan100
ip address 192.1.1.2 255.255.255.0
no shut
exit

ethernet evc evc10
interface gig 0/2
service instance 1 ethernet
encap dot1q 100
rewrite ingress tag pop 1 symmetric
bridge-domain 100
cfm mep domain cisco mpid 100

Configuring Single-Ended Synthetic Loss Measurement

Note

To display information about remote (target) MEPs on destination devices, use the `show ethernet cfm maintenance-points remote` command.

Complete the following steps to configure a single-ended SLM.

Before you begin

Class of Service (CoS)-level monitoring must be enabled on MEPs associated to the Ethernet frame loss operation using the `monitor loss counter` command on the devices at both ends of the operation.
Cisco IOS Y.1731 implementation allows monitoring of frame loss for frames on an EVC regardless of the CoS value (any CoS or Aggregate CoS cases). See the “Configuration Examples for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations” section for configuration information.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip sla operation-number`
4. `ethernet y1731 loss SLM domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} cos cos {source {mpid source-mp-id | mac-address source-address}}`
5. `aggregate interval seconds`
6. `availability algorithm {sliding-window | static-window}`
7. `frame consecutive value`
8. `frame interval milliseconds`
9. `frame size bytes`
10. `history interval intervals-stored`
11. `owner owner-id`
12. `exit`
13. `exit`
15. `ip sla logging traps`
16. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures an IP SLA operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td><code>ip sla operation-number</code></td>
<td>Configures an IP SLA operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td><code>Router(config)# ip sla 11</code></td>
<td>Configures an IP SLA operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• operation-number—Identifies the IP SLAs operation you want to configure.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>`ethernet y1731 loss SLM domain domain-name {evc evc-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ip-sla)# ethernet y1731 loss SLM domain xxx evc yyy mpid 101 cos 4 source mpid 100</code></td>
</tr>
<tr>
<td>5</td>
<td><code>aggregate interval seconds</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-sla-y1731-loss)# aggregate interval 900</code></td>
</tr>
<tr>
<td>6</td>
<td>`availability algorithm {sliding-window</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-sla-y1731-loss)# availability algorithm static-window</code></td>
</tr>
<tr>
<td>7</td>
<td><code>frame consecutive value</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-sla-y1731-loss)# frame consecutive 10</code></td>
</tr>
<tr>
<td>8</td>
<td><code>frame interval milliseconds</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-sla-y1731-loss)# frame interval 0</code></td>
</tr>
</tbody>
</table>
| Step 9 | frame size bytes | (Optional) Configures padding size for frames.
- bytes — Specifies the padding size, in four-octet increments, for the synthetic frames. The range is from 64 to 384. The default is 64. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Router(config-sla-y1731-loss)# frame size 32 |
| Step 10 | history interval intervals-stored | (Optional) Sets the number of statistics distributions kept during the lifetime of an IP SLAs Ethernet operation.
- intervals-stored — Specifies the number of statistics distributions. The range is from 1 to 10. The default is 2. |
| Example: | |
Router(config-sla-y1731-loss)# history interval 2 |
| Step 11 | owner owner-id | (Optional) Configures the owner of an IP SLAs operation.
- owner-id — Specified the name of the SNMP owner. The value is from 0 to 255 ASCII characters. |
| Example: | |
Router(config-sla-y1731-loss)# owner admin |
| Step 12 | exit | Exits IP SLA Y.1731 loss configuration mode and enters IP SLA configuration mode. |
| Example: | |
Router(config-sla-y1731-loss)# exit |
| Step 13 | exit | Exits IP SLA configuration mode and enters global configuration mode. |
| Example: | |
Router(config-ip-sla)# exit |
- operation-number — Identifies the IP SLAs operation for which reactions are to be configured.
- react — (Optional) Specifies the element to be monitored for threshold violations.
- unavailableDS — Specifies that a reaction should occur if the percentage of destination-to-source Frame Loss Ratio (FLR) violates the upper threshold or lower threshold.
- unavailableSD — Specifies that a reaction should occur if the percentage of source-to-destination FLR violates the upper threshold or lower threshold.
- loss-ratioDS — Specifies that a reaction should occur if the one-way destination-to-source loss-ratio violates the upper threshold or lower threshold. |
| Example: | |
Router(config)# ip sla reaction-configuration 11 react unavailableDS |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• loss-ratioSD — Specifies that a reaction should occur if the one way source-to-destination loss-ratio violates the upper threshold or lower threshold.</td>
<td></td>
</tr>
<tr>
<td>• threshold-type average</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>number-of-measurements — (Optional) When the average of a specified number of measurements for the monitored element exceeds the upper threshold or when the average of a specified number of measurements for the monitored element drops below the lower threshold, perform the action defined by the action-type keyword. The default number of 5 averaged measurements can be changed using the number-of-measurements argument. The range is from 1 to 16.</td>
<td></td>
</tr>
<tr>
<td>• threshold-type consecutive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>occurrences — (Optional) When a threshold violation for the monitored element is met consecutively for a specified number of times, perform the action defined by the action-type keyword. The default number of 5 consecutive occurrences can be changed using the occurrences argument. The range is from 1 to 16.</td>
<td></td>
</tr>
<tr>
<td>• threshold-type immediate — (Optional) When a threshold violation for the monitored element is met, immediately perform the action defined by the action-type keyword.</td>
<td></td>
</tr>
<tr>
<td>• threshold-value upper-threshold</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>lower-threshold — (Optional) Specifies the upper-threshold and lower-threshold values of the applicable monitored elements.</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

After configuring this MEP, see the **Scheduling IP SLAs Operations**, on page 213 to schedule the operation.

Scheduling IP SLAs Operations

Complete the following steps to schedule an IP SLAs operation.

Step 15

ip sla logging traps

Example:

```
Router(config)# ip sla logging traps
```

(Optional) Enables IP SLAs syslog messages from CISCO-RTTMON-MIB.

Step 16

exit

Example:

```
Router(config)# exit
```

Exits global configuration mode and enters privileged EXEC mode.
Before you begin

- All IP SLAs operations to be scheduled must be already configured.
- The frequency of all operations scheduled in a multi-operation group must be the same.
- List of one or more operation ID numbers to be added to a multi-operation group is limited to a maximum of 125 characters, including commas (,).

SUMMARY STEPS

1. enable
2. configure terminal
3. Do one of the following:
 - `ip sla schedule operation-number start-time now`
 - `ip sla schedule operation-number`
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>> configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Do one of the following:</td>
<td>Configures the scheduling parameters for an individual IP SLAs operation or Specifies an IP SLAs operation group number and the range of operation numbers to be scheduled for a multi-operation scheduler.</td>
</tr>
<tr>
<td>Example:</td>
<td>> ip sla schedule operation-number start-time now</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>> ip sla schedule operation-number</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits the global configuration mode and enters the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>> exit</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Frame Delay and Synthetic Loss Measurement Configurations

Example: Verifying Sender MEP for a Two-Way Delay Measurement Operation

The following sample output shows the configuration, including default values, of the sender MEP for a two-way delay measurement operation:

Router# show ip sla configuration 10
IP SLAs Infrastructure Engine-III
Entry number: 10
Owner:
Tag:
Operation timeout (milliseconds): 5000
Ethernet Y1731 Delay Operation
Frame Type: DMM
Domain: xxx
Vlan: yyy
Target Mpid: 101
Source Mpid: 100
CoS: 0
Max Delay: 5000
Request size (Padding portion): 64
Frame Interval: 1000
Clock: Not In Sync
Threshold (milliseconds): 5000
.
.
.
Statistics Parameters
Aggregation Period: 900
Frame offset: 1
Distribution Delay Two-Way:
Number of Bins 10
Bin Boundaries: 5000,10000,15000,20000,25000,30000,35000,40000,45000,-1
Distribution Delay-Variation Two-Way:
Number of Bins 10
Bin Boundaries: 5000,10000,15000,20000,25000,30000,35000,40000,45000,-1
History
Number of intervals: 2

Example: Verifying Receiver MEP for a Two-Way Delay Measurement Operation

The following sample output shows the configuration of the receiver MEP for a two-way delay measurement operation:

The router supports hardware-based timestamping. Enable the hardware-based timestamping using the dmm responder hardware timestamp command on the receiver MEP.

Router-1# show running interface gigabitethernet0/0
interface GigabitEthernet0/0
no ip address
negotiation auto
service instance 1310 ethernet ssvc1310
encapsulation dot1q 1310
rewrite ingress tag pop 1 symmetric
bridge-domain 1310
cfm mep domain sdmm mpid 1310
dmm responder hardware timestamp

Example: Verifying Sender MEP for a Synthetic Loss Measurement Operation

The following sample output shows the configuration, including default values, of the sender MEP for a single-ended SLM operation with a start-time of now:

Router# show ip sla configuration 11
IP SLAs Infrastructure Engine-III
Entry number: 11
Owner:
Tag:
Operation timeout (milliseconds): 5000
Ethernet Y1731 Loss Operation
Frame Type: SLM
Domain: xxx
Vlan: 12
Target Mpid: 34
Source Mpid: 23
CoS: 4
Request size (Padding portion): 0
Frame Interval: 1000
Schedule:
Operation frequency (seconds): 60 (not considered if randomly scheduled)
Next Scheduled Start Time: Start Time already passed
Group Scheduled : FALSE
Randomly Scheduled : FALSE
Life (seconds): 3600
Entry Ageout (seconds): never
Recurring (Starting Everyday): FALSE
Status of entry (SNMP RowStatus): ActiveThreshold (milliseconds): 5000

Statistics Parameters
Aggregation Period: 900
Frame consecutive: 10
Availability algorithm: static-window
History
Number of intervals: 2

Example: Verifying Ethernet CFM Performance Monitoring

To view the Ethernet CFM performance monitoring activities, use the `show ethernet cfm pm` command.

Router# show ethernet cfm pm session summary
Number of Configured Session : 4
Number of Active Session: 4
Number of Inactive Session: 0
Router# show ethernet cfm pm session detail 1
Session ID: 1
Sla Session ID: 2002
Level: 5
Example: Verifying History for IP SLAs Operations

To view the history collected for IP SLAs operations, use the `show ip sla history` command.

The `show ip sla history full` command is not supported for the ITU-T Y.1731 operations.
How to Configure IP SLAs Y.1731 On-Demand and Concurrent Operations

Configuring Direct On-Demand Operation on a Sender MEP

Class of Service (CoS)-level monitoring must be enabled on MEPs associated to the Ethernet frame loss operation using the `monitor loss counter` command on the devices at both ends of the operation.

Note

Cisco IOS Y.1731 implementation allows monitoring of frame loss for frames on an EVC regardless of the CoS value (any CoS or Aggregate CoS cases).

SUMMARY STEPS

1. `enable`
2. `ip sla on-demand ethernet slm domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} cos cos {source {mpid source-mp-id | mac-address source-address}} {continuous [interval milliseconds] | burst [interval milliseconds] [number number-of-frames] [frequency seconds] [size bytes] aggregation seconds {duration seconds | max number-of-packets}}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
<p>| Step 2 <code>ip sla on-demand ethernet slm domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id}</code> | Creates and runs an on-demand operation in direct mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address</td>
<td>Repeat this step for each on-demand operation to be run.</td>
</tr>
<tr>
<td>target-address</td>
<td></td>
</tr>
<tr>
<td>cos cos</td>
<td></td>
</tr>
<tr>
<td>source</td>
<td></td>
</tr>
<tr>
<td>source-mp-id</td>
<td></td>
</tr>
<tr>
<td>mac-address</td>
<td></td>
</tr>
<tr>
<td>source-address</td>
<td></td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>[interval milliseconds]</td>
<td></td>
</tr>
<tr>
<td>burst [interval milliseconds]</td>
<td></td>
</tr>
<tr>
<td>[number number-of-frames]</td>
<td></td>
</tr>
<tr>
<td>[frequency seconds]</td>
<td></td>
</tr>
<tr>
<td>[size bytes]</td>
<td></td>
</tr>
<tr>
<td>aggregation seconds</td>
<td></td>
</tr>
<tr>
<td>{duration seconds</td>
<td></td>
</tr>
<tr>
<td>max number-of-packets}</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# ip sla on-demand ethernet SLM domain xxx vlan 12 mpid 34 cos 4 source mpid 23 continuous aggregation 10 duration 60</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Referenced On-Demand Operation on a Sender MEP

Before you begin

Single-ended and concurrent Ethernet delay, or delay variation, and frame loss operations to be referenced must be configured.

SUMMARY STEPS

1. enable
2. ip sla on-demand ethernet slm operation number {duration seconds | max number-of-packets}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip sla on-demand ethernet slm operation number {duration seconds</td>
<td>max number-of-packets}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# ip sla on-demand ethernet slm 11</td>
<td></td>
</tr>
</tbody>
</table>

Configuring IP SLAs Y.1731 Concurrent Operation on a Sender MEP

To configure concurrent Ethernet delay, and delay variation, and frame loss operations, see the [How to Configure ITU-T Y.1731 Performance Monitoring](#), on page 202.
Configuration Examples for IP SLAs Y.1731 On-Demand Operations

Example: On-Demand Operation in Direct Mode

Router# ip sla on-demand ethernet slm domain md5 evc evc1000 mpid 1000 cos 1 source mpid 1001 continuous aggregation 30 duration 31
Loss Statistics for Y1731 Operation 3313031511
Latest operation return code: OK
Distribution Statistics:
Interval
End time: *13:21:53.988 IST Tue Mar 19 2013
Number of measurements initiated: 30
Number of measurements completed: 30
Flag: OK
Forward
Number of Observations 3
Available indicators: 0
Unavailable indicators: 3
Tx frame count: 30
Rx frame count: 30
Min/Avg/Max - (FLR %): 0:9/000.00%/0:9
Cumulative - (FLR %): 000.0000%
Timestamps forward:
Backward
Number of Observations 3
Available indicators: 0
Unavailable indicators: 3
Tx frame count: 30
Rx frame count: 30
Min/Avg/Max - (FLR %): 0:9/000.00%/0:9
Cumulative - (FLR %): 000.0000%
Timestamps backward:

Example: On-Demand Operation in Referenced Mode

Router# configure terminal
Router(config)# ip sla 2002
Router(config-ip-sla)# ethernet y1731 loss SLM domain md5 evc evc1000 mpid 1001 cos 3 source mpid 1000
Router(config-sla-y1731-loss)# aggregate interval 30
Router(config-sla-y1731-loss)# end
Router# ip sla on-demand ethernet slm 2002 duration 31
Loss Statistics for Y1731 Operation 3313031511
Latest operation return code: OK
Additional References

The following sections provide references to ITU-T Y.1731 Performance Monitoring.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco IOS IP SLAs commands</td>
<td>Cisco IOS IP SLAs Command Reference</td>
</tr>
<tr>
<td>IEEE CFM</td>
<td>Configuring IEEE Standard-Compliant Ethernet CFM in a Service Provider Network</td>
</tr>
<tr>
<td>Using OAM</td>
<td>Using Ethernet Operations, Administration, and Maintenance</td>
</tr>
<tr>
<td>IEEE CFM and Y.1731 commands</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ag</td>
<td>802.1ag - Connectivity Fault Management</td>
</tr>
<tr>
<td>ITU-T Y.1731</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
</tbody>
</table>
Feature Information for ITU-T Y.1731 Performance Monitoring

Table 18: Feature Information for ITU-T Y.1731 Performance Monitoring, on page 223 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 18: Feature Information for ITU-T Y.1731 Performance Monitoring, on page 223 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Table 18: Feature Information for ITU-T Y.1731 Performance Monitoring

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y.1731 Performance Monitoring</td>
<td>15.3(2)S</td>
<td>This feature was introduced on the router. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>Ethernet Synthetic Loss Measurement in Y.1731</td>
<td>15.3(2)S</td>
<td>This feature was introduced on the router. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>Y.1731 Performance Monitoring</td>
<td>15.3(3)S</td>
<td>The router supports ITU-T Y.1731 performance monitoring on the following interfaces:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SLM support on the EVC cross connect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SLM support on the Port-Channel EVC cross connect</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- DMM and SLM support on the EVC BD for both the up and down MEPS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SLM support on the EVC cross connect for both the up and down MEPS</td>
</tr>
<tr>
<td>Y1731 Two Way ETH-DM on Xconnect (EoMPLS)</td>
<td>15.5(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 Series Routers.</td>
</tr>
</tbody>
</table>
Resilient Ethernet Protocol (REP) is a Cisco proprietary protocol that provides an alternative to Spanning Tree Protocol (STP) to control network loops, to respond to link failures, and to improve convergence time. REP controls a group of ports connected in a segment, ensures that the segment does not create any bridging loops, and responds to link failures within the segment. REP provides a basis for constructing more complex networks and supports VLAN load balancing. Effective with Cisco IOS Release 15.4(1)S, the supports REP over port-channel.

- Understanding Resilient Ethernet Protocol, on page 225
- Configuring Resilient Ethernet Protocol, on page 230
- Configuration Examples for REP, on page 245

Understanding Resilient Ethernet Protocol

This section contains the following topics:

Overview

An REP segment is a chain of ports connected to each other and configured with a segment ID. Each segment consists of standard (non-edge) segment ports and two user-configured edge ports. A switch can have only two ports belonging to the same segment, and each segment port can have only one external neighbor. A segment can go through a shared medium, but on any link, only two ports can belong to the same segment. REP is supported only on Layer 2 trunk interfaces.

The following figure shows an example of a segment consisting of six ports spread across four switches. Ports E1 and E2 are configured as edge ports. When all ports are operational (as in the segment on the left), a single port is blocked, shown by the diagonal line. When there is a network failure, as shown on the right of the diagram, the blocked port returns to the forwarding state to minimize network disruption.
The segment shown in the above figure is an open segment; there is no connectivity between the two edge ports. The REP segment cannot cause a bridging loop, and you can safely connect the segment edges to any network. All hosts connected to switches inside the segment have two possible connections to the rest of the network through the edge ports, but only one connection is accessible at any time. If a host cannot access its usual gateway because of a failure, REP unblocks all ports to ensure that connectivity is available through the other gateway.

The segment shown in the following figure, with both edge ports located on the same switch, is a ring segment. In this configuration, there is connectivity between the edge ports through the segment. With this configuration, you can create a redundant connection between any two switches in the segment.

REP segments have these characteristics:

- If all ports in the segment are operational, one port (referred to as the alternate port) is in the blocked state for each VLAN.
- If VLAN load balancing is configured, two ports in the segment control the blocked state of VLANs.
- If one or more ports in a segment is not operational, causing a link failure, all ports forward traffic on all VLANs to ensure connectivity.
- In case of a link failure, the alternate ports are unblocked as quickly as possible. When the failed link comes back up, a logically blocked port per VLAN is selected with minimal disruption to the network.

You can construct almost any type of network based on REP segments. REP also supports VLAN load-balancing, controlled by the primary edge port but occurring at any port in the segment.

In access ring topologies, the neighboring switch might not support REP, as shown in the following figure. In this case, you can configure the non-REP facing ports (E1 and E2) as edge no-neighbor ports. These ports inherit all properties of edge ports, and you can configure them the same as any edge port, including configuring...
them to send STP or REP topology change notices to the aggregation switch. In this case the STP topology change notice (TCN) that is sent is a multiple spanning-tree (MST) STP message.

Figure 10: No-neighbor Topology

![Diagram of No-neighbor Topology]

Restrictions

- You must configure each segment port; an incorrect configuration can cause forwarding loops in the networks.
- REP can manage only a single failed port within the segment; multiple port failures within the REP segment cause loss of network connectivity.
- You should configure REP only in networks with redundancy. Configuring REP in a network without redundancy causes loss of connectivity.
- BFD and REP together are not recommended on Router while sharing the same link.
- Layer 3 over REP with VLAN load balancing is not recommended on Router.

Link Integrity

REP does not use an end-to-end polling mechanism between edge ports to verify link integrity. It implements local link failure detection. The REP Link Status Layer (LSL) detects its REP-aware neighbor and establishes connectivity within the segment. All VLANs are blocked on an interface until it detects the neighbor. After the neighbor is identified, REP determines which neighbor port should become the alternate port and which ports should forward traffic.

Each port in a segment has a unique port ID. The port ID format is similar to that used by the spanning tree algorithm: a port number (unique on the bridge), associated to a MAC address (unique in the network). When a segment port is coming up, its LSL starts sending packets that include the segment ID and the port ID. The port is declared operational after it performs a three-way handshake with a neighbor in the same segment.

A segment port does not become operational if:

- No neighbor has the same segment ID.
- More than one neighbor has the same segment ID.
- The neighbor does not acknowledge the local port as a peer.
Each port creates an adjacency with its immediate neighbor. After the neighbor adjacencies are created, the ports negotiate to determine one blocked port for the segment, the alternate port. All other ports become unblocked. By default, REP packets are sent to a BPDU class MAC address. The packets are dropped by devices not running REP.

Fast Convergence

Because REP runs on a physical link basis and not a per-VLAN basis, only one hello message is required for all VLANs, reducing the load on the protocol. We recommend that you create VLANs consistently on all switches in a given segment and configure the same allowed VLANs on the REP trunk ports. To avoid the delay introduced by relaying messages in software, REP also allows some packets to be flooded to a regular multicast address. These messages operate at the hardware flood layer (HFL) and are flooded to the whole network, not just the REP segment. Switches that do not belong to the segment treat them as data traffic. You can control flooding of these messages by configuring a dedicated administrative VLAN for the whole domain.

The estimated convergence recovery time on fiber interfaces is less than 200 ms for the local segment with 200 VLANs configured. Convergence for VLAN load balancing is 300 ms or less.

VLAN Load Balancing (VLB)

One edge port in the REP segment acts as the primary edge port; the other as the secondary edge port. The primary edge port always participates in VLAN load balancing in the segment. REP VLAN balancing is achieved by blocking some VLANs at a configured alternate port and all other VLANs at the primary edge port. When you configure VLAN load balancing, you can specify the alternate port in one of three ways:

- Enter the port ID of the interface. To identify the port ID of a port in the segment, use the `show interface rep detail` interface configuration command for the port.

Note

Use `rep platform vlb segment` command on every Cisco ASR 901 router participating in the REP segment.

- Enter the neighbor offset number of a port in the segment, which identifies the downstream neighbor port of an edge port. The neighbor offset number range is -256 to +256; a value of 0 is invalid. The primary edge port has an offset number of 1; positive numbers above 1 identify downstream neighbors of the primary edge port. Negative numbers identify the secondary edge port (offset number -1) and its downstream neighbors.

Note

You configure offset numbers on the primary edge port by identifying the downstream position from the primary (or secondary) edge port. Do not enter an offset value of 1 because that is the offset number of the primary edge port.

Figure 11: Neighbor Offset Numbers in a Segment, on page 229 shows neighbor offset numbers for a segment where E1 is the primary edge port and E2 is the secondary edge port. The red numbers inside the ring are numbers offset from the primary edge port; the black numbers outside the ring show the offset numbers from the secondary edge port. Note that you can identify all ports (except the primary edge port) by either a positive offset number (downstream position from the primary edge port) or a negative offset number (downstream position from the secondary edge port). If E2 became the primary edge port, its offset number would then be 1, and E1 would be -1.
• By entering the `preferred` keyword to select the port that you previously configured as the preferred alternate port with the `rep segment segment-id preferred` interface configuration command.

Figure 11: Neighbor Offset Numbers in a Segment

When the REP segment is complete, all VLANs are blocked. When you configure VLAN load balancing, you must also configure triggers in one of two ways:

- Manually trigger VLAN load balancing at any time by entering the `rep preempt segment segment-id` privileged EXEC command on the router that has the primary edge port.
- Configure a preempt delay time by entering the `rep preempt delay seconds` interface configuration command. After a link failure and recovery, VLAN load balancing begins after the configured preemption time period elapses. Note that the delay timer restarts if another port fails before the time elapses.

Note

When VLAN load balancing is configured, it does not start working until triggered by either manual intervention or a link failure and recovery.

When VLAN load balancing is triggered, the primary edge port sends a message to alert all interfaces in the segment about the preemption. When the secondary port receives the message, it is reflected into the network to notify the alternate port to block the set of VLANs specified in the message and to notify the primary edge port to block the remaining VLANs.

You can also configure a particular port in the segment to block all VLANs. Only the primary edge port initiates VLAN load balancing, which is not possible if the segment is not terminated by an edge port on each end. The primary edge port determines the local VLAN load balancing configuration.

Reconfigure the primary edge port to reconfigure load balancing. When you change the load balancing configuration, the primary edge port again waits for the `rep preempt segment` command or for the configured preempt delay period after a port failure and recovery before executing the new configuration. If you change an edge port to a regular segment port, the existing VLAN load balancing status does not change. Configuring a new edge port might cause a new topology configuration.

Note

The roles of primary and secondary edge ports is Alt when VLB is enabled. Use `show rep topology` command to check the roles of primary and secondary edge ports.

Spanning Tree Interaction

REP does not interact with MSTP, but the two can coexist. A port that belongs to a segment is removed from spanning tree control, and STP BPDUs are not accepted or sent from segment ports.
To migrate from an STP ring configuration to REP segment configuration, begin by configuring a single port in the ring as part of the segment, and continue by configuring contiguous ports to minimize the number of segments. Each segment always contains a blocked port, so multiple segments means multiple blocked ports and a potential loss of connectivity. When the segment is configured in both directions to the edge ports, you then configure the edge ports.

REP Ports

Ports in REP segments are in the Failed, Open, or Alternate states. The various states REP ports go through are as follows:

- A port configured as a regular segment port starts as a failed port.
- After the neighbor adjacencies are determined, the port changes to alternate port state, blocking all VLANs on the interface. Blocked port negotiations occur and when the segment settles, one blocked port remains in the alternate role, and all other ports become open ports.
- When a failure occurs in a link, all ports move to the open state. When the alternate port receives the failure notification, it changes to the open state, forwarding all VLANs.

A regular segment port converted to an edge port, or an edge port converted to a regular segment port, does not always result in a topology change. If you convert an edge port into a regular segment port, VLAN load balancing is not implemented unless it has been configured. For VLAN load balancing, you must configure two edge ports in the segment.

A segment port reconfigured as a spanning tree port restarts according to the spanning tree configuration. By default, this is a designated blocking port. If PortFast is configured or if STP is disabled, the port goes into the forwarding state.

For instructions on how to configure REP, see Configuring Resilient Ethernet Protocol, on page 230.

Configuring Resilient Ethernet Protocol

A segment is a collection of ports connected one to the other in a chain and configured with a segment ID. To configure REP segments, you configure the REP administrative VLAN (or use the default VLAN 1) and then add the ports to the segment using interface configuration mode. You should configure a service instance with encapsulation corresponding to the REP admin VLAN and associate it to arbitrary bridge domain.

Note

The explicit configuration of EFP gives you the flexibility to choose the bridge domain of your choice.

You should configure two edge ports in the segment, one as the primary edge port and the other, by default, the secondary edge port. A segment has only one primary edge port. If you configure two ports in a segment as the primary edge port, for example ports on different switches, the REP selects one to serve as the segment primary edge port. You can also optionally configure where to send segment topology change notices (STCNs) and VLAN load balancing messages.

This section contains the following topics:
Default REP Configuration

By default, REP is disabled on all interfaces. When enabled, the interface is a regular segment port, unless it is configured as an edge port.

When REP is enabled, the sending of segment topology change notices (STCNs) is disabled, all VLANs are blocked, and the administrative VLAN is VLAN 1.

When VLAN load balancing is enabled, the default is manual preemption with the delay timer disabled. If VLAN load balancing is not configured, the default after manual preemption is to block all VLANs at the primary edge port.

REP Configuration Guidelines

Follow these guidelines when configuring REP:

- We recommend that you begin by configuring one port and then configure the contiguous ports to minimize the number of segments and the number of blocked ports.
- If more than two ports in a segment fail when no external neighbors are configured, one port goes into a forwarding state for the data path to help maintain connectivity during configuration. In the `show rep interface` command output, the Port Role for this port shows as `Fail Logical Open`; the Port Role for the other failed port shows as `Fail No Ext Neighbor`. When the external neighbors for the failed ports are configured, the ports go through the alternate port state transitions and eventually go to an open state or remain as the alternate port, based on the alternate port election mechanism.
- REP ports must be Layer 2 ports.
- Be careful when configuring REP through a Telnet connection. Since REP blocks all VLANs until another REP interface sends a message to unblock the VLAN, you might lose connectivity to the router if you enable REP in a Telnet session that accesses the router through the REP interface.
- If you connect an STP network to the REP segment, be sure that the connection is at the segment edge. An STP connection that is not at the edge could cause a bridging loop because STP does not run on REP segments. All STP BPDUs are dropped at REP interfaces.
- You must configure all ports in the segment with the same set of allowed VLANs, or a misconfiguration occurs.
- REP ports follow these rules:
 - There is no limit to the number of REP ports on a switch; however, only two ports on a switch can belong to the same REP segment.
 - If only one port on a switch is configured in a segment, the port should be an edge port.
 - If two ports on a switch belong to the same segment, they must be both edge ports, both regular segment ports, or one regular port and one edge no-neighbor port. An edge port and regular segment port on a switch cannot belong to the same segment.
 - If two ports on a switch belong to the same segment and one is configured as an edge port and one as a regular segment port (a misconfiguration), the edge port is treated as a regular segment port.
 - REP interfaces come up and remain in a blocked state until notified that it is safe to unblock. You need to be aware of this to avoid sudden connection losses.
 - You should configure service instance with encapsulation corresponding to the REP admin VLAN and associate it to arbitrary Bridge Domain. This explicit configuration of EFP gives you the flexibility to choose the bridge domain of your choice.
 - REP sends all LSL PDUs in untagged frames on the native VLAN. The BPA message sent to the Cisco multicast address is sent on the administration VLAN, which is VLAN 1 by default.
• You can configure the duration to keep REP interface alive without receiving a hello message from a neighbor using the `replsl-age-timer value interface configuration` command. Valid values range from 120 ms to 10000 ms. When this command is configured, the hello timer is set to the age-timer value divided by three. In normal REP operation, three LSL hellos are sent before the age-timer on the peer switch expires.

• You should configure the `rep platform fast-lsl enable` command to support the REP sessions with LSL timers that are less than one second long. This command helps to detect the link failures in copper or microwave ports faster as the link failure detection takes longer time for these ports. Configuring the `rep platform fast-lsl enable` command helps to get optimal performance for copper or microwave ports. When this command is configured, you can expect only subsecond convergence for REP. The subsecond convergence period is also applicable for normal REP sessions, if fast LSL is configured.

• REP ports cannot be configured as one of these port types:
 • SPAN destination port
 • Private VLAN
 • Tunnel port
 • Access port

• There is a maximum of 128 REP segments per router.

Configuring the REP Administrative VLAN

To avoid the delay introduced by relaying messages in software for link-failure or VLAN-blocking notification during load balancing, REP floods packets at the hardware flood layer (HFL) to a regular multicast address. These messages are flooded to the whole network, not just the REP segment. You can control flooding of these messages by configuring an administrative VLAN for the whole domain.

Follow these guidelines when configuring the REP administrative VLAN:

• If you do not configure an administrative VLAN, the default is VLAN 1.
• There can be only one administrative VLAN on a router and on a segment. However, this is not enforced by the software.
• For VLB to work, `rep platform vlb` has to be configured on every Cisco ASR 901 router participating in the segment.

Complete the following steps to configure the REP administrative VLAN:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `rep admin vlan vlan-id`
4. `end`
5. `show interface [interface-id] rep [detail]`
6. `copy running-config startup config`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3

rep admin vlan vlan-id

Example:

Router(config)# rep admin vlan 1

Configures a REP administrative VLAN.

• vlan-id--Specify the administrative VLAN. The range is 1–4094. The default is VLAN 1.

Step 4

done

Example:

Router(config)# done

Returns to privileged EXEC mode.

Step 5

show interface [interface-id] rep [detail]

Example:

Router# show interface gigabitethernet0/1 rep
detail

Displays the REP configuration and status for a specified interface.

• Enter the physical Layer 2 interface or port channel (logical interface) and the optional detail keyword, if desired.

Step 6

copy running-config startup config

Example:

Router# copy running-config startup config

(Optional) Saves your entries in the router startup configuration file.

Configuring REP Interfaces

For REP operation, you need to enable it on each segment interface and identify the segment ID. This step is required and must be done before other REP configuration. You must also configure a primary and secondary edge port on each segment. All other steps are optional.

Complete these steps to enable and configure REP on an interface:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-name interface-id
4. service instance instance-id ethernet encap dot1q admin-vlan rewrite ingress tag pop 1 symmetric bridge-domain bd-id
5. rep segment segment-id [edge [no-neighbor] [primary]] [preferred]
6. rep isl-retries number-of-retries
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the interface, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-name interface-id</code></td>
<td>- Enter the physical Layer 2 interface or port channel ID. The port-channel range is 1 to 8.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface port-channel 1</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures ethernet virtual circuit for the administrative VLAN.</td>
</tr>
<tr>
<td><code>service instance instance-id ethernet encap dot1q admin-vlan rewrite ingress tag pop 1 symmetric bridge-domain bd-id</code></td>
<td>Router(config-if)# service instance 1 ethernet encap dot1q 1 rewrite ingress tag pop 1 symmetric bridge-domain 1</td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables REP on the interface, and identifies a segment number. The segment ID range is from 1 to 1024.</td>
</tr>
<tr>
<td><code>rep segment segment-id [edge [no-neighbor] [primary]] [preferred]</code></td>
<td>Note: You must configure two edge ports, including one primary edge port for each segment.</td>
</tr>
<tr>
<td>Example:</td>
<td>These are the optional keywords:</td>
</tr>
<tr>
<td></td>
<td>- Enter the <code>edge</code> keyword to configure the port as an edge port. Entering <code>edge</code> without the <code>primary</code> keyword configures the port as the secondary edge port. Each segment has only two edge ports.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• (Optional) Enter the <code>no-neighbor</code> keyword to configure a port with no external REP neighbors as an edge port. The port inherits all properties of edge ports, and you can configure them the same as any edge port.</td>
<td></td>
</tr>
<tr>
<td>• On an edge port, enter the <code>primary</code> keyword to configure the port as the primary edge port, the port on which you can configure VLAN load balancing.</td>
<td></td>
</tr>
<tr>
<td>Note Although each segment can have only one primary edge port, if you configure edge ports on two different switches and enter the <code>primary</code> keyword on both switches, the configuration is allowed. However, REP selects only one of these ports as the segment primary edge port. You can identify the primary edge port for a segment by entering the <code>show rep topology</code> privileged EXEC command.</td>
<td></td>
</tr>
<tr>
<td>• Enter the <code>preferred</code> keyword to indicate that the port is the preferred alternate port or the preferred port for VLAN load balancing.</td>
<td></td>
</tr>
<tr>
<td>Note Configuring a port as preferred does not guarantee that it becomes the alternate port; it merely gives it a slight edge among equal contenders. The alternate port is usually a previously failed port.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6

```
rep lsl-retries number-of-retries
```

Example:

```
Router(config-if)# rep lsl-retries 4
```

Use the `rep lsl-retries` command to configure the REP link status layer (LSL) number of retries before the REP link is disabled.

Step 7

```
rep stcn {interface interface-id | segment id-list | stp}
```

Example:

```
Router(config-if)# rep stcn segment 2-5
```

(Optional) Configures the edge port to send segment topology change notices (STCNs).

- Enter `interface interface-id` to designate a physical Layer 2 interface or port channel to receive STCNs.
- Enter `segment id-list` to identify one or more segments to receive STCNs. The range is from 1–1024.
- Enter `stp` to send STCNs to STP networks.

Step 8

```
rep platform vlb segment segment-id vlan {vlan-list | all}
```

Example:

```
Router(config)# rep platform vlb segment 1 vlan 100-200
```

(Optional) Configures the VLAN list which forms the VLB group. This command should be issued on all routers participating in VLB for a particular segment and should have a matching VLAN list. This VLAN list should also match with the `rep block` command issued on primary edge port.
| Step 9 | rep block port \{id port-id | neighbor-offset | preferred\} vlan \{vlan-list | all\} |
| Purpose | • Enter `vlan vlan-list` to block a single VLAN or a range of VLANs,
 • Enter `vlan all` to block all VLANs. This is the default configuration. |
| Example: | `Router(config-if)# rep block port 0009001818D68700 vlan all` |

(Optional) Configures VLAN load balancing on the primary edge port, identifies the REP alternate port in one of three ways, and configures the VLANs to be blocked on the alternate port.

- Enter the `id port-id` to identify the alternate port by port ID. The port ID is automatically generated for each port in the segment. You can view interface port IDs by entering the `show interface interface-id rep [detail]` privileged EXEC command.
- Enter a `neighbor-offset` number to identify the alternate port as a downstream neighbor from an edge port. The range is from –256 to 256, with negative numbers indicating the downstream neighbor from the secondary edge port. A value of 0 is invalid. Enter -1 to identify the secondary edge port as the alternate port.

Note Because you enter this command at the primary edge port (offset number 1), you would never enter an offset value of 1 to identify an alternate port.

- Enter the `preferred` keyword to select the regular segment port previously identified as the preferred alternate port for VLAN load balancing.
- Enter `vlan vlan-list` to block one VLAN or a range of VLANs.
- Enter `vlan all` to block all VLANs.

Note Enter this command only on the REP primary edge port.

Step 10	rep preempt delay `seconds`
Purpose	(Optional) Configures a preempt time delay. Use this command if you want VLAN load balancing to automatically trigger after a link failure and recovery. The time delay range is 15 to 300 seconds. The default is manual preemption with no time delay.
Example:	`Router(config-if)# rep preempt delay 60`

Note Use this command only on the REP primary edge port.

Step 11	rep lsl-age-timer `value`
Purpose	(Optional) Configure a time (in milliseconds) for which the REP interface remains up without receiving a hello from a neighbor. The range is from 120 to 10000 ms in 40-ms increments; the default is 5000 ms (5 seconds).
Example:	`Router(config-if) rep lsl-age-timer 5000`
Configuring REP as Dual Edge No-Neighbor Port

For REP operation, you need to enable it on each segment interface and identify the segment ID. Effective with Cisco IOS release 15.4.(1)S, you can configure the non-REP switch facing ports on a single device as dual edge no-neighbor ports. These ports inherit all properties of edge ports, and overcome the limitation of not converging quickly during a failure.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12</td>
<td>Purpose</td>
</tr>
<tr>
<td>rep platform fast-lsl enable
Example:
Router(config-if)# rep platform fast-lsl enable</td>
<td>Enables fast Link Status Layer (LSL) configuration to support the REP sessions with LSL timers that are less than one second long. When this command is configured, you can expect only subsecond convergence for REP. The subsecond convergence period is also applicable for normal REP sessions, if fast LSL is configured.</td>
</tr>
<tr>
<td>Step 13</td>
<td>Example:
Router(config-if)# end</td>
</tr>
<tr>
<td>Step 14</td>
<td>Example:
Router# show interface gigabitethernet0/1 rep detail</td>
</tr>
<tr>
<td>show interface [interface-id] rep [detail]</td>
<td>• Enter the physical Layer 2 interface or port channel (logical interface) and the optional detail keyword, if desired.</td>
</tr>
<tr>
<td>Step 15</td>
<td>Example:
Router# show rep topology segment 1</td>
</tr>
<tr>
<td>show rep topology [segment segment-id] [archive] [detail]</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Example:
Router# copy running-config startup config</td>
</tr>
<tr>
<td>copy running-config startup config</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12</td>
<td>Purpose</td>
</tr>
<tr>
<td>rep platform fast-lsl enable
Example:
Router(config-if)# rep platform fast-lsl enable</td>
<td>Enables fast Link Status Layer (LSL) configuration to support the REP sessions with LSL timers that are less than one second long. When this command is configured, you can expect only subsecond convergence for REP. The subsecond convergence period is also applicable for normal REP sessions, if fast LSL is configured.</td>
</tr>
<tr>
<td>Step 13</td>
<td>Example:
Router(config-if)# end</td>
</tr>
<tr>
<td>Step 14</td>
<td>Example:
Router# show interface gigabitethernet0/1 rep detail</td>
</tr>
<tr>
<td>show interface [interface-id] rep [detail]</td>
<td>• Enter the physical Layer 2 interface or port channel (logical interface) and the optional detail keyword, if desired.</td>
</tr>
<tr>
<td>Step 15</td>
<td>Example:
Router# show rep topology segment 1</td>
</tr>
<tr>
<td>show rep topology [segment segment-id] [archive] [detail]</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Example:
Router# copy running-config startup config</td>
</tr>
<tr>
<td>copy running-config startup config</td>
<td></td>
</tr>
</tbody>
</table>
In access ring topologies, the neighboring switch might not support Figure 12: Dual Edge No-neighbor Topology, on page 238 Figure 12-5. In this case, you can configure the non-REP facing ports (E1 and E2) as edge no-neighbor ports. These ports inherit all properties of edge ports, and you can configure them the same as any edge port, including configuring them to send STP or REP topology change notices to the aggregation switch. In this case the STP topology change notice (TCN) that is sent is a multiple spanning-tree (MST) STP message.

Complete these steps to enable and configure REP as dual edge no-neighbor port:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface interface-id`
4. `rep segment segment-id edgeno-neighbor [primary | preferred]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable`
`Example:` `enable`
`Router> enable` | Enables privileged EXEC mode.
- Enter your password if prompted. |
| Step 2 | `configure terminal`
`Example:` `configure terminal`
`Router# configure terminal` | Enters global configuration mode. |
| Step 3 | `interface interface-id`
`Example:` | Specifies the interface, and enters interface configuration mode. |
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# interface port-channel 1</code></td>
<td>• Enter the physical Layer 2 interface or port channel ID. The port-channel range is 1 to 8.</td>
</tr>
</tbody>
</table>

Step 4

rep segment segment-id edge no-neighbor [primary | preferred

Example:

```
Router(config-if)# rep segment 1 edge no-neighbor preferred
```

Enables REP on the interface, and identifies a segment number. The segment ID range is from 1 to 1024.

Note You must configure two edge ports, including one primary edge port for each segment.

These are the optional keywords:

- **edge** keyword to configure the port as an edge port. Entering edge without the primary keyword configures the port as the secondary edge port. Each segment has only two edge ports.
- **no-neighbor** keyword to configure a port with no external REP neighbors as an edge port. The port inherits all properties of edge ports, and you can configure them the same as any edge port.
- **primary** keyword to configure the port as the primary edge port, the port on which you can configure VLAN load balancing. Although each segment can have only one primary edge port, if you configure edge ports on two different switches and enter the primary keyword on both switches, the configuration is allowed. However, REP selects only one of these ports as the segment primary edge port. You can identify the primary edge port for a segment by entering the `show rep topology` privileged EXEC command.

Note Configuring a port as preferred does not guarantee that it becomes the alternate port; it merely gives it a slight edge among equal contenders. The alternate port is usually a previously failed port.

What to do next

Note For configuring REP LSL timer and VLB, see Configuring REP Interfaces, on page 233.
Dual Rep Edge No-Neighbor Topology Example

The following configuration example shows a router running with Dual REP Edge No-Neighbor and two Cisco 7600 series routers running as non-REP devices.

Note

This section provides partial configurations intended to demonstrate a specific feature.

ASR_1

```
interface GigabitEthernet0/0
  service instance 1 ethernet
    encapsulation dot1q 1
    rewrite ingress tag pop 1 symmetric
    bridge-domain 1
  !
  service instance 2 ethernet
    encapsulation dot1q 2
    rewrite ingress tag pop 1 symmetric
    bridge-domain 2
  !
rep segment 1 edge no-neighbor primary

interface GigabitEthernet0/1
  service instance 1 ethernet
    encapsulation dot1q 1
    rewrite ingress tag pop 1 symmetric
    bridge-domain 1
  !
  service instance 2 ethernet
    encapsulation dot1q 2
    rewrite ingress tag pop 1 symmetric
    bridge-domain 2
  !
rep segment 1 edge no-neighbor preferred

interface Vlan1
  ip address 172.18.40.70 255.255.255.128
  no ptp enable

interface Vlan2
  ip address 1.1.1.1 255.255.255.0
  no ptp enable

interface Vlan3
  ip address 2.2.2.2 255.255.255.0
  no ptp enable

interface Vlan3
  ip address 4.4.4.2 255.255.255.0
  no ptp enable

ip route 3.3.3.0 255.255.255.0 1.1.1.2
ip route 5.5.5.0 255.255.255.0 1.1.1.2
```

7600_1

```
interface Port-channel69
```
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
!
interface GigabitEthernet3/25
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet3/26
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet3/35
ip address 3.3.3.2 255.255.255.0
!
interface GigabitEthernet3/36
ip address 5.5.5.2 255.255.255.0
!
interface GigabitEthernet5/2
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
!
interface Vlan1
no ip address
!
interface Vlan2
ip address 1.1.1.2 255.255.255.0
!
ip route 2.2.2.0 255.255.255.0 1.1.1.1
ip route 4.4.4.0 255.255.255.0 1.1.1.1

7600_2

interface Port-channel69
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
!
interface GigabitEthernet7/25
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet7/26
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet5/2
Setting up Manual Preemption for VLAN Load Balancing

If you do not enter the `rep preempt delay seconds` interface configuration command on the primary edge port to configure a preemption time delay, the default is to manually trigger VLAN load balancing on the segment. Be sure to complete all other segment configuration before manually preempting VLAN load balancing. When you enter the `rep preempt segment segment-id` command, a confirmation message appears before the command is executed because preemption can cause network disruption.

Note

Ethernet over Multiprotocol Label Switching (EoMPLS) is supported on the router for Cisco IOS Release 15.2(2)SNG and later releases.

Complete these steps on the switch that has the segment primary edge port to manually trigger VLAN load balancing on a segment:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `rep preempt segment segment-id`
4. `end`
5. `show rep topology`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 rep preempt segment segment-id</td>
<td>Manually triggers VLAN load balancing on the segment.</td>
</tr>
<tr>
<td>Example: <code>router> rep preempt segment 1</code></td>
<td>• Enter the segment ID.</td>
</tr>
</tbody>
</table>
Configuring SNMP Traps for REP

You can configure the switch to send REP-specific traps to notify the SNMP server of link operational status changes and port role changes. Complete these steps to configure REP traps:

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. ```snmp mib rep trap-rate value```
4. **end**
5. **show running-config**
6. **copy running-config startup-config**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
enable
Example: Router> enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2**
configure terminal
Example: Router# configure terminal | Enters global configuration mode. |
| **Step 3**
snmp mib rep trap-rate value
Example: Router(config)# snmp mib rep trap-rate 500 | Enables the router to send REP traps, and sets the number of traps sent per second.
- Enter the number of traps sent per second. The range is from 0 to 1000. The default is 0 (no limit imposed; a trap is sent at every occurrence). |
Monitoring REP

Complete the following steps to monitor the REP configuration:

SUMMARY STEPS

1. `enable`
2. `show interface [type number] rep [detail]`
3. `show rep topology [segment segment-id] [archive] [detail]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables the privileged EXEC mode.
• Enter your password if prompted.
| Example: Router> enable | |
| **Step 2** show interface [type number] rep [detail] | (Optional) Displays the REP configuration and status for a specified interface.
• Enter the physical Layer 2 interface or port channel (logical interface) and the optional detail keyword, if desired.
| Example: Router# show interface gigabitethernet0/1 rep detail | |
| **Step 3** show rep topology [segment segment-id] [archive] [detail] | (Optional) Displays REP topology information for a segment or for all segments, including the primary and secondary edge ports in the segment.
• Enter the optional keywords and arguments, as desired.
| Example: Router# show rep topology | |
Configuration Examples for REP

This section contains the following examples:

Configuring the REP Administrative VLAN: Example

This example shows how to configure the administrative VLAN as VLAN 100.

```text
Router# configure terminal
Router(config)# rep admin vlan 100
Router(config-if)# end
```

Configuring a REP Interface: Example

This example shows how to configure an interface as the primary edge port for segment 1, to send Spanning Tree Topology Changes Notification (STCNs) to segments 2 through 5, and to configure the alternate port as the port with port ID 0009001818D68700 to block all VLANs after a preemption delay of 60 seconds after a segment port failure and recovery.

```text
Router# configure terminal
Router(config)# interface gigabitethernet0/1
Router(config-if)# rep segment 1 edge primary
Router(config-if)# rep stcn segment 2-5
Router(config-if)# rep block port 0009001818D68700 vlan all
Router(config-if)# rep preempt delay 60
Router(config-if)# rep lsl-age-timer 6000
Router(config-if)# end
```

This example shows how to configure the same configuration when the interface has no external REP neighbor:

```text
Router# configure terminal
Router(config)# interface gigabitethernet0/1
Router(config-if)# rep segment 1 edge no-neighbor primary
Router(config-if)# rep stcn segment 2-5
Router(config-if)# rep block port 0009001818D68700 vlan all
Router(config-if)# rep preempt delay 60
Router(config-if)# rep lsl-age-timer 6000
```

Figure 13: Example of VLAN Blocking, on page 246 shows how to configure the VLAN blocking configuration. The alternate port is the neighbor with neighbor offset number 4. After manual preemption, VLANs 100 to 200 are blocked at this port and all other VLANs are blocked at the primary edge port E1 (Gigabit Ethernet port 0/1).

```text
Router# configure terminal
Router(config)# interface gigabitethernet0/1
Router(config-if)# rep segment 1 edge primary
Router(config-if)# rep block port 4 vlan 100-200
Router(config-if)# end
Router(config)# rep platform vlb segment 1 vlan 100-200
```
Setting up the Preemption for VLAN Load Balancing: Example

The following is an example of setting the preemption for VLAN load balancing on a REP segment.

Router> enable

Router# configure terminal

Router# rep preempt segment 1
Router# end

Configuring SNMP Traps for REP: Example

This example shows how to configure the router to send REP traps at a rate of 10 traps per second:

Router> enable
Router# configure terminal
Router(config)# snmp mib rep trap-rate 10
Router(config)# end

Monitoring the REP Configuration: Example

The following is sample output of the `show interface rep detail` command. Use the `show interface rep detail` command on one of the REP interfaces to monitor and verify the REP configuration.

Router# show interface gigabitethernet0/1 rep detail

GigabitEthernet0/1 REP enabled
Segment-id: 2 (Edge)
PortID: 00010019E7144680
Preferred flag: No
Operational Link Status: TWO WAY
Current Key: 0002001121A2D5800E4D
Port Role: Open
Blocked Vlan: <empty>
Admin-vlan: 100
Cisco Topology Example

The following configuration example shows two Cisco routers and two Cisco 7600 series routers using a REP ring.

Note

This section provides partial configurations intended to demonstrate a specific feature.

ASR_1

```
interface GigabitEthernet0/0
service instance 1 ethernet
   encapsulation dot1q 1
   rewrite ingress tag pop 1 symmetric
   bridge-domain 1
! service instance 2 ethernet
   encapsulation dot1q 2
   rewrite ingress tag pop 1 symmetric
   bridge-domain 2
! rep segment 1
!
interface GigabitEthernet0/1
service instance 1 ethernet
   encapsulation dot1q 1
   rewrite ingress tag pop 1 symmetric
   bridge-domain 1
! service instance 2 ethernet
   encapsulation dot1q 2
   rewrite ingress tag pop 1 symmetric
   bridge-domain 2
! rep segment 1
!
interface GigabitEthernet0/3
service instance 3 ethernet
   encapsulation dot1q 3
   rewrite ingress tag pop 1 symmetric
   bridge-domain 3
!
interface GigabitEthernet0/4
service instance 4 ethernet
   encapsulation dot1q 4
```
interface Vlan1
ip address 172.18.40.70 255.255.255.128
no ptp enable
!
interface Vlan2
ip address 1.1.1.1 255.255.255.0
no ptp enable
!
interface Vlan3
ip address 2.2.2.2 255.255.255.0
no ptp enable
!
interface Vlan3
ip address 4.4.4.2 255.255.255.0
no ptp enable
!
ip route 3.3.3.0 255.255.255.0 1.1.1.4
ip route 5.5.5.0 255.255.255.0 1.1.1.4

ASR_2

t-service instance 1 ethernet
 encapsulation dot1q 1
 rewrite ingress tag pop 1 symmetric
 bridge-domain 1
 !
service instance 2 ethernet
 encapsulation dot1q 2
 rewrite ingress tag pop 1 symmetric
 bridge-domain 2
 !
rep segment 1
interface GigabitEthernet0/1
service instance 1 ethernet
 encapsulation dot1q 1
 rewrite ingress tag pop 1 symmetric
 bridge-domain 1
 !
service instance 2 ethernet
 encapsulation dot1q 2
 rewrite ingress tag pop 1 symmetric
 bridge-domain 2
 !
rep segment 1
!
interface Vlan1
ip address 172.18.44.239 255.255.255.0
no ptp enable
!
interface Vlan2
ip address 1.1.1.2 255.255.255.0
no ptp enable

7600_1

tinterface Port-channel69
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
!
interface GigabitEthernet3/25
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet3/26
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet3/35
ip address 3.3.3.2 255.255.255.0
!
interface GigabitEthernet3/36
ip address 5.5.5.2 255.255.255.0
!
interface GigabitEthernet5/2
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
rep segment 1 edge
interface Vlan1
no ip address
!
interface Vlan2
ip address 1.1.1.4 255.255.255.0
!
ip route 2.2.2.0 255.255.255.0 1.1.1.1
ip route 4.4.4.0 255.255.255.0 1.1.1.1

7600_2

interface Port-channel69
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
!
interface GigabitEthernet5/2
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
rep segment 1 edge
!
interface GigabitEthernet7/25
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface GigabitEthernet7/26
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 1,2
switchport mode trunk
channel-group 69 mode on
!
interface Vlan1
no ip address
!
interface Vlan2
ip address 1.1.1.3 255.255.255.0
CHAPTER 13

Configuring MST on EVC Bridge Domain

This section describes how to configure MST on EVC Bridge Domain.

- Overview of MST and STP, on page 251
- Overview of MST on EVC Bridge Domain, on page 252
- Restrictions and Guidelines, on page 252
- Configuring MST on EVC Bridge Domain, on page 254

Overview of MST and STP

Spanning Tree Protocol (STP) is a Layer 2 link-management protocol that provides path redundancy while preventing undesirable loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. STP operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

MST maps multiple VLANs into a spanning tree instance, with each instance having a spanning tree topology independent of other spanning tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of spanning tree instances required to support a large number of VLANs. MST improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths).

For routers to participate in MST instances, you must consistently configure the routers with the same MST configuration information. A collection of interconnected routers that have the same MST configuration comprises an MST region. For two or more routers to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same MST name.

The MST configuration controls the MST region to which each router belongs. The configuration includes the name of the region, the revision number, and the MST VLAN-to-instance assignment map.

A region can have one or multiple members with the same MST configuration; each member must be capable of processing RSTP bridge protocol data units (BPDUs). There is no limit to the number of MST regions in a network, but each region can support up to 65 spanning tree instances. Instances can be identified by any number in the range from 0 to 4094. You can assign a VLAN to only one spanning tree instance at a time.
Overview of MST on EVC Bridge Domain

The MST on EVC Bridge-Domain feature uses VLAN IDs for service-instance-to-MST-instance mapping. EVC service instances with the same VLAN ID (the outer VLAN IDs in the QinQ case) as the one in another MST instance will be mapped to that MST instance.

EVC service instances can have encapsulations with a single tag as well as double tags. In case of double tag encapsulations, the outer VLAN ID shall be used for the MST instance mapping, and the inner VLAN ID is ignored.

A single VLAN per EVC is needed for the mapping with the MST instance. The following service instances without any VLAN ID or with multiple outer VLAN IDs are not supported:

- Untagged (encapsulation untagged) is supported but there is no loop detection on the EVC
- Priority-tagged (encapsulation priority-tagged)
- Multiple outer tags (encapsulation dot1q 200 to 400 second-dot1q 300)

Restrictions and Guidelines

The following restrictions and guidelines apply to MST on EVC bridge domain:

- Cisco IOS Release 15.1(2)SNG supports EVC port-channels.
- With default configuration, does not run any spanning-tree protocol. Hence all the ports participating in bridge domains are moved to forward state. To enable MSTP, issue `spanning-tree mode mstp` command in the global configuration mode.
- Main interface where the EFP is configured must be up and running with MSTP as the selected Spanning Tree Mode (PVST and Rapid-PVST are not supported).
- The SPT PortFast feature is not supported with EFPs.
- The co-existence of REP and mLACP with MST on the same port is not supported.
- Any action performed on VPORT (which represents a particular VLAN in a physical port) affects the bridge domain and other services.
- Supports 32 MSTs and one CIST (common and internal spanning tree).
- Supports one MST region.
- Scales to 4000 EFPs.
- Untagged EVCs do not participate in MST loop detection.
- Service instances without any VLAN ID in the encapsulation are not supported, because a unique VLAN ID is required to map an EVC to an MST instance.
- Supports EFPs with unambiguous outer VLAN tag (that is, no range, list on outer VLAN, neither default nor untagged).
- Removing dot1q encapsulation removes the EVC from MST.
- Changing the VLAN (outer encapsulation VLAN of EVC) mapping to a different MST instance will move the EVC port to the new MST instance.
- Changing an EVC service instance to a VLAN that has not been defined in MST 1 will result in mapping of EVC port to MST 0.
- The peer router of the EVC port must also be running MST.
- MST is supported only on EVC BD. EVCs without BD configuration will not participate in MST.
- When an MST is configured on the outer VLAN, you can configure any number of service instances with the same outer VLAN as shown in the following configuration example.
nPE1#sh run int gi0/5
Building configuration...
Current configuration : 373 bytes
!
!interface GigabitEthernet0/5
description connected to CE1
no ip address
service instance 100 ethernet	en encapsulation dot1q 100 second-dot1q 1
bridge-domain 100
!
service instance 101 ethernet	en encapsulation dot1q 100 second-dot1q 2
bridge-domain 101
!
service instance 102 ethernet	en encapsulation dot1q 100 second-dot1q 120-140
bridge-domain 102
!
end
nPE1#sh run int gi0/6
Building configuration...
Current configuration : 373 bytes
!
!interface GigabitEthernet0/6
description connected to CE1
no ip address
service instance 100 ethernet	en encapsulation dot1q 100 second-dot1q 1
bridge-domain 100
!
service instance 101 ethernet	en encapsulation dot1q 100 second-dot1q 2
bridge-domain 101
!
service instance 102 ethernet	en encapsulation dot1q 100 second-dot1q 120-140
bridge-domain 102
!
end
nPE1#sh span vlan 100
MST0
Spanning tree enabled protocol mstp
Root ID Priority 32768
 Address 0018.742f.3b80
 Cost 0
 Port 2821 (GigabitEthernet12/5)
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32768 (priority 32768 sys-id-ext 0)
 Address 001a.303c.3400
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Interface Role Sts Cost Prio.Nbr Type
------------------------ ---- --- ----------- ---------- --------------------------------
Gi12/5 Root FWD 20000 128.2821 P2p
Gi12/6 Altn BLK 20000 128.2822 P2p
nPE1#
Configuring MST on EVC Bridge Domain

Figure 14: Untagged EVCs not participating in MST loop detection, on page 254 shows an example of the untagged EVCs that do not participate in MST loop detection. When you link your networks together as shown below, a loop is caused since MST is not running on the untagged EVCs.

Figure 14: Untagged EVCs not participating in MST loop detection

Figure 15: MST with untagged EVCs without loop

Complete the following steps to configure MST on EVC bridge domain.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/port`
4. `[no] service instance id Ethernet [service-name]`
5. `encapsulation dot1q vlan-id`
6. `[no] bridge-domain bridge-id`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router# enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface gigabitethernet slot/port</td>
<td>Specifies the gigabit ethernet interface to configure.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• slot/port—Specifies the location of the interface.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet 0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>[no] service instance id Ethernet [service-name]</td>
<td>Creates a service instance (EVC instance) on an interface and sets the device into the config-if-srv submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(config-if)# service instance 101 ethernet</td>
</tr>
<tr>
<td>Step 5</td>
<td>encapsulation dot1q vlan-id</td>
<td>Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(config-if-srv)# encapsulation dot1q 13</td>
</tr>
<tr>
<td>Step 6</td>
<td>[no] bridge-domain bridge-id</td>
<td>Binds the service instance to a bridge domain instance where bridge-id is the identifier for the bridge domain instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Router(config-if-srv)# bridge-domain 12</td>
</tr>
</tbody>
</table>

Configuration Example for MST on EVC Bridge Domain

In the following example, two interfaces participate in MST instance 0, the default instance to which all VLANs are mapped:

```plaintext
Router# enable
Router# configure terminal
Router(config)# interface g0/1
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encapsulation dot1q 2
Router(config-if-srv)# bridge-domain 100
Router(config-if-srv)# interface g0/3
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encapsulation dot1q 2
Router(config-if-srv)# bridge-domain 100
Router(config-if-srv)# end
```
Verification

Use this command to verify the configuration:

```
Router# show spanning-tree vlan 2
MST0
    Spanning tree enabled protocol mstp
    Root ID  Priority  32768
    Address  0009.e91a.bc40
    This bridge is the root
    Hello Time  2 sec Max Age 20 sec Forward Delay 15 sec
    Bridge ID  Priority  32768  (priority 32768 sys-id-ext 0)
    Address  0009.e91a.bc40
    Hello Time  2 sec Max Age 20 sec Forward Delay 15 sec
    Interface  Role  Sts  Cost Prio. Nbr  Type
    ------------------ ---- ---- --------- -------- --------------------------------
    Gi4/1  Desg  FWD  20000  128.1537  P2p
    Gi4/3  Back BLK  20000  128.1540  P2p
```

In this example, interface gi4/1 and interface gi4/3 are connected back-to-back. Each has a service instance (EFP) attached to it. The EFP on both interfaces has an encapsulation VLAN ID of 2. Changing the VLAN ID from 2 to 8 in the encapsulation directive for the EFP on interface gi4/1 stops the MSTP from running in the MST instance to which the old VLAN is mapped and starts the MSTP in the MST instance to which the new VLAN is mapped:

```
Router(config-if)# interface g4/1
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encap dot1q 8
Router(config-if-srv)# end
```

Use this command to verify the configuration:

```
Router# show spanning-tree vlan 2
MST1
    Spanning tree enabled protocol mstp
    Root ID  Priority  32769
    Address  0009.e91a.bc40
    This bridge is the root
    Hello Time  2 sec Max Age 20 sec Forward Delay 15 sec
    Bridge ID  Priority  32769  (priority 32768 sys-id-ext 1)
    Address  0009.e91a.bc40
    Hello Time  2 sec Max Age 20 sec Forward Delay 15 sec
    Interface  Role  Sts  Cost Prio. Nbr  Type
    ------------------ ---- ---- --------- -------- --------------------------------
    Gi4/3  Desg  FWD  20000  128.1540  P2p
```

```
Router# show spanning-tree vlan 8
MST2
    Spanning tree enabled protocol mstp
    Root ID  Priority  32770
    Address  0009.e91a.bc40
    This bridge is the root
    Hello Time  2 sec Max Age 20 sec Forward Delay 15 sec
    Bridge ID  Priority  32770  (priority 32768 sys-id-ext 2)
    Address  0009.e91a.bc40
    Hello Time  2 sec Max Age 20 sec Forward Delay 15 sec
    Interface  Role  Sts  Cost Prio. Nbr  Type
    ------------------ ---- ---- --------- -------- --------------------------------
    Gi4/1  Desg  FWD  20000  128.1537  P2p
```

In this example, interface gi4/3 (with an EFP that has an outer encapsulation VLAN ID of 2 and a bridge domain of 100) receives a new service:
Now there are two EFPs configured on interface gi4/3 and both of them have the same outer VLAN 2.

The preceding configuration does not affect the MSTP operation on the interface; there is no state change for interface gi4/3 in the MST instance it belongs to.

This example shows MST on port channels:

Router# show spanning-tree mst 1

MST1 vlans mapped: 2
Bridge address 0009.e91a.bc40 priority 32769 (32768 sysid 1)
Root this switch for MST1
Interface Role Sts Cost Prio.Nbr Type
---------------- ---- --- --------- -------- --------------------------------
Gi4/3 Desg FWD 20000 128.1540 P2p

Router# show spanning-tree vlan 3

MST1
Spanning tree enabled protocol mstp
Root ID Priority 32769
Address 0001.6441.68c0
Cost 20000
Port 3329 (Port-channel15)
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 000a.f331.8e80
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Interface Role Sts Cost Prio.Nbr Type
------------------- ---- --- --------- -------- --------------------------------
Gi2/0/0 Desg FWD 20000 128.257 P2p
Po5 Root FWD 10000 128.3329 P2p
Po6 Altn BLK 10000 128.3330 P2p

Troubleshooting Tips

Table 19: Troubleshooting Scenarios

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Multiple Spanning Tree Protocol (MSTP) incorrectly or inconsistently formed due to misconfiguration and BPDU loss | To avoid BPDU loss, re-configure these on the following nodes:
 - Configuration name
 - Bridge revision
 - Provider-bridge mode
 - Instance to VLAN mapping

 Determine if node A is sending BPDU to node B. Use the `show spanning-tree mst interface gi1/1 service instance` command for each interface connecting the nodes. Only designated ports relay periodic BPDU. |
| MSTP correctly formed, but traffic flooding occurs | Intermittent BPDU loss occurs when the spanning tree appears incorrectly in the show commands, but relays topology change notifications. These notifications cause a MAC flush, forcing traffic to flood until the MAC addresses are re-learned. Use the `debug spanning-tree mst packet full {received | sent}` command to debug topology change notifications.

 Use the `debug spanning-tree mst packet brief {received | sent}` command on both nodes to check for missing BPDU. Monitor the timestamps. A time gap greater than or equal to six seconds causes topology change. |
| MSTP shows incorrect port state | When the spanning tree protocol (STP) attempts to change the port state, it uses L2VPN. Check the value of the sent update. If the value is Yes, then STP is awaiting an update from L2VPN. |
| Packet forwarding does not match the MSTP state | Complete the following steps to verify and troubleshoot:
 1. Shut down redundant links, remove MSTP configuration, and ensure that basic bridging works.
 2. Check the state of each port as calculated by MSTP, and compare it with the packet counts transmitted and received on ports and EFPs controlled by MSTP. Normal data packets should be sent/received only on ports in the forwarding (FWD) state. BPDU should be sent/received on all ports controlled by MSTP.
 3. Ensure that BPDU are flowing and that root bridge selection is correct and check the related scenarios.
 4. Use the `show l2vpn bridge-domain detail` command to confirm the status of the members of the bridge domain. Ensure that the relevant bridge domain members are active.
 5. Check the forwarding state as programmed in hardware. |
Multiprotocol Label Switching

• Configuring Multiprotocol Label Switching, on page 259

Configuring Multiprotocol Label Switching

Several technologies such as pseudowires utilize MPLS for packet transport. For information on how to configure MPLS, see the MPLS Configuration Guide, Cisco IOS Release 15.1S.

The MPLS feature is supported on the series routers with the following prerequisites and restrictions:

• The router does not necessarily support all of the commands listed in the Release 15.1(2)S documentation.
• In router, mpls ip is configured only on switch virtual interface (SVI). The router supports only a maximum of 60 MPLS enabled SVI interfaces.
• If port channel is configured on an MPLS core, the encapsulation ID should be the same as the bridge domain.
• The maximum number of Label Distribution Protocol (LDP) labels supported in router is 4000.
• MPLS byte switched counters are not supported.
• For MPLS network, the maximum number of labeled prefixes is 4000.
• For MPLS network with Fast Reroute (FRR), the maximum number of labeled prefixes is 1600.
• For MPLS network with FRR, the maximum number of VRF prefixes is 1600.
• For MPLS network with FRR, the maximum number of labeled and VRF prefixes together is 1600.
• The maximum number of prefix scalability at the global level (without MPLS) is 12000.
• The maximum number of prefix scalability for the global and VRF domain combination is 12000. Here, the VRF scale should not exceed 4000 and the overall IPv4 prefix should not exceed 12000.
• The system scalability is affected if non-MPLS (IGP’s) or MPLS scenarios exceed the prefix scalability.
Configuring Multiprotocol Label Switching
CHAPTER 15

Configuring EoMPLS

The router supports EoMPLS, a subset of AToM that uses a tunneling mechanism to carry Layer 2 Ethernet traffic. Ethernet Over MPLS (EoMPLS) encapsulates Ethernet frames in MPLS packets and forwards them across the MPLS network. In addition to dot1q, untagged, and default encapsulation support for an Ethernet Virtual Connection (EVC) with cross connect, effective with Cisco IOS Release 15.4(2)S, the router supports dot1ad encapsulation for the EVC with cross connect.

- Understanding EoMPLS, on page 261
- Configuring EoMPLS, on page 262
- EoMPLS Configuration Example, on page 264
- Configuring EVC Default Encapsulation with xconnect, on page 265
- Configuring Pseudowire Redundancy, on page 267
- Port-Based EoMPLS, on page 268
- Feature Information for Configuring EoMPLS, on page 269

Understanding EoMPLS

EoMPLS encapsulates Ethernet frames in MPLS packets and forwards them across the MPLS network. Each frame is transported as a single packet, and the PE routers connected to the backbone add and remove labels, as appropriate, for packet encapsulation:

- The ingress PE router receives an Ethernet frame and encapsulates the packet by removing the preamble, the Start Frame Delimiter (SFD), and the frame check sequence (FCS). The rest of the packet header is not changed.
- The ingress PE router adds a point-to-point virtual connection (VC) label and a label-switched path (LSP) tunnel label for normal MPLS routing through the MPLS backbone.
- The network core router uses the LSP tunnel label to move the packet through the MPLS backbone and does not distinguish Ethernet traffic from other types of packets in the MPLS backbone.
- At the other end of the MPLS backbone, the egress PE router receives the packet and de-encapsulates the packet by removing the LSP tunnel label, if present. The PE router also removes the VC label from the packet.
- The PE router updates the header, if necessary, and sends the packet out of the appropriate interface to the destination switch.

The MPLS backbone uses the tunnel labels to transport a packet between the PE routers. The egress PE router uses the VC label to select the outgoing interface for the Ethernet packet. Because EoMPLS tunnels are unidirectional, for bidirectional EoMPLS, you should configure one tunnel in each direction.
The point-to-point VC requires you to configure VC endpoints at the two PE routers. Only the PE routers at the ingress and egress points of the MPLS backbone know about the VCs dedicated to transporting Layer 2 traffic. Other routers do not have table entries for these VCs.

Restrictions for EoMPLS

• When configuring an EoMPLS pseudowire on the 1 Router, you cannot configure an IP address on the same interface as the pseudowire.
• EoMPLS xconnect with VLAN range is not supported.
• EoMPLS xconnect port with double-tagged encapsulation is not supported.
• When port channel is configured on the MPLS core, the encapsulation ID should be equal to the bridge domain.
• To configure cross-connect with dot1ad encapsulation on an EVC, the interface should be a dot1ad NNI port. This means that a service instance with dot1q encapsulation cannot be configured on the port.
• Port-based cross-connect cannot be configured on the dot1ad NNI port interface.
• The encapsulation dot1ad command with cross-connect is not supported on the port channel.
• The dot1ad encapsulation with cross connect is not supported for double tag (QinQ).
• In case of encapsulation dot1ad over cross-connect, push operation at egress is not possible on cross-connect port in scenarios which requires pushing an additional dot1ad tag on the incoming dot1ad tag.
• The maximum number of cross-connect sessions supported on the Router is 1000. In case of pseudowire redundancy, a maximum of 500 sessions for primary and 500 sessions for backup pseudowire are supported.
• Default EFP under xconnect and untagged EFP under bridge domain on the same interface are not supported.
• Encapsulation is supported only on bridge domain and cross-connect.
• The rewrite command in the default EVC encapsulation is rejected.
• Default encapsulation with cross-connect is not supported on the port-channel interface.
• Untagged EFPS are supported only on the port with default encapsulation.
• Layer 3 routing is not supported. Layer 2 VPN is supported on the default encapsulation EFP.
• DSCP based classification for marking is not supported.

Configuring EoMPLS

Complete the following steps to configure EoMPLS:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface interface-id
4. ethernet dot1ad nni
5. service instance instance-id ethernet
6. encapsulation {dot1q vlan-id | dot1ad vlan-id | untagged | default }
7. rewrite ingress tag pop 1 symmetric
8. xconnect peer-ip-address vc-id encapsulation mpls
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface <code>interface-id</code></td>
<td>Specify the interface, and enter interface configuration mode. Valid interfaces are physical ports.</td>
</tr>
<tr>
<td>Example:</td>
<td>Perform Step 4 if you want to configure dot1ad encapsulation for an EVC with cross-connect.</td>
</tr>
<tr>
<td><code>Router(config)# interface gigabitethernet 0/1</code></td>
<td>Go to Step 5 if you want to configure dot1q encapsulation for an EVC with cross-connect.</td>
</tr>
<tr>
<td>Step 4 ethernet dot1ad nni</td>
<td>Configures a dot1ad NNI port when you want to configure the dot1ad encapsulation for an EVC with cross-connect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ethernet dot1ad nni</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 service instance <code>instance-id</code> ethernet</td>
<td>Configure a service instance and enter service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The <code>instance-id</code> — The service instance identifier, an integer from 1 to 4000.</td>
</tr>
<tr>
<td><code>Router(config-if)# service instance 101 ethernet</code></td>
<td>• (Optional) <code>ethernet name</code> — The name of a previously configured EVC. You do not need to use an EVC name in a service instance.</td>
</tr>
<tr>
<td>Step 6 encapsulation `{dot1q vlan-id</td>
<td>dot1ad vlan-id</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>dot1q</code> — Configures 802.1Q encapsulation.</td>
</tr>
<tr>
<td><code>Router(config-if-srv)# encapsulation dot1q 51</code></td>
<td>• <code>dot1ad</code> — Configures 802.1ad encapsulation.</td>
</tr>
<tr>
<td>Step 7 rewrite ingress tag pop 1 symmetric</td>
<td>(Optional) Specifies that encapsulation modification to occur on packets at ingress.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>pop 1</code> — Removes the outermost tag.</td>
</tr>
<tr>
<td><code>Router(config-if-srv)# rewrite ingress tag pop 1 symmetric</code></td>
<td>• <code>symmetric</code> — Configures the packet to undergo the reverse of the ingress action at egress. If a tag is removed at ingress, it is added at egress.</td>
</tr>
</tbody>
</table>
EoMPLS Configuration Example

The following is a sample configuration of dot1q encapsulation with cross-connect:

```plaintext
interface Loopback0
description for_mpls_ldp
ip address 99.99.99.99 255.255.255.255
!
interface GigabitEthernet0/10
description Core_facing
no negotiation auto
service instance 150 ethernet
encapsulation dot1q 150
rewrite ingress tag pop 1 symmetric
bridge-domain 150
!
interface GigabitEthernet0/11
description CE_facing
service instance 501 ethernet
encapsulation dot1q 501
rewrite ingress tag pop 1 symmetric
xconnect 111.0.1.1 501 encapsulation mpls
!
interface FastEthernet0/0
ip address 10.104.99.74 255.255.255.0
full-duplex
!
interface Vlan1
!
interface Vlan150
ip address 150.0.0.1 255.255.255.0
mpls ip
!
routing ospf 7
network 99.99.99.99 0.0.0.0 area 0
network 150.0.0.0 0.0.0.255 area 0
!
o no ip http server
ip route 10.0.0.0 255.0.0.0 10.104.99.1
!
logging ecm config
!
mpls ldp router-id Loopback0 force
!
end
```
The following is a sample configuration of dot1ad encapsulation with cross-connect:

```
! interface GigabitEthernet0/1
  negotiation auto
  ethernet dot1ad nni
  service instance 45 ethernet
  encapsulation dot1ad 45
  rewrite ingress tag pop 1 symmetric
  xconnect 13.13.13.13 45 encapsulation mpls
```

Configuring EVC Default Encapsulation with xconnect

Complete the following steps to configure EVC default encapsulation for xconnect.

Note

When default encapsulation is configured on xconnect, the router does not support untagged encapsulation on the bridge domain of the same interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `service instance instance-id ethernet`
5. `encapsulation default`
6. `xconnect peer-ip-address vc-id encapsulation mpls`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router> enable
```

```
Router# configure terminal
```

```
Router(config)# interface GigabitEthernet0/4
```
Purpose

Command or Action

Step 4
service instance instance-id ethernet
Example:
Router(config-if)# service instance 10 ethernet

Purpose
Creates a service instance on an interface and defines the matching criteria.
- *instance-id*—Integer that uniquely identifies a service instance on an interface.

Step 5
encapsulation default
Example:
Router(config-if)# encapsulation default

Purpose
Configures the default service instance. Configures default encapsulation to match all the ingress frames on the port.

Step 6
xconnect peer-ip-address vc-id encapsulation mpls
Example:
Router(config-if-srv)# xconnect 1.1.1.1 100 encapsulation mpls

Purpose
Binds an attachment circuit to a pseudowire, and to configure an Any Transport over MPLS (AToM) static pseudowire.
- *peer-ip-address*—IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable.
- *vc-id*—The 32-bit identifier of the virtual circuit (VC) between the PE routers.
- *encapsulation*—Specifies the tunneling method to encapsulate the data in the pseudowire.
- *mpls*—Specifies MPLS as the tunneling method.

Verifying EVC Default Encapsulation with xconnect

To verify the configuration of EVC default encapsulation with xconnect, use the `show` command shown below.

```plaintext
Router# show running-config interface gigabitEthernet 0/4  
Building configuration...  
Current configuration : 181 bytes  
!  
interface GigabitEthernet0/4  
  no ip address  
  negotiation auto  
  no keepalive  
  service instance 1 ethernet  
    encapsulation default  
    xconnect 2.2.2.2 100 encapsulation mpls  
!  
end
```

Configuration Example for EVC Default Encapsulation with Xconnect

```plaintext
!  
interface GigabitEthernet0/4  
  service instance 10 ethernet  
  encapsulation default  
  xconnect 1.1.1.1 100 encapsulation mpls  
!```
Configuring Pseudowire Redundancy

Pseudowire (PW) Redundancy enables you to configure a backup pseudowire in case the primary pseudowire fails. When the primary pseudowire fails, the PE router can switch to the backup pseudowire. Traffic can be switched back to the primary pseudowire after the path is operational again.

You can configure the network with redundant pseudowires and redundant network elements, as shown in the following figure.

*Figure 16: Configuring Redundant Pseudowires*

Configuration Commands

Complete the following steps to configure pseudowire redundancy:

**SUMMARY STEPS**

1. `configure terminal`
2. `interface GigabitEthernet0/2`
3. `service instance 101 ethernet`
4. `encapsulation dot1q 101`
5. `rewrite ingress tag pop 1 symmetric`
6. `xconnect 11.205.1.1 141 encapsulation mpls`
7. `backup peer 13.205.3.3 1141`
8. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface GigabitEthernet0/2</td>
<td>Specifies an interface to configure.</td>
</tr>
<tr>
<td><strong>Step 3</strong> service instance 101 ethernet</td>
<td>Configures a service instance and enters the service instance configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation dot1q 101</td>
<td>Configures the encapsulation type for the service instance.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
**Step 5** rewrite ingress tag pop 1 symmetric | Specifies the encapsulation modification to be performed on packets at ingress.  
  - **pop 1**—Removes the outermost tag.  
  - **symmetric**—Configures the packet to undergo the reverse of the ingress action at egress. If a tag is removed at ingress, it is added at egress.  
  **Note** Although the **symmetric** keyword seems to be optional, you must enter it for **rewrite** to function correctly.

**Step 6** xconnect 11.205.1.1 141 encapsulation mpls | Binds the VLAN attachment circuit to an AToM pseudowire for EoMPLS.

**Step 7** backup peer 13.205.3.3 1141 | Specifies a backup peer for redundancy.

**Step 8** end | Returns to privileged EXEC mode.  
  - **show mpls l2t vc id**  
  - **show mpls l2t vc detail**  
  - **show mpls infrastructure lfd pseudowire internal**  
  Use these commands to display pseudowire information.

---

**Port-Based EoMPLS**

The port mode allows a frame coming into an interface to be packed into an MPLS packet and transported over the MPLS backbone to an egress interface. The entire ethernet frame without the preamble or frame check sequence (FCS) is transported as a single packet. To configure port mode, use the xconnect command in the main interface mode and specify the destination address and the VC ID. The syntax and semantics of the xconnect command are the same as for all other transport types. Each interface is associated with one unique pseudowire VC label.

Complete the following steps to configure port-based EoMPLS:

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **interface GigabitEthernet slot/port**
4. **xconnect peer-router-id vcid encapsulation mpls**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables the privileged EXEC mode.  
  **Example:** Enter your password, if prompted. |
**Command or Action** | **Purpose**
--- | ---
Router> `enable` | Enters the global configuration mode.

**Step 2**
Example:
Router> `configure terminal` | Specifies an interface to configure.

**Step 3**
Example:
Router(config)# `interface GigabitEthernet 0/2` | Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as that for all other Layer 2 transports.

**Step 4**
Example:
Router(config)# `xconnect peer-router-id 10.0.0.1 vcid 123 encapsulation mpls` | Configuring EoMPLS

---

**What to do next**

**Feature Information for Configuring EoMPLS**

The following table lists the features in this module and provides links to specific configuration information. Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring EoMPLS</td>
<td>15.1(2)SNI</td>
<td>This feature was introduced on the Routers.</td>
</tr>
<tr>
<td>802.1ad for EVC Cross Connect</td>
<td>15.4(2)S</td>
<td>This feature was introduced on the Routers.</td>
</tr>
</tbody>
</table>
CHAPTER 16

Configuring MPLS VPNs

A Virtual Private Network (VPN) is an IP-based network that delivers private network services over a public infrastructure. VPNs allow you to create a set of sites that can communicate privately over the Internet or other public or private networks.

- Understanding MPLS VPNs, on page 271
- Configuring MPLS VPNs, on page 272
- Configuration Examples for MPLS VPN, on page 272

Understanding MPLS VPNs

A conventional VPN consists of a full mesh of tunnels or permanent virtual circuits (PVCs) connecting all of the sites within the VPN. This type of VPN requires changes to each edge device in the VPN in order to add a new site. MPLS VPNs, also known as Layer 3 VPNs, are easier to manage and expand than conventional VPNs because they use layer 3 communication protocols and are based on a peer model. The peer model enables the service provider and customer to exchange Layer 3 routing information, enabling service providers to relay data between customer sites without customer involvement. The peer model also provides improved security of data transmission between VPN sites because data is isolated between improves security between VPN sites.

The supports the following MPLS VPN types:

- Basic Layer 3 VPN—Provides a VPN private tunnel connection between customer edge (CE) devices in the service provider network. The provider edge (PE) router uses Multiprotocol Border Gateway Protocol (MP-BGP) to distribute VPN routes and MPLS Label Distribution Protocol (LDP) to distribute Interior Gateway Protocol (IGP) labels to the next-hop PE router.
- Multi-VRF CE—Multi-VRF CE extends limited PE functionality to a CE router in an MPLS-VPN model. A CE router now has the ability to maintain separate VRF tables in order to extend the privacy and security of an MPLS-VPN down to a branch office rather than just at the PE router node.

Note

do not support VRF on TDM interfaces.
Configuring MPLS VPNs

Layer 3 VPNs allow you to establish VPNs in a routed environment, improving the flexibility and ease of maintenance of VPNs. For instructions on how to configure layer 3 VPNs, see the MPLS Configuration Guide, Cisco IOS Release 15.1S.

The following restrictions apply to MPLS VPNs:

- When the port channel is on core, bridge ID must be equal to the encapsulation ID.
- Equal Cost Multipath (ECMP) is not supported for swap cases.
- ECMP is not supported for MPLS-labeled prefixes due to hardware limitation and only one MPLS path can be configured at a time.

Configuration Examples for MPLS VPN

This section contains the following sample configurations involving three routers:

**PE1 Configuration**

Current configuration : 3326 bytes

version 15.1
service timestamps debug datetime msec
service timestamps log datetime msec
hostname Router
boot-start-marker
boot-end-marker
!card type command needed for slot/vwic-slot 0/0
no logging console
no aaa new-model
ip source-route
ip cef
!ip vrf customer_2
rd 1:2
route-target export 1:2
route-target import 1:2
!
!
no ip domain lookup
no ipv6 cef
!
multilink bundle-name authenticated
! spanning-tree mode pvst
spanning-tree extend system-id
!
vlan internal allocation policy ascending
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
mpls ip
!
router ospf 22
router-id 1.0.0.1
redistribute connected subnets
network 1.0.0.0 0.0.0.255 area 23
network 11.0.0.0 0.0.0.255 area 23
!
router bgp 1
bgp log-neighbor-changes
neighbor 111.0.1.1 remote-as 1
neighbor 111.0.1.1 update-source Loopback100
!
address-family ipv4
  redistribute connected
  neighbor 111.0.1.1 activate
  neighbor 111.0.1.1 send-community both
exit-address-family
!
address-family vpnv4
  neighbor 111.0.1.1 activate
  neighbor 111.0.1.1 send-community both
exit-address-family
!
address-family ipv4 vrf cust
  redistribute static
  aggregate-address 190.0.0.0 255.0.0.0 summary-only
  redistribute connected
  neighbor 2.2.1.2 remote-as 100
  neighbor 2.2.1.2 activate
exit-address-family
!
ip forward-protocol nd
!
no ip http server
!
logging ecm config
cdp run
!
mpls ldp router-id Loopback100 force
!
control-plane
!
line con 0
line con 1
transport preferred lat pad telnet rlogin udp tn mop ssh
transport output lat pad telnet rlogin udp tn mop ssh
line vty 0 4
login
!
exception data-corruption buffer truncate
exception crashinfo buffersize 128
!
end

Provider Configuration

Router_1#show running-config interface gigabitEthernet
Building configuration...
Current configuration : 80 bytes
! interface GigabitEthernet
  ip address 9.0.0.1 255.255.255.0
  mpls ip
end

Router_1# show running-config interface gigabitEthernet
Building configuration...
Current configuration : 91 bytes
!
interface GigabitEthernet
  ip address 1.0.0.2 255.255.255.0
  mpls ip
end

Router_1#

mpls ldp router-id Loopback2 force

Router_1# show running-config partition router bgp 1
Building configuration...
Current configuration : 664 bytes
!
Configuration of Partition - router bgp 1
!
!
router bgp 1
  bgp log-neighbor-changes
  neighbor 100.0.0.1 remote-as 1
  neighbor 100.0.0.1 update-source Loopback2
  neighbor 100.0.1.1 remote-as 1
  neighbor 100.0.1.1 update-source Loopback2
!
  address-family ipv4
    no synchronization
    neighbor 100.0.0.1 activate
    neighbor 100.0.0.1 send-community both
    neighbor 100.0.1.1 activate
    neighbor 100.0.1.1 send-community both
    no auto-summary
    exit-address-family
  !
  address-family vpnv4
    neighbor 100.0.0.1 activate
    neighbor 100.0.0.1 send-community both
    neighbor 100.0.1.1 activate
    neighbor 100.0.1.1 send-community both
    exit-address-family
  !
!
end

Router_1#

Router_1# show running-config partition router ospf 1
Building configuration...
Current configuration : 197 bytes
!
Configuration of Partition - router ospf 1
!
!
router ospf 1
  log-adjacency-changes
  redistribute connected subnets
  network 1.0.0.0 0.0.0.255 area 0
  network 9.0.0.0 0.0.0.255 area 0
!
PE2 Configuration

Interface details

Router_3#show running-config interface gigabitEthernet
Building configuration...
Current configuration : 79 bytes
!
interface GigabitEthernet
 ip address 9.0.0.2 255.255.255.0
 mpls ip
end
Router_3#show running-config interface gigabitEthernet
Building configuration...
Current configuration : 107 bytes
!
interface GigabitEthernet
 ip vrf forwarding customer_red
 ip address 20.20.30.100 255.255.255.0
end
Router_3#show running-config interface gigabitEthernet
Building configuration...
Current configuration : 136 bytes
!
interface GigabitEthernet
 ip vrf forwarding customer_green
 ip address 20.20.30.99 255.255.255.0
 speed nonegotiate
 mpls ip
end
Router_3#

OSPF and BGP details

Router_3#show running-config partition router bgp 1
Building configuration...
Current configuration : 1061 bytes
!
Configuration of Partition - router bgp 1
!
!
router bgp 1
 bgp log-neighbor-changes
 neighbor 35.35.35.35 remote-as 1
 neighbor 35.35.35.35 update-source Loopback1
 neighbor 100.0.0.1 remote-as 1
 neighbor 100.0.0.1 update-source Loopback1
!
address-family ipv4
 no synchronization
 redistribute connected
 neighbor 35.35.35.35 activate
 neighbor 35.35.35.35 send-community both
 neighbor 100.0.0.1 activate
 neighbor 100.0.0.1 send-community both
 no auto-summary
 exit-address-family
!

address-family vpnv4
neighbor 35.35.35.35 activate
neighbor 35.35.35.35 send-community both
neighbor 100.0.0.1 activate
neighbor 100.0.0.1 send-community both
exit-address-family
!
address-family ipv4 vrf customer_green
redistribute static
aggregate-address 191.0.0.0 255.0.0.0 summary-only
no synchronization
redistribute connected
neighbor 20.20.30.199 remote-as 200
neighbor 20.20.30.199 activate
exit-address-family
!
address-family ipv4 vrf customer_red
redistribute static
aggregate-address 191.0.0.0 255.0.0.0 summary-only
no synchronization
redistribute connected
neighbor 20.20.30.200 remote-as 100
neighbor 20.20.30.200 activate
exit-address-family
!
end
Router_3#show running-config partition router ospf 1
Building configuration...
Current configuration : 220 bytes
!
Configuration of Partition - router ospf 1
!
!
router ospf 1
log-adjacency-changes
redistribute connected subnets
network 9.0.0.0 0.0.0.255 area 0
network 20.20.30.0 0.0.0.255 area 0
bfd all-interfaces
!
!
end
Router_3#

Loop Back details

Router_3#show interfaces Loopback 1
Loopback1 is up, line protocol is up
Hardware is Loopback
Internet address is 100.0.1.1/24
MTU 1514 bytes, BW 8000000 Kbit/sec, DLY 5000 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation LOOPBACK, loopback not set
Keepalive set (10 sec)
Last input 20:14:17, output never, output hang never
Last clearing of "show interface" counters 22:18:00
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/0 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
21 packets output, 1464 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 unknown protocol drops
0 output buffer failures, 0 output buffers swapped out
Router_3#show run | i Loopback
interface Loopback1
interface Loopback60
  neighbor 35.35.35.35 update-source Loopback1
  neighbor 100.0.0.1 update-source Loopback1
mpls ldp router-id Loopback1 force
Router_3#
CHAPTER 17

Configuring MPLS OAM

This chapter describes how to configure multiprotocol label switching (MPLS) operations, administration and maintenance (OAM) in the router.

- Understanding MPLS OAM, on page 279
- How to Configure MPLS OAM, on page 280
- Displaying AToM VCCV capabilities, on page 281

Understanding MPLS OAM

MPLS OAM helps service providers monitor label-switched paths (LSPs) and quickly isolate MPLS forwarding problems to assist with fault detection and troubleshooting in an MPLS network. The router supports the following MPLS OAM features:

LSP Ping

MPLS LSP ping uses MPLS echo request and reply packets, similar to Internet Control Message Protocol (ICMP) echo request and reply messages, to validate an LSP. ICMP echo request and reply messages validate IP networks; MPLS OAM echo and reply messages validate MPLS LDP networks. The LSP ping and trace functions use IPv4 UDP packets with UDP port number 3503. You can use MPLS LSP ping to validate IPv4 LDP or Forwarding Equivalence Classes (FECs) by using the `ping mpls` privileged EXEC command. The MPLS echo request packet is sent to a target router by using the label stack associated with the FEC to be validated.

The source address of the LSP echo request is the IP address of the LDP router generating the LSP request. The destination IP address is a 127.x.y.z/8 address, which prevents the IP packet from being switched to its destination if the LSP is broken. The 127.0.0.x destination address range prevents the OAM packets from exiting the egress provider-edge router, which keeps them from leaking from the service-provider network to the customer network.

In response to an MPLS echo request, an MPLS echo reply is forwarded as an IP packet by using IP, MPLS, or a combination of both. The source address of the MPLS echo-reply packet is an address obtained from the router generating the echo reply. The destination address is the source address of the router that originated the MPLS echo-request packet. The MPLS echo-reply destination port is the echo-request source port.
LSP Traceroute

MPLS LSP traceroute also uses MPLS echo request and reply packets to validate an LSP. You can use MPLS LSP traceroute to validate LDP IPv4 by using the `trace mpls` privileged EXEC command. The traceroute time-to-live (TTL) settings force expiration of the TTL along an LSP. MPLS LSP traceroute incrementally increases the TTL value in its MPLS echo requests (TTL = 1, 2, 3, 4) to discover the downstream mapping of each successive hop. The transit router processing the MPLS echo request returns an MPLS echo reply containing information about the transit hop in response to the TTL-expired MPLS packet. The MPLS echo reply destination port is sent to the echo request source port.

LSP Ping over Pseudowire

The LSP Ping over Pseudowire is used for detecting faults in the data plane or forwarding path for pseudowire services. The connectivity verification model for pseudowires consists of:

- Advertising the VCCV capability
- Verifying the data plane connectivity

Advertising the VCCV capability is done as part of MPLS Label Mapping message. This consists of Control Channel (CC) type which is a bitmask that indicates the type of control channel that can be used to verify connectivity. The router supports the following CC type:

- MPLS Router Alert Label (Type 2): The control channel is created out of band and uses the router alert label (RA).

Note

The router does not support Control Channel Type 1 and 3.

Connectivity verification type defines a bitmask that indicates the types of CV packets and protocols that can be sent on the specified control channel.

The LSP ping over pseudowire uses the same label stack as used by the pseudowire data path. Basically it contains the virtual circuit (VC) label and tunnel labels.

How to Configure MPLS OAM

This section contains the following topics:

Note

On , for a default MTU of 1500 bytes, IOS supports MPLS ping up to 1486 bytes. For MPLS ping with size more than 1486 bytes to work in , the MTU setting on the SVI has to be adjusted to be more than 1500 bytes.

Using LSP Ping for LDP IPv4 FEC

When you enter the `ping mpls` privileged EXEC command to begin an LSP ping operation, the keyword that follows specifies the Forwarding Equivalence Class (FEC) that is the target of the LSP ping to which you want to verify connectivity.
### Using LSP Traceroute for LDP IPv4 FEC

The LSP traceroute originator sends incremental MPLS echo requests to discover the downstream mapping of each successive hop. When the originating provider edge router receives the reply from the intermediate router, it forms another MPLS echo request with the same target FEC and the time-to-live is incremented by one.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `ping mpls ipv4 destination-address destination-mask` | To verify LSP path from to remote peer. The keywords have these meanings:  
  - `destination-address destination-mask` — Specify the address and network mask of the target FEC. |

### Using LSP Ping for Pseudowire

Use the `ping mpls pseudowire` command to verify the AToM pseudowire path.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `ping mpls pseudowire ipv4-address vc_id vc-id-value` | To verify AToM pseudowire path from the router to remote peer.  
  - `ipv4-address` is the ip address of the remote peer.  
  - `vc_id` is the virtual circuit id. |

### Using LSP Traceroute over Pseudowire

Use the `traceroute mpls pseudowire` command to verify the pseudowire path and the next hop details at the remote peer.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `traceroute mpls pseudowire ipv4-address vc_id vc-id-value segment` | To verify AToM pseudowire path from the router to remote peer and next hop details at remote peer.  
  - `ipv4-address` is the ip address of the remote peer.  
  - `vc_id` is the virtual circuit id. |

### Displaying AToM VCCV capabilities

Use the `show mpls l2transport` command to display the AToM VCCV capabilities.
### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `show mpls l2transport binding vc_id vc-id-value` | To display AToM VCCV capabilities negotiated between the peers.  
  • `vc_id` is the virtual circuit id.                                                             |
Configuring Routing Protocols

- Configuring Routing Protocols, on page 283

Configuring Routing Protocols

In addition to static routing, the router supports the following routing protocols:

- OSPF—An Interior Gateway Protocol (IGP) designed for IP networks that supports IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets. For more information on how to configure OSPF, see the IP Routing: OSPF Configuration Guide, Cisco IOS Release 15.1S.

- IS-IS—An Open System Interconnection (OSI) protocol that specifies how routers communicate with routers in different domains. For more information on how to configure IS-IS, see the IP Routing: ISIS Configuration Guide, Cisco IOS Release 15.1S.

- BGP—An interdomain routing protocol designed to provide loop-free routing between separate routing domains that contain independent routing policies (autonomous systems). For more information on how to configure BGP, see the IP Routing: BGP Configuration Guide, Cisco IOS Release 15.1S.

For information about Bidirectional Forwarding Detection (BFD) including sample routing configurations with BFD, see Configuring BFD, on page 285.

---

**Note**

router supports IP routing on SVI interfaces.

---

**Note**

router does not support IGP fast timers.

---

**Note**

router does not support CLNS routing.

---

**Note**

The maximum number of prefixes supported in router is 12000.
The maximum number of SVI's supported in a router is 250.

Changing Default Hashing Algorithm for ECMP

The hashing algorithm for ECMP is changed from Cisco IOS Release 15.3(2)S onwards. You can use the following commands to configure various types of ECMP hash configurations for improved load distribution of IP traffic.

- `asr901-ecmp-hash-config global-type`
- `asr901-ecmp-hash-config ipv4-type`
- `asr901-ecmp-hash-config ipv6-type`
- `asr901-ecmp-hash-config mpls-to-ip`

For detailed information on these commands, see the Series Aggregation Services Router Command Reference guide at the following location:
Configuring Bidirectional Forwarding Detection

Bidirectional Forwarding Detection (BFD) provides a low-overhead, short-duration method of detecting failures in the forwarding path between two adjacent routers, including the interfaces, data links, and forwarding planes. BFD is a detection protocol that you enable at the interface and routing protocol levels.

- Understanding BFD, on page 285
- Configuring BFD, on page 285
- Configuration Examples for BFD, on page 292

Understanding BFD

Cisco supports the BFD asynchronous mode, in which two routers exchange BFD control packets to activate and maintain BFD neighbor sessions. To create a BFD session, you must configure BFD on both systems (or BFD peers). After you enable BFD on the interface and the router level for the appropriate routing protocols, a BFD session is created, BFD timers are negotiated, and the BFD peers begin to send BFD control packets to each other at the negotiated interval.

Configuring BFD

This section contains the following topics:

For more information about BFD, refer to the IP Routing: BFD Configuration Guide, Cisco IOS Release 15.1S.

Note

supports BFD echo mode.

BFD Configuration Guidelines and Restrictions

- The minimum time interval supported for BFD is 50 ms.
- The maximum number of stable sessions supported for BFD with 50 ms interval is 4.
- BFD and REP together are not recommended on Router while sharing the same link.
• After enabling BFD on an interface, if you configure an IPv4 static route with BFD routing through this interface, and if the IPv4 BFD session does not get established, unconfigure BFD on the given interface, and configure it again. The BFD session comes up.

• When you move the BFD configuration saved in flash memory to the running configuration, BFD session is re-established.

• When BFD is configured on a port from which more than 70% of line rate data traffic is egressing, there is a drop in control packets including BFD packets. To avoid BFD packet drop, you have to configure QoS policies that give higher priority for both CPU generated BFD packets and BFD echo reply packets.

## Configuring BFD for OSPF

This section describes how to configure BFD on the router.

### Configuring BFD for OSPF on One of More Interfaces

Complete these steps to configure BFD for OSPF on a single interface.

#### SUMMARY STEPS

1. ```enable```
2. ```configure terminal```
3. ```interface vlan1```
4. ```ip ospf bfd```
5. ```bfd interval 50 min_rx 50 multiplier 3```
6. ```end``` 

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface vlan1</td>
<td>Specifies an interface to configure.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip ospf bfd</td>
<td>Enables BFD for OSPF on the interface.</td>
</tr>
<tr>
<td><strong>Step 5</strong> bfd interval 50 min_rx 50 multiplier 3</td>
<td>Specifies the BFD session parameters.</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# end</code></td>
</tr>
</tbody>
</table>
What to do next

Note
You can also use the `show bfd neighbors` and `show ip ospf` commands to display troubleshooting information about BFD and OSPF.

Configuring BFD for OSPF on All Interfaces

Complete these steps to configure BFD for OSPF on all interfaces.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router ospf 100`
4. `bfd all-interfaces`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><em>Example:</em> <code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><em>Example:</em> <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Creates a configuration for an OSPF process.</td>
</tr>
<tr>
<td><code>router ospf 100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enables BFD globally on all interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td><code>bfd all-interfaces</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td><em>Example:</em> <code>Router(config)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Note
You can disable BFD on a single interface using the `ip ospf bfd disable` command when configuring the relevant interface.
Configuring BFD for BGP

Complete these steps to configure BFD for BGP.

SUMMARY STEPS

1. enable
2. configure terminal
3. router bgp as-tag
4. neighbor ip-address fall-over bfd
5. exit
6. show bfd neighbors [details]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>router bgp as-tag</td>
<td>Specifies a BGP process and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>neighbor ip-address fall-over bfd</td>
<td>Enables support for BFD failover.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show bfd neighbors [details]</td>
<td>Use the following commands to verify the BFD configuration:</td>
</tr>
<tr>
<td>Example:</td>
<td>show ip bgp neighbor</td>
<td>• show bfd neighbors [details]—Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• show ip bgp neighbor—Displays information about BGP and TCP connections to neighbors.</td>
</tr>
</tbody>
</table>

Configuring BFD for IS-IS

This section describes how to configure BFD for IS-IS routing.
Configuring BFD for IS-IS on a Single Interface

Complete these steps to configure BFD for IS-IS on a single interface.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface vlan1`
4. `ip router isis [tag]`
5. `isis bfd`
6. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable
| Example:
| `Router> enable`
| Enables privileged EXEC mode.
| • Enter your password if prompted. |
| **Step 2**
| `configure terminal`
| Example:
| `Router# configure terminal`
| Enters global configuration mode. |
| **Step 3**
| `interface vlan1`
| Enters interface configuration mode. |
| **Step 4**
| `ip router isis [tag]`
| Enables support for IPv4 routing on the interface. |
| **Step 5**
| `isis bfd`
| Enables BFD on the interfaces. |
| **Step 6**
| `exit`
| Example:
| `Router(config)# exit`
| Exits configuration mode. |

**What to next**

You can use the `show bfd neighbors` and `show clns interface` commands to verify your configuration.

**Configuring BFD for IS-IS for All Interfaces**

Complete these steps to configure BFD for IS-IS on all interfaces.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface vlan1
4. ip router isis [tag]
5. bfd all-interfaces
6. exit
7. interface vlan1
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2**        |         |
| configure terminal| Enters global configuration mode. |
| Example:          |         |
| Router# configure terminal |       |

| **Step 3**        |         |
| interface vlan1   | Enters interface configuration mode. |

| **Step 4**        |         |
| ip router isis [tag] | Enables support for IPv4 routing on the interface. |

| **Step 5**        |         |
| bfd all-interfaces| Enables BFD globally on all interfaces associated with the IS-IS routing process. |

| **Step 6**        |         |
| exit              | Exits the interface. |
| Example:          |         |
| Router(config)# exit |       |

| **Step 7**        |         |
| interface vlan1   | If you want to enable BFD on a per-interface basis for one or more interfaces associated with the IS-IS routing process, complete the following steps: |
| Example:          | • Use the interface command to enter interface configuration mode. |
| Router(config-if) ip router isis [tag] | • Use the `ip router isis` command to enables support for IPv4 routing on the interface. |

| **Step 8**        |         |
| exit              | Exit configuration mode. |
| Example:          |         |
| Router(config)# exit |       |
Configuring BFD for Static Routes

Complete these steps to configure BFD for static routes.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface vlan 150`
4. `ip address 10.201.201.1 255.255.255.0`
5. `bfd interval 50 min_rx 50 multiplier 3`
6. `exit`
7. `ip route static bfd Vlan150 150.0.0.2`
8. `ip route 77.77.77.0 255.255.255.0 Vlan150`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>interface vlan 150</code></td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td><code>ip address 10.201.201.1 255.255.255.0</code></td>
<td>Configures an IP address for the interface.</td>
</tr>
<tr>
<td>5</td>
<td><code>bfd interval 50 min_rx 50 multiplier 3</code></td>
<td>Enables BFD on the interface.</td>
</tr>
<tr>
<td>6</td>
<td><code>exit</code></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>ip route static bfd Vlan150 150.0.0.2</code></td>
<td>Specifies neighbors for the static routes in BFD.</td>
</tr>
<tr>
<td>8</td>
<td><code>ip route 77.77.77.0 255.255.255.0 Vlan150</code></td>
<td>Specifies the exit interface for the static route in BFD.</td>
</tr>
</tbody>
</table>
What to do next

Note You can use the `show ip static route` command to verify your configuration.

Configuration Examples for BFD

The following section contains sample configurations for each routing protocol using BFD.

Note This section provides partial configurations intended to demonstrate a specific feature.

BFD with OSPF on All Interfaces

```plaintext
interface GigabitEthernet0/10
description Core_facing
negotiation auto
service instance 150 ethernet
encapsulation untagged
bridge-domain 150
!
interface Vlan150
ip address 150.0.0.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
!
router ospf 7
 network 99.99.99.99 0.0.0.0 area 0
 network 150.0.0.0 0.0.0.255 area 0
 bfd all-interfaces
```

BFD with OSPF on Individual Interfaces

```plaintext
interface GigabitEthernet0/10
description Core_facing
negotiation auto
service instance 150 ethernet
encapsulation untagged
bridge-domain 150
!
interface Vlan150
ip address 150.0.0.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
ip ospf bfd
!
router ospf 7
 network 99.99.99.99 0.0.0.0 area 0
 network 150.0.0.0 0.0.0.255 area 0
```
BFD with BGP

interface GigabitEthernet0/10
description Core_facing
negotiation auto
service instance 150 ethernet
encapsulation untagged
bridge-domain 150
!
interface Vlan150
ip address 150.0.0.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
!
router bgp 1
bgp log-neighbor-changes
neighbor 150.0.0.2 remote-as 2
neighbor 150.0.0.2 fall-over bfd

BFD with IS-IS on All Interfaces

interface GigabitEthernet0/10
description Core_facing
negotiation auto
service instance 150 ethernet
encapsulation untagged
bridge-domain 150
!
interface Vlan150
ip address 150.0.0.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
!
router isis
net 49.0001.2222.2222.2222.00
bfd all-interfaces
!

BFD with IS-IS on Individual Interfaces

interface GigabitEthernet0/10
description Core_facing
negotiation auto
service instance 150 ethernet
encapsulation untagged
bridge-domain 150
!
interface Vlan150
ip address 150.0.0.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
isis bfd
!
router isis
net 49.0001.2222.2222.2222.00
BFD with Static Routes

interface GigabitEthernet0/10
  description Core_facing
  negotiation auto
  service instance 150 ethernet
  encapsulation untagged
  bridge-domain 150
!
interface Vlan150
  ip address 150.0.0.1 255.255.255.0
  bfd interval 50 min_rx 50 multiplier 3
!
ip route static bfd Vlan150 150.0.0.2
ip route 77.77.77.0 255.255.255.0 Vlan150 150.0.0.2
Configuring Pseudowire

Cisco Pseudowire Emulation Edge-to-Edge (PWE3) allows you to transport traffic using traditional services over a packet-based backhaul technology such as MPLS or IP. A pseudowire (PW) consists of a connection between two provider edge (PE) devices that connects two attachment circuits (ACs).

- Understanding Pseudowires, on page 295
- Configuring Pseudowire, on page 296
- Pseudowire Redundancy with Uni-directional Active-Active, on page 302
- Configuration Examples for Pseudowire, on page 305

Understanding Pseudowires

Pseudowires (PWs) manage encapsulation, timing, order, and other operations in order to make it transparent to users; the PW tunnel appears as an unshared link or circuit of the emulated service.

There are limitations that impede some applications from utilizing a PW connection.

Cisco supports the following standards-based PWE types:

Transportation of Service Using Ethernet over MPLS

Ethernet over MPLS (EoMPLS) PWs provide a tunneling mechanism for Ethernet traffic through an MPLS-enabled Layer 3 core network. EoMPLS PWs encapsulate Ethernet protocol data units (PDUs) inside MPLS packets and use label switching to forward them across an MPLS network. EoMPLS PWs are an evolutionary technology that allows you to migrate packet networks from legacy networks while providing transport for legacy applications. EoMPLS PWs also simplify provisioning, since the provider edge equipment only requires Layer 2 connectivity to the connected customer edge (CE) equipment. The implementation of EoMPLS PWs is compliant with the RFC 4447 and 4448 standards.

For instructions on how to create an EoMPLS PW, see Configuring Transportation of Service Using Ethernet over MPLS, on page 301.

Limitations

- When configuring an EoMPLS pseudowire on the , you cannot configure an IP address on the same interface as the pseudowire.
- Layer 2 Tunneling Protocol, version 2 and 3 (L2TPv2 and L2TPv3) is not supported on the series routers.
Configuring Pseudowire

This section describes how to configure pseudowire on the . The supports pseudowire connections using CESoPSN. The following sections describe how to configure pseudowire connections.

For full descriptions of each command, see the Series Aggregation Services Command Reference Guide.

For pseudowire configuration examples, see Configuration Examples for Pseudowire, on page 305.

Configuring Pseudowire Classes

A pseudowire class allows you to create a single configuration template for multiple pseudowire connections. You can apply pseudowire classes to all pseudowire types.

Complete the following steps to configure a pseudowire class:

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class class-name
4. encapsulation mpls
5. interface cem slot/port
6. cem group-number
7. xconnect ip pw-class pseudowire-class

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> pseudowire-class class-name</td>
<td>Creates a new pseudowire class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class newclass</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation mpls</td>
<td>Sets an encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Pseudowire

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>interface cem <em>slot/port</em></td>
<td>Configures the pseudowire interface to use for the new pseudowire class. This example shows a CESoPSN interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface cem0/0</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>cem <em>group-number</em></td>
<td>Defines a CEM channel.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# cem 0</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>xconnect <em>ip pw-class pseudowire-class</em></td>
<td>Binds an attachment circuit to the CESoPSN interface to create a CESoPSN pseudowire. Use the <em>pw-class</em> parameter to specify the pseudowire class that the CESoPSN pseudowire interface uses.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(cfg-if-cem)# xconnect 1.1.1.1 40 pw-class myclass</td>
<td></td>
</tr>
</tbody>
</table>

### What to do next

- **Note** You cannot use the encapsulation *mpls* parameter with the *pw-class* parameter.

- **Note** The use of the *xconnect* command can vary depending on the type of pseudowire you configure.

### Configuring CEM Classes

A CEM class allows you to create a single configuration template for multiple CEM pseudowires.

- **Note** Cisco IOS release 15.3(3)S automatically enables forward-alarm ais configuration (under the config-controller configuration mode). To disable this configuration, use the *no forward-alarm ais* command.

  - The forward-alarm ais configuration is applicable only for CESoP. It is not supported for SAToP.
  - You must run the *no forward-alarm ais* command before using CESoP with controllers in loopback (either through loopback command under controller or by using a physical loopback jack).
  - Though the *forward-alarm ais* command (and its no form) was not supported in previous releases, the router behaved as if this command was configured under the controller interface.

Complete the following steps to configure a CEM class:

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>class cem cem-class-name</code></td>
<td>Creates a new CEM class</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# class cem mycemclass</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>payload-size size</code></td>
<td>Specifies the payload for the CEM class.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-cem-class)# payload-size 512</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>dejitter-buffer size</code></td>
<td>Specifies the dejitter buffer for the CEM class.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-cem-class)# dejitter-buffer 10</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>idle-pattern size</code></td>
<td>Specifies the idle-pattern for the CEM class.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-cem-class)# idle-pattern 0x55</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
<td>Returns to the config prompt.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem-class)# exit</td>
<td>Configure the CEM interface that you want to use for the new CEM class.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interface cem <em>slot</em>/port&lt;br&gt;Example:&lt;br&gt;Router(config)# interface cem 0/0</td>
<td>The use of the <code>xconnect</code> command can vary depending on the type of pseudowire you are configuring.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> no ip address&lt;br&gt;Example:&lt;br&gt;Router(config-if)# no ip address</td>
<td>Disables the IP address configuration for the physical layer interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> cem group-number&lt;br&gt;Example:&lt;br&gt;Router(config-if)# cem 0</td>
<td>Enters the CEM configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> cem class <em>cem-class-name</em>&lt;br&gt;Example:&lt;br&gt;Router(config-if-cem)# cem class mycemclass</td>
<td>Specifies the CEM class name.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> xconnect <em>ip-address</em> encapsulation <em>mpls</em>&lt;br&gt;Example:&lt;br&gt;Router(config-if-cem)# xconnect 10.10.10.10 200 encapsulation mpls</td>
<td>Binds an attachment circuit to the CEM interface to create a pseudowire</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring a Backup Peer**

A backup peer provides a redundant pseudowire (PW) connection in the case that the primary PW loses connection; if the primary PW goes down, the diverts traffic to the backup PW.

Complete the following steps to configure a backup peer:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface name slot/port
4. cem group-number
5. xconnect peer-loopback-ip-address encapsulation mpls
6. backup peer peer-router-ip-address vcid [pw-class *pw-class-name*]
7. backup delay enable-delay [disable-delay | never]
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
*Example:*  
Router> enable |
| | Example: | - Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode. |
| | Example: | |
| | Router# configure terminal | |
| Step 3 | interface name slot/port | Configures the pseudowire interface to use for the new pseudowire class. |
| | Example: | |
| | Router(config)# interface cem0/0 | |
| Step 4 | cem group-number | Defines a CEM channel. |
| | Example: | |
| | Router(config-if)# cem 0 | |
| Step 5 | xconnect peer-loopback-ip-address encapsulation mpls | Binds an attachment circuit to the CEM interface to create a pseudowire. |
| | Example: | |
| | Router(config-if-cem)# xconnect 10.10.10.20 encapsulation mpls | |
| Step 6 | backup peer peer-router-ip-address vcid [pw-class pw-class-name] | Defines the address and VC of the backup peer. |
| | Example: | |
| | Router(config-if-cem-xconn)# backup peer 10.10.10.12 10 344 | |
| Step 7 | backup delay enable-delay [disable-delay | never] | Specifies the delay before the router switches pseudowire traffic to the backup peer VC.  
*Example:*  
*Where:*  
• **enable-delay** —Time before the backup PW takes over for the primary PW.  
• **disable-delay** —Time before the restored primary PW takes over for the backup PW.  
• **never** —Disables switching from the backup PW to the primary PW.  
Router(config-if-cem-xconn)# backup delay30 never |
Configuring Transportation of Service Using Ethernet over MPLS

Ethernet over MPLS PWs allow you to transport Ethernet traffic over an existing MPLS network. For an overview of Ethernet over MPLS pseudowires, see Transportation of Service Using Ethernet over MPLS, on page 295.

Complete the following steps to configure an Ethernet over MPLS pseudowire:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface GigabitEthernetslot/port
4. service instance instance-number ethernet
5. encapsulation dot1q encapsulation-type
6. rewrite ingress tag pop 1 symmetric
7. xconnect ip-address encapsulation mpls
8. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface GigabitEthernetslot/port</td>
<td>Specifies an interface to configure.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>service instance instance-number ethernet</td>
<td>Configures a service instance and enters the service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service instance 101 ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>encapsulation dot1q encapsulation-type</td>
<td>Configures encapsulation type for the service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# encapsulation dot1q 101</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 6**

**rewrite ingress tag pop 1 symmetric**

*Example:*

```config
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
```

**Purpose**

Specifies the encapsulation modification to occur on packets at ingress as follows:

- **pop 1**—Pop (remove) the outermost tag.
- **symmetric**—Configure the packet to undergo the reverse of the ingress action at egress. If a tag is popped at ingress, it is pushed (added) at egress.

*Note* Although the `symmetric` keyword appears to be optional, you must enter it for `rewrite` to function correctly.

**Step 7**

**xconnect ip-address encapsulation mpls**

*Example:*

```config
Router(config-if-srv)# xconnect 11.205.1.1 141 encapsulation mpls
```

**Purpose**

Binds the VLAN attachment circuit to an Any Transport over MPLS (AToM) pseudowire for EoMPLS.

**Step 8**

**end**

*Example:*

```config
Router(config-if-srv)# end
```

**Purpose**

Returns to privileged EXEC mode.

---

### Pseudowire Redundancy with Uni-directional Active-Active

Pseudowire redundancy active-active feature supports replication of packets from the upstream and to send the packets to both the primary and backup pseudowires. The peer routers forward the packets received to the working and protect circuits. The BSC receives the same packets on any of the circuits and changes the Rx link, thus ensuring the packet is not dropped.

*Figure 17: Pseudowire Redundancy with Unidirectional Active-Active*

---

### Restrictions

- Provides support of maximum number of 8 E1 circuits with enabled MR-APS feature.
- Supports only SAToP or CESoSPN. This feature does not support UDP encapsulation like SAToUDP or CESoUDP.
Configuring Pseudowire Redundancy Active-Active at Interface

```
enable
cfg term
pseudowire-class mraps
encapsulation mpls
exit
interface cem 0/0
cem 0
xconnect 10.10.10.11 3 encapsulation mpls pw-class mraps
backup peer 10.10.10.12 3 pw-class mraps
redundancy all-active replicate
exit
```

Verifying the Pseudowire Redundancy Active-Active Configuration

You can use the following commands to verify your pseudowire redundancy active-active configuration:

- **show xconnect all** - Displays the information about xconnect attachment circuits and pseudowires (PWs).

  ```
 Router# show xconnect all
 Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
 UP=Up DN=Down AD=Admin Down IA=Inactive
 SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
 XC ST Segment 1 S1 Segment 2 S2
 +-------------------+-------------------+-------------------+
 UP pri ac CE0/0:0(SATOP E1) UP mpls 10.10.10.11:3 UP
 UP sec ac CE0/0:0(SATOP E1) UP mpls 10.10.10.12:3 UP
  ```

- **show mpls l2transport vc 3 detail** - Displays the information about Any Transport over MPLS (AToM) virtual circuits (VCs) and static pseudowires that have been enabled to route Layer 2 packets on a router.

  ```
 Router# show mpls l2transport vc 3 detail
 Local interface: CE0/0 up, line protocol up, SATOP E1 0 up
 Destination address: 10.10.10.11, VC ID: 3, VC status: up
 Output interface: Vl1509, imposed label stack {21 52}
 Preferred path: not configured
 Default path: active
 Next hop: 150.9.1.2
 Create time: 1d21h, last status change time: 00:04:06
 Last label FSM state change time: 00:04:06
 Signaling protocol: LDP, peer 10.10.10.11:0 up
 Targeted Hello: 10.10.10.13(LDP Id) -> 10.10.10.11, LDP is UP
 Graceful restart: configured and enabled
 Non stop routing: not configured and not enabled
 Status TLV support (local/remote) : enabled/supported
 LDP route watch : enabled
 Label/status state machine : established, LruRru
 Last local dataplane status rcvd: No fault
 Last BFD dataplane status rcvd: Not sent
 Last BFD peer monitor status rcvd: No fault
 Last local AC circuit status rcvd: No fault
 Last local AC circuit status sent: No fault
 Last local PW i/f circ status rcvd: No fault
 Last local LDP TLV status sent: No fault
  ```
show ssm id — Displays the Segment Switching Manager (SSM) information.
Class: ADJ
State: Active
Segment-ID: 123381 Type: E1 SATOP[26]
Switch-ID: 4263
Allocated By: This CPU
Locked By: SIP [1]
Circuit status: UP [1]
All active: Replicate packets

Class: ADJ
State: Active
AC Adjacency context:
adjacency = 0x12A6DD80 [complete] RAW CEM0/0:0
AC Encap [0 bytes]
1stMem: 123381 2ndMem: 53792 ActMem: 123381

Switch-ID 45208 State: Open
Segment-ID: 53792 Type: E1 SATOP[26]
Switch-ID: 45208
Allocated By: This CPU
Locked By: SIP [1]
Circuit status: UP [1]
All active: Replicate packets

Class: ADJ
State: Active
AC Adjacency context:
adjacency = 0x12A6DD80 [complete] RAW CEM0/0:0
AC Encap [0 bytes]
1stMem: 123381 2ndMem: 53792 ActMem: 123381

Switch-ID 45208 State: Open
Segment-ID: 21016 Type: AToM[17]
Switch-ID: 45208
Allocated By: This CPU
Locked By: SIP [1]
Class: SSS
State: Ready
Class: ADJ
State: Active

Configuration Examples for Pseudowire

This section contains the following examples:

Example: Ethernet over MPLS

The following configuration example shows an Ethernet pseudowire (aka EoMPLS) configuration.

```
interface Loopback0
description for_mpls_ldp
ip address 99.99.99.99 255.255.255.255
!
interface GigabitEthernet
description Core_facing
no negotiation auto
service instance 150 ethernet
encapsulation dot1q 150
rewrite ingress tag pop 1 symmetric
bridge-domain 150
```
Example: Ethernet over MPLS

! interface GigabitEthernet
  description Core_facing
  service instance 501 ethernet
  encapsulation dot1q 501
  rewrite ingress tag pop 1 symmetric
  xconnect 111.0.1.1 501 encapsulation mpls
!
interface FastEthernet0/0
  ip address 10.104.99.74 255.255.255.0
  full-duplex
!
interface Vlan1
!
interface Vlan150
  ip address 150.0.0.1 255.255.255.0
  mpls ip
!
router ospf 7
  network 99.99.99.99 0.0.0.0 area 0
  network 150.0.0.0 0.0.0.255 area 0
!
no ip http server
ip route 10.0.0.0 255.0.0.0 10.104.99.1
!
logging esm config
!
mpls ldp router-id Loopback0 force
!
!end
CHAPTER 21

Configuring Clocking

This chapter provides information about configuring clocking on the Series Aggregation Services Router.

• Configuring Clocking, on page 307
• Restrictions, on page 307
• Configuring Network Clock for Router, on page 307
• Configuring PTP for the Router, on page 322

Restrictions

• The line to external option is not supported for external Synchronization Supply Unit (SSU).
• Revertive and non-revertive modes work correctly only with two clock sources.
• If copper Gigabit Ethernet port is selected as the input clock source, the link must be configured as a IEEE 802.3 link-slave, using synce state slave command.
• Adaptive clocking is not supported in router.
• The show network-clocks command is not supported in Router.
• Do not use network-clock synchronization command while configuring 2dmm, as it is not supported. If you proceed with the unsupported configuration, it will show junk values.

Configuring Network Clock for Router

router supports time, phase and frequency awareness through ethernet networks; it also enables clock selection and translation between the various clock frequencies.

If it interoperates with devices that do not support synchronization, synchronization features can be disabled or partially enabled to maintain backward compatibility.

The network clock can be configured in global configuration mode and interface configuration mode:
Configuring Network Clock in Global Configuration Mode

Complete the following steps to configure the network clock in global configuration mode:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `network-clock synchronization automatic`
4. `network-clock eec {1 | 2}`
5. `network-clock synchronization ssm option {1 | 2 {GEN1 | GEN2 }}`
6. `network-clock hold-off {0 | 50-10000} global`
7. `network-clock external slot/card/port hold-off {0 | 50-10000}`
8. `network-clock wait-to-restore 0-86400 global`
9. `network-clock input-source priority { interface interface-name slot/port | top slot/port | { external slot/card/port [t1|sf|efs|d4] | e1 [crc4|fas|cas|crc4] | 2048k | 10m } }`
10. `network-clock input-source priority controller [t1 | e1] slot/port`
11. `network-clock revertive`
12. `network-clock output-source system priority { external slot/card/port [t1|sf|efs|d4] | e1 [crc4|fas|cas|crc4] | 2048k | 10m }`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> network-clock synchronization automatic</td>
<td>Enables G.781-based automatic clock selection process. G.781 is the ITU-T Recommendation that specifies the synchronization layer functions.</td>
</tr>
<tr>
<td>Example: Router(config)# network-clock synchronization automatic</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> network-clock eec {1</td>
<td>2}</td>
</tr>
<tr>
<td>Example: Router(config)# network-clock eec 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For option 1, the default value is EEC-Option 1 (2048).</td>
</tr>
<tr>
<td></td>
<td>• For option 2, the default value is EEC-Option 2 (1544).</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 5    | `network-clock synchronization ssm option {1 | 2 | {GEN1 | GEN2}}` | Configures the router to work in a synchronized network mode as described in G.781. The following are the options:  
  - Option 1: refers to synchronization networks designed for Europe (E1 framings are compatible with this option).  
  - Option 2: refers to synchronization networks designed for the US (T1 framings are compatible with this option). The default option is 1 and while choosing option 2, you need to specify the second generation message (GEN2) or first generation message (GEN1).  
  **Note** Network-clock configurations that are not common between options need to be configured again. |
| 6    | `network-clock hold-off {0 | 50-10000} global` | Configures general hold-off timer in milliseconds. The default value is 300 milliseconds.  
  **Note** Displays a warning message for values below 300 ms and above 1800 ms. |
| 7    | `network-clock external slot/card/port hold-off {0 | 50-10000}` | Overrides hold-off timer value for external interface.  
  **Note** Displays a warning message for values above 1800 ms, as waiting longer causes the clock to go into the holdover mode. |
| 8    | `network-clock wait-to-restore 0-86400 global` | Sets the value for the wait-to-restore timer globally.  
  The wait to restore time is configurable in the range of 0 to 86400 seconds. The default value is 300 seconds.  
  **Caution** Ensure that you set the wait-to-restore values above 50 seconds to avoid a timing flap. |
| 9    | `network-clock input-source priority [ interface interface-name slot/port | top slot/port | {external slot/card/port [t1 | sf | efs | d4] | e1 [crc4 fas cas [crc4] | 2048k | 10m]]]}}` | Configures a clock source line interface, an external timing input interface, GPS interface, or a packet-based timing recovered clock as the input clock for the system and defines its priority. Priority is a number between 1 and 250.  
  This command also configures the type of signal for an external timing input interface. These signals are:  
  - T1 with Standard Frame format or Extended Standard Frame format.  
  - E1 with or without CRC4  
  - 2 MHz signal  
  - Default for Europe or Option I is e1 crc4 if the signal type is not specified. |
### Configuring Network Clock in Interface Configuration Mode

Complete the following steps to configure the network clock in interface configuration mode:

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **interface**
4. **synchronous mode**
5. **network-clock hold-off** {0 | 50-10000}
6. **network-clock wait-to-restore** 0-86400

---

**Table: Command or Action and Purpose**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>network-clock input-source priority controller</strong> [t1</td>
<td>e1] slot/port</td>
</tr>
<tr>
<td><strong>network-clock revertive</strong></td>
<td>Specifies whether or not the clock source is revertive. Clock sources with the same priority are always non-revertive. The default value is non-revertive. In non-revertive switching, a switch to an alternate reference is maintained even after the original reference recovers from the failure that caused the switch. In revertive switching, the clock switches back to the original reference after that reference recovers from the failure, independent of the condition of the alternate reference.</td>
</tr>
<tr>
<td><strong>network-clock output-source system priority</strong> {external slot/card/port [t1</td>
<td>sf</td>
</tr>
</tbody>
</table>

---

**Note**

- Default for North America or Option II is t1 esf if signal type is not specified.
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  enable
  **Example:**
  Router> enable | Enables privileged EXEC mode.
  • Enter your password if prompted. |
| **Step 2**
  configure terminal
  **Example:**
  Router# configure terminal | Enters global configuration mode. |
| **Step 3**
  interface
  **Example:**
  Router(config)# interface | Enters interface configuration mode. |
| **Step 4**
  synchronous mode
  **Example:**
  Router(config-if)# synchronous mode | Configures the ethernet interface to synchronous mode. |
| **Step 5**
  network-clock hold-off {0 | 50-10000}
  **Example:**
  Router(config-if)# network-clock hold-off 1000 | Configures hold-off timer for interface. The default value is 300 milliseconds. |
  **Note** This command is applicable to Synchronous Ethernet capable interfaces. The default value is asynchronous mode. |
| **Step 6**
  network-clock wait-to-restore 0-86400
  **Example:**
  Router(config-if)# network-clock wait-to-restore 1000 | Configures the wait-to-restore timer on the SyncE interface. |
  **Caution** Ensure that you set the wait-to-restore values above 50 seconds to avoid timing flap. |

### Understanding SSM and ESMC

Network Clocking uses these mechanisms to exchange the quality level of the clock between the network elements:

#### Synchronization Status Message

Network elements use Synchronization Status Messages (SSM) to inform the neighboring elements about the Quality Level (QL) of the clock. The non-ethernet interfaces such as optical interfaces and SONET/T1/E1 SPA framers use SSM. The key benefits of the SSM functionality are:

• Prevents timing loops.
• Provides fast recovery when a part of the network fails.
• Ensures that a node derives timing from the most reliable clock source.
**Ethernet Synchronization Messaging Channel**

In order to maintain a logical communication channel in synchronous network connections, ethernet relies on a channel called Ethernet Synchronization Messaging Channel (ESMC) based on IEEE 802.3 Organization Specific Slow Protocol standards. ESMC relays the SSM code that represents the quality level of the Ethernet Equipment Clock (EEC) in a physical layer.

The ESMC packets are received only for those ports configured as clock sources and transmitted on all the SyncE interfaces in the system. The received packets are processed by the clock selection algorithm and are used to select the best clock. The Tx frame is generated based on the QL value of the selected clock source and sent to all the enabled SyncE ports.

**Clock Selection Algorithm**

Clock selection algorithm selects the best available synchronization source from the nominated sources. The clock selection algorithm has a non-revertive behavior among clock sources with same QL value and always selects the signal with the best QL value. For clock option 1, the default is revertive and for clock option 2, the default is non-revertive.

The clock selection process works in the QL enabled and QL disabled modes. When multiple selection processes are present in a network element, all processes work in the same mode.

**QL-enabled mode**

In the QL-enabled mode, the following parameters contribute to the selection process:

- Quality level
- Signal fail via QL-FAILED
- Priority
- External commands.

If no external commands are active, the algorithm selects the reference (for clock selection) with the highest quality level that does not experience a signal fail condition.

If multiple inputs have the same highest quality level, the input with the highest priority is selected.

For multiple inputs having the same highest priority and quality level, the existing reference is maintained (if it belongs to this group), otherwise an arbitrary reference from this group is selected.

**QL-disabled mode**

In the QL-disabled mode, the following parameters contribute to the selection process:

- Signal failure
- Priority
- External commands

If no external commands are active, the algorithm selects the reference (for clock selection) with the highest priority that does not experience a signal fail condition.

For multiple inputs having the same highest priority, the existing reference is maintained (if it belongs to this group), otherwise an arbitrary reference from this group is selected.
ESMC behavior for Port Channels

ESMC is an Organization Specific Slow Protocol (OSSP) like LACP of port channel, sharing the same slow protocol type, indicating it is in the same sub-layer as LACP. Hence, ESMC works on the link layer on individual physical interfaces without any knowledge of the port channel. This is achieved by setting the egress VLAN as the default VLAN (VLAN 1) and the interface as a physical interface while sending out the packets from the CPU. So none of the service instance, port channel, or VLAN rules apply to the packet passing through the switch ASIC.

ESMC behavior for STP Blocked Ports

ESMC works just above the MAC layer (below spanning tree protocol), and ignores spanning tree Port status. So, ESMC is exchanged even when the port is in the blocked state (but not disabled state). This is achieved by setting the egress VLAN as the default VLAN (VLAN 1) and the interface as a physical interface while sending out packets from the CPU. So none of the service instance, port channel, or VLAN port state, or rules apply to the packet passing through the switch ASIC.

Configuring ESMC in Global Configuration Mode

Complete the following steps to configure ESMC in global configuration mode:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. network-clock synchronization mode ql-enabled
4. esmc process
5. network-clock quality-level \{tx | rx\} value \{interface interface-name slot/sub-slot/port | external slot/sub-slot/port | gps slot/sub-slot | controller slot/sub-slot/port\}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| **enable** | Enables privileged EXEC mode. |
| **Example:**
| Router> enable | • Enter your password if prompted. |
| **Step 2**
| **configure terminal** | Enters global configuration mode. |
| **Example:**
| Router# configure terminal | |
| **Step 3**
| **network-clock synchronization mode ql-enabled** | Configures the automatic selection process QL-enabled mode. |
| **Example:**
| Router(config)# network-clock synchronization mode ql-enabled | • QL is disabled by default. |
| | • **ql-enabled** mode can be used only when the synchronization interface is capable to send SSM. |
### Configuring ESMC in Interface Configuration Mode

Complete the following steps to configure ESMC in interface configuration mode:

#### SUMMARY STEPS

1. enable
2. configure terminal
3. interface
4. esmc mode \{tx | rx\}
5. network-clock source quality-level \textit{value} \{tx | rx\}
6. esmc mode ql-disabled

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>esmc process</td>
<td>Enables the ESMC process.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# esmc process</td>
<td></td>
</tr>
</tbody>
</table>

**Note:** ESMC can be enabled globally or at the sync-E interface level

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>network-clock quality-level {tx</td>
<td>rx} \textit{value} {interface interface-name slot/sub-slot/port</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# network-clock quality-level rx ql-pRC external 0/0/0 e1 crc4</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Clocking

**Configuring ESMC in Interface Configuration Mode**
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> esm mode {tx</td>
<td>rx}</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if)# esm mode tx
```

| **Step 5** network-clock source quality-level value \{tx | rx\} | Configures the QL value for ESMC on a GigabitEthernet port. The value is based on global interworking options: |
|---------------------------------------------------------|--------------------------------------------------|
| · If Option 1 is configured, the available values are QL-PRC, QL-SSU-A, QL-SSU-B, QL-SEC, and QL-DNU. | |
| · If Option 2 is configured with GEN 2, the available values are QL-PRS, QL-STU, QL-ST2, QL-TNC, QL-ST3, QL-SMC, QL-ST4, and QL-DUS. | |
| · If Option 2 is configured with GEN1, the available values are QL-PRS, QL-STU, QL-ST2, QL-SMC, QL-ST4, and QL-DUS | |

Example:

```
Router(config-if)# network-clock source quality-level <value> tx
```

<table>
<thead>
<tr>
<th><strong>Step 6</strong> esmc mode ql-disabled</th>
<th>Enables the QL-disabled mode.</th>
</tr>
</thead>
</table>

Example:

```
Router(config-if)# esmc mode ql-disabled
```

### What to do next

**Note**

By disabling Rx on an interface, any ESMC packet received on the interface shall be discarded. By disabling Tx on an interface, ESMC packets will not be sent on the interface; any pending Switching Message Delay timers (TSM) are also stopped.

### Verifying ESMC Configuration

Use the following commands to verify ESMC configuration:

- `show esmc`
- `show network-clock synchronization`

```
Router#show esmc interface gigabitEthernet ?
<0-1> GigabitEthernet interface number
Router#show esmc interface gigabitEthernet 0/10
Interface: GigabitEthernet0/10
 Administrative configurations:
 Mode: Synchronous
 ESMC TX: Enable
 ESMC RX: Enable
 QL TX: -
 QL RX: -
 Operational status:
 Port status: UP
 QL Receive: QL-SEC
```
Managing Synchronization

You can manage the synchronization using the following management commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>network-clock switch force {interface interface_name slot/port</td>
<td>external slot/card/port}</td>
</tr>
<tr>
<td>Router(config)# network-clock switch force interface GigabitEthernet 0/1 t1</td>
<td></td>
</tr>
<tr>
<td>network-clock switch manual {interface interface_name slot/port</td>
<td>external slot/card/port}</td>
</tr>
<tr>
<td>Router(config)# network-clock switch manual interface GigabitEthernet 0/1 t1</td>
<td></td>
</tr>
<tr>
<td>network-clock clear switch {t0</td>
<td>external slot/card/port [10m</td>
</tr>
<tr>
<td>Router(config)# network-clock clear switch t0</td>
<td></td>
</tr>
</tbody>
</table>
Synchronization Example

Configuration for QL-disabled mode clock selection

```plaintext
network-clock synchronization automatic
network-clock input-source 1 interface T0/0/12
network-clock input-source 2 External 0/0/0 10m
network-clock input-source 20 interface GigabitEthernet0/1
network-clock input-source 21 interface GigabitEthernet0/4
network-clock output-source system 1 External 0/0/0 e1 crc4
! interface GigabitEthernet0/1
 synchronous mode
 synce state slave
! interface GigabitEthernet0/4
 negotiation auto
 synchronous mode
 synce state slave
end
```

GPS Configuration

10MHz signal
network-clock input-source 1 External 0/0/0 10m
2M signal
network-clock input-source 1 External 0/0/0 2048K

Configuring Synchronous Ethernet for Copper Ports

You can configure synchronization on the copper ports using the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>synce state slave</code></td>
<td>Configures synchronous ethernet copper port as slave.</td>
</tr>
<tr>
<td>Router(config-if)# <code>synce state master</code></td>
<td>Configures synchronous ethernet copper port as master.</td>
</tr>
</tbody>
</table>

Note

Synchronization on the ethernet copper port is not supported for 10 Mbps speed.

Verifying the Synchronous Ethernet configuration

Use the show network-clock synchronization command to display the sample output.

```plaintext
Router# show network-clocks synchronization
Symbols: En - Enable, Dis - Disable, Adis - Admin Disable
 NA - Not Applicable
 * - Synchronization source selected
 # - Synchronization source force selected
 & - Synchronization source manually switched
Automatic selection process : Enable
```
Equipment Clock : 2048 (EEC-Option1)
Clock Mode : QL-Disable
ESMC : Disabled
SSM Option : 1
T0 : GigabitEthernet0/4
Hold-off (global) : 300 ms
Wait-to-restore (global) : 300 sec
Tsm Delay : 180 ms
Revertive : No

Nominated Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>SigType</th>
<th>Mode/QL</th>
<th>Prio</th>
<th>QL_IN</th>
<th>ESMC Tx</th>
<th>ESMC Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>NA</td>
<td>NA/Dis</td>
<td>251</td>
<td>QL-SEC</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>To0/12</td>
<td>NA</td>
<td>NA/En</td>
<td>1</td>
<td>QL-FAILED</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>External 0/0/0</td>
<td>10M</td>
<td>NA/Dis</td>
<td>2</td>
<td>QL-FAILED</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>G10/1</td>
<td>NA</td>
<td>Sync/En</td>
<td>20</td>
<td>QL-FAILED</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>*G10/4</td>
<td>NA</td>
<td>Sync/En</td>
<td>21</td>
<td>QL-DNU</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

T4 Out

<table>
<thead>
<tr>
<th>External Interface</th>
<th>SigType</th>
<th>Input</th>
<th>Prio</th>
<th>Squelch</th>
<th>AIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>External 0/0/0</td>
<td>E1 CRC4</td>
<td>Internal</td>
<td>1</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Use the show network-clock synchronization detail command to display all details of network-clock synchronization parameters at the global and interface levels.

Router# show network-clocks synchronization detail
Symbols: En - Enable, Dis - Disable, Adis - Admin Disable
         NA - Not Applicable
         * - Synchronization source selected
         # - Synchronization source force selected
         & - Synchronization source manually switched

Automatic selection process : Enable
Equipment Clock : 2048 (EEC-Option1)
Clock Mode : QL-Disable
ESMC : Disabled
SSM Option : 1
T0 : External 0/0/0 10m
Hold-off (global) : 300 ms
Wait-to-restore (global) : 0 sec
Tsm Delay : 180 ms
Revertive : Yes
Force Switch: FALSE
Manual Switch: FALSE
Number of synchronization sources: 3
sm(netsync NETCLK_QL_DISABLE), running yes, state 2A
Last transition recorded: (begin)-> 2A (sf_change)-> 2A

Nominated Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>SigType</th>
<th>Mode/QL</th>
<th>Prio</th>
<th>QL_IN</th>
<th>ESMC Tx</th>
<th>ESMC Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>NA</td>
<td>NA/Dis</td>
<td>251</td>
<td>QL-SEC</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>To0/12</td>
<td>NA</td>
<td>NA/En</td>
<td>1</td>
<td>QL-FAILED</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>External 0/0/0</td>
<td>10M</td>
<td>NA/Dis</td>
<td>2</td>
<td>QL-FAILED</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>G10/11</td>
<td>NA</td>
<td>Sync/En</td>
<td>2</td>
<td>QL-DNU</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

T4 Out

<table>
<thead>
<tr>
<th>External Interface</th>
<th>SigType</th>
<th>Input</th>
<th>Prio</th>
<th>Squelch</th>
<th>AIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>External 0/0/0</td>
<td>E1 CRC4</td>
<td>Internal</td>
<td>1</td>
<td>FALSE</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Interface:

---------------------------------------------
Local Interface: Internal
Signal Type: NA
Mode: NA(QL-enabled)
SSM Tx: DISABLED
SSM Rx: DISABLED
Priority: 251
QL Receive: QL-SEC
QL Receive Configured: -
QL Receive Overridden: -
Verifying the Synchronous Ethernet configuration

QL Transmit: -
QL Transmit Configured: -
Hold-off: 0
Wait-to-restore: 0
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE
Slot Disabled: FALSE
SNMP input source index: 1
SNMP parent list index: 0
Local Interface: To0/12
Signal Type: NA
Mode: NA{Ql-disabled}
SSM Tx: DISABLED
SSM Rx: ENABLED
Priority: 3
QL Receive: QL-SEC
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: -
QL Transmit Configured: -
Hold-off: 300
Wait-to-restore: 0
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE
Slot Disabled: FALSE
SNMP input source index: 2
SNMP parent list index: 0
Local Interface: External 0/0/0
Signal Type: 10M
Mode: NA{Ql-disabled}
SSM Tx: DISABLED
SSM Rx: DISABLED
Priority: 1
QL Receive: QL-SEC
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: -
QL Transmit Configured: -
Hold-off: 300
Wait-to-restore: 0
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE
Active Alarms : None
Slot Disabled: FALSE
SNMP input source index: 3
SNMP parent list index: 0
Local Interface: Gi0/11
Signal Type: NA
Mode: Synchronous(Ql-disabled)
ESMC Tx: ENABLED
ESMC Rx: ENABLED
Priority: 2
QL Receive: QL-DNU
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: -
QL Transmit Configured: -
Hold-off: 300
Wait-to-restore: 0
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE  None
Slot Disabled: FALSE
SNMP input source index: 4
SNMP parent list index: 0
External 0/0/0 ei crc4's Input: Internal
  Local Interface: Internal
  Signal Type: NA
Mode: NA(Ql-disabled)
SSM Tx: DISABLED
SSM Rx: DISABLED
Priority: 1
QL Receive: QL-SEC
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: -
QL Transmit Configured: -
Hold-off: 300
Wait-to-restore: 0
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE
Slot Disabled: FALSE
SNMP input source index: 1
SNMP parent list index: 1

**Troubleshooting Tips**

---

**Note**

Before you troubleshoot, ensure that all the network clock synchronization configurations are complete.

The following table provides the troubleshooting scenarios encountered while configuring the synchronous ethernet.
Table 21: Troubleshooting Scenarios for Synchronous Ethernet Configuration

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock selection</td>
<td>• Verify that there are no alarms on the interfaces. Use the show network-clock synchronization detail RP command to confirm.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show network-clock synchronization</code> command to confirm if the system is in revertive mode or non-revertive mode and verify the non-revertive configurations as shown in the following example:</td>
</tr>
<tr>
<td></td>
<td>Router# <code>show network-clocks synchronization</code></td>
</tr>
<tr>
<td></td>
<td>Symbols: En = Enable, Dis = Disable, Adis = Admin Disable</td>
</tr>
<tr>
<td></td>
<td>NA = Not Applicable</td>
</tr>
<tr>
<td></td>
<td>* - Synchronization source selected</td>
</tr>
<tr>
<td></td>
<td># - Synchronization source force selected</td>
</tr>
<tr>
<td></td>
<td>&amp; - Synchronization source manually switched</td>
</tr>
<tr>
<td></td>
<td>Automatic selection process : Enable</td>
</tr>
<tr>
<td></td>
<td>Equipment Clock : 2048 (EEC-Option1)</td>
</tr>
<tr>
<td></td>
<td>Clock Mode : QL-Disable</td>
</tr>
<tr>
<td></td>
<td>ESMC : Disabled</td>
</tr>
<tr>
<td></td>
<td>SSM Option : 1</td>
</tr>
<tr>
<td></td>
<td>T0 : GigabitEthernet0/4</td>
</tr>
<tr>
<td></td>
<td>Hold-off (global) : 300 ms</td>
</tr>
<tr>
<td></td>
<td>Wait-to-restore (global) : 300 sec</td>
</tr>
<tr>
<td></td>
<td>Tam Delay : 180 ms</td>
</tr>
<tr>
<td></td>
<td>Revertive : Yes&lt;&lt;&lt;&lt;If it is non revertive then it will show NO here.</td>
</tr>
<tr>
<td></td>
<td>The above example does not show the complete command output.</td>
</tr>
<tr>
<td></td>
<td>For complete command output, see the example in Verifying the Synchronous Ethernet configuration, on page 317.</td>
</tr>
<tr>
<td></td>
<td>Reproduce the current issue and collect the logs using the <code>debug network-clock errors</code>, <code>debug network-clock event</code>, and <code>debug network-clock sm RP</code> commands.</td>
</tr>
<tr>
<td></td>
<td>We suggest you do not use these <code>debug</code> commands without TAC supervision.</td>
</tr>
<tr>
<td>Incorrect quality level (QL) values when you use the <code>show network-clock synchronization detail</code> command.</td>
<td>Use the `network clock synchronization SSM[ option 1</td>
</tr>
<tr>
<td>Error message %NETCLK-6-SRC_UPD: Synchronization source 10m 0/0/0 status (Critical Alarms(OOR)) is posted to all selection process is displayed.</td>
<td>Interfaces with alarms or OOR cannot be the part of selection process even if it has higher quality level or priority. OOR should be cleared manually. OOR can be cleared by <code>clear platform timing oor-alarms</code> command.</td>
</tr>
</tbody>
</table>
Troubleshooting ESMC Configuration

Use the following debug commands to troubleshoot the PTP configuration on the router:

![Danger]

We suggest you do not use these debug commands without TAC supervision.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug esmc error</td>
<td>Verify whether the ESMC packets are transmitted and received with proper quality-level values.</td>
</tr>
<tr>
<td>debug esmc event</td>
<td></td>
</tr>
<tr>
<td>debug esmc packet [interface interface-name&gt;]</td>
<td></td>
</tr>
<tr>
<td>debug esmc packet rx [interface interface-name]</td>
<td></td>
</tr>
<tr>
<td>debug esmc packet tx [interface interface-name]</td>
<td></td>
</tr>
</tbody>
</table>

Configuring PTP for the Router

Effective from Cisco IOS Release 15.4 (3) S, the Router supports PTP over Ethernet.

![Note]

Before configuring PTP, you should set the system time to the current time. See Setting System Time to Current Time, on page 325 section for configuration details.

This section contains the following topics:

- Restrictions, on page 323
- Setting System Time to Current Time, on page 325
- Configuring PTP Ordinary Clock, on page 326
- Configuring PTP in Unicast Mode, on page 331
- Configuring PTP in Unicast Negotiation Mode, on page 332
- PTP Boundary Clock, on page 334
- Verifying PTP modes, on page 338
- Verifying PTP Configuration on the 1588V2 Slave in Unicast Mode, on page 341
- Verifying PTP Configuration on the 1588V2 Master in Unicast Mode, on page 346
- PTP Hybrid Clock, on page 350
- SSM and PTP Interaction, on page 357
- ClockClass Mapping, on page 357
- PTP Redundancy, on page 358
- Configuring ToD on 1588V2 Slave, on page 367
- Troubleshooting Tips, on page 371
Restrictions

- In IP mode only unicast static and unicast negotiation modes are supported. Multicast mode is not supported.
- PTP over Ethernet is supported only in multicast mode.
- PTP over Ethernet is not supported in telecom profiles.
- PTP slave supports both single and two-step modes. PTP master supports only two-step mode.
- VLAN 4094 is used for internal PTP communication; do not use VLAN 4094 in your network.

**Note**
Effective from Cisco IOS Release 15.4 (3) S, VLAN 4093 is not reserved for internal communication. However, every clock-port created picks a VLAN from the free pool list and reserves it internally for PTP usage only.

- Effective from Cisco IOS Release 15.5 (2) S, SVI interface is supported. With this, you can use SVI or Loopback interface in router instead of ToP interface for configuring 1588 interface/IP address.
- Sync and Delay request rates should be above 32 pps. The optimum value is 64 pps.
- Clock-ports start as master even when they are configured as slave-only. The initial or reset state of the clock is master. Therefore, the master clock must have higher priority (priority1, priority2) for the slave to accept the master.
- IEEEv2BMCA is supported only in unicast negotiation mode.
- IEEEv2BMCA is not supported in multicast and unicast modes.
- You should use no transport ipv4 unicast command to remove an existing transport configuration before changing the transport configuration from Loopback to VLAN and vice versa.
- You should use no transport ipv4 unicast command when there is change in the IP address of the interface on which PTP Master is configured.
- Effective from Cisco IOS Release 15.4 (3) S, VLAN id is reserved for each of the clock-port being configured. Therefore, depending on number of clock-ports, maximum of 20 VLANs can get reserved for internal purpose on Boundary Clock. For finding an internal VLAN for clock-port over PTP configuration, a free VLAN id is searched from 4093 in decreasing order. The free VLAN id remains reserved as long as the corresponding clocking-port is configured and this VLAN id cannot be used for any other purpose.

**Note**
- You should not use VLAN 4094 on your network as Vlan 4094 is reserved internally to process PTP management packets.
- The 1pps port is enabled by default to receive output signal.

Precision Time Protocol

The Router supports the Precision Time Protocol (PTP) as defined by the IEEE 1588-2008 standard. PTP provides accurate time synchronization over packet-switched networks.

The following table provides the description of the nodes within a PTP network.
<table>
<thead>
<tr>
<th>Network Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandmaster</td>
<td>A network device physically attached to the primary time source. All clocks are synchronized to the grandmaster clock.</td>
</tr>
</tbody>
</table>
| Ordinary Clock  | An ordinary clock is a 1588 clock with a single PTP port that can operate in one of the following modes:  
• Master mode—Distributes timing information over the network to one or more slave clocks, thus allowing the slave to synchronize its clock to the master.  
• Slave mode—Synchronizes its clock to a master clock. You can enable the slave mode on up to two interfaces simultaneously in order to connect to two different master clocks. |
| Boundary Clock  | The device participates in selecting the best master clock and can act as the master clock if no better clocks are detected.  
Boundary clock starts its own PTP session with a number of downstream slaves. The boundary clock mitigates the number of network hops and results in packet delay variations in the packet network between the Grand Master and Slave. |
| Transparent Clock | A transparent clock is a device or a switch that calculates the time it requires to forward traffic and updates the PTP time correction field to account for the delay, making the device transparent in terms of time calculations. |

**IEEEV2 Best Master Clock Algorithm Overview**

1588-2008 is an IEEE standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems. Effective from Cisco IOS Release 15.4(3)S, the Router supports IEEEV2 Best Master Clock Algorithm (BMCA).

**Information About Best Master Clock Algorithm**

BMCA is used to select the master clock on each link, and ultimately, select the grandmaster clock for the entire Precision Time Protocol (PTP) domain. BCMA runs locally on each port of the ordinary and boundary clocks, and selects the best clock on the link by comparing the local data sets with the received data from the announce messages. BMCA also runs the state decision algorithm to determine the PTP port states.

The best master clock is selected based on the following parameters:

• Priority1—User-configurable value ranging from 0 to 255; lower value takes precedence
• ClockClass—Defines the traceability of time or frequency from the grandmaster clock
• ClockAccuracy—Defines the accuracy of a clock; lower value takes precedence
• OffsetScaledLogVariance—Defines the stability of a clock
• Priority2—User-configurable value ranging from 0 to 255; lower value takes precedence
• ClockIdentity—8-byte number, typically in IEEE-EUI64 format, to uniquely identify a clock

By changing the user-configurable values, network administrators can influence the way the grandmaster clock is selected. BMCA provides the mechanism that allows all PTP clocks to dynamically select the best master clock (grandmaster) in an administration-free, fault-tolerant way, especially when the grandmaster clocks changes.

The following figure shows a sample IEEEV2 BMCA topology.

Figure 18: Sample IEEEV2 BMCA Topology

The Router supports IEEEv2 BMCA in following scenarios:
• IEEEv2BMCA with Slave Ordinary Clock
• IEEEv2BMCA with Hybrid Ordinary Clock
• IEEEv2BMCA with Boundary Clock
• IEEEv2BMCA with Hybrid Boundary clock

For more information on configuring the BMCA in ordinary and boundary clocks, see Configuring PTP Ordinary Clock, on page 326 and PTP Boundary Clock, on page 334.

**Setting System Time to Current Time**

To set the system time to the current time before configuring PTP, complete the steps given below:
Configuring PTP Ordinary Clock

The following sections describe how to configure a PTP ordinary clock.

Configuring Master Ordinary Clock

Complete the following steps to configure the a master ordinary clock:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ptp clock ordinary domain domain
4. priority1 priority-value
5. priority2 priority-value
6. clock-port port-name master
7. Do one of the following:
   - transport ipv4 unicast interface interface-type interface-number
   - transport ethernet multicast bridge-domain bridge-id
8. clock-destination clock-ip-address
9. sync interval interval
10. announce interval interval
11. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enable privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Clocking

#### Configuring Master Ordinary Clock

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2**
configure terminal

Example:

Router# configure terminal | Enters global configuration mode. |
| **Step 3**
ptp clock ordinary domain *domain*

Example:

Router(config)# ptp clock ordinary domain 0 | Configures the PTP clock as an ordinary clock and enters clock configuration mode.

- *domain*—The PTP clocking domain number. The range is from 0 to 127. |
| **Step 4**
priority1 *priority-value*

Example:

Router(config-ptp-clk)# priority1 4 | (Optional) Sets the preference level for a clock.

- *priority-value*—The range is from 0 to 255. The default is 128. |
| **Step 5**
priority2 *priority-value*

Example:

Router(config-ptp-clk)# priority2 8 | (Optional) Sets a secondary preference level for a clock. The priority2 value is considered only when the router is unable to use priority1 and other clock attributes to select a clock.

- *priority-value*—The range is from 0 to 255. The default is 128. |
| **Step 6**
clock-port *port-name* master

Example:

Router(config-ptp-clk)# clock-port Master master | Sets the clock port to PTP master and enters clock port configuration mode. In master mode, the port exchanges timing packets with PTP slave devices. |
| **Step 7**
Do one of the following:

- transport ipv4 unicast interface *interface-type* *interface-number*
- transport ethernet multicast bridge-domain *bridge-id*

Example:

Router(config-ptp-port)# transport ipv4 unicast interface loopback 0 | Specifies the transport mechanism for clocking traffic; you can use IPv4 or Ethernet transport.

- *interface-type*—The type of the interface.
- *interface-number*—The number of the interface. Configures a bridge domain.

- *bridge-id*—Identifier for the bridge domain instance.

The range is from 1 to 4094. |

**Note**

Effective with Cisco IOS Release 15.5(2)S onwards, VLAN interface (with DHCP assigned IP or static IP) is supported. The option of using dynamic IP for PTP over VLAN is generally meant for a Slave interface. Though the implementation supports dynamic IP assignment on the PTP master, you must configure the dynamically assigned IP in “clock source” command on the PTP Slave.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>clock-destination clock-ip-address</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>sync interval interval</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>announce interval interval</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Slave Ordinary Clock

Complete the following steps to configure a slave ordinary clock:

- **Note:** PTP redundancy is an implementation on different clock nodes by which the PTP slave clock node interacts with multiple master ports such as grand master, boundary clock nodes, and so on. A new servo mode is defined under PTP to support high PDV scenarios (when the PDVs exceed G.8261 standard profiles). You should use the servo mode high-jitter command to enable this mode on the PTP slave. In servo mode, convergence time would be longer than usual, as this mode is meant only for frequency synchronization.

### SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. ptp clock ordinary domain *domain*
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ptp clock ordinary domain domain</td>
<td>Configures the PTP clock as an ordinary clock and enters clock configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# ptp clock ordinary domain 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> clock-port port-name slave</td>
<td>Sets the clock port to PTP slave mode and enters clock port configuration mode. In slave mode, the port exchanges timing packets with a PTP master clock.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-tpclk)# clock-port Slave slave</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies the transport mechanism for clocking traffic; you can use IPv4 or Ethernet transport.</td>
</tr>
<tr>
<td>- transport ipv4 unicast interface interface-type interface-number or</td>
<td>- interface-type—Type of the interface, for example, loopback.</td>
</tr>
<tr>
<td>- transport ethernet multicast bridge-domain bridge-id</td>
<td>- interface-number—Number of the interface. Values range from 0 to 2,147,483,647.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-tpclk-port)# transport ipv4 unicast interface loopback 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configures a bridge domain.</td>
</tr>
<tr>
<td>- bridge-id—Identifier for the bridge domain instance. The range is from 1 to 4094.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Effective with Cisco IOS Release 15.5(2)S, VLAN interface (with DHCP assigned IP or static IP) is also supported.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
</tbody>
</table>
| clock source source-address priority | Specifies the address of a PTP master clock. You can specify a priority value as follows:  
• No priority value—Assigns a priority value of 0, the highest priority.  
• 1—Assigns a priority value of 1.  
• 2—Assigns a priority value of 2.  
• 3—Assigns a priority value of 3.  
Repeat this step for each additional master clock. You can configure up to four master clocks.  
**Note** Priority is used as an index for the configured clock sources and is not a criteria for the BMCA. |
| Example:          |         |
| Router(config-ptp-port)# clock source 5.5.5.5 |         |
| **Step 7**       |         |
| clock source source-address | Specifies the address of a PTP master clock. |
| Example:          |         |
| Router(config-ptp-port)# clock source 8.8.8.1 |         |
| **Step 8**       |         |
| announce timeout value | (Optional) Specifies the number of PTP announcement intervals before the session times out.  
• value—The range is from 1 to 10. The default is 3. |
| Example:          |         |
| Router(config-ptp-port)# announce timeout 8 |         |
| **Step 9**       |         |
| delay-req interval interval | (Optional) Configures the minimum interval allowed between PTP delay request messages.  
The intervals are set using log base 2 values, as follows:  
• 5—1 packet every 32 seconds  
• 4—1 packet every 16 seconds  
• 3—1 packet every 8 seconds  
• 2—1 packet every 4 seconds  
• 1—1 packet every 2 seconds  
• 0—1 packet every second  
• -1—1 packet every 1/2 second, or 2 packets per second  
• -2—1 packet every 1/4 second, or 4 packets per second  
• -3—1 packet every 1/8 second, or 8 packets per second  
• -4—1 packet every 1/16 seconds, or 16 packets per second.  
• -5—1 packet every 1/32 seconds, or 32 packets per second.  
• -6—1 packet every 1/64 seconds, or 64 packets per second. |
| Example:          |         |
| Router(config-ptp-port)# delay-req interval 1 |         |
### Configuring PTP in Unicast Mode

In unicast mode, the slave port and the master port need to know each other’s IP address. Unicast mode has one to one mapping between the slave and the master. One master can have just one slave and vice-versa. Unicast mode is not a good option for scalability.

The command used for configuring on unicast mode is `clock-port`.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-ptp-clk)# clock-port | Configures Cisco ASR 901 on unicast mode. The following options can be configured with this command:  
  - Port Name  
  - Port Role |

Before configuring on different modes, you need to configure the loopback address. The following example shows the configuration of loopback address:

**Note**

This loopback address cannot be used for any protocol other than PTP. If a VLAN interface is used instead of loopback, the Vlan IP can be used by other protocols. It does not become dedicated to PTP.

```
Router(config)#int loopback
Router(config-if)#ip address 8.8.8.2 255.255.255.255
Router(config-if)#
no sh
Router#sh run int loopback
Building configuration...
```
Current configuration : 72 bytes
!
interface loopback
ip address 8.8.8.2 255.255.255.255
end
!

Note
Ensure that this loopback interface is reachable (using ICMP ping) from remote locations, before assigning
the interface to PTP. Once the interface is assigned to PTP, it does not respond to ICMP pings. However, If
PTP is configured over VLAN, the interface responds to ICMP ping even after it is assigned to PTP.

The following example shows the configuration of PTP on the unicast mode:

Router# configure terminal
Router(config)# ptp clock ordinary domain 0

Router(config-ptp-clk)# clock-port SLAVE slave
Router(config-ptp-port)# transport ipv4 unicast interface loopback 10
Router(config-ptp-port)# clock-source 8.8.8.1

Configuring PTP in Unicast Negotiation Mode

In unicast negotiation mode, master port does not know the slave port at the outset. Slave port sends negotiation
TLV when active and master port figures out that there is some slave port for synchronization. Unicast
negotiation mode is a good option for scalability as one master has multiple slaves.

The command used for configuring router on unicast negotiation mode is clock-port.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ptp-clk)# clock-port</td>
<td>Configures router on unicast negotiation mode. The following options can be configured with this command:</td>
</tr>
<tr>
<td></td>
<td>• Port Name</td>
</tr>
<tr>
<td></td>
<td>• Port Role</td>
</tr>
</tbody>
</table>

The following example shows the configuration of router on the unicast negotiation mode:

Router# configure terminal
Router(config)# ptp clock ordinary domain 0
Router(config-ptp-clk) clock-port SLAVE slave
Router(config-ptp-port)# transport ipv4 unicast interface loopback 23 negotiation
Router(config-ptp-port)# clock-source 8.8.8.1

Router(config)# ptp clock ordinary domain 0
Router(config-ptp-clk)# clock-port MASTER Master
Router(config-ptp-port)# transport ipv4 unicast interface loopback 23 negotiation
Router(config-ptp-port)# sync interval <>
Router(config-ptp-port)# announce interval <>
Configuring PTP in Multicast Mode

PTP over Ethernet uses multicast MAC addresses for communication of PTP messages between the slave clock and the master clock. The master sends the announce, synchronization, and delay-response packets using the multicast method. The PTP slave receives the multicast announce packets from the master or multiple masters and determines the best master using Best Master Clock Algorithm (BMCA). The slave receives and processes the synchronization from the selected master clock in the same bridge domain.

You should configure the transit nodes as boundary clocks so that the master and the slave clocks can be operated in different bridge domains. This will control the multicast traffic on the network. The following topology is used for configuring PTP in multicast mode.

*Figure 19: PTP Topology in Multicast Mode*

Before configuring Router on different modes, you need to configure the bridge domain. The following example shows the configuration of bridge domain and the PTP topology in multicast mode:

*Figure 20: Example for PTP Topology in Multicast Mode*

RouterA # show run interface gigabitethernet0/3

Building configuration...
Current configuration : 202 bytes
!
interface GigabitEthernet0/3
   no ip address
   negotiation auto
   service instance 1 ethernet
   encapsulation dot1q 100
   rewrite ingress tag pop 1 symmetric
   bridge-domain 999
   !901
end

RouterA# configure terminal
RouterA(config)# ptp clock ordinary domain 0
RouterA(config-ptp-clk)# clock-port MASTER master

Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide
RouterA(config-ptp-port)# transport ethernet multicast bridge-domain 999

RouterB# show run interface gigabitethernet0/3

Building configuration...
Current configuration : 202 bytes
!
interface GigabitEthernet0/3
 no ip address
 negotiation auto
 service instance 1 ethernet
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric
 bridge-domain 999
 ! end

RouterB# configure terminal
RouterB(config)# ptp clock ordinary domain 0
RouterB(config-pts-clk)# clock-port SLAVE slave
RouterB(config-pts-port)# transport ethernet multicast bridge-domain 999

---

**Note**

For PTP over Ethernet support on Router, the PTP packets received from an external interface should be single tagged with pop1 and double tagged with pop2. Also, the external interface on which the PTP packets are received should have one of the following configurations on EVC.

<table>
<thead>
<tr>
<th>No pop</th>
<th>pop 1</th>
<th>pop 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untag</td>
<td>Yes</td>
<td>—</td>
</tr>
<tr>
<td>Dot1q</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>QinQ</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dot1ad</td>
<td>—</td>
<td>Yes</td>
</tr>
<tr>
<td>Dot1ad-dot1ad</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Default</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Priority</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

---

**PTP Boundary Clock**

A PTP boundary clock (BC) acts as a middle hop between a PTP master and PTP slave. It has multiple ports which can act as a master or slave port as shown in Figure 21: PTP Boundary Clock, on page 335. A PTP boundary clock has one slave port and one or more master ports. A slave port acts as a slave to a remote PTP master, while a master port acts as a master to a remote PTP slave. A PTP boundary clock derives clock from a master/grand master clock (by acting as a slave) and sends the derived clock to the slaves connected to it (by acting as a master).

PTP boundary clock starts its own PTP session with a number of downstream slaves. The PTP boundary clock mitigates the number of network hops and results in packet delay variations in the packet network between the grand master and slave.
The PTP boundary clock has the following capabilities:

- Support for up to 20 clock ports.
- Simultaneous support for static and negotiated clock ports.
- Support for up to 36 slaves and 1 master.

### Configuring PTP Boundary Clock

Complete the following steps to configure the PTP boundary clock.

#### Before you begin

- **Note**: If PTP boundary clock is configured before installing the 1588BC license, remove the boundary clock configuration and reconfigure the boundary clock after the license installation.

#### SUMMARY STEPS

1. enable
### Configuring PTP Boundary Clock

2. `configure terminal`
3. `ptp clock boundary domain domain`
4. `clock-port port-name slave`
5. Do one of the following:
   - `transport ipv4 unicast interface interface-type interface-number [negotiation]`
   - `transport ethernet multicast bridge-domain bridge-id`

6. `clock source source-address priority`
7. `clock source source-address priority`
8. `clock source source-address priority`
9. `clock source source-address`
10. `clock source source-address`
11. `clock-port port-name master`
12. Do one of the following:
    - `transport ipv4 unicast interface interface-type interface-number [negotiation]`
    - `transport ethernet multicast bridge-domain bridge-id`
13. `exit`

### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  enable
  **Example:**
  Router> enable | Enables privileged EXEC mode.
  - Enter your password if prompted. |
| **Step 2**
  `configure terminal`
  **Example:**
  Router# configure terminal | Enters global configuration mode. |
| **Step 3**
  `ptp clock boundary domain domain`
  **Example:**
  Router(config)# ptp clock boundary domain 0 | Configures the PTP boundary clock and selects the best master clock. It also acts as the master clock if no better clocks are detected. Enters clock configuration mode.
  - `domain`—The PTP clocking domain number. Valid values are from 0 to 127. |
| **Step 4**
  `clock-port port-name slave`
  **Example:**
  Router(config-ptp-clk)# clock-port SLAVE slave | Sets the clock port to PTP slave mode and enters the clock port configuration mode. In slave mode, the port exchanges timing packets with a PTP master clock. |
| **Step 5**
  Do one of the following:
  - `transport ipv4 unicast interface interface-type interface-number [negotiation]` | Specifies the transport mechanism for clocking traffic; you can use IPv4 or Ethernet transport.
  - `interface-type`—The type of the interface.
  - `interface-number`—The number of the interface. |
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• transport ethernet multicast bridge-domain bridge-id</td>
<td><strong>negotiation</strong>—(Optional) Enables dynamic discovery of slave devices and their preferred format for sync interval and announce interval messages. Configures a bridge domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# transport ipv4 unicast interface loopback 0 negotiation</td>
<td><strong>bridge-id</strong>—Identifier for the bridge domain instance. The range is from 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>clock source source-address priority</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the address of a PTP master clock. You can specify a priority value as follows:</td>
</tr>
<tr>
<td></td>
<td>• No priority value—Assigns a priority value of 0, the highest priority.</td>
</tr>
<tr>
<td></td>
<td>• 1—Assigns a priority value of 1.</td>
</tr>
<tr>
<td></td>
<td>• 2—Assigns a priority value of 2.</td>
</tr>
<tr>
<td></td>
<td>• 3—Assigns a priority value of 3.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Priority is used as an index for the configured clock sources and is not a criteria for the BMCA.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>clock source source-address priority</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the address of an additional PTP master clock; repeat this step for each additional master clock. You can configure up to four master clocks.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>clock source source-address priority</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the address of an additional PTP master clock; repeat this step for each additional master clock. You can configure up to four master clocks.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>clock source source-address priority</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the address of an additional PTP master clock; repeat this step for each additional master clock. You can configure up to four master clocks.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>clock source source-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the address of a PTP master clock.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Verifying PTP modes

Ordinary Clock

Use the `show ptp clock dataset current` command to display the sample output.

```
Router#show ptp clock dataset current
CLOCK [Ordinary Clock, domain 0]
Steps Removed: 1
Offset From Master: 0
```

Use the `show ptp clock dataset default` command to display the sample output.

```
Router#show ptp clock dataset default
```
CLOCK [Ordinary Clock, domain 0]
Two Step Flag: No
Clock Identity: 0x0:A:B:FF:FF:5C:A:80
Number Of Ports: 1
Priority1: 128
Priority2: 128
Domain Number: 0
Slave Only: Yes
Clock Quality:
Class: 13
Accuracy: Greater than 10s
Offset (log variance): 52592

Use the `show ptp clock dataset parent domain` command to display the sample output.

Router# show ptp clock dataset parent domain 0
CLOCK [Ordinary Clock, domain 0]
Parent Stats: No
Observed Parent Offset (log variance): 65535
Observed Parent Clock Phase Change Rate: 0
Grandmaster Clock:
Identity: 0x0:D0:4:FF:FF:B8:6C:0
Priority1: 128
Priority2: 128
Clock Quality:
Class: 13
Accuracy: Within 1s
Offset (log variance): 52592

Use the `show ptp clock dataset time-properties domain` command to display the sample output.

Router# show ptp clock dataset time-properties domain 0
CLOCK [Ordinary Clock, domain 0]
Current UTC Offset Valid: TRUE
Current UTC Offset: 33
Leap 59: FALSE
Leap 61: FALSE
Time Traceable: TRUE
Frequency Traceable: TRUE
PTP Timescale: TRUE
Time Source: Internal Oscillator

Boundary Clock

Use the `show ptp clock dataset current` command to display the sample output.

Router# show ptp clock dataset current
CLOCK [Boundary Clock, domain 0]
Steps Removed: 0
Offset From Master: 0ns

Use the `show ptp clock dataset default` command to display the sample output.

Router# show ptp clock dataset default
CLOCK [Boundary Clock, domain 0]
Two Step Flag: No
Clock Identity: 0x0:0:0:FF:FE:0:23:45
Number Of Ports: 1
Priority1: 128
Priority2: 128
Domain Number: 0
Slave Only: Yes
Clock Quality:
  Class: 248
  Accuracy: Within 25us
  Offset (log variance): 22272

Use the `show ptp clock dataset parent domain` command to display the sample output.

Router# show ptp clock dataset parent domain 0
CLOCK [Boundary Clock, domain 0]
  Parent Stats: No
  Observed Parent Offset (log variance): 0
  Observed Parent Clock Phase Change Rate: 0
  Grandmaster Clock:
    Identity: 0x0:0:0:FF:FE:0:23:45
    Priority1: 128
    Priority2: 128
    Clock Quality:
      Class: 248
      Accuracy: Within 25us
      Offset (log variance): 22272

Use the `show ptp clock dataset time-properties domain` command to display the sample output.

Router# show ptp clock dataset time-properties domain 0
CLOCK [Boundary Clock, domain 0]
  Current UTC Offset Valid: FALSE
  Current UTC Offset: 34
  Leap 59: FALSE
  Leap 61: FALSE
  Time Traceable: FALSE
  Frequency Traceable: FALSE
  PTP Timescale: FALSE
  Time Source: Internal Oscillator

Use the `show ptp port running detail` command to display the details of PTP boundary clock such as master clock sources added, clock class, and variance.

Router# show ptp port running detail
Router# show ptp port running detail

PORT [SLAVE] CURRENT PTP MASTER PORT
PORT [SLAVE] PREVIOUS PTP MASTER PORT
PORT [SLAVE] LIST OF PTP MASTER PORTS

LOCAL PRIORITY 1
  Protocol Address: 22.22.22.22
  PTSTF Status:
  Alarm In Stream:
  Clock Stream Id: 0
  Priority1: 128
Priority2: 128  
Class: 58  
Accuracy: Within 25us  
Offset (log variance): 22272  
Steps Removed: 0  

LOCAL PRIORITY 2  
Protocol Address: 66.66.66.66  
Clock Identity: 0x4C:0:82:FF:FE:C7:6F:1C  
PTSF Status:  
Alarm In Stream:  
Clock Stream Id: 0  
Priority1: 128  
Priority2: 128  
Class: 58  
Accuracy: Within 25us  
Offset (log variance): 22272  
Steps Removed: 0  

LOCAL PRIORITY 3  
Protocol Address: 77.77.77.77  
Clock Identity: 0x0:0:0:0:0:0:0:0  
PTSF Status: PTSF_SIGNAL_FAIL  
Alarm In Stream: ALARM_ANNOUNCE_FAIL  
Clock Stream Id: 0  
Priority1: 0  
Priority2: 0  
Class: 0  
Accuracy: Unknown  
Offset (log variance): 0  
Steps Removed: 0  

Use the `show ptp clock running domain` command to display the sample output.

Router#show ptp clock running doman 0

PTP Boundary Clock [Domain 0]

<table>
<thead>
<tr>
<th>State</th>
<th>Ports</th>
<th>Pkts sent</th>
<th>Pkts rcvd</th>
<th>Redundancy Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE_ALIGNED</td>
<td>2</td>
<td>324215</td>
<td>1257513</td>
<td>Hot standby</td>
</tr>
</tbody>
</table>

PORT SUMMARY

<table>
<thead>
<tr>
<th>Master Name</th>
<th>Tx Mode</th>
<th>Role</th>
<th>Transport</th>
<th>State</th>
<th>Sessions</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAVE</td>
<td>unicast</td>
<td>slave</td>
<td>To3/0/2</td>
<td>-</td>
<td>1</td>
<td>9.9.9.1</td>
</tr>
<tr>
<td>MASTER</td>
<td>unicast</td>
<td>master</td>
<td>To3/0/2</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Verifying PTP Configuration on the 1588V2 Slave in Unicast Mode

The following examples help you verify the PTP configuration on the 1588V2 slave.
The loopback interface assigned to PTP does not respond to ICMP pings. To check route availability, either do it before assigning the interface to PTP, or remove PTP from the interface and then perform ICMP ping. For removing PTP, use `no transport ipv4 unicast interface loopback` command. For PTP over VLAN, ping will work even when interface is assigned to PTP.

### Note

The bridge state indicates the extension of previously known state which can be ignored or considered to be normal. The clock state can get into holdover from bridge state when the packet delay variation is high on the received PTP packets or the PTP connection is lost. This holdover state indicates that the clock cannot be recovered from PTP packets as the quality is poor.

### Example 1

Router# `show ptp clock runn dom 0`

```plaintext
PTP Ordinary Clock [Domain 0]

<table>
<thead>
<tr>
<th>State</th>
<th>Ports</th>
<th>Pkts sent</th>
<th>Pkts rcvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACQUIRING</td>
<td>1</td>
<td>5308</td>
<td>27185</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Tx Mode</th>
<th>Role</th>
<th>Transport</th>
<th>State</th>
<th>Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAVE</td>
<td>unicast</td>
<td>slave</td>
<td>Lo10</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

SESSION INFORMATION

SLAVE [L010] [Sessions 1]

<table>
<thead>
<tr>
<th>Peer addr</th>
<th>Pkts in</th>
<th>Pkts out</th>
<th>In Errs</th>
<th>Out Errs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.3</td>
<td>27185</td>
<td>5308</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

### Example 2

Router# `show platform ptp state`

```plaintext
flag = 2
```

<table>
<thead>
<tr>
<th>PLL State</th>
<th>2 (Fast Loop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Status Duration</td>
<td>7049 (sec)</td>
</tr>
<tr>
<td>Forward Flow Weight</td>
<td>0.0</td>
</tr>
<tr>
<td>Forward Flow Transient-Free</td>
<td>900 (900 sec Window)</td>
</tr>
<tr>
<td>Forward Flow Transient-Free</td>
<td>3600 (3600 sec Window)</td>
</tr>
<tr>
<td>Forward Flow Transactions Used:</td>
<td>23.0 (%)</td>
</tr>
<tr>
<td>Forward Flow Oper. Min TDEV</td>
<td>4254.0 (nsec)</td>
</tr>
<tr>
<td>Forward Mafie</td>
<td>38.0</td>
</tr>
<tr>
<td>Forward Flow Min Cluster Width:</td>
<td>7550.0 (nsec)</td>
</tr>
<tr>
<td>Forward Flow Mode Width</td>
<td>21400.0 (nsec)</td>
</tr>
<tr>
<td>Reverse Flow Transient-Free</td>
<td>900 (900 sec Window)</td>
</tr>
<tr>
<td>Reverse Flow Transient-Free</td>
<td>3600 (3600 sec Window)</td>
</tr>
<tr>
<td>Reverse Flow Transactions Used:</td>
<td>200.0 (%)</td>
</tr>
<tr>
<td>Reverse Flow Oper. Min TDEV</td>
<td>487.0 (nsec)</td>
</tr>
<tr>
<td>Reverse Mafie</td>
<td>36.0</td>
</tr>
<tr>
<td>Reverse Flow Min Cluster Width:</td>
<td>225.0 (nsec)</td>
</tr>
<tr>
<td>Reverse Flow Mode Width</td>
<td>450.0 (nsec)</td>
</tr>
<tr>
<td>Frequency Correction</td>
<td>257.0 (ppb)</td>
</tr>
<tr>
<td>Phase Correction</td>
<td>0.0 (ppb)</td>
</tr>
<tr>
<td>Output TDEV Estimate</td>
<td>1057.0 (nsec)</td>
</tr>
<tr>
<td>Output MDEV Estimate</td>
<td>1.0 (ppb)</td>
</tr>
<tr>
<td>Residual Phase Error</td>
<td>0.0 (nsec)</td>
</tr>
<tr>
<td>Min. Roundtrip Delay</td>
<td>45.0 (nsec)</td>
</tr>
<tr>
<td>Sync Packet Rate</td>
<td>65 (pkts/sec)</td>
</tr>
</tbody>
</table>
Verifying PTP Configuration on the 1588V2 Slave in Multicast Mode

A typical configuration on a 1588V2 slave in the multicast mode is:

For a OC-Slave configured in PTP over ethernet in the multicast mode, clock source details cannot be specified. The `show ptp port running detail` command shows all the four master clock details. However, the details of those master clocks that are having a session with the slave clock will be constantly updated. In the following example two OC-MASTER clocks are having session with a OC-SLAVE.

```
Router# show run | sec ptp
ptp clock ordinary domain 0
 1pps-out 0 1 ns
clock-port SLAVE slave
 transport ethernet multicast bridge-domain 77

Router# show ptp port running detail

PORT [SLAVE] CURRENT PTP MASTER PORT
 Protocol Address: 4055.3989.728b

PORT [SLAVE] PREVIOUS PTP MASTER PORT
 Protocol Address: 0000.0000.0000
 Clock Identity: 0x0:0:0:0:0:0:0:0
 Reason:

PORT [SLAVE] LIST OF PTP MASTER PORTS

LOCAL PRIORITY 0
 Protocol Address: 4055.3989.78a3
 PTSF Status:
 Alarm In Stream:
 Clock Stream Id: 0
 Priority1: 128
 Priority2: 128
 Class: 248
 Accuracy: Within 25us
 Offset (log variance): 22272
 Steps Removed: 0

LOCAL PRIORITY 1
 Protocol Address: 4055.3989.728b
 PTSF Status:
 Alarm In Stream:
 Clock Stream Id: 0
 Priority1: 128
 Priority2: 128
```
Verifying PTP Configuration on the 1588V2 Slave in Multicast Mode

Class: 58
Accuracy: Within 25us
Offset (log variance): 22272
Steps Removed: 0

LOCAL PRIORITY 2
Protocol Address: UNKNOWN
Clock Identity: 0x0:0:0:0:0:0:0:0
PTSF Status:
Alarm In Stream:
Clock Stream Id: 0
Priority1: 0
Priority2: 0
Class: 0
Accuracy: Unknown
Offset (log variance): 0
Steps Removed: 0

LOCAL PRIORITY 3
Protocol Address: UNKNOWN
Clock Identity: 0x0:0:0:0:0:0:0:0
PTSF Status:
Alarm In Stream:
Clock Stream Id: 0
Priority1: 0
Priority2: 0
Class: 0
Accuracy: Unknown
Offset (log variance): 0
Steps Removed: 0

Router# show run int gigabitEthernet 0/0
Building configuration...
Current configuration : 183 bytes
!
interface GigabitEthernet0/0
 no ip address
 negotiation auto
 service instance 1 ethernet
 encapsulation dot1q 33
 rewrite ingress tag pop 1 symmetric
 bridge-domain 77
 !
end

Router# show run int gigabitEthernet 0/3
Building configuration...
Current configuration : 297 bytes
!
interface GigabitEthernet0/3
 no ip address
 negotiation auto
 synchronous mode
 synce state slave
 service instance 2 ethernet
 encapsulation dot1q 33
 rewrite ingress tag pop 1 symmetric
 bridge-domain 77
 !
 service instance 17 ethernet
 encapsulation untagged
bridge-domain 17
!

end

Router# show platform ptp stats detailed
Statistics for PTP clock 0

Number of ports : 1
Pkts Sent : 4793
Pkts Rcvd : 26531
Pkts Discarded : 0

LAST FLL STATE

Normal loop : Number of Transitions = 0 and Last transition at : 00:00:00.000 UTC Mon Jan 1 1900
Bridge state: Number of Transitions = 0 and Last transition at : 00:00:00.000 UTC Mon Jan 1 1900
Holdover state : Number of Transitions = 1 and Last transition at : 12:08:38.774 UTC Thu Jun 19 2014

Statistics for PTP clock port 1

Pkts Sent : 4793
Pkts Rcvd : 26531
Pkts Discarded : 0
Signals Rejected : 0

Statistics for L2 Multicast packets

Multicast address : 011b.1900.0000
Announces Sent : 0
Syncs Sent : 0
Follow Ups Sent : 0
Delay Reqs Sent : 4793
Delay Resps Sent : 0
Signals Sent : 0
Packets Discarded : 0

Statistics for peer 1

L2 address : 4055.3989.728b
Announces Sent : 0
Announces Rcvd : 37
Syncs Sent : 0
Syncs Rcvd : 4752
Follow Ups Sent : 0
Follow Ups Rcvd : 4752
Delay Reqs Sent : 0
Delay Reqs Rcvd : 0
Delay Resps Sent : 0
Delay Resps Rcvd : 4753
Mgmts Sent Rcvd : 0
Mgmts Rcvd : 0
Signals Sent : 0
Signals Rcvd : 0
Packets Discarded : 0

Statistics for peer 2

L2 address : 4055.3989.78a3
Announces Sent : 0
Announces Rcvd : 31
Syncs Sent : 0
Syncs Rcvd : 4069
Verifying PTP Configuration on the 1588V2 Master in Unicast Mode

A typical configuration on a 1588V2 master is:

```
ptp clock ordinary domain 0
tod 0/0 cisco
input 1pps 0/0
clock-port MASTER master
transport ipv4 unicast interface Lo20 negotiation
```

Use the `show ptp clock running domain` command to display the PTP clock configuration:

```
Router# show ptp clock running domain 0
PTP Ordinary Clock [Domain 0]
 State Ports Pkts sent Pkts rcvd
 FREQ_LOCKED 1 1757273 599954

PORT SUMMARY
 Name Tx Mode Role Transport State Sessions
 o unicast master Lo20 Master 5

SESSION INFORMATION
 o [Lo20] [Sessions 5]
 Peer addr Pkts in Pkts out In Errs Out Errs
 9.9.9.14 120208 344732 0 0
 9.9.9.13 120159 344608 0 0
 9.9.9.11 120148 343955 0 0
 9.9.9.12 119699 342863 0 0
 9.9.9.10 119511 342033 0 0

Use the `show platform ptp stats` command to display the PTP statistics:

```
Statistics for PTP clock 0
   ####################################################################
   Number of ports : 1
   Pkts Sent : 1811997
   Pkts Rcvd : 619038
   Pkts Discarded : 0
Statistics for PTP clock port 1
   ####################################################################
   Pkts Sent : 1811997
   Pkts Rcvd : 619038
   Pkts Discarded : 0
   Signals Rejected : 0
Statistics for peer 1
   ####################################################################
   IP addr : 9.9.9.14
   Pkts Sent : 355660
   Pkts Rcvd : 124008
Statistics for peer 2
```

Verifying PTP Configuration on the 1588V2 Master in Multicast Mode

A typical configuration on a 1588V2 master is:

```
ptp clock boundary domain 0
    clock-port SLAVE slave
    transport ipv4 unicast interface Lo45 negotiation
    clock source 40.40.40.1
    clock-port MASTER master
    transport ethernet multicast bridge-domain 1
```

Use the `show ptp clock running domain` command to display the PTP clock configuration:

```
Router# show ptp clock running domain 0

PTP Boundary Clock [Domain 0]

<table>
<thead>
<tr>
<th>State</th>
<th>Ports</th>
<th>Pkts sent</th>
<th>Pkts rcvd</th>
<th>Redundancy Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE_ALIGNED</td>
<td>2</td>
<td>242559956</td>
<td>189887918</td>
<td>Track all</td>
</tr>
</tbody>
</table>

PORT SUMMARY

<table>
<thead>
<tr>
<th>Name</th>
<th>Tx Mode</th>
<th>Role</th>
<th>Transport</th>
<th>State</th>
<th>Sessions</th>
<th>Pkts rcvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAVE</td>
<td>unicast</td>
<td>slave</td>
<td>Lo45</td>
<td>Slave</td>
<td>1</td>
<td>40.40.40.1</td>
</tr>
<tr>
<td>MASTER</td>
<td>mcast</td>
<td>master</td>
<td>Ethernet</td>
<td>Master</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

SESSION INFORMATION

SLAVE [Lo45] [Sessions 1]

<table>
<thead>
<tr>
<th>Peer addr</th>
<th>Pkts in</th>
<th>Pkts out</th>
<th>In Errs</th>
<th>Out Errs</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.40.40.1</td>
<td>132729502</td>
<td>44138439</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MASTER [Ethernet] [Sessions 1]

<table>
<thead>
<tr>
<th>Peer addr</th>
<th>Pkts in</th>
<th>Pkts out</th>
<th>In Errs</th>
<th>Out Errs</th>
</tr>
</thead>
</table>
Use the **show platform ptp state** command to display the PTP servo state:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLL State</td>
<td>3 (Normal Loop)</td>
</tr>
<tr>
<td>FLL Status Duration</td>
<td>687618 (sec)</td>
</tr>
<tr>
<td>Forward Flow Weight</td>
<td>47.0</td>
</tr>
<tr>
<td>Forward Flow Transient-Free</td>
<td>900 (900 sec Window)</td>
</tr>
<tr>
<td>Forward Flow Transient-Free</td>
<td>3600 (3600 sec Window)</td>
</tr>
<tr>
<td>Forward Flow Transactions Used</td>
<td>200.0 (%)</td>
</tr>
<tr>
<td>Forward Flow Oper. Min TDEV</td>
<td>5.0 (nsec)</td>
</tr>
<tr>
<td>Forward Mafie</td>
<td>0.0</td>
</tr>
<tr>
<td>Forward Flow Min Cluster Width</td>
<td>15000.0 (nsec)</td>
</tr>
<tr>
<td>Forward Flow Mode Width</td>
<td>100.0 (nsec)</td>
</tr>
<tr>
<td>Reverse Flow Weight</td>
<td>52.0</td>
</tr>
<tr>
<td>Reverse Flow Transient-Free</td>
<td>900 (900 sec Window)</td>
</tr>
<tr>
<td>Reverse Flow Transient-Free</td>
<td>3600 (3600 sec Window)</td>
</tr>
<tr>
<td>Reverse Flow Transactions Used</td>
<td>200.0 (%)</td>
</tr>
<tr>
<td>Reverse Flow Oper. Min TDEV</td>
<td>6.0 (nsec)</td>
</tr>
<tr>
<td>Reverse Mafie</td>
<td>0.0</td>
</tr>
<tr>
<td>Reverse Flow Min Cluster Width</td>
<td>7500.0 (nsec)</td>
</tr>
<tr>
<td>Reverse Flow Mode Width</td>
<td>100.0 (nsec)</td>
</tr>
<tr>
<td>Frequency Correction</td>
<td>54.836 (ppb)</td>
</tr>
<tr>
<td>Phase Correction</td>
<td>0.0 (ppb)</td>
</tr>
<tr>
<td>Output TDEV Estimate</td>
<td>6.0 (nsec)</td>
</tr>
<tr>
<td>Output MDEV Estimate</td>
<td>0.0 (ppb)</td>
</tr>
<tr>
<td>Residual Phase Error</td>
<td>3.206 (nsec)</td>
</tr>
<tr>
<td>Min. Roundtrip Delay</td>
<td>14.0 (nsec)</td>
</tr>
<tr>
<td>Sync Packet Rate*</td>
<td>64 (pkts/sec)</td>
</tr>
<tr>
<td>Delay Packet Rate*</td>
<td>64 (pkts/sec)</td>
</tr>
<tr>
<td>Forward IPDV % Below Threshold</td>
<td>0.0</td>
</tr>
<tr>
<td>Forward Maximum IPDV</td>
<td>0.0 (usec)</td>
</tr>
<tr>
<td>Forward Interpacket Jitter</td>
<td>0.0 (usec)</td>
</tr>
<tr>
<td>Reverse IPDV % Below Threshold</td>
<td>0.0</td>
</tr>
<tr>
<td>Reverse Maximum IPDV</td>
<td>0.0 (usec)</td>
</tr>
<tr>
<td>Reverse Interpacket Jitter</td>
<td>0.0 (usec)</td>
</tr>
<tr>
<td>Note: The maximum rates for Sync and Delay packets will be approximately 64 pps.</td>
<td></td>
</tr>
</tbody>
</table>

Use the **show platform ptp stats detailed** command to display the PTP statistics:

Router#sh platform ptp stats detailed
Statistics for PTP clock 0
Number of ports : 2
Pkts Sent : 242525543
Pkts Rcvd : 189865083
Pkts Discarded : 0

LAST FLL STATE
Normal loop : Number of Transitions = 1 and Last transition at : 15:51:16.155 UTC Mon Apr 21 2014
Bridge state: Number of Transitions = 0 and Last transition at : 00:00:00.000 UTC Mon Jan 1 1900
Holdover state: Number of Transitions = 0 and Last transition at: 00:00:00.000 UTC Mon Jan 1 1900

Statistics for PTP clock port 1
##################################
Pkts Sent : 44132739
Pkts Rcvd : 132712363
Pkts Discarded : 0
Signals Rejected : 0

Statistics for peer 1
##################################
IP address : 40.40.40.1
Announces Sent : 0
Announces Rcvd : 344686
Syncs Sent : 0
Syncs Rcvd : 44119383
Follow Ups Sent : 0
Follow Ups Rcvd : 44119383
Delay Regs Sent : 44119179
Delay Regs Rcvd : 0
Delay Resps Sent : 0
Delay Resps Rcvd : 44115351
Mgmts Sent Rcvd : 0
Mgmts Rcvd : 0
Signals Sent : 13560
Signals Rcvd : 13560
Packets Discarded : 0

Statistics for PTP clock port 2
##################################
Pkts Sent : 198392804
Pkts Rcvd : 57152720
Pkts Discarded : 0
Signals Rejected : 0

Statistics for L2 Multicast packets
###################################
Multicast address : 011b.1900.0000
Announces Sent : 343722
Syncs Sent : 83733919
Follow Ups Sent : 83733919
Delay Regs Sent : 0
Delay Regs Rcvd : 0
Delay Resps Sent : 0
Delay Resps Rcvd : 954979
Mgmts Sent Rcvd : 0
Mgmts Rcvd : 0
Signals Sent : 0
Signals Rcvd : 0
Packets Discarded : 0

Statistics for peer 2
##################################
L2 address : 4c00.8287.1d33
Announces Sent : 0
Announces Rcvd : 0
Syncs Sent : 0
Syncs Rcvd : 0
Follow Ups Sent : 0
Follow Ups Rcvd : 0
Delay Regs Sent : 0
Delay Regs Rcvd : 954979
Delay Resps Sent : 954979
Delay Resps Rcvd : 0
Mgmts Sent Rcvd : 0
Mgmts Rcvd : 0
Signals Sent : 0
Signals Rcvd : 0
Packets Discarded : 0
In Master node, the Delay Resps packet sent to a specific peer is a response to the Delay Reqs packet. Hence, the `sh platform ptp stats detailed` command displays the details of both the sent and received packets.

**PTP Hybrid Clock**

To improve the clock quality, you can either improve the oscillator class or reduce the number of hops between the master and the slave. In PTP hybrid mode, the oscillator class is improved by using a physical layer clock (sourced from a stratum-1 clock) instead of the available internal oscillator. The PTP hybrid mode is supported for ordinary clock (in slave mode only) and boundary clock.

**Configuring a Hybrid Ordinary Clock**

Complete the following steps to configure a hybrid clocking in ordinary slave clock mode:

**Before you begin**

When configuring a hybrid clock, ensure that the frequency and phase sources are traceable to the same master clock.

**Note**

- Hybrid mode is not supported when PTP ordinary clock is in the master mode.
- Hybrid clock is not supported with ToP as network-clock. It needs a valid physical clock source, for example, Sync-E.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ptp clock ordinary domain domain hybrid`
4. `clock-port port-name slave`
5. Do one of the following:
   - `transport ipv4 unicast interface interface-type interface-number`
   - `transport ethernet multicast bridge-domain bridge-id`
6. `clock source source-address priority`
7. `clock source source-address`
8. `announce timeout value`
9. `delay-req interval interval`
10. `sync interval interval`
11. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the PTP clock as an ordinary clock and enters clock configuration mode.</td>
<td></td>
</tr>
<tr>
<td>ptp clock ordinary domain <em>domain</em> hybrid</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• <em>domain</em>—The PTP clocking domain number. Valid values are from 0 to 127.</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ptp clock ordinary domain 0</td>
<td>• <em>hybrid</em>—(Optional) Enables the PTP boundary clock to work in hybrid mode. Enables the hybrid clock such that the output of the clock is transmitted to the remote slaves.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Sets the clock port to PTP slave mode and enters clock port configuration mode. In slave mode, the port exchanges timing packets with a PTP master clock.</td>
<td></td>
</tr>
<tr>
<td>clock-port <em>port-name</em> slave</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-clk)# clock-port Slave slave</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies the transport mechanism for clocking traffic; you can use IPv4 or Ethernet transport.</td>
<td></td>
</tr>
<tr>
<td>Do one of the following:</td>
<td>• <em>interface-type</em>—The type of the interface.</td>
<td></td>
</tr>
<tr>
<td>• transport ipv4 unicast interface <em>interface-type</em> <em>interface-number</em></td>
<td>• <em>interface-number</em>—The number of the interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Configures a bridge domain.</td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# transport ipv4 unicast interface loopback 0</td>
<td>• <em>bridge-id</em>—Identifier for the bridge domain instance. The range is from 1 to 4094.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Specifies the address of a PTP master clock. You can specify a priority value as follows:</td>
<td></td>
</tr>
<tr>
<td>clock source <em>source-address</em> <em>priority</em></td>
<td>• No priority value—Assigns a priority value of 0, the highest priority.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• 1—Assigns a priority value of 1.</td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# clock source 5.5.5.5</td>
<td>• 2—Assigns a priority value of 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3—Assigns a priority value of 3.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeat this step for each additional master clock. You can configure up to four master clocks.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> clock source <em>source-address</em></td>
<td>Specifies the address of a PTP master clock.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# clock source 8.8.8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> announce timeout <em>value</em></td>
<td>(Optional) Specifies the number of PTP announcement intervals before the session times out.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# announce timeout 8</td>
<td><em>value</em>—The range is from 1 to 10. The default is 3.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> delay-req interval <em>interval</em></td>
<td>(Optional) Configures the minimum interval allowed between PTP delay request messages.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# delay-req interval 1</td>
<td>The intervals are set using log base 2 values, as follows:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 5—1 packet every 32 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 4—1 packet every 16 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 3—1 packet every 8 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2—1 packet every 4 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1—1 packet every 2 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 0—1 packet every second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -1—1 packet every 1/2 second, or 2 packets per second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -2—1 packet every 1/4 second, or 4 packets per second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -3—1 packet every 1/8 second, or 8 packets per second</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -4—1 packet every 1/16 seconds, or 16 packets per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -5—1 packet every 1/32 seconds, or 32 packets per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -6—1 packet every 1/64 seconds, or 64 packets per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• -7—1 packet every 1/128 seconds, or 128 packets per second.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> sync interval <em>interval</em></td>
<td>(Optional) Specifies the interval used to send PTP synchronization messages. The intervals are set using log base 2 values. The router supports the following values:</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ptp-port)# sync interval -5</td>
<td>• 5—1 packet every 1/32 seconds, or 32 packets per second.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 6—1 packet every 1/64 seconds, or 64 packets per second.</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Hybrid Boundary Clock

Complete the following steps to configure a hybrid clocking in PTP boundary clock mode.

**Before you begin**

When configuring a hybrid clock, ensure that the frequency and phase sources are traceable to the same master clock.

---

**Note**

Hybrid clock is not supported with ToP as network-clock. It needs a valid physical clock source, for example, Sync-E.

---

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ptp clock boundary domain domain hybrid
4. clock-port port-name slave
5. Do one of the following:
   - transport ipv4 unicast interface interface-type interface-number [negotiation]
   - transport ethernet multicast bridge-domain bridge-id
6. clock source source-address priority
7. clock source source-address
8. clock-port port-name master
9. transport ipv4 unicast interface interface-type interface-number [negotiation]
10. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

| Step 2 | configure terminal  
Example:  
Router# configure terminal |
|---|---|

Enters global configuration mode.

| Step 3 | ptp clock boundary domain domain hybrid  
Example:  
Router(config)# ptp clock boundary domain 0 hybrid |
|---|---|

Configures the PTP boundary clock and enters clock configuration mode.

- **domain**—The PTP clocking domain number. Valid values are from 0 to 127.
- **hybrid**—(Optional) Enables the PTP boundary clock to work in hybrid mode. Enables the hybrid clock such that the output of the clock is transmitted to the remote slaves.

| Step 4 | clock-port port-name slave  
Example:  
Router(config-pptp-clk)# clock-port SLAVE slave |
|---|---|

Sets the clock port to PTP slave mode and enters the clock port configuration mode. In slave mode, the port exchanges timing packets with a PTP master clock.

| Step 5 | Do one of the following:  
- transport ipv4 unicast interface interface-type interface-number [negotiation]  
- transport ethernet multicast bridge-domain bridge-id  
Example:  
Router(config-ppp-pptp-port)# transport ipv4 unicast interface loopback 0 negotiation |
|---|---|

Specifies the transport mechanism for clocking traffic; you can use IPv4 or Ethernet transport.

- **interface-type**—The type of the interface.
- **interface-number**—The number of the interface.
- **negotiation**—(Optional) Enables dynamic discovery of slave devices and their preferred format for sync interval and announce interval messages.

Configures a bridge domain.

- **bridge-id**—Identifier for the bridge domain instance. The range is 1 to 4094.

**Note**

Effective with Cisco IOS Release 15.5(2)S onwards, VLAN interface (with DHCP assigned IP or static IP) is supported.

| Step 6 | clock source source-address priority  
Example:  
Router(config-ppp-pptp-port)# clock source 5.5.5.5 |
|---|---|

Specifies the address of a PTP master clock. You can specify a priority value as follows:

- No priority value—Assigns a priority value of 0, the highest priority.
- 1—Assigns a priority value of 1.
- 2—Assigns a priority value of 2.
- 3—Assigns a priority value of 3.

Repeat this step for each additional master clock. You can configure up to four master clocks.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong> clock source source-address</td>
<td>Specifies the address of a PTP master clock.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ppp-port)# clock source 133.133.133.133</td>
</tr>
<tr>
<td><strong>Step 8</strong> clock-port port-name master</td>
<td>Sets the clock port to PTP master mode. In master mode, the port exchanges timing packets with PTP slave devices.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ppp-port)# clock-port Master master</td>
</tr>
<tr>
<td><strong>Step 9</strong> transport ipv4 unicast interface interface-type interface-number [negotiation]</td>
<td>Sets port transport parameters.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ppp-port)# transport ipv4 unicast interface Loopback 1 negotiation</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Effective with Cisco IOS Release 15.5(2)S onwards, VLAN interface (with DHCP assigned IP or static IP) is supported. The option of using dynamic IP for PTP over VLAN is generally meant for a Slave interface. Though the implementation supports dynamic IP assignment on the PTP master, you must configure the dynamically assigned IP in “clock source” command on the PTP Slave.</td>
</tr>
<tr>
<td><strong>Step 10</strong> exit</td>
<td>Exits clock port configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-ppp-port)# exit</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The hybrid clocking in PTP boundary clock mode will work as a PTP ordinary clock when frequency source is not selected.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>The hybrid clock (HC) relies on an external clock source for frequency recovery while phase is recovered through PTP. Once the HC reaches the normal or phase aligned state, and if the external frequency channel is active and traceable to PRC, then the HC moves into the phase aligned state even when the PTP link is down.</td>
</tr>
</tbody>
</table>
Verifying Hybrid modes

Use the show running-config | section ptp command to display the sample output.

```
Router# show running-config | section ptp
ptp clock ordinary domain 20 hybrid
time-properties gps timeScaleTRUE currentUtcOffsetValidTRUE leap59FALSE leap61FALSE 35
clock-port SLAVE slave
transport ipv4 unicast interface Lo17
clock source 17.17.1.1
```

Use the show ptp clock running domain command to display the sample output.

```
Router# show ptp clock running domain
PTP Ordinary Clock [Domain 20] [Hybrid]

<table>
<thead>
<tr>
<th>State</th>
<th>Ports</th>
<th>Pkts sent</th>
<th>Pkts rcvd</th>
<th>Redundancy Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHASE_ALIGNED</td>
<td>1</td>
<td>27132197</td>
<td>8160642</td>
<td>Track all</td>
</tr>
</tbody>
</table>

PORT SUMMARY

<table>
<thead>
<tr>
<th>Name</th>
<th>Tx Mode</th>
<th>Role</th>
<th>Transport</th>
<th>State</th>
<th>Sessions</th>
<th>Port Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLAVE</td>
<td>unicast</td>
<td>slave</td>
<td>Lo17</td>
<td>Slave</td>
<td>1</td>
<td>17.17.1.1</td>
</tr>
</tbody>
</table>
```

Use the show platform ptp channel_status command to display the sample output after PTP is in normal state.

```
Router# show platform ptp channel_status
Configured channels : 2
channel[0]: type=0, source=0, frequency=0, tod_index=0, freq_prio=5
time_enabled=y, freq_enabled=y, time_prio=1 freq_assumed_QL=0
time_assumed_ql=0, assumed_ql_enabled=n
cchannel[1]: type=6, source=17, frequency=0, tod_index=0, freq_prio=2
time_enabled=n, freq_enabled=y, time_prio=0 freq_assumed_QL=0
time_assumed_ql=0, assumed_ql_enabled=n
Channel 0: Frequency Time

<table>
<thead>
<tr>
<th>Status</th>
<th>OK</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>QL</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

QL is not read externally. Fault status: 00000000
Channel 1: Frequency Time

<table>
<thead>
<tr>
<th>Status</th>
<th>OK</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>QL</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

QL is not read externally. Fault status: 00000000
```

Configuration Examples for BMCA

This section provides the following configuration examples:

- Example: Configuring a Slave Ordinary Clock in BMCA, on page 356
- Example: Configuring a Slave Ordinary Clock in BMCA, on page 356

Example: Configuring a Slave Ordinary Clock in BMCA

The following is a sample configuration of a slave ordinary clock in BMCA:
Example: Configuring a Boundary Clock in BMCA

The following is a sample configuration of a boundary clock in BMCA:

```
! ptp clock boundary domain 0
 clock-port SLAVE slave
 transport ipv4 unicast interface Lo30 negotiation
 clock source 22.22.22.1
 clock source 66.66.66.1
 clock source 33.33.33.1
 clock source 44.44.44.1
!
```

The ordinary clock and boundary clock configurations remain the same for both hybrid clock and hybrid boundary clock. Change the PTP domain configuration to ptp clock ordinary domain 0 hybrid for a hybrid clock and ptp clock boundary domain 0 hybrid for a hybrid boundary clock. An appropriate frequency source (SyncE) will be enabled for the hybrid mode.

SSM and PTP Interaction

PTP carries clock quality in its datasets in the structure defined by the IEEE 1588 specification. The Ordinary Clock (OC) master carries the Grand Master (GM) clock quality in its default dataset which is sent to the downstream OC slaves and Boundary Clocks (BC). The OC slaves and BCs keep the GM clock quality in their parent datasets.

If the T0 clock is driven by the clock recovered from the OC Slave (if ToP0/12 is selected as clock-source), then the clock quality in the PTP parent dataset represents the quality of the ToP0/12 input clock. This should be informed to the netsync process for proper clock selection. This is done by translating clockClass data field in clock quality to QL-values expected by netsync.

On the other hand, if serves as the OC Master, then the GM clock is the clock providing T0 clock to router. Hence, the T0 clock quality should be used by OC master to fill up clockClass in the clock quality field, in its default dataset. For this, the T0 output QL-value should be mapped to the clockClass value according to ITU-T Telecom Profile, and set in the default dataset of the OC Master. This QL-value is then transmitted to the PTP slaves and BC downstream.

ClockClass Mapping

The router supports two methods of mapping PTP ClockClass to SSM/QL-value:
Telecom Profiles

The Telecom Profile specifies an alternative algorithm for selecting between different master clocks, based on the quality level (QL) of master clocks and on a local priority given to each master clock. Release 3.11 introduces support for telecom profiles using a new configuration method, which allow you to configure a clock to use the G.8265.1 recommendations for establishing PTP sessions, determining the best master clock, handling SSM, and mapping PTP classes.

PTP Redundancy

PTP redundancy is an implementation on different clock nodes by which the PTP slave clock node achieves the following:

- Interact with multiple master ports such as grand master, boundary clock nodes, and so on.
- Open PTP sessions.
- Select the best master from the existing list of masters (referred to as the primary PTP master port or primary clock source).
- Switch to the next best master available in case the primary master fails, or the connectivity to the primary master fails.

Note

The Series Router supports unicast-based timing as specified in the 1588-2008 standard. Hybrid mode is not supported with PTP 1588 redundancy.

Configuring Telecom Profile in Slave Ordinary Clock

Complete the following steps to configure the telecom profile in slave ordinary clock.

**Before you begin**

- When configuring the Telecom profile, ensure that the master and slave nodes have the same network option configured.
- Negotiation should be enabled for master and slave modes.
- router must be enabled using the network-clock synchronization mode QL-enabled command for both master and slave modes.

**Note**

- Telecom profile is not applicable for boundary clocks. It is only applicable for ordinary clocks.
- Hybrid mode with OC-MASTER is not supported.

**SUMMARY STEPS**

1. enable
2. configure terminal
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable  | Enables privileged EXEC mode.  
| Example: Router> enable | • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.  
| Example: Router# configure terminal | |
| **Step 3** ptp clock ordinary domain domain-name  | Configures the PTP ordinary clock and enters clock configuration mode.  
| Example: Router(config)# ptp clock ordinary domain 4 | • domain—The PTP clocking domain number. Valid values are from 4 to 23. |
| **Step 4** clock-port port-name {master | slave} profile g8265.1  | Sets the clock port to PTP slave mode and enters clock port configuration mode. In slave mode, the port exchanges timing packets with a PTP master clock.  
| Example: Router(config-ptp-clk)# clock-port Slave slave | The profile keyword configures the clock to use the G.8265.1 recommendations for establishing PTP sessions, determining the best master clock, handling SSM, and mapping PTP classes.  
| **Note** Using a telecom profile requires that the clock have a domain number of 4–23. | |
| **Step 5** transport ipv4 unicast interface interface-type interface-number  | Sets port transport parameters.  
| Example: Router(config-ptp-port)# transport ipv4 unicast interface loopback 0 | • interface-type—The type of the interface.  
| | • interface-number—The number of the interface.  
| **Note** Effective with Cisco IOS Release 15.5(2)S onwards, VLAN interface (with DHCP assigned IP or static IP) is supported. | |
| **Step 6** clock source source-address priority  | Specifies the address of a PTP master clock. You can specify a priority value as follows:  
| Example: | |
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-ptp-port)# clock source 8.8.8.1 | - No priority value—Assigns a priority value of 0, the highest priority. 
- 1—Assigns a priority value of 1. 
- 2—Assigns a priority value of 2. |

### Step 7

**clock source source-address priority**

**Example:**

Router(config-ptp-port)# clock source 8.8.8.2 1

**Step 8**

**clock source source-address priority**

**Example:**

Router(config-ptp-port)# clock source 8.8.8.3 2

**Step 9**

**clock source source-address priority**

**Example:**

Router(config-ptp-port)# clock source 8.8.8.4 3

**Step 10**

end

**Example:**

Router(config-ptp-port)# end

---

**Configuring Telecom Profile in Master Ordinary Clock**

Complete the following steps to configure the telecom profile in the master ordinary clock.

**Before you begin**

- When configuring the telecom profile, ensure that the master and slave nodes have the same network option configured.
- Negotiation should be enabled for master and slave modes.
- router must be enabled using the network-clock synchronization mode QL-enabled command for both master and slave modes.

**Note**

- Telecom profile is not applicable for boundary clocks. It is only applicable for ordinary clocks.
- Hybrid mode with OC-MASTER is not supported.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ptp clock ordinary domain domain-name
4. `clock-port port-name {master | slave} profile g8265.1`
5. `transport ipv4 unicast interface interface-type interface-number`
6. `end`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| Example: | Router> enable | |
| Step 2 | configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal | |
| Step 3 | ptp clock ordinary domain domain-name | Configures the PTP ordinary clock and enters clock configuration mode.  
• `domain`—The PTP clocking domain number. Valid values are from 4 to 23. |
| Example: | Router(config)# ptp clock ordinary domain 4 | |
| Step 4 | clock-port port-name {master | slave} profile g8265.1 | Sets the clock port to PTP master and enters clock port configuration mode. In master mode, the port exchanges timing packets with a PTP slave device.  
The profile keyword configures the clock to use the G.8265.1 recommendations for establishing PTP sessions, determining the best master clock, handling SSM, and mapping PTP classes.  
**Note** Using a telecom profile requires that the clock have a domain number of 4–23. |
| Example: | Router(config-ptp-clk)# clock-port Master master profile g8265.1 | |
| Step 5 | transport ipv4 unicast interface interface-type interface-number | Sets port transport parameters.  
• `interface-type`—The type of the interface.  
• `interface-number`—The number of the interface.  
**Note** Effective with Cisco IOS Release 15.5(2)S onwards, VLAN interface (with DHCP assigned IP or static IP) is supported. The option of using dynamic IP for PTP over VLAN is generally meant for a Slave interface. Though the implementation supports dynamic IP assignment on the PTP master, you must configure the dynamically assigned IP in “clock source” command on the PTP Slave. |
| Example: | Router(config-ptp-port)# transport ipv4 unicast interface loopback 0 | |
| Step 6 | end | Exits clock port configuration mode and enters privileged EXEC mode. |
Verifying Telecom profile

Use the show ptp port running detail command to display the details of PTP masters configured for a Telecom profile slave. The PTSF and Alarm fields indicate the alarm experienced by the SLAVE clock for the MASTER clock.

Router#show ptp port running detail
PORT [slave] CURRENT PTP MASTER PORT
  Protocol Address: 208.1.1.3
PORT [slave] PREVIOUS PTP MASTER PORT
  Protocol Address: 208.1.1.1
  Reason:
PORT [slave] LIST OF PTP MASTER PORTS
LOCAL PRIORITY 0
  Protocol Address: 208.1.1.1
  PTSF Status:
    Alarm In Stream:
    Clock Stream Id: 0
    Priority1: 128
    Priority2: 128
    Class: 102
    Accuracy: Unknown
    Offset (log variance): 0
    Steps Removed: 0
LOCAL PRIORITY 1
  Protocol Address: 208.1.1.3
  PTSF Status:
    Alarm In Stream:
    Clock Stream Id: 0
    Priority1: 128
    Priority2: 128
    Class: 100
    Accuracy: Unknown
    Offset (log variance): 0
    Steps Removed: 0
LOCAL PRIORITY 2
  Protocol Address: 208.1.1.4
  PTSF Status:
    Alarm In Stream:
    Clock Stream Id: 0
    Priority1: 128
    Priority2: 128
    Class: 102
    Accuracy: Unknown
    Offset (log variance): 0
    Steps Removed: 0

Use the show ptp clock running domain command to display the sample output.

Router#show ptp clock running domain 10
  PTP Ordinary Clock [Domain 10]
Setting the TimeProperties

The timeProperties dataset members (except timeTraceable and frequencyTraceable) can be individually set by using the time-properties command.

⚠️ Caution

The time-properties command does not perform any input validation; use this command with caution.

The following is an example of the time-properties command:

```
Router(config-ptp-clk)# time-properties atomic-clock timeScaleTRUE currentUtcOffsetValidTRUE leap59TRUE leap61FALSE 34
slave#show ptp clock dataset time-properties
```

The values of Time Traceable and Frequency Traceable are determined dynamically.

Negotiation Mechanism

The router supports a maximum of 36 slaves, when configured as a negotiated 1588V2 master. For a slave to successfully negotiate with the master, it should request sync and announce packet rates that are not greater than the sync and announce rate that are currently set in the master.

For example, if the sync interval on the master is -5 (32 packets/second), and if the slave tries to negotiate a value of sync interval value of -6 (64 packets/second), the negotiation fails.

Static Unicast Mode

A clock destination can be added when the master is configured in the static unicast mode (by configuring the transport without the negotiation flag). The master does not communicate with any other slave, in this configuration.

```
Router(config-ptp-port)#clock destination 9.9.9.10
```
VRF-Aware Precision Time Protocol

Effective from Cisco IOS Release 15.4(3)S, the Router supports VRF-aware PTP. PTP support over virtual routing and forwarding (VRF) instance-enabled interfaces allows the PTP loopback interface to be part of VRF rather than maintaining the loopback addresses in the global routing table. This enables the service providers to reuse the same IP address for multiple loopback interfaces by configuring PTP loopback under VRF. This enables you to use PTP over VRF lite and PTP over VRF with MPLS network. You can configure a loopback interface as part of a VRF instance or a global routing table depending on the requirement.

Configuring VRF-Aware Precision Time Protocol

To configure VRF-aware PTP, perform the following tasks:

Restrictions

- Bridge domains used internally by PTP are not available to user. To view the list of such internally used bridge domains, use the `show vlan internal usage` command.
- VRF-aware PTP feature is supported only on loopback interfaces with or without VRFs.
- The PTP with route leaks is not supported when the master is in global routing table and the slave is in vrf table.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. route-target export route-target-ext-community
6. route-target import route-target-ext-community
7. exit
8. interface vlan vlan-id
9. ip vrf forwarding vrf-name
10. ip address address mask
11. exit
12. router ospf process-id [vrf vrf-name ]
13. network ip-address wildcard-mask area area-id
14. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

<p>| <strong>Step 2</strong>        |         |
| configure terminal| Enters global configuration mode. |
| Example:          |         |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Creates a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ip vrf vrf-name</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# ip vrf green</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>rd route-distinguisher</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-vrf)# rd 100:1</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>route-target export route-target-ext-community</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-vrf)# route-target export 100:1</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>route-target import route-target-ext-community</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-vrf)# route-target import 100:1</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-vrf)# exit</code></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>interface vlan vlan-id</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# interface vlan 4</code></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>ip vrf forwarding vrf-name</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# ip vrf forwarding green</code></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>ip address address mask</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# ip address 4.4.4.2 255.255.255.0</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 11</strong> exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> router ospf process-id [vrf vrf-name ]</td>
<td>Configures an OSPF routing process and enters router configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# router ospf 2 vrf green</td>
<td></td>
</tr>
</tbody>
</table>

- **process-id** — Internally-used identification parameter for an OSPF routing process. It is locally assigned and can be any positive integer. A unique value is assigned for each OSPF routing process.
- **vrf-name** — Name assigned to the VRF. Enter the value specified in Step 3.

**Step 13** network ip-address wildcard-mask area area-id	Configures the interfaces on which OSPF runs and defines the area ID for those interfaces.
**Example:**	
Router(config-router)# router ospf 2 vrf green	

- **ip-address** — IP address
- **wildcard-mask** — IP-address-type mask that includes optional bits.
- **area-id** — Area that is to be associated with the OSPF address range. It can be specified as either a decimal value or as an IP address. If you intend to associate areas with IP subnets, you can specify a subnet address as the value of the `area-id` argument.

**Note** Repeat this step to configure different interfaces on which OSPF runs, and to define the area ID for those interfaces.

**Step 14** exit	Exits router configuration mode.
**Example:**	
Router(config-router)# exit	

**Examples**

The following is a sample configuration of VRF-aware PTP:

```plaintext
!
ip vrf green
d 100:1
route-target export 100:1
route-target import 100:1
!
!
interface Vlan4
ip vrf forwarding green
ip address 4.4.4.2 255.255.255.0
mpls ip
!
interface Loopback4
ip vrf forwarding green
```
ip address 50.50.50.50 255.255.255.255
!
router ospf 2 vrf green
network 4.4.4.0 0.0.0.255 area 2
network 50.50.50.50 0.0.0.0 area 2
!
end

ptp clock ordinary domain 0
Clock-port slave slave
Transport ipv4 unicast interface loopback 4 negotiation
Clock source 5.5.5.5
!

**Configuring ToD on 1588V2 Slave**

Use the following commands configure ToD on the 1588V2 slave:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tod {slot</td>
<td>subslot} {cisco/ntp</td>
</tr>
<tr>
<td>1pps-out 1 PPS offset in ns pulse width pulse width unit</td>
<td>Configures 1 PPS output parameters.</td>
</tr>
</tbody>
</table>

This example shows the ToD configuration on the 1588V2 slave:

Router# config terminal
Router(config)# ptp clock ordinary domain 0
Router(config-ptp-clk)# tod 0/0 cisco
Router(config-ptp-clk)# 1pps-out 0 2250 ns
Router(config-ptp-clk)# clock-port SLAVE slave
Router(config-ptp-port)# transport ipv4 unicast interface Lo10 negotiation
Router(config-ptp-port)# clock source 1.1.1.1
Router(config-ptp-port)# end

**1588v2 Phase Asymmetry Correction**

In Optical Transport Network (OTN ) network based deployments, though the PDV produced by the network is within the G.8261 limits and asymmetry created by traffic is also less, the OTN elements may add a fixed asymmetry (about 4-5usec) when the OTN element is reboots or optical link related event occurs. The asymmetry detection is tied to the BMCA clock switchover and correction is supported from Cisco IOS Release 15.5(1)S on the Cisco ASR 901 Series Routers. This mechanism is enabled on both ordinary clock (OC) slave and boundary clock (BC) slave.

The following diagram indicates the design statement of asymmetry correction at a high level.
When the BMCA algorithm selects a new master, the previous recovered servo-reported phase offset is saved as fixed-phase-offset and a flag is set to indicate to use this value instead of the servo-reported phase offset. This results in phase holdover from the previous master until the path to new master is available. The BMCA master and the servo events portray a path to the new master by comparing the fixed-phase-offset value to the servo-reported phase offset from the new master. The delta phase is computed and applied to servo, which enables the servo to come out of phase holdover.

For certain failures over one path, the delay asymmetry could differ by up to 4 usec after restoration, which would shift the phase or time by up to 2 usec. The valid path continues to provide an accurate phase or time. The root cause for this behavior is the underlying optical network that causes the asymmetry variation and forces the system to do an internal allocation during a disruption. When a link goes down, the underlying optical network fails to allow the same buffer, causing the variation.

In the following scenarios, the asymmetry is corrected after an optical link disruption, based on the persistent PTP link:

Initially, the symmetry is corrected based on measurements and manual adjustment on the router. For that:

- Time Link 1 is marked as ACTIVE.
- Time Link 2 is marked as STANDBY.

The initial path asymmetry is compensated by using an external measurement device and compensates the 1pps offset.
In Scenario 1, the optical link 1 goes down and comes back after a while. Here:

- Time is persistent on Link 2 and is used as ACTIVE.
- When Link 1 comes back; time from this link is marked as suspicious.
- Asymmetry is adjusted based on Link 2, enabling it to be in sync with Link 1.
- Link 1 is marked as ACTIVE.
- Link 2 is marked as STANDBY.

In Scenario 2, the optical link 2 goes down and comes back after a while. Here:

- Time is persistent on Link 2 and is used as ACTIVE.
- When Link 2 comes back; time from this link is marked as suspicious.
- Asymmetry is adjusted based on Link 1, enabling it to be in sync with Link 2.
- Link 2 is marked as ACTIVE.
- Link 1 is marked as STANDBY.

Both the above scenarios requires use of *phase holdover* mode, which becomes active when there is a Master switch. After the old link is restored, the SERVO learns the new path and applies the correction.

---

### Note

- The PTP phase symmetry correction feature is supported only on IEEE1588v2 BMCA.
- Delay asymmetry value should be enabled on the available master clock source if reference master is removed.
- The delay asymmetry in the network should be measured exactly before its applied on the clock source.
- The Hybrid Slave clock always remains in Normal_loop during a PTP master switch and hence, the newly calculated asymmetry is compensated after 10 minutes of the master switch.
- If the selected PTP master before-reload is not the same after-reload, then the asymmetry table in flash is cleared to avoid using stale values for the new master.
- Phase asymmetry is not supported in Telecom profile and PTP over Ethernet.
- Phase asymmetry (phase correction and path asymmetry) is supported only in Ordinary Slave clock, Boundary Clock slave, Hybrid Slave clock, and Hybrid Boundary Slave clock.
- Exact delay asymmetry value should be measured from the network path to the master source before its applied on clock source.
- The clock sources should be enabled with delay-asymmetry value configuration measured from the network path.
- The router supports phase asymmetry correction feature for a maximum of four BMCA clock sources.
- A syslog message is generated for every phase correction change applied by phase correction feature.
### Configuring Asymmetry Correction

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ptp clock ordinary domain domain`
4. `asymmetry-compensation`
5. `clock-port name slave`
6. `transport ipv4 unicast interface interface-type negotiation`
7. `clock source source-address local-priority delay-asymmetry asymmetry-delay nanoseconds`
8. `clock source source-address local-priority delay-asymmetry asymmetry-delay nanoseconds`
9. `clock source source-address local-priority delay-asymmetry asymmetry-delay nanoseconds`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  Example:  
  Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.  
  Example:  
  Router# configure terminal |
| **Step 3** `ptp clock ordinary domain domain` | Creates a Precision Time Protocol (PTP) clock and specifies the clock mode.  
  Example:  
  Router(config)# ptp clock ordinary domain 0 |
| **Step 4** `asymmetry-compensation` | Enables inter-path asymmetry compensation.  
  Example:  
  Router(config-ptp-clk)# asymmetry-compensation |
| **Step 5** `clock-port name slave` | Specifies the clocking mode of a PTP clock port and enters clock port configuration mode.  
  Example:  
  Router(config-ptp-clk)# clock-port SLAVE slave |
| **Step 6** `transport ipv4 unicast interface interface-type negotiation` | Specifies the IP version, transmission mode, and interface that a PTP clock port uses to exchange timing packets.  
  Example:  
  Router(config-ptp-port)# transport ipv4 unicast interface Lo1 negotiation |
| **Step 7** `clock source source-address local-priority delay-asymmetry asymmetry-delay nanoseconds` | Configures a connection to a PTP master device, and sets the asymmetry delay.  
  Example: |
Configuring Clocking

Verifying 1588v2 Phase Asymmetry Correction

To verify the 1588v2 phase asymmetry correction configuration, use the `show` command as shown in the example below:

```
Router# show platform ptp phase_correction_details
Last Phase Correction applied : 36500 nanoseconds
```

Example: Configuring 1588v2 Phase Asymmetry Correction

```
ptp clock ordinary domain 0
 asymmetry-compensation
clock-port SLAVE slave
transport ipv4 unicast interface Lo1 negotiation
clock source 100.100.100.100 1 delay-asymmetry 73000 nanoseconds
clock source 9.9.9.9 2 delay-asymmetry 56000 nanoseconds
clock source 5.5.5.1 3 delay-asymmetry 89000 nanoseconds
```

Troubleshooting Tips

Use the following debug commands to troubleshoot the PTP configuration on the router:

```
[no] debug platform ptp error
```

We suggest you do not use these debug commands without TAC supervision.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] debug platform ptp error</td>
<td>Enables debugging of internal errors.</td>
</tr>
<tr>
<td></td>
<td>The no form of the command disables debugging internal errors.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>[no] debug platform ptp event</td>
<td>Displays event messages.</td>
</tr>
<tr>
<td></td>
<td>The no form of the command disables displaying event messages.</td>
</tr>
<tr>
<td>[no] debug platform ptp verbose</td>
<td>Displays verbose output.</td>
</tr>
<tr>
<td></td>
<td>The no form of the command disables displaying verbose output.</td>
</tr>
<tr>
<td>[no] debug platform ptp all</td>
<td>Debugs for error, event and verbose.</td>
</tr>
<tr>
<td></td>
<td>The no form of the command disables all debugging.</td>
</tr>
</tbody>
</table>
The Cisco IOS IP Service Level Agreements (SLAs) is a core part of the Cisco IOS software portfolio, which allows Cisco customers to analyze IP service levels for IP applications and services, to increase productivity, to lower operational costs, and to reduce the frequency of network outages.

The Cisco IOS IP SLAs uses active traffic monitoring—the generation of traffic in a continuous, reliable, and predictable manner—for measuring network performance. Using Cisco IOS IP SLA, service provider customers can measure and provide SLAs, and enterprise customers can verify service levels, verify out sourced SLAs, and understand network performance.

The Cisco IOS IP SLAs can perform network assessments, verify quality of service (QoS), ease the deployment of new services, and assist administrators with network troubleshooting.

The Cisco IOS IP SLAs can be accessed using the Cisco IOS CLI or Simple Network Management Protocol (SNMP) through the Cisco Round-Trip Time Monitor (RTTMON) and syslog Management Information Bases (MIBs).

For detailed information on Cisco IOS IP SLA features, see IP SLAs Configuration Guide, Cisco IOS Release 15.1S.

Note
Cisco IOS IP SLA for VoIP, ICMP Jitter, Gatekeeper and Data Link Switching Plus (DLSw+) features are not supported in router.

• Configuring IPSLA Path Discovery, on page 373
• Two-Way Active Measurement Protocol, on page 377

Configuring IPSLA Path Discovery

The LSP path discovery (LPD) feature allows the IP SLA MPLS LSP to automatically discover all the active paths to the forwarding equivalence class (FEC), and configure LSP ping and traceroute operations across various paths between the provide edge (PE) devices.

Complete the following steps to configure IPSLA path discovery in a typical VPN setup for MPLS LPD operation:

SUMMARY STEPS

1. enable
2. `configure terminal`
3. `mpls discoveryvpnnext-hop`
4. `mpls discovery vpn interval seconds`
5. `auto ip slams-lsp-monitor operation-number`
6. `type echo ipsla-vrf-all`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable  | Enables privileged EXEC mode.  
| Example:          | • Enter your password if prompted. |
| `Router> enable`  |         |
| **Step 2** configure terminal  | Enters global configuration mode. |
| Example:          |         |
| `Router# configure terminal`  |         |
| **Step 3** mpls discoveryvpnnext-hop  | (Optional) Enables the MPLS VPN next hop neighbor discovery process.  
| Example:          | This command is automatically enabled when the `auto ip sla mpls-lsp-monitor` command is entered. |
| `Router(config)# mpls discovery vpn next-hop`  |         |
| **Step 4** mpls discovery vpn interval seconds  | (Optional) Specifies the time interval at which routing entries that are no longer valid are removed from the next hop neighbor discovery database of an MPLS VPN. |
| Example:          |         |
| `Router(config)# mpls discovery vpn interval 120`  |         |
| **Step 5** auto ip slams-lsp-monitor operation-number  | Begins configuration for an LSP Health Monitor operation and enters auto IP SLA MPLS configuration mode. |
| Example:          |         |
| `Router(config)# auto ip sla mpls-lsp-monitor 1`  |         |
| **Step 6** type echo ipsla-vrf-all  | Enters MPLS parameters configuration submode and allows the user to configure the parameters for an IP SLAs LSP ping operation using the LSP Health Monitor. |
| Example:          |         |
| `Router(config-auto-ip-sla-mpls)# type echo ipsla-vrf-all`  |         |

**What to do next**

**Configuration Parameters**

```bash
Router(config)# auto ip sla mpls-lsp-monitor 1

Router(config-auto-ip-sla-mpls)#?
Auto IP SLAs MPLS LSP Monitor entry configuration commands:
```
exit  Exit IP SLAs MPLSLM configuration
    type  Type of entry
Router(config-auto-ip-sla-mpls)#type ?
    echo  Perform MPLS LSP Ping operation
    pathEcho  Perform MPLS LSP Trace operation
Router(config-auto-ip-sla-mpls)#type pathEcho ?
    ipsla-vrf-all  Configure IP SLAs MPLS LSP Monitor for all VPNs
    vrf  vrf Name

Following parameters can be configured in the auto-ip-sla-mpls-params mode:

Router(config-auto-ip-sla-mpls)#type echo ipsla-vrf-all
Router(config-auto-ip-sla-mpls-params)#?
IP SLAs MPLSLM entry parameters configuration commands:
access-list  Apply Access-List
default  Set a command to its defaults
delete-scan-factor  Scan Factor for automatic deletion
exit  Exit IP SLAs MPLSLM configuration
exp  EXP value
force-explicit-null  force an explicit null label to be added
lsp-selector  LocalHost address used to select the LSP
no  Negate a command or set its defaults
path-discover  IP SLAs LSP path discover configuration
reply-dscp-bits  DSCP bits in reply IP header
reply-mode  Reply for LSP echo request
request-data-size  Request data size
scan-interval  Scan Interval for automatic discovery in minutes
secondary-frequency  Frequency to be used if there is any violation condition happens
tag  User defined tag
threshold  Operation threshold in milliseconds
timeout  Timeout of an operation
ttl  Time to live

Following parameters can be configured in the auto-ip-sla-mpls-lpd-params mode:

Router(config-auto-ip-sla-mpls-params)#path-discover
Router(config-auto-ip-sla-mpls-lpd-params)#?
IP SLAs MPLS LSP Monitor LPD configuration commands:
default  Set a command to its defaults
exit  Exit IP SLAs MPLS LSP Monitor path discover configuration
force-explicit-null  Force an explicit null label to be added
hours-of-statistics-kept  Maximum number of statistics hour groups to capture
interval  Send interval between requests in msec
lsp-selector-base  Base 127/8 address to start the tree trace
maximum-sessions  Number of concurrent active tree trace requests which can be submit at one time
no  Negate a command or set its defaults
scan-period  Time period for finishing tree trace discovery in minutes
session-timeout  Time out value for the tree trace request in seconds
timeout  Timeout for an MPLS Echo Request in seconds

Example for IPSLA Path Discovery

auto ip sla mpls-lsp-monitor 1
type echo ipsla-vrf-all
path-discover
auto ip sla mpls-lsp-monitor schedule 1 schedule-period 1 frequency 10 start-time now
This example shows the LPD parameter values configured:

```
auto ip sla mpls-lsp-monitor 2
type echo vrf vpn1
path-discover
force-explicit-null
hours-of-statistics-kept 1
scan-period 30
lsp-selector-base 127.0.0.7
session-timeout 20
timeout 100
interval 1000
auto ip sla mpls-lsp-monitor schedule 2 schedule-period 1 frequency 10 start-time now
```

```
Router# show
ip sla mpls-lsp-monitor summary

Index - MPLS LSP Monitor probe index
Destination - Target IP address of the BGP next hop
Status - LPD group status
LPD Group ID - Unique index to identify the LPD group
Last Operation Time - Last time an operation was attempted by a particular probe in the LPD Group

<table>
<thead>
<tr>
<th>Index</th>
<th>Destination</th>
<th>Status</th>
<th>LPD Group ID</th>
<th>Last Operation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2.2.2</td>
<td>up</td>
<td>100004</td>
<td>*20:08:01.481 UTC Tue Nov 14 2000</td>
</tr>
</tbody>
</table>
```

```
Router# show
ip sla mpls-lsp-monitor neighbors

IP SLA MPLS LSP Monitor Database : 1
BGP Next hop 2.2.2.2 (Prefix: 2.2.2.2/32) OK Paths: 2
 ProbeID: 100004 (pavan_1)
```

```
Router# show ip sla mpls-lsp-monitor lpd operational-state

Entry number: 100004
MPLSlm Entry Number: 1
Target FEC Type: LDP IPv4 prefix
Target Address: 2.2.2.2
Number of Statistic Hours Kept: 2
Last time LPD Stats were reset: *18:00:57.817 UTC Sat Nov 11 2000
Traps Type: 1
Latest Path Discovery Mode: initial complete
Latest Path Discovery Return Code: OK
Latest Path Discovery Completion Time (ms): 40
Number of Paths Discovered: 2
Path Information :

<table>
<thead>
<tr>
<th>Path</th>
<th>Outgoing Lsp</th>
<th>Link Conn</th>
<th>Ad</th>
<th>NextHop</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Interface Selector Type Id Addr Addr Label Stack Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Vl22</td>
<td>127.0.0.0</td>
<td>90</td>
<td>22.1.1.1</td>
<td>22.1.1.1</td>
</tr>
<tr>
<td>2</td>
<td>Vl26</td>
<td>127.0.0.0</td>
<td>90</td>
<td>26.1.1.2</td>
<td>26.1.1.2</td>
</tr>
</tbody>
</table>
```

```
Router# show ip sla mpls-lsp-monitor configuration

Entry Number : 1
Modification time : *20:19:08.233 UTC Tue Nov 14 2000
Operation Type : echo
Vrf Name : ipsla-vrf-all
Tag : EXP Value : 0
Timeout (ms) : 5000
Threshold (ms) : 5000
Frequency (sec) : 10
ScanInterval (min) : 1
```
Two-Way Active Measurement Protocol

Two-Way Active Measurement Protocol (TWAMP) consists of two related protocols. Use the TWAMP-Control protocol to start performance measurement sessions. You can deploy TWAMP in a simplified network architecture, with the control-client and the session-sender on one device and the server and the session-reflect on another device.

The Cisco IOS software TWAMP implementation supports a basic configuration. Figure 23: TWAMP Deployment, on page 377 shows a sample deployment.

Figure 24: TWAMP Architecture, on page 378 shows the four logical entities that comprise the TWAMP architecture.

![Figure 23: TWAMP Deployment](image-url)
Although each entity is separate, the protocol allows for logical merging of the roles on a single device.

### Configuring TWAMP

The TWAMP server and reflector functionality are configured on the same device. This section contains the following topics:

### Configuring the TWAMP Server

Complete the following steps to configure the TWAMP server:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ip sla server twamp`
4. `port port-number`
5. `timer inactivity seconds`
6. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip sla server twamp</td>
<td>Configures the router as a TWAMP server, and enters TWAMP configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip sla server twamp</td>
<td></td>
</tr>
</tbody>
</table>

### Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>port port-number</td>
<td>(Optional) Specifies the port number to be used by the TWAMP server to listen for connection and control requests. The same port negotiates for the port to which performance probes are sent. The configured port should not be an IANA port or any port used by other applications. The default is port 862.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-twamp-srvr)# port 9000</td>
<td></td>
</tr>
</tbody>
</table>

### Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>timer inactivity seconds</td>
<td>(Optional) Sets the maximum time, in seconds. The session can be inactive before the session ends. The range is between 1 to 6000 seconds. The default is 900 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-twamp-srvr)# timer inactivity 300</td>
<td></td>
</tr>
</tbody>
</table>

### Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-twamp-srvr)# end</td>
<td></td>
</tr>
</tbody>
</table>

---

**Configuring the TWAMP Reflector**

To disable the IP SLA TWAMP server, enter the `no ip sla server twamp` global configuration command.

**Configuring the TWAMP Reflector**

The TWAMP server and reflector functionality are both configured on the same device.

Complete the following steps to configure the TWAMP reflector:

### SUMMARY STEPS

1. enable
2. configure terminal
3. ip sla server twamp
4. timer inactivity seconds
5. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 2** configure terminal  
  Example:  
  Router# configure terminal | Enters global configuration mode. |
| **Step 3** ip sla server twamp  
  Example:  
  Router(config)# ip sla server twamp | Configures the switch as a TWAMP responder, and enter TWAMP configuration mode. |
| **Step 4** timer inactivity seconds  
  Example:  
  Router(config-twamp-srvr)# timer inactivity 300 | (Optional) Sets the maximum time, in seconds. The session can be inactive before the session ends. The range is between 1 to 604800 seconds. The default is 900 seconds. |
| **Step 5** end  
  Example:  
  Router(config-twamp-srvr)# end | Return to privileged EXEC mode. |

**Configuration Examples for TWAMP**

This section provides the following configuration examples:

- Example: Configuring the Router as an IP SLA TWAMP server, on page 380
- Example: Configuring the Router as an IP SLA TWAMP Reflector, on page 380

### Example: Configuring the Router as an IP SLA TWAMP server

Router(config)# ip sla server twamp  
Router(config-twamp-srvr)# port 9000  
Router(config-twamp-srvr)# timer inactivity 300

### Example: Configuring the Router as an IP SLA TWAMP Reflector

Router(config)# ip sla responder twamp  
Router(config-twamp-srvr)# timeout 300
CHAPTER 23

Configuring QoS

This chapter describes how to configure quality of service (QoS) by using the modular QoS CLI (MQC) on the router. With QoS, you can provide preferential treatment to certain types of traffic at the expense of others. When QoS is not configured, the router offers the best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput. MQC provides a comprehensive hierarchical configuration framework for prioritizing or limiting specific streams of traffic.

Note
IPv6 QoS is supported only from Cisco IOS Release 15.2(2)SNG onwards.

- Finding Feature Information, on page 381
- Understanding QoS, on page 382
- Configuring QoS, on page 404
- QoS Treatment for Performance-Monitoring Protocols, on page 449
- Extending QoS for MLPPP, on page 451
- Verifying MPLS over MLPPP Configuration, on page 465
- ICMP-based ACL, on page 467
- Policy for DHCP Control Packet, on page 472
- Troubleshooting Tips, on page 473
- Additional References, on page 477
- Feature Information for Configuring QoS, on page 478

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for Configuring QoS, on page 478.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Understanding QoS

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure the QoS feature, you can select specific network traffic, prioritize it according to its relative importance, and use traffic-management techniques to provide preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

Figure 25: Modular QoS CLI Model, on page 382 shows the MQC QoS CLI model.

Basic QoS includes these actions:

**Default QoS for Traffic from External Ethernet Ports**

The router allows complete configuration of QoS via policy maps for the external ethernet ports. However, the default case when no policy map is configured is described below:

By default, the qos-group (internal-priority) applied to every packet from an External port is zero.

In cases where Router configuration causes those fields that were not present on the incoming packet, (to be generated, for example, if a VLAN tag or an MPLS label that was not present on the incoming packet is added by Router), the router uses the following default procedures to propagate the priority from the received frame as described below:

In the absence of a policy map, when adding an 802.1Q VLAN outer tag (service tag) when a service tag is not present, the priority value in the outer tag is zero. The priority value of the inner tag (if present) is not modified from its original value.

When adding an 802.1Q VLAN inner tag (customer tag), the default priority value for the inner tag is zero.

The default QoS-group used for internal prioritization, output queuing and shaping, and for propagating QoS information to MPLS EXP, is zero.

For tunneling technologies, such as EoMPLS pseudowires and L3VPN, additional defaults are in place to propagate QoS. These are described below:

- For MPLS-based L3 VPN and for the EoMPLS (both VPWS and VPLS), upon imposition of the first (bottom of stack) MPLS label, ingress policy-map needs to be configured which matches based on COS for EoMPLS & matched based on DSCP for L3VPN and using "set action" of internal QoS group setting (internal priority), MPLS EXP values are set.

- Using table-map on egress port, you can remark the EXP value if required.
Default QoS for Traffic from Internal Ports

The Router does not allow policy maps to be applied to internal ports, such as the Ethernet or PCI ports to the CPU, or the Ethernet ports to the timing CPU or the Winpath.

The Router generally treats these internal ports as trusted. The Router defaults to propagate the priority from the received frame, as described below:

By default, the QoS-group (internal-priority) applied to every packet from an internal port is equal to the priority received in the 802.1Q VLAN tag received on that packet.

If a packet is received on one of the internal interfaces that do not have a VLAN tag attached, a VLAN tag is added internally, with the priority value copied from the ip-precedence field (in case of IP packets), and zero (in case on non-IP packets).

The default QoS-group (internal priority) for internal queue assignment and for propagating QoS information to MPLS EXP, is set equal to the priority of the outer VLAN tag (either the original or the default value) on the received frame.

For tunneling technologies, such as EoMPLS pseudowires and L3VPN, additional defaults are in place to propagate QoS as follows:

- For MPLS-based L3 VPN and for the EoMPLS (both VPWS and VPLS), upon imposition of the first (bottom of stack) MPLS label, MPLS EXP values are equal to the value is specified in the internal QoS group setting (internal priority).
- When adding additional MPLS labels to an existing stack, the default MPLS EXP values are set to the match QoS group value.

This section contains the following topics:

Modular QoS CLI

Modular QoS CLI (MQC) allows users to create traffic policies and attach these policies to interfaces. A traffic policy contains a traffic class and one or more QoS features. Use a traffic class to classify traffic, and the QoS features in the traffic policy determine how to treat the classified traffic.

Complete the following steps to configure Modular QoS CLI:

**SUMMARY STEPS**

1. Define a traffic class.
2. Create a traffic policy to associate the traffic class with one or more QoS features.
3. Attach the traffic policy to an interface.

**DETAILED STEPS**

**Step 1** Define a traffic class.

Use the `class-map [match-all | match-any] type number` global configuration command to define a traffic class and to enter class-map configuration mode. A traffic class contains three elements: a name, an instruction on how to evaluate the configured `match` commands (if more than one match command is configured in the class map), and a series of `match` commands

- Name the traffic class in the `class-map` command line to enter class-map configuration mode.
• You can optionally include keywords to evaluate these match commands by entering `class-map match-any` or `class-map match-all`. If you specify `match-any`, the traffic being evaluated must match `type number` of the specified criteria. If you specify `match-all`, the traffic being evaluated must match `type number` of the specified criteria. A `match-all` class map can contain only one match statement, but a `match-any` class map can contain multiple match statements.

**Note** If you do not enter `match-all` or `match-any`, the default is to match all.

• Use the `policy-map` class-map configuration commands to specify criteria for classifying packets. If a packet matches the specified criteria, that packet is considered a member of the class and is forwarded according to the QoS specifications set in the traffic policy. Packets that fail to meet any of the matching criteria are classified as members of the default traffic class.

**Step 2** Create a traffic policy to associate the traffic class with one or more QoS features.

Use the `policy-map type number` global configuration command to create a traffic policy and to enter policy-map configuration mode. A traffic policy defines the QoS features to associate with the specified traffic class. A traffic policy contains three elements: a name, a traffic class (specified with the `class` policy-map configuration command), and the QoS policies configured in the class.

• Name the traffic policy in the `policy-map` command line to enter policy-map configuration mode.
• In policy-map configuration mode, enter the name of the traffic class used to classify traffic to the specified policy, and enter policy-map class configuration mode.
• In policy-map class configuration mode, you can enter the QoS features to apply to the classified traffic. These include using the `set`, `police`, or `police aggregate` commands for input policy maps or the `bandwidth`, `priority`, or `shape average` commands for output policy maps.

**Note** A packet can match only one traffic class within a traffic policy. If a packet matches more than one traffic class in the traffic policy, the first traffic class defined in the policy is used. To configure more than one match criterion for packets, you can associate multiple traffic classes with a single traffic policy.

**Step 3** Attach the traffic policy to an interface.

Use the `service-policy` interface configuration command to attach the policy map to an interface for packets entering or leaving the interface. You must specify whether the traffic policy characteristics should be applied to incoming or outgoing packets. For example, entering the `service-policy output class1` interface configuration command attaches all the characteristics of the traffic policy named `type number` to the specified interface. All packets leaving the specified interface are evaluated according to the criteria specified in the traffic policy named `type number`.

**Note** If you enter the no policy-map configuration command or the no policy-map `policy-map-name` global configuration command to delete a policy map that is attached to an interface, a warning message appears that lists any interfaces from which the policy map is being detached. For example: Warning: Detaching Policy test1 from Interface GigabitEthernet0/1 The policy map is then detached and deleted.

---

**Input and Output Policies**

Policy maps are either input policy maps or output policy maps, attached to packets as they enter or leave the router by service policies applied to interfaces. Input policy maps perform policing and marking on the received traffic. Policed packets can be dropped or reduced in priority (marked down) if they exceed the maximum permitted rates. Output policy maps perform scheduling and queuing of traffic as it leaves the router.
Input policies and output policies have the same basic structure; the difference is in the characteristics that they regulate. Figure 26: Input and Output Policy Relationship, on page 385 shows the relationship of input and output policies.

You can configure a maximum of 32 policy maps.

You can apply one input policy map and one output policy map to an interface.

**Input Policy Maps**

Input policy map classification criteria include matching a CoS, a DSCP, or an IP precedence value or VLAN ID (for per-port and per-VLAN QoS). Input policy maps can perform any of these actions:

- Setting or marking a CoS, a DSCP, an IP precedence, or QoS group value
- Individual policing
- Aggregate policing

Only input policies provide matching on VLAN IDs, and only output policies provide matching on QoS groups. You can assign a QoS group number in an input policy and match it in the output policy. The **class-default** class is used in a policy map for any traffic that does not explicitly match any other class in the policy map. Input policy maps do not support queuing and scheduling keywords, such as **bandwidth**, **priority**, and **shape average**.

An input policy map can have a maximum of 64 classes plus **class-default**. You can configure a maximum of 64 classes in an input policy.

**Output Policy Maps**

Output policy map classification criteria include matching a CoS, a DSCP, an IP precedence, or a QoS group value. Output policy maps support scheduling of **bandwidth**, **priority**, and **shape average**.

Output policy maps do not support matching of access groups. You can use QoS groups as an alternative by matching the appropriate access groups in the input policy map and setting a QoS group. In the output policy map, you can then match the QoS group. For more information, see the Classification Based on QoS Groups, on page 390.

Output policies do not support policing, except in the case of priority with policing.

The **class-default** class is used in a policy map for any traffic that does not explicitly match any other class in the policy map.

An output policy map attached to an egress port can match only the packets that have already been matched by an input policy map attached to the ingress port for the packets. You can attach an output policy map to any or all the ports on the router. The router supports configuration and attachment of a unique output policy map for each port. There are no limitations on the configurations of bandwidth, priority, or shaping.
Access Control Lists

Cisco IOS Release 15.2(2)SNH1 introduces support for access control list-based QoS on the Router. This feature provides classification based on source and destination IP. The current implementation of this feature supports only the named ACLs. Effective from Cisco IOS Release 15.4 (2) S, the Router supports IPv6 addresses in ACLs.

ACLs are an ordered set of filter rules. Each rule is a permit or a deny statement known as access control entry (ACE). These ACEs filter network traffic by forwarding or blocking routed packets at the interface of the router. The router examines each packet to determine whether to forward or drop the packets based on the criteria specified within the access list.

The permit and deny statements are not applicable when ACLs are used as part of ACL-based QoS. ACLs are used only for traffic classification purposes as part of QoS.

Restrictions

- The Loopback feature should not be enabled when Layer 2 Control Protocol Forwarding is enabled.
- The following Cisco IOS Keywords are not supported on the Router—match-any, ip-options, logging, icmp-type/code, igmp type, dynamic, reflective, evaluate. The icmp-type/code keyword is supported from Cisco IOS Release 15.5(2)S, as part of the support for ICMP based ACL feature.
- Ingress PACL and RACL support TCP/UDP port range; egress ACLs are not supported.
- Sharing access lists across interfaces is not supported.
- ACLs are not supported on management port (Fast Ethernet) and serial interfaces.
- Devices in the management network (network connected to the Fast Ethernet port) cannot be accessed from any other port. If the default route is configured on the to fast ethernet interface (Fa0/0), all the routed packets will be dropped. However, this configuration could keep the CPU busy and affect overall convergence.
- Compiled ACLs are not supported in Router.
- ACLs are not supported on EVC interfaces.
- ACLs are not supported on interface loopback interfaces.

Classification

Classification distinguishes one kind of traffic from another by examining the fields in the packet header. When a packet is received, the router examines the header and identifies all the key packet fields. A packet can be classified based on the DSCP, the CoS, or the IP precedence value in the packet, or by the VLAN ID. Figure 27: QoS Classification Layers in Frames and Packets, on page 387 shows the classification information carried in a Layer 2 or a Layer 3 IP packet header, using six bits from the deprecated IP type of service (ToS) field to carry the classification information.

The classification information carried in a Layer 2 or Layer 3 IP packet is as follows:

- On ports configured as Layer 2 IEEE 802.1Q trunks, all the traffic is in 802.1Q frames except for traffic in the native VLAN. Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the CoS value, called the User Priority bits, in the three most-significant bits, and the VLAN ID value in the 12 least-significant bits. Other frame types cannot carry Layer 2 CoS values.

Layer 2 CoS values range from 0 to 7.

- Layer 3 IP packets can carry either an IP precedence value or a DSCP value. QoS supports the use of either value because DSCP values are backward compatible with IP precedence values.
IP precedence values range from 0 to 7. DSCP values range from 0 to 63.

- Output re-marking is based on the Layer 2 or Layer 3 marking type, marking value, and packet type.

Figure 27: QoS Classification Layers in Frames and Packets

These sections contain additional information about classification:

Class Maps

Use an MQC class map to name a specific traffic flow (or class) and to isolate it from all other traffic. A class map defines the criteria used to match against a specific traffic flow to further classify it. If you wish to classify more than one type of traffic, you can create another class map and use a different name. When you use the class-map command with a class-map name, the router enters the class-map configuration mode. In this mode, you define the match criteria for the traffic by using the match class-map configuration command. After a packet is matched against the class-map criteria, it is acted on by the associated action specified in a policy map.

You can match more than one criterion for classification. You can also create a class map that requires that all the matching criteria in the class map be in the packet header by using the class map match-all class-map name global configuration command and enter class map configuration mode.

Note

You can configure only one match entry in the match-all class map.

You can use the class map match-any class-map name global configuration command to define a classification with any of the listed criteria.
If you do not enter **match-all** or **match-any**, the default is to match all. A match-all class map cannot have more than one classification criterion (match statement). A class map with no match condition has a default of match all.

### The match Command

To configure the type of content used to classify packets, use the **match** class-map configuration command to specify the classification criteria. If a packet matches the configured criteria, it belongs to a specific class and is forwarded according to the specified policy. For example, you can use the **match** class-map command with CoS, IP DSCP, and IP precedence values. These values are referred to as *markings* on a packet.

- For an input policy map, you cannot configure an IP classification (**match ip dscp**, **match ip precedence**, **match ip acl**) and a non-IP classification (**match cos** or **match mac acl**) in the same policy map or class map.
- In an output policy map, no two class maps can have the same classification criteria, that is, the same match qualifiers and values.

This example shows how to create a class map `example` to define a class that matches any of the listed criteria. In this example, if a packet is received with the DSCP equal to 32 or a 40, the packet is identified (classified) by the class map.

```bash
Router(config)# class-map match-any example
Router(config-cmap)# match ip dscp 32
Router(config-cmap)# match ip dscp 40
Router(config-cmap)# exit
```

#### Classification Based on Layer 2 CoS

You can use the **match** command to classify Layer 2 traffic based on the CoS value, which ranges from 0 to 7.

**Note**

A match `cos` command is supported only on Layer 2 802.1Q trunk ports.

This example shows how to create a class map to match a CoS value of 5:

```bash
Router(config)# class-map premium
Router(config-cmap)# match cos 5
Router(config-cmap)# exit
```

#### Classification Based on IP Precedence

You can classify IPv4 traffic based on the packet IP precedence values, which range from 0 to 7.

This example shows how to create a class map to match an IP precedence value of 4:

```bash
Router(config)# class-map sample
Router(config-cmap)# match ip precedence 4
Router(config-cmap)# exit
```
Classification Based on IP DSCP

When you classify IPv4 traffic based on the IP DSCP value, and enter the `match ip dscp` class-map configuration command, you have several classification options to choose from:

- Entering a specific DSCP value (0 to 63).
- Using the Default service, that corresponds to an IP precedence and DSCP value of 0. The default per-hop behavior (PHB) is usually best-effort service.
- Using Assured Forwarding (AF) by entering the binary representation of the DSCP value. AF sets the relative probability that a specific class of packets is forwarded when congestion occurs and the traffic does not exceed the maximum permitted rate. AF per-hop behavior provides delivery of IP packets in four different AF classes: AF11-13 (the highest), AF21-23, AF31-33, and AF41-43 (the lowest). Each AF class can be allocated a specific amount of buffer space and drop probabilities, specified by the binary form of the DSCP number. When congestion occurs, the drop precedence of a packet determines the relative importance of the packet within the class. An AF41 provides the best probability of a packet being forwarded from one end of the network to the other.
- Entering Class Selector (CS) service values of 1 to 7, corresponding to the IP precedence bits in the ToS field of the packet.
- Using Expedited Forwarding (EF) to specify a low-latency path. This corresponds to a DSCP value of 46. EF services use priority queuing to preempt lower-priority traffic classes.

This example shows the available classification options:

```
Router(config-cmap)# match ip dscp ?
<0-63> Differentiated services codepoint value
af11 Match packets with AF11 dscp (001010)
af12 Match packets with AF12 dscp (001100)
af13 Match packets with AF13 dscp (001110)
af21 Match packets with AF21 dscp (010010)
af22 Match packets with AF22 dscp (010100)
af23 Match packets with AF23 dscp (010110)
af31 Match packets with AF31 dscp (011010)
af32 Match packets with AF32 dscp (011100)
af33 Match packets with AF33 dscp (011110)
af41 Match packets with AF41 dscp (100010)
af42 Match packets with AF42 dscp (100100)
af43 Match packets with AF43 dscp (100110)
cs1 Match packets with CS1(precedence 1) dscp (001000)
cs2 Match packets with CS2(precedence 2) dscp (010000)
cs3 Match packets with CS3(precedence 3) dscp (011000)
cs4 Match packets with CS4(precedence 4) dscp (100000)
cs5 Match packets with CS5(precedence 5) dscp (101000)
cs6 Match packets with CS6(precedence 6) dscp (110000)
cs7 Match packets with CS7(precedence 7) dscp (111000)
default Match packets with default dscp (000000)
ef Match packets with EF dscp (101110)
```

For more information on DSCP prioritization, see RFC-2597 (AF per-hop behavior), RFC-2598 (EF), or RFC-2475 (DSCP).

Classification Comparisons

Table 22: Typical Traffic Types, on page 390 shows the recommended IP DSCP, IP precedence, and CoS values for typical traffic types.
Table 22: Typical Traffic Types

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>DSCP Per-Hop</th>
<th>DSCP (Decimal)</th>
<th>IP Precedence</th>
<th>CoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice-bearer—Traffic in a priority queue or the queue with the highest service weight and lowest drop priority.</td>
<td>EF</td>
<td>46</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Voice control—Signalling traffic related to call setup from a voice gateway or a voice application server.</td>
<td>AF31</td>
<td>26</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Video conferencing—in most networks, video conferencing over IP has similar loss, delay, and delay variation requirements as Voice over IP traffic.</td>
<td>AF41</td>
<td>34</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Streaming video—Relatively high bandwidth applications with a high tolerance for loss, delay, and delay variation. Usually considered more important than regular background applications such as e-mail and web browsing.</td>
<td>AF13</td>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mission-critical date (gold data)—Delay-sensitive applications critical to the operation of an enterprise, classified as:</td>
<td>AF21</td>
<td>18</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>• Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Level 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less critical data (silver data)—Noncritical, but relatively important data, classified as:</td>
<td>AF11</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>• Level 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Level 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Level 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best-effort data (bronze data)—Other traffic, including all the noninteractive traffic, regardless of importance.</td>
<td>Default</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Less-than-best-effort data—Noncritical, bandwidth-intensive data traffic given the least preference. This is the first traffic type to be dropped, and includes these levels:</td>
<td>—</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Level 1</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>• Level 2</td>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Classification Based on QoS Groups

A QoS group is an internal label used by the router to identify packets as a members of a specific class. The label is not a part of the packet header, and is restricted to the router that sets the label. QoS groups provide a way to tag a packet for subsequent QoS action without explicitly marking (changing) the packet.

A QoS group is identified at ingress and used at egress; it is assigned in an input policy to identify packets in an output policy (see Classification Based on QoS Groups, on page 390). The QoS groups help aggregate different classes of input traffic for a specific action in an output policy.
You can use QoS groups to aggregate multiple input streams across input classes and policy maps for the same QoS treatment on the egress port. Assign the same QoS group number in the input policy map to all the streams that require the same egress treatment, and match the QoS group number in the output policy map to specify the required queuing and scheduling actions.

You can also use QoS groups to identify traffic entering a particular interface if the traffic has to be treated differently at the output based on the input interface.

You can use QoS groups to configure per-port, per-VLAN QoS output policies on the egress interface for bridged traffic on the VLAN. Assign a QoS group number to a VLAN on the ingress interface by configuring a per-port, per-VLAN input policy. Then use the same QoS-group number for classification at the egress. Because the VLAN of the bridged traffic does not change during forwarding through the router, the QoS-group number assigned to the ingress VLAN can be used on the egress interface to identify the same VLAN.

You can independently assign QoS-group numbers at the ingress to any combination of interfaces, VLANs, traffic flows, and aggregated traffic. To assign QoS-group numbers, configure a QoS group marking in an input policy map, along with any other marking or policing actions required in the input policy map for the same service class. This allows the input marking and policing functions to be decoupled from the egress classification function if necessary because only the QoS group must be used for egress classification.

This example identifies specific packets as part of QoS group 1 for later processing in an output policy:

```
Router(config)# policy-map in-gold-policy
Router(config-pmap)# class in-class1
Router(config-pmap-c)# set qos-group 1
Router(config-cmap-c)# exit
Router(config-cmap)# exit
```

Use the `set qos-group` command only in an input policy. The assigned QoS group identification is subsequently used in an output policy with no mark or change to the packet. Use the `match qos-group` in the output policy.

You cannot configure `match qos-group` for an input policy map.

This example shows how to create an output policy to match the QoS group created in the input policy map `in-gold-policy`. Traffic that is internally tagged as `qos-group 1` is identified and processed by the output policy:

```
Router(config)# class-map out-class1
Router(config-cmap)# match qos-group 1
Router(config-cmap)# exit
```

**Classification Based on VLAN IDs**

With classification based on VLAN IDs, you can apply QoS policies to frames carried on a user-specified VLAN for a given interface. Per-VLAN classification is not required on access ports because access ports carry traffic for a single VLAN.

The router supports two policy levels: a `parent` level and a `child` level. With the QoS parent-child structure, you can reference a child policy in a parent policy to provide additional control of a specific traffic type. For
Classification Based on VLAN IDs

Configuring QoS

Classification Based on VLAN IDs

per-port, per-VLAN QoS, the parent-level matches the VLAN; match criteria is defined by the service instance encapsulation. You cannot configure multiple service classes at the parent level to match different combinations of VLANs.

**Note**

A per-port, per-VLAN parent-level class map supports only the **class-default** class; you should configure with a single rate policer. A flat policy can have multiple classes with match VALN and any action.

**Note**

You can configure only class default in the parent level of a per-port, per-VLAN hierarchical policy map.

In this example, the class maps in the child-level policy map specify the matching criteria for voice, data, and video traffic, and the child policy map sets the action for input policing each type of traffic. The parent-level policy map specifies the VLANs to which the child policy maps are applied on the specified port.

```
Router(config)# class-map match-any dscp-1 data
Router(config-cmap)# match ip dscp 1
Router(config-cmap)# exit
Router(config)# class-map match-any dscp-23 video
Router(config-cmap)# match ip dscp 23
Router(config-cmap)# exit
Router(config)# class-map match-any dscp-63 voice
Router(config-cmap)# match ip dscp-63
Router(config-cmap)# exit
Router(config)# policy-map customer-1-ingress
Router(config-pmap)# class class-default
Router(config-pmap-c)# service-policy child_policy-1
```

**Note**

You can also enter the match criteria as `match vlan 100 200 300` in the child-level policy map.

```
Router(config)# policy-map child policy-1
Router(config-pmap)# class dscp-63 voice
Router(config-pmap-c)# police cir 10000000 bc 50000
Router(config-pmap-c)# conform-action set-cos-transmit 5
Router(config-pmap-c)# exceed-action drop
Router(config-pmap-c)# exit
Router(config-pmap)# class dscp-1 data
Router(config-pmap-c)# set cos 0
Router(config-pmap-c)# exit
Router(config-pmap)# class dscp-23 video
Router(config-pmap-c)# set cos 4
Router(config-pmap-c)# set ip precedence 4
Router(config-pmap-c)# exit
Router(config)# interface gigabitethernet0/1
Router(config-if)# service instance 100 ethernet
Router(config-if)# encapsulation dot1q 100
Router(config-if)# service-policy input customer-1-ingress
Router(config-if)# rewrite ingress tag pop 1 symmetric
Router(config-if)# bridge-domain 100
```
Classification Based on ACL

Effective with Cisco IOS Release 15.4 (2) S, the Router supports ACL-based QoS on Layer 4. This feature allows you to configure the Layer 3 or Layer 4 options while configuring the ACL for QoS on ingress only. Layer 3 or Layer 4 options such as ToS, source port, and destination port are supported.

The following example shows a sample configuration for ACL-based QoS on Layer 4:

```
ip access-list extended test
permit tcp any any
permit udp any any
class-map test
match access-group name test
policy-map test
class test
set dscp af11
interface gig 0/3
ip access-group test in
```

Restrictions

- Only named ACLs are supported in Layer 4 ACL-based QoS.
- The not operation is not supported in Layer 4 ACL-based QoS.
- Layer 4 ACL-based QoS is not supported on a multilink interface and BCPoMLPPP.

Table Maps

You can use table maps to manage a large number of traffic flows with a single command. You can specify table maps in the `set` commands and use them as mark-down mapping for the policers. You can also use table maps to map an incoming QoS marking to a replacement marking without having to configure a large number of explicit matches and sets. Table maps are used only in input policy maps.

Table maps can be used to:

- Correlate specific CoS, DSCP, or IP precedence values to specific CoS, DSCP, or IP precedence values
- Mark down a CoS, DSCP, or IP precedence value
- Assign defaults for unmapped values

This example shows how to create a table to map specific CoS values to DSCP values. The unspecified values are all mapped to a to-value (0).

```
Router(config)# table-map cos-dscp-tablemap
Router(config-tablemap)# map from 5 to 46
Router(config-tablemap)# map from 6 to 56
Router(config-tablemap)# map from 7 to 57
Router(config-tablemap)# exit
```

The Router supports a maximum of 32 unique table maps. You can enter up to 64 different `map from-to` entries in a table map. These table maps are supported on the router:

- Cos to QoS-group
- QoS-group to mpls experimental topmost

Table maps modify only one parameter (CoS, IP precedence, or DSCP, whichever is configured) and are only effective when configured with a `set` command in a policy map.
Policing

After a packet is classified, you can use policing, as shown in Figure 29: Policing of Classified Packets, on page 394 to regulate the class of traffic. The policing function limits the amount of bandwidth available to a specific traffic flow or prevents a traffic type from using excessive bandwidth and system resources. A policer identifies a packet as being in or out of profile by comparing the rate of the inbound traffic to the configuration profile of the policer and traffic class. Packets that exceed the permitted average rate or burst rate are out of profile or nonconforming. These packets are dropped or modified (marked for further processing), depending on the policer configuration.

Policing is used primarily on the receiving interfaces. You can attach a policy map to a policer only in an input service policy. The only policing allowed in an output policy map is in priority classes (see the Unconditional Priority Policing, on page 396).

Figure 29: Policing of Classified Packets

This section contains the following topics:

Individual Policing

Individual policing applies only to input policy maps. In the policy-map configuration mode, use the class command followed by the class map name, and enter the policy-map class configuration mode. Effective Cisco IOS Release 15.3(3)S, the Router supports policing ingress traffic over the cross-connect EVC, similar to the bridge domain service policy.

Use the police policy-map class configuration command to define the policer, the committed rate limitations of the traffic, committed burst size limitations of the traffic, and the action to take for a class of traffic that is below the limits (conform-action) and above the limits (exceed-action). If you do not specify burst size (bc), the system calculates an appropriate burst size value. The calculated value is appropriate for most applications.

To make the policy map effective, attach it to a physical port by using the service-policy input interface configuration command. Policing is done only on received traffic, so you can only attach a policer to an input service policy.

Note

The QoS group precedes the CoS value that is matched in the class map, when the set qos-group command is used along with MPLS experimental imposition.

Restrictions

- Only byte counters are supported.
• Only drop and pass counters are supported.
• If an ingress cross-connect policer is attached to a physical interface, an ingress cross-connect policer cannot be attached to EVCs under the specific physical port.
• Applying or removing a policy-map on a cross-connect interface requires **shutdown** or **no shutdown** on the interface.
• User class-based MPLS experimental imposition is supported only for user classes based on CoS match.
• Only policy maps on 254 ingress cross-connect interfaces are supported.
• Dynamic modification of policy maps (modifying a policy map or a class map while it is attached to an interface) is not supported for the policy maps applied on cross-connect.
• The match cos inner is not supported.

**Configuration Examples**

The following is a sample configuration of basic policing for all the traffic received with a CoS of 4. The first value following the **police** command limits the average traffic rate to 10,000,000 bits per second (bps); the second value represents the additional burst size (10 kilobytes). The policy is assigned to Gigabit Ethernet port 1.

```
Router(config)# class-map video-class
Router(config-cmap)# match cos 4
Router(config-cmap)# exit
Router(config)# policy-map video-policy
Router(config-pmap)# class video-class
Router(config-pmap-c)# police 10000000 10000
Router(config-pmap-c-police)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface gigabitethernet0/1
Router(config-if)# service-policy input video-policy
Router(config-if)# exit
```

The following is a sample configuration that shows the policing of traffic over cross-connect EVC:

```
Router(config)# interface GigabitEthernet0/3
Router(config-if)# service instance 22 ethernet
Router(config-if-svr)# encapsulation dot1q 22
Router(config-if-svr)# rewrite ingress tag pop 1 symmetric
Router(config-if-svr)# xconnect 1.1.1.1 100 encapsulation mpls
Router(config-if-svr)# service-policy input policy1
Router(config-if-svr)# exit
```

You can use the **conform-action** and **exceed-action** policy-map class configuration commands or the **conform-action** and **exceed-action** policy-map class police configuration commands to specify the action to be taken when a packet conforms to or exceeds the specified traffic rate.

Conform actions involve sending the corresponding packet without modifications, setting a new CoS, DSCP, or IP precedence value, or setting up a QoS group value for classification at the egress. Exceed actions involve dropping the packet, sending the packet without modification, setting a new CoS, DSCP, or IP precedence to a value, or setting a QoS group value for classification at the egress.

You can configure each marking action by using explicit values, table maps, or a combination of both. Table maps list specific traffic attributes and map (or convert) them to other attributes.
You can configure multiple conform and exceed actions simultaneously for each service class.

After you create a table map, configure a policy-map policer to use the table map.

Note

In `router`, the `from`-type action in the table map must be `cos`.

To configure multiple actions in a class, you can enter multiple conform or exceed action entries in the policy-map class police configuration mode, as in this example:

```
Router(config)# policy-map map1
Router(config-pmap)# class class1
Router(config-pmap-c)# police 100000 500000
Router(config-pmap-c-policer)# conform-action set-cos-transmit 4
Router(config-pmap-c-policer)# conform-action set-qos-transmit 4
Router(config-pmap-c-policer)# exceed-action set-cos-transmit 2
Router(config-pmap-c-policer)# exceed-action set-qos-transmit 2
Router(config-pmap-c-policer)# exit
Router(config-pmap-c)# exit
Router(config-pmap)# exit
```

Unconditional Priority Policing

Priority policing applies only to output policy maps. You can use the `priority` policy-map class configuration command in an output policy map to designate a low-latency path or class-based priority queuing for a specific traffic class. With strict priority queuing, the packets in the priority queue are scheduled and sent until the queue is empty, at the expense of other queues. Excessive use of high-priority queuing may create congestion for lower-priority traffic.

To eliminate this congestion, you can use priority with implicit policer (priority policing) to reduce the bandwidth used by the priority queue, and allocate traffic rates on other queues. Priority with police is the only form of policing supported in output policy maps.

Note

You cannot configure a policer-committed burst size for an unconditional priority policer because any configured burst size is ignored.

This example shows how to use the `priority percent` command to configure `out-class1` as the priority queue, with traffic going to the queue limited to 20,000,000 bps so that the priority queue never uses more than that. Traffic above that rate is dropped. This allows other traffic queues to receive some port bandwidth, in this case, a minimum bandwidth guarantee of 50 percent and 20 percent. The `class-default` class queue gets the remaining port bandwidth.

```
Router(config)# policy-map policy1
Router(config-pmap)# class out-class1
Router(config-pmap-c)# priority percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# class out-class2
Router(config-pmap-c)# bandwidth percent 50
Router(config-pmap-c)# exit
Router(config-pmap)# class out-class3
Router(config-pmap-c)# bandwidth percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# exit
```
Egress Policing

Egress policing can be classified based on QoS groups, DSCP, and IP precedence value. For QoS groups to work at egress, you should map the traffic at ingress to a specific QoS group value.

Marking

You can use packet marking in input policy maps to set or modify the attributes for traffic belonging to a specific class. After network traffic is organized into classes, you use marking to identify certain traffic types for unique handling. For example, you can change the CoS value in a class or set IP DSCP or IP precedence values for a specific type of traffic. These new values are then used to determine how the traffic should be treated. You can also use marking to assign traffic to a QoS group within the router.

Traffic marking is typically performed on a specific traffic type at the ingress port. The marking action can cause the CoS, DSCP, or precedence bits to be rewritten or left unchanged, depending on the configuration. This can increase or decrease the priority of a packet in accordance with the policy used in the QoS domain so that other QoS functions can use the marking information to judge the relative and absolute importance of the packet. The marking function can use information from the policing function or directly from the classification function.

You can specify and mark traffic by using the set commands in a policy map for all supported QoS markings (CoS, IP DSCP, IP precedence, and QoS groups). A set command unconditionally marks the packets that match a specific class. You then attach the policy map to an interface as an input policy map.

You can also mark traffic by using the set command with table maps. Table maps list specific traffic attributes and maps (or converts) them to another attribute. A table map establishes a to-from relationship for the attribute and defines the change to be made.

You can simultaneously configure actions to modify DSCP, precedence, and COS markings in the packet for the same service along with QoS group marking actions. You can use the QoS group number defined in the marking action for egress classification.

Note

When you use a table map in an input policy map, the protocol type of the from-type action in the table map must be the same as the protocol type of the associated classification. If the class map represents a non-IP classification, the from-type action in the table map must be cos.

Note

transparently preserves the ECN bits while marking DSCP.

After you create a table map, configure a policy map to use the table map. See the Congestion Management and Scheduling, on page 398. Figure 30: Marking of Classified Traffic, on page 398 shows the steps for marking traffic.
This example uses a policy map to remark a packet. The first marking (the `set` command) applies to the QoS default class map that matches all traffic not matched by class AF31-AF33 and sets all traffic to an IP DSCP value of 1. The second marking sets the traffic in classes AF31 to AF33 to an IP DSCP of 3.

```
Router(config)# policy-map Example
Router(config-pmap)# class class-default
Router(config-pmap-c)# set ip dscp 1
Router(config-pmap-c)# exit
Router(config-pmap-c)# class AF31-AF33
Router(config-pmap-c)# set ip dscp 3
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface gigabitethernet0/1
Router(config-if)# service-policy input Example
Router(config-if)# exit
```

### Congestion Management and Scheduling

Cisco Modular QoS CLI (MQC) provides several related mechanisms to control outgoing traffic flow. They are implemented in output policy maps to control output traffic queues. The scheduling stage holds packets until the appropriate time to send them to one of the four traffic queues. Queuing assigns a packet to a particular queue based on the packet class. You can use different scheduling mechanisms to provide a guaranteed bandwidth to a particular class of traffic while also serving other traffic in a fair way. You can limit the maximum bandwidth that can be consumed by a particular class of traffic and ensure that delay-sensitive traffic in a low-latency queue is sent before traffic in other queues.

The Router supports these scheduling mechanisms:

- **Traffic shaping**
  
  Use the `shape average` policy-map class configuration command to specify that a class of traffic should have a maximum permitted average rate. Specify the maximum rate in bits per second.

- **Class-based weighted fair queuing (CBWFQ)**
  
  Use the `bandwidth` policy-map class configuration command to control the bandwidth allocated to a specific class. The minimum bandwidth can be specified as percentage.

- **Priority queuing or class-based priority queuing**
  
  Use the `priority` policy-map class configuration command to specify the priority of a type of traffic over other types of traffic. You can specify strict priority for high-priority traffic and allocate excess bandwidth, if any, to other traffic queues, or specify priority with unconditional policing of high-priority traffic, and allocate the known remaining bandwidth among the other traffic queues.

- **To configure strict priority**, use only the `priority` policy-map class configuration command to configure the priority queue. Use the `bandwidth remaining percent` policy-map class configuration command for the other traffic classes to allocate the excess bandwidth in the desired ratios.

- **To configure priority with unconditional policing**, configure the priority queue by using the `priority` policy-map class configuration command and the `police` policy-map class configuration command to
unconditionally rate-limit the priority queue. In this case, you can configure the other traffic classes with the `bandwidth` command or the `shape average` command, depending on your requirements.

These sections contain additional information about scheduling:

**Traffic Shaping**

Traffic shaping is a traffic-control mechanism similar to traffic policing. While traffic policing is used in input policy maps, traffic shaping occurs as traffic leaves an interface. The router can apply class-based shaping to classes of traffic leaving an interface, and port shaping to all the traffic leaving an interface. Configuring a queue for traffic shaping sets the maximum bandwidth or peak information rate (PIR) of the queue.

---

**Note**

Effective Cisco IOS Release 15.2(2)SNI, the lower limit of the committed burst size (bc) is 1 ms.

---

**Class-Based Shaping**

Class-based shaping uses the `shape average` policy-map class configuration command to limit the rate of data transmission as the number of bits per second to be used for the committed information rate for a class of traffic. The router supports separate queues for three classes of traffic. The fourth queue is always the default queue for the `class-default` class, unclassified traffic.

---

**Note**

In the Cisco ASR 901 Router, configuring traffic shaping automatically sets the minimum bandwidth guarantee or committed information rate (CIR) of the queue to the same value as the PIR.

---

This example shows how to configure traffic shaping for outgoing traffic on a Gigabit Ethernet port so that `outclass1`, `outclass2`, and `outclass3` get a maximum of 50, 20, and 10 Mbps, respectively, of the available port bandwidth. The `class-default` class gets the remaining bandwidth.

```
Router(config)# policy-map out-policy
Router(config-pmap)# class classout1
Router(config-pmap-c)# shape average 50000000
Router(config-pmap-c)# exit
Router(config-pmap)# class classout2
Router(config-pmap-c)# shape average 20000000
Router(config-pmap-c)# exit
Router(config-pmap)# class classout3
Router(config-pmap-c)# shape average 10000000
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# exit
Router(config)# interface gigabitethernet 0/1
Router(config-if)# service-policy output out-policy
Router(config-if)# exit
```

**Port Shaping**

To configure port shaping (a transmit port shaper), create a policy map that contains only a default class, and use the `shape average` command to specify the maximum bandwidth for a port.

This example shows how to configure a policy map that shapes a port to 90 Mbps, allocated according to the `out-policy` policy map configured in the previous example. The `service-policy` policy map class command is used to create a child policy to the parent:

```
```
Router(config)# policy-map out-policy-parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 90000000
Router(config-pmap-c)# service-policy out-policy
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface gigabitethernet0/1
Router(config-if)# service-policy output out-policy-parent
Router(config-if)# exit

Parent-Child Hierarchy

The router also supports parent policy levels and child policy levels for traffic shaping. The QoS parent-child structure is used for specific purposes, where a child policy is referenced in a parent policy to provide additional control of a specific traffic type.

The first policy level, the parent level, is used for port shaping. You can specify only one class of type class-default within the policy. This is an example of a parent-level policy map:

Router(config)# policy-map parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 50000000
Router(config-pmap-c)# exit

The second policy level, the child level, is used to control a specific traffic stream or class, as shown in this example:

Router(config)# policy-map child
Router(config-pmap)# class class1
Router(config-pmap-c)# priority
Router(config-pmap-c)# exit

Note

The total of the minimum bandwidth guarantees (CIR) for each queue of the child policy cannot exceed the total port-shape rate.

This is an example of a parent-child configuration:

Router(config)# policy-map parent
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 50000000
Router(config-pmap-c)# service-policy child
Router(config-pmap-c)# exit
Router(config)# interface gigabitethernet0/1
Router(config-if)# service-policy output parent
Router(config-if)# exit

Class-Based Weighted Fair Queuing

You can configure CBWFQ to set the relative precedence of a queue by allocating a portion of the total bandwidth that is available for the port. Use the bandwidth policy-map class configuration command to set the output bandwidth for a class of traffic as a percentage of total bandwidth, or a percentage of remaining bandwidth.
When you configure bandwidth in a policy map, you must configure all the rates in the same format. The total of the minimum bandwidth guarantees (CIR) for each queue of the policy cannot exceed the total speed of the parent.

When you use the `bandwidth` policy-map class configuration command to configure a class of traffic as a percentage of total bandwidth, it represents the minimum bandwidth guarantee (CIR) for that traffic class. This means that the traffic class gets at least the bandwidth indicated by the command, but is not limited to that bandwidth. Any excess bandwidth on the port is allocated to each class in the same ratio in which the CIR rates are configured.

You cannot configure bandwidth as a percentage of total bandwidth when strict priority (priority without police) is configured for another class in the output policy.

When you use the `bandwidth` policy-map class configuration command to configure a class of traffic as a percentage of total bandwidth, it represents the portion of the excess bandwidth of the port that is allocated to the class. This means that the class is allocated bandwidth only if there is excess bandwidth on the port, and if there is no minimum bandwidth guarantee for this traffic class.

You can configure bandwidth as a percentage of remaining the bandwidth only when strict priority (priority without police) is configured for another class in the output policy map.

You cannot configure bandwidth and traffic shaping (shape average) or priority queuing (priority) for the same class in an output policy map.

This example shows how the classes `outclass1`, `outclass2`, `outclass3`, and `class-default` get a minimum of 40 percent, 20 percent, 10 percent, and 10 percent of the total bandwidth, respectively. Any excess bandwidth is divided among the classes in the same proportion as rated in the CIR.

```
Router(config)# policy-map out-policy
Router(config-pmap)# class outclass1
Router(config-pmap-c)# bandwidth percent 40
Router(config-pmap-c)# exit
Router(config-pmap)# class outclass2
Router(config-pmap-c)# bandwidth percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# class outclass3
Router(config-pmap-c)# bandwidth percent 10
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth percent 10
Router(config-pmap-c)# exit
Router(config)# interface gigabitethernet 0/1
Router(config-if)# service-policy output out-policy
Router(config-if)# exit
```
When you configure CIR bandwidth for a class as a percentage of the total bandwidth, any excess bandwidth remaining after servicing the CIR of all the classes in the policy map is divided among the classes in the same proportion as the CIR rates. If the CIR rate of a class is configured as 0, that class is also not eligible for any excess bandwidth, and as a result, receives no bandwidth.

This example shows how to allocate the excess bandwidth among queues by configuring bandwidth for a traffic class as a percentage of remaining bandwidth. The class `outclass1` is given priority queue treatment. The other classes are configured to get percentages of the excess bandwidth if any, after servicing the priority queue; `outclass2` is configured to get 20 percent, `outclass3` to get 30 percent, and the class-default class to get the remaining 50 percent.

```
Router(config)# policy-map out-policy
Router(config-pmap)# class outclass1
Router(config-pmap-c)# priority
Router(config-pmap-c)# exit
Router(config-pmap)# class outclass2
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# class outclass3
Router(config-pmap-c)# bandwidth remaining percent 30
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface gigabitethernet 0/1
Router(config-if)# service-policy output out-policy
Router(config-if)# exit
```

### Priority Queuing

You can use the `priority` policy-map class configuration command to ensure that a particular class of traffic is given preferential treatment. With strict priority queuing, the priority queue is constantly serviced. All the packets in the queue are scheduled and sent until the queue is empty. Priority queuing allows traffic for the associated class to be sent before the packets in the other queues are sent.

**Caution**

Be careful when using the `priority` command. Excessive use of strict priority queuing might cause congestion in other queues.

The router supports strict priority queuing or `priority percent` policy-map command.

- **Strict priority queuing** (priority without police) assigns a traffic class to a low-latency queue to ensure that the packets in this class have the lowest possible latency. When this is configured, the priority queue is continually serviced until it is empty, possibly at the expense of packets in other queues.

**Note**

You cannot configure priority without policing for a traffic class when traffic shaping or CBWFQ are configured for another class in the same output policy map.

- Use the `priority percent` policy-map command, or `unconditional priority policing`, to reduce the bandwidth used by the priority queue. This is the only form of policing that is supported in output policy maps. Using this combination of commands configures a maximum rate on the priority queue, and you can use the `bandwidth` and `shape average` policy-map commands for other classes to allocate traffic.
rates on other queues. Effective Cisco IOS Release 15.3(2)S, Cisco ASR 901 Router allows configuration of multiple classes to serve based on priority.

---

**Note**

When priority is configured in an output policy map without the `priority` command, you can only configure the other queues for sharing by using the `bandwidth remaining percent` policy-map command to allocate excess bandwidth.

---

**Restrictions**

- You can associate the `priority` command with a single unique class for all the attached output polices on the router. Effective Cisco IOS Release 15.3(2)S, Cisco ASR 901 Router allows the configuration of multiple classes with `priority percent`.
- You cannot configure priority and other scheduling action (``shape average`` or `bandwidth`) in the same class.
- You cannot configure priority queuing for the class-default of an output policy map.

This example shows how to configure the class `out-class1` as a strict priority queue so that all the packets in that class are sent before any other class of traffic. Other traffic queues are configured so that `out-class-2` gets 50 percent of the remaining bandwidth and `out-class3` gets 20 percent of the remaining bandwidth. The `class-default` class receives the remaining 30 percent with no guarantees.

```yaml
Router(config)# policy-map policy1
Router(config-pmap)# class out-class1
Router(config-pmap-c)# priority
Router(config-pmap-c)# exit
Router(config-pmap)# class out-class2
Router(config-pmap-c)# bandwidth remaining percent 50
Router(config-pmap-c)# exit
Router(config-pmap)# class out-class3
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# exit
Router(config)# interface gigabitethernet 0/1
Router(config-if)# service-policy output policy1
Router(config-if)# exit
```

This example shows how to use the `priority` keyword with the `percent` command to configure `out-class1` as the priority queue, with the traffic going to the queue limited to 20,000,000 bps so that the priority queue will never use more than that. Traffic above that rate is dropped. The other traffic queues are configured to use 50 percent and 20 percent of the bandwidth that is left, as shown in the previous example.

```yaml
Router(config)# policy-map policy1
Router(config-pmap)# class out-class1
Router(config-pmap-c)# priority percent 20
Router(config-pmap-c)# exit
Router(config-pmap)# class out-class2
Router(config-pmap-c)# bandwidth percent 50
Router(config-pmap-c)# exit
Router(config-pmap)# class out-class3
Router(config-pmap-c)# bandwidth percent 20
Router(config-pmap-c)# exit
Router(config)# interface gigabitethernet 0/1
```
Router(config-if)# service-policy output policy1
Router(config-if)# exit

The following example shows how to use the **priority** keyword with the **percent** command to configure multiple traffic classes:

Router(config)# policy-map pmap_bckbone
Router(config-pmap)# class VOICE_GRP
Router(config-pmap-c)# priority percent 50
Router(config-pmap-c)# exit
Router(config-pmap)# class CTRL_GRP
Router(config-pmap-c)# priority percent 5
Router(config-pmap-c)# exit
Router(config-pmap)# class E1_GRP
Router(config-pmap-c)# priority percent 55
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth percent 10
Router(config-pmap-c)# exit

### Ingress and Egress QoS Functions

This section lists the supported and unsupported QoS functions for ingress and egress on the Cisco ASR 901 Router.

#### Ingress QoS Functions

In Cisco ASR 901 router:

- Interfaces support ingress classification.
- Ethernet interfaces support ingress policing.
- Ethernet interfaces support ingress marking.
- Ethernet interfaces do not support Low-Latency Queuing (LLQ). Ingress Priority is not supported on ingress.
- Ethernet interfaces do not support queuing, shaping, and scheduling on ingress.
- Classification based on QoS group is not supported.

#### Egress QoS Functions

In Cisco ASR 901 router:

- Gigabit Ethernet interfaces support egress classification.
- Gigabit Ethernet interfaces support egress marking.
- Gigabit Ethernet interfaces support egress scheduling.
- Interfaces support per interface and per QoS group shaping on egress ports.
- Interfaces support LLQ and weighted random early detection on egress.

### Configuring QoS

The following sections describe how to configure the QoS features supported by the Cisco ASR 901 Router:
QoS Limitations

The Cisco ASR 901 Router offers different QoS support according to the physical interface and traffic type. The following sections describe the limitations for each QoS capability on the Cisco ASR 901 Router.

General QoS Limitations

The following general QoS limitations apply to the Cisco ASR 901 Router:

- You can create a maximum of 256 class maps, including the class-default class map.
- You can create a maximum of 32 policy maps.
- Input policy-map is not supported on SVI.
- Output policy-map is not supported on service instance.
- The CoS marking is supported only on normal interfaces.
- EXP to COS marking is not supported on Port channel.
- Policy-map having class-map with mpls experimental topmost must be applied only on MPLS enabled interface. Usage of policy-map on non-mpls interface can result in other packets matching this criteria.
- The match cos inner is not supported.
- Egress Queue on POCH is supported only on POCH interface and uses replication model.

The following limitations apply to the QoS policies on HDLC, PPP, PPP interfaces:

- Input PPP interfaces support only QoS marking policies.
- Only a maximum of eight match statements can be created within a class map in a service policy applied to a PPP interface.
- Only a maximum of eight classes can be created within a policy map that is applied to a PPP interface. This number includes the default-class.
- Only one priority class can be used within a policy map applied to a PPP interface.
- The match-all keyword of the class-map command is not supported.
- The following actions are not supported for egress policy:
  - Bandwidth value
  - Priority value
  - Set of qos-group (VLAN priority)—This is relevant only for Layer 2 Transport over MLPPP interface.

- Requires explicit configuration of class-default with bandwidth percent.
- DSCP marking is not supported for the class-default queue.

All the above restrictions are applicable to MPLS over MLPPP and IP over MLPPP, in addition to the following specific restrictions that apply to QoS policies on MPLS and IP over MLPPP interfaces:

- The Cisco ASR 901 Router supports the DSCP marking priority, eight bandwidth queues, link fragmentation, interleave, and queue limits features for MLPPP egress.
- Input policy is not supported.
- EXP marking is not supported for the class-default queue.

The following limitations apply to Gigabit Ethernet interfaces:

- You can apply only a maximum of two different service policies to the Gigabit Ethernet interfaces.
- You can only use the class-default class for HQoS parent service policies applied to egress Gigabit Ethernet interfaces.
Statistics Limitations

The following statistical QoS limitations apply to the Cisco ASR 901 Router:

- Input service policies on the Gigabit Ethernet interface support statistics only in bytes.
- PPP and MLPPP interfaces support QoS statistics only in packets.
- Output service policies on the Gigabit Ethernet interface support statistics only in bytes.
- The 2R3C policer provides exceed-and-violate counters as a single counter.
- Marking statistics will not be displayed for any class.

Propagation Limitations

The Cisco ASR 901 Router has the following limitations when propagating QoS values between interfaces:

- The following limitation is applicable when traffic ingresses through a Gigabit Ethernet interface and egresses through a Gigabit Ethernet interface:
  - When traffic is switched at Layer 2, the QoS group is propagated through the router.
- The following limitations are applicable when traffic ingresses through any other interface type (host-generated and PPP) and egresses through the Gigabit Ethernet interface.
  - The Precedence bit value is propagated to the CoS bit (for host-generated interface only).
  - The CoS bit value is mapped 1:1 to the QoS group value.

See the Sample QoS Configuration, on page 412 section for a sample QoS configuration that accounts for propagation limitations on the Cisco ASR 901 Router.

Classification Limitations

The following table summarizes the values that you can use to classify traffic based on interface type. The values are parameters that you can use with the match command.

<table>
<thead>
<tr>
<th>Value</th>
<th>Gigabit Ethernet</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>access-group</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>all</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>any</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>class-map</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>cos</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>destination-address</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>discard-class</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>dscp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>flow pdp</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
The following limitations are also applicable when configuring classification on the Cisco ASR 901 Router:

- The `set qos-group cos` command used for trusting CoS is supported only under class-default, as a stand-alone class in the policy-map. No other user class is supported on the same policy-map. Counters are not supported for the policy-map.

- The following limitations apply to the input Gigabit Ethernet interface QoS policies:
  - You can use the `match vlan` command with a maximum of four VLANs. The `match vlan` command is supported only for port, EVC, and pseudowire.
  - You can use the `match dscp` command with a maximum of four DSCP values.
  - The Cisco ASR 901 Router first looks for IP DSCP and then the MPLS experimental imposition for the MPLS packets.

- The following limitations apply to the output Gigabit Ethernet interface QoS policies:
  - Class maps with queuing action only support matching based on QoS group. This limitation does not apply to the class-default class map.
  - You cannot create two matching class maps based on the same QoS group value.
  - Class-default on the egress supports matching only on qos-group 0.

- The following limitation applies to input PPP interfaces:
  - You can create only up to eight matches in a class map, using DSCP or MPLS Exp values.
The `show policy-map interface counters` command does not display cumulative queue statistics for priority classes. It shows only queue statistics for individual priority classes. Similarly, output or marking counters are not supported.

### Marking Limitations

The following table summarizes the values that you can use to mark traffic, based on interface type. The values are parameters that you can use with the `set` command.

<table>
<thead>
<tr>
<th>Value</th>
<th>Gigabit Ethernet</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>atm-clp</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>cos</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>discard-class</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>dscp</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>dscp-transmit</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>ip dscp</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ip precedence</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>mpls experimental</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>mpls experimental</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>imposition</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>mpls experimental</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>topmost qos-group</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>precedence</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>prec-transmit</td>
<td>X</td>
<td>—</td>
</tr>
<tr>
<td>qos-group</td>
<td>X</td>
<td>—</td>
</tr>
</tbody>
</table>

### Congestion Management Limitations

The congestion management limitations for the Cisco ASR 901 Router are described in the following sections:

#### Queuing Limitations

The Cisco ASR 901 Router uses Class-Based Weighted Fair Queuing (CBWFQ) for congestion management. The following table summarizes the queuing commands that you can apply when using CBWFQ according to interface type.
Table 24: QoS Queuing Limitations by Interface

<table>
<thead>
<tr>
<th>Value</th>
<th>Gigabit Ethernet</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>bandwidth (kbps)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>bandwidth percent</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>bandwidth remaining percent</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>compression header ip</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>drop</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>fair-queue</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>priority</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>priority (kbps)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>priority (without queue-limit)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>priority percent</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>queue-limit (cells)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>queue-limit (packets)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>random-detect discard-class-based</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

Rate-Limiting Limitations

You can use rate limiting for congestion management on the Cisco ASR 901 Router. The following table summarizes the rate-limiting parameters that you can use with the `police` command, according to interface type. The table uses the following terms:

- **Rate**—A speed of network traffic, such as a committed information rate (CIR) or peak information rate (PIR).
- **Actions**—A defined action when traffic exceeds a rate, such as conform-action, exceed-action, or violate-action.

Table 25: QoS Rate Limiting Limitations by Interface

<table>
<thead>
<tr>
<th>Policing With</th>
<th>Gigabit Ethernet</th>
<th>PPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>One rate</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Shaping Limitations

The following table summarizes the values that you can use to mark traffic based on interface type. The values are parameters that you can use with the `shape` command.

**Table 26: QoS Shaping Limitations by Interface**

<table>
<thead>
<tr>
<th>Value</th>
<th>Gigabit Ethernet</th>
<th>MLPPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingress</td>
<td>Egress</td>
</tr>
<tr>
<td>adaptive</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>average</td>
<td>—</td>
<td>X</td>
</tr>
<tr>
<td>fecn-adapt</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>max-buffers</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>peak</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The following limitations also apply to QoS shaping on the Cisco ASR 901 Router:

- The following limitations apply to the input Gigabit Ethernet interfaces:
  - You cannot apply shaping to the class-default class unless you are using hierarchical policy maps and applying shaping to the parent policy map.
  - If you are using hierarchical policy maps, you can only apply the class-default class to the parent policy map.

**ACL-based QoS Restrictions**

In addition to all the limitations applicable to a current QoS configuration, the following restrictions are applicable for ACL-based QoS:

- IPv6 ACL-based QoS is not supported.
- ACL-based QoS is limited to source and destination IP addresses. Extended ACLs with extended options such as DSCP, fragments, option, precedence, time-range, ToS, and TTL are not supported.
- MAC ACLs are not supported. Only IP ACLs are supported.
- You can configure only named access lists in QoS; other ACL types are not supported.
- Only source and destination IPv4 addresses are supported in the access-list definition.
- You can add only a maximum of 128 ACL match filters (including default deny ace) as part of class or classes.
Improving Feature Scalability

Effective Cisco IOS Release 15.3(2)S, Ternary content-addressable memory (TCAM) is allocated and deallocated dynamically based on system configuration. This improves both feature scalability and efficiency of TCAM usage. 25 percent of this memory is reserved for Layer 2 and Layer 3 control protocols and the remaining 75 percent is allocated dynamically based on the requirements. Layer 2 and Layer 3 forwarding tables are independent of TCAM.

TCAM with QoS

The scalability of QoS changes depending on the features configured on the Cisco ASR 901 Router, as shown in the following examples:

- You can create a maximum of 768 TCAM rules.
- You can create a maximum of 640 TCAM rules with remote loopback in Ethernet OAM (802.3ah), Ethernet loopback, and DelayMeasurement configured.
- You can create a maximum of 512 TCAM rules with remote loopback in Ethernet OAM (802.3ah), Ethernet loopback, DelayMeasurement, and Router ACL configured.

For more information on troubleshooting scalability, see Troubleshooting Tips, on page 473.

QoS for MPLS over MLPPP and IP over MLPPP

Effective Cisco IOS Release 15.4(1)S, the extended QoS functionality is supported on the MLPPP interface. The egress policy supports classification on the MLPS EXP bits.

The following actions are supported:

- Bandwidth percent
- Priority percent
- Setting the MPLS EXP bits
- Setting the queue limit
- Egress shaping

QoS for CPU-Generated Traffic

Effective Cisco IOS Release 15.4(1)S, QoS is provided for CPU-generated traffic. The classification is based on DSCP (for packets going over IP adjacency) or EXP (for packets going over TAG adjacency).

QoS treatment is available for the following CPU generated traffic:

- Open Shortest Path First (OSPF) Packets
- Internet Control Message Protocol (ICMP) Packets
- Border Gateway Protocol (BGP) Packets
- Label Distribution Protocol (LDP) Packets
- Intermediate System to Intermediate System (IS-IS) Frames

The QoS configuration for CPU-generated traffic is the same as that of QoS for MPLS over MLPPP. However, you should use `class-map` to match the DSCP or EXP values of the CPU-generated traffic.

For example:

- If the OSPF packets use DSCP CS6, the policy map should use the class map to match DSCP CS6.
• BGP and LDP packets use either IP adjacency or TAG adjacency (depending on the type of packets)
  • Packets going over IP adjacency use DSCP CS6
  • Packets going over TAG adjacency use EXP 6
• For ICMP packets (PING traffic), the default DSCP value is 0; you can specify TOS value while sending the ping traffic.
• IF-IS-IS packets do not have either DSCP or EXP; they are treated with the policy configuration of DSCP CS6.

Note

The show policy-map interface multilink bundle-number command shows the combined counters of the CPU-generated traffic and data traffic if both the data traffic and CPU-generated traffic flow in the same class.

QoS Configuration Guidelines

• You can configure QoS on physical ports and EFPs (only in ingress).
• QoS can likely be configured on port channel.
• Only table-map configuration is allowed on Switch Virtual Interface (SVI) interfaces.
• On a port configured for QoS, all the traffic received through the port is classified, policed, and marked according to the input policy map attached to the port. On an EFP configured for QoS, traffic in all the VLANs received through the port is classified, policed, and marked according to the policy map attached to the port. If a per-port, per-VLAN policy map is attached, traffic on the trunk port is classified, policed, and marked for the VLANs specified in the class filter.
• If you have EtherChannel ports configured on your router, you must configure QoS classification, policing, mapping, and queuing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all the ports in the EtherChannel.
• Control traffic (such as Spanning-tree Bridge Protocol Data Units [BPDUs] and routing update packets) received by the router are subject to all ingress QoS processing.
• You might lose data when you change queue settings. Therefore, try to make changes when traffic is at a minimum.
• When you try to attach a new policy to an interface and this brings the number of policer instances to more than 255, you receive an error message, and the configuration fails.
• When you try to attach a new policy to an interface and this brings the number of policer profiles to more than 254, you receive an error message, and the configuration fails. A profile is a combination of commit rate, peak rate, commit burst, and peak burst. You can attach one profile to multiple instances, but if one of these characteristics differs, the policer is considered to have a new profile.
• On all Cisco ASR 901 Routers, you can specify 128 unique VLAN classification criteria within a per-port, per-VLAN policy map, across all the ports on the router. Any policy attachment or change that causes this limit to be exceeded fails with a VLAN label resources exceeded error message.
• On all Cisco ASR 901 Routers, you can attach per-port, per-VLAN policy-maps across all ports on the router until QoS classification resource limitations are reached. Any policy attachment or change that causes this limit to be exceeded fails with a TCAM resources exceeded error message.

Sample QoS Configuration

The following configuration demonstrates how to apply QoS given the hardware limitations. The Cisco ASR 901 Router processes traffic between interfaces as follows:
• For Layer 2 traffic passing between the Gigabit Ethernet 0/2 interface and the Gigabit Ethernet 0/0 interface, the output queue is determined by the QoS group assigned in the in-qos policy map.

• For Layer 3 traffic passing between Gigabit Ethernet 0/2 interface and the Gigabit Ethernet 0/0 interface, the output queue is determined based on the CoS value assigned in the in-qos policy map. (the CoS value is mapped 1:1 to the QoS group value.)

• For traffic passing between other interfaces, the output queue is determined based on the CS fields (top three bits) of the IP DSCP bits; these bits are copied to the CoS bits, which are mapped 1:1 to the QoS group value.

The following is a sample configuration for QoS:

```
! class-map match-all q0
 match qos-group 0
class-map match-all q1
 match qos-group 1
class-map match-all q2
 match qos-group 2
class-map match-all q3
 match qos-group 3
class-map match-all q4
 match qos-group 4
class-map match-all q5
 match qos-group 5
class-map match-all q6
 match qos-group 6
class-map match-all q7
 match qos-group 7
class-map match-any Voice
 match dscp ef
 match dscp af41
class-map match-any Signaling
 match dscp af11 af12
class-map match-any HSDPA
 match dscp af21
! translates to 3 TCAM rules because each match in match-any uses one entry
match dscp af21
match cos 3
match mpls experimental topmost
class-map match-all TCAM2
! translates to 1 TCAM rules because all the match-all clauses together take only 1 entry
match dscp af21
match cos 3
match mpls experimental topmost 1!
policy-map in-qos
 class Voice
 set cos 5
 set qos-group 5
class control_plane
 set cos 4
 set qos-group 4
class HSDPA
 set cos 1
 set qos-group 1!
```
policy-map out-child
class q5
  priority percent 20
class q4
  bandwidth remaining percent 20
class q1
  bandwidth remaining percent 59
!
!
policy-map out-parent
class class-default
  shape average 100000000
  service-policy out-child
!

Configuring Classification

Classifying network traffic allows you to organize packets into traffic classes based on whether the traffic matches specific criteria. Classifying network traffic is the foundation for enabling many QoS features on your network.

This section contains the following topics:

Creating a Class Map for Classifying Network Traffic

Class maps allow you to define classes of network traffic in order to apply QoS features to each class. Complete the following steps to create a class map:

SUMMARY STEPS

1. Enter the enable mode.
2. Enter the password.
3. Enter global configuration mode.
4. Use the class-map command to define a new class map and enter class map configuration mode.
5. Use the match command to specify the match criteria for the class map. You can define a variety of match criteria including CoS, DSCP, MPLS Exp, or QoS group value.
6. Exit configuration mode.

DETAILED STEPS

Step 1 Enter the enable mode.

Example:

Router> enable

Step 2 Enter the password.

Example:

Password: password

When the prompt changes to Router , you have entered enable mode.

Step 3 Enter global configuration mode.
**Example:**

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

**Step 4** Use the `class-map` command to define a new class map and enter class map configuration mode.

**Example:**

Router(config)# class-map class1

**Step 5** Use the `match` command to specify the match criteria for the class map. You can define a variety of match criteria including CoS, DSCP, MPLS Exp, or QoS group value.

**Example:**

Router(config-cmap)# match qos-group 7

*Note* The class-default queue matches packets with qos-group 0.

**Example:**

**Step 6** Exit configuration mode.

**Example:**

Router(config-cmap)# end
Router#

---

**Creating a Policy Map for Applying a QoS Feature to Network Traffic**

A policy map allows you to apply a QoS feature to network traffic based on the traffic classification. Complete the following steps to create and configure a policy map that uses an existing class map.

**SUMMARY STEPS**

1. Enter the enable mode.
2. Enter the password.
3. Enter the global configuration mode.
4. Use the `policy-map` command to define a new policy map and enter policy map configuration mode.
5. Use the `class` command to specify a traffic class to which the policy applies. This command enters policy-map class configuration mode, which allows you to define the treatment for the traffic class.
6. Exit the configuration mode.

**DETAILED STEPS**

**Step 1** Enter the enable mode.

**Example:**

Router> enable
Step 2  Enter the password.

Example:

Password: password

When the prompt changes to Router, you have entered enable mode.

Step 3  Enter the global configuration mode.

Example:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Step 4  Use the policy-map command to define a new policy map and enter policy map configuration mode.

Example:

Router(config)# policy-map policy1
Router(config-pmap)#

Step 5  Use the class command to specify a traffic class to which the policy applies. This command enters policy-map class configuration mode, which allows you to define the treatment for the traffic class.

Example:

Router(config-pmap)# class class1
Router(config-pmap-c)#

Use the bandwidth command to specify the bandwidth allocated for a traffic class attached to the policy map. You can define the amount of bandwidth in kbps, a percentage of bandwidth, or an absolute amount of bandwidth. This step is optional.

Note  GigabitEthernet interfaces only support bandwidth defined as a percentage or remaining percent.

Example:

Router(config-pmap-c)# bandwidth percent 50

Step 6  Exit the configuration mode.

Example:

Router(config-cmap)# end
Router#

Note  You can use the show policy-map command to verify your configuration.

---

Attaching the Policy Map to an Interface

After you create the policy map, you must attach it to an interface. Policy maps can be attached to either the input or output direction of the interface.

Complete these steps to attach the policy map to an interface:
SUMMARY STEPS

1. Enter enable mode.
2. Enter the password.
3. Enter global configuration mode.
4. Specify the interface to which you want to apply the policy map.
5. Use the service-policy command to attach the policy map to an interface. The input and output parameters specify the direction in which router applies the policy map.
6. Exit configuration mode.

DETAILED STEPS

Step 1  Enter enable mode.

**Example:**

```
Router> enable
```

Step 2  Enter the password.

**Example:**

```
Password: password
```
When the prompt changes to Router, you have entered enable mode.

Step 3  Enter global configuration mode.

**Example:**

```
Router# configure terminal
```
Enter configuration commands, one per line. End with CNTL/Z.

Step 4  Specify the interface to which you want to apply the policy map.

**Example:**

```
Router(config)# interface gigabitEthernet0/1
```

Step 5  Use the service-policy command to attach the policy map to an interface. The input and output parameters specify the direction in which router applies the policy map.

**Example:**

```
Router(config-if)# service-policy output policy1
```

Step 6  Exit configuration mode.

**Example:**

```
Router(config-cmap)# end
Router#
```

**Note**  You can use the show policy map interface command to verify your configuration.
For more information about configuring classification, see the Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2SR.

# Attaching a Policy Map to a Cross-Connect EVC

After you create a policy map, you must attach it to a cross-connect EVC. Policy maps can be attached only to ingress.

## SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance instance-id ethernet
5. encapsulation dot1q vlan-id
6. rewrite ingress tag pop 1 symmetric
7. xconnect peer-ip-address vc-id encapsulation mpls
8. service policy input policy name
9. exit

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface GigabitEthernet0/3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> service instance instance-id ethernet</td>
<td>Creates a service instance on an interface and defines the matching criteria.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# service instance 22 ethernet</td>
<td>• instance-id — Unique identifier of the instance.</td>
</tr>
<tr>
<td><strong>Step 5</strong> encapsulation dot1q vlan-id</td>
<td>Defines the matching criteria to be used to map 802.1Q frames ingress on an interface to the appropriate EFP. Enter</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation dot1q 22</td>
<td>a single VLAN ID for an exact match of the outermost tag. VLAN IDs are 1 to 4094.</td>
</tr>
</tbody>
</table>

**Note**: VLAN IDs 4093, 4094, and 4095 are reserved for internal use.

**Step 6** rewrite ingress tag pop 1 symmetric  
**Example:**  
Router(config-if-svr)# rewrite ingress tag pop 1 symmetric  

Specifies the encapsulation modification to occur on packets at ingress.

- **pop 1** — the outermost tag.
- **symmetric** — Configure the packet to undergo the reverse of the ingress action at egress. If a tag is removed at ingress, it is added at egress.

Although the **symmetric** keyword appears to be optional, you must enter it for rewrite to function correctly.

**Step 7** xconnect peer-ip-address vc-id encapsulation mpls  
**Example:**  
Router(config-if-svr)# xconnect 1.1.1.1 100 encapsulation mpls  

Binds an attachment circuit to a pseudowire, and configures an Any Transport over MPLS (AToM) static pseudowire.

- **peer-ip-address** — IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable.
- **vc-id** — The 32-bit identifier of the virtual circuit (VC) between the PE routers.
- **encapsulation** — Specifies the tunneling method to encapsulate the data in the pseudowire.
- **mpls** — Specifies MPLS as the tunneling method.

**Step 8** service policy input policy name  
**Example:**  
Router(config-if-srv)# service-policy input policy1  

Attaches the policy map to an interface.

- **input** — Specifies the direction in which the router applies the policy map.
- **policy name** — The name of the policy map.

**Step 9** exit  

Enters global configuration mode.

---

### Configuring Marking

Marking network traffic allows you to set or modify the attributes for packets in a defined traffic class. You can use marking with traffic classification to configure a variety of QoS features for your network.

The Cisco ASR 901 Router marking allows you to modify the following packet attributes:

- Differentiated services code point (DSCP) value
- Class of service (CoS) value
- MPLS Exp bit value
- Qos group value (internal)

For instructions on how to configure marking for IP Precedence, DSCP, or CoS value, see the following sections:
Creating a Class Map for Marking Network Traffic

Class maps allow you to define classes of network traffic in order to apply QoS features to each class. Complete the following steps to define a traffic class to mark network traffic:

**SUMMARY STEPS**

1. Enter the enable mode.
2. Enter the password.
3. Enter the global configuration mode.
4. Use the `class-map` command to define a new class map and enter class map configuration mode.
5. Use the `match` command to specify the match criteria for the class map. You can define a variety of match criteria including CoS, DSCP, MPLS Exp, or QoS group value.
6. Exit the configuration mode.

**DETAILED STEPS**

**Step 1**  Enter the enable mode.

**Example:**

```
Router> enable
```

**Step 2**  Enter the password.

**Example:**

```
Password: password
```

When the prompt changes to `Router`, you have entered enable mode.

**Step 3**  Enter the global configuration mode.

**Example:**

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```

**Step 4**  Use the `class-map` command to define a new class map and enter class map configuration mode.

**Example:**

```
Router(config)# class-map class1
```

**Step 5**  Use the `match` command to specify the match criteria for the class map. You can define a variety of match criteria including CoS, DSCP, MPLS Exp, or QoS group value.
Creating a Policy Map for Applying a QoS Feature to Network Traffic

Policy maps allow you to apply the appropriate QoS feature to the network traffic based on the traffic classification. The following sections describe how to create and configure a policy map to use a class map or table map.

The following restrictions apply when applying a QoS feature to network traffic:

- A policy map containing the `set qos-group` command can only be attached as an input traffic policy.
- A policy map containing the `set cos` command can only be attached as an input traffic policy.

Complete the following steps to create a policy map.

**SUMMARY STEPS**

1. Enter the enable mode.
2. Enter the password.
3. Enter the global configuration mode.
4. Use the `policy-map` command to define a policy map and enter policy map configuration mode.
5. Use the `class` command to specify the traffic class for which you want to create a policy and enter policy map class configuration mode. You can also use the `class-default` parameter to define a default class.
6. Use one of the `set` commands listed in Table 27: set Commands Summary, on page 422 to define a QoS treatment type.
7. Exit the configuration mode.

**DETAILED STEPS**

**Step 1**  
Enter the enable mode.  
**Example:**  

```
Router> enable
```

**Step 2**  
Enter the password.  
**Example:**  

```
Password: password
```

When the prompt changes to Router, you have entered enable mode.
Step 3  Enter the global configuration mode.

Example:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Step 4  Use the policy-map command to define a policy map and enter policy map configuration mode.

Example:

Router(config)# policy-map policy1
Router(config-pmap)#

Step 5  Use the class command to specify the traffic class for which you want to create a policy and enter policy map class configuration mode. You can also use the class-default parameter to define a default class.

Example:

Router(config-pmap)# class class1
Router(config-pmap-c)#

Step 6  Use one of the set commands listed in Table 27: set Commands Summary, on page 422 to define a QoS treatment type.

Table 27: set Commands Summary

<table>
<thead>
<tr>
<th>set Commands</th>
<th>Traffic Attributes</th>
<th>Network Layer</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>set cos</td>
<td>Layer 2 CoS value of the outgoing traffic</td>
<td>Layer 2</td>
<td>802.1q</td>
</tr>
<tr>
<td>set dscp</td>
<td>DSCP value in the ToS byte</td>
<td>Layer 3</td>
<td>IP</td>
</tr>
<tr>
<td>set qos-group</td>
<td>QoS group ID</td>
<td>Layer 3</td>
<td>IP, MPLS</td>
</tr>
</tbody>
</table>

Step 7  Exit the configuration mode.

Example:

Router(config-pmap)# end
Router#

Note  You can use the show policy-map or show policy-map policy-map class class-name commands to verify your configuration.

Attaching the Policy Map to an Interface

SUMMARY STEPS

1. Enter enable mode.
2. Enter the password.
3. Enter global configuration mode.
4. Specify the interface to which you want to apply the policy map.
5. Use the `service-policy` command to attach the policy map to an interface. The `input` and `output` parameters specify the direction in which router applies the policy map.

6. Exit configuration mode.

### DETAILED STEPS

| Step 1 | Enter enable mode.  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 | Enter the password.  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
| Password: password  
When the prompt changes to Router, you have entered enable mode.  |

| Step 3 | Enter global configuration mode.  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
| Router# configure terminal  
Enter configuration commands, one per line. End with CNTL/Z.  |

| Step 4 | Specify the interface to which you want to apply the policy map.  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface gigabitEthernet0/1</td>
<td></td>
</tr>
</tbody>
</table>

| Step 5 | Use the `service-policy` command to attach the policy map to an interface. The `input` and `output` parameters specify the direction in which router applies the policy map.  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service-policy input policy1</td>
<td></td>
</tr>
</tbody>
</table>

| Step 6 | Exit configuration mode.  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
| Router(config-cmap)# end  
Router#  |

**Note** You can use the `show policy map` interface command to verify your configuration.

---

### Configuring MPLS Exp Bit Marking using a Pseudowire

You can also configure MPLS Exp bit marking within an EoMPLS pseudowire interface using the `set mpls experimental imposition` command. MQC based policy configuration supersedes pseudowire-class mode of
configuring QoS marking. The MQC policy shall contain only class-default with set action to achieve the same. Follow these steps to configure MPLS Exp bit marking using a pseudowire interface.

Complete the following steps to apply a marking policy to a pseudowire:

**SUMMARY STEPS**

1. Enter the interface configuration mode.
2. Specify an EVC.
3. Specify an encapsulation type for the EVC.
4. Use the `xconnect` command with the service policy that uses the configuration defined in the pseudowire class.

**DETAILED STEPS**

**Step 1** Enter the interface configuration mode.

**Example:**

```
Router(config)# interface gigabitethernet 0/0
Router(config-if)#
```

**Step 2** Specify an EVC.

**Example:**

```
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)#
```

**Step 3** Specify an encapsulation type for the EVC.

**Example:**

```
Router(config-if-srv)# encapsulation dot1q 200
```

**Step 4** Use the `xconnect` command with the service policy that uses the configuration defined in the pseudowire class.

**Example:**

```
Router(config-if-srv)# xconnect 10.10.10.1 121
Router(config-if-srv)# service-policy in <mark-policy>
```

For more information about configuring marking, see the *Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2SR*.

**Note** The Cisco ASR 901 does not support all of the commands described in the IOS Release 12.2SR documentation.

---

**Configuration Example**

This is a sample configuration example for applying a marking policy to a pseudowire.

```
policy-map cos-6
class cos-6
 police rate percent 5
```
Configuring Congestion Management

The following sections describe how to configure congestion management on the Cisco ASR 901.

- Configuring Low Latency Queueing, on page 425
- Configuring Multiple Priority Queueing, on page 426
- Configuring Class-Based Weighted Fair Queuing (CBFQ), on page 428
- Weighted Random Early Detection (WRED), on page 429

Configuring Low Latency Queueing

Low latency queueing allows you to define a percentage of bandwidth to allocate to an interface or PVC as a percentage. You can define a percentage for priority or nonpriority traffic classes.

Complete the following steps to configure LLQ.

SUMMARY STEPS

1. Enter enable mode.
2. Enter the password.
3. Enter global configuration mode.
4. Use the policy-map command to define a policy map.
5. Use the class command to reference the class map that defines the traffic to which the policy map applies.
6. Use the priority command to specify the priority percentage allocated to the traffic class assigned to the policy map. You can use the burst parameter to configures the network to accommodate temporary bursts of traffic.
7. Use the bandwidth command to specify the bandwidth available to the traffic class within the policy map. You can specify the bandwidth in kbps or by a percentage of bandwidth.
8. Exit configuration mode.

DETAILED STEPS

Step 1
Enter enable mode.

Example:

Router> enable

Step 2
Enter the password.
Example:

Password: password
When the prompt changes to Router, you have entered enable mode.

Step 3 Enter global configuration mode.

Example:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Step 4 Use the policy-map command to define a policy map.

Example:

Router(config)# policy-map policy1

Step 5 Use the class command to reference the class map that defines the traffic to which the policy map applies.

Example:

Router(config-pmap)# class class1

Step 6 Use the priority command to specify the priority percentage allocated to the traffic class assigned to the policy map. You can use the burst parameter to configure the network to accommodate temporary bursts of traffic.

Example:

Router(config-pmap-c)# priority percent 10

Step 7 Use the bandwidth command to specify the bandwidth available to the traffic class within the policy map. You can specify the bandwidth in kbps or by a percentage of bandwidth.

Example:

Router(config-pmap-c)# bandwidth percent 30

Step 8 Exit configuration mode.

Example:

Router(config-pmap-c)# end

Note You can use the show policy-map, show policy-map policy-map class class-name, or show policy-map interface commands to verify your configuration.

Configuring Multiple Priority Queueing

Multiple priority queuing allows you to configure more than one class with priority percentage. The queue-number decides the ordering. The QoS group is serviced in the descending order starting with the highest queue number. This guarantees each of the queues its allocated bandwidth. This configuration has a higher latency on the lower priority queue like voice, due to servicing multiple traffic types on priority.
There is no provision to configure the priority level for a traffic class.

Complete the following steps to configure multiple priority queuing.

**SUMMARY STEPS**

1. configure terminal
2. policy-map
3. class class-name
4. priority percent percent
5. bandwidth percent percent
6. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 policy-map</td>
<td>Defines a new policy map and enters policy map configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# policy-map policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3 class class-name</td>
<td>Specifies a traffic class to which the policy applies. This command enters policy-map class configuration mode, which allows you to define the treatment for the traffic class.</td>
</tr>
<tr>
<td>Example: Router(config-pmap)# class class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 priority percent percent</td>
<td>Specifies the priority percentage allocated to the traffic class assigned to the policy map.</td>
</tr>
<tr>
<td>Example: Router(config-pmap-c)# priority percent 10</td>
<td></td>
</tr>
<tr>
<td>Step 5 bandwidth percent percent</td>
<td>(Optional) Specifies the bandwidth allocated for a traffic class attached to the policy map. You can define the percentage of bandwidth, or an absolute amount of bandwidth.</td>
</tr>
<tr>
<td>Example: Router(config-pmap-c)# bandwidth percent 50</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>

**Configuration Examples**

This section shows sample configuration examples for multiple priority queuing on router:

```
policy-map pmap_bckbone
class VOICE_GRP
```
You can use the show policy-map, show policy-map policy-map class class-name, or show policy-map interface commands to verify your configuration.

Configuring Class-Based Weighted Fair Queuing (CBFQ)

The Cisco ASR 901 supports Class-Based Weighted Fair Queuing (CBWFQ) for congestion management. Complete the following steps to configure CBWFQ.

SUMMARY STEPS

1. A class map contains match criteria against which a packet is checked to determine if it belongs to the class. You can use class maps to define criteria that are referenced in one or more policy maps. Use the class-map command to create a class map.
2. Complete the following steps to configure a policy map and attach it to an interface.

DETAILED STEPS

Step 1

A class map contains match criteria against which a packet is checked to determine if it belongs to the class. You can use class maps to define criteria that are referenced in one or more policy maps. Use the class-map command to create a class map.

a) class-map class-map name
   
   Example:
   
   Router(config)# class-map class1
   Router(config-cmap)#
   
   b) Use the match command to specify the match criteria for the class map. You can define a variety of match criteria including CoS, DSCP, MPLS Exp, or QoS group value.
   
   Example:
   
   Router(config-cmap)# match qos-group 7
   
   c) Use the exit command to exit class map configuration.
   
   Example:
   
   Router(config-cmap)# exit
   Router(config)#

Step 2

Complete the following steps to configure a policy map and attach it to an interface.
Note: This router does not support queue-limit commands. Only random-detect discard-class-based is supported on GigabitEthernet Interfaces.

a) Use the policy-map command to define a policy map.

Example:

Router(config)# policy-map policy1
Router(config-pmap)#

b) Use the class command to reference the class map that defines the traffic to which the policy map applies.

Example:

Router(config-pmap)# class class1
Router(config-pmap-c)#

c) Use the bandwidth command to specify the bandwidth allocated for the traffic class.

Example:

Router(config-pmap-c)# bandwidth percent 10

d) Use the exit command to exit the policy map class configuration.

Example:

Router(config-pmap-c)# exit
Router(config-pmap)#

e) Use the exit command to exit the policy map configuration.

Example:

Router(config-pmap)# exit
Router(config)#

f) Enter configuration for the interface to which you want to apply the policy map.

Example:

Router(config)# interface atm0/ima0

Weighted Random Early Detection (WRED)

Random Early Detection (RED) is a congestion avoidance mechanism that takes advantage of the congestion control mechanism of TCP. By randomly dropping packets prior to periods of high congestion, RED tells the packet source to decrease its transmission rate. WRED drops packets selectively based on IP discard-class. Discard-class is assigned to packets at the ingress, as they enter the network. WRED is useful on any output interface where you expect to have congestion. However, WRED is usually used in the core routers of a network, rather than at the edge. WRED uses discard-class to determine how it treats different types of traffic.
When a packet arrives, the following events occur:

1. The average queue size is calculated.
2. If the average is less than the minimum queue threshold, the arriving packet is queued.
3. If the average is between the minimum queue threshold for that type of traffic and the maximum threshold for the interface, the packet is either dropped or queued, depending on the packet drop probability for that type of traffic.
4. If the average queue size is greater than the maximum threshold, the packet is dropped.

### Note
Cisco ASR 901 supports configuration of random-detect thresholds only in number-of-packets.

Complete the following steps to configure WRED:

#### SUMMARY STEPS

1. `configure terminal`
2. `policy-map`
3. `class`
4. `bandwidth`
5. `[no] random-detect discard-class-based`
6. `[no] random-detect discard-class`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Enter the global configuration mode</td>
</tr>
<tr>
<td>Step 2: <code>policy-map</code></td>
<td>Define a new policy map and enter policy map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3: <code>class</code></td>
<td>Specify a traffic class to which the policy applies. This command enters policy-map class configuration mode, which allows you to define the treatment for the traffic class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap)# class class1</td>
<td></td>
</tr>
<tr>
<td>Step 4: <code>bandwidth</code></td>
<td>Specify the bandwidth allocated for a traffic class attached to the policy map. You can define the percentage of bandwidth, or an absolute amount of bandwidth. This step is optional.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# bandwidth percent 50</td>
<td></td>
</tr>
<tr>
<td>Step 5: <code>[no] random-detect discard-class-based</code></td>
<td>Base WRED on the discard class value of a packet. To disable this feature, use the <code>no</code> form of this command.</td>
</tr>
</tbody>
</table>
### Configuring Shaping

The Cisco ASR 901 supports class-based traffic shaping. Follow these steps to configure class-based traffic shaping.

Class-based traffic shaping is configured using a hierarchical policy map structure; you enable traffic shaping on a primary level (parent) policy map and other QoS features such as queuing and policing on a secondary level (child) policy map.

This section contains the following topics:

- Configuring Class-Based Traffic Shaping in a Primary-Level (Parent) Policy Map, on page 431
- Configuring the Secondary-Level (Child) Policy Map, on page 432

### Configuring Class-Based Traffic Shaping in a Primary-Level (Parent) Policy Map

Follow these steps to configure a parent policy map for traffic shaping.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[no] random-detect discard-class</td>
<td>Configure WRED parameters for a discard-class value for a class policy in a policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Discard class. Valid values are 0 to 2.</td>
</tr>
<tr>
<td></td>
<td>random-detect discard-class 2 100 200 10</td>
<td>Note: WRED counters are not supported for discard class 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>min-threshold</strong> — Minimum threshold in number of packets. Valid values are 1 to 4096. When the average queue length reaches the minimum threshold, WRED randomly drops some packets with the specified IP precedence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>max-threshold</strong> — Maximum threshold in number of packets. Valid values are 1 to 4096. When the average queue length exceeds the maximum threshold, WRED drops all packets with the specified IP precedence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Max-threshold values configured above 1024 cannot be reached.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Denominator for the fraction of packets dropped when the average queue depth is at the maximum threshold. For example, if the denominator is 512, 1 out of every 512 packets is dropped when the average queue is at the maximum threshold. Valid values are 1 to 65535. The default is 10; 1 out of every 10 packets is dropped at the maximum threshold.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To return the values to the default for the discard class, use the <strong>no</strong> form of this command.</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. Use the `policy-map` command to specify the policy map for which you want to configure shaping and enter policy-map configuration mode.
2. Use the `class` command to specify the traffic class to which the policy map applies.
3. Use the `shape` command to define algorithm and rate used for traffic shaping.
4. Use the `service-policy` command to attach the policy map to the class map.
5. Exit configuration mode.

DETAILED STEPS

Step 1
Use the `policy-map` command to specify the policy map for which you want to configure shaping and enter policy-map configuration mode.

Example:

```bash
Router(config)# policy-map output-policy
```

Step 2
Use the `class` command to specify the traffic class to which the policy map applies.

Example:

```bash
Router(config-pmap)# class class1
Router(config-pmap-c)#
```

Step 3
Use the `shape` command to define algorithm and rate used for traffic shaping.

Example:

```bash
Router(config-pmap-c)# shape average mean-rate burst-size
```

Step 4
Use the `service-policy` command to attach the policy map to the class map.

Example:

```bash
Router(config-pmap-c)# service-policy policy-map
```

Step 5
Exit configuration mode.

Example:

```bash
Router(config-pmap-c)# end
Router#
```

Note: You can use the `show policy-map` command to verify your configuration.

For more information about configuring shaping, see Regulating Packet Flow on a Per-Class Basis—Using Class-Based Traffic Shaping.

Note: This router does not support all of the commands described in the IOS Release 12.2SR documentation.

Configuring the Secondary-Level (Child) Policy Map

Follow these steps to create a child policy map for traffic shaping.
SUMMARY STEPS

1. Use the policy-map command to specify the policy map for which you want to configure shaping and enter policy-map configuration mode.
2. Use the class command to specify the traffic class to which the policy map applies.
3. Use the bandwidth command to specify the bandwidth allocated to the policy map. You can specify the bandwidth in kbps, a relative percentage of bandwidth, or an absolute amount of bandwidth.
4. Exit configuration mode.

DETAILED STEPS

Step 1  Use the policy-map command to specify the policy map for which you want to configure shaping and enter policy-map configuration mode.

Example:

Router(config)# policy-map output-policy

Step 2  Use the class command to specify the traffic class to which the policy map applies.

Example:

Router(config-pmap)# class class1

Step 3  Use the bandwidth command to specify the bandwidth allocated to the policy map. You can specify the bandwidth in kbps, a relative percentage of bandwidth, or an absolute amount of bandwidth.

Example:

Router(config-pmap-c)# bandwidth percent 50

Step 4  Exit configuration mode.

Example:

Router(config-pmap-c)# end

For more information about configuring shaping, see Regulating Packet Flow on a Per-Class Basis---Using Class-Based Traffic Shaping.

Note  The Cisco ASR 901 does not support all of the commands described in the IOS Release 12.2SR documentation.

Configuring Ethernet Trusted Mode

The Cisco ASR 901 supports trusted and non-trusted mode for Gigabit ethernet ports. Gigabit ethernet ports are set in non-trusted mode by default. Trust mode is configured through table-maps. Use the set qos-group cos command to use default mapping.

Creating IP Extended ACLs

Complete the following steps to create an IP extended ACL for IP traffic:
### SUMMARY STEPS

1. `configure terminal`
2. `access-list access-list-number permit access-list-number access-list-number access-list-number [precedence access-list-number] [tos access-list-number] [dscp access-list-number]`
3. `ip access-list extended access-list-number`
4. `end`
5. `show access-lists`
6. `copy running-config startup-config`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter the global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>access-list access-list-number permit access-list-number access-list-number [precedence access-list-number] [tos access-list-number] [dscp access-list-number]</code></td>
<td>Create an IP extended ACL. Repeat the step as many times as necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>access-list-number</code>, enter the access list number. The range is 100 to 199 and 2000 to 2699.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>access-list-number</code>, enter the name or number of an IP protocol. Use the question mark (?) to see a list of available protocols. To match any Internet protocol (including ICMP, TCP, and UDP), enter <code>ip</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>access-list-number</code> is the number of the network or host sending the packet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>access-list-number</code> applies wildcard bits to the source.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>access-list-number</code> is the network or host number receiving the packet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>access-list-number</code> applies wildcard bits to the destination.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can specify source, destination, and wildcards as:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The 32-bit quantity in dotted-decimal format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The keyword <code>any</code> for 0.0.0.0 255.255.255.255 (any host).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The keyword <code>host</code> for a single host 0.0.0.0.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip access-list extended access-list-number</code></td>
<td>Define an extended IPv4 access list using a name, and enter access-list configuration mode. The <code>name</code> can be a number from 100 to 199.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In access-list configuration mode, enter <code>permit protocol source source-wildcard destination destination-wildcard</code> .</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Return to the privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show access-lists</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
What to do next

To delete an access list, use the `no access-list access-list-number` global configuration command.

This example shows how to create an ACL that permits IP traffic from a source host at 10.1.1.1 to a destination host at 10.1.1.2:

```
Router(config)# access-list 100 permit ip host 10.1.1.1 host 10.1.1.2
```

Using Class Maps to Define a Traffic Class

You use the `class-map` global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. A class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can include criteria such as CoS value, DSCP value, IP precedence values, or QoS group values, or VLAN IDs. You define match criterion with one or more `match` statements entered in the class-map configuration mode.

Follow these guidelines when configuring class maps:

- A `match-all` class map cannot have more than one classification criterion (one match statement), but a `match-any` class map can contain multiple match statements.
- The match cos and `match vlan` commands are supported only on Layer 2 802.1Q trunk ports.
- You use a class map with the `match vlan` command in the parent policy in input hierarchical policy maps for per-port, per-VLAN QoS on trunk ports. A policy is considered a parent policy map when it has one or more of its classes associated with a child policy map. Each class within a parent policy map is called a parent class. You can configure only the `match vlan` command in parent classes. You cannot configure the `match vlan` command in classes within the child policy map.
- You cannot configure `match qos-group` for an input policy map.
- In an output policy map, no two class maps can have the same classification criteria; that is, the same match qualifiers and values.
- The maximum number of class maps supported on the Cisco ASR 901 router is 256.

Complete the following steps to create a class map and to define the match criterion to classify traffic:

**SUMMARY STEPS**

1. configure terminal
2. class-map [match-all | match-any] controller e1slot/subslot
3. match {cos controller e1slot/subslot | ip dscp controller e1slot/subslot | ip precedence controller e1slot/subslot | qos-group controller e1slot/subslot | vlan controller e1slot/subslot}
4. end
5. show class-map
6. copy running-config startup-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter the global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>class-map [match-all</td>
<td>match-any] controller e1slot/subslot</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Optional) Use the <strong>match-all</strong> keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) Use the <strong>match-any</strong> keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.</td>
<td></td>
</tr>
<tr>
<td>• For <strong>controller e1slot/subslot</strong>, specify the name of the class map.</td>
<td></td>
</tr>
</tbody>
</table>

If no matching statements are specified, the default is **match-all**.

**Note**  
A **match-all** class map cannot have more than one classification criterion (match statement).

### Step 3

**match** `{cos controller e1slot/subslot | ip dscpcontroller e1slot/subslot | ip precedencecontroller e1slot/subslot | qos-groupcontroller e1slot/subslot | vlancontroller e1slot/subslot}`

Define the match criterion to classify traffic. By default, no match criterion is defined.

Only one match type per class map is supported.

- For **cos controller e1slot/subslot**, enter a list of up to four CoS values in a single line to match against incoming packets. Separate each value with a space. You can enter multiple **controller e1slot/subslot** lines to match more than four CoS values. The range is 0 to 7.
- For **ip dscpcontroller e1slot/subslot**, enter a list of up to eight IPv4 DSCP values to match against incoming packets. Separate each value with a space. You can enter multiple **controller e1slot/subslot** lines to match more than eight DSCP values. The numerical range is 0 to 63. You can also configure DSCP values in other forms. See the Classification Based on IP DSCP, on page 389.
- For **ip precedencecontroller e1slot/subslot**, enter a list of up to four IPv4 precedence values to match against incoming packets. Separate each value with a space. You can enter multiple **controller e1slot/subslot** lines to match more than four precedence values. The range is 0 to 7.
- For **vlancontroller e1slot/subslot** specify a VLAN ID or a range of VLANs to be used in a parent policy map for per-port, per-VLAN QoS on a trunk port. The VLAN ID range is 1 to 4094.
- For **qos-groupcontroller e1slot/subslot** specify the QoS group number. The range is 0 to 7. Matching of QoS groups is supported only in output policy maps.

### Step 4

**end**

Return to the privileged EXEC mode.
### Creating a Named Access List

To create a standard or extended named access list, perform the following tasks:

**Note**

Extended ACLs with extended options like DSCP, fragments, option, precedence, time-range, ToS, and TTL are not supported. Only ACLs with source and destination IP addresses are supported.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. Do one of the following:
   - `ip access-list {standard | extended} name`
4. `permit {source [source-wildcard] | any} log`
5. exit
6. class-map class-map-name
7. match access-group name access-group-name

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**What to do next**

This example shows how to create a class map called `controller e1slot/subslot`, which matches incoming traffic with DSCP values of 10, 11, and 12.

```
Router(config)# class-map match-any class2
Router(config-cmap)# match ip dscp 10 11 12
Router(config-cmap)# exit
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>Do one of the following:</td>
</tr>
<tr>
<td>- `ip access-list {standard</td>
<td>extended} name`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ip access-list standard acl-std</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>`permit {source [source-wildcard]</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters access-list configuration mode, and specifies one or more allowed or denied conditions. This determines whether the packet is passed or dropped.</td>
</tr>
<tr>
<td><code>Router(config-std-nacl)# permit 10.10.10.10 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>Router(config-std-nacl)# exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>class-map class-map-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Defines name for the class map and enters class-map config mode.</td>
</tr>
<tr>
<td><code>Router(config)# class-map class-acl-std</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>match access-group name access-group-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Defines a named ACL for the match criteria.</td>
</tr>
<tr>
<td><code>Router(config-cmap)# match access-group name acl-std</code></td>
<td></td>
</tr>
</tbody>
</table>

- `source`—Number of the network or host from which the packet is sent in a 32-bit quantity in four-part, dotted-decimal format.
- `source-wildcard`—(Optional) Wildcard bits to be applied to the source in four-part, dotted-decimal format. Place ones in the bit positions you want to ignore.
- `any`—Specifies any source or destination host as an abbreviation for the source-addr or destination-addr value and the source-wildcard, or destination-wildcard value of 0.0.0.0 255.255.255.255.
- `log`—Causes an informational logging message about the packet that matches the entry to be sent to the console. (The level of messages logged to the console is controlled by the `logging console` command.)
What to do Next

After creating a standard access list using names, define a policy map and attach it to the interface. See Creating a Policy Map for Applying a QoS Feature to Network Traffic, on page 415 and Attaching the Policy Map to an Interface, on page 416 for more details.

TCAM with ACL

The scalability of ACLs will change depending on the features configured on the Cisco ASR 901 Router. With on-demand allocation, ACLs can be allocated up to a maximum of 1536 TCAM rules. For more information on troubleshooting scalability, see Troubleshooting Tips, on page 473.

Configuration Examples for ACL

The following is a sample output of the show ip access-lists tcam1 command.

```
Router# show ip access-lists tcam1
!consumes 1 TCAM entry per rule + a default rule.
!4 TCAM entries in this case]
Extended IP access list tcam1
 10 permit ip host 1.1.1.12 any
 20 deny ip host 2.2.2.11 any
 30 permit ip host 1.1.1.13 any
Router#
Router# show run int gig 0/1
Building configuration...
Current configuration : 221 bytes

interface GigabitEthernet0/1
 no ip address
 ip access-group tcam1 in
 negotiation auto
Router# show platform tcam detailed
Ingress : 6/8 slices, 1536/2048 entries used
Pre-Ingress: 3/4 slices, 768/1024 entries used
Egress : 0/4 slices, 0/512 entries used
Slice ID: 1
Stage: Pre-Ingress
Mode: Single
Entries used: 29/256
Slice allocated to: Layer-2 Classify and Assign Group
Slice ID: 4
Stage: Pre-Ingress
Mode: Double
Entries used: 11/128
Slice allocated to: L2CP
Slice ID: 2
Stage: Ingress
Mode: Double
Entries used: 27/128
Slice allocated to: L2 Post-Switch Processing Group
Slice ID: 5
Stage: Ingress
Mode: Single
Entries used: 4/256
Slice allocated to: Port ACLs
Slice ID: 7
Stage: Ingress
Mode: Double
Entries used: 10/128
Slice allocated to: OAM, Ethernet loopback, Y.1731 DMM
```
Verifying Named Access List

To verify the standard or extended access list configuration, use the `show access-lists` command as given below:

```plaintext
Router# show access-lists tes456
Extended IP access list tes456
 10 permit ip host 10.1.1.1 192.168.1.0 0.0.0.255
 20 permit ip host 10.1.1.1 192.168.2.0 0.0.0.255
 30 permit ip host 10.1.1.1 192.168.3.0 0.0.0.255
 40 permit ip host 10.1.1.1 192.168.4.0 0.0.0.255
 50 permit ip host 10.1.1.1 192.168.5.0 0.0.0.255
 60 permit ip host 10.1.1.1 192.168.6.0 0.0.0.255
 70 permit ip host 10.1.1.1 192.168.7.0 0.0.0.255
 80 permit ip host 10.1.1.1 192.168.8.0 0.0.0.255
 90 permit ip host 10.1.1.1 192.168.9.0 0.0.0.255
```

To verify the ACL-based QoS classification, use the `show policy-map` command as given below:

```plaintext
Router# show policy-map interface gigabitethernet 0/0
GigabitEthernet0/0
Service-policy input: test
Class-map: test (match-any)
 0 packets, 244224 bytes
 5 minute offered rate 6000 bps, drop rate 0000 bps
 Match: access-group name test
 QoS Set
dscp af32
 Packets marked 0
 No marking statistics available for this class
Class-map: class-default (match-any)
 0 packets, 239168 bytes
 5 minute offered rate 6000 bps, drop rate 0000 bps
 Match: any
```

Configuration Example for Named Access List

The following is the sample configuration of a named access list on the router.

```plaintext
Note
In the following configuration, both the ACL and ACL-based QoS are exclusive of each other and are not related to each other.
```
Router# show running-config
Building configuration...
Current configuration : 11906 bytes
!
! Last configuration change at 22:51:12 UTC Sun May 13 2001
!
version 15.2
service timestamps debug datetime msec
service timestamps log datetime msec
!
hostname Router
!
boot-start-marker
boot-end-marker
!
!
!card type command needed for slot/vwic-slot 0/0
enable password lab
!
no aaa new-model
ip cef
!
!
!
!
!
!
no ipv6 cef
!
!
mpls label protocol ldp
multilink bundle-name authenticated
!
table-map sach
map from 0 to 0
map from 1 to 1
map from 2 to 2
map from 3 to 3
map from 4 to 3
map from 5 to 5
map from 6 to 6
map from 7 to 7
default copy
!
l3-over-l2 flush buffers
!
!
!
!
!
!
!
!
!
!
!
spanning-tree mode pvst
spanning-tree extend system-id
username lab password 0 lab
!
!
class-map match-any test
    match access-group name test123
class-map match-all test456
    match access-group name test456
class-map match-any test1
    match access-group name test123
!
policy-map test
  class test456
  class class-default
  !
  !
  !
  !
  !
  interface Loopback0
    ip address 10.10.10.1 255.255.255.255
  !
  interface Port-channel1
    no negotiation auto
  !
  interface Port-channel8
    no negotiation auto
    service-policy input test
    service instance 2000 ethernet
    encapsulation dot1q 2000
    rewrite ingress tag pop 1 symmetric
    bridge-domain 2000
  !
  interface GigabitEthernet0/0
    no negotiation auto
    service-policy input test
  !
  interface GigabitEthernet0/1
    shutdown
    no negotiation auto
  !
  interface GigabitEthernet0/2
    negotiation auto
    channel-group 8 mode active
  !
  interface GigabitEthernet0/3
    negotiation auto
  !
  interface GigabitEthernet0/4
    negotiation auto
    service instance 200 ethernet
    encapsulation untagged
    bridge-domain 200
  !
  interface GigabitEthernet0/5
    negotiation auto
  !
  interface FastEthernet0/0
    ip address 10.104.99.152 255.255.255.0
    full-duplex
  !
  interface Vlan1
    no ip address
  !
  interface Vlan108
    ip address 11.11.11.1 255.255.255.0
    mpls ip
  !
  interface Vlan200
    ip address 10.1.1.2 255.255.255.0
    mpls ip
interface Vlan2000
ip address 200.1.1.1 255.255.255.0
!
router ospf 1
  router-id 10.10.10.1
  network 10.10.10.1 0.0.0.0 area 0
  network 200.1.1.0 0.0.0.255 area 0
!
router bgp 1
  bgp router-id 10.10.10.1
  bgp log-neighbor-changes
  neighbor 10.1.1.1 remote-as 2
  neighbor 10.10.10.50 remote-as 1
  neighbor 10.10.10.50 update-source Loopback0
!
ip forward-protocol nd
!
no ip http server
ip route 0.0.0.0 0.0.0.0 10.104.99.1
!
ip access-list extended check
  deny ip any any
!
ip access-list extended test456
  permit ip host 10.1.1.1 192.168.1.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.2.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.3.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.4.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.5.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.6.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.7.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.8.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.9.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.10.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.11.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.12.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.13.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.14.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.15.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.16.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.17.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.18.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.19.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.20.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.21.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.22.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.23.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.24.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.25.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.26.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.27.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.28.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.29.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.30.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.31.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.32.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.33.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.34.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.35.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.36.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.37.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.38.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.39.0 0.0.0.255
  permit ip host 10.1.1.1 192.168.40.0 0.0.0.255

permit ip host 10.1.1.1 192.168.41.0 0.0.0.255
permit ip host 10.1.1.1 192.168.42.0 0.0.0.255
permit ip host 10.1.1.1 192.168.43.0 0.0.0.255
permit ip host 10.1.1.1 192.168.44.0 0.0.0.255
permit ip host 10.1.1.1 192.168.45.0 0.0.0.255
permit ip host 10.1.1.1 192.168.46.0 0.0.0.255
permit ip host 10.1.1.1 192.168.47.0 0.0.0.255
permit ip host 10.1.1.1 192.168.48.0 0.0.0.255
permit ip host 10.1.1.1 192.168.49.0 0.0.0.255
permit ip host 10.1.1.1 192.168.50.0 0.0.0.255
permit ip host 10.1.1.1 192.168.51.0 0.0.0.255
permit ip host 10.1.1.1 192.168.52.0 0.0.0.255
permit ip host 10.1.1.1 192.168.53.0 0.0.0.255
permit ip host 10.1.1.1 192.168.54.0 0.0.0.255
permit ip host 10.1.1.1 192.168.55.0 0.0.0.255
permit ip host 10.1.1.1 192.168.56.0 0.0.0.255
permit ip host 10.1.1.1 192.168.57.0 0.0.0.255
permit ip host 10.1.1.1 192.168.58.0 0.0.0.255
permit ip host 10.1.1.1 192.168.59.0 0.0.0.255
permit ip host 10.1.1.1 192.168.60.0 0.0.0.255
permit ip host 10.1.1.1 192.168.61.0 0.0.0.255
permit ip host 10.1.1.1 192.168.62.0 0.0.0.255
permit ip host 10.1.1.1 192.168.63.0 0.0.0.255
permit ip host 10.1.1.1 192.168.64.0 0.0.0.255
permit ip host 10.1.1.1 192.168.65.0 0.0.0.255
permit ip host 10.1.1.1 192.168.66.0 0.0.0.255
permit ip host 10.1.1.1 192.168.67.0 0.0.0.255
permit ip host 10.1.1.1 192.168.68.0 0.0.0.255
permit ip host 10.1.1.1 192.168.69.0 0.0.0.255
permit ip host 10.1.1.1 192.168.70.0 0.0.0.255
permit ip host 10.1.1.1 192.168.71.0 0.0.0.255
permit ip host 10.1.1.1 192.168.72.0 0.0.0.255
permit ip host 10.1.1.1 192.168.73.0 0.0.0.255
permit ip host 10.1.1.1 192.168.74.0 0.0.0.255
permit ip host 10.1.1.1 192.168.75.0 0.0.0.255
ip access-list extended test123
remark 1
permit ip host 10.1.1.1 192.168.1.0 0.0.0.255
remark 2
permit ip host 10.1.1.1 192.168.2.0 0.0.0.255
remark 3
permit ip host 10.1.1.1 192.168.3.0 0.0.0.255
remark 4
permit ip host 10.1.1.1 192.168.4.0 0.0.0.255
remark 5
permit ip host 10.1.1.1 192.168.5.0 0.0.0.255
remark 6
permit ip host 10.1.1.1 192.168.6.0 0.0.0.255
remark 7
permit ip host 10.1.1.1 192.168.7.0 0.0.0.255
remark 8
permit ip host 10.1.1.1 192.168.8.0 0.0.0.255
remark 9
permit ip host 10.1.1.1 192.168.9.0 0.0.0.255
remark 10
permit ip host 10.1.1.1 192.168.10.0 0.0.0.255
remark 11
permit ip host 10.1.1.1 192.168.11.0 0.0.0.255
remark 12
permit ip host 10.1.1.1 192.168.12.0 0.0.0.255
remark 13
permit ip host 10.1.1.1 192.168.13.0 0.0.0.255
remark 14
permit ip host 10.1.1.1 192.168.14.0 0.0.0.255
remark 15
permit ip host 10.1.1.1 192.168.15.0 0.0.0.255
remark 16
permit ip host 10.1.1.1 192.168.16.0 0.0.0.255
remark 17
permit ip host 10.1.1.1 192.168.17.0 0.0.0.255
remark 18
permit ip host 10.1.1.1 192.168.18.0 0.0.0.255
remark 19
permit ip host 10.1.1.1 192.168.19.0 0.0.0.255
remark 20
permit ip host 10.1.1.1 192.168.20.0 0.0.0.255
remark 21
permit ip host 10.1.1.1 192.168.21.0 0.0.0.255
remark 22
permit ip host 10.1.1.1 192.168.22.0 0.0.0.255
remark 23
permit ip host 10.1.1.1 192.168.23.0 0.0.0.255
remark 24
permit ip host 10.1.1.1 192.168.24.0 0.0.0.255
remark 25
permit ip host 10.1.1.1 192.168.25.0 0.0.0.255
remark 26
permit ip host 10.1.1.1 192.168.26.0 0.0.0.255
remark 27
permit ip host 10.1.1.1 192.168.27.0 0.0.0.255
remark 28
permit ip host 10.1.1.1 192.168.28.0 0.0.0.255
remark 29
permit ip host 10.1.1.1 192.168.29.0 0.0.0.255
remark 30
permit ip host 10.1.1.1 192.168.30.0 0.0.0.255
remark 31
permit ip host 10.1.1.1 192.168.31.0 0.0.0.255
remark 32
permit ip host 10.1.1.1 192.168.32.0 0.0.0.255
remark 33
permit ip host 10.1.1.1 192.168.33.0 0.0.0.255
remark 34
permit ip host 10.1.1.1 192.168.34.0 0.0.0.255
remark 35
permit ip host 10.1.1.1 192.168.35.0 0.0.0.255
remark 36
permit ip host 10.1.1.1 192.168.36.0 0.0.0.255
remark 37
permit ip host 10.1.1.1 192.168.37.0 0.0.0.255
remark 38
permit ip host 10.1.1.1 192.168.38.0 0.0.0.255
remark 39
permit ip host 10.1.1.1 192.168.39.0 0.0.0.255
remark 40
permit ip host 10.1.1.1 192.168.40.0 0.0.0.255
remark 41
permit ip host 10.1.1.1 192.168.41.0 0.0.0.255
remark 42
permit ip host 10.1.1.1 192.168.42.0 0.0.0.255
remark 43
permit ip host 10.1.1.1 192.168.43.0 0.0.0.255
remark 44
permit ip host 10.1.1.1 192.168.44.0 0.0.0.255
remark 45
permit ip host 10.1.1.1 192.168.45.0 0.0.0.255
remark 46
permit ip host 10.1.1.1 192.168.46.0 0.0.0.255
remark 47
permit ip host 10.1.1.1 192.168.47.0 0.0.0.255
remark 48
permit ip host 10.1.1.1 192.168.48.0 0.0.0.255
remark 49
permit ip host 10.1.1.1 192.168.49.0 0.0.0.255
remark 50
permit ip host 10.1.1.1 192.168.50.0 0.0.0.255
!
access-list 2600 permit ip any any
!
mpls ldp router-id Loopback0
!
control-plane
!
environment monitor
!
line con 0
line aux 0
transport preferred none
transport output lat pad telnet rlogin udptn ssh
line vty 0 4
exec-timeout 3 3
password lab
login
!
exception crashinfo buffersize 128
!
end

Access Control Lists for IPv6 Traffic Filtering

The standard ACL functionality in IPv6 is similar to standard ACLs in IPv4. Access lists determine what traffic is blocked and what traffic is forwarded at router interfaces and allow filtering based on source and destination addresses and inbound interface. Each access list has an implicit deny statement at the end. IPv6 ACLs are defined and their deny and permit conditions are set using the ipv6 access-list command with the deny and permit keywords in global configuration mode.

Creating and Configuring an IPv6 ACL for Traffic Filtering

Perform the following task to create and configure IPv6 ACL to filter traffic.

Restrictions

- Port based ACLs are not supported.
- Outbound ACLs are not supported due to hardware limitations.
- Only named ACLs are supported for IPv6 ACLs.
- Only standard IPv6 headers are supported in Layer 3 options. Extended IPv6 headers are not supported.
- Only layer 3 options such as dscp and flow-label are supported for IPv6 ACLs.
- Only layer 4 options such as ack, eq, established, fin, gt, lt, psh, ranges, rst, and syn are supported for IPv6 ACLs.
- The scale of IPv6 ACL varies based on the QoS, Layer 4 ACL, multicast, and storm features configured on the Cisco ASR 901 Router.
SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 access-list access-list-name
4. Do one of the following:
   • permit protocol [source [source-ipv6-prefix/prefix-length] | any | host source-ipv6-address | auth] [operator [port-number]] [destination [destination-ipv6-prefix | prefix-length] | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [hbb] [log] [log-input] [routing] [routing-type routing-number] [sequence value] [time-range name]
   • or deny protocol [source [source-ipv6-prefix/prefix-length] | any | host source-ipv6-address | auth] [operator [port-number]] [destination [destination-ipv6-prefix | prefix-length] | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [hbb] [log] [log-input] [routing] [routing-type routing-number] [sequence value] [time-range name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 access-list access-list-name</td>
<td>Defines an IPv6 ACL, and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip access-list source</td>
<td>• name—Name of the IPv6 access list. Names cannot contain a space or quotation mark, and must begin with an alphabetic character to prevent ambiguity with numbered access lists.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Do one of the following:</td>
<td>Specifies permit or deny conditions for an IPv6 ACL.</td>
</tr>
<tr>
<td>• permit protocol [source [source-ipv6-prefix/prefix-length]</td>
<td>any</td>
</tr>
<tr>
<td>• source—Number of the network or host from which the packet is sent in a 32-bit quantity in four-part, dotted-decimal format.</td>
<td></td>
</tr>
<tr>
<td>• source-wildcard—(Optional) Wildcard bits to be applied to the source in four-part, dotted-decimal format. Place ones in the bit positions you want to ignore.</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

| • or deny protocol {source [source-ipv6-prefix/prefix-length] | any | host source-ipv6-address | auth} [operator [port-number]] [destination [destination-ipv6-prefix | prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [hbh] [log] [log-input] [routing] [routing-type routing-number] [sequence value] [time-range name] | Purpose |
|---|---|
| • any—Specifies any source or destination host as an abbreviation for the source-addr or destination-addr value and the source-wildcard, or destination-wildcard value of 0.0.0.0/255.255.255.255. | |
| • log—Causes an informational logging message about the packet that matches the entry to be sent to the console. (The level of messages logged to the console is controlled by the logging console command.) | |

### Example:

```plaintext
Router(config-ipv6-acl)# permit ipv6 host 2001:DB8:0:4::32 any eq telnet
```

### Configuration Example

This section shows sample configuration for creating and configuring the IPv6 ACL on the router.

```plaintext
ipv6 access-list source
deny tcp host 2001:1::2 eq 30 any dscp af11
permit ipv6 any any
```

### Applying the IPv6 ACL to an Interface

Perform the following task to apply the IPv6 ACL to an interface.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 traffic-filter access-list-name in

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 3 interface type number</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vlan 100</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4 ipv6 traffic-filter access-list-name in</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 traffic-filter source in</td>
<td>Applies the specified IPv6 access list to the SVI interface specified in the previous step. Only inbound filtering is supported with port ACLs. You can apply one port ACL to an interface.</td>
</tr>
</tbody>
</table>

### Configuration Example

This section shows sample configuration for applying the IPv6 ACL on an interface.

```
int vlan 100
ipv6 traffic-filter source in
end
```

### QoS Treatment for Performance-Monitoring Protocols

This section contains the following topics:

#### Cisco IP-SLAs

For information about Cisco IP service level agreements (IP-SLAs), see Understanding Cisco IOS IP SLAs, page 3-2.

#### QoS Treatment for IP-SLA Probes

The QoS treatment for IP-SLA and TWAMP probes must exactly reflect the effects that occur to the normal data traffic crossing the device.

The generating device should not change the probe markings. It should queue these probes based on the configured queueing policies for normal traffic.

### Marking

By default, the class of service (CoS) marking of CFM traffic (including IP SLAs using CFM probes) is not changed. This feature cannot change this behavior.

By default, IP traffic marking (including IP SLA and TWAMP probes) is not changed. This feature can change this behavior.
**Queuing**

The CFM traffic (including IP SLAs using CFM probes) is queued according to its CoS value and the output policy map configured on the egress port, similar to normal traffic. This feature cannot change this behavior.

IP traffic (including IP SLA and TWAMP probes) is queued according to the markings specified in the `cpu traffic qos` global configuration command and the output policy map on the egress port. If this command is not configured, all IP traffic is statically mapped to a queue on the egress port.

**QoS Marking for CPU-Generated Traffic**

You can use QoS marking to set or modify the attributes of traffic from the CPU. The QoS marking action can cause the CoS bits in the packet to be rewritten or leave the CoS, DSCP, or IP precedence bits in the packet unchanged. QoS uses packet markings to identify certain traffic types and how to treat them on the local router and the network.

You can also use marking to assign traffic to a QoS group within the router. This QoS group is an internal label that does not modify the packet, but it can be used to identify the traffic type when configuring egress queuing on the network port.

You can specify and mark traffic CPU-generated traffic by using these global configuration commands:

```
cpu traffic qos cos {cos_value | cos [table-map table-map-name] | dscp [table-map table-map-name] | precedence [table-map table-map-name]}
```

You can mark a QoS group by configuring an explicit value or by using the `table-map` keyword. Table maps list specific traffic attributes and map (or convert) them to another attribute. A table map establishes a to-from relationship for the attribute and defines the change to be made:

- Marking CoS by using the CoS, or the IP-DSCP, or the IP precedence of IP CPU-packets
- Marking CoS by using the CoS of non-IP CPU-packets.
- Marking IP DSCP by using the CoS, or the IP-DSCP, or the IP precedence of the CPU-packet
- Marking IP precedence by using the CoS, or the IP-DSCP, or the IP precedence of the CPU-packet

You can configure either IP-DSCP or IP precedence marking.

You can also simultaneously configure marking actions to modify CoS, IP-DSCP or IP precedence, and QoS group.

The `cpu traffic qos` command specifies the traffic to which it applies: all CPU traffic, only CPU IP traffic, or only CPU non-IP traffic. All other traffic retains its QoS markings. This feature does not affect CFM traffic (including Layer 2 IP SLA probes using CFM).

**QoS Queuing for CPU-Generated Traffic**

You can use the QoS markings established for the CPU-generated traffic by the `cpu traffic qos` global configuration command as packet identifiers in the class-map of an output policy-map to map CPU traffic to class-queues in the output policy-map on the egress port. You can then use output policy-maps on the egress port to configure queuing and scheduling for traffic leaving the router from that port.

If you want to map all CPU-generated traffic to a single class in the output policy-maps without changing the CoS, IP DSCP, or IP-precedence packet markings, you can use QoS groups for marking CPU-generated traffic.

If you want to map all CPU-generated traffic to classes in the output policy maps based on the CoS without changing the CoS packet markings, you can use the table map:
• Configure CoS marking by using CoS as the map from value without a table map.
• Configure CoS marking using CoS as the map from value with a table map, using only the default and copy keywords.

For details about table maps, see the Table Maps, on page 393.

Using the cpu traffic qos global configuration command with table mapping, you can configure multiple marking and queueing policies to work together or independently. You can queue native VLAN traffic based on the CoS markings configured using the cpu traffic qos global configuration command.

The cpu traffic qos command specifies the traffic to which it applies: all CPU traffic, only CPU-IP traffic, or only CPU non-IP traffic. All other traffic is statically mapped to a CPU-default queue on the egress port. All CFM traffic (including Layer 2 IP SLA probes using CFM) is mapped to classes in the output policy map, and queued based on their CoS value.

Extending QoS for MLPPP

Configuring Class-map for Matching MPLS EXP Bits

Complete the following steps to configure class-map for matching MPLS experimental bits.

SUMMARY STEPS

1. enable
2. configure terminal
3. class-map match-any class-map-name
4. match mpls experimental topmost number
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Creates a class map to be used for matching packets to a specified class and to enter QoS class-map configuration mode:</td>
</tr>
<tr>
<td>class-map match-any class-map-name</td>
<td>• class-map-name—Name of the class for the class map. The class name is used for both the class map and to configure a policy for the class in the policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>class-map match-any mpls.exp</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

**Match the experimental (EXP) value in the topmost label header.**

**Example:**

```
Router(config-cmap)# match mpls experimental topmost 5
```

**Step 4**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>match mpls experimental topmost number</code></td>
<td>Matches the experimental (EXP) value in the topmost label header.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-cmap)# match mpls experimental topmost 5</code></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>In this configuration packets with experimental bits of value 5 are matched. Repeat this step to configure more values. If any one of the values is matched, action pertaining to the class-map is performed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td>Exits class-map configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-cmap)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Class-map for Matching IP DSCP Value

This classification is required for all the packets flowing without an MPLS header like normal IP packets flowing through an MLPPP Interface.

Complete the following steps to configure class-map for matching IP DSCP Values.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `class-map match-any class-map-name`
4. `match ip dscp [dscp-value...dscp-value]`
5. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Class-map for Matching MPLS EXP Bits or IP DSCP Value

In this configuration, all MPLS packets flowing through the MLPPP Interface EXP value are matched and all the IP Packets flowing through the MLPPP Interface IP DSCP value are matched.

Complete the following steps to configure class-map for matching MPLS EXP bits or IP DSCP Values.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. class-map match-any class-map-name
4. match mpls experimental topmost number
5. match ip dscp dscp-value
6. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Purpose**

- Creates a class map to be used for matching packets to a specified class and to enter QoS class-map configuration mode:
  - *class-map-name*—Name of the class for the class map. The class name is used for both the class map and to configure a policy for the class in the policy map.

- Identify one or more differentiated service code point (DSCP), Assured Forwarding (AF), and Class Selector (CS) values as a match criterion.
  - *dscp-value*—The DSCP value used to identify a DSCP value.

**Note**

In this configuration packets with IP DSCP of value af11 are matched. Repeat this step to configure more values. If any one of the values is matched, action pertaining to the class-map is performed.

- Exits class-map configuration mode.

**Example:**

Example:

Router(config-cmap)# exit
Configuring a Policy-map

Complete the following steps to configure a policy-map.

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-name
5. priority percent percentage
6. class class-name
7. bandwidth percent percentage
8. class class-name
9. set mpls experimental topmost mpls-exp-value
10. class class-name
11. set dscp dscp-value
12. class \textit{class-name} \\
13. bandwidth percent \textit{percentage} \\
14. set mpls experimental topmost \textit{mpls-exp-value} \\
15. set dscp \textit{dscp-value} \\
16. queue-limit \textit{queue-limit-size} packets \\
17. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> policy-map \textit{policy-map-name}</td>
<td>Configures a policy map that can be attached to one or more interfaces and enters QoS policy-map configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# policy-map mplsomlpppqs</td>
<td>• \textit{policy-map-name}—Name of the policy map.</td>
</tr>
<tr>
<td><strong>Step 4</strong> class \textit{class-name}</td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap)# class mplsexp</td>
<td>• \textit{class-name}—Name of the class to be configured or whose policy is to be modified. The class name is used for both the class map and to configure a policy for the class in the policy map.</td>
</tr>
<tr>
<td><strong>Step 5</strong> priority percent \textit{percentage}</td>
<td>Configures priority to a class of traffic belonging to a policy map.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# priority percent 10</td>
<td>• \textit{percentage}—Total available bandwidth to be set aside for the priority class.</td>
</tr>
<tr>
<td><strong>Step 6</strong> class \textit{class-name}</td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# class matchdscp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> bandwidth percent \textit{percentage}</td>
<td>Configures the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# bandwidth percent 20</td>
<td>• \textit{percentage}—Specifies the percentage of guaranteed bandwidth based on an absolute percent of available bandwidth.</td>
</tr>
</tbody>
</table>
### Configuring a Policy-map

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><code>class class-name</code></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# class mplsexpvalues</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Sets the MPLS EXP field value in the topmost label on an interface.</td>
</tr>
<tr>
<td><code>set mpls experimental topmost mpls-exp-value</code></td>
<td>Sets the MPLS EXP field value in the topmost label on an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# set mpls experimental topmost 4</td>
<td>• <code>mpls-exp-value</code>—Specifies the value used to set MPLS experimental bits defined by the policy map.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><code>class class-name</code></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# class matchdscpvalues</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Marks a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte.</td>
</tr>
<tr>
<td><code>set dscp dscp-value</code></td>
<td>Marks a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# set dscp af41</td>
<td>• <code>dscp-value</code>—The DSCP value used to identify a DSCP.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><code>class class-name</code></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# class mplsexp_or_dscp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>Configures the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><code>bandwidth percent percentage</code></td>
<td>Configures the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# bandwidth percent 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td>Sets the MPLS EXP field value in the topmost label on an interface.</td>
</tr>
<tr>
<td><code>set mpls experimental topmost mpls-exp-value</code></td>
<td>Sets the MPLS EXP field value in the topmost label on an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# set mpls experimental topmost 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong></td>
<td>Marks a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte.</td>
</tr>
<tr>
<td><code>set dscp dscp-value</code></td>
<td>Marks a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# set dscp af11</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td>Configures the queue limit (size) for a class in packets.</td>
</tr>
<tr>
<td><code>queue-limit queue-limit-size packets</code></td>
<td>Configures the queue limit (size) for a class in packets.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• <code>queue-limit-size</code>—The maximum size of the queue.</td>
</tr>
</tbody>
</table>
### Purpose

To configure queue-limit, you should configure either priority percent or bandwidth percent.

#### Summary Steps

1. **enable**
2. **configure terminal**
3. **interface multilink** *group-number*
4. **ip address** *address* [*subnet mask*]
5. **load-interval** *interval*
6. **mpls ip**
7. **keepalive** *period*
8. **ppp multilink**
9. **ppp multilink group** *group-number*
10. **ppp multilink endpoint string** *char-string*
11. **service-policy output** *policy-map-name*
12. **exit**

### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface multilink <em>group-number</em></td>
<td>Creates a multilink bundle and enters the interface configuration mode:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <em>group-number</em>—Number of the multilink bundle.</td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

```
Router(config)# interface multilink5
```

**Step 4**

**ip address**  
**Example:**

```
Router(config-if)# ip address 84.1.2.3 255.255.255.0
```

**Assigns an IP address to the multilink interface.**

- **address**—IP address.
- **subnet mask**—Network mask of IP address.

**Step 5**

**load-interval**  
**Example:**

```
Router(config-if)# load-interval 30
```

**Configures the length of time for which data is used to compute load statistics.**

- **interval**—Length of time for which data is used to compute load statistics.

**Step 6**

**mpls ip**  
**Example:**

```
Router(config-if)# mpls ip
```

**Enables MPLS forwarding of IPv4 packets along normally routed paths for a particular interfaces.**

**Step 7**

**keepalive**  
**Example:**

```
Router(config-if)# keepalive 1
```

**Enables keepalive packets and specifies the number of times that the router tries to send keepalive packets without a response before bringing down the interface.**

- **period**—Time interval, in seconds, between messages sent by the router to ensure that a network interface is alive.

**Step 8**

**ppp multilink**  
**Example:**

```
Router(config-if)# ppp multilink
```

**Enables Multilink PPP (MLP) on an interface.**

**Step 9**

**ppp multilink group**  
**Example:**

```
Router(config-if)# ppp multilink group 3
```

**Restricts a physical link to join only one designated multilink group interface.**

- **group-number**—Multilink group number (a nonzero number).

**Step 10**

**ppp multilink endpoint string**  
**Example:**

```
Router(config-if)# ppp multilink endpoint string ML3
```

**Configures the default endpoint discriminator the system uses when negotiating the use of MLPPP with the peer.**

- **char-string**—Uses the supplied character string.

**Step 11**

**service-policy output**  
**Example:**

```
Router(config-if)# service-policy output mplsomlpppqos
```

**Attaches a policy map to an interface that will be used as the service policy for the interface.**

- **policy-map-name**—The name of a service policy map (created using the `policy-map` command) to be attached.
Re-marking IP DSCP Values of CPU Generated Traffic

Complete the following steps to re-mark the IP DSCP values of the CPU generated traffic.

SUMMARY STEPS

1. enable
2. configure terminal
3. cpu traffic ppp set ip dscp cs5
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 cpu traffic ppp set ip dscp cs5</td>
<td>Re-marks the IP DSCP value to give the desired QoS treatment to CPU generated traffic.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# cpu traffic ppp set ip dscp cs5</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. cpu traffic ppp set mpls experimental topmost number
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable  | Enables the privileged EXEC mode.  
| Example: Router> enable |  
|                   | • Enter your password if prompted. |
| **Step 2** configure terminal | Enters the global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** cpu traffic ppp set mpls experimental topmost number | Re-marks Multiprotocol Label Switching (MPLS) experimental (EXP) topmost value to give the desired QoS treatment to CPU generated traffic.  
| Example: Router(config)# cpu traffic ppp set mpls experimental topmost 4 |  
|                   | • number—MPLS EXP field in the topmost label header.  
|                   | Valid values are 0 to 7. |
| **Step 4** exit | Exits the configuration mode. |
| Example: Router(config)# exit | |

Configuring a Policy-map to Match on CS5 and EXP4

Complete the following steps to configure a policy-map to match on CS5 and EXP4.

SUMMARY STEPS

1. enable
2. configure terminal
3. class-map match-any dscp cs-value
4. match ip dscp cs-value
5. class-map match-any class-map-name
6. match mpls experimental topmost number
7. policy-map policy-map-name
8. class class-name
9. bandwidth percent percentage
10. set ip dscp cs-value
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>class-map match-any dscp cs-value</code></td>
<td>Configures a class map to be used for matching packets to a specified class and enters QoS class-map configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# class-map match-any dscp cs5</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>match ip dscp cs-value</code></td>
<td>Identifies one or more differentiated service code point (DSCP) CS value as a match criterion.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-cmap)# match ip dscp cs5</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>class-map match-any class-map-name</code></td>
<td>Creates a class map to be used for matching packets to a specified class.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-cmap)# class-map match-any exp4</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>match mpls experimental topmost number</code></td>
<td>Matches the experimental (EXP) value in the topmost label header.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-cmap)# match mpls experimental topmost 4</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>policy-map policy-map-name</code></td>
<td>Configures a policy map that can be attached to one or more interfaces and enters QoS policy-map configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-cmap)# policy-map dscp_exp</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td><code>class class-name</code></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-pmap)# class dscpcs5</td>
<td>• <strong>class-name</strong>—Name of the class to be configured or whose policy is to be modified. The class name is used for both the class map and to configure a policy for the class in the policy map.</td>
</tr>
<tr>
<td><strong>Step 9</strong> bandwidth percent <strong>percentage</strong></td>
<td>Configures the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# bandwidth percent 20</td>
<td>• <strong>percentage</strong>—Specifies the percentage of guaranteed bandwidth based on an absolute percent of available bandwidth to be set aside for the priority class or on a relative percent of available bandwidth.</td>
</tr>
<tr>
<td><strong>Step 10</strong> set ip dscp <strong>cs-value</strong></td>
<td>Marks a packet by setting the differentiated services code point (DSCP) value in the type of service (ToS) byte.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# set ip dscp cs6</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> class <strong>class-name</strong></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# class exp4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> bandwidth percent <strong>percentage</strong></td>
<td>Configures the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# bandwidth percent 20</td>
<td>• <strong>percentage</strong>—Specifies the percentage of guaranteed bandwidth based on an absolute percent of available bandwidth to be set aside for the priority class or on a relative percent of available bandwidth.</td>
</tr>
<tr>
<td><strong>Step 13</strong> set mpls experimental topmost <strong>mpls-exp-value</strong></td>
<td>Sets the MPLS EXP field value in the topmost label on an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# set mpls experimental topmost 6</td>
<td>• <strong>mpls-exp-value</strong>—Specifies the value used to set MPLS experimental bits defined by the policy map.</td>
</tr>
<tr>
<td><strong>Step 14</strong> class <strong>class-name</strong></td>
<td>Specifies the name of the class whose policy you want to create.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# class class-default</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> bandwidth percent <strong>percentage</strong></td>
<td>Configures the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pmap-c)# bandwidth percent 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> end</td>
<td>Exits QoS policy-map class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### Attaching the Policy-map to Match on CS5 and EXP4 to MLPPP Interface

See [Attaching the Policy-map to MLPPP Interface](#) on page 464 for configuration steps.

**Note**

DSCP CS6 and EXP 6 are default values. If you configure the CPU generated traffic to these values using CLI, you cannot see them in the output of the `show running-configuration` command.

### Configuration Examples for Extending QoS for MPLS over MLPPP

#### Configuring Class-map for Matching MPLS EXP Bits

The following example shows a configuration of class-map for matching MPLS EXP bits.

```plaintext
cisco#conf t
Building configuration...
Current configuration : 101 bytes
!
class-map match-any mpls_exp5
 match mpls experimental topmost 5
```

#### Configuring Class-map for Matching IP DSCP Value

The following example shows a configuration of class-map for matching IP DSCP value.

```plaintext
cisco#conf t
Building configuration...
Current configuration : 101 bytes
!
class-map match-any dscpaf11
 match ip dscp af11
```

#### Configuring Class-map for Matching MPLS EXP Bits or IP DSCP Value

The following example shows a configuration of class-map for matching MPLS EXP Bits or IP DSCP value.

```plaintext
cisco#conf t
Building configuration...
Current configuration : 101 bytes
!
class-map match-any mpls_exp_or_cos
 match mpls experimental topmost 4
 match ip dscp af41
```
Configuring a Policy-map

The following example shows a configuration of a policy-map.

Building configuration...
Current configuration : 101 bytes
!
policy-map mplsmlpppqos
 class mplsexp
  priority percent 10
 class mplsexpvalues
  set mpls experimental topmost 4
 class matchdscp
  bandwidth percent 20
 class matchdscpvalues
  set dscp af41
 class mplsexp_or_dscp
  bandwidth percent 20
  queue-limit 80 packets
  set mpls experimental topmost 1
  set dscp af11
!

Configuring a Policy-map to Match on CS5 and EXP 4

The following example shows a configuration of a policy-map.

Building configuration...
Current configuration : 101 bytes
!
class-map match-any dscpcs5
 match ip dscp cs5
 class-map match-any exp4
 match mpls experimental topmost 4
 policy-map dscp_exp
 class dscpcs5
  bandwidth percent 20
  set ip dscp cs6
 class exp4
  bandwidth percent 20
  set mpls experimental topmost 6
 class class-default
  bandwidth percent 20
!

Attaching the Policy-map to MLPPP Interface

The following example shows a configuration of attaching the policy-map to MLPPP interface.

Building configuration...
Current configuration : 101 bytes
!
!
interface Multilink3
 ip address 84.1.2.3 255.255.255.0
 load-interval 30
 mpls ip
 keepalive 1
 ppp multilink
 ppp multilink group 3
Verifying MPLS over MLPPP Configuration

To verify the configuration of MPLS over MLPPP, use the following commands as shown in the examples below:

To verify the details of a class-map created for matching MPLS EXP bits, use the following command as shown in the example below:

```
Router# show run class-map mpls_exp1
Building configuration...
Current configuration : 76 bytes
!
class-map match-any mpls_exp1
 match mpls experimental_topmost 1
!
end
```

To verify the details of a class-map created for matching IP DSCP values, use the following command as shown in the example below:

```
Router# show run class-map dscpaf21
Building configuration...
Current configuration : 60 bytes
!
class-map match-any dscpaf21
 match ip dscp af21
!
end
```

To verify the details of a policy-map, use the following command as shown in the example below:

```
Router# show run policy-map policy_match_dscpaf11
Building configuration...
Current configuration : 100 bytes
!
policy-map policy_match_dscpaf11
 class dscpaf11
 set ip dscp af22
 priority percent 10
!
end
```

To verify the details of a policy-map attached to MLPPP interface, use the following command as shown in the example below:

```
Router# show policy-map interface multilink3
Multilink3
 Service-policy output: match_dscp_exp
 Class-map: dscpcs4 (match-any) 0 packets, 0 bytes
 30 second offered rate 0000 bps, drop rate 0000 bps
 Match: ip dscp cs4 (32)
 Queueing
 queue limit 38 packets
```
Configuration Guidelines

- This feature must be configured globally for a router; it cannot be configured per-port or per-protocol.
- Enter each `cpu traffic qos marking` action on a separate line.
- The `cpu traffic qos cos` global configuration command configures CoS marking for CPU-generated traffic by using either a specific CoS value or a table map, but not both. A new configuration overwrites the existing configuration.
- The `cpu traffic qos dscp` global configuration command configures IP-DSCP marking for CPU-generated IP traffic by using either a specific DSCP value or a table map, but not both. A new configuration overwrites the existing configuration.
- The `cpu traffic qos precedence` global configuration command configures IP-precedence marking for CPU-generated IP traffic by using either a specific precedence value or a table map, but not both. A new configuration overwrites the existing configuration.
- The `cpu traffic qos dscp` and `cpu traffic qos precedence` global configuration commands are mutually exclusive. A new configuration overwrites the existing configuration.
- When the `cpu traffic qos dscp` global configuration command is configured with table maps, you can configure only one `map from` value at a time—DSCP, precedence, or CoS. A new configuration overwrites the existing configuration. Packets marked by this command can be classified and queued by an output policy map based on the marked DSCP or precedence value.
- When the `cpu traffic qos precedence` global configuration command is configured with table maps, you can configure only one `map from` value at a time—DSCP, precedence, or CoS. A new configuration overwrites the existing configuration. Packets marked by this command can be classified and queued by an output policy map based on the marked precedence or DSCP value.
- You cannot configure a `map from` value of both DSCP and precedence. A new configuration overwrites the existing configuration.
- When the `cpu traffic qos cos` global configuration command is configured with table maps, you can configure two `map from` values at a time—CoS and either DSCP or precedence.
- If the `cpu traffic qos cos` global configuration command is configured with only a `map from` value of DSCP or precedence:
  - The CoS value of IP packets is mapped by using the DSCP (or precedence) value in the packet and the configured table map. Packets can be classified and queued by an output policy map based on the marked CoS value.
  - The CoS value of non-IP packets remains unchanged.
- If the `cpu traffic qos cos` global configuration command is configured with a `map from` value of CoS:
  - The CoS value of IP packets is mapped by using the CoS value in the packet and the configured table map. Packets can be classified and queued by an output policy map based on the marked CoS value.
• The CoS value of non-IP packets is mapped by using the CoS value in the packet and the configured table map. Packets can be classified and queued by an output policy map based on the marked CoS value.

• If the `cpu traffic qos cos` global configuration command is configured with a `map from` value of DSCP or precedence and CoS:
  • The CoS value of IP packets is mapped by using the DSCP or precedence value in the packet and the configured table map. Packets can be classified and queued by an output policy map based on the marked CoS value.
  • The CoS value of non-IP packets is mapped by using the CoS value in the packet and the configured table map. Packets can be classified and queued by an output policy map based on the marked CoS value.

ICMP-based ACL

ICMP-based ACL Overview

The ICMP based ACL feature provides classification based on ICMP message type and message code to filter the traffic. This feature forms part of ACL based QoS and is implemented for both IPv4 and IPv6. The matching is done through match on access-group for ACL-based QoS, router ACLs for IPv4 and IPv6 ACLs, and port ACLs for IPv4 ACLs. This feature is supported on Gigabit Ethernet interfaces and its bundle derivatives.

ICMP-based ACL Restrictions

• ICMP-based ACL (IPv4 and IPv6) are not supported on the egress interface.

• ICMP-based ACL (IPv4 and IPv6) are not supported on the EVC interface.

• ICMP-based ACL (IPv4) is supported only on Gigabit Ethernet port, VLAN interface, and on policy-map. Gigabit Ethernet port and VLAN interface supports both named and numbered IPv4 ICMP ACLs.

• ICMP-based ACL (IPv6) is supported only on VLAN interface and not on Gigabit Ethernet port and policy-map.

• ICMP-based ACL (IPv4 and IPv6) uses router ACL slice when configured on the VLAN interface.

• ICMP-based ACL (IPv4) uses port ACL slice when configured on Gigabit Ethernet port.

Configuring IPv4 Port ACL for ICMP-based ACL

SUMMARY STEPS

1. enable
2. configure terminal
3. access-list access-list-number permit icmp any any echo
4. interface type number
5. ip access-group ip-access-list in
# Configuring IPv4 Router ACL for ICMP-based ACL

## Summary Steps

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip access-group ip-access-list in`
5. `exit`
6. `interface type number`
7. `service instance id ethernet`
8. `encapsulation dot1q vlan-id`
9. `bridge-domain bridge-domain-no`

## Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>access-list access-list-number permit icmp any any echo</code></td>
<td>Specifies the access list.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# access-list 125 permit icmp any any echo</code></td>
<td>You can also use the `ip access-list extended { access-list-name</td>
</tr>
<tr>
<td>4</td>
<td><code>interface type number</code></td>
<td>Specifies an interface type and number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface gigabitethernet 0/0</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>ip access-group ip-access-list in</code></td>
<td>Applies an IP access list to an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip access-group 125 in</code></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring ACL-based QoS for ICMP-based ACL

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `class-map [match-all | match-any] class-map-name`
4. `match access-group name acl-name`
5. `exit`
6. `interface type number`
7. `service-policy input policy-map-name`

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal&lt;br&gt;Example: <code>Router# configure terminal</code>&lt;br&gt;Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface type number&lt;br&gt;Example: <code>Router(config)# interface vlan 715</code>&lt;br&gt;Creates a dynamic Switch Virtual Interface (SVI).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip access-group ip-access-list in&lt;br&gt;Example: <code>Router(config-if)# ip access-group 125 in</code>&lt;br&gt;Sspecifies the IP access group.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>exit&lt;br&gt;Example: <code>Router(config-if)# exit</code>&lt;br&gt;Exits the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>interface type number&lt;br&gt;Example: <code>Router(config)# interface gigabitethernet 0/0</code>&lt;br&gt;Specifies an interface type and number.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>service instance id ethernet&lt;br&gt;Example: <code>Router(config-if)# service instance 715 ethernet</code>&lt;br&gt;Configures an Ethernet service instance on an interface.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>encapsulation dot1q vlan-id&lt;br&gt;Example: <code>Router(config-if-srv)# encapsulation dot1q 715</code>&lt;br&gt;Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>bridge-domain bridge-domain-no&lt;br&gt;Example: <code>Router(config-if-srv)# bridge-domain 715</code>&lt;br&gt;Binds a service instance or a MAC tunnel to a bridge domain instance.</td>
</tr>
</tbody>
</table>
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
Example: Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.  
Example: Router# configure terminal |
| **Step 3** class-map [match-all | match-any] `class-name` | Creates a class map, and enters class-map configuration mode.  
Example: Router(config)# class-map match-all icmpacl |
| **Step 4** match access-group name `acl-name` | Defines the match criterion to classify traffic.  
Example: Router(config-cmap)# match access-group name icmpacl |
| **Step 5** exit | Exits class-map configuration mode and enters global configuration mode.  
Example: Router(config-cmap)# exit |
| **Step 6** interface `type number` | Specifies an interface type and number.  
Example: Router(config)# interface gigabitethernet 0/0 |
| **Step 7** service-policy input `policy-map-name` | Attaches a policy map to an input interface.  
Example: Router(config-if)# service-policy input icmpacl |

## Configuring IPv6 Router ACL for ICMP-based ACL

### SUMMARY STEPS

1. enable  
2. configure terminal  
3. ipv6 access-list `access-list-name`  
4. permit icmp any any echo-reply  
5. exit  
6. interface `type number`  
7. ipv6 traffic-filter `access-list-name` in
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>ipv6 access-list <em>access-list-name</em></td>
<td>Defines an IPv6 access list and to place the device in IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 access-list icmpv6acl</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>permit icmp any any echo-reply</td>
<td>Sets conditions to allow a packet to pass a named IP access list.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ipv6-acl)# permit icmp any any echo-reply</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ipv6-acl)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>interface <em>type number</em></td>
<td>Specifies an interface type and number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vlan 715</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>ipv6 traffic-filter <em>access-list-name</em> in</td>
<td>Filters incoming or outgoing IPv6 traffic on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 traffic-filter icmpv6acl in</td>
<td></td>
</tr>
</tbody>
</table>

### Verifying ICMP based ACL Configuration

Use the following `show` commands to verify the ICMP based ACL configuration.

To display the access-lists configured for ICMP-based ACL, use the `show access-lists` command as shown in the below example:

```
Router# show access-lists
Extended IP access list 125
 10 permit icmp any any echo
IPv6 access list icmpv6acl
 permit icmp any any echo-reply sequence 10
```
To display the ICMP-based ACL configuration on a gigabitethernet interface, use the `show running interface` command as shown in the below example:

```plaintext
Router# show running interface gigabitethernet 0/0
Building configuration...
Current configuration : 173 bytes
!
interface GigabitEthernet0/0
 no ip address
 ip access-group 125 in
 negotiation auto
 service instance 715 ethernet
 encapsulation dot1q 715
 bridge-domain 715
!
end
```

To display the ICMP-based ACL configuration on a VLAN interface, use the `show running interface` command as shown in the below example:

```plaintext
Router# show running interface VLAN715
Building configuration...
Current configuration: 108 bytes
!
interface Vlan715
 no ip address
 ip access-group 125 in
 shutdown
 ipv6 traffic-filter icmpv6acl in
end
```

### Policy for DHCP Control Packet

QoS policy applied in Ingress EVC for DHCP classifies the DHCP control traffic and applies to different internal Priority.

```plaintext
ip access-list extended dhcp
 permit udp any eq 68 any eq 67
 class-map match-any SAR-Ran-network-control
 match dscp af11 af41 af43
 match access-group name dhcp
 policy-map DHCP_mark
class SAR-Ran-network-control
set qos-group X
```

**Note**

The X can be any value from 0-7 based on the requirement.
Troubleshooting Tips

The on-demand TCAM resource allocation may fail due to the unavailability of resources for the requested operation. In such scenarios, use the following troubleshooting tips:

1. Run the show platform tcam detailed command to understand the current resource allocation.
2. Use this information to find the features that are allocated resources.
3. Unconfigure the features that are no longer required to free the resources.

Figure 31: Troubleshooting Feature Scalability, on page 473 shows the troubleshooting feature scalability procedure.

The following TCAM commands are used for troubleshooting feature scalability.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform tcam</td>
<td>Shows the current occupancy of TCAM with summary of the number of slices allocated or free.</td>
</tr>
<tr>
<td>summary</td>
<td></td>
</tr>
</tbody>
</table>

Figure 31: Troubleshooting Feature Scalability
## Command	Purpose
show platform tcam detailed | Shows the current occupancy and includes per-slice information such as number of entries used or free, feature(s) using the slice, slice mode, and slice stage and ID. This command helps to understand current resource allocation and decide which feature(s) to unconfigure to free resources.

debug platform tcam error | Enables TCAM error printing. By default, the error printing is turned on and the info printing is turned off.

debug platform tcam info | Enables TCAM info printing.

Use the no form of the debug commands to disable TCAM error printing and TCAM info printing.

⚠️ **Danger**

We suggest you do not use the debug commands without TAC supervision.

The following is a sample of the output from the show platform tcam summary command.

```
Router# show platform tcam summary
Ingress : 2/8 slices, 512/2048 entries used
Pre-Ingress: 3/4 slices, 768/1024 entries used
Egress : 0/4 slices, 0/512 entries used
```

The following is a sample of the output from the show platform tcam detailed command.

```
Router# show platform tcam detailed
Ingress : 2/8 slices, 512/2048 entries used
Pre-Ingress: 3/4 slices, 768/1024 entries used
Egress : 0/4 slices, 0/512 entries used
Slice ID: 1
Stage: Pre-Ingress
Mode: Single
Entries used: 28/256
Slice allocated to: Layer-2 Classify and Assign Group
Slice ID: 4
Stage: Pre-Ingress
Mode: Double
Entries used: 10/128
Slice allocated to: L2CP
Slice ID: 2
Stage: Ingress
Mode: Double
Entries used: 29/128
Slice allocated to: L2 Post-Switch Processing Group
Slice ID: 3
Stage: Ingress
Mode: Single
Entries used: 13/256
Slice allocated to: CESoPSN-UDP, CEF, Layer-3 Control Protocols
```
**Example: TCAM troubleshooting related error**

In this example all the eight slices available at the Ingress stage have already been allocated. Also, the slice allocated to QoS has no free entries. If we need to configure a few more QoS rules, the following options are available:

1. To unconfigure QoS rules that are no longer required and thereby freeing up the entries
2. To free up a slice by unconfiguring features that are no longer required.

```
Router# show platform tcam detailed
Ingress : 8/8 slices, 2048/2048 entries used [no free slices available]
Pre-Ingress: 3/4 slices, 768/1024 entries used
Egress : 0/4 slices, 0/512 entries used
Slice ID: 1
Stage: Pre-Ingress
Mode: Single
Entries used: 29/256
Slice allocated to: Layer-2 Classify and Assign Group
Slice ID: 4
Stage: Pre-Ingress
Mode: Double
Entries used: 11/128
Slice allocated to: L2CP
Slice ID: 2
Stage: Ingress
Mode: Double
Entries used: 27/128
Slice allocated to: L2 Post-Switch Processing Group
Slice ID: 6
Stage: Ingress
Mode: Single
Entries used: 250/256
Slice allocated to: Port ACLs
Slice ID: 5
Stage: Ingress
Mode: Single
Entries used: 500/512
Slice allocated to: Router ACLs
Slice ID: 7
Stage: Ingress
Mode: Double
Entries used: 10/128
Slice allocated to: OAM, Ethernet loopback, Y.1731 DMM
Slice ID: 3
Stage: Ingress
Mode: Double
Entries used: 15/128
Slice allocated to: CESoPSN-UDP, CEF, Layer-3 Control Protocols
Slice ID: 8
Stage: Ingress
Mode: Double
Entries used: 256/256 [no free entries available]
Slice allocated to: Quality Of Service
```

Configuring a service-policy fails because of insufficient resources.

```
Router(config-if-srv)# service-policy input policy2
Router(config-if-srv)#
*Mar 6 18:41:14.771: %Error: Not enough hardware resources to program this policy-map
Router(config-if-srv)#
```
In the above scenario, you can free up the TCAM rules by unconfiguring the service-policy that is no longer required or free up a slice by unconfiguring a feature that is no longer required.

Router(config-if-srv)# no service-policy input policy1
Router(config-if-srv)# end
Router# show platform tcam detailed

Ingress : 8/8 slices, 2048/2048 entries used
Pre-Ingress: 3/4 slices, 768/1024 entries used
Egress : 0/4 slices, 0/512 entries used
Slice ID: 1
Stage: Pre-Ingress
Mode: Single
Entries used: 29/256
Slice allocated to: Layer-2 Classify and Assign Group
Slice ID: 4
Stage: Pre-Ingress
Mode: Double
Entries used: 11/128
Slice allocated to: L2CP
Slice ID: 2
Stage: Ingress
Mode: Double
Entries used: 27/128
Slice allocated to: L2 Post-Switch Processing Group
Slice ID: 6
Stage: Ingress
Mode: Single
Entries used: 250/256
Slice allocated to: Port ACLs
Slice ID: 5
Stage: Ingress
Mode: Single
Entries used: 500/512
Slice allocated to: Router ACLs
Slice ID: 7
Stage: Ingress
Mode: Double
Entries used: 10/128
Slice allocated to: OAM, Ethernet loopback, Y.1731 DMM
Slice ID: 3
Stage: Ingress
Mode: Double
Entries used: 15/128
Slice allocated to: CESoPSN-UDP, CEF, Layer-3 Control Protocols
Slice ID: 8
Stage: Ingress
Mode: Double
Entries used: 195/256 [after unconfiguring policy1]
Slice allocated to: Quality Of Service

We now have enough free entries to configure policy2.

Router(config-if-srv)# service-policy input policy2
Router(config-if-srv)#
Router# show platform tcam detailed

Ingress : 8/8 slices, 2048/2048 entries used
Pre-Ingress: 3/4 slices, 768/1024 entries used
Egress : 0/4 slices, 0/512 entries used
Slice ID: 1
Stage: Pre-Ingress
Mode: Single
Entries used: 29/256
Additional References

The following sections provide references related to configuring QoS.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS MQC Commands</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: &lt;br&gt;<a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Configuring QoS

Table 28: Feature Information for Configuring QoS, on page 478 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 28: Feature Information for Configuring QoS, on page 478 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL-based QoS</td>
<td>15.2(2)SNH1</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>
| Shaper Burst Commit Size Down to 1 ms | 15.2(2)SNI | The following section provides information about this feature:  
  • [Traffic Shaping](#) on page 399 |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress Policing</td>
<td>15.3(3)S</td>
<td>Support for Egress Policing was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>Multi-action Ingress Policer on EVC</td>
<td>15.3(3)S</td>
<td>Support for Multi-action Ingress Policer on EVC was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>QoS for MPLS over MLPPP</td>
<td>15.4(1)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>ACL-based QoS</td>
<td>15.4(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>IPv6 Services: Extended Access Control Lists</td>
<td>15.4(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>MLPPP QoS Egress Shaping</td>
<td>15.5(1)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>ARP-based Classification</td>
<td>15.5(1)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td>ICMP-based ACL</td>
<td>15.5(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
</tbody>
</table>
Onboard Failure Logging

Onboard Failure Logging (OBFL) captures and stores hardware failure and environmental information into nonvolatile memory. OBFL permits improved accuracy in hardware troubleshooting and root cause isolation analysis. Stored OBFL data can be retrieved in the event of a router crash or failure.

- Understanding OBFL, on page 481
- Configuring OBFL, on page 481
- Verifying OBFL Configuration, on page 482

Understanding OBFL

OBFL provides a mechanism to store hardware, software, and environment related critical data in a non-volatile memory, such as flash EPROM or EEPROM on routers. The logging information is used by the TAC team to troubleshoot and fix hardware issues.

OBFL collects data like temperatures and voltages. It stores the data in a dedicated area of the flash memory of the router. This data is retrieved by TAC personnel to troubleshoot routers. It can also be analyzed by back-end software to detect failure patterns, and possibly to recommend specific quality improvements.

Retrieval of the OBFL message

If the hardware is defective and the system cannot boot up, any data in flash is inaccessible. In that case, use any one of the following methods to recover OBFL data:

- Read the flash through JTAG: this requires provisions in hardware design and back-end hardware and software support tools.
- Repair the system; boot it; use the OBFL CLI commands.

Recording OBFL Messages

Data is recorded in any of the following formats:

- Continuous information that displays a snapshot of measurements.
- Samples in a continuous file, and summary information about the data being collected.

Configuring OBFL

Use the following commands to configure and verify OBFL:
Verifying OBFL Configuration

**Example 1**

Router# show logging onboard status
Devices registered with infra
Slot no.: 0 Subslot no.: 0, Device obfl0:
Application name cli log:
Path : obfl0:
CLI enable status : enabled
Platform enable status: enabled
Application name temperature:
Path : obfl0:
CLI enable status : enabled
Platform enable status: enabled

**Example 2**

Router # show logging onboard temperature ?
continuous Onboard logging continuous information
detail Onboard logging detailed information
date ending time and date
raw Onboard logging raw information
start starting time and date
status Onboard logging status information
summary Onboard logging summary information
Router# show logging onboard temperature continuous

--------------------------------------------------------------------------------
TEMPERATURE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
Sensor | ID |
--------------------------------------------
System 1
--------------------------------------------------------------------------------
Time Stamp |Sensor Temperature 0C
Onboard Failure Logging

Verifying OBFL Configuration

MM/DD/YYYY HH:MM:SS | 1
------------------------------------------------------------------------
03/01/2000 00:06:02 37
03/01/2000 00:16:02 37
03/01/2000 00:05:57 36
Router# show logging onboard voltage continuous

-----------------------------------------
VOLTAGE CONTINUOUS INFORMATION
-----------------------------------------

<table>
<thead>
<tr>
<th>Sensor</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.00VA</td>
<td>0</td>
</tr>
<tr>
<td>1.50V</td>
<td>1</td>
</tr>
<tr>
<td>1.25V</td>
<td>2</td>
</tr>
<tr>
<td>12.00VB</td>
<td>3</td>
</tr>
<tr>
<td>2.50V</td>
<td>4</td>
</tr>
<tr>
<td>1.05V</td>
<td>5</td>
</tr>
<tr>
<td>1.20V</td>
<td>6</td>
</tr>
<tr>
<td>1.80V</td>
<td>7</td>
</tr>
</tbody>
</table>
------------------------------------------------------------------------

Time Stamp | Sensor Voltage
MM/DD/YYYY HH:MM:SS | 12.00VA 1.50V 1.25V 12.00VB 2.50V 1.05V 1.20V 1.80V
------------------------------------------------------------------------
02/24/2000 21:46:00 11.764 1.176 1.176 7.843 2.352 0.784 1.176 1.568
Router# sh logging onboard clilog summary

CLI LOGGING SUMMARY INFORMATION

COUNT COMMAND

1 clear logging onboard
2 hw-module module 0 logging onboard message level 1
1 hw-module module 0 logging onboard message level 2
5 hw-module module 0 logging onboard message level 3
2 no hw-module module 0 logging onboard message level
5 show logging onboard
2 show logging onboard clilog
2 show logging onboard clilog continuous
1 show logging onboard clilog summary
2 show logging onboard continuous
1 show logging onboard environment
9 show logging onboard message
9 show logging onboard message continuous
1 show logging onboard message summary
3 show logging onboard status
1 show logging onboard temperature
1 show logging onboard voltage
03/01/2000 00:06:02 37
1 test logging onboard error 3
1 test logging onboard error1 3
1 test logging onboard try 1
 CHAPTER 25

Hot Standby Router Protocol and Virtual Router Redundancy Protocol

This feature module describes the HOT Standby Router Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP) features. The Hot Standby Router Protocol (HSRP) is a First Hop Redundancy Protocol (FHRP) designed to allow transparent fail-over of the first-hop IP router. HSRP provides high network availability by providing first-hop routing redundancy for IP hosts on Ethernet, Fiber Distributed Data Interface (FDDI), Bridge-Group Virtual Interface (BVI), LAN Emulation (LANE), or Token Ring networks configured with a default gateway IP address. HSRP is used in a group of routers for selecting an active router and a standby router.

The Virtual Router Redundancy Protocol (VRRP) eliminates the single point of failure inherent in the static default routed environment. VRRP is not an election protocol in itself; rather it specifies an election protocol that dynamically assigns responsibility for a virtual router.

• Finding Feature Information, on page 485
• Information About HSRP and VRRP, on page 486
• How to Configure HSRP, on page 487
• Configuration Examples for HSRP, on page 489
• Information About HSRP Version 2, on page 490
• How to Configure HSRP Version 2, on page 490
• Configuration Examples for HSRP Version 2, on page 492
• How to Configure VRRP, on page 493
• Configuration Examples for VRRP, on page 494
• Where to Go Next, on page 496
• Additional References, on page 496
• Feature Information for HSRP and VRRP, on page 497

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About HSRP and VRRP

Overview of HSRP and VRRP

Hot Standby Router Protocol (HSRP) provides network redundancy for IP networks, which helps maximum network uptime. By sharing an IP address and a MAC (Layer 2) address, two or more routers can act as a single virtual router. The members of the virtual router group continuously exchange status messages. This way, one router can assume the routing responsibility of another, should the first one go out of commission for either planned or unplanned reasons. Hosts continue to forward IP packets to a consistent IP and MAC address, and the changeover of devices that route is transparent.

A Virtual Router Redundancy Protocol (VRRP) router is configured to run the VRRP protocol in conjunction with one or more other routers attached to a LAN. In a VRRP configuration, one router is elected as the virtual router master, with the other routers acting as backups in case the virtual router master fails. VRRP enables you to configure multiple routers as the default gateway router, which reduces the possibility of a single point of failure in a network. You can configure VRRP in such a way that traffic to and from LAN clients can be shared by multiple routers, to balance the load on available routers.

Text Authentication

HSRP and VRRP ignore unauthenticated protocol messages. The default authentication type is text authentication. HSRP or VRRP authentication protects against false hello packets causing a denial-of-service attack. For example, suppose Router A has a priority of 120 and is the active router. If a host sends spoof hello packets with a priority of 130, then Router A stops being the active router. If Router A has authentication configured such that the spoof hello packets are ignored, Router A remains the active router. Packets are rejected in any of the following cases:

- The authentication schemes differ on the router and in the incoming packets.
- Text authentication strings differ on the router and in the incoming packets.

Preemption

Preemption occurs when a virtual router backup with a higher priority takes over another virtual router backup that was elected to become a virtual router master, and a preemptive scheme is enabled automatically. When a newly reloaded router becomes active, despite an active router already existent on the network, it may appear that preemption is not functioning but that is not true. The newly active router did not receive any hello packets from the current active router, and the preemption configuration was not factored into the new routers decision making.

In general, we recommend that all HSRP routers have the following configuration:

```
standby delay minimum 30 reload 60
```

The standby delay minimum reloa interface configuration command delays HSRP groups from initializing for the specified time after the interface comes up.
This command is different from the standby preempt delay interface configuration command, which enables HSRP preemption delay. You can disable the preemptive scheme by using the `no vrrp preempt` command. If preemption is disabled, the virtual router backup that is elected to become virtual router master remains the master until the original virtual router master recovers and becomes the master again.

### How to Configure HSRP

This section contains the following procedures:

#### Configuring HSRP

Complete the following steps to configure HSRP:

**Restrictions**

- HSRP is supported only on IPv4 devices and not on IPv6 devices.
- HSRP is supported only on layer 3 SVI interfaces. The configuration is not supported on Gigabit Ethernet or Fast Ethernet interfaces.
- Bidirectional Forwarding Detection (BFD) protocol is not supported.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip address ip-address mask [secondary]`
5. `standby [group-number] timers [msec] hello-time [msec] hold-time`
6. `standby [group-number] preempt [delay {minimum delay | reload delay | sync delay}]`
7. `standby [group-number] priority priority`
8. `standby [group-number] authentication text string`
9. `standby [group-number] track object-number [decrement priority-decrement]`
10. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# interface vlan 10</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip-address mask [secondary]</td>
<td>Specifies an primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# ip address 10.0.0.1 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> standby [group-number] timers msec hellotime msec holdtime</td>
<td>Configures the interval at which packets are sent to refresh the MAC cache when HSRP is running.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# standby 1 timers 14</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> standby [group-number] preempt [delay {minimum delay</td>
<td>reload delay</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# standby 1 preempt delay minimum 380</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> standby [group-number] priority priority</td>
<td>Configures HSRP priority.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# standby 1 priority 110</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> standby [group-number] authentication text string</td>
<td>Configures an authentication string for HSRP text authentication.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# standby 1 authentication text authentication 1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> standby [group-number] track object-number [decrement priority-decrement]</td>
<td>Configures HSRP to track an object and change the Hot Standby priority on the basis of the state of the object.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# standby 1 track 100 decrement 20</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for HSRP

This section provides the following configuration examples:

Example: Configuring HSRP Active Router

```
Router# configure terminal
Router(config)# interface GigabitEthernet0/1
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 10
Router(config-if-srv)# end
```

```
Router# configure terminal
Router(config)# interface Vlan10
Router(config-if)# ip address 10.10.10.21 255.255.255.0
Router(config-if)# standby 1 ip 10.10.10.20
Router(config-if)# standby 1 timers 1 4
Router(config-if)# standby 1 priority 105
Router(config-if)# standby 1 preempt delay minimum 10
Router(config-if)# standby 1 authentication cisco6
Router(config-if)# standby 1 track 1 decrement 20
Router(config-if)# end
```

Example: Configuring HSRP Backup Router

```
Router# configure terminal
Router(config)# interface GigabitEthernet0/1
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 10
Router(config-if-srv)# end
Router# configure terminal
Router(config)# interface Vlan10
Router(config-if)# ip address 10.10.10.22 255.255.255.0
Router(config-if)# standby 1 ip 10.10.10.20
Router(config-if)# standby 1 timers 1 4
Router(config-if)# standby 1 priority 90
Router(config-if)# standby 1 preempt delay minimum 10
Router(config-if)# standby 1 authentication cisco6
Router(config-if)# standby 1 track 1 decrement 20
Router(config-if)# end
```

Example: HSRP Text Authentication

The following example shows how to configure HSRP text authentication using a text string:

```
Router# configure terminal
Router(config)# interface Ethernet0/1
Router(config-if)# standby 1 priority 110
Router(config-if)# standby 1 preempt
```
Information About HSRP Version 2

HSRP Version 2 Design

HSRP version 2 is designed to address the following restrictions in HSRP version 1:

- In HSRP version 1, millisecond timer values are not advertised or learned. HSRP version 2 advertises and learns millisecond timer values. This change ensures stability of the HSRP groups in all cases.

- In HSRP version 1, group numbers are restricted to the range that is from 0 to 255. HSRP version 2 expands the group number range from 0 to 4095.

- HSRP version 2 provides improved management and troubleshooting. With HSRP version 1, you cannot use HSRP active hello messages to identify the physical device that sends the message because the source MAC address is the HSRP virtual MAC address. The HSRP version 2 packet format includes a 6-byte identifier field that is used to uniquely identify the sender of the message. Typically, this field is populated with the interface MAC address.

- The multicast address 224.0.0.2 is used to send HSRP hello messages. This address can conflict with Cisco Group Management Protocol (CGMP) leave processing.

Version 1 is the default version of HSRP.

HSRP version 2 uses the new IP multicast address 224.0.0.102 to send hello packets instead of the multicast address of 224.0.0.2, used by HSRP version 1. This new multicast address allows CGMP leave processing to be enabled at the same time as HSRP.

HSRP version 2 permits an expanded group number range, 0 to 4095, and consequently uses a new MAC address range 0000.0C9F.F000 to 0000.0C9F.FFFF. The increased group number range does not imply that an interface can, or should, support that number of HSRP groups. The expanded group number range was changed to allow the group number to match the VLAN number on subinterfaces.

When the HSRP version is changed, each group will reinitialize because it now has a new virtual MAC address.

HSRP version 2 has a different packet format than HSRP version 1. The packet format uses a type-length-value (TLV) format. HSRP version 2 packets received by an HSRP version 1 device will have the type field mapped to the version field by HSRP version 1 and subsequently ignored.

HSRP version 2 is effective from Cisco IOS Release 15.5(03)s.

How to Configure HSRP Version 2

Changing to HSRP Version 2

HSRP version 2 was introduced to prepare for further enhancements and to expand the capabilities beyond what is possible with HSRP version 1. HSRP version 2 has a different packet format than HSRP version 1.
**Note**

- HSRP version 2 is not available for ATM interfaces running LAN emulation.
- HSRP version 2 does not interoperate with HSRP version 1. An interface cannot operate both version 1 and version 2 because both versions are mutually exclusive. However, the different versions can be run on different physical interfaces of the same device. You cannot change from version 2 to version 1 if you have configured groups above the group number range allowed for version 1 (0 to 255).
- HSRP version 2 is supported only on IPv4 devices and not on IPv6 devices.
- HSRP version 2 configuration is supported only on layer 3 SVI interfaces. The configuration is not supported on Gigabit Ethernet or Fast Ethernet interfaces.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `standby version {1 | 2}`
5. `standby [group-number] priority [priority]`
6. `standby [group-number] preempt`
7. `standby [group-number] timers [msec]`
8. `standby [group-number] ip address ip-address mask [secondary]`
9. `end`
10. `show standby`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Example: <code>Device&gt; enable</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Example: <code>Device# configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface type number</code></td>
<td>Example: <code>Device(config)# interface vlan 350</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Changes the HSRP version.</td>
</tr>
<tr>
<td>`standby version {1</td>
<td>2}`</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Configures HSRP priority.</td>
<td>standby [group-number] priority [priority]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device(config-if)# standby 350 priority 100</td>
</tr>
<tr>
<td>Step 6</td>
<td>Configures preemption.</td>
<td>standby [group-number] preempt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby 350 preempt</td>
</tr>
<tr>
<td>Step 7</td>
<td>Configures timers.</td>
<td>standby [group-number] timers [msec]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby 350 timers 515</td>
</tr>
<tr>
<td>Step 8</td>
<td>Specifies an primary or secondary IP address for an interface.</td>
<td>standby [group-number] ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Router(config-if)# standby 350 ip 172.20.100.10</td>
</tr>
<tr>
<td>Step 9</td>
<td>Ends the current configuration session and returns to privileged EXEC mode.</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device(config-if)# end</td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) Displays HSRP information.</td>
<td>show standby</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device# show standby</td>
</tr>
</tbody>
</table>

## Configuration Examples for HSRP Version 2

### Example: Configuring HSRP Version 2

The following example shows how to configure HSRP version 2 on an interface with a group number of 350:

```bash
Device(config)# interface vlan 350
Device(config-if)# standby version 2
Device(config-if)# standby 350 priority 110
Device(config-if)# standby 350 preempt
Device(config-if)# standby 350 timers 5 15
Device(config-if)# standby 350 ip 172.20.100.10
```
How to Configure VRRP

This section contains the following procedures:

- Configuring VRRP, on page 493
- Configuration Examples for VRRP, on page 494

Configuring VRRP

Complete the following steps to configure VRRP:

Restrictions

- VRRP is supported only on IPv4 devices and not IPv6 devices.
- VRRP is supported only on gigabyte etherchannel interfaces of the Layer 3 SVI.
- Bidirectional Forwarding Detection (BFD) protocol is not supported.
- MD5 authentication is not supported.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask
5. vrrp [group-number] timers advertise [msec]
6. vrrp [group-number] preempt [delay minimum seconds]
7. vrrp [group-number] priority priority
8. vrrp [group-number] authentication text string
9. vrrp [group-number] track object-number [decrement priority-decrement]
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# interface Vlan10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip address ip-address mask</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.10.10.25 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>vrrp [group-number] timers advertise [msec]</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the interval at which packets are sent to refresh the MAC cache when VRRP is running</td>
</tr>
<tr>
<td>Router(config-if)# vrrp 2 timers advertise 2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>vrrp [group-number] preempt [delay minimum seconds]</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures preemption delay.</td>
</tr>
<tr>
<td>Router(config-if)# vrrp 2 preempt delay minimum 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>vrrp [group-number] priority priority</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures VRRP priority.</td>
</tr>
<tr>
<td>Router(config-if)# vrrp 2 priority 200</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>vrrp [group-number] authentication text string</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures an authentication string for VRRP text authentication.</td>
</tr>
<tr>
<td>Router(config-if)# vrrp 2 authentication text cisco7</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>vrrp [group-number] track object-number [decrement priority-decrement]</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures VRRP to track an object and change the Hot Standby priority on the basis of the state of the object.</td>
</tr>
<tr>
<td>Router(config-if)# vrrp 2 track 1 decrement 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to the privileged EXEC mode.</td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Configuration Examples for VRRP**

This section provides the following configuration examples:
Example: Configuring a VRRP Master Router

This example shows how to configure a VRRP Master router.

```
Router# configure terminal
Router(config)# interface GigabitEthernet0/1
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 10
Router(config-if-srv)# end
Router# configure terminal
Router(config)# interface Vlan10
Router(config-if)# ip address 10.10.10.25 255.255.255.0
Router(config-if)# vrrp 2 ip 10.10.10.30
Router(config-if)# vrrp 2 timers advertise 2
Router(config-if)# vrrp 2 preempt delay minimum 10
Router(config-if)# vrrp 2 priority 110
Router(config-if)# vrrp 2 authentication text cisco7
Router(config-if)# vrrp 2 track 1 decrement 20
Router(config-if)# end
```

Example: Configuring a VRRP Backup Router

This example shows how to configure a VRRP Backup router.

```
Router# configure terminal
Router(config)# interface GigabitEthernet0/1
Router(config-if)# service instance 1 ethernet
Router(config-if-srv)# encapsulation dot1q 10
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric
Router(config-if-srv)# bridge-domain 10
Router(config-if-srv)# end
Router# configure terminal
Router(config)# interface Vlan10
Router(config-if)# ip address 10.10.10.26 255.255.255.0
Router(config-if)# vrrp 2 ip 10.10.10.30
Router(config-if)# vrrp 2 timers advertise 2
Router(config-if)# vrrp 2 preempt delay minimum 10
Router(config-if)# vrrp 2 priority 90
Router(config-if)# vrrp 2 authentication text cisco7
Router(config-if)# vrrp 2 track 1 decrement 20
Router(config-if)# end
```

Example: VRRP Text Authentication

The following example shows how to configure VRRP text authentication using a text string:

```
Router# configure terminal
Router(config)# interface GigabitEthernet 0/0/0
Router(config)# ip address 10.21.8.32 255.255.255.0
Router(config-if)# vrrp 10 authentication text stringxyz
Router(config-if)# vrrp 10 ip 10.21.8.10
```
Where to Go Next

For additional information on configuring HSRP and VRRP, see the documentation listed in the Additional References section.

Additional References

The following sections provide references related to LLDP feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html">http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for HSRP and VRRP

Table 29: Feature Information for HSRP and VRRP, on page 497 lists the release history for this feature and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 29: Feature Information for HSRP and VRRP, on page 497 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRP and VRRP</td>
<td>15.2(2)SNG</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Overview of HSRP and VRRP, on page 486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Text Authentication, on page 486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Preemption, on page 486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring HSRP, on page 487</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuration Examples for HSRP, on page 489</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring VRRP, on page 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuration Examples for VRRP, on page 494</td>
</tr>
</tbody>
</table>
CHAPTER 26

Configuring Link Layer Discovery Protocol

This feature module describes how to configure Link Layer Discovery Protocol (LLDP) on the Cisco ASR 901 Aggregation Series Router. The Cisco Discovery Protocol (CDP) is a device discovery protocol that runs over the data-link layer (Layer 2) on all Cisco-manufactured devices (routers, bridges, access servers, and switches). CDP allows network management applications to automatically discover and learn about other Cisco devices that are connected to the network.

To permit the discovery of non-Cisco devices, Cisco ASR 901 supports LLDP, a vendor-neutral device discovery protocol that is defined in the IEEE 802.1ab standard. LLDP allows network devices to advertise information about themselves to other devices on the network.

- Finding Feature Information, on page 499
- Restrictions for LLDP, on page 499
- Overview of LLDP, on page 500
- How to Configure LLDP, on page 500
- Configuration Example for LLDP, on page 502
- Where to go Next, on page 503
- Additional References, on page 503
- Feature Information for LLDP, on page 504

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for LLDP, on page 504.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for LLDP

The following are the restrictions for LLDP:
Overview of LLDP

It is an optional element of a protocol stack in the 802 LAN station. LLDP uses the logical link control (LLC) services to transmit and receive information to and from other LLDP agents. LLC provides a Link Service Access Point (LSAP) for access to LLDP. Each LLDP frame is transmitted as a single MAC service request. Each incoming LLDP frame is received at the MAC Service Access Point (MSAP) by the LLC entity as a MAC service indication.

The LLDP protocol operates through the LLDP agent. The tasks of the LLDP agent are to:

- Collect information from the LLDP local system MIB and transmit it periodically.
- Receive LLDP frames from neighbors and populate LLDP remote devices MIBs.

LLDP supports a set of attributes used to find the neighbor devices. These attributes are type, length, and value descriptions of devices, and are referred to as Type Length Value (TLV). LLDP supported devices use TLVs to send and receive information from their neighbors. Details such as configuration information, device capabilities, and device identity are also advertised using this protocol.

How to Configure LLDP

This section contains the following procedures:

Configuring LLDP

Complete the following steps to configure LLDP on the Cisco ASR 901 platform:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. Do one of the following:
   - `lldp run`
   - `lldp holdtime seconds`
   - `lldp reinit seconds`
   - `lldp timer rate`
   - `lldp lldp tlv-select`
4. `end`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• lldp run</td>
<td>The lldp run command enables LLDP globally on all the interfaces on the router.</td>
<td>Router(config)# lldp run</td>
</tr>
<tr>
<td>• lldp holdtime seconds</td>
<td>The lldp holdtime command specifies the hold time. The value ranges from 0 to 65535 seconds. The default value is 120 seconds.</td>
<td>Router(config)# lldp holdtime 100</td>
</tr>
<tr>
<td>• lldp reinit seconds</td>
<td>The lldp reinit command specifies the delay time in seconds for LLDP to initialize on any interface. The value ranges from 2 to 5 seconds. The default value is 2 seconds.</td>
<td>Router(config)# lldp reinit 2</td>
</tr>
<tr>
<td>• lldp timer rate</td>
<td>The lldp timer command specifies the rate at which LLDP packets are sent. The value ranges from 5 to 65534 seconds. The default value is 30 seconds.</td>
<td>Router(config)# lldp timer 75</td>
</tr>
<tr>
<td>• lldp lldp tlv-select</td>
<td>The lldp tlv-select command enables a specific LLDP TLV on a supported interface. Cisco ASR 901 LLDP supports the following TLVs:</td>
<td>Router(config-if)# lldp tlv-select system-description</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>
Verifying LLDP

To verify LLDP on the Cisco ASR 901 router, use the show command as shown in the following example.

```
Router# show lldp ?
entry Information for specific neighbor entry
errors LLDP computational errors and overflows
interface LLDP interface status and configuration
neighbours LLDP neighbor entries
traffic LLDP statistics
| Output modifiers
<cr>
```

Router# show lldp entry *

Capability codes:
(R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
(W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Configuration Example for LLDP

This section provides the following configuration examples:

**Example: Enabling LLDP Globally**

```
Router> enable
Router# configure terminal
Router(config)# lldp run
Router(config)# end
```

**Example: Configuring Hold Time**

```
Router> enable
Router# configure terminal
Router(config)# lldp holdtime 100
Router(config)# end
```

**Example: Configuring Delay Time**

```
Router> enable
Router# configure terminal
Router(config)# lldp reinit 2
Router(config)# end
```
Example: Configuring Intervals

Router> enable
Router# configure terminal
Router(config)# lldp timer 75
Router(config)# end

This is an example to enable an LLDP TLV on a supported interface:

Router> enable
Router# configure terminal
Router(config)# interface ethernet 0/1
Router(config-if)# lldp tlv-select system-description
Router(config-if)# end

Where to go Next

For additional information on configuring Multihop BFD, see the documentation listed in the Additional References section.

Additional References

The following sections provide references related to LLDP feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html">http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html</a></td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for LLDP

LLDP is a one-way protocol that transmits information about the capabilities and current status of a device and its interfaces. LLDP devices use the protocol to solicit information only from other LLDP devices.

Table 30: Feature Information for LLDP, on page 504 lists the release history for this feature and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

Note

Table 30: Feature Information for LLDP, on page 504 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 30: Feature Information for LLDP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP</td>
<td>12.2(2)SNGL</td>
<td>See Overview of LLDP, on page 500 for more information about this feature.</td>
</tr>
</tbody>
</table>
CHAPTER 27

Configuring Multihop Bidirectional Forwarding Detection

Cisco ASR 901 supports Bidirectional Forwarding Detection (BFD) on arbitrary paths, which can span multiple network hops. The multihop BFD feature provides subsecond forwarding failure detection for a destination with more than one hop and up to 255 hops. A multihop BFD session is set up between a unique source-destination address pair provided by the client. A session can be set up between two endpoints that have IP connectivity.

- Finding Feature Information, on page 505
- Restrictions for Multihop BFD, on page 505
- Information About Multihop BFD, on page 506
- How to Configure Multihop BFD, on page 506
- Configuration Examples for Multihop BFD, on page 508
- Where to Go Next, on page 509
- Additional References, on page 509
- Feature Information for Multihop BFD, on page 510

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for LLDP, on page 504.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Multihop BFD

The following are the restrictions for multihop BFD:

- BFD does not support echo mode. You can configure sessions for minimum timer interval.
- The minimum guaranteed timer depends on the topology, scale, number of hops, and control plane processing. All the packets must reach the control plane since echo mode is not supported.
• Supports IPv4 deployments only.
• Authentication for multihop BFD is not enabled on Cisco ASR901 routers.

Information About Multihop BFD

Overview of Multihop BFD

Cisco ASR 901 supports BFD on arbitrary paths, which can span multiple network hops. You must configure the `bfd-template` and `bfd map` commands to create a multihop template and associate it with one or more maps of destinations and associated timers. You can enable authentication and configure a key chain for multihop BFD sessions.

How to Configure Multihop BFD

This section contains the following procedures:

Configuring Multihop BFD Template

Complete the following steps to create a multihop BFD template and configure BFD interval timers, authentication, and key chain:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `bfd-template multi-hop template-name`
4. `interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value`
5. `authentication authentication-type keychain keychain-name`
6. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router&gt; enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> bfd-template multi-hop <em>template-name</em></td>
<td>Creates a BFD multihop BFD template and enters BFD configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# bfd-template multi-hop mh-template1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interval min-tx <em>milliseconds</em>  min-rx <em>milliseconds</em>  multiplier <em>multiplier-value</em></td>
<td>Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> authentication authentication-type keychain <em>keychain-name</em></td>
<td>Configures authentication for the multihop template and the authentication type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(bfd-config)# authentication keyed-sha-1 keychain bfd-multihop</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(bfd-config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring a Multihop BFD Map

After configuring the interval timers and authentication in a template, you must configure a map to associate the template with unique source-destination address pairs for multihop BFD sessions.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `bfd mapipv4 vrf vrf-name destination-address/length source-address/length template-name`
4. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 bfd mapipv4 vrf vrf-name destination-address/length source-address/length template-name</td>
<td>Configures a BFD map and associates it with the template.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns the router to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Configuration Examples for Multihop BFD**

This section provides the configuration example for multihop BFD.

**Example : Configuring Multihop BFD**

The following example shows how to configure BFD in a BGP network. In the following example, the simple BGP network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 in Router B.

**Configuration for Router A**

```text

! interface Fast Ethernet 0/1
ip address 172.16.10.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
!
interface Fast Ethernet 3/0.1
ip address 172.17.0.1 255.255.255.0
!
router bgp 40000
bgp log-neighbor-changes
neighbor 172.16.10.2 remote-as 45000
neighbor 172.16.10.2 fall-over bfd
!
address-family ipv4
neighbor 172.16.10.2 activate
no auto-summary
no synchronization
network 172.18.0.0 mask 255.255.255.0
exit-address-family
!
```

**Configuration for Router B**

```text

! interface Fast Ethernet 6/0
ip address 172.16.10.2 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
!
```
Configuration for Router B

! interface Fast Ethernet 6/0
ip address 172.16.10.2 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
!
interface Fast Ethernet 6/1
ip address 172.18.0.1 255.255.255.0
!
routing bgp 45000
bgp log-neighbor-changes
neighbor 172.16.10.1 remote-as 40000
neighbor 172.16.10.1 fall-over bfd
!
address-family ipv4
neighbor 172.16.10.1 activate
no auto-summary
no synchronization
network 172.17.0.0 mask 255.255.255.0
exit-address-family
!

Where to Go Next

For additional information on configuring Multihop BFD, see the documentation listed in the Additional References section.

Additional References

The following sections provide references related to LLDP feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html">http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

**Feature Information for Multihop BFD**

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

*Table 31: Feature Information for Multihop BFD, on page 511 lists the release history for this feature and provides links to specific configuration information.*

**Note**

*Table 31: Feature Information for Multihop BFD, on page 511 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.*
Table 31: Feature Information for Multihop BFD

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multihop BFD</td>
<td>15.2(2)SNG</td>
<td>See the following links for more information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Restrictions for Multihop BFD, on page 505</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configuring Multihop BFD Template, on page 506</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configuring a Multihop BFD Map, on page 507</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Configuration Examples for Multihop BFD, on page 508</td>
</tr>
</tbody>
</table>
Feature Information for Multihop BFD
CHAPTER 28

Microwave ACM Signaling and EEM Integration

This feature module describes the Microwave Adaptive Code Modulation (ACM) Signaling and Embedded Event Manager (EEM) integration, which enables the microwave radio transceivers to report link bandwidth information to an upstream Ethernet switch and take action on the signal degradation to provide optimal bandwidth.

- Finding Feature Information, on page 513
- Prerequisites for Microwave ACM Signaling and EEM Integration, on page 513
- Feature Overview, on page 514
- How to Configure Microwave ACM Signaling and EEM Integration, on page 515
- Configuration Examples for Microwave ACM Signaling and EEM Integration, on page 522
- Additional References, on page 525
- Feature Information for Microwave ACM Signaling and EEM Integration, on page 526

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Microwave ACM Signaling and EEM Integration

- The microwave transceiver in the network topology must support adaptive bandwidth modulation, and the microwave transceiver must support the Ethernet Connectivity Fault Management (CFM) extension for microwave devices as defined by Cisco.

- In a heterogeneous ring topology, all devices connected directly to the microwave transceiver must support signal degradation (SD) functions. Devices not connected directly to the microwave transceiver can be standard-compliant nodes or enhanced SD-capable nodes.
• In a homogeneous ring topology, all links must be microwave links and all devices must support microwave SD-based ring protection.

• A ring topology with multiple microwave links can experience a signal degradation condition on one or more of the microwave links. Only one signal degradation condition per ring instance is supported. This support is provided on a first-come, first-serve basis, per ring instance.

• The source MAC address must be an unique MAC address. It can be the MAC address of the Ethernet port or the Bridge.

• The destination MAC address must be set to the CCM multicast address for the associated maintenance level (a multicast address is used to avoid discovery of MAC addresses).

• The microwave transceiver in the network topology must support bandwidth vendor specific message (BW-VSM1).

• The BW-VSM may be sent untagged, or it may be transmitted with a configurable valid IEEE 802.1Q VLAN tag.

• The BW-VSM must be associated with maintenance level 0. The microwave equipment should allow the network operator to associate the message with a valid maintenance level in the range 0 to 7 per ITU-T Y.1731 / IEEE 802.1ag-2007.

Feature Overview

Microwave links are often used in Ethernet access ring topologies and the bandwidth provided by the microwave link depends on environmental factors like fog, rain, and snow, which can drastically affect the bandwidth.

This feature relies on the Ethernet CFM to assess the environmental conditions on either end of the microwave link and automatically change the modulation to provide optimal bandwidth. The Ethernet CFM monitors the microwave link bandwidth, and when a link degradation is detected, notifies the router to take action on the degraded microwave link.

In IP/MPLS, the nodes are unaware of any changes to the bandwidth on the microwave link and the Gigabit Ethernet connection to the nodes remain constant. To ensure optimal routing and traffic transport across the access network, a mechanism has been implemented to notify the IP/MPLS access nodes of any ACM events on the microwave links. This enables microwave radio transceivers, which support ACM, to report link bandwidth information to an upstream Ethernet switch.

The vendor-specific message (VSM) in Y.1731 is used to notify Cisco routers of ACM events, and the bandwidth available on the microwave link. Acting on this information, the node can change the Hierarchical Quality of Service (H-QoS), adjust the Interior Gateway Protocol (IGP) metric of the link to the new capacity or remove the degraded link.

H-QoS Policy Adjustment

H-QoS policy adjustment is the process of adjusting the egress H-QoS policy parameters on the IP/MPLS access node connected to the microwave link. This modifies the parent shaper rate to match the current bandwidth of the microwave link. It also adjusts the child class parameters to ensure correct priority and bandwidth-guaranteed traffic.

If the available bandwidth is less than the total bandwidth required by Expedited Forwarding (EF) and Assured Forwarding (AF) classes, the operator can choose to drop AF class traffic or remove the link from the service.
IGP Metric Adjustment

The IP/MPLS access node can adjust the IGP metric on the microwave link to align it with the available bandwidth. This will trigger an IGP SPF recalculation, allowing the IGP to get the correct bandwidth for routing traffic.

Link Removal

Link removal is the process of removing the microwave link from the IGP. This occurs when the bandwidth loss breaches the threshold set by the operator. It sets off the resiliency mechanisms in the network, and the degraded link is bypassed, resulting in minimal traffic loss. The degraded link is not brought administratively down. When it is up, the microwave equipment can signal to the access node about its status and usability.

Benefits

- The IP/MPLS access network adapts intelligently to the microwave capacity change by:
  - optimizing routing
  - controlling congestion
  - enabling loss protection.
- Microwave ACM changes are signaled through a Y.1731 VSM to the IP/MPLS access node.
- The IP/MPLS access node adapts the IGP metric of the link to the new capacity.
- The IP/MPLS access node can change the H-QOS policy on the interface with the microwave system allowing EF traffic to survive.
- The IP/MPLS access node can remove a degraded link from SPF triggering a loss protection.

How to Configure Microwave ACM Signaling and EEM Integration

This section describes how to configure Microwave ACM Signaling and EEM Integration:

Configuring Connectivity Fault Management

To configure CFM between the microwave outdoor unit (ODU) and the router, complete the following steps:

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service csi-id evc evc-name vlan vlan-id direction down

Note

For a ring topology, you should configure CFM between the microwave ODU and the router. You must configure two VLANs to the two microwave ODUs, to process the vendor specific message (VSM) and trigger the Embedded Event Manager (EEM).
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enter Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enter Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Router(config)# ethernet cfm domain outer level 3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Sets a universally unique ID for a customer service instance (CSI) within a maintenance domain.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Sets a universally unique ID for a customer service instance (CSI) within a maintenance domain.</td>
</tr>
<tr>
<td>Router(config-ether-cfm)# service microwave1 evc V60 vlan 60 direction down</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Enables the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enables the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>continuity-check</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>ethernet evc evc-id</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>service instance id ethernet</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1q vlan-id</td>
<td></td>
</tr>
<tr>
<td>rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
<tr>
<td>bridge-domain bridge-domain-id</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router(config-ecfm-srv)# continuity-check</code></td>
<td>Exits Ethernet CFM service configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits Ethernet CFM service configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-ecfm-srv)# exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>ethernet evc evc-id</code></td>
<td>Defines an EVC and enters EVC configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ethernet evc V60</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits Ethernet CFM service configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-evc)# exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface type number</code></td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface GigabitEthernet0/11</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td></td>
</tr>
<tr>
<td><code>service instance id ethernet</code></td>
<td>Configures an Ethernet service instance on an interface.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# service instance 60 ethernet 60</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified interface in a VLAN.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation dot1q 60</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td></td>
</tr>
<tr>
<td><code>rewrite ingress tag pop 1 symmetric</code></td>
<td>Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# rewrite ingress tag pop 1 symmetric</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td></td>
</tr>
<tr>
<td><code>bridge-domain bridge-domain-id</code></td>
<td>Enables RFC 1483 ATM bridging or RFC 1490 Frame Relay bridging to map a bridged VLAN to an ATM permanent virtual circuit (PVC) or Frame Relay data-link connection identifier (DLCI).</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# bridge-domain 60</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>bridge-domain-id</td>
<td>— Bridge domain identifier.</td>
</tr>
</tbody>
</table>

**Step 14**

**exit**

**Example:**

Router(config-if)# exit

---

**Configuring EEP Applet Using CLIs**

To configure EEP applet, complete the following steps:

**Before you begin**

- One switch virtual interface (SVI) or bridge domain is required per physical link.
- One EEM script is required per physical link.

**Note**

The EEM script configures the metric on the microwave link and adjusts the QoS policy based on the Ethernet event parameters. You can download the scripts from the following location:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `event manager applet applet-name`
4. `event tag event-tag ethernet microwave clear-sd {interface type number}`
5. `event tag event-tag ethernet microwave sd {interface type number} threshold mbps`
6. `action action-id set variable-name variable-value`
7. `action action-id cli command cli-string`
8. `action action-id cli command cli-string`
9. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 3 | **event manager applet** applet-name | Registers an applet with the Embedded Event Manager (EEM) and enters applet configuration mode.  
- **applet-name**—Name of the applet file. |
| Step 4 | **event tag** event-tag ethernet microwave clear-sd \{interface type number\} | Specifies the event criteria for an EEM applet that is run by matching a Cisco IOS command-line interface (CLI).  
- **tag**—Specifies a tag using the event-tag argument that can be used with the trigger command to support multiple event statements within an applet.  
- **event-tag**—String that identifies the tag. |
| Step 5 | **event tag** event-tag ethernet microwave sd \{interface type number\} \{threshold mbps\} | Specifies the event criteria for an EEM applet that is run by matching a Cisco IOS CLI. |
| Step 6 | **action** action-id set variable-name variable-value | Sets the value of a variable when an EEM applet is triggered.  
- **action-id**—Unique identifier that can be any string value. Actions are sorted and run in ascending alphanumeric key sequence using the label as the sort key. If the string contains embedded blanks, enclose it in double quotation marks.  
- **variable-name**—Name assigned to the variable to be set.  
- **variable-value**—Value of the variable. |
| Step 7 | **action** action-id cli command cli-string | Specifies the action of executing a Cisco IOS CLI when an EEM applet is triggered.  
- **action-id**—Unique identifier that can be any string value. Actions are sorted and run in ascending alphanumeric key sequence using the label as the sort key. If the string contains embedded blanks, enclose it in double quotation marks.  
- **command**—Specifies the message to be sent to the Cisco IOS CLI.  
- **cli-string**—CLI string to be executed. If the string contains embedded blanks, enclose it in double quotation marks. |
| Step 8 | **action** action-id cli command cli-string | Specifies the action of executing a Cisco IOS CLI command when an EEM applet is triggered. |
### Configuring Event Handler

To configure the microwave event handler, which runs hold-off timer, loss threshold, and fading wait-to-restore (WTR) timers that are configurable per interface, complete the following steps:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet event microwave hold-off seconds`
5. `ethernet event microwave loss-threshold number-of-messages`
6. `ethernet event microwave wtr seconds`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

---

**Purpose**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-applet)# action 460 cli command &quot;event tag event_sd ethernet microwave sd interface GigabitEthernet0/10 threshold $nb&quot;</td>
<td>• <strong>action-id</strong>—Unique identifier that can be any string value. Actions are sorted and run in ascending alphanumeric key sequence using the label as the sort key. If the string contains embedded blanks, enclose it in double quotation marks.</td>
</tr>
<tr>
<td></td>
<td>• <strong>command</strong>—Specifies the message to be sent to the Cisco IOS CLI.</td>
</tr>
<tr>
<td></td>
<td>• <strong>cli-string</strong>—CLI string to be executed. If the string contains embedded blanks, enclose it in double quotation marks.</td>
</tr>
<tr>
<td><strong>Step 9</strong> exit</td>
<td>Exits applet configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-applet)# exit</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td><code>Router(config)# interface vlan 40</code></td>
<td>Configures the settings of the Ethernet microwave event.</td>
</tr>
<tr>
<td></td>
<td><code>ethernet event microwave hold-off seconds</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Router(config-if)# ethernet event microwave hold-off 30</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>ethernet event microwave loss-threshold number-of-messages</code></td>
<td>Configures the settings of the Ethernet microwave event.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Router(config-if)# ethernet event microwave loss-threshold 100</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>ethernet event microwave wtr seconds</code></td>
<td>Configures the settings of the Ethernet microwave event.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>Router(config-if)# ethernet event microwave wtr 45</code></td>
<td></td>
</tr>
</tbody>
</table>

### Verifying Microwave ACM Signaling and EEM Integration Configuration

To verify the microwave ACM and EEM integration configuration, use the show commands described in the following examples.

To display microwave bandwidth status information of an interface, use the following show command.

```
Router# show ethernet event microwave status [interface]
Microwave Bandwidth Status for GigabitEthernet0/0/2
 State : Degraded
 Elapsed time in this state : 1:25:33
 Nominal Bandwidth : 512Mbps
 Current Bandwidth : 256Mbps
 Lowest Bandwidth Since Entering Degraded : 64Mbps
 Last VSM Received : Oct 27 14:06:19.983
 Sender Transmit Period : 1 second
 Sender Address : 01AB.CC00.1881
 Hold Timer : Not Running
 Restore Timer : Not Running
 Periodic Timer : 2333 msec
 Hold Time : 0 seconds
```
To display microwave bandwidth statistics of an interface, use the following show command.

Router# show ethernet event microwave statistic [interface]
Microwave Bandwidth Statistics for GigabitEthernet0/0/2
  Total VSM Receive Count : 145
  Total VSM Drop Count : 0
  Number of transitions into Degraded state : 2

Configuration Examples for Microwave ACM Signaling and EEM Integration

This section provides sample configuration examples for Microwave ACM Signaling and EEM Integration feature on the Cisco ASR 901 router.

Example: Configuring CFM

The following is a sample configuration of CFM.

```
! ethernet cfm domain outer level 3
service microwave1 evc V60 vlan 60 direction down
 continuity-check
!
ethernet evc V60
!
interface GigabitEthernet
!
service instance 60 ethernet V60
 encapsulation dot1q 60
 rewrite ingress tag pop 1 symmetric
 bridge-domain 60
!```

Example: Configuring EEP Applet

The following is a sample EEM script to configure metric on a microwave link and adjust a QoS policy according to the ethernet event parameters sent through OAM.

```
! ACM script
no event manager applet ACM62
event manager applet ACM62
    event tag event_cd ethernet microwave clear-sd interface GigabitEthernet
    event tag event_sd ethernet microwave sd interface GigabitEthernet threshold 1000
    trigger
```
correlate event event_cd or event event_sd

! Variable settings
action 100 set olc "100"
action 102 set dlc "1"
action 104 set n "$_ring_nodes"
action 106 set cb "$_ethernet_current_bw"
action 108 set nb "$_ethernet_nominal_bw"
action 110 set ifname "vlan $_svi61"
action 112 set cmap_bw 0
action 114 set pri_bw 0
action 118 set s1 "EEM-"
action 120 set zeros "000000"
action 122 set cb_bps "cbzeros"
action 124 set nb_bps "nbzeros"
action 126 set ifcfg 1
action 130 cli command "enable"
action 132 cli command "conf t"

! Restore the original QoS policy
action 160 if $cb eq $nb
action 162 cli command "interface $_ethernet_intf_name"
action 163 cli command "no service-policy output $s1$ppmap"
action 164 cli command "service-policy output $ppmap"

! QoS block
! Find an original parent policy-map name and create a new name
action 180 elseif $_eem_mode le "1"
action 181 if $ppmap eq "0"
action 182 cli command "do show run int $_ethernet_intf_name | i service-policy output"
action 184 syslog msg "cli_result 184: $_cli_result, into: $_ethernet_intf_name"
action 186 regexp "service-policy output (.*)\n" "$_cli_result" line pmap
action 188 syslog msg "line 196: $line"
action 190 string replace "$line" 0 21 ""
action 192 string trimright "$ppmap"
action 194 syslog msg "QoS done. string 194: $s1$ppmap"
action 196 set pmap $_string_result
action 197 else
action 198 set pmap $ppmap
action 199 end
action 200 syslog msg "s1pmap 200: $s1$pmap"

! Find an original child policy-map name and create a new name
action 214 cli command "do show run policy-map $ppmap | i service-policy"
action 215 syslog msg "cli_result 215: $_cli_result"
action 216 regexp "service-policy (.*)\n" "$_cli_result" line cpmap
action 217 string trimright "$cpmap"
action 219 syslog msg "cpmap 219: $s1$cpmap"
action 220 cli command "do show run policy-map $cpmap"
action 221 regexp "class (.*)!" $_cli_result string

! Configuration of a new child policy-map
action 223 cli command "policy-map $s1$cpmap"
action 226 foreach var "$string"

action 233 syslog msg "233: cname: $cname"
action 234 end

! Calculate bandwidth for each of the classes
action 236 regexp "((priority|bandwidth) percent (.*)|$var line cmd ef_bw_perc
action 238 if $_regexp_result eq 1
action 256 string trimright "$ef_bw_perc"
action 258 syslog msg "258: cb_bps: $nb_bps, ef_bw_perc:$string_result"
action 260 divide $nb_bps 100
action 262 multiply $_result $string_result
action 263 set bw_demand $_result
action 264 add $cpmap_bw $_result
Example: Configuring EEP Applet

```
action 266   syslog msg "266: cpmap_bw: $_result, bw_demand: $bw_demand"
action 268   set cpmap_bw $_result
action 269   syslog msg "269: cpmap_bw sub-sum: $cpmap_bw"
action 270   regexp "priority percent (.*)" $line match
action 272   if $_regexp_result eq 1
action 274   add $pri_bw $bw_demand
action 276   multiply $bw_demand 100
action 278   divide $_result $cb_bps
action 279   if $_remainder gt 0
action 280     increment _result
action 281   end
action 282   set match1 "priority percent $_result"
action 283   set match2 "priority percent $_result"
action 284   end
action 286   regexp "bandwidth percent (.*)" $line match
action 288   if $_regexp_result eq 1
action 290     set match1 "$match"
action 292     set match2 "bandwidth percent 1"
action 294   end
action 296   else
action 298     set match1 "$var"
action 300     set match2 "$var"
action 302   end
action 304   append cfg_out1 "$match1 \n"
action 306   append cfg_out2 "$match2 \n"
action 308   end
! Check if there is enough bandwidth on a uwave link
action 310   syslog msg "310: cpmap_bw sum: $cpmap_bw"
action 312   if $cpmap_bw lt $cb_bps
action 314     set cfg_out "$cfg_out1"
action 316   elseif $pri_bw lt $cb_bps
action 318     set cfg_out "$cfg_out2"
action 320   else
action 322     set metric 1000000
action 323     set ifcfg 0
action 324   end
! Configuration of a child QoS policy
action 325   if $ifcfg eq 1
action 326     foreach var "$cfg_out" "\n"
action 328     cli command "$var"
action 330   end
action 331   end
! Configuration of a parent QoS policy
action 332     cli command "policy-map $s1$pmap"
action 334     syslog msg "334: policy-map $s1$pmap"
action 336     cli command "class class-default"
action 338     cli command "shape average $cb_bps"
action 340     cli command "service-policy $s1$cpmap"
! Apply the QoS policy on a PHY interface
action 344     cli command "int $_ethernet_intf_name"
action 346     cli command "no service-policy output $pmap"
action 348     cli command "service-policy output $s1$pmap"
action 390   end
! End of the QoS part
! IGP metric block
action 400   if $_eem_mode ge 1
action 402     multiply $n $cb
action 404     divide $_result $nb
action 406     syslog msg "406: cb: $cb nb: $nb result: $_result"
action 408     set m $_result
action 410     syslog msg "m: $m"
action 412     increment n
action 414     subtract $n $m
action 416     multiply $_result $olc
```
Example: Configuring Event Handler

The following is a sample configuration of Event Handler.

event manager applet mw_ring_sd1
 event ethernet microwave sd interface gigabitethernet 0/0/0 threshold 400
 action 1 switch ring g8032 ringA instance 1
 interface gigabitethernet 0/0/0
 ethernet event microwave hold-off 30
 ethernet event microwave loss-threshold 100
 ethernet event microwave wrt 45

Additional References

The following sections provide references related to Microwave ACM Signaling and EEM Integration feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td>Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>G.8032 and CFM Support for Microwave Adaptive Bandwidth</td>
<td></td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMA-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for Microwave ACM Signaling and EEM Integration

The following table lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Table 32: Feature Information for Microwave ACM Signaling and EEM Integration

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave ACM Signaling and EEM Integration</td>
<td>15.3(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
</tbody>
</table>
CHAPTER 29

IPv6 Support on the Router

This document provides implementation and command reference information for IPv6 features supported on the router. We strongly recommend that you read this entire document before reading other documents on IPv6 for Cisco IOS software.

Detailed conceptual information about the features supported on the router, is documented outside of this feature in the Cisco IOS software documentation. For information about the location of this related documentation, see the Feature Information for IPv6 Support on the Cisco ASR 901 Router, on page 571.

Complete configuration information of ASR 901-specific IPv6 features is provided in this document. This information can be found in the How to Configure IPv6 Support on the Cisco ASR 901 Router, on page 536.

• Finding Feature Information, on page 529
• Prerequisites for IPv6 Support on the Cisco ASR 901 Router, on page 530
• Restrictions for IPv6 Support on the Cisco ASR 901 Router, on page 530
• Information About IPv6 Support on the Cisco ASR 901 Router, on page 530
• How to Configure IPv6 Support on the Cisco ASR 901 Router, on page 536
• Configuration Examples for IPv6 Support on the Router, on page 564
• Troubleshooting Tips, on page 570
• Where to Go Next, on page 570
• Additional References, on page 570
• Feature Information for IPv6 Support on the Cisco ASR 901 Router, on page 571

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for IPv6 Support on the Cisco ASR 901 Router

- Cisco IOS Release 15.2(2)SNG or a later IPv6-supporting release must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.
- To forward IPv6 traffic using Cisco Express Forwarding (CEF) or distributed CEF, you must configure forwarding of IPv6 unicast datagrams globally on the router by using the `ipv6 unicast-routing` command, and you must configure an IPv6 address on an interface by using the `ipv6 address` command.
- You must enable CEF for IPv4 globally on the router by using the `ip cef` command before enabling Cisco Express Forwarding for IPv6 globally on the router by using the `ipv6 cef` command.

Restrictions for IPv6 Support on the Cisco ASR 901 Router

- Switch port configuration is not supported.
- The fastethernet interface does not expect more than one IPv6 address.
- The following features are not supported:
 - Tunneling protocols such as IPv4-to-IPv6 or IPv6-to-IPv4
 - IPv6 Policy-Based Routing
 - Hot Standby Router Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP) for IPv6
 - Quality of service (QoS) based on IPv6 addresses
 - IPv6 support of IEEE 1588v2
 - IPv6 support over slower links like time-division multiplexing (TDM) interfaces, Multilink Point-to-Point Protocol (MLPPP), etc
 - IPv6 Access Control Lists (ACLs) was not supported prior to Cisco IOS Release 15.4(2)S.
 - IPv6 over IP and Multiprotocol Label Switching (MPLS)
 - Bidirectional Forwarding Detection for IPv6 (BFDv6) for Intermediate System-to-Intermediate System (IS-IS)
 - IPv6 Virtual Routing and Forwarding (VRF) Lite

Information About IPv6 Support on the Cisco ASR 901 Router

Benefits

IPv6 Support on the Cisco ASR 901 router provides the following benefits:

- Supports state-less auto-configuration of IPv6 addresses.
- Supports the following routing protocols:
 - Static routing
 - Open Shortest Path First (OSPF) version 3
 - Border Gateway Protocol
 - Intermediate System-to-Intermediate System (IS-IS)
Overview of IPv6

IPv6 is the latest version of the Internet Protocol that has a much larger address space and improvements such as a simplified main header and extension headers. The architecture of IPv6 has been designed to allow existing IPv4 users to transition easily to IPv6 while providing services such as end-to-end security, quality of service (QoS), and globally unique addresses.

The larger IPv6 address space allows networks to scale and provide global reachability. The simplified IPv6 packet header format handles packets more efficiently. IPv6 supports widely deployed routing protocols such as Routing Information Protocol (RIP), Integrated Intermediate System-to-Intermediate System (IS-IS), Open Shortest Path First (OSPF) for IPv6, and multiprotocol Border Gateway Protocol (BGP). Other available features include stateless autoconfiguration and enhanced support for Mobile IPv6.

IPv6 is being introduced on the Cisco ASR 901 router to support Long Term Evolution (LTE) rollouts that provide high-bandwidth data connection for mobile wireless devices. The IPv6 transport utilizes Switch Virtual Interface (SVI) and Ethernet interfaces. The Cisco ASR 901 router also supports IPv6 addressing on Loopback interfaces.

IPv6 Address Formats

IPv6 addresses are represented as a series of 16-bit hexadecimal fields separated by colons (:) in the format: x:x:x:x:x:x:x:x. Following are two examples of IPv6 addresses:

```
2001:DB8:0:0:8:800:200C:417A
```

It is common for IPv6 addresses to contain successive hexadecimal fields of zeros. To make IPv6 addresses less complicated, two colons (:) may be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address (the colons represent successive hexadecimal fields of zeros). Table 33: Compressed IPv6 Address Formats, on page 531 lists compressed IPv6 address formats.

A double colon may be used as part of the ipv6-address argument when consecutive 16-bit values are denoted as zero. You can configure multiple IPv6 addresses per interface, but only one link-local address.

Note

Two colons (:) can be used only once in an IPv6 address to represent the longest successive hexadecimal fields of zeros. The hexadecimal letters in IPv6 addresses are not case-sensitive.

<table>
<thead>
<tr>
<th>IPv6 Address Type</th>
<th>Preferred Format</th>
<th>Compressed Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
<td>2001:0:0:0:DB8:800:200C:417A</td>
<td>2001::DB8:800:200C:417A</td>
</tr>
<tr>
<td>Loopback</td>
<td>0:0:0:0:0:0:0:1</td>
<td>::1</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0:0:0:0:0:0:0:0</td>
<td>::</td>
</tr>
</tbody>
</table>

The loopback address listed in Table 33: Compressed IPv6 Address Formats, on page 531 are used by a node to send an IPv6 packet to itself. The loopback address in IPv6 functions the same as the loopback address in IPv4 (127.0.0.1).
The IPv6 loopback address cannot be assigned to a physical interface. A packet that has the IPv6 loopback address as its source or destination address must remain within the node that created the packet. IPv6 routers do not forward packets that have the IPv6 loopback address as their source or destination address.

The unspecified address listed in Table 33: Compressed IPv6 Address Formats, on page 531 indicates the absence of an IPv6 address. For example, a newly initialized node on an IPv6 network may use the unspecified address as the source address in its packets until it receives its IPv6 address.

An IPv6 address prefix, in the format ipv6-prefix/prefix-length, can be used to represent bit-wise contiguous blocks of the entire address space. The ipv6-prefix must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). For example, 2001:DB8:8086:6502::/32 is a valid IPv6 prefix.

For more information on IPv6 Addressing and Basic Connectivity, see the Implementing IPv6 Addressing and Basic Connectivity chapter of IPv6 Configuration Guide, at the following location:

IPv6 Addressing and Discovery

The IPv6 addressing and discover consists of static and autoconfiguration of addresses – both global and link local addresses. IPv6 differs from IPv4 in that same interface can have multiple IPv6 addresses assigned to it. The Cisco ASR 901 router supports both IPv4 and multiple IPv6 addresses on the same Loopback and SVI interface. The link-local addresses are automatically generated (if ipv6 enable command is configured) from the MAC-address of the interface as soon as the SVI comes up.

Static Configuration

Static configuration is the manual process of defining an explicit path between two networking devices. The administrator of the network manually enters the IPv6 addresses, subnet masks, gateways, and corresponding MAC addresses for each interface of each router into a table. Static configuration provides more control over the network but it requires more work to maintain the table. The table must be updated every time routes are added or changed. Moreover, the static routes must be manually reconfigured if there is a change in the network topology.

Static configuration provides security and resource efficiency. It uses less bandwidth than dynamic routing protocols and no CPU cycles are used to calculate and communicate routes. Static routes created by the static configuration can be redistributed into dynamic routing protocols. However, routes generated by dynamic routing protocols cannot be redistributed into the static routing table.

Static configuration is useful for smaller networks with only one path to an outside network and in providing security for a larger network for certain types of traffic or links to other networks that need more control. In general, most networks use dynamic routing protocols to communicate between networking devices but may have one or two static routes configured for special cases.
Stateless Autoconfiguration

All interfaces on IPv6 nodes must have a link-local address, which is usually automatically configured from the identifier for an interface and the link-local prefix FE80::/10. A link-local address enables a node to communicate with other nodes on the link and can be used to further configure the node.

Nodes can connect to a network and automatically generate global IPv6 addresses without the need for manual configuration or help of a Dynamic Host Configuration Protocol (DHCP) server.

With IPv6, a router on the link advertises in RA messages any global prefixes, and its willingness to function as a default router for the link. RA messages are sent periodically and in response to router solicitation messages, which are sent by hosts at system startup.

A node on the link can automatically configure global IPv6 addresses by appending its interface identifier (64 bits) to the prefixes (64 bits) included in the RA messages. The resulting 128-bit IPv6 addresses configured by the node are then subjected to duplicate address detection (DAD) to ensure their uniqueness on the link. If the prefixes advertised in the RA messages are globally unique, then the IPv6 addresses configured by the node are also globally unique. Router solicitation messages, which have a value of 133 in the Type field of the ICMP packet header, are sent by hosts at system startup so that the host can immediately autoconfigure without needing to wait for the next scheduled RA message.

For more information on IPv6 Addressing and Discovery, see the Implementing IPv6 Addressing and Basic Connectivity chapter of IPv6 Configuration Guide, at the following location:

ICMPv6

Internet Control Message Protocol (ICMP) in IPv6 functions the same as ICMP in IPv4. ICMP generates error messages such as ICMP destination unreachable messages, and informational messages such as ICMP echo request and reply messages. Additionally, ICMP packets in IPv6 are used in the IPv6 neighbor discovery process, path MTU discovery, and the Multicast Listener Discovery (MLD) protocol for IPv6.

For more information on ICMPv6, see the Implementing IPv6 Addressing and Basic Connectivity chapter of IPv6 Configuration Guide, at the following location:

IPv6 Duplicate Address Detection

During the stateless autoconfiguration process, duplicate address detection (DAD) verifies the uniqueness of new unicast IPv6 addresses before the addresses are assigned to interfaces (the new addresses remain in a tentative state while duplicate address detection is performed). DAD is first performed first on the new link-local address. When the link local address is verified as unique, then DAD is performed on the remaining IPv6 unicast addresses on the interface.

When a duplicate address is identified, the state of the address is set to DUPLICATE and the address is not used. If the duplicate address is the link-local address of the interface, the processing of IPv6 packets is disabled on the interface and an error message is issued. If the duplicate address is a global address of the interface, the address is not used and an error message is issued. However, all configuration commands associated with the duplicate address remain as configured while the state of the address is set to DUPLICATE.

If the link-local address for an interface changes, duplicate address detection is performed on the new link-local address and all of the other IPv6 address associated with the interface are regenerated (duplicate address detection is performed only on the new link-local address).
IPv6 Neighbor Discovery

The IPv6 neighbor discovery process uses ICMPv6 messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and keep track of neighboring routers.

Neighbor solicitation messages (ICMPv6 Type 135) are sent on the local link by nodes attempting to discover the link-layer addresses of other nodes on the local link. The neighbor solicitation message is sent to the solicited-node multicast address. The source address in the neighbor solicitation message is the IPv6 address of the node sending the neighbor solicitation message. The neighbor solicitation message also includes the link-layer address of the source node.

After receiving a neighbor solicitation message, the destination node replies by sending a neighbor advertisement message (ICMPv6 Type 136) on the local link. The source address in the neighbor advertisement message is the IPv6 address of the node sending the neighbor advertisement message; the destination address is the IPv6 address of the node that sent the neighbor solicitation message. The data portion of the neighbor advertisement message includes the link-layer address of the node sending the neighbor advertisement message.

After the source node receives the neighbor advertisement, the source node and destination node communicate with each other.

For more information on IPv6 Neighbor Discovery, see the Implementing IPv6 Addressing and Basic Connectivity chapter of IPv6 Configuration Guide, at the following location:

IPv4 and IPv6 Dual-Stack on an Interface

A dual stack means that IPv4 and IPv6 addresses coexist on the same platform and support hosts of both types. This method is a way to transition from IPv4 to IPv6 with coexistence (IPv4 and IPv6) as a first step.

The Cisco ASR 901 router supports the configuration of both IPv6 and IPv4 on an interface. You do not need to enter any specific commands to do so; simply enter the IPv4 configuration commands and IPv6 configuration commands as you normally would. Make sure you configure the default route for both IPv4 and IPv6.

Routing Protocols

The Cisco ASR 901 router supports widely deployed routing protocols such as IS-IS, OSPFv3, and multiprotocol BGP.

IS-IS Enhancements for IPv6

IS-IS in IPv6 functions the same as in IPv4 and offers many of the same benefits as IS-IS in IPv4. IPv6 enhancements to IS-IS allow IS-IS to advertise IPv6 prefixes in addition to IPv4 and OSI routes. Extensions to the IS-IS command-line interface (CLI) allow configuration of IPv6-specific parameters. IPv6 IS-IS extends the address families supported by IS-IS to include IPv6, in addition to OSI and IPv4.

For more information on IS-IS Enhancements for IPv6, see the following document:

OSPFv3 for IPv6

OSPF is a routing protocol for IP. It is a link-state protocol. A link-state protocol makes its routing decisions based on the states of the links that connect source and destination machines. The state of a link is a description
of that interface, and its relationship to its neighboring networking devices. The interface information includes the IPv6 prefix of the interface, the network mask, the type of network it is connected to, the devices connected to that network, and so on. This information is propagated in various type of link-state advertisements (LSAs).

For more information on OSPFv3 for IPv6, refer the following link:

Multiprotocol BGP Extensions for IPv6

Multiprotocol BGP is the supported exterior gateway protocol (EGP) for IPv6. Multiprotocol BGP extensions for IPv6 support many of the same features and functionality as IPv4 BGP. IPv6 enhancements to multiprotocol BGP include support for an IPv6 address family and network layer reachability information (NLRI) and next hop (the next router in the path to the destination) attributes that use IPv6 addresses.

For more information on Multiprotocol BGP Extensions for IPv6, refer the following link:

Bidirectional Forwarding Detection for IPv6

The BFDv6 is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. BFDv6 provides IPv6 support by accommodating IPv6 addresses and provides the ability to create BFDv6 sessions.

For more information on Bidirectional Forwarding Detection for IPv6, refer the following link:

QoS for IPv6

The Cisco ASR 901 router support of QoS features for IPv6 environments include ingress packet classification, policing, marking on Ethernet interfaces. It also supports egress packet classification, marking, scheduling, per interface and per qos-group shaping, Low Latency Queuing (LLQ), and weighted random early detection (WRED) on GigabitEthernet interfaces.

Note

Queuing, shaping, scheduling and LLQ is not supported on the ingress path for the Ethernet interfaces. Policing is not supported on the egress path for GigabitEthernet interfaces.

The QoS implementation for IPv6 environment in the Cisco ASR router is the same as that of IPv4. For more information on Configuring QoS on the Cisco ASR 901 router, refer the following link:

For additional information on Implementing QoS for IPv6, refer the following link:
How to Configure IPv6 Support on the Cisco ASR 901 Router

Configuring IPv6 Addressing and Enabling IPv6 Routing

Perform this task to assign IPv6 addresses to individual router interfaces and enable IPv6 traffic forwarding globally on the router. By default, IPv6 addresses are not configured, and IPv6 routing is disabled.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ipv6 address ipv6-address/prefix-length {eui-64 | link-local | anycast }
5. `ipv6 enable`
6. `exit`
7. `ipv6 unicast-routing`
8. `ipv6 cef`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.
* Example:
Router> enable |
| Step 2 | `configure terminal` | Enters global configuration mode.
* Example:
Router# configure terminal |
| Step 3 | `interface type number` | Specifies an interface type and number and enters interface configuration mode.
* Example:
Router(config)# interface vlan 40 |
| Step 4 | `ipv6 address ipv6-address/prefix-length {eui-64 | link-local | anycast }` | Configures an IPv6 address based on an IPv6 general prefix and enables IPv6 processing on an interface.
* eui-64—Specifies the global IPv6 addresses with an interface identifier (ID) in the low-order 64 bits of the IPv6 address. Only the 64-bit network prefix for the address needs to be specified; the last 64 bits are automatically computed from the interface ID.
* link-local—Specifies the link-local address on the interface that is used instead of the link-local address
* Example:
Router(config-if)# ipv6 address 2001:DB8:FFFF::2/64 |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• anycast</td>
<td>Specifies an IPv6 anycast address.</td>
</tr>
<tr>
<td>Step 5 ipv6 enable</td>
<td>Enables IPv6 on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 enable</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits interface configuration mode, and returns the router to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 ipv6 unicast-routing</td>
<td>Enables the forwarding of IPv6 unicast datagrams.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 unicast-routing</td>
<td></td>
</tr>
<tr>
<td>Step 8 ipv6 cef</td>
<td>Enables Cisco Express Forwarding (CEF) globally on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 cef</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Static IPv6 Route

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 route \{ipv6-prefix \| prefix-length ipv6-address \| interface-type interface-number \[ipv6-address\]\] \[administrative-distance \] \[administrative-multicast-distance \] \[unicast \| multicast \] \[tag tag\]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Step 3</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv6 route</td>
<td>ipv6-prefix</td>
<td>Configures a static default IPv6 route.</td>
</tr>
<tr>
<td></td>
<td>prefix-length</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ipv6-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface-type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>interface-number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[ipv6-address]]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[administrative-distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[administrative-multicast-distance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[unicast</td>
<td></td>
</tr>
<tr>
<td></td>
<td>]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[multicast]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[tag tag]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ipv6 route 2001::/64 5::5 100</td>
<td></td>
</tr>
</tbody>
</table>

- **ipv6-prefix**—The IPv6 network that is the destination of the static route. This could also be a host name when static host routes are configured.
- **prefix-length**—The length of the IPv6 prefix.
- **ipv6-address**—(Optional) The IPv6 address of the next hop that can be used to reach the specified network.
- **interface-type**—Interface type.
- **interface-number**—Interface number.
- **administrative-distance**—(Optional) An administrative distance. The default value is 1, which gives static routes precedence over any other type of route except connected routes.
- **administrative-multicast-distance**—(Optional) The distance used when selecting this route for multicast Reverse Path Forwarding (RPF).
- **unicast**—(Optional) Specifies a route that must not be used in multicast RPF selection.
- **multicast**—(Optional) Specifies a route that must not be populated in the unicast Routing Information Base (RIB).
- **tag**—(Optional) Tag value that is used as a “match” value for controlling redistribution via route maps.

Enabling Stateless Auto-Configuration

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 address autoconfig

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Implementing IPv6 on VLAN Interfaces

Perform the tasks given below to enable IPv6 on VLAN interfaces. By default, IPv6 is disabled on an interface.

Note

For information on how to create a VLAN interface, see the Configuring Ethernet Virtual Connections document at the following location:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. Do one of the following:
 - `ipv6 enable`
 - `ipv6 address {ipv6-address/prefix-length | prefix-name sub-bits/prefix-length}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `enable`
| Example:
| `Router> enable`
| Enables the privileged EXEC mode. |
| | • Enter your password if prompted. |
| **Step 2**
| `configure terminal`
| Example:
| `Router# configure terminal`
| Enters the global configuration mode. |
| **Step 3**
| `interface type number`
| Example:
| Specifies an interface type and number, and places the router in interface configuration mode. farce |
Implementing IPv6 Addressing on Loopback Interfaces

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. Do one of the following:
 - ipv6 enable
 - ipv6 address {ipv6-address/prefix-length | prefix-name sub-bits/prefix-length}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
Configuring ICMPv6 Rate Limiting

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ipv6 icmp error-interval interval`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>ipv6 icmp error-interval interval</code></td>
<td>Configures the interval for IPv6 ICMP error messages.</td>
</tr>
</tbody>
</table>
Configuring IPv6 Duplicate Address Detection

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 nd dad attempts value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface type number</td>
<td>Specifies an interface type and number, and places the router in interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# Interface Vlan 40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipv6 nd dad attempts value</td>
<td>Configures the number of consecutive neighbor solicitation messages that are sent on an interface while duplicate address detection is performed on the unicast IPv6 addresses of the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)ipv6 nd dad attempts 5</td>
<td></td>
</tr>
</tbody>
</table>

Configuring IPv6 Neighbor Discovery

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
IPv6 Support on the Router

4. `ipv6 nd {advertisement-interval | autoconfig | cache | dad | managed-config-flag | na | ns-interval | nud | other-config-flag | prefix | ra | reachable-time | router-preference}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies an interface type and number, and places the router in interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# Interface fastEthernet 0/0</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures a Neighbor Discovery on a specified interface on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td>• <code>advertisement-interval</code> — Sends an advertisement interval option in router advertisements (RAs).</td>
</tr>
<tr>
<td>`ipv6 nd {advertisement-interval</td>
<td>autoconfig</td>
</tr>
<tr>
<td></td>
<td>• <code>cache</code> — Cache entry.</td>
</tr>
<tr>
<td></td>
<td>• <code>dad</code> — Duplicate Address Detection.</td>
</tr>
<tr>
<td></td>
<td>• <code>managed-config-flag</code> — Hosts should use DHCP for address config.</td>
</tr>
<tr>
<td></td>
<td>• <code>na</code> — Neighbor advertisement control. Configures ND to extract an entry from an unsolicited NA.</td>
</tr>
<tr>
<td></td>
<td>• <code>ns-interval</code> — Sets the advertised NS retransmission interval.</td>
</tr>
<tr>
<td></td>
<td>• <code>nud</code> — Configures the number of times neighbor unreachability detection (NUD) resends neighbor solicitations (NSs).</td>
</tr>
<tr>
<td></td>
<td>• <code>other-config-flag</code> — Hosts should use DHCP for non-address config.</td>
</tr>
<tr>
<td></td>
<td>• <code>prefix</code> — Configures which IPv6 prefixes are included in IPv6 ND router advertisements.</td>
</tr>
<tr>
<td></td>
<td>• <code>ra</code> — Router advertisement control.</td>
</tr>
<tr>
<td></td>
<td>• <code>reachable-time</code> — Sets the advertised reachability time.</td>
</tr>
<tr>
<td></td>
<td>• <code>router-preference</code> — Sets the default router preference value.</td>
</tr>
</tbody>
</table>
Configuring IPv6 and IPv4 Dual-Stack on the Same VLAN

Before you begin

You should enable IPv6 routing before proceeding with this task. See Configuring IPv6 Addressing and Enabling IPv6 Routing, on page 536.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask
5. ipv6 address {ipv6-address/prefix-length | prefix-name sub-bits/prefix-length}
6. ipv6 enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
<td>Specifies an interface type and number, and places the router in interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface fastEthernet 0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ip address ip-address mask</td>
<td>Configures an IPv4 address on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip address 192.168.99.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>ipv6 address {ipv6-address/prefix-length</td>
<td>prefix-name sub-bits/prefix-length}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ipv6 address 2000::1/64</td>
<td>• ipv6-address—The IPv6 address to be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• prefix-length—the length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.</td>
</tr>
</tbody>
</table>
Configuring OSPFv3 for IPv6

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ipv6 ospf process-id area area-id [instance instance-id]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router></code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and places the router in interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface fastEthernet 0/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 ipv6 ospf process-id area area-id [instance instance-id]</td>
<td>Enables OSPFv3 on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>• process-id—Internal identification. It is locally assigned and can be any positive integer. The number used here is the number assigned administratively when enabling the OSPFv3 routing process.</td>
</tr>
<tr>
<td><code>Router(config-if)# ipv6 ospf 1 area 0</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring IS-IS for IPv6

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router isis area-tag`
4. `net network-entity-title`
5. `exit`
6. `interface type number`
7. `ipv6 address {ipv6-address/prefix-length | prefix-name sub-bits/prefix-length}`
8. `ipv6 router isis area-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 router isis area-tag</td>
<td>Enables IS-IS for the specified IS-IS routing process, and enters router configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# router isis area2</code></td>
<td>area-tag—Name for a routing process.</td>
</tr>
<tr>
<td>Step 4 net network-entity-title</td>
<td>Configures an IS-IS network entity title (NET) for the routing process.</td>
</tr>
<tr>
<td>Example: <code>Router(config-router)# net 49.0001.0000.0000.000c.00</code></td>
<td>network-entity-title—The network-entity-title argument defines the area addresses for the IS-IS area and the system ID of the router.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits router configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-router)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>interface type number</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# interface fastEthernet 0/0</td>
<td>Specifies an interface type and number, and places the router in interface configuration mode.</td>
</tr>
</tbody>
</table>

| Step 7 | ipv6 address {ipv6-address/prefix-length | prefix-name
sub-bits/prefix-length} | Purpose |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# ipv6 address 2001:DB8::3/64</td>
<td>Specifies the IPv6 network assigned to the interface and enables IPv6 processing on the interface.</td>
</tr>
</tbody>
</table>

- ipv6-address — The IPv6 address to be used.
- prefix-length — The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
- prefix-name — A general prefix, which specifies the leading bits of the network to be configured on the interface.
- sub-bits — The subprefix bits and host bits of the address to be concatenated with the prefixes provided by the general prefix specified with the prefix-name argument.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>ipv6 router isis area-name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# ipv6 router isis area2</td>
<td>Enables the specified IPv6 IS-IS routing process on an interface.</td>
</tr>
</tbody>
</table>

- area-name — Meaningful name for a routing process. If a name is not specified, a null name is assumed and the process is referenced with a null name. This name must be unique among all IP or Connectionless Network Service (CLNS) router processes for a given router. Required for multiarea IS-IS configuration. Each area in a multiarea configuration should have a non-null area name to facilitate identification of the area. Optional for conventional IS-IS configuration.

Configuring Multiprotocol-BGP for IPv6

Perform this task to configure an IPv6 BGP routing process and an optional BGP router ID for a BGP-speaking router.

SUMMARY STEPS

1. enable
2. configure terminal
3. router bgp as-number
4. no bgp default ipv4-unicast
5. bgp router-id ip-address
Configuring BFD for IPv6

Perform the tasks given below to configure Bidirectional Forwarding Detection (BFD) for IPv6:

Specifying a Static BFDv6 Neighbor

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables the privileged EXEC mode.
* Enter your password if prompted. |
| Example: | |
| | |

Configuring BFD for IPv6

Perform the tasks given below to configure Bidirectional Forwarding Detection (BFD) for IPv6:

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables the privileged EXEC mode.
* Enter your password if prompted. |
| Example: | |
| | |
Associating an IPv6 Static Route with a BFDv6 Neighbor

IPv6 static routes are automatically associated with a static BFDv6 neighbor. A static neighbor is associated with a BFDv6 neighbor if the static next-hop explicitly matches the BFDv6 neighbor.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]`
4. `ipv6 route [vrf vrf-name] ipv6-prefix/prefix-length {ipv6-address | interface-type [interface-number ipv6-address]} [next-hop-vrf [vrf-name | default]] [administrative-distance] [administrative-multicast-distance] [unicast | multicast] [next-hop-address] [tag tag]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
enable
Example:
Router> enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Step 2**
configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3**
ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated] | Specifies static route IPv6 BFDv6 neighbors. |
Configuring BFDv6 and OSPFv3

This section describes the procedures for configuring BFD support for OSPFv3, so that OSPFv3 is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD.
There are two methods for enabling BFD support for OSPFv3:

- You can enable BFD for all of the interfaces for which OSPFv3 is routing by using the `bfd all-interfaces` command in router configuration mode.
- You can enable BFD for a subset of the interfaces for which OSPFv3 is routing by using the `ipv6 ospf bfd` command in interface configuration mode.

Before you begin

- OSPFv3 must be running on all participating routers.
- The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ipv6 router ospf process-id`
4. `bfd all-interfaces`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ipv6 router ospf process-id</code></td>
<td>Configures an OSPFv3 routing process.</td>
</tr>
<tr>
<td>Example: Router(config)# ipv6 router ospf 2</td>
<td>• <code>process-id</code>—Internal identification. It is locally assigned and can be a positive integer from 1 to 65535. The number used here is the number assigned administratively when enabling the OSPF for IPv6 routing process.</td>
</tr>
<tr>
<td>Step 4 <code>bfd all-interfaces</code></td>
<td>Enables BFD for all interfaces participating in the routing process</td>
</tr>
<tr>
<td>Example: Router(config-rtr)# bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Enter this command twice to go to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td>Command or Action</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>Router(config-rtr)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring BFDv6 for BGP

SUMMARY STEPS

1. enable
2. configure terminal
3. router bgp as-tag
4. neighbor ip-address fall-over bfd
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable |
| Step 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| Step 3 | router bgp as-tag | Specifies a BGP process and enter router configuration mode.
Example:
Router(config)# router bgp 4500 |
| Step 4 | neighbor ip-address fall-over bfd | Enables support for BFD failover.
Example:
Router(config-router)# neighbor 10.0.0.1 fall-over bfd |
| Step 5 | exit | Exits global configuration mode and enters privileged EXEC mode.
Example:
Router(config-router)# exit |
Implementing QoS for IPv6

The QoS implementation for IPv6 environment in the Cisco ASR router is the same as that of IPv4. For configuration information on Configuring QoS on the Cisco ASR 901 router, refer to the following link:

For additional information on Implementing QoS for IPv6, refer to the following link:

Verifying the Configuration of IPv6 Support on the Cisco ASR 901 Router

This section describes how to use the `show` commands to verify the configuration and operation of the IPv6 Support feature on the Cisco ASR 901 router, and it contains the following topics:

Verifying IPv6 Addressing Routing

To verify the IPv6 Addressing Routing information, use the `show ipv6 interface` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 interface
Vlan40 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
  No Virtual link-local address(es):
  Global unicast address(es):
    2011:8:8:3::4, subnet is 2011:8:8:3::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::5
    FF02::1:FF00:4
    FF02::1:FF89:4831
  MTU is 1500 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
  ICMP unreachable messages are sent
  ND DAD is enabled, number of DAD attempts: 1
  ND reachable time is 30000 milliseconds (using 30000)
  ND advertised reachable time is 0 (unspecified)
  ND advertised retransmit interval is 0 (unspecified)
  ND router advertisements are sent every 200 seconds
  ND router advertisements live for 1800 seconds
  ND advertised default router preference is Medium
  Hosts use stateless autoconfig for addresses.

Loopback0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
  No Virtual link-local address(es):
  Global unicast address(es):
    FE01:4::4, subnet is FE01:4::/64
  Joined group address(es):
    FF02::1
    FF02::2
    FF02::5
    FF02::1:FF00:4
    FF02::1:FF89:4831
  MTU is 1514 bytes
  ICMP error messages limited to one every 100 milliseconds
  ICMP redirects are enabled
```
ICMP unreachables are sent
ND DAD is not supported
ND reachable time is 30000 milliseconds (using 30000)
ND RAs are suppressed (periodic)
Hosts use stateless autoconfig for addresses.

Verifying a Static IPv6 Route

To verify the static IPv6 route information, use the `show ipv6 route` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 route
IPv6 Routing Table - default - 19 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
        B - BGP, R - RIP, H - NHRP, I1 - ISIS L1
        I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
        EX - EIGRP external, ND - ND Default, NDP - ND Prefix, DCE - Destination
        NDr - Redirect
        O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
        ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
C  22::/64 [0/0]  via Vlan111, directly connected
L  22::22/128 [0/0]  via Vlan111, receive
C  33::/64 [0/0]  via Vlan111, directly connected
L  33::33/128 [0/0]  via Vlan111, receive
I1  454::/96 [115/20]  via FE80::4255:39FF:FE89:3F71, Vlan2020
```

Verifying a Stateless Auto-Configuration

To verify the autoconfigured IPv6 address and its state, use the `show ipv6 interface` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 interface loopback 0
Loopback0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
No Virtual link-local address(es):
Global unicast address(es):
    FE01::4, subnet is FE01::/64
Joined group address(es):
    FF02::1
    FF02::1
    FF02::5
    FF02::1:FF00:4
    FF02::1:FF89:4831
MTU is 1514 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is not supported
ND reachable time is 30000 milliseconds (using 30000)
ND RAs are suppressed (periodic)
Hosts use stateless autoconfig for addresses.
```
Verifying IPv6 Implementation on VLAN Interfaces

To verify the IPv6 implementation on VLAN interfaces, use the `show ipv6 interface` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 interface vlan40
Vlan40 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
No Virtual link-local address(es):
Global unicast address(es):
    2011:8:8:3::4, subnet is 2011:8:8:3::/64
Joined group address(es):
    FF02::1
    FF02::2
    FF02::5
    FF02::6
    FF02::1:FF00:4
    FF02::1:FF89:4831
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds (using 30000)
ND advertised reachable time is 0 (unspecified)
ND advertised retransmit interval is 0 (unspecified)
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
```

Verifying IPv6 Implementation on Loopback Interfaces

To verify the IPv6 implementation on loopback interfaces, use the `show ipv6 interface` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 interface loopback0
Loopback0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
No Virtual link-local address(es):
Global unicast address(es):
    FE01:4::4, subnet is FE01:4::/64
Joined group address(es):
    FF02::1
    FF02::2
    FF02::5
    FF02::1:FF00:4
    FF02::1:FF89:4831
MTU is 1514 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is not supported
ND reachable time is 30000 milliseconds (using 30000)
ND RAs are suppressed (periodic)
Hosts use stateless autoconfig for addresses.
```
Verifying ICMPv6 Configuration

To verify the ICMPv6 configuration information, use the `show ipv6 interface` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 interface
Vlan40 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
No Virtual link-local address(es):
Global unicast address(es):
   2011:8:8:3::4, subnet is 2011:8:8:3::/64
Joined group address(es):
   FF02::1
   FF02::2
   FF02::5
   FF02::1:FF00:4
   FF02::1:FF89:4831
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds (using 30000)
ND advertised reachable time is 0 (unspecified)
ND advertised retransmit interval is 0 (unspecified)
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
Loopback0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
No Virtual link-local address(es):
Global unicast address(es):
   FE01:4::4, subnet is FE01:4::/64
Joined group address(es):
   FF02::1
   FF02::2
   FF02::5
   FF02::1:FF00:4
   FF02::1:FF89:4831
MTU is 1514 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is not supported
ND reachable time is 30000 milliseconds (using 30000)
ND RAs are suppressed (periodic)
Hosts use stateless autoconfig for addresses.
```

To verify the ICMPv6 statistics, use the `show ipv6 traffic` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 traffic
IPv6 statistics:
  Rcvd: 8 total, 0 local destination
     0 source-routed, 0 truncated
     0 format errors, 0 hop count exceeded
     0 bad header, 0 unknown option, 0 bad source
     0 unknown protocol, 0 not a router
     0 fragments, 0 total reassembled
     0 reassembly timeouts, 0 reassembly failures
```
Verifying IPv6 Duplicate Address Detection Configuration

To verify the IPv6 Duplicate Address Detection configuration information, use the `show running configuration` command or the `show ipv6 interface` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 interface
Vlan40 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::4255:39FF:FE89:4831
No Virtual link-local address(es):
Global unicast address(es):
  2011:8:8:3::4, subnet is 2011:8:8:3::/64
Joined group address(es):
  FF02::1
  FF02::1:FF00:4
  FF02::1:FF89:4831
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ICMP unreachables are sent
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds (using 30000)
ND advertised reachable time is 0 (unspecified)
ND advertised retransmit interval is 0 (unspecified)
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
```
Verifying IPv6 Neighbor Discovery Configuration

To verify the IPv6 neighbor discovery configuration, use the `show ipv6 neighbors` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 neighbors detail
IPv6 Address TRLV Age Link-layer Addr State Interface
2001:103::1 0 0 001e.4a97.05bb REACH Vl103
2001:101::1 0 0 001e.4a97.05bb REACH Vl101
2001:300::1 0 72 001e.4a97.05bb STALE Vl300
2001:10::1 0 0 001e.4a97.05bb REACH Vl10
FE80::2001:FF97:FF00:FF 0 65 0000.0197.41fe STALE Vl90
FE80::21E:4AFF:97:5BB 0 25 001e.4a97.05bb STALE Vl101
FE80::21E:4AFF:97:5BB 0 0 001e.4a97.05bb REACH Vl110
FE80::21E:4AFF:97:5BB 0 0 001e.4a97.05bb REACH Vl170
FE80::21E:4AFF:97:5BB 0 0 001e.4a97.05bb STALE Vl160
2001:10:10 0 0 001e.4a97.05bb REACH Vl170
2001:180::1 0 0 001e.4a97.05bb REACH Vl180
2001:190::1 0 0 001e.4a97.05bb REACH Vl190
```
ND DAD is not supported
ND reachable time is 30000 milliseconds (using 30000)
ND RAs are suppressed (periodic)
Hosts use stateless autoconfig for addresses.

Router# show ip interface
GigabitEthernet0/0 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/1 is administratively down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/2 is up, line protocol is up
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/3 is up, line protocol is up
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/4 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/5 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/6 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/7 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/8 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/9 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/10 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
GigabitEthernet0/11 is down, line protocol is down
 Inbound access list is not set
 Outgoing access list is not set
 Internet protocol processing disabled
FastEthernet0/0 is administratively down, line protocol is down
 Internet protocol processing disabled
Vlan1 is down, line protocol is down
 Internet protocol processing disabled
Vlan40 is up, line protocol is up
 Internet protocol processing disabled
Loopback0 is up, line protocol is up
 Internet protocol processing disabled
Verifying OSPFv3 for IPv6 Configuration

To verify the OSPF for IPv6 configuration, use the `show ipv6 ospf` command in privileged EXEC mode, as shown in the example.

```
Router# show ipv6 ospf
Routing Process "ospfv3 10" with ID 4.4.4.4
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Router is not originating router-LSAs with maximum metric
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0, Checksum Sum 0x000000
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Graceful restart helper support enabled
Reference bandwidth unit is 1. 1 normal 0 stub 0 nssa
RFC1583 compatibility enabled

Area 34
  Number of interfaces in this area is 2
  SPF algorithm executed 5 times
  Number of LSA 3. Checksum Sum 0x01F6C1
  Number of DCbitless LSA 0
  Number of indication LSA 0
  Number of DoNotAge LSA 0
  Flood list length 0
```

Verifying IS-IS for IPv6 Configuration

To verify the IPv6 Addressing Routing information, use the `show isis ipv6 rib` command in privileged EXEC mode, as shown in the example.

```
Router# show isis ipv6 rib
IS-IS IPv6 process area2, local RIB
```

Verifying Multiprotocol-BGP for IPv6 Configuration

To verify the IPv6 Addressing Routing information, use the `show bgp ipv6 unicast summary` command in privileged EXEC mode, as shown in the examples.

```
Router# show bgp ipv6 unicast summary
BGP router identifier 9.9.9.9, local AS number 5500
BGP table version is 25, main routing table version 25
15 network entries using 2580 bytes of memory
53 path entries using 4664 bytes of memory
3/3 BGP path/bestpath attribute entries using 384 bytes of memory
1 BGP AS-PATH entries using 24 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP using 7652 total bytes of memory
BGP activity 43/2 prefixes, 134/46 paths, scan interval 60 secs
```
```
<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
<th>State/PfxRcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE80::21E:4AFF:FE97:5BB%Vlan160</td>
<td>4</td>
<td>6500</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>01:09:23</td>
<td>Idle</td>
</tr>
</tbody>
</table>

Router# show bgp ipv6 unicast neighbors 2001:101::2
BGP neighbor is 2001:101::2, remote AS 6500, external link
Fall over configured for session
BFD is configured. Using BFD to detect fast fallover
BGP state = Established, up for 01:09:48
Last read 00:00:10, last write 00:00:23, hold time is 180, keepalive interval is 60 seconds

Neighbor sessions:
1 active, is not multisession capable (disabled)
Neighbor capabilities:
Route refresh: advertised and received(new)
Four-octets ASN Capability: advertised and received
Address family IPv6 Unicast: advertised and received
Enhanced Refresh Capability: advertised and received
Multisession Capability:
Stateful switchover support enabled: NO for session 1
Message statistics:
InQ depth is 0
OutQ depth is 0

<table>
<thead>
<tr>
<th>Sent</th>
<th>Rcvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>84</td>
<td>88</td>
</tr>
</tbody>
</table>

Default minimum time between advertisement runs is 30 seconds
For address family: IPv6 Unicast
Session: 2001:101::2
BGP table version 25, neighbor version 25/0
Output queue size : 0
Index 1, Advertise bit 0
1 update-group member
Slow-peer detection is disabled
Slow-peer split-update-group dynamic is disabled

Prefix activity:

<table>
<thead>
<tr>
<th>Prefixes Current</th>
<th>Prefixes Total</th>
<th>Implicit Withdraw</th>
<th>Explicit Withdraw</th>
<th>Used as bestpath</th>
<th>Used as multipath</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Used as bestpath: n/a 3
Used as multipath: n/a 0

Local Policy Denied Prefixes:

<table>
<thead>
<tr>
<th>AS_PATH loop</th>
<th>InValid Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a 4</td>
<td>2 n/a</td>
</tr>
</tbody>
</table>

Total: 2 4

Number of NLRIs in the update sent: max 7, min 0
Last detected as dynamic slow peer: never
Dynamic slow peer recovered: never
Refresh Epoch: 2
Last Sent Refresh Start-of-rib: never
Last Sent Refresh End-of-rib: never
Last Received Refresh Start-of-rib: 01:09:48
Last Received Refresh End-of-rib: 01:09:48```
Verifying BFD for IPv6 Configuration

To verify the IPv6 Addressing Routing information, use the show bfd neighbors command in privileged EXEC mode, as shown in the example.

```
Router# show bfd neighbors
IPv4 Sessions
Neighbor Addr LD/RA RH/RS State Int
101.101.101.2 6/5 Up Up Vl101
103.103.103.2 7/6 Up Up Vl103
150.150.150.2 2/1 Up Up Vl150
IPv6 Sessions
Neighbor Addr LD/RA RH/RS State Int
2001:10::12 16/14 Up Up Vl10
2001:101::2 12/11 Up Up Vl101
2001:103::2 3/2 Up Up Vl103
2001:170::2 8/7 Up Up Vl170
2001:180::2 11/10 Up Up Vl180
2001:190::2 4/3 Up Up Vl190
FE80::21E:4AFF:FE97:5BB 13/12 Up Up Vl1160
CE1-2009#
```
Verifying BFDv6 and OSPFv3 Configuration

To verify the BFDv6 and OSPFv3 configuration, use the `show bfd neighbors` or the `show ipv6 ospf` command in privileged EXEC mode, as shown in the examples.

```
Router# show bfd neighbors
IPv4 Sessions
NeighAddr LD/RD RH/RS State Int
101.101.101.1 6/5 Up Up Vl1101
103.103.103.1 7/6 Up Up Vl1103
150.150.150.1 2/1 Up Up Vl1150
IPv6 Sessions
NeighAddr LD/RD RH/RS State Int
2001:10::2 16/14 Up Up Vl110
2001:101::2 12/11 Up Up Vl1101
2001:170::2 8/7 Up Up Vl1170
2001:180::2 11/10 Up Up Vl1180
2001:190::2 4/3 Up Up Vl1190
FE80::21E:4AFF:FE97:5BB 13/12 Up Up Vl1160
```

```
Router# show ipv6 ospf
Routing Process "ospfv3 10" with ID 4.4.4.4
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Router is not originating router-LSAs with maximum metric
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Minimum LSA Interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Graceful restart helper support enabled
Reference bandwidth unit is 100 mbps
RFC1583 compatibility enabled
Area 34
 Number of interfaces in this area is 2
 SPF algorithm executed 11 times
 Number of LSA 3. Checksum Sum 0x01D6D1
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0
```

Verifying BFDv6 for BGP Configuration

To verify the BFDv6 for BGP configuration, use the `show bfd neighbors` command in privileged EXEC mode, as shown in the example.

```
Router# show bfd neighbors
IPv4 Sessions
NeighAddr LD/RD RH/RS State Int
101.101.101.1 6/5 Up Up Vl1101
103.103.103.1 7/6 Up Up Vl1103
150.150.150.1 2/1 Up Up Vl1150
IPv6 Sessions
NeighAddr LD/RD RH/RS State Int
2001:10::2 16/14 Up Up Vl110
2001:101::2 12/11 Up Up Vl1101
```
Configuration Examples for IPv6 Support on the Router

This section provides sample configuration examples for IPv6 Support on the router feature.

Example: IPv6 Addressing on VLAN Interfaces

The following is a sample configuration of IPv6 addressing on VLAN interfaces.

```
! interface Vlan2020
 ip address 4.5.6.7 255.255.255.0
 ipv6 address FE80::3 link-local
 ipv6 address 3333::3335/64
 ipv6 address 4400::/64 anycast
 ipv6 address autoconfig
 ipv6 enable
 ipv6 ospf 1 area 0
!
```

Example: IPv6 Addressing on Loopback Interfaces

The following is a sample configuration of IPv6 addressing on Loopback interfaces.

```
! interface Loopback100
 ip address 170.0.0.201 255.255.255.0
!
! interface Loopback555
 no ip address
 ipv6 address 22::22/64
 ipv6 address 555::554/64
 ipv6 enable
 ipv6 ospf 1 area 0
!
```

Example: Customizing ICMPv6

The following is a sample configuration of customizing ICMPv6.

```
!
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ICMP unreachabilities are sent
!
```
Example: Configuring IPv6 Duplicate Address Detection

The following is a sample configuration of IPv6 duplicate address detection.

```shell
ND DAD is enabled, number of DAD attempts: 1
!Duplicate address detection information is given above.
ND reachable time is 30000 milliseconds (using 30000)
ND advertised reachable time is 0 (unspecified)
ND advertised retransmit interval is 0 (unspecified)
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
ND advertised default router preference is Medium
Hosts use stateless autoconfig for addresses.
```

Example: Configuring IPv6 Neighborhood Discovery

The following is a sample configuration of IPv6 neighborhood discovery.

```shell
interface Vlan111
 no ip address
 ipv6 address 22::22/64
 ipv6 address 33::33/64
 ipv6 address autoconfig
 ipv6 nd autoconfig prefix
!Neighborhood discovery information is given above.
 ipv6 enable
```

Example: Enabling IPv6 Stateless Address Autoconfiguration

The following is a sample configuration of IPv6 stateless address autoconfiguration.

```shell
interface Vlan111
 no ip address
 ipv6 address 22::22/64
 ipv6 address 33::33/64
 ipv6 address autoconfig
 ipv6 nd autoconfig prefix
!IPv6 address autoconfiguration details are given above.
 ipv6 enable
```

Example: Configuring the IPv4 and IPv6 Dual-Stack

The following is a sample configuration of IPv4 and IPv6 dual-stack.

```shell
interface Vlan222
 ip address 22.22.22.22 255.255.255.0
 ipv6 address 99::99/64
!IPv4 and IPv6 dual-stack information is given above.
```
Example: Configuring IPv6 Static Routing

The following is a sample configuration of IPv6 static routing between two routers.

**Router-1**

ipv6 route 555::/64 Vlan2020

**Router-2**

interface Loopback555
no ip address
ipv6 address 22::22/64
ipv6 address 555::554/64
ipv6 enable
ipv6 ospf 1 area 0

Example: Configuring BFD and Static Routing for IPv6

The following is a sample configuration of bidirectional forwarding detection and static routing for IPv6.

```
! ipv6 route static bfd vlan 4000 2001::1
ipv6 route 2001:DB8::/64 vlan 4000 2001::1
interface vlan 4000
ipv6 add 2001::2/64
bfd interval 50 min_rx 50 multiplier 3
```

Example: Configuring OSPFv3 for IPv6

The following is a sample configuration of OSPFv3 for IPv6.

**Router-1**

```
! interface Loopback20202
no ip address
ipv6 address 4444::4444/64
ipv6 enable
ipv6 ospf 1 area 0
!
ipv6 router ospf 1
router-id 1.1.1.1
area 0 range 4444::/48
!
```

**Router-2**

```
! interface Loopback30303
```
Example: Configuring BFD and OSPFv3 for IPv6

The following is a sample configuration of bidirectional forwarding detection support for OSPFv3 on one or more OSPFv3 Interfaces:

```
!
ipv6 router ospf 1
router-id 1.1.1.1
interface vlan 4000
ipv6 add 2001::2/64
ipv6 ospf 1 area 0
ipv6 ospf bfd
bfd interval 50 min_rx 50 multiplier 3
!
```

The following is a sample configuration of bidirectional forwarding detection support for OSPFv3 on all interfaces:

```
ipv6 router ospf 1
router-id 1.1.1.1
bfd all-interfaces
interface vlan 4000
ipv6 add 2001::2/64
ipv6 ospf 1 area 0
bfd interval 50 min_rx 50 multiplier 3
```

Example: Configuring IS-IS for IPv6

The following is a sample configuration of IS-IS for IPv6.

```
Router-1

!
interface Loopback20202
no ip address
ipv6 address 565::565/96
ipv6 address 4444::4444/64
ipv6 enable
ipv6 router isis alpha
!
router isis alpha
net 49.1111.2222.3333.4444.00
!
```
Example: Configuring Multiprotocol-BGP for IPv6

The following is a sample configuration of multiprotocol-BGP for IPv6.

Router-2

! interface Loopback30303
  no ip address
  ipv6 address 454::454/96
  ipv6 address 4444::4443/64
  ipv6 enable
  ipv6 router isis alpha
!
  router isis alpha
    net 49.1111.2220.3330.4440.00
!

Example: Configuring Multiprotocol-BGP for IPv6

Router-1

--------
ipv6 unicast-routing
! Enables forwarding of IPv6 packets.
ipv6 cef
interface Loopback10
  no ip address
  ipv6 address 2010:AB8:2::/48
  ipv6 enable
!
interface Loopback20
  no ip address
  ipv6 address 2010:AB8:3::/48
  ipv6 enable
!
interface FastEthernet0/0
  no ip address
duplex auto
speed auto
  ipv6 address 2010:AB8:0:2::/64 eui-64
  ipv6 enable
!
router bgp 1
  bgp router-id 1.1.1.1
  no bgp default ipv4-unicast
! Without configuring “no bgp default ipv4-unicast” only IPv4 will be advertised.
  bgp log-neighbor-changes
  neighbor 2010:AB8:0:2:C601:10FF:FE58:0 remote-as 2
!
  address-family ipv6
    neighbor 2010:AB8:0:2:C601:10FF:FE58:0 activate
    network 2010:AB8:2::/48
    network 2010:AB8:3::/48
    exit-address-family
!

Router-2

--------
Example: Configuring BFD and Multiprotocol-BGP for IPv6

The following is a sample configuration of bidirectional forwarding detection and multiprotocol-BGP for IPv6.

**Router-1**

```
interface Vlan10
ipv6 address 2001:10::1/64
bfd interval 250 min_rx 250 multiplier 3
router bgp 5500
bgp router-id 9.9.9.9
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 2001:10::2 remote-as 6500
neighbor 2001:10::2 fall-over bfd
address-family ipv6
redistribute connected
neighbor 2001:10::2 activate
exit-address-family
```

**Router-2**

```
interface Vlan10
ipv6 address 2001:10::2/64
bfd interval 250 min_rx 250 multiplier 3
router bgp 6500
bgp router-id 10.10.10.10
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 2001:10::1 remote-as 5500
neighbor 2001:10::1 fall-over bfd
address-family ipv6
redistribute connected
neighbor 2001:10::1 activate
exit-address-family
```
Troubleshooting Tips

Problems can occur in the IPv6 functionality due to misconfigurations. To enable IPv6 functionality, you should enable IPv6 configurations at several places.

Some of the sample troubleshooting scenarios are provided below:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 commands are not available.</td>
<td>IPv6 is not enabled by default. Enable IPv6 functionality using <code>ipv6 unicast-routing</code> command. Also, check to see if IPv6 is enabled on the virtual templates.</td>
</tr>
<tr>
<td>No route advertisement is sent to the MN when the IPv6 CP comes up.</td>
<td>The route advertisement is disabled on the virtual-templates. Configure the <code>no ipv6 nd suppress-ra</code> command to enable route advertisement messages. Also, define a valid prefix pool for IPv6.</td>
</tr>
</tbody>
</table>

The following `debug` and `show` commands allows you to troubleshoot the IPv6 configuration.

<table>
<thead>
<tr>
<th>Debug Commands</th>
<th>Show Commands</th>
<th>Platform Hardware Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ipv6</td>
<td>show ipv6</td>
<td>debug platform hardware cef adjacency</td>
</tr>
<tr>
<td>debug ipv6 address</td>
<td>show ipv6 interface</td>
<td>debug platform hardware cef backwalk</td>
</tr>
<tr>
<td>debug ipv6 icmp</td>
<td>show ipv6 interface brief</td>
<td>debug platform hardware cef deaggregate</td>
</tr>
<tr>
<td>debug ipv6 interface</td>
<td>show ipv6 route</td>
<td>debug platform hardware cef entry</td>
</tr>
<tr>
<td>debug ipv6 nd</td>
<td>—</td>
<td>debug platform hardware cef interface</td>
</tr>
<tr>
<td>debug ipv6 packet</td>
<td>—</td>
<td>debug platform hardware cef loadbalance</td>
</tr>
<tr>
<td>debug ipv6 pool</td>
<td>—</td>
<td>debug platform hardware cef special</td>
</tr>
<tr>
<td>debug ipv6 routing</td>
<td>—</td>
<td>debug platform hardware cef table</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>debug platform hardware ether idb</td>
</tr>
</tbody>
</table>

Where to Go Next

For additional information on IPv6 Support on the router, see the documentation listed in the Additional References section.

Additional References

The following sections provide references related to LLDP feature.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html">http://www.cisco.com/c/en/us/td/docs/wireless/asr_901/mib/reference/asr_mib.html</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for IPv6 Support on the Cisco ASR 901 Router

Table 34: Feature Information for IPv6 Support on the Cisco ASR 901 Router, on page 572 lists the release history for this feature.
Table 34: Feature Information for IPv6 Support on the Cisco ASR 901 Router

Table 34: Feature Information for IPv6 Support on the Cisco ASR 901 Router, on page 572 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note
Table 34: Feature Information for IPv6 Support on the Cisco ASR 901 Router, on page 572 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Support on the Cisco ASR 901 Router</td>
<td>15.2(2)SNG</td>
<td>This feature is introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>ICMPv6</td>
<td>15.2(2)SNG</td>
<td>The ICMP is used to generate error messages.</td>
</tr>
<tr>
<td>IPv6 Neighbor Discovery</td>
<td>15.2(2)SNG</td>
<td>The IPv6 neighbor discovery determines the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and track neighboring routers.</td>
</tr>
<tr>
<td>IPv4 and IPv6 Dual-Stack</td>
<td>15.2(2)SNG</td>
<td>The dual IPv4 and IPv6 protocol stack technique is used to transition to IPv6. It enables gradual, one-by-one upgrades to applications running on nodes.</td>
</tr>
</tbody>
</table>
### Feature Information for IPv6 Support on the Cisco ASR 901 Router

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| RIP for IPv6                         | 15.2(2)SNG | The IPv6 RIP Routing Information Database (RIB) contains a set of best-cost IPv6 RIP routes learned from all its neighboring networking devices. The RIB also stores any expired routes that the RIP process is advertising to its neighbors running RIP.  
**Platform-Independent Cisco IOS Software Documentation**  
The following section of the “Implementing RIP for IPv6” chapter of the IPv6 Configuration Guide provide information about this feature:  
- RIP for IPv6                                                                                                                                                           |
| IS-IS for IPv6                       | 15.2(2)SNG | The IPv6 RIP Routing Information Database (RIB) contains a set of best-cost IPv6 RIP routes learned from all its neighboring networking devices. The RIB also stores any expired routes that the RIP process is advertising to its neighbors running RIP.  
**Platform-Independent Cisco IOS Software Documentation**  
The following section of the “Implementing IS-IS for IPv6” chapter of the IPv6 Configuration Guide provide information about this feature:  
- IS-IS for IPv6                                                                                                                                                         |
| OSPFv3 for IPv6                      | 15.2(2)SNG | OSPF is a link-state protocol. A link-state protocol makes its routing decisions based on the states of the links that connect source and destination machines.  
**Platform-Independent Cisco IOS Software Documentation**  
The following section of the “Implementing OSPFv3” chapter of the IPv6 Configuration Guide provide information about this feature:  
- Information about OSPFv3                                                                                                                                               |
| Multiprotocol BGP Extensions for IPv6| 15.2(2)SNG | Multiprotocol BGP is the supported exterior gateway protocol (EGP) for IPv6.  
**Platform-Independent Cisco IOS Software Documentation**  
The following section of the “Implementing Multiprotocol BGP for IPv6” chapter of the IPv6 Configuration Guide provide information about this feature:  
- Multiprotocol BGP Extensions for IPv6                                                                                                                                 |
| Bidirectional Forwarding Detection for IPv6 | 15.2(2)SNG | BFD is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols.  
**Platform-Independent Cisco IOS Software Documentation**  
The following section of the “Implementing Bidirectional Forwarding Detection for IPv6” chapter of the IPv6 Configuration Guide provide information about this feature:  
- Implementing Bidirectional Forwarding Detection for IPv6                                                                                                                                 |
Feature Information

### Releases

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing QoS for IPv6</td>
<td>15.2(2)SNG</td>
</tr>
</tbody>
</table>

### Feature Information

QoS features for IPv6 include packet classification, policing, marking on ingress path of Ethernet interfaces and packet classification, policing, marking, scheduling, per interface and per qos-group shaping, LLQ, and WRED on egress path of GigabitEthernet interfaces.

**Platform-dependent Cisco IOS Software Documentation**

The “Configuring QoS” section of the Cisco ASR 901 Series Aggregation Services Router Software Configuration Guide provide information about this feature:

- Configuring QoS

**Platform-Independent Cisco IOS Software Documentation**

The following section of the “Implementing QoS for IPv6” chapter of the IPv6 Configuration Guide provide information about this feature:

- Implementing QoS for IPv6
CHAPTER 30

Labeled BGP Support

This feature module describes how to add label mapping information to the Border Gateway Protocol (BGP) message that is used to distribute the route on the Cisco ASR 901 Series Aggregation Services Routers.

• Finding Feature Information, on page 575
• Prerequisites for Labeled BGP Support, on page 575
• Restrictions for Labeled BGP Support, on page 575
• Overview of Labeled BGP Support, on page 576
• How to Configure Labeled BGP Support, on page 576
• Additional References, on page 580
• Feature Information for Labeled BGP Support, on page 581

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Labeled BGP Support

• Cisco IOS Release 15.2(2)SNG or a later release that supports Labeled BGP must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.

Restrictions for Labeled BGP Support

• The Cisco ASR 901 router supports only the client functionality of RFC 3107 and not its area border router (ABR) functionality.
• The Cisco ASR 901 router does not support two label-pop (Label pop is the process of removing label header).

• Four label push is not supported. Due to this limitation, Labeled BGP access (RFC 3107) with Remote LFA-FRR/TE-FRR is not supported, if it exceeds three labels.

Overview of Labeled BGP Support

The Labeled BGP Support feature provides the option to use the BGP update message (that is used to distribute the route) to re-distribute Multiprotocol Label Switching (MPLS) label mapped to that route. The label mapping information is added (using send-label option of RFC 3107) to the same BGP message that is used to distribute the route. This process is useful in inter-domain routing, and the Cisco ASR 901 router supports this functionality as well as the virtual private network (VPN) and virtual routing and forwarding (VRF) over Labeled BGP functionality.

VPN/VRF over RFC 3107

The VPN/VRF over Labeled BGP is a 3-label imposition process (VRF Label, BGP label, interior gateway protocols [IGP] label). The innermost label is VRF, followed by BGP (for RFC 3107), and IGP. This functionality allows the Cisco ASR 901 router to support a VRF over labeled BGP session with an ABR.

How to Configure Labeled BGP Support

Note

The TDM over Labeled BGP feature is supported effective with Cisco IOS Release 15.3(3)S. The configuration and restrictions for this feature are the same as that of Labeled BGP Support.

To configure Labeled BGP Support feature on the Cisco ASR 901 router, perform the steps given below:

SUMMARY STEPS

1. enable
2. configure terminal
3. router bgp peer-group-name
4. address family ipv4
5. neighbor peer-group-name send-community
6. neighbor peer-group-name peer-group-name
7. neighbor peer-group-name activate

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters router configuration mode.</td>
<td></td>
</tr>
<tr>
<td>router bgp peer-group-name</td>
<td>Number of an autonomous system that identifies the router to other BGP routers and tags the routing information that is passed along. The valid values range from 1 to 65535.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# router bgp 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Configures the address family as IPv4 using standard IPv4 address prefixes.</td>
<td></td>
</tr>
<tr>
<td>address family ipv4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# address family ipv4</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies that the communities attribute be sent to the neighbor at this IP address.</td>
<td></td>
</tr>
<tr>
<td>neighbor peer-group-name send-community</td>
<td>Name of a BGP peer group.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# neighbor 172.16.70.23 send-community</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Configures the router to associate a BGP label to the prefix using the neighborpeer-group-nameactivate option.</td>
<td></td>
</tr>
<tr>
<td>neighbor peer-group-name peer-group-name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# neighbor 172.16.70.23 send-label</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Enables the exchange of information with a neighboring BGP router.</td>
<td></td>
</tr>
<tr>
<td>neighbor peer-group-name activate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# neighbor 172.16.70.23 activate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Configuration Example for Labeled Support**

The following is a sample configuration of the Labeled BGP Support feature.

```
! router bgp 1000
 bgp router-id 100.111.13.23
 neighbor pan peer-group
 neighbor pan remote-as 1000
 neighbor pan update-source Loopback0
 neighbor 100.111.14.3 peer-group pan
 address-family ipv4
```
neighbor pan send-community
neighbor pan send-label
The "send-label" option is used to associate a BGP label to the prefix.
neighbor 100.111.14.3 activate
exit-address-family
!
address-family vpnv4
neighbor pan send-community extended
neighbor 100.111.14.3 activate
exit-address-family
!
address-family ipv4 vrf LTE12
redistribute connected
exit-address-family
!
Verifying Labeled BGP Support

To verify the Labeled BGP Support on the Cisco ASR 901 router, use the show commands given below:

Router# show bgp ipv4 unicast labels

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>In label/Out label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0.0</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>10.13.22.2/31</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>10.13.23.0/31</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>10.70.1.0/30</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.100.10.1/32</td>
<td>100.111.14.3</td>
<td>nolabel/558</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/560</td>
</tr>
<tr>
<td>100.100.13.23/32</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.101.13.23/32</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.111.13.23/32</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.111.13.26/32</td>
<td>100.111.14.3</td>
<td>nolabel/534</td>
</tr>
<tr>
<td></td>
<td>100.111.14.4</td>
<td>nolabel/68</td>
</tr>
<tr>
<td>100.111.15.1/32</td>
<td>100.111.14.3</td>
<td>nolabel/25</td>
</tr>
</tbody>
</table>

Router# show ip bgp labels

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>In label/Out label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0.0</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>10.13.22.2/31</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>10.13.23.0/31</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>10.70.1.0/30</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.100.10.1/32</td>
<td>100.111.14.4</td>
<td>nolabel/563</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/556</td>
</tr>
<tr>
<td>100.100.13.23/32</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.101.13.23/32</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.111.13.23/32</td>
<td>0.0.0.0</td>
<td>imp-null/nolabel</td>
</tr>
<tr>
<td>100.111.13.26/32</td>
<td>100.111.14.4</td>
<td>nolabel/534</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/68</td>
</tr>
</tbody>
</table>

Router# show ip bgp vpnv4 all label

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>In label/Out label</th>
</tr>
</thead>
<tbody>
<tr>
<td>154.154.236.4/30</td>
<td>100.154.1.1</td>
<td>nolabel/14002</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/14002</td>
</tr>
<tr>
<td>100.111.15.1/32</td>
<td>100.111.14.4</td>
<td>nolabel/561</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/559</td>
</tr>
<tr>
<td>100.111.15.1/32</td>
<td>100.111.14.4</td>
<td>nolabel/59</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/57</td>
</tr>
<tr>
<td>100.111.15.2/32</td>
<td>100.111.14.4</td>
<td>nolabel/59</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/57</td>
</tr>
<tr>
<td>100.111.15.2/32</td>
<td>100.111.14.4</td>
<td>nolabel/59</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/57</td>
</tr>
<tr>
<td>100.112.1.1/32</td>
<td>100.111.14.4</td>
<td>nolabel/62</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/52</td>
</tr>
<tr>
<td>100.112.1.2/32</td>
<td>100.111.14.4</td>
<td>nolabel/62</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/52</td>
</tr>
<tr>
<td>100.112.1.3/32</td>
<td>100.111.14.4</td>
<td>nolabel/62</td>
</tr>
<tr>
<td></td>
<td>100.111.14.3</td>
<td>nolabel/52</td>
</tr>
</tbody>
</table>
Verifying Labeled BGP Support

To verify three Label Support, use the `show ip cef vrf` command as shown in the following example.

```
Router# show ip cef vrf LTE12
113.22.12.0/24, epoch 0, flags rib defined all labels, RIB[B], refcount 5, per-destination sharing
sources: RIB
feature space:
IPRM: 0x00018000
LFD: 113.22.12.0/24 0 local labels contains path extension list
ifnums: (none)
path 13E8A064, path list 13F49DC8, share 1/1, type recursive, for IPv4, flags must-be-labelled, recursive-via-host
MPLS short path extensions: MOI flags = 0x0 label 51
recursive via 100.111.13.22[IPv4:Default] label 51, fib 141253D8, 1 terminal fib, v4:Default:100.111.13.22/32
path 12520C8C, path list 13F49C38, share 1/1, type attached nexthop, for IPv4
MPLS short path extensions: MOI flags = 0x0 label 17
nexthop 100.111.14.4 Vlan10 label 17, adjacency IP adj out of Vlan10, addr 10.13.23.1 13734C80
output chain: label 22 label 51 label 17 TAG adj out of Vlan10, addr 10.13.23.1 143EDCA0
You can see three labels in the output chain; of which 22 is VRF label, 51 is BGP label and 17 is LDP label
```
## Additional References

The following sections provide references related to Labeled BGP Support feature.

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>BGP Commands</td>
<td>Cisco IOS IP Routing: BGP Command Reference</td>
</tr>
<tr>
<td>Configuring BGP</td>
<td>Cisco IOS IP Configuration Guide, Release 12.2</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| None| To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:  

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC-3107</td>
<td><em>Carrying Label Information in BGP-4</em></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
Feature Information for Labeled BGP Support

Table 35: Feature Information for Labeled BGP Support, on page 581 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 35: Feature Information for Labeled BGP Support, on page 581 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 35: Feature Information for Labeled BGP Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labeled BGP Support</td>
<td>15.2(2)SNG</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>TDM over Labeled BGP</td>
<td>15.3(3)S</td>
<td>Support for TDM over Labeled BGP was introduced on the Cisco ASR 901 routers.</td>
</tr>
</tbody>
</table>
Feature Information for Labeled BGP Support
CHAPTER 31

MPLS Traffic Engineering - Fast Reroute Link Protection

This feature module describes the Fast Reroute (FRR) link protection and Bidirectional Forwarding Detection (BFD)-triggered FRR feature of Multiprotocol Label Switching (MPLS) traffic engineering (TE).

- Finding Feature Information, on page 583
- Prerequisites for MPLS Traffic Engineering - Fast Reroute Link Protection, on page 583
- Restrictions for MPLS Traffic Engineering - Fast Reroute Link Protection, on page 584
- MPLS TE-FRR Link Protection Overview, on page 584
- How to Configure Traffic Engineering - Fast Reroute Link Protection, on page 586
- Verification Examples, on page 597
- Configuration Examples, on page 604
- Additional References, on page 604
- Feature Information for MPLS Traffic Engineering - Fast Reroute Link Protection, on page 605

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS Traffic Engineering - Fast Reroute Link Protection

- Cisco IOS Release 15.2(2)SNG or a later release that supports the MPLS TE-FRR link protection feature must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.
- You should enable the asr901-platf-frr command at the global configuration before using TE-FRR.
Your network must support both the following Cisco IOS features before you can enable Fast Reroute link protection:

- IP Cisco Express Forwarding (CEF)
- Multiprotocol Label Switching (MPLS)

Your network must also support at least one of the following protocols:

- Intermediate System-to-Intermediate System (IS-IS)
- Open Shortest Path First (OSPF)

Restrictions for MPLS Traffic Engineering - Fast Reroute Link Protection

- MPLS TE works only on the Switch Virtual Interface (SVI).
- MPLS TE-FRR feature is used only for link protection and not for node protection.
- MPLS deployments that allows 4-label push is not supported.
- When the TE-FRR deployments are in ring topology, hair-pinning can occur while trying to reach the destination during cutover.
- MPLS TE-FRR is not supported on layer 3 over layer 2 deployments.
- You cannot configure BFD and RSVP on the same interface.
- You should use the no l3-over-l2 flush buffers command before configuring MPLS TE-FRR feature.
- Path protection is not supported.
- Time-division multiplexing (TDM) pseudowire over TE-FRR is not supported.
- QoS is not supported on the MPLS TE tunnels.
- You cannot enable FRR hello messages on a router that also has Resource Reservation Protocol (RSVP) Graceful Restart enabled.
- Psuedowire redundancy over TE-FRR is not supported.
- CFM over Xconnect over TE-FRR is not supported.
- The imposition statistics will not work for EOMPLS after the FRR event or layer 3 cutover.

MPLS TE-FRR Link Protection Overview

The MPLS TE is supported on the Cisco ASR 901 router to enable only the FRR. The traffic engineering aspects of MPLS TE is currently not supported. The MPLS TE is the process of establishing and maintaining label-switched paths (LSPs) across the backbone using Resource Reservation Protocol (RSVP). The path used by a given LSP at any point in time is based upon the LSP resource requirements and available network resources.
The MPLS TE-FRR feature is useful for time critical applications like voice calls that require minimal loss of data during link failures. This feature is used to overcome the issue of convergence speed experienced by the Interior Gateway Protocol (IGP) fast timers.

In the MPLS TE-FRR feature, backup tunnels are used to minimize the impact of link breakages. The point of failure can either be a head-end tunnel or a mid-point. In both the cases, the scope of recovery is local. The reroute decision is completely controlled locally by the router interfacing the failed link. The recovery is done by the node that listens to the failure. The node that detects the failure switches the traffic to the backup link with the least amount of delay.

The following figure illustrates the FRR link protection.

**Figure 32: FRR Link Protection**

<table>
<thead>
<tr>
<th>R2</th>
<th>Head-end of the tunnel</th>
<th>R2-R6-R7-R3</th>
<th>Backup link</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2-R3</td>
<td>Protected link</td>
<td>R3</td>
<td>Tail-end of tunnel</td>
</tr>
<tr>
<td>R2-R3</td>
<td>Primary link</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The MPLS TE-FRR feature supports the following:

- IP, L3VPN, and EoMPLS.
- Supports BFD sessions with 50ms interval.
- Single hop tunnel and multi-hop tunnel deployments.
- Auto-tunnel feature in primary and backup nodes.
- Targeted LDP sessions on tunnels.

**BFD-triggered Fast Reroute**

The MPLS Traffic Engineering: BFD-triggered Fast Reroute feature allows you to obtain link protection by using the BFD protocol.

**BFD**

BFD is a detection protocol designed to provide fast forwarding link failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding link failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding link failures at a uniform rate, rather than the variable rates for different routing protocol Hello mechanisms, network profiling and planning is easier, and reconvergence time is consistent and predictable.
Fast Reroute

Fast Reroute is a mechanism for protecting MPLS TE LSPs from link failures by locally repairing the LSPs at the point of failure. This allows the data to continue to flow on them while their headend routers attempt to establish new end-to-end LSPs to replace them. FRR locally repairs the protected LSPs by rerouting them over backup tunnels that bypass failed links.

Link Protection

Backup tunnels that bypass only a single link of the LSP’s path provide link protection. They protect LSPs if a link along their path fails by rerouting the LSP’s traffic to the next hop (bypassing the failed link). These are referred to as next-hop (NHOP) backup tunnels because they terminate at the LSP’s next hop beyond the point of failure.

How to Configure Traffic Engineering - Fast Reroute Link Protection

This section describes how to configure MPLS TE-FRR Link Protection feature:

Enabling MPLS TE-FRR on an SVI Interface

To enable MPLS TE-FRR on an SVI interface, perform the steps given below:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. mpls traffic-engg tunnels

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td>Specifies an interface type and number and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vlan 40</td>
<td></td>
</tr>
</tbody>
</table>
Enabling MPLS TE-FRR for EoMPLS on a Global Interface

To enable MPLS TE-FRR for EoMPLS on a global interface, perform the steps given below:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no l3-over-l2 flush buffers
4. asr901-platf-frr enable
5. mpls ldp discovery targeted-hello accept
6. pseudowire-class pw-class-name
7. encapsulation encapsulation-type
8. preferred-path {[interface] tunnel tunnel-number} peer host-ip-address} [disable-fallback]
9. exit
10. mpls label protocol ldp
11. mpls ldp igp sync holddown milli-seconds

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> no l3-over-l2 flush buffers</td>
<td>Disables layer 3 over layer 2 deployments.</td>
</tr>
<tr>
<td>Example: Router(config)# no l3-over-l2 flush buffers</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>asr901-platf-frr enable</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# asr901-platf-frr enable</td>
</tr>
<tr>
<td>5</td>
<td>mpls ldp discovery targeted-hello accept</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls ldp discovery targeted-hello accept</td>
</tr>
<tr>
<td>6</td>
<td>pseudowire-class <code>pw-class-name</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# pseudowire-class T41</td>
</tr>
<tr>
<td>7</td>
<td>encapsulation <code>encapsulation-type</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# encapsulation mpls</td>
</tr>
<tr>
<td>8</td>
<td>preferred-path <code>interface</code> <code>tunnel tunnel-number</code> <code>peer</code> <code>host-ip-address</code> <code>disable-fallback</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# preferred-path interface Tunnel41 disable-fallback</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# exit</td>
</tr>
<tr>
<td>10</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls label protocol ldp</td>
</tr>
<tr>
<td>11</td>
<td>mpls ldp igp sync holddown <code>milli-seconds</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls ldp igp sync holddown 1000</td>
</tr>
</tbody>
</table>
Enabling MPLS TE-FRR for EoMPLS on an Interface

To enable MPLS TE-FRR for EoMPLS on an interface, perform the steps given below:

**SUMMARY STEPS**

1. `pw-class`
2. `auto terminal`
3. `pseudowire-class pw-class-name`
4. `no negotiation auto`
5. `service instance id ethernet`
6. `encapsulation dot1q vlan-id`
7. `rewrite ingress tag pop 1 symmetric`
8. `xconnect peer-ip-address ve-id pw-class pw-class-name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>pw-class</code></td>
<td>Enables the privileged EXEC mode.</td>
</tr>
</tbody>
</table>
|      | **Example:**  
|      | `Router> enable`  | • Enter your password if prompted. |
| 2    | `auto terminal`   | Enters the global configuration mode. |
|      | **Example:**  
|      | `Router# configure terminal` |
| 3    | `pseudowire-class pw-class-name` | Specifies the name of a layer 2 pseudowire class and enters pseudowire class configuration mode. |
|      | **Example:**  
|      | `Router(config)# pseudowire-class T41` |
| 4    | `no negotiation auto` | Disables the automatic negotiation. |
|      | **Example:**  
|      | `Router(config-if)# no negotiation auto` |
| 5    | `service instance id ethernet` | Configures an Ethernet service instance on an interface. The `id` is an integer that uniquely identifies a service instance on an interface. The value varies by the platform. Range: 1 to 4294967295. The identifier need not map to a VLAN and is local in scope to the interface. |
|      | **Example:**  
|      | `Router(config-if)# service instance 100 ethernet` |
| 6    | `encapsulation dot1q vlan-id` | Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN. The `vlan-id` is the Virtual LAN identifier. The allowed range is from 1 to 4094. For the IEEE 802.1Q-in-Q VLAN Tag Termination feature, the first instance of this argument defines the outer VLAN ID, |
|      | **Example:**  
<p>|      | <code>Router(config-if-srv)# encapsulation dot1q 101</code> |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>and the second and subsequent instances define the inner VLAN ID.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>rewrite ingress tag pop 1 symmetric</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-srv)# rewrite ingress tag pop 1 symmetric</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>xconnect peer-ip-address vc-id pw-class pw-class-name</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-srv)# xconnect 10.0.0.4 4 pw-class T41</td>
</tr>
</tbody>
</table>

---

**Enabling MPLS TE-FRR for IS-IS**

To enable MPLS TE-FRR for IS-IS routing process, perform the steps given below:

**SUMMARY STEPS**

1. mpls-ldp
2. configure terminal
3. router isis
4. mpls traffic-eng router-id interface-name
5. mpls traffic-eng {level-1 | level-2}
6. router isis
7. net net-1
8. is-type level-1
9. fast-reroute per-prefix level-1 all
10. fast-reroute per-prefix level-2 all
11. fast-reroute remote-lfa level-1 mpls-ldp
12. fast-reroute remote-lfa level-2 mpls-ldp
13. bfd all-interfaces
14. mpls ldp sync
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>mpls-ldp</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>router isis</td>
<td>Activates the IS-IS routing process for IP and puts the device into</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>router configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# router isis</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mpls traffic-eng router-id <strong>interface-name</strong></td>
<td>Specifies that the traffic engineering router identifier for the node</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>is the IP address associated with a given interface. The <strong>interface-name</strong> is the interface whose primary IP address is the router's identifier</td>
</tr>
<tr>
<td></td>
<td>Router(config-router)# mpls traffic-eng router-id Loopback102</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>mpls traffic-eng {level-1</td>
<td>level-2}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>information into the indicated IS-IS level.</td>
</tr>
<tr>
<td></td>
<td>Router(config-router)# mpls traffic-eng level-1</td>
<td>• <strong>level-1</strong> — Floods MPLS TE link information into IS-IS level 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <strong>level-2</strong> — Floods MPLS TE link information into IS-IS level 2.</td>
</tr>
<tr>
<td>Step 6</td>
<td>router isis</td>
<td>Enables the IS-IS routing protocol and enters the router configuration</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# router isis</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>net net-1</td>
<td>Configures an Intermediate System-to-Intermediate System (IS-IS) network</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>entity table (NET) for the routing process.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# net 49.0001.0000.0000.0001.00</td>
<td>• <strong>net-1</strong> — NET network services access point (NSAP) name or address on the Multilayer Switch Feature Card (MSFC) in the primary slot.</td>
</tr>
<tr>
<td>Step 8</td>
<td>is-type level-1</td>
<td>Configures the routing level for an instance of the Intermediate System-</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>to-Intermediate System (IS-IS) routing process.</td>
</tr>
<tr>
<td></td>
<td>Router(config-router)# is-type level-1</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Primary One-hop Auto-Tunnels

To configure primary one-hop auto-tunnels for MPLS TE-FRR, perform the following steps.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. mpls traffic-eng auto-tunnel primary onehop
4. mpls traffic-eng auto-tunnel primary tunnel-num [min min-num] [max max-num]
5. mpls traffic-eng auto-tunnel primary config unnumbered interface
6. mpls traffic-eng auto-tunnel primary timers removal rerouted sec

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 9</strong></td>
<td>Configures an FRR path that redirects traffic to a remote LFA tunnel for level-1 packets.</td>
</tr>
<tr>
<td>fast-reroute per-prefix level-1 all</td>
<td>Uses the <code>fast-reroute</code> command to enable per-prefix FRR for level-1 packets. <code>level-1</code> enables per-prefix FRR for level-1 packets, and <code>all</code> enables FRR for all primary paths.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-router)# fast-reroute per-prefix level-1 all</td>
</tr>
</tbody>
</table>

**Step 10**	Configures an FRR path that redirects traffic to a remote LFA tunnel for level-2 packets.
fast-reroute per-prefix level-2 all	Enables per-prefix FRR for level-2 packets. `level-2` enables FRR of level-2 packets, and `all` enables FRR of all primary paths.
**Example:**	Router(config-router)# fast-reroute per-prefix level-2 all

**Step 11**	Configures an FRR path that redirects traffic to a remote LFA tunnel.
fast-reroute remote-lfa level-1 mpls-ldp	Enables LFA-FRR for level-1 packets. `level-1` enables LFA-FRR for level-1 packets, and `mpls-ldp` specifies that the tunnel type is MPLS or LDP.
**Example:**	Router(config-router)# fast-reroute remote-lfa level-1 mpls-ldp

**Step 12**	Configures an FRR path that redirects traffic to a remote LFA tunnel.
fast-reroute remote-lfa level-2 mpls-ldp	Enables LFA-FRR for level-2 packets. `level-2` enables LFA-FRR for level-2 packets, and `mpls-ldp` specifies that the tunnel type is MPLS or LDP.
**Example:**	Router(config-router)# fast-reroute remote-lfa level-2 mpls-ldp

| **Step 13** | Enables Bidirectional Forwarding Detection (BFD) for all interfaces participating in the routing process. |
| bfd all-interfaces | **Example:** | Router(config-router)# bfd all-interfaces |

| **Step 14** | Enables MPLS LDP synchronization on interfaces for an IS-IS process. |
| mpls ldp sync | **Example:** | Router(config-router)# mpls ldp sync |
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
</tr>
</tbody>
</table>

**Step 2** configure terminal

Enters global configuration mode.

Example:

```
Router# configure terminal
```

**Step 3** mpls traffic-eng auto-tunnel primary onehop

Creates primary tunnels to all the next hops automatically.

Example:

```
Router(config)# mpls traffic-eng auto-tunnel primary onehop
```

**Step 4** mpls traffic-eng auto-tunnel primary tunnel-num [min min-num] [max max-num]

Configures the range of tunnel interface numbers for primary autotunnels.

Example:

```
Router(config)# mpls traffic-eng auto-tunnel primary tunnel-num min 3 max 400
```

**Step 5** mpls traffic-eng auto-tunnel primary config unnumbered interface

Enables IP processing without an explicit address.

Example:

```
Router(config)# mpls traffic-eng auto-tunnel primary config unnumbered-interface Loopback102
```

**Step 6** mpls traffic-eng auto-tunnel primary timers removal rerouted sec

Configures the period after a failure to remove primary autotunnels.

Example:

```
Router(config)# mpls traffic-eng auto-tunnel primary timers removal rerouted 604800
```

**Step 7** mpls traffic-eng auto-tunnel primary config mpls ip

Enables Label Distribution Protocol (LDP) on primary autotunnels.

Example:

```
Router(config)# mpls traffic-eng auto-tunnel primary config mpls ip
```
Configuring Backup Auto-Tunnels

To configure backup auto-tunnels, perform the following steps.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `mpls traffic-eng auto-tunnel backup`
4. `mpls traffic-eng auto-tunnel backup nhop-only`
5. `mpls traffic-eng auto-tunnel backup tunnel-num [min min-num] [max max-num]`
6. `mpls traffic-eng auto-tunnel backup timers removal unused sec`
7. `mpls traffic-eng auto-tunnel backup config unnumbered-interface interface`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.  
  * Enter your password if prompted. |
| Example:          |         |
| Router> enable    |         |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| Example:          |         |
| Router# configure terminal | |
| **Step 3** `mpls traffic-eng auto-tunnel backup` | Builds next-hop (NHOP) and next-next hop (NNHOP) backup tunnels automatically. |
| Example:          |         |
| Router(config)# mpls traffic-eng auto-tunnel backup | |
| **Step 4** `mpls traffic-eng auto-tunnel backup nhop-only` | Builds next-hop (NHOP) backup tunnels automatically. |
| Example:          |         |
| Router(config)# mpls traffic-eng auto-tunnel backup nhop-only | |
| **Step 5** `mpls traffic-eng auto-tunnel backup tunnel-num [min min-num] [max max-num]` | Configures the range of tunnel interface numbers for backup autotunnels.  
  * `min-num`—(Optional) Minimum number of the backup tunnels. The range is 0 to 65535, with a default value of 65436.  
  * `max-num`—(Optional) Maximum number of the backup tunnels. The max number is the minimum number plus 99. The range is from 0 to 65535. |
| Example:          |         |
| Router(config)# mpls traffic-eng auto-tunnel backup tunnel-num min 3 max 400 | |
Enabling Targeted LDP session over Primary one-hop Auto-Tunnels

An MPLS LDP targeted session is a label distribution session between routers that are not directly connected. When you create an MPLS TE tunnel interface, you need to establish a label distribution session between the tunnel headend and the tailend routers. You establish non-directly connected MPLS LDP sessions by enabling the transmission of targeted Hello messages.

The default behavior of an LSR is to ignore requests from other LSRs that send targeted Hello messages. You can configure an LSR to respond to requests for targeted Hello messages by using the mpls ldp discovery targeted-hello accept command.

The active LSR mandates the protocol that is used for a targeted session. The passive LSR uses the protocol of the received targeted Hello messages.

To enable targeted LDP sessions over primary one-hop auto-tunnels, perform the steps given below:

**Note**

For targeted mpls session, the head end tunnel should have “mpls ip” configuration.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls ldp discovery targeted-hello accept

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

**Step 6**

<table>
<thead>
<tr>
<th>mpls traffic-eng auto-tunnel backup timers removal unused sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Router(config)# mpls traffic-eng auto-tunnel primary timers removal rerouted 604800</td>
</tr>
<tr>
<td>Purpose: Configures how frequently a timer scans the backup autotunnels and remove tunnels that are not being used.</td>
</tr>
<tr>
<td>• sec—Configures (in seconds) the timer scan interval. The range is 0 to 604,800.</td>
</tr>
</tbody>
</table>

**Step 7**

<table>
<thead>
<tr>
<th>mpls traffic-eng auto-tunnel backup config unnumbered-interface interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Router(config)# mpls traffic-eng auto-tunnel backup config unnumbered-interface Loopback0</td>
</tr>
<tr>
<td>Purpose: Configures a specific unnumbered interface for all backup autotunnels.</td>
</tr>
<tr>
<td>• interface—Interface for all backup auto-tunnels. Default interface is Loopback0.</td>
</tr>
</tbody>
</table>
Enabling BFD Triggered FRR on an SVI Interface

To enable BFD triggered FRR on an SVI interface, perform the steps given below:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. ip rsvp signalling hello bfd

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vlan 40</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enables BFD protocol on an interface for FRR link protection.</td>
</tr>
<tr>
<td>ip rsvp signalling hello bfd</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip rsvp signalling hello bfd</td>
<td></td>
</tr>
</tbody>
</table>
Enabling BFD Triggered FRR on a Router

To enable BFD triggered FRR on a router, perform the steps given below:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip rsvp signalling hello bfd

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>ip rsvp signalling hello bfd</td>
<td>Enables BFD protocol on an interface for FRR link protection.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip rsvp signalling hello bfd</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Verification Examples

Verifying MPLS TE-FRR Configuration

To verify the MPLS TE-FRR configuration, use the show commands given below:

- show mpls traffic-eng tunnels brief
- show ip rsvp sender detail
- show mpls traffic-eng fast-reroute database
- show mpls traffic-eng tunnels backup
- show ip rsvp reservation detail

Note

For more information on the above show commands, see:
Use the following command to verify whether the backup tunnels are up.

Router# show mpls traffic-eng tunnels brief
Signalling Summary:
  LSP Tunnels Process: running
  RSVP Process: running
  Forwarding: enabled
  Periodic reoptimization: every 3600 seconds, next in 1706 seconds

<table>
<thead>
<tr>
<th>TUNNEL NAME</th>
<th>DESTINATION</th>
<th>UP IF</th>
<th>DOWN IF</th>
<th>STATE/PROT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router_t1</td>
<td>10.112.0.12</td>
<td>-</td>
<td>PO4/0/1</td>
<td>up/up</td>
</tr>
<tr>
<td>Router_t2</td>
<td>10.112.0.12</td>
<td>-</td>
<td>unknown</td>
<td>up/down</td>
</tr>
<tr>
<td>Router_t3</td>
<td>10.112.0.12</td>
<td>-</td>
<td>unknown</td>
<td>admin-down</td>
</tr>
<tr>
<td>Router_t100</td>
<td>10.110.0.10</td>
<td>-</td>
<td>unknown</td>
<td>up/down</td>
</tr>
<tr>
<td>Router_t2000</td>
<td>10.110.0.10</td>
<td>-</td>
<td>PO4/0/1</td>
<td>up/up</td>
</tr>
</tbody>
</table>

Displayed 5 (of 5) heads, 0 (of 0) midpoints, 0 (of 0) tails

Use the following command to verify whether the LSPs are protected by the appropriate backup tunnels.

Router# show ip rsvp sender detail
PATH:
  Tun Dest: 10.10.0.6 Tun ID: 100 Ext Tun ID: 10.10.0.1
  Tun Sender: 10.10.0.1 LSP ID: 31
Path refreshes:
  arriving: from PHOP 10.10.7.1 on Et0/0 every 30000 msecs
Session Attr:
  Setup Prio: 7, Holding Prio: 7
  Flags: (0x7) Local Prot desired, Label Recording, SE Style
  session Name: R1_t100
ERO: (incoming)
  10.10.7.2 (Strict IPv4 Prefix, 8 bytes, /32)
  10.10.0.6 (Strict IPv4 Prefix, 8 bytes, /32)
RRO:
  10.10.7.1/32, Flags:0x0 (No Local Protection)
  10.10.4.1/32, Flags:0x9 (Local Prot Avail/to NNHOP) !Available to NNHOP
  10.10.1.1/32, Flags:0x0 (No Local Protection)
Traffic params - Rate: 10K bits/sec, Max. burst: 1K bytes
  Min Policed Unit: 0 bytes, Max Pkt Size 4294967295 bytes
Fast-Reroute Backup info:
  Inbound FRR: Not active
  Outbound FRR: No backup tunnel selected
Path ID handle: 50000416.
Incoming policy: Accepted. Policy source(s): MPLS/TE
Status: Proxy-terminated

Use the following command to verify whether the LSPs are protected.

Router# show mpls traffic-eng fast-reroute database
Tunnel head end item frr information:
  Protected Tunnel In-label intf/label FRR intf/label Status
  Tunnel110 Tun pos5/0:Untagged Tu0:12304 ready
Prefix item frr information:
  Prefix Tunnel In-label Out intf/label FRR intf/label Status
  10.0.0.11/32 Tu110 Tun hd pos5/0:Untagged Tu0:12304 ready
LSM midpoint frr information:
  LSP identifier In-label Out intf/label FRR intf/label Status
  10.0.0.12 1 [459] 16 pos0/1:17 Tu2000:19 ready

Use the following command to verify the backup tunnel information.

Router# show mpls traffic-eng tunnels backup
Router_t578
  LSP Head, Tunnel578, Admin: up, Oper: up
Src 10.55.55.55, Dest 10.88.88.88, Instance 1
Fast Reroute Backup Provided:
   Protected i/fs: PO1/0, PO1/1, PO3/3
   Protected lsp's: 1
   Backup BW: any pool unlimited; inuse: 100 kbps

Router_t5710
LSP Head, Tunnel5710, Admin: admin-down, Oper: down
Src 10.55.55.55, Dest 10.7.7.7, Instance 0
Fast Reroute Backup Provided:
   Protected i/fs: PO1/1
   Protected lsp's: 0
   Backup BW: any pool unlimited; inuse: 0 kbps

Router_t5711
LSP Head, Tunnel5711, Admin up, Oper: up
Src 10.55.55.55, Dest 10.7.7.7, Instance 1
Fast Reroute Backup Provided:
   Protected i/fs: PO1/0
   Protected lsp's: 2
   Backup BW: any pool unlimited; inuse: 6010 kbps

Use the following command to verify the reservation detail.

Router# show ip rsvp reservation detail
Reservation:
   Tun Dest: 10.1.1.1  Tun ID: 1  Ext Tun ID: 172.16.1.1
   Tun Sender: 172.16.1.1  LSP ID: 104
   Next Hop: 172.17.1.2 on POS1/0
   Label: 18 (outgoing)
   Reservation Style is Shared-Explicit, QoS Service is Controlled-Load
   Average Bitrate is 0 bits/sec, Maximum Burst is 1K bytes
   Min Policed Unit: 0 bytes, Max Pkt Size: 0 bytes
   RRO:
      172.18.1.3/32, Flags:0x1 (Local Prot Avail/to NHOP)
      Label subobject: Flags 0x1, C-Type 1, Label 18
      172.19.1.1/32, Flags:0x0 (Local Prot Avail/In Use/Has BW/to NHOP)
      Label subobject: Flags 0x1, C-Type 1, Label 16
      172.19.1.2/32, Flags:0x0 (No Local Protection)
      Label subobject: Flags 0x1, C-Type 1, Label 0
   Resv ID handle: CD000404.
   Policy: Accepted. Policy source(s): MPLS/TE

Verifying Primary One-hop Auto-Tunnels

To verify the configuration of primary one-hop auto-tunnels, use the show commands as shown in the following examples.

Router# show ip rsvp fast-reroute
Primary Tunnel Protect BW Backup
        I/F      BPS:Type Tunnel:Label State Level Type
-------- ------- ---------- -------- -------- ------- ------ ------ -------
R3-PRP_t0 PO3/1 0:G Tu1000:24 Ready any-unl Nhop

Router# show ip interface brief
Interface IP-Address OK? Method Status Protocol
POS2/0 10.0.0.14 YES NVRAM down
pos2/1 10.0.0.49 YES NVRAM up
POS2/2 10.0.0.45 YES NVRAM up
POS2/3 10.0.0.57 YES NVRAM administratively down
POS3/0 10.0.0.18 YES NVRAM down
POS3/1 10.0.0.33 YES NVRAM up
POS3/2 unassigned YES NVRAM administratively down
POS3/3 unassigned YES NVRAM administratively down
Verifying Backup Auto-Tunnels

To verify the configuration of backup auto-tunnels, use the `show` commands as shown in the following examples.

```
Router# show ip rsvp fast-reroute
Primary Protect BW Backup
Tunnel I/F BPS:Type Tunnel:Label State Level Type
-------- ------- ------------- ------------------ ----
R3-PRP_t0 PO3/1 0:G None None None

Router# show ip interface brief
Interface IP-Address OK? Method Status Protocol
POS2/0 10.0.0.14 YES NVRAM down down
POS2/1 10.0.0.49 YES NVRAM up up
POS2/2 10.0.0.45 YES NVRAM up up
POS2/3 10.0.0.57 YES NVRAM administratively down down
POS3/0 10.0.0.18 YES NVRAM down down
POS3/1 10.0.0.33 YES NVRAM up up
POS3/2 unassigned YES NVRAM administratively down down
POS3/3 unassigned YES NVRAM administratively down down
GigabitEthernet4/0 10.0.0.37 YES NVRAM up up
GigabitEthernet4/1 unassigned YES NVRAM administratively down down
GigabitEthernet4/2 unassigned YES NVRAM administratively down down
Loopback0 10.0.3.1 YES NVRAM up up
Tunnel0 10.0.3.1 YES unset up up
Tunnel65436 10.0.3.1 YES unset up up
Ethernet0 10.3.38.3 YES NVRAM up up
Ethernet1 unassigned YES NVRAM administratively down down

Router# show mpls traffic-eng tunnels backup
Router_t578
LSP Head, Tunnel578, Admin: up, Oper: up
Src 10.55.55.55, Dest 10.88.88.88, Instance 1
Fast Reroute Backup Provided:
 Protected i/fs: PO1/0, PO1/1, PO3/3
 Protected lsps: 1
 Backup BW: any pool unlimited; inuse: 100 kbps

Router_t5710
LSP Head, Tunnel5710, Admin: admin-down, Oper: down
Src 10.55.55.55, Dest 10.7.7.7, Instance 0
Fast Reroute Backup Provided:
 Protected i/fs: PO1/1
 Protected lsps: 0
 Backup BW: any pool unlimited; inuse: 0 kbps

Router_t5711
LSP Head, Tunnel5711, Admin up, Oper: up
Src 10.55.55.55, Dest 10.7.7.7, Instance 1
Fast Reroute Backup Provided:
 Protected i/fs: PO1/0
 Protected lsps: 2
 Backup BW: any pool unlimited; inuse: 6010 kbps
```
Verifying BFD Triggered FRR Configuration

To verify the configuration of BFD triggered FRR, use the `show` commands as shown in the following examples.

- `show mpls traffic-eng tunnels brief`
- `show ip rsvp sender detail`
- `show mpls traffic-eng fast-reroute database`
- `show mpls traffic-eng tunnels backup`
- `show ip rsvp reservation detail`
- `show ip rsvp hello`
- `show ip rsvp interface detail`
- `show ip rsvp hello bfd nbr`
- `show ip rsvp hello bfd nbr detail`
- `show ip rsvp hello bfd nbr summary`

For more information on the above show commands, see:

Use the following command to verify whether or not the backup tunnels are up:

```
Router# show mpls traffic-eng tunnels brief
```
```
Signalling Summary:
 LSP Tunnels Process: running
 RSVP Process: running
 Forwarding: enabled
 Periodic reoptimization: every 3600 seconds, next in 1706 seconds

TUNNEL NAME DESTINATION UP IF DOWN IF STATE/PROT
Router_t1 10.112.0.12 - Gi4/0/1 up/up
Router_t2 10.112.0.12 - unknown up/down
Router_t3 10.112.0.12 - unknown admin-down
Router_t1000 10.110.0.10 - unknown up/down
Router_t2000 10.110.0.10 - Gi4/0/1 up/up
```
Displayed 5 (of 5) heads, 0 (of 0) midpoints, 0 (of 0) tails

Use the following command to verify whether the LSPs are protected by the appropriate backup tunnels.

```
Router# show ip rsvp sender detail
```
```
PATH:
 Tun Dest: 10.10.0.6 Tun ID: 100 Ext Tun ID: 10.10.0.1
 Tun Sender: 10.10.0.1 LSP ID: 31
 Path refreshes:
 arriving: from PHOP 10.10.7.1 on Et0/0 every 30000 msecs
 Session Attr:
 Setup Prio: 7, Holding Prio: 7
 Flags: (0x7) Local Prot desired, Label Recording, SE Style
 session Name: R1_t100
 ERO: (incoming)
 10.10.7.2 (Strict IPv4 Prefix, 8 bytes, /32)
 10.10.0.6 (Strict IPv4 Prefix, 8 bytes, /32)
 RRO:
 10.10.7.1/32, Flags:0x0 (No Local Protection)
 10.10.4.1/32, Flags:0x9 (Local Prot Avail/to NNHOP) !Available to NNHOP
 10.10.1.1/32, Flags:0x0 (No Local Protection)
 Traffic params - Rate: 10K bits/sec, Max. burst: 1K bytes
Verifying BFD Triggered FRR Configuration

Min Policed Unit: 0 bytes, Max Pkt Size: 4294967295 bytes

Fast-Reroute Backup info:
Inbound FRR: Not active
Outbound FRR: No backup tunnel selected
Path ID handle: 50000416.
Incoming policy: Accepted. Policy source(s): MPLS/TE
Status: Proxy-terminated

Use the following command to verify whether the LSPs are protected:

Router# show mpls traffic-eng fast-reroute database
Tunnel head end item frr information:
Protected tunnel In-label Out intf/label FRR intf/label Status
Tunnel500 Tun hd AT4/0.100:Untagg Tu501:20 ready

Prefix item frr information:
Prefix Tunnel In-label Out intf/label FRR intf/label Status
10.0.0.32 Tu500 18 AT4/0.100:Pop ta Tu501:20 ready
10.0.8.32 Tu500 19 AT4/0.100:Untagg Tu501:20 ready
10.8.9.0/24 Tu500 22 AT4/0.100:Untagg Tu501:20 ready

LSP midpoint item frr information:

Use the following command to verify the backup tunnel information.

Router# show mpls traffic-eng tunnels backup
Router_t578
LSP Head, Tunnel578, Admin: up, Oper: up
Src 10.55.55.55, Dest 10.88.88.88, Instance 1
Fast Reroute Backup Provided:
Protected i/fs: PO1/0, PO1/1, PO3/3
Protected lsps: 1
Backup BW: any pool unlimited; inuse: 100 kbps

Router_t5710
LSP Head, Tunnel5710, Admin: admin-down, Oper: down
Src 10.55.55.55, Dest 10.7.7.7, Instance 0
Fast Reroute Backup Provided:
Protected i/fs: PO1/1
Protected lsps: 0
Backup BW: any pool unlimited; inuse: 0 kbps

Router_t5711
LSP Head, Tunnel5711, Admin: up, Oper: up
Src 10.55.55.55, Dest 10.7.7.7, Instance 1
Fast Reroute Backup Provided:
Protected i/fs: PO1/0
Protected lsps: 2
Backup BW: any pool unlimited; inuse: 6010 kbps

Use the following command to verify detailed RSVP-related receiver information currently in the database.

Router# show ip rsvp reservation detail
Reservation:
Tun Dest: 10.1.1.1 Tun ID: 1 Ext Tun ID: 10.1.1.1
Tun Sender: 10.1.1.1 LSP ID: 104
Next Hop: 10.1.1.2 on G11/0
Label: 18 (outgoing)
Reservation Style is Shared-Explicit, QoS Service is Controlled-Load
Average Bitrate is 0 bits/sec, Maximum Burst is 1K bytes
Min Policed Unit: 0 bytes, Max Pkt Size: 0 bytes
RRO:
10.1.1.1/32, Flags:0x01 (Local Prot Avail/to NHOP)
 Label subobject: Flags 0x1, C-Type 1, Label 18
10.1.1.1/32, Flags:0x0 (Local Prot Avail/In Use/Has BW/to NHOP)
 Label subobject: Flags 0x1, C-Type 1, Label 16
10.1.1.2/32, Flags:0x0 (No Local Protection)
 Label subobject: Flags 0x1, C-Type 1, Label 0
 Resv ID handle: CD000404.
 Policy: Accepted. Policy source(s): MPLS/TE

Use this command to display hello status and statistics for FRR, reroute (hello state timer), and graceful restart.

Router# show ip rsvp hello
Hello:
 RSVP Hello for Fast-Reroute/Reroute: Enabled
 Statistics: Disabled
 BFD for Fast-Reroute/Reroute: Enabled
 RSVP Hello for Graceful Restart: Disabled

Use this command to display the interface configuration for Hello.

Router# show ip rsvp interface detail
Gi9/47:
 RSVP: Enabled
 Interface State: Up
 Bandwidth:
 Curr allocated: 0 bits/sec
 Max. allowed (total): 0 bits/sec
 Max. allowed (per flow): 0 bits/sec
 Max. allowed for LSP tunnels using sub-pools (pool 1): 0 bits/sec
 Set aside by policy (total): 0 bits/sec
 Signalling:
 DSCP value used in RSVP msgs: 0x3F
 Number of refresh intervals to enforce blockade state: 4
 Authentication: disabled
 Key chain: <none>
 Type: md5
 Window size: 1
 Challenge: disabled
 FRR Extension:
 Backup Path: Configured (or "Not Configured")
 BFD Extension:
 State: Disabled
 Interval: Not Configured
 RSVP Hello Extension:
 State: Disabled
 Refresh Interval: FRR: 200 , Reroute: 2000
 Missed Acks: FRR: 4 , Reroute: 4
 DSCP in HELLOs: FRR: 0x30 , Reroute: 0x30

Use this command to display information about all MPLS traffic engineering link and node protected neighbors that use the BFD protocol.

Router# show ip rsvp hello bfd nbr
Client Neighbor I/F State LostCnt LSPs
 FRR 10.0.0.6 Gi9/47 Up 0 1

Use this command to display detailed information about all MPLS traffic engineering link and node protected neighbors that use the BFD protocol:

Router# show ip rsvp hello bfd nbr detail
Hello Client Neighbors
Remote addr 10.0.0.6, Local addr 10.0.0.7
 Type: Active
 I/F: Gi9/47
 State: Up (for 00:09:41)
 Clients: FRR
LSPs protecting: 1 (frr: 1, hst upstream: 0 hst downstream: 0)
Communication with neighbor lost: 0

Use this command to display summarized information about all MPLS traffic engineering link and node protected neighbors that use the BFD protocol.

Router# show ip rsvp hello bfd nbr summary
Client Neighbor I/F State LostCnt LSPs
FRR 10.0.0.6 Gi9/47 Up 0 1

Configuration Examples

This section provides sample configuration examples for IPv6 over MPLS: 6PE and 6VPE feature on the router.

Example: Configuring MPLS TE-FRR

For a sample configuration of MPLS TE-FRR, see:

Example: Configuring Primary One-hop Auto-Tunnels

For a sample configuration of primary one-hop auto-tunnels, see:

Example: Configuring Backup Auto-Tunnels

For a sample configuration of backup auto-tunnels, see:

Example: Configuring BFD Triggered FRR

For a sample configuration of BFD triggered FRR, see:

Additional References

The following sections provide references related to IPv6 Multicast feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
Table 36: Feature Information for MPLS Traffic Engineering - Fast Reroute Link Protection, on page 606 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note
Table 36: Feature Information for MPLS Traffic Engineering - Fast Reroute Link Protection, on page 606 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Table 36: Feature Information for MPLS Traffic Engineering - Fast Reroute Link Protection

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Traffic Engineering</td>
<td>15.2(SNG)</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>BFD-triggered Fast Reroute</td>
<td>15.2(SNG)</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>TE-FRR for EoMPLS</td>
<td>15.3(S)</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
</tbody>
</table>
Layer 2 Control Protocol Peering, Forwarding, and Tunneling

This feature module describes how to configure Layer 2 (L2) Control Protocol Peering, Forwarding, and Tunneling feature on the Cisco ASR 901 Series Aggregation Services Routers.

- Finding Feature Information, on page 607
- Prerequisites for Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 607
- Restrictions for Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 608
- Layer 2 Control Protocol Forwarding, on page 608
- Layer 2 Control Protocol Tunneling, on page 608
- How to Configure Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 609
- Configuration Examples, on page 616
- Additional References, on page 619
- Feature Information for Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 620

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information for Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 620.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Layer 2 Control Protocol Peering, Forwarding, and Tunneling

- A Cisco IOS software that supports Layer 2 Control Protocol Peering, Forwarding, and Tunneling must be installed previously on the Cisco ASR 901 Series Aggregation Services Router. For supported software releases, see Release Notes for Cisco ASR 901 Series Aggregation Services Router.
Restrictions for Layer 2 Control Protocol Peering, Forwarding, and Tunneling

- If you want to peer Operation, Administration, and Maintenance (OAM) packets when the `l2proto-forward tagged` command is configured at the interface level, you should also configure the `l2proto peer lacp` command.
- Received L2CP Control Packets (like STP, CDP, and others) are not mirrored to the destination port.
- Forwarding L2CP tunneled packets over x-connect is not supported.

Layer 2 Control Protocol Forwarding

The ASR 901 forwards Layer 2 Control Protocol (L2CP) packets between customer-edge (CE) devices. Cisco ASR 901 router supports L2CP forwarding on Bridge-domain EVCs and on Cross-connect EVCs.

The following figure depicts an end-to-end layer 2 forwarding. The layer 2 traffic is sent through the S-network, and the S-network switches the traffic from end to end. The Cisco ASR 901 router forwards frames from the user network interface (UNI) to the network-to-network Interface (NNI) after appending S-tag. The third party provider edge (PE) router forwards the S-tagged frames. The PE peers the untagged Link Layer Discovery Protocol (LLDP) and Link Aggregation Control Protocol (LACP) frames. On the reverse path (from NNI to UNI), the S-tag is removed.

Figure 33: Layer 2 Forwarding

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L2CP packets are forwarded between CE devices.</td>
</tr>
<tr>
<td>2</td>
<td>Frames are forwarded from UNI to NNI after appending the S-tag. On the reverse path (NNI to UNI), S-tag is removed.</td>
</tr>
<tr>
<td>3</td>
<td>Third party PE forwards S-tagged frames and peers untagged frames.</td>
</tr>
<tr>
<td>4</td>
<td>Untagged LLDP and LACP is peered.</td>
</tr>
</tbody>
</table>

Layer 2 Control Protocol Tunneling

Layer 2 Control Protocol Tunneling (L2PT) is a Cisco proprietary protocol for tunneling Ethernet protocol frames across layer 2 switching domains. The following tunnel protocols are supported:

- Cisco Discovery Protocol (CDP)
• Dynamic Trunking Protocol (DTP)
• Link Aggregation Control Protocol (LACP)
• Link Layer Discovery Protocol (LLDP)
• Spanning Tree Protocol (STP)—including Multiservice Transport Platform (MSTP) and Per VLAN Spanning Tree (PVST)
• Virtual Trunking Protocol (VTP)

The ASR 901 router allows to tunnel layer 2 packets between CEs. The Cisco proprietary multicast address (01-00-0c-cd-cd-d0) is used while tunneling the packet over the NNI interfaces.

The following figure depicts Layer 2 Protocol Tunneling. The layer 2 traffic is sent through the S-network, and the S-network switches the traffic from end to end. The Cisco multicast address is added to the frames and sent from UNI to NNI. On the reverse path (NNI to UNI), protocol specific multicast address is attached to the frames and sent to the UNI.

Figure 34: Layer 2 Protocol Tunneling

| 1 | CE layer 2 control protocol tunnel (end-to-end). |
| 3 | Third party PE forwards S-tagged frames and peers untagged frames. |
| 2 | Cisco multicast address is added to the frames and sent from UNI to NNI. On the reverse path (NNI to UNI), a protocol specific multicast address is attached to the frames and sent to UNI. |
| 4 | — |

How to Configure Layer 2 Control Protocol Peering, Forwarding, and Tunneling

This section describes how to configure layer 2 control protocol peering, forwarding and tunneling:

Note

The configuration defined for LACP impacts all slow protocols, and is applicable to all the options like peering, forwarding, and tunneling.

Configuring Layer 2 Peering

The ASR 901 router supports layer 2 peering functionality on a per Ethernet Flow Point (EFP) basis. It supports a maximum packet rate of 10 packets ps (per interface) for a protocol, and 100 packets ps for all protocols (on all interfaces).
Table 37: Options Supported on the ASR 901 Router, on page 610 displays the supported defaults and configuration options for the Cisco ASR 901 router.

Table 37: Options Supported on the ASR 901 Router

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Packet Type</th>
<th>Default Action</th>
<th>Configuration Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP</td>
<td>Untagged</td>
<td>Peer</td>
<td>Peer/Forward/Tunnel</td>
</tr>
<tr>
<td>DTP</td>
<td>Untagged</td>
<td>Peer</td>
<td>Peer/Forward/Tunnel</td>
</tr>
<tr>
<td>LACP</td>
<td>Untagged</td>
<td>Peer</td>
<td>Peer/Forward/Tunnel</td>
</tr>
<tr>
<td>LLDP</td>
<td>Untagged</td>
<td>Peer</td>
<td>Peer/Forward/Tunnel</td>
</tr>
<tr>
<td>STP</td>
<td>Untagged</td>
<td>Peer</td>
<td>Peer/Forward/Tunnel</td>
</tr>
<tr>
<td>VTP</td>
<td>Untagged</td>
<td>Peer</td>
<td>Peer/Forward/Tunnel</td>
</tr>
<tr>
<td>CDP</td>
<td>Tagged</td>
<td>Drop</td>
<td>Forward/Tunnel</td>
</tr>
<tr>
<td>DTP</td>
<td>Tagged</td>
<td>Drop</td>
<td>Forward/Tunnel</td>
</tr>
<tr>
<td>LACP</td>
<td>Tagged</td>
<td>Drop</td>
<td>Forward/Tunnel</td>
</tr>
<tr>
<td>LLDP</td>
<td>Tagged</td>
<td>Drop</td>
<td>Forward/Tunnel</td>
</tr>
<tr>
<td>STP</td>
<td>Tagged</td>
<td>Drop</td>
<td>Forward/Tunnel</td>
</tr>
<tr>
<td>VTP</td>
<td>Tagged</td>
<td>Drop</td>
<td>Forward/Tunnel</td>
</tr>
</tbody>
</table>

Complete the following steps to configure layer 2 peering:

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation encapsulation-type
6. l2protocol peer [protocol]

Note

- If an EFP is configured with layer 2 peering, then L2CP packets coming on the EFP is sent to the CPU for local protocol processing.
- Layer 2 protocol peering is not supported on port-xconnect.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation encapsulation-type
6. l2protocol peer [protocol]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Command or Action

Example:

Router> enable

Step 2

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3

interface type number

Example:

Router(config)# interface gigabitethernet 0/6

Specifies an interface type and number and enters interface configuration mode.

Step 4

service instance id ethernet

Example:

Router(config-if)# service instance 20 ethernet

Configures an Ethernet service instance on an interface.

- *id*—Integer that uniquely identifies a service instance on an interface.

Step 5

encapsulation encapsulation-type

Example:

Router(config-if-srv)# encapsulation untagged

Defines the matching criteria to map untagged ingress Ethernet frames on an interface to the appropriate service instance.

Step 6

l2protocol peer [protocol]

Example:

Router(config-if-srv)# l2protocol peer lacp

Configures transparent Layer 2 protocol peering on the interface for a specified layer 2 protocol.

- *protocol*—The protocol to be used. The options are: cdp, dtp, lacp, lldp, stp, and vtp.

Note

The peer option is not supported for DTP protocol.

Configuring Layer 2 Forwarding

Complete the following steps to configure layer 2 forwarding:

- The layer 2 forwarding functionality is supported only on an untagged EFP (Only one untagged EFP exists per interface).
- Forwarding functionality is not supported with dot1q VLAN range encapsulation.
- If an interface is configured with layer 2 protocol forwarding, then L2CP packets on the interface are flooded on to the bridge domain. The flooding follows the translations specified in interface.
- Any manipulation of EXP bit is not supported while sending Bridge Protocol Data Units (BPDU) over xconnect.
- L2CP forwarding is supported only on xconnect interfaces/EFPs created over GigE/TenGig/Port-channel interfaces.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. l2proto-forward tagged protocol
5. service instance id ethernet
6. encapsulation untagged
7. l2protocol forward [protocol]
8. bridge-domain bridge-id
9. xconnect peer-ip-address vc-id encapsulation mpls

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>Entered your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 l2proto-forward tagged protocol</td>
<td>Configures a layer 2 control protocol forwarding on an interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# l2proto-forward tagged cdp</td>
<td>protocol—Specifies the protocol to be forwarded.</td>
</tr>
<tr>
<td>Step 5 service instance id ethernet</td>
<td>Configures an Ethernet service instance on an interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 20 ethernet</td>
<td>id—Integer that uniquely identifies a service instance on an interface.</td>
</tr>
<tr>
<td>Step 6 encapsulation untagged</td>
<td>Defines the matching criteria to map untagged ingress Ethernet frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example: Router(config-if-srv)# encapsulation untagged</td>
<td></td>
</tr>
<tr>
<td>Step 7 l2protocol forward [protocol]</td>
<td>Enables forwarding of untagged packets of specified protocol in a service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Layer 2 Tunneling

The ASR 901 router supports layer 2 control protocol tunneling functionality on a per EFP basis. This functionality is supported for tagged and untagged packets based on CDP, DTP, LACP, LLDP, STP, and VTP protocols.

If an EFP is configured for layer 2 control protocol tunneling, then:

- Any L2CP packet coming on the EFP is forwarded to the bridge domain (BD) with Cisco proprietary multicast address (01-00-0c-cd-cd-d0).
- Any packet coming on the BD with Cisco proprietary multicast address (01-00-0c-cd-cd-d0) is stamped with well known L2CP MAC address (on EFP which has layer 2 protocol tunneling configured).
- A packet with Cisco proprietary multicast address is forwarded as is if l2protocol tunnel is not configured.

Complete the following steps to configure layer 2 tunneling:

- Layer 2 protocol tunneling is not supported on xconnect EFPs.
- Tunneling functionality is not supported with dot1q VLAN range encapsulation.
- Layer 2 protocol tunneling supports a maximum packet rate of 10 packets ps (per interface) for a protocol, and 100 packets ps for all protocols (on all interfaces).
- Layer2 protocol tunneling is not supported on port-xconnect.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if-srv)# l2protocol forward cdp</td>
<td>- protocol—The protocol to be used. The options are: cdp, dtp, lacp, lldp, stp, and vtp. Perform Step 8 if you want to bind a service instance to a bridge domain. Go to Step 9 if you want to bind an attachment to a xconnect.</td>
</tr>
</tbody>
</table>

Step 8

bridge-domain bridge-id

Example:

```
Router(config-if-srv)# bridge-domain 200
```

Binds a service instance to a bridge domain instance.

- bridge-id—Identifier for the bridge domain instance.

Step 9

xconnect peer-ip-address vc-id encapsulation mpls

Example:

```
Router(config-if-srv)# xconnect 1.1.1.1 100 encapsulation mpls
```

Binds an attachment circuit to a pseudowire.

- peer-ip-address—IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable.
- vc-id—The 32-bit identifier of the virtual circuit (VC) between the PE routers.
- encapsulation—Specifies the tunneling method to encapsulate the data in the pseudowire.
- mpls—Specifies MPLS as the tunneling method.

SUMMARY STEPS

1. enable
Configuring Layer 2 Tunneling

2. **configure terminal**
3. **interface** *type number*
4. **service instance** *id ethernet*
5. **encapsulation** *encapsulation-type*
6. **l2protocol tunnel** *[protocol]*
7. **bridge-domain** *bridge-id*

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | **enable** | Enables privileged EXEC mode.
 * Enter your password if prompted. |
| **Example:** | Router> enable | |
| Step 2 | **configure terminal** | Enters global configuration mode. |
| **Example:** | Router# configure terminal | |
| Step 3 | **interface** *type number* | Specifies an interface type and number and enters interface configuration mode. |
| **Example:** | Router(config)# interface gigabitethernet 0/4 | |
| Step 4 | **service instance** *id ethernet* | Configure an Ethernet service instance on an interface.
 * id—Integer that uniquely identifies a service instance on an interface. |
| **Example:** | Router(config-if)# service instance 9 ethernet | |
| Step 5 | **encapsulation** *encapsulation-type* | Sets the encapsulation method used by the interface.
 * encapsulation type—Type of encapsulation to be used. |
| **Example:** | Router(config-if-srv)# encapsulation untagged | |
| Step 6 | **l2protocol tunnel** *[protocol]* | Configures transparent Layer 2 protocol tunneling on the interface for the specified Layer 2 protocol.
 * protocol—(Optional) The protocol to be used. The options are: cdp, dtp, lacp, lldp, stp, and vtp. |
| **Example:** | Router(config-if-srv)# l2protocol tunnel cdp | |
| Step 7 | **bridge-domain** *bridge-id* | Binds a service instance to a bridge domain instance.
 * bridge-id—Identifier for the bridge domain instance. |
| **Example:** | Router(config-if-srv)# bridge-domain 9 | |
Verifying Layer 2 Peering

To verify the layer 2 protocol peering functionality, use the `show ethernet service instance` command as shown below.

Router# show ethernet service instance id 99 interface gigabitEthernet0/4 detail
Service Instance ID: 99
Service Instance Type: static
Associated Interface: GigabitEthernet0/4
Associated EVC: L2protocol peer cdp
CE-Vlans:
Encapsulation: untagged
Interface Dot1q Tunnel Ethertype: 0x8100
State: Up
EFP Statistics:
 Pkts In Bytes In Pkts Out Bytes Out
 0 0 0 0
EFP Microblocks:

Microblock type: Bridge-domain
Bridge-domain: 99

Verifying Layer 2 Forwarding

To verify the layer 2 protocol forwarding functionality, use the `show ethernet service instance` command as shown below.

Router# show ethernet service instance id 99 interface gigabitEthernet 0/0 detail
Service Instance ID: 99
Service Instance Type: static
Associated Interface: GigabitEthernet0/0
Associated EVC: L2protocol forward cdp lldp
CE-Vlans:
Encapsulation: untagged
Interface Dot1q Tunnel Ethertype: 0x8100
State: Up
EFP Statistics:
 Pkts In Bytes In Pkts Out Bytes Out
 0 0 0 0
EFP Microblocks:

Microblock type: Bridge-domain
Bridge-domain: 99

Verifying Layer 2 Tunneling

To verify the layer 2 control protocol tunneling functionality, use the `show ethernet service instance` command as shown below.

Router# show ethernet service instance id 9 interface GigabitEthernet 0/4 detail
Service Instance ID: 9
Service Instance Type: static
Associated Interface: GigabitEthernet0/4
Associated EVC: L2protocol tunnel
CE-Vlans:
Encapsulation: untagged
Interface Dot1q Tunnel Ethertype: 0x8100
State: Up
EFP Statistics:
Pkts In Bytes In Pkts Out Bytes Out
0 0 0 0
EFP Microblocks:

Microblock type: Bridge-domain
Bridge-domain: 9

Configuration Examples

This section provides sample configuration examples for Layer 2 Control Protocol Peering, Forwarding, and Tunneling feature on the routers.

Example: Configuring Layer 2 Peering

The following is a sample configuration of layer 2 peering.

```
!
interface GigabitEthernet0/0
negotiation auto
l2proto-forward tagged -- forwards all tagged frames, and drops untagged frames
cdp enable
service instance 9 ethernet
encapsulation dot1q 9
rewrite ingress tag pop 1 symmetric
bridge-domain 9
!
```

Example: Configuring Layer 2 Forwarding

The following is a sample configuration of layer 2 protocol forwarding at untagged EFP.

```
Building configuration...
Current configuration : 267 bytes
!
interface Port-channel1
negotiation auto
!
service instance 9 ethernet
encapsulation untagged
l2protocol forward cdp
bridge-domain 9
!
```

```
The following is a sample configuration of layer 2 protocol forwarding of tagged BPDUs at the port-channel interface level.

```
Current configuration : 270 bytes
!
interface Port-channel1
 no negotiation auto
 l2proto-forward tagged cdp
 service instance 9 ethernet
 encapsulation untagged
 bridge-domain 9
!
 service instance 99 ethernet
 encapsulation dot1q 99
 rewrite ingress tag pop 1 symmetric
 bridge-domain 99
!
end
```

By default, tagged and untagged BPDUs are forwarded on port-xconnect.

The following is a sample configuration for interface level forwarding.

```
interface GigabitEthernet0/3
 no ip address
 negotiation auto
 l2proto-forward tagged cdp lldp
 service instance 100 ethernet
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric
 xconnect 55.55.55.55 123 encapsulation mpls
 service instance 200 ethernet
 encapsulation dot1q 200
 rewrite ingress tag pop 1 symmetric
 xconnect 66.66.66.66 124 encapsulation mpls
 service instance 300 ethernet
 encapsulation untagged
 l2protocol peer cdp
 l2protoForward lacp
 bridge-domain 300
```

The following is a sample configuration for Default Encapsulation EFP.

```
interface GigabitEthernet0/3
 no ip address
 negotiation auto
 service instance 200 ethernet
 encapsulation default
 l2protocol forward cdp stp
 l2protocol peer lldp
 xconnect 33.33.33.33 123 encapsulation mpls
```

No explicit L2CP related configuration needs to be done for port-xconnect.

The following is a sample configuration for port-xconnect.
Example: Configuring Layer 2 Tunneling

The following is a sample configuration of Layer 2 control protocol tunneling for untagged packets.

```
Building configuration...
Current configuration : 151 bytes

interface GigabitEthernet0/1
 negotiation auto
 service instance 10 ethernet
 encapsulation untagged
 l2protocol tunnel cdp
 bridge-domain 10

Service instance 100 ethernet
 encapsulation dot1q 100
 l2protocol tunnel lldp
 rewire ingress tag pop 1 symmetric
 bridge-domain 100

interface GigabitEthernet
 negotiation auto
 service instance 20 ethernet
 encapsulation untagged
 l2protocol tunnel
 bridge-domain 20

end
```

The following is a sample configuration of Layer 2 control protocol tunneling for tagged packets.

```
Building configuration...
Current configuration : 153 bytes

interface GigabitEthernet
 negotiation auto
 service instance 10 ethernet
 encapsulation dot1q 100
 l2protocol tunnel
 bridge-domain 50

interface GigabitEthernet0/1
 negotiation auto
 service instance 10 ethernet
 encapsulation dot1q 100
 bridge-domain 50

end
```

Note

The configuration given below applies to only one router. Similar configuration has to be applied on two routers.
The following is a sample configuration of layer 2 protocol tunneling for receiving untagged LLDP packets from customer nodes and tunneling them tagged over provider network.

**Router 1**

Building configuration...
Current configuration : 151 bytes
!
interface GigabitEthernet0/1
   negotiation auto
   service instance 10 ethernet
   encapsulation untagged
   l2protocol tunnel lldp
   bridge-domain 20
!
!
interface GigabitEthernet
   negotiation auto
   service instance 10 ethernet
   encapsulation dot1q 100
   rewrite ingress tag pop 1 symmetric
   bridge-domain 20
!
end

**Router 2**

Current configuration : 170 bytes
!
interface GigabitEthernet
   negotiation auto
   service instance 20 ethernet
   encapsulation dot1q 100
   rewrite ingress tag pop 1 symmetric
   bridge-domain 30
!
!
interface GigabitEthernet
   negotiation auto
   service instance 20 ethernet
   encapsulation untagged
   l2protocol tunnel lldp
   bridge-domain 30
!
end

**Additional References**

The following sections provide references related to the Layer 2 Control Protocol Peering, Forwarding, and Tunneling feature.

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
Feature Information for Layer 2 Control Protocol Peering, Forwarding, and Tunneling

Table 38: Feature Information for Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 621 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature
set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

---

**Note**

Table 38: Feature Information for Layer 2 Control Protocol Peering, Forwarding, and Tunneling, on page 621 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Control Protocol Peering and Forwarding</td>
<td>15.2(2)SNG</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following command was introduced: l2proto-forward</td>
</tr>
<tr>
<td>Layer 2 Control Protocol Tunneling</td>
<td>15.2(2)SNH1</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td>Layer 2 Control Protocol Forwarding over xconnect</td>
<td>15.4(1)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers.</td>
</tr>
</tbody>
</table>
IPv6 over MPLS: 6PE and 6VPE

This feature module describes how to implement IPv6 VPN Provider Edge Transport over MPLS (IPv6 on Provider Edge Routers [6PE] and IPv6 on VPN Provider Edge Routers [6VPE]) on the Cisco ASR 901 Series Aggregation Services Routers.

Finding Feature Information, on page 623
Prerequisites, on page 623
Restrictions, on page 624
Feature Overview, on page 624
Supported Features, on page 626
Scalability Numbers, on page 626
How to Configure IPv6 over MPLS: 6PE and 6VPE, on page 627
Configuration Examples, on page 638
Additional References, on page 640
Feature Information for IPv6 over MPLS: 6PE and 6VPE, on page 641

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites

- Cisco IOS Release 15.2(2)SNI or a later release that supports the IPv6 over MPLS: 6PE and 6VPE feature must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.
- Multiprotocol Label Switching (MPLS) in provider backbone devices.
- MPLS with Virtual Private Network (VPN) code in provider devices with VPN provider edge (PE) devices.
- Border Gateway Protocol (BGP) in all devices providing a VPN service.
Restrictions

The following restrictions are applicable for the IPv6 over MPLS: 6PE and 6VPE feature on the Cisco IOS Release 15.2(2)SN1.

- All the existing MPLS and IPv6 restrictions are applicable, as the base infrastructure of IPv6 and IPv4 MPLS remains the same.
- 6PE and 6VPE is supported only on the SVI interfaces.
- The number of global VRFs supported is the same as that of IPv4, as both the IPv4 and IPv6 VPN Routing and Forwarding (VRF) share the resources from the global VRF pool.
- The number of IPv6 VRFs supported is restricted to 113, though the maximum number of configurable VRFs are 127.
- For the single label per prefix mode allocation, the 6PE and 6VPE scale is limited by the number of labels available in the box (4000 labels).
- Supports only static routes and BGP for IPv6 in VRF context.

Feature Overview

The IPv6 over MPLS: 6PE and 6VPE feature enables the service providers running an MPLS/IPv4 infrastructure to offer IPv6 services without any major changes in the infrastructure. This feature offers the following options to the service providers:

- Connect to other IPv6 networks accessible across the MPLS core
- Provide access to IPv6 services and resources that service provider provides
- Provide IPv6 VPN services without going for complete overhaul of existing MPLS/IPv4 core

6PE and 6VPE uses the existing MPLS/IPv4 core infrastructure for IPv6 transport. It enables IPv6 sites to communicate with each other over an MPLS/IPv4 core network using MPLS label switched paths (LSPs).

This feature relies heavily on multiprotocol Border Gateway Protocol (BGP) extensions in the IPv4 network configuration on the provider edge (PE) router to exchange IPv6 reachability information (in addition to an MPLS label) for each IPv6 address prefix. Edge routers are configured as dual-stack, running both IPv4 and IPv6, and use the IPv4 mapped IPv6 address for IPv6 prefix reachability exchange.

Benefits of 6PE and 6VPE

6PE and 6VPE offers the following benefits to service providers:

- Minimal operational cost and risk—No impact on existing IPv4 and MPLS services.
- Only provider edge routers require upgrade—A 6PE and 6VPE router can be an existing PE router or a new one dedicated to IPv6 traffic.
- No impact on IPv6 customer edge (CE) routers—The ISP can connect to any CE router running Static, IGP or EGP.
- Production services ready—An ISP can delegate IPv6 prefixes.
- IPv6 introduction into an existing MPLS service—6PE and 6VPE routers can be added at any time.
IPv6 on Provider Edge Routers

6PE is a technique that provides global IPv6 reachability over IPv4 MPLS. It allows one shared routing table for all other devices. 6PE allows IPv6 domains to communicate with one another over the IPv4 without an explicit tunnel setup, requiring only one IPv4 address per IPv6 domain.

While implementing 6PE, the provider edge routers are upgraded to support 6PE, while the rest of the core network is not touched (IPv6 unaware). This implementation requires no reconfiguration of core routers because forwarding is based on labels rather than on the IP header itself. This provides a cost-effective strategy for deploying IPv6. The IPv6 reachability information is exchanged by PE routers using multiprotocol Border Gateway Protocol (mp-iBGP) extensions.

6PE relies on mp-iBGP extensions in the IPv4 network configuration on the PE router to exchange IPv6 reachability information in addition to an MPLS label for each IPv6 address prefix to be advertised. PE routers are configured as dual stacks, running both IPv4 and IPv6, and use the IPv4 mapped IPv6 address for IPv6 prefix reachability exchange. The next hop advertised by the PE router for 6PE and 6VPE prefixes is still the IPv4 address that is used for IPv4 L3 VPN routes. A value of ::FFFF: is prepended to the IPv4 next hop, which is an IPv4-mapped IPv6 address.

The following figure illustrates the 6PE topology.

<table>
<thead>
<tr>
<th>V6</th>
<th>IPv6 router on the customer premises</th>
</tr>
</thead>
<tbody>
<tr>
<td>6PE</td>
<td>PE equipment, connected to CE and entry points to the MPLS clouds, running a dual stack IPv6/IPv4 (IPv6 to communicate with CE)</td>
</tr>
<tr>
<td>V4</td>
<td>IPv4 router on the customer premises</td>
</tr>
<tr>
<td>P</td>
<td>Provider routers, core of the MPLS backbone running MPLS and IPv4 stack</td>
</tr>
</tbody>
</table>

IPv6 on VPN Provider Edge Routers

6VPE is a mechanism to use the IPv4 backbone to provide VPN IPv6 services. It takes advantage of operational IPv4 MPLS backbones, eliminating the need for dual-stacking within the MPLS core. This translates to savings in operational costs and addresses the security limitations of the 6PE approach. 6VPE is more like a regular IPv4 MPLS-VPN provider edge, with an addition of IPv6 support within VRF. It provides logically separate routing table entries for VPN member devices.
Components of MPLS-based 6VPE Network

- VPN route target communities – A list of all other members of a VPN community.
- Multiprotocol BGP (MP-BGP) peering of VPN community PE routers – Propagates VRF reachability information to all members of a VPN community.
- MPLS forwarding – Transports all traffic between all VPN community members across a VPN service-provider network.

In the MPLS-VPN model a VPN is defined as a collection of sites sharing a common routing table. A customer site is connected to the service provider network by one or more interfaces, where the service provider associates each interface with a VPN routing table—known as the VRF table.

For more conceptual information on 6PE and 6VPE, see the IPv6 VPN over MPLS guide in the MPLS: Layer 3 VPNs Configuration Guide.

Supported Features

The following 6PE and 6VPE features are supported on the Cisco ASR 901 router effective with Cisco IOS Release 15.2(2) SNI:

- IPv6 VRF support – Enabled for supporting 6VPE
- MPLS VPN 6VPE and 6PE – Provides IPv6 reachability for IPv6 edge routers across an MPLS network backbone running an IPv4 control plane, without making changes to the software on the MPLS P routers.
- 6VPE and 6PE with QoS – Supports QoS provisioning in 6PE and 6VPE networks by using existing QoS infrastructure and configuration.
- MPLS VPN - VRF command for IPv4 and IPv6 VPN – Supports commands that allows users to enable IPv4 and IPv6 in the same VRF.

Note

All the above features are built upon existing IPv4, IPv6, MPLS and BGP infrastructure in the IOS and Cisco ASR 901 data plane support.

Scalability Numbers

Table 39: Scalability Numbers for 6PE and 6VPE, on page 626 shows the scalability numbers for the 6PE and 6VPE feature.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of VRFs</td>
<td>113</td>
</tr>
<tr>
<td>Number of VPNv6 prefixes per VRF</td>
<td>About 4000 ^</td>
</tr>
<tr>
<td>Number of VPNv6 prefixes</td>
<td>About 4000 Table 39: Scalability Numbers for 6PE and 6VPE, on page 626</td>
</tr>
</tbody>
</table>
How to Configure IPv6 over MPLS: 6PE and 6VPE

This section describes how to configure IPv6 over MPLS: 6PE and 6VPE feature:

Configuring 6PE

Ensure that you configure 6PE on PE routers participating in both the IPv4 cloud and IPv6 clouds. To learn routes from both clouds, you can use any routing protocol supported on IOS (BGP, OSPF, IS-IS, EIGRP, Static).

BGP running on a PE router should establish (IPv4) neighborhood with BGP running on other PEs. Subsequently, it should advertise the IPv6 prefixes learnt from the IPv6 table to the neighbors. The IPv6 prefixes advertised by BGP would automatically have IPv4-encoded-IPv6 addresses as the nexthop-address in the advertisement.

To configure 6PE, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip cef
4. ipv6 cef
5. ipv6 unicast-routing
6. router bgp as-number
7. no synchronization
8. no bgp default ipv4-unicast
9. neighbor {ip-address | ipv6-address | peer-group-name} remote-as as-number
10. neighbor {ip-address | ipv6-address | peer-group-name} update-source interface-type interface-number
11. address-family ipv6
12. neighbor {ip-address | ipv6-address | peer-group-name} activate
13. neighbor {ip-address | ipv6-address | peer-group-name} send-label
14. exit-address-family

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><strong>configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables Cisco Express Forwarding on the router.</td>
</tr>
<tr>
<td><strong>ip cef</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip cef</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enables Cisco Express Forwarding for IPv6.</td>
</tr>
<tr>
<td><strong>ipv6 cef</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 cef</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Enables the forwarding of IPv6 unicast datagrams.</td>
</tr>
<tr>
<td><strong>ipv6 unicast-routing</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 unicast-routing</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Enters the number that identifies the autonomous system (AS) in which</td>
</tr>
<tr>
<td><strong>router bgp as-number</strong></td>
<td>the router resides.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# router bgp 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Advertises a network route without waiting for IGP.</td>
</tr>
<tr>
<td><strong>no synchronization</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# no</td>
<td></td>
</tr>
<tr>
<td>synchronization</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Disables the default IPv4 unicast address family for peering session</td>
</tr>
<tr>
<td><strong>no bgp default ipv4-unicast</strong></td>
<td>establishment.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# no</td>
<td></td>
</tr>
<tr>
<td>bgp default ipv4-unicast</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Adds an entry to the BGP or multiprotocol BGP neighbor table.</td>
</tr>
<tr>
<td>**neighbor {ip-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td><strong>remote-as as-number</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# neighbor</td>
<td></td>
</tr>
<tr>
<td>10.108.1.2 remote-as 65200</td>
<td></td>
</tr>
</tbody>
</table>

- **as-number**—Autonomous system number. Range for 2-byte numbers is 1 to 65535. Range for 4-byte numbers is 1.0 to 65535.65535.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• as-number—Number of an autonomous system to which the neighbor belongs, ranging from 1 to 65535.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> neighbor {ip-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Example: Router(config-router)# neighbor 172.16.2.3 update-source Loopback0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> address-family ipv6</td>
<td>Enters address family configuration mode for configuring routing sessions, such as BGP, that use standard IPv6 address prefixes.</td>
</tr>
<tr>
<td>Example: Router(config-router)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> neighbor {ip-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Example: Router(config-router-af)# neighbor 10.0.0.44 activate</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> neighbor {ip-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Example: Router(config-router-af)# neighbor 10.0.0.44 send-label</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> exit-address-family</td>
<td>Exits BGP address-family submode.</td>
</tr>
<tr>
<td>Example: Router(config-router-af)# exit-address-family</td>
<td></td>
</tr>
</tbody>
</table>

## Configuring 6VPE

6VPE requires setting up of IPv6 connectivity from PE to CE routers, MP-BGP peering to the neighboring PE and MPLS/IPv4 connectivity to the core network using supported routing protocols (like OSPF, IS-IS, EIGRP, Static) as done in 6PE. In addition, IPv6 VRFs have to be created on the PE routers and attached to the interfaces connecting to CE routers. IPv6-only or dual-stack(multi-protocol) VRFs support IPv6 VRF definitions.

To configure 6VPE, perform the tasks given below:

### Setting up IPv6 Connectivity from PE to CE Routers

To configure IPv6 connectivity from PE to CE routers, complete the following steps:
### SUMMARY STEPS

1. vrf
2. configure terminal
3. router bgp
4. address-family ipv6 [vrf vrf-name]
5. neighbor {ip-address | ipv6-address | peer-group-name} remote-as as-number
6. neighbor {ip-address | ipv6-address | peer-group-name} activate
7. exit-address-family

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> vrf</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> router bgp</td>
<td>Enters the number that identifies the autonomous system (AS) in which the router resides. Autonomous system number: Range for 2-byte numbers is 1 to 65535. Range for 4-byte numbers is 1.0 to 65535.65535.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# router bgp 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> address-family ipv6 [vrf vrf-name]</td>
<td>Enters address family configuration mode for configuring routing sessions, such as BGP, that use standard IPv6 address prefixes.</td>
</tr>
<tr>
<td>Example:</td>
<td>- vrf—(Optional) Specifies all VRF instance tables or a specific VRF table for an IPv6 address.</td>
</tr>
<tr>
<td></td>
<td>- vrf-name—(Optional) A specific VRF table for an IPv6 address.</td>
</tr>
<tr>
<td>Router(config-router)# address-family ipv6 labeled-unicast</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> neighbor {ip-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td>- ip-address — IP address of a peer router with which routing information will be exchanged.</td>
</tr>
<tr>
<td></td>
<td>- ipv6-address — IPv6 address of a peer router with which routing information will be exchanged.</td>
</tr>
<tr>
<td></td>
<td>- peer-group-name — Name of the BGP peer group.</td>
</tr>
<tr>
<td></td>
<td>- remote-as — Specifies a remote autonomous system.</td>
</tr>
<tr>
<td></td>
<td>- as-number — Number of an autonomous system to which the neighbor belongs, ranging from 1 to 65535.</td>
</tr>
<tr>
<td>Router(config-router-af)# neighbor 10.108.1.2 remote-as 65200</td>
<td></td>
</tr>
</tbody>
</table>
### Setting up MP-BGP Peering to the Neighboring PE

To configure MP-BGP peering to the neighboring PE routers, complete the following steps:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router bgp as-number`
4. `address-family vpv6`
5. `neighbor {ip-address | ipv6-address | peer-group-name} activate`
6. `neighbor {ip-address | ipv6-address | peer-group-name} send-community extended`
7. `exit-address-family`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables the privileged EXEC mode.  
| | | - Enter your password if prompted.  
| | `Example:`  
| | `Router> enable` | |
| **Step 2** | `configure terminal` | Enters the global configuration mode.  
| | `Example:` |  
| | `Router# configure terminal` | |
| **Step 3** | `router bgp as-number` | Enters the number that identifies the autonomous system (AS) in which the router resides. Autonomous system number. Range for 2-byte numbers is 1 to 65535. Range for 4-byte numbers is 1.0 to 65535.65535.  
| | `Example:` |  
| | `Router(config)# router bgp 100` | |
Setting up MPLS/IPv4 Connectivity with LDP

To configure MPLS and IPv4 connectivity with LDP, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface ip-address
4. ip address ip-address
5. mpls ip
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router> enable

---

IPv6 over MPLS: 6PE and 6VPE
### Command or Action	Purpose
**Step 2** configure terminal	
Example:	
Router# configure terminal	Enters the global configuration mode.
**Step 3** interface ip-address	
Example:  
Router(config)# interface vlan 100 | Configures an interface type and to enter interface configuration mode.  
- interface-name—Interface name. |
| **Step 4** ip address ip-address  
Example:  
Router(config-if)# ip address 1.1.1.1 255.255.255.0 | Sets a primary or secondary IP address for an interface. |
| **Step 5** mpls ip  
Example:  
Router(config-if)# mpls ip | Enables MPLS forwarding of IP packets along normally routed paths for a particular interface. |
| **Step 6** exit  
Example:  
Router(config-if)# exit | Exits the interface configuration mode. |

### Creating IPv6 VRFs on PE Routers

To configure IPv6 VRFs on the PE routers, complete the following tasks:

#### Configuring IPv6-only VRF

To configure IPv6-only VRF, complete the following steps:

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. vrf definition vrf-name  
4. address-family ipv6  
5. exit-address-family

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable  
Example: | Enables privileged EXEC mode.  
- Enter your password if prompted. |
### Configuring Dual-stack VRF

To configure dual-stack VRF, complete the following steps:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vrf definition vrf-name`
4. `address-family ipv4`
5. `exit-address-family`
6. `address-family ipv6`
7. `exit-address-family`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
* enable
  * Example: `Router> enable`
| Enables privileged EXEC mode.
  * Enter your password if prompted. |
| **Step 2**
* configure terminal
  * Example: `Router# configure terminal`
<p>| Enters global configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td>Configures a VRF routing table instance and enters VRF configuration mode.</td>
</tr>
</tbody>
</table>

**Step 3**

vrf definition vrf-name  
**Example:**  
Router(config)# vrf definition red  
Name assigned to a VRF.

**Step 4**

address-family ipv4  
**Example:**  
Router(config-vrf)# address-family ipv4  
Enter address family configuration mode for configuring routing sessions that use standard IPv4 address prefixes.

**Step 5**

exit-address-family  
**Example:**  
Router(config-vrf-af)# exit-address-family  
Exits address-family submode.

**Step 6**

address-family ipv6  
**Example:**  
Router(config-vrf)# address-family ipv6  
Enter address family configuration mode for configuring routing sessions that use standard IPv6 address prefixes.

**Step 7**

exit-address-family  
**Example:**  
Router(config-vrf-af)# exit-address-family  
Exits address-family submode.

---

**Verifying IPv6 over MPLS: 6PE and 6VPE Configuration**

To verify the IPv6 over MPLS: 6PE and 6VPE configuration, use the show commands shown in the following examples.

To display BGP entries from all of the customer-specific IPv6 routing tables, use the following show command:

```
Router# show bgp vpnv6 unicast all
```

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 2001:100:1:1000::/56 2001:100:1:1000::72a</td>
<td>0 0 200 ?</td>
<td>32768 ?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* i2001:100:1:2000::/64::FFFF:200.10.10.1</td>
<td>0 32768 ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Route Distinguisher: 200:1</td>
<td>0 32768 ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2001:100:2:1000::/56 ::</td>
<td>0 32768 ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 2001:100:2:2000::/56 ::FFFF:200.10.10.1</td>
<td>0 32768 ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display the parameters and the current state of the active IPv6 routing protocol processes, use the following show command:

```
Router# show ipv6 protocols vrf vpe_1
```
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "bgp 100"
IGP synchronization is disabled
Redistribution:
    None
Neighbor(s):
    Address  FiltIn  FiltOut  Weight  RoutemapIn  RoutemapOut
    100::2

To display IPv6 router advertisement (RA) information received from on-link devices, use the following show command:

Router# show ipv6 route vrf vpe_1

IPv6 Routing Table - vpe_1 - 29 entries
Codes:  C - Connected,  L - Local,  S - Static,  U - Per-user Static route
       B - BGP,  R - RIP,  H - NHRP,  I1 - ISIS L1
       I2 - ISIS L2,  IA - ISIS interarea,  IS - ISIS summary,  D - EIGRP
       EX - EIGRP external,  ND - ND Default,  NDP - ND Prefix,  DCE - Destination
       NDd - Redirect
       O - OSPF Intra,  OI - OSPF Inter,  OE1 - OSPF ext 1,  OE2 - OSPF ext 2
       ON1 - OSPF NSSA ext 1,  ON2 - OSPF NSSA ext 2

B 72::/64  [20/0] via 100::2
B 72:0:0:1::/64  [20/0] via 100::2
B 72:0:0:2::/64  [20/0] via 100::2
B 72:0:0:4::/64  [20/0] via 100::2
B 72:0:0:5::/64  [20/0] via 100::2
B 72:0:0:6::/64  [20/0] via 100::2
B 72:0:0:7::/64  [20/0] via 100::2
B 72:0:0:8::/64  [20/0] via 100::2
B 72:0:0:9::/64  [20/0] via 100::2
B 72:0:0:A::/64  [20/0] via 100::2
B 72:0:0:B::/64  [20/0] via 100::2
B 72:0:0:C::/64  [20/0] via 100::2
B 72:0:0:D::/64  [20/0] via 100::2
B 72:0:0:E::/64  [20/0] via 100::2
B 72:0:0:F::/64  [20/0] via 100::2
B 72:0:0:10::/64  [20/0] via 100::2
B 72:0:0:11::/64  [20/0] via 100::2
B 72:0:0:12::/64  [20/0] via 100::2

To display the Cisco Express Forwarding Forwarding Information Base (FIB) associated with an IPv6 Virtual Private Network (VPN) routing and forwarding (VRF) instance, use the following show command.

Router# show ipv6 cef vrf cisco1
To display IPv6 routing table information associated with a VPN routing and forwarding (VRF) instance, use the following show command.

Router# show ipv6 route vrf

IPv6 Routing Table cisco1 - 6 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
U - Per-user Static route
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2

C 2001:8::/64 [0/0]
via ::, GigabitEthernet0/0/1

L 2001:8::3/128 [0/0]
via ::, GigabitEthernet0/0/1

B 2002:8::/64 [200/0]
via ::FFFF:192.168.1.4,

B 2010::/64 [20/1]
via 2001:8::1,

C 2012::/64 [0/0]
via ::, Loopback1

L 2012::1/128 [0/0]
via ::, Loopback1

To display label forwarding information for advertised Virtual Private Network (VPN) routing and forwarding (VRF) instance routes, use the following show command.

Router# show mpls forwarding-table vrf vpe_1

<table>
<thead>
<tr>
<th>Local</th>
<th>Outgoing Prefix</th>
<th>Bytes Label</th>
<th>Outgoing</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Label or Tunnel ID</td>
<td>Switched interface</td>
<td>interface</td>
<td></td>
</tr>
<tr>
<td>1760</td>
<td>No Label 72::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1761</td>
<td>No Label 72:0:0:1::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1762</td>
<td>No Label 72:0:0:2::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1764</td>
<td>No Label 72:0:0:3::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1765</td>
<td>No Label 72:0:0:4::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1768</td>
<td>No Label 72:0:0:7::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1769</td>
<td>No Label 72:0:0:8::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1770</td>
<td>No Label 72:0:0:9::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1771</td>
<td>No Label 72:0:0:A::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1772</td>
<td>No Label 72:0:0:B::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1773</td>
<td>No Label 72:0:0:C::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1774</td>
<td>No Label 72:0:0:D::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1775</td>
<td>No Label 72:0:0:E::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1776</td>
<td>No Label 72:0:0:F::/64[V] 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1777</td>
<td>No Label 72:0:0:10::/64[V] \ 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
<tr>
<td>1778</td>
<td>No Label 72:0:0:11::/64[V] \ 0</td>
<td>V1100</td>
<td>100::2</td>
<td></td>
</tr>
</tbody>
</table>
To display output information linking the MPLS label with prefixes, use the following show command.

```
Router# show mpls forwarding-table
```

```
<table>
<thead>
<tr>
<th>Local</th>
<th>Outgoing</th>
<th>Prefix</th>
<th>Bytes</th>
<th>tag</th>
<th>tag or VC</th>
<th>or Tunnel Id</th>
<th>Switched</th>
<th>interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Aggregate</td>
<td>IPv6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Aggregate</td>
<td>IPv6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Aggregate</td>
<td>IPv6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pop tag</td>
<td>192.168.99.64/30</td>
<td>0</td>
<td>GEO/0</td>
<td>point2point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Pop tag</td>
<td>192.168.99.70/32</td>
<td>0</td>
<td>GEO/0</td>
<td>point2point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Pop tag</td>
<td>192.168.99.200/32</td>
<td>0</td>
<td>GEO/0</td>
<td>point2point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Aggregate</td>
<td>IPv6</td>
<td>5424</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Aggregate</td>
<td>IPv6</td>
<td>3576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Aggregate</td>
<td>IPv6</td>
<td>2600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

To display entries in the IPv6 BGP routing table, use the following show command:

```
Router# show bgp ipv6 2001:33::/64
```

```
BGP routing table entry for 2001:33::/64, version 3
Paths: (1 available, best #1, table Global-IPv6-Table)
Not advertised to any peer
Local ::FFFF:192.168.0.2 (metric 30) from 192.168.0.2 (192.168.0.2)
Origin IGP, localpref 100, valid, internal, best
```

**Configuration Examples**

This section provides sample configuration examples for IPv6 over MPLS: 6PE and 6VPFE feature on the router.

**Example: Configuring 6PE**

The following is a sample configuration of 6PE.

```
interface GigabitEthernet0/3/0/0
ipv6 address 2001::1/64
!
router isis ipv6-cloud
net 49.0000.0000.0001.00
address-family ipv6 unicast
```

Example: Configuring 6VPE

The following is a sample configuration of 6VPE.

```bash
default-vrf
 address-family ipv6 unicast
 import route-target
 200:2
!
 export route-target
 200:2
interface Loopback0
 ipv4 address 10.0.0.1 255.255.255.255
interface GigabitEthernet0/0/0/1
vrf vpn1
 ipv6 address 2001:c003:a::2/64
router bgp 1
 bgp router-id 10.0.0.1
 bgp redistribute-internal
 bgp graceful-restart
 address-family ipv4 unicast
!
 address-family vpnv6 unicast
!
 neighbor 10.0.0.2
 remote-as 1
 update-source Loopback0
 address-family ipv4 unicast
!
 address-family vpnv6 unicast
 route-policy pass-all in
 route-policy pass-all out
!
 vrf vpn1
 rd 100:2
 bgp router-id 140.140.140.140
 address-family ipv6 unicast
 redistribute connected
!
 neighbor 2001:c003:a::1
 remote-as 6502
```
address-family ipv6 unicast
route-policy pass-all in
route-policy pass-all out

Additional References

The following sections provide references related to IPv6 over MPLS: 6PE and 6VPE feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
<tr>
<td>IPv6 Provider Edge Router over MPLS</td>
<td>Cisco IOS IPv6 Provider Edge Router (6PE) over MPLS</td>
</tr>
<tr>
<td>IPv6 VPN over MPLS</td>
<td>MPLS: Layer 3 VPNs Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for IPv6 over MPLS: 6PE and 6VPE

Table 40: Feature Information for IPv6 over MPLS: 6PE and 6VPE, on page 641 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 40: Feature Information for IPv6 over MPLS: 6PE and 6VPE, on page 641 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 over MPLS: 6PE and 6VPE</td>
<td>15.2(SNI)</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
</tbody>
</table>
Storm Control

This feature module describes the Storm Control feature that helps to monitor the incoming broadcast, multicast, and unknown unicast packets and prevent them from flooding the LAN ports.

- Finding Feature Information, on page 643
- Prerequisites for Storm Control, on page 643
- Restrictions for Storm Control, on page 643
- Information About Storm Control, on page 644
- Configuring Storm Control, on page 644
- Configuring Error Disable Recovery, on page 646
- Configuration Example for Storm Control, on page 648
- Troubleshooting Tips for Storm Control, on page 648
- Additional References, on page 648
- Feature Information for Storm Control, on page 649

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Storm Control

- Cisco IOS Release 15.3(3)S or a later release that supports the Storm Control feature must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.

Restrictions for Storm Control

- The storm-control command is not recommended on an interface that is part of a port channel.
Information About Storm Control

A traffic storm occurs when huge amount of broadcast, multicast, or unknown unicast packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation or in the network configuration can also cause a storm. The mechanism to prevent and control such events is known as storm control or broadcast suppression.

The Storm Control feature prevents switchports on a LAN from being disrupted by a broadcast, multicast, or unknown unicast storm on one of the interfaces. This feature monitors incoming traffic statistics over a time period and compares the measurement with a predefined suppression level threshold. The threshold represents the percentage of the total available bandwidth of the port. If the threshold of a traffic type is reached, the system takes the appropriate storm control action until the incoming traffic falls below the threshold level.

Storm control also acts as a policer, and it drops only the storms that breaches the configured storm level.

This feature supports the following:

- Ethernet port: per port configuration for broadcast, multicast, and unknown unicast traffic.
- 10 GigabitEthernet interfaces.
- SNMP trap and SYSLOG messages: indicating storm control detection.
- Individual dropped packet counters: for broadcast, multicast, and unknown unicast flows.
- Error disable recovery feature with storm control shutdown action.

Configuring Storm Control

To configure Storm Control feature, complete the following steps:

**Note**

This feature is disabled by default.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `storm-control {action {shutdown | trap}} {broadcast | multicast | unicast} {level {level | bps bps-level | pps pps-level}}`
### Storm Control

### Configuring Storm Control

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface gigabitethernet 0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> storm-control {action [shutdown</td>
<td>trap]</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# storm-control broadcast level 70</td>
<td>• <strong>action</strong>—Specifies the action to take when a storm occurs on a port.</td>
</tr>
<tr>
<td></td>
<td>• <strong>shutdown</strong>—Disables the port during a storm.</td>
</tr>
<tr>
<td></td>
<td>• <strong>trap</strong>—Sends an SNMP trap.</td>
</tr>
<tr>
<td></td>
<td>• <strong>broadcast</strong>—Configures broadcast storm control.</td>
</tr>
<tr>
<td></td>
<td>• <strong>multicast</strong>—Configures multicast storm control.</td>
</tr>
<tr>
<td></td>
<td>• <strong>unicast</strong>—Configures unknown unicast storm control.</td>
</tr>
<tr>
<td></td>
<td>• <strong>level</strong>—Specifies the rising threshold level for broadcast, multicast, or unicast traffic as a percentage of the bandwidth.</td>
</tr>
<tr>
<td></td>
<td>• <strong>level</strong>—Threshold level. The valid range is from 1 to 100 percent. There can also be a fractional part in the level ranging from 0 to 99, which is expressed in percentage. So a level of 49.99 on a GigabitEthernet interface means that once the number of broadcast (or configured type) packets on the interface exceeds 499.90Mbps, all the exceeding packets are dropped.</td>
</tr>
<tr>
<td></td>
<td>• <strong>bps</strong>— Specifies the suppression level in bits per second.</td>
</tr>
<tr>
<td></td>
<td>• <strong>bps-level</strong>—Threshold level.</td>
</tr>
<tr>
<td></td>
<td>• <strong>pps</strong>— Specifies the suppression level in packets per second.</td>
</tr>
<tr>
<td></td>
<td>• <strong>pps-level</strong>—Threshold level.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Exits the interface configuration mode and enters the privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
Verifying Storm Control

To verify the Storm Control feature configuration, use the show command described in the following example.

```
Router# show storm-control broadcast
Interface Type Filter State Level Current
--------- ------ ------------- ----------- ----------
Gi0/1 Bcast Forwarding 200 pps 0 pps
Gi0/1 Mcast Forwarding 300 pps 0 pps

! The “current” field is not supported for storm control.
```

To verify the dropped counters, use the show command described in the following example.

```
Router# show interface gigabitethernet 0/1 counters storm-control
% %/ps %/ps %/ps %/ps %/ps
Gi0/1 100.00% 0 20000p 1065163 100.00% 0
```

Configuring Error Disable Recovery

The Cisco ASR 901 router supports error disable recovery for traffic storm control. When a storm is detected, the interfaces configured with the shutdown action of the storm control command are brought down. By default, the error recovery is disabled. You can configure automatic recovery by enabling the error disable recovery at the global configuration level and by setting a time-interval for error recovery.

To configure error disable recovery, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. errdisable recovery cause storm-control
4. errdisable recovery interval seconds
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
## Storm Control

### Monitoring Error Disable Recovery

To display the information about the error-disable recovery timer, use the show command described in the following example.

```
Router# show errdisable recovery

ErrDisable Reason Timer Status

udld Disabled
bpduguard Disabled
security-violation Disabled
channel-misconfig Disabled
vmps Disabled
pagp-flap Disabled
dtp-flap Disabled
link-flap Disabled
isgroup Enabled
l2ptguard Disabled
pssecure-violation Disabled
gbic-invalid Disabled
dhcp-rate-limit Disabled
mac-limit Disabled
unicast-flood Disabled
storm-control Enabled
arp-inspection Disabled
loopback Disabled
```

### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>errdisable recovery cause storm-control</td>
<td>Configure recovery mechanism and recovery from a specific cause.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# errdisable recovery cause storm-control</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>errdisable recovery interval seconds</td>
<td>Configures the period to recover from a specified error-disable cause.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# errdisable recovery interval 30</td>
<td>• seconds—Specifies the time to recover from a specified error-disable cause.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits global configuration mode and enters the privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Example for Storm Control

The following is a sample configuration of Storm Control feature on the router.

```
! interface GigabitEthernet0/1
 no ip address
 negotiation auto
 storm-control broadcast level pps 200
 storm-control multicast level pps 300
 storm-control action trap
end
```

Troubleshooting Tips for Storm Control

Use the following debug command to enable the debug feature to help in troubleshooting the storm control feature.

```
Router# debug platform hardware ether SC
```

Additional References

The following sections provide references related to Storm Control feature.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Router Commands</td>
<td></td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchables technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

Feature Information for Storm Control

Table 41: Feature Information for Storm Control, on page 650 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note: Table 41: Feature Information for Storm Control, on page 650 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Control</td>
<td>15.3(3)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following section provides information about this feature:</td>
</tr>
</tbody>
</table>
CHAPTER 35

Configuring Power over Ethernet

This chapter describes how to configure Power over Ethernet (PoE) support on the Series Aggregation Services Router.

- Information about Power over Ethernet, on page 651
- Configuring PoE on an Interface, on page 653
- Example for Configuring PoE on an Interface, on page 654
- Verifying PoE, on page 654
- Configuring PoE Port Priority, on page 654
- Additional References, on page 655
- Feature Information for Power over Ethernet, on page 656

Information about Power over Ethernet

PoE is the ability of the router to provide PoE through the copper wire to an endpoint. This capability is referred to as inline power. The specification for PoE calls for two devices: the power source equipment (PSE) and the powered device (PD).

Device Roles

- Power sourcing equipment (PSE)—A device that provides power through a twisted-pair Ethernet connection. The router is the PSE.
- Powered device (PD)—A device powered by a PSE (for example, IP phones, IP cameras, and wireless access points).

Configuring PoE Support

To configure PoE support on the router, the following operating modes are supported:

- **static**—This mode of operation runs on the HIGH priority PoE interface.
  
  The supervisor engine pre-allocates power to the HIGH priority PoE interface even when nothing is connected. This guarantees that there is power for the interface. The maximum wattage that is allowed on the interface can be specified. If a wattage is not specified, the router pre-allocates the hardware-supported maximum value. If the router does not have sufficient power for the allocation, the
command will fail. The supervisor engine directs the router module to power up the interface only if the router module discovers the powered device.

- **never**—This mode of operation runs only on the data interface. The supervisor engine never powers up the interface, even if an unpowered phone is connected. This mode is needed only to ensure that power is never applied to a PoE-capable interface.

The feature, limitations, and device roles are covered in the following sections.

### PoE Features Supported on the Router

- Never and static modes of operation
- IEEE 802.3at standard
- IEEE PD detection
- Class 0,1,2,3 and 4
- Disconnects only when:
  - **Shutdown**—If interface shuts down by issuing the `shutdown` command, the PD port power turns off (0) and the `show power inline` command shows the status as "off".
  - **Link down**—If interface goes down for any reasons like protocol down and so on, there will not be any change in the port power.
  - **Removal and reinsertion of PD**—When the PD is removed, the interface goes down and the port power turns off (0). The `show power inline` command shows the status as "off". When the PD is reinserted, the port powers up automatically in both the modes.
  - **Out of range for different classes**—When the port is powered off, the PSE continues to detect the PD until the current is in range for any particular class. An imax error is displayed on the console until the current is in range. The `show power inline` command shows the status as "off".
  - **1 second backup**—Two PoE ports are supported. One of the two ports that has high priority retains its "up" state. When there is a loss of power, the other port (with low priority) is forced to make its port power down. This is to ensure that the high priority port has sufficient power for 1 second.

If power does not return in 1 second, the entire board goes through a power reset. If the power is back within 1 second, power is restored on the other port (low priority). This ensures that the high priority port is not impacted if the power is lost for 1 second.

Port priority can be set using the `power inline port priority` command.

- **PoE port priority**—By default all the PoE ports are treated as low priority. Only when the port priority is set using the `power inline port priority` command that the port is treated as high priority. If none of the ports is set to high priority, the Gigabit Ethernet port (0/4) is set to high priority by default.

Because ports are treated by default as low priority, the default configuration `power inline port priority low` command is not shown in the running configuration. The `power inline port priority low` command is used only when a port is configured as HIGH priority.

- Supports the POWER-ETHERNET-MIB and CISCO-POWER-ETHERNET-EXT-MIB.
### Limitations

- Policing and Cisco PD detection are not supported.
- Power inline static command does not support any options.
- Power consumption and power budgeting is not supported.

### Configuring PoE on an Interface

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/port`
4. `power inline {never | port | static}`
5. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
**configure terminal**	
**Example:**	
`Router# configure terminal`	

**Step 3**	Selects the interface on which to configure PoE.
**interface gigabitethernet slot/port**	
**Example:**	
`Router# interface gigabitethernet 1/3`	

**Step 4**	Choose any one of the port modes:		
`power inline {never	port	static}`	
**Example:**			
`Router(config-if)# power inline static`			

**Step 5**	Exits configuration mode.
`end`	
**Example:**	
`Router(config-if)# end`	
Example for Configuring PoE on an Interface

The following example shows how to configure PoE on GigabitEthernet ports 0/4 and 0/5:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 0/4
Router(config-if)# power inline static
Router(config-if)# end
Router# configure terminal
Router(config)# interface gigabitethernet 0/5
Router(config-if)# power inline static
Router(config-if)# end

Verifying PoE

To verify the PoE configuration, use the `show power inline` command.

Router# show power inline

Available: 60.0 (w) Used: 60.0 (w) Remaining: 0.0 (w)

| Interface | Admin | Oper | Power (Watts) | Device  | Class | Max
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/4</td>
<td>static</td>
<td>on</td>
<td>30.0</td>
<td>Ieee PD</td>
<td>4</td>
<td>30.0</td>
</tr>
<tr>
<td>Gi0/5</td>
<td>static</td>
<td>on</td>
<td>30.0</td>
<td>Ieee PD</td>
<td>4</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Router#

Configuring PoE Port Priority

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or Action</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td><strong>Step 1</strong></td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
</tr>
</tbody>
</table>
### Command or Action

**Step 3**

**interface gigabitethernet slot/port**

Example:

```
Router# interface gigabitethernet 0/5
```

**Purpose**

Specifies the interface on which to configure PoE port priority.

**Step 4**

**power inline port_priority {high | low}**

Example:

```
Router(config-if)# power inline port priority high
```

**Purpose**

Enables PoE port power priority. The default is low priority when power priority is enabled globally.

If a power shortage occurs, PoE is removed from ports in the following order:

- Low priority ports
- High priority ports

**Note**

If none of the ports is set to "high" priority, the Gigabit Ethernet port (0/4) is set to "high" by default.

**Step 5**

**end**

Example:

```
Router(config-if)# end
```

**Purpose**

Exits configuration mode.

### Additional References

The following sections provide references related to power over Ethernet.

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>ASR 901S Command Reference</td>
<td>Cisco ASR 901 Series Aggregation Services Router Command Reference</td>
</tr>
</tbody>
</table>

#### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

#### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• POWER-ETHERNET-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td>• CISCO-POWER-ETHERNET-EXT-MIB</td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Power over Ethernet

The Feature Information for Power over Ethernet table lists the release history for this feature and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn . An account on Cisco.com is not required.

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 42: Feature Information for Power over Ethernet

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power over Ethernet</td>
<td>15.4(2)S</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring Power over Ethernet, on page 651</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information about Power over Ethernet, on page 651</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring PoE on an Interface, on page 653</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Example for Configuring PoE on an Interface, on page 654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Verifying PoE, on page 654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring PoE Port Priority, on page 654</td>
</tr>
</tbody>
</table>
Remote Loop-Free Alternate - Fast Reroute

This feature module describes the Remote Loop-free Alternate (LFA) - Fast Reroute (FRR) feature that uses a backup route, computed using dynamic routing protocol during a node failure, to avoid traffic loss.

- Finding Feature Information, on page 657
- Prerequisites for Remote Loop-Free Alternate - Fast Reroute, on page 657
- Restrictions for Remote Loop-Free Alternate - Fast Reroute, on page 658
- Feature Overview, on page 659
- How to Configure Remote Loop-Free Alternate - Fast Reroute, on page 661
- Configuration Examples for Remote LFA-FRR, on page 689
- Additional References, on page 692
- Feature Information for Remote Loop-Free Alternate - Fast Reroute, on page 693

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Remote Loop-Free Alternate - Fast Reroute

- Cisco IOS Release 15.2(2)SNI or a later release that supports the Remote LFA-FRR feature must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.

- You should enable the following commands at the global configuration mode before configuring the Remote LFA-FRR feature.
  - asr901-platf-frr enable
  - mpls label protocol ldp
  - mpls ldp router-id loopback-id force
  - mpls ldp discovery targeted-hello accept
Restrictions for Remote Loop-Free Alternate - Fast Reroute

- 4-label push is not supported. Due to this limitation, Labeled BGP access (RFC 3107) with Remote LFA-FRR/TE-FRR is not supported, if it exceeds three labels. Four label push is observed on L2VPN and L3VPN scenarios where multihop tunnel terminates before the destination. The four labels are given below:
  - Backup-Repair Label
  - Tunnel Label
  - MPLS LDP Label
  - VC or VRF Label
- Since FRR is a software based solution on the Cisco ASR 901 router, you should keep the number of prefixes, label-entries, and pseudowires to a minimum to obtain good convergence numbers.
- Remote LFA-FRR is not supported on layer 3 over layer 2 deployments. Disable this configuration using the no i3-over-l2 flush buffers command before configuring Remote LFA-FRR.
- Ethernet over Multiprotocol Label Switching (EoMPLS) redundancy is not useful unless you have dual home pseudowire and a protecting backup pseudowire egress link with FRR.
- Pseudowire redundancy over RLFA is supported effective with Cisco IOS Realease 15.4(1)S.
- TDM pseudowires over RLFA is supported effective with Cisco IOS Realease 15.3(3)S.
- CFM over Xconnect over TE-FRR is not supported.
- The imposition statistics do not work for EoMPLS after the FRR event or layer 3 cutover.
- The Border Gateway Protocol (BGP) Prefix-Independent Convergence (PIC) edge is not supported. Specifically, the bgp additional-paths install command is not supported.
- If the network port is an LAG interface (etherchannel), you must use BFD over SVI to achieve FRR convergence numbers.
- If the LAG interface is used either on access side or towards the core, you should shutdown the interface before removing it.
Feature Overview

The LFA-FRR is a mechanism that provides local protection for unicast traffic in IP, MPLS, EoMPLS, Inverse Multiplexing over ATM (IMA) over MPLS, Circuit Emulation Service over Packet Switched Network (CESoPSN) over MPLS, and Structure-Agnostic Time Division Multiplexing over Packet (SAToP) over MPLS networks. However, some topologies (such as the ring topology) require protection that is not afforded by LFA-FRR alone. The Remote LFA-FRR feature is useful in such situations.

The Remote LFA-FRR extends the basic behavior of LFA-FRR to any topology. It forwards the traffic around a failed node to a remote LFA that is more than one hop away.

In Remote LFA-FRR, a node dynamically computes its LFA node. After determining the alternate node (which is non-directly connected), the node automatically establishes a directed Label Distribution Protocol (LDP) session to the alternate node. The directed LDP session exchanges labels for the particular forward error correction (FEC).

When the link fails, the node uses label stacking to tunnel the traffic to the remote LFA node, to forward the traffic to the destination. All the label exchanges and tunneling to remote LFA node are dynamic in nature and pre-provisioning is not required.

The following figure shows the repair path that is automatically created by the Remote LFA-FRR feature to bypass looping. In this figure, the traffic is flowing between CE nodes (R1 to R7) through the PE nodes (protected link - R2 and R3). When the PE node fails, the repair path (R2 - R4 - R5 - R6 - R3) is used to route the traffic between CE nodes.

Figure 35: Remote LFA-FRR Link Protection

Benefits of Remote LFA-FRR

- Simplifies operation with minimum configuration
- Eliminates additional traffic engineering (TE) protocols.
- Computes PQ node dynamically without any manual provisioning (PQ node is a member of both the extended P-space and the Q-space. P-space is the set of routers reachable from a specific router without any path (including equal cost path splits) transiting the protected link. Q-space is the set of routers from
which a specific router can be reached without any path, including equal cost path splits, transiting the protected link.

- Prevents hair pinning that occurs in TE-FRR
- Remote LFA-FRR supports the following:
  - Basic LFA-FRR (supported for OSPF and IS-IS protocols)
  - IP, L2VPN, and L3VPN
  - BFD triggered MPLS TE-FRR. Supports BFD sessions with 50ms interval.

## Avoiding Traffic Drops

Traffic drops can occur due to congestion as a result of formation of micro loops during link recovery. To avoid traffic drops, the tunnel-buffer port command is introduced to set the hardware buffer values on the port. For more details on this command, see the Cisco ASR 901 Series Aggregation Services Router Command Reference guide.

### Pseudowire Redundancy over FRR

Pseudowire redundancy enables you to configure a pseudowire as a backup for the primary pseudowire. When the primary pseudowire fails, the services are switched to the backup pseudowire. Effective with Cisco IOS Release 15.4(1)S, Pseudowire Redundancy over FRR feature is supported.

You can enable FRR (TE-FRR and RLFA) in the network for both active and standby pseudowires separately. The primary and backup paths for these virtual circuits (VCs) may or may not overlap. This feature supports link failures through FRR and node failures through PW redundancy. It supports up to 500 primary and backup pseudowires.

The following figure shows the pseudowire redundancy over FRR implementation.

**Figure 36: Pseudowire Redundancy Over FRR**

![Pseudowire Redundancy Over FRR Diagram]

### Conditions for Switchover

- If the primary path to the peer node goes down for active VC, the FRR changes to backup and the VC remains active.
How to Configure Remote Loop-Free Alternate - Fast Reroute

**Note**

Effective with Cisco IOS Release 15.3(3)S, the Remote LFA-FRR feature is supported on CESoPSN, SAToP, and ATM/IMA.

- Effective with Cisco IOS Release 15.4(1)S, the Pseudowire Redundancy over FRR feature is supported.

This section describes how to configure Remote LFA-FRR feature:

### Configuring Remote LFA-FRR for IS-IS

To configure Remote LFA-FRR for the IS-IS routing process, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. no negotiation auto
5. service instance id ethernet
6. encapsulation dot1q vlan-id
7. rewrite ingress tag pop 1 symmetric
8. bridge-domain bridge-domain-id
9. interface vlan bridge-domain-id
10. ip address ip-address
11. ip router isis
12. mpls ip
13. isis network point-to-point
14. exit
15. router isis
16. fast-reroute per-prefix {level-1 | level-2} {all | route-map route-map-name}
17. fast-reroute remote-lfa {level-1 | level-2} mpls-ldp [maximum-metric metric-value]
18. mpls ldp sync
19. mpls ldp igp sync holddown milliseconds
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>interface type number</code></td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface vlan 40</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>no negotiation auto</code></td>
<td>Disables automatic negotiation.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# no negotiation auto</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>service instance id ethernet</code></td>
<td>Configures an Ethernet service instance on an interface.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# service instance 7 ethernet</code></td>
<td>- <code>id</code> — Integer that uniquely identifies a service instance on an interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified interface in a VLAN.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# encapsulation dot1q 7</code></td>
<td>- <code>vlan-id</code> — Virtual LAN identifier.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>rewrite ingress tag pop 1 symmetric</code></td>
<td>Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | `Router(config-if)# rewrite ingress tag pop 1 symmetric` | - `pop` — Removes a tag from a packet.  
- `1` — Specifies the outermost tag for removal from a packet.  
- `symmetric` — Indicates a reciprocal adjustment to be done in the egress direction. For example, if the ingress pops a tag, the egress pushes a tag and if the ingress pushes a tag, the egress pops a tag. |
<p>| <strong>Step 8</strong> | <code>bridge-domain bridge-domain-id</code> | Enables RFC 1483 ATM bridging or RFC 1490 Frame Relay bridging to map a bridged VLAN to an ATM permanent virtual circuit (PVC) or Frame Relay data-link connection identifier (DLCI). |
| <em>Example:</em> | |  |
| | <code>Router(config-if)# bridge-domain 7</code> | - <code>bridge-domain-id</code> — Bridge domain identifier. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>interface vlan bridge-domain-id</td>
<td>Configures an Ethernet interface to create or access a dynamic Switch Virtual Interface (SVI).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# interface vlan 7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ip address ip-address</td>
<td>Specifies an IP address for the specified interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip address 7.7.7.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ip router isis</td>
<td>Configures an IS-IS routing process for an IP on an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip router isis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>mpls ip</td>
<td>Enables MPLS forwarding of IPv4 packets along normally routed paths for a particular interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# mpls ip</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>isis network point-to-point</td>
<td>Configures a network of two networking devices that use the integrated IS-IS routing protocol to function as a point-to-point link.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# isis network point-to-point</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>exit</td>
<td>Exits the interface configuration mode and enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>router isis</td>
<td>Enables the IS-IS routing protocol and enters the router configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# router isis</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>fast-reroute per-prefix {level-1</td>
<td>level-2} {all</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router)# fast-reroute per-prefix level-1 all</td>
<td>• level-1—Enables per-prefix FRR of level 1 packets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>fast-reroute remote-lfa {level-1</td>
<td>level-2} mpls-ldp [maximum-metric metric-value]</td>
</tr>
</tbody>
</table>
### Configuring Remote LFA-FRR for OSPF

To configure Remote LFA-FRR for the OSPF routing process, complete the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `no negotiation auto`
5. `service instance id ethernet`
6. `encapsulation dot1q vlan-id`
7. `rewrite ingress tag pop 1 symmetric`
8. `bridge-domain bridge-domain-id`
9. `interface vlan bridge-domain-id`
10. `ip address ip-address`
11. `exit`
12. `router ospf`
13. `fast-reroute per-prefix enable [area area-id]`
14. `fast-reroute per-prefix remote-lfa [area area-id]`
15. `mpls ldp sync`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>

---

**Example:**

```
Router(config-router)# fast-reroute remote-lfa level-1 mpls-ldp
```

- **`level-1`**—Enables LFA-FRR of level 1 packets.
- **`level-2`**—Enables LFA-FRR of level 2 packets.
- **`mpls-ldp`**—Specifies that the tunnel type is MPLS or LDP.
- **`maximum-metric`**—Specifies the route map for selecting primary paths for protection.
- **`metric-value`**—Metric value.

**Step 18**

`mpls ldp sync`

**Example:**

```
Router(config-router)# mpls ldp sync
```

Enables MPLS LDP synchronization on interfaces for an IS-IS process.

**Step 19**

`mpls ldp igp sync holddown milliseconds`

**Example:**

```
Router(config)# mpls ldp igp sync holddown 1000
```

Specifies how long an Interior Gateway Protocol (IGP) should wait for Label Distribution Protocol (LDP) synchronization to be achieved.

- **`milliseconds`**—Peer host name or IP address.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong> &lt;br&gt;Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal &lt;br&gt;<strong>Example:</strong> &lt;br&gt;Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number &lt;br&gt;<strong>Example:</strong> &lt;br&gt;Router(config)# interface vlan 40</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> no negotiation auto &lt;br&gt;<strong>Example:</strong> &lt;br&gt;Router(config-if)# no negotiation auto</td>
<td>Disables automatic negotiation.</td>
</tr>
</tbody>
</table>
| **Step 5** service instance id ethernet <br>**Example:** <br>Router(config-if)# service instance 7 ethernet | Configures an Ethernet service instance on an interface.  
• **id**—Integer that uniquely identifies a service instance on an interface. |
| **Step 6** encapsulation dot1q vlan-id <br>**Example:** <br>Router(config-if)# encapsulation dot1q 7 | Enables IEEE 802.1Q encapsulation of traffic on a specified interface in a VLAN.  
• **vlan-id**—Virtual LAN identifier. |
| **Step 7** rewrite ingress tag pop 1 symmetric <br>**Example:** <br>Router(config-if)# rewrite ingress tag pop 1 symmetric | Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance.  
• **pop**—Removes a tag from a packet.  
• **1**—Specifies the outermost tag for removal from a packet.  
• **symmetric**—Indicates a reciprocal adjustment to be done in the egress direction. For example, if the ingress pops a tag, the egress pushes a tag and if the ingress pushes a tag, the egress pops a tag. |
| **Step 8** bridge-domain bridge-domain-id <br>**Example:** <br>Router(config-if)# bridge-domain 7 | Enables RFC 1483 ATM bridging or RFC 1490 Frame Relay bridging to map a bridged VLAN to an ATM permanent virtual circuit (PVC) or Frame Relay data-link connection identifier (DLCI).  
• **bridge-domain-id**—Bridge domain identifier. |
<p>| <strong>Step 9</strong> interface vlan bridge-domain-id &lt;br&gt;<strong>Example:</strong> | Configures an Ethernet interface to create or access a dynamic SVI. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# interface vlan 7</td>
<td></td>
</tr>
</tbody>
</table>

**Step 10**

**ip address ip-address**

**Example:**

Router(config-if)# ip address 7.7.7.1 255.255.255.0

Specifies an IP address for the specified interface.

**Step 11**

**exit**

**Example:**

Router(config-if)# exit

Exits the interface configuration mode and enters the global configuration mode.

**Step 12**

**router ospf**

**Example:**

Router(config)# router ospf

Enables the OSPF routing protocol and enters the router configuration mode.

**Step 13**

**fast-reroute per-prefix enable [area area-id]**

**Example:**

Router(config-router)# fast-reroute per-prefix enable area 1

Configures a per-prefix loop-free alternate (LFA) Fast Reroute (FRR) path that redirects traffic to an alternative next hop other than the primary neighbor.

- **area**—Specifies the area in which to enable LFA-FRR.
- **area-id**—OSPF area ID expressed as a decimal value or in IP address format.

**Step 14**

**fast-reroute per-prefix remote-lfa [area area-id]**

**Example:**

Router(config-router)# fast-reroute per-prefix remote-lfa area 1

Configures a per-prefix LFA FRR path that redirects traffic to a remote LFA area.

**Step 15**

**mpls ldp sync**

**Example:**

Router(config-router)# mpls ldp sync

Enables MPLS LDP synchronization on interfaces for an OSPF process.

### Configuring Remote LFA-FRR for Ethernet and TDM Pseudowires

**Note**

The Remote LFA-FRR feature is supported on the TDM pseudowires from Cisco IOS Realease 15.3(3)S onwards. The configuration and restrictions for EoMPLS are also applicable to the TDM pseudowires.
During packet loss, SAToP requires one second for convergence and two seconds for recovery.

• Configuring Remote LFA-FRR on a Global Interface, on page 667
• Configuring Remote LFA-FRR on a GigabitEthernet Interface, on page 668
• Configuring Remote LFA-FRR on an SVI Interface, on page 669
• Configuring Remote LFA-FRR on IS-IS , on page 670
• Configuring LFA-FRR for EoMPLS , on page 674
• Configuring LFA-FRR for ATM/IMA , on page 676
• Configuring LFA-FRR for CESoPSN , on page 678
• Configuring LFA-FRR for SAToP , on page 680

Configuring Remote LFA-FRR on a Global Interface

To configure Remote LFA-FRR on a global interface, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. no l3-over-l2 flush buffers
5. asr901-platf-frr enable
6. mpls ldp discovery targeted-hello accept

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mpls label protocol ldp</td>
<td>Specifies that this LDP is the default distribution protocol.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>no l3-over-l2 flush buffers</td>
<td>Disables Layer 3 over Layer 2 deployments.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# no l3-over-l2 flush buffers</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Remote LFA-FRR on a GigabitEthernet Interface

To configure Remote LFA-FRR on a GigabitEthernet interface, complete the following steps:

**SUMMARY STEPS**

1. **enable**
2. configure terminal
3. interface type number
4. no negotiation auto
5. service instance id ethernet
6. encapsulation dot1q vlan-id
7. rewrite ingress tag pop 1 symmetric
8. bridge-domain bridge-domain-id

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface vlan 40</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong> no negotiation auto</td>
<td>Disables automatic negotiation.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Router(config-if)# no negotiation auto</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> service instance <em>id</em> ethernet</td>
<td>Configures an Ethernet service instance on an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Router(config-if)# service instance 7 ethernet</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> encapsulation dot1q <em>vlan-id</em></td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified interface in a VLAN.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Router(config-if-srv)# encapsulation dot1q 7</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> rewrite ingress tag pop 1 symmetric</td>
<td>Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance.</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Router(config-if-srv)# rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> bridge-domain <em>bridge-domain-id</em></td>
<td>Enables RFC 1483 ATM bridging or RFC 1490 Frame Relay bridging to map a bridged VLAN to an ATM permanent virtual circuit (PVC) or Frame Relay data-link connection identifier (DLCI).</td>
</tr>
<tr>
<td><strong>Example:</strong>&lt;br&gt;Router(config-if-srv)# bridge-domain 7</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring Remote LFA-FRR on an SVI Interface**

To configure Remote LFA-FRR on an SVI interface, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. ip address *ip-address*
5. ip router isis
6. mpls ip
7. isis network point-to-point
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vlan 40</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip-address</td>
<td>Specifies an IP address for the specified interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 7.7.7.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip router isis</td>
<td>Configures an IS-IS routing process for an IP on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip router isis</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> mpls ip</td>
<td>Enables MPLS forwarding of IPv4 packets along normally routed paths for a particular interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# mpls ip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> isis network point-to-point</td>
<td>Configures a network of two networking devices that use the integrated IS-IS routing protocol to function as a point-to-point link.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# isis network point-to-point</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring Remote LFA-FRR on IS-IS

To configure Remote LFA-FRR for the IS-IS routing process, complete the following steps:

### SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. net net
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>router isis</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router isis</td>
</tr>
<tr>
<td></td>
<td>Enables the IS-IS routing protocol and enters the router configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>net net</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# net 49.0001.0002.0001.0001.00</td>
</tr>
<tr>
<td></td>
<td>Configures an IS-IS network entity table (NET) for the routing process.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>is-type level-1</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# is-type level-1</td>
</tr>
<tr>
<td></td>
<td>Configures the routing level for an instance of the IS-IS routing process.</td>
</tr>
<tr>
<td></td>
<td>• level-1 — Router performs only Level 1 (intra-area) routing. This router learns only about destinations inside its area.</td>
</tr>
</tbody>
</table>
### Configuring Remote LFA-FRR on IS-IS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong> advertise-passive-only</td>
<td>Configures IS-IS to advertise only prefixes that belong to passive interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# advertise-passive-only</td>
</tr>
</tbody>
</table>

**Step 7** ispf level-1	Enables incremental shortest path first (SPF).
Example:	Router(config-router)# ispf level-1
**Note**	When IS-IS incremental SPF is configured on a ring topology, high convergence numbers are observed for random global prefixes. See CSCue11410 for details.

| **Step 8** fast-flood                  | Fills IS-IS link-state packets (LSPs).                                   |
| Example:                               | Router(config-router)# fast-flood                                        |

| **Step 9** max-lsp-lifetime seconds    | Configures the maximum link-state packets (LSPs) lifetime.              |
| Example:                               | Router(config-router)# max-lsp-lifetime 65535                           |

| **Step 10** lsp-refresh-interval seconds | Sets the link-state packet (LSP) refresh interval.                     |
| Example:                               | Router(config-router)# lsp-refresh-interval 900                         |

<p>| Example:                               | Router(config-router)# spf-interval 5 50 200                           |
| <strong>level-1</strong>                            | (Optional) Apply intervals to Level-1 areas only.                      |
| <strong>level-2</strong>                            | (Optional) Apply intervals to Level-2 areas only.                      |
| <strong>spf-max-wait</strong>                       | Indicates the maximum interval (in seconds) between two consecutive SPF calculations. The range is 1 to 120 seconds. The default is 10 seconds. |
| <strong>spf-initial-wait</strong>                   | (Optional) Indicates the initial SPF calculation delay (in milliseconds) after a topology change. The range is 1 to 120000 milliseconds. The default is 5500 milliseconds (5.5 seconds). |
| <strong>spf-second-wait</strong>                    | (Optional) Indicates the hold time between the first and second SPF calculation (in milliseconds). The range is 1 to 120000 milliseconds. The default is 5500 milliseconds (5.5 seconds). |</p>
<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-router)# prc-interval 5 50 200</code></td>
<td>• <code>prc-max-wait</code>—Indicates the maximum interval (in seconds) between two consecutive PRC calculations. Value range is 1 to 120 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>prc-initial-wait</code>—(Optional) Indicates the initial PRC calculation delay (in milliseconds) after a topology change. The range is 1 to 120,000 milliseconds. The default is 2000 milliseconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>prc-second-wait</code>—(Optional) Indicates the hold time between the first and second PRC calculation (in milliseconds). The range is 1 to 120,000 milliseconds. The default is 5000 milliseconds (5 seconds).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-router)# lsp-gen-interval 5 50 200</code></td>
<td>• <code>level-1</code>—(Optional) Apply intervals to Level-1 areas only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>level-2</code>—(Optional) Apply intervals to Level-2 areas only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>lsp-max-wait</code>—Indicates the maximum interval (in seconds) between two consecutive occurrences of an LSP being generated. The range is 1 to 120 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>lsp-initial-wait</code>—(Optional) Indicates the initial LSP generation delay (in milliseconds). The range is 1 to 120,000 milliseconds. The default is 50 milliseconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>lsp-second-wait</code>—(Optional) Indicates the hold time between the first and second LSP generation (in milliseconds). The range is 1 to 120,000 milliseconds. The default is 5000 milliseconds (5 seconds).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>no hello padding</code></td>
<td>Reenables IS-IS hello padding at the router level.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-router)# no hello padding</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>log-adjacency-changes</code></td>
<td>Configures the router to send a syslog message when an OSPF neighbor goes up or down.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-router)# log-adjacency-changes</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`fast-reroute per-prefix {level-1</td>
<td>level-2} {all</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• <code>level-1</code>—Enables per-prefix FRR of level 1 packets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>level-2</code>—Enables per-prefix FRR of level 2 packets.</td>
</tr>
</tbody>
</table>
Configuring LFA-FRR for EoMPLS

To configure LFA-FRR for EoMPLS, complete the following steps:

1. enable
2. configure terminal
3. interface type number
4. no ip address
5. negotiation auto
6. service instance id ethernet
7. encapsulation dot1q vlan-id
8. rewrite ingress tag pop 1 symmetric
9. xconnect peer-ip-address vc-id encapsulation mpls
10. backup peer peer-ip-address vc-id

Note: Effective with Cisco IOS release 15.4(1)S, the EoMPLS Pseudowire Redundancy over FRR feature is supported.

SUMMARY STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-router)# fast-reroute per-prefix level-1 all</td>
<td>all—Enables FRR of all primary paths. route-map—Specifies the route map for selecting primary paths for protection. route-map-name—Route map name.</td>
</tr>
<tr>
<td><strong>Step 17</strong> fast-reroute remote-lfa [level-1</td>
<td>level-2] mpls-ldp [maximum-metric metric-value]</td>
</tr>
<tr>
<td>Example: Router(config-router)# fast-reroute remote-lfa level-1 mpls-ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 18</strong> passive-interface interface-type interface-number</td>
<td>Disables sending routing updates on an interface. interface-type—Interface type. interface-number—Interface number.</td>
</tr>
<tr>
<td>Example: Router(config-router)# passive-interface Loopback0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 19</strong> mpls ldp sync</td>
<td>Enables MPLS LDP synchronization on interfaces for an IS-IS process.</td>
</tr>
<tr>
<td>Example: Router(config-router)# mpls ldp sync</td>
<td></td>
</tr>
</tbody>
</table>
## Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

**Step 2** configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	

**Step 3** interface type number	Specifies an interface type and number and enters interface configuration mode.
Example:	
Router(config)# interface gigabitethernet 0/1	

**Step 4** no ip address	Removes an IP address or disables IP processing.
Example:	
Router(config-if)# no ip address	

**Step 5** negotiation auto	Enables automatic negotiation.
Example:	
Router(config-if)# negotiation auto	

**Step 6** service instance id ethernet	Configures an Ethernet service instance on an interface.
Example:	• id—Integer that uniquely identifies a service instance on an interface. The value varies by the platform. Range: 1 to 4294967295. The identifier need not map to a VLAN and is local in scope to the interface.
Router(config-if)# service instance 100 ethernet	

**Step 7** encapsulation dot1q vlan-id	Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.
Example:	• vlan-id—Virtual LAN identifier. The allowed range is from 1 to 4094. For the IEEE 802.1Q-in-Q VLAN Tag Termination feature, the first instance of this argument defines the outer VLAN ID, and the second and subsequent instances define the inner VLAN ID.
Router(config-if-srv)# encapsulation dot1q 101	

**Step 8** rewrite ingress tag pop 1 symmetric	Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance.
Example:	
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric	
### Configuring LFA-FRR for ATM/IMA

To configure LFA-FRR for ATM/IMA, complete the following steps:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>xconnect peer-ip-address vc-id encapsulation mpls</code></td>
<td>Binds an attachment circuit to a pseudowire, and to configure an Any Transport over MPLS (AToM) static pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# xconnect 10.0.0.4 4 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td><code>backup peer peer-ip-address vc-id</code></td>
<td>Specifies a redundant peer for a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-ether-vc-xconn)# backup peer 10.0.0.5 4</td>
<td>• <code>peer-ip-address</code>—IP address of the remote peer.</td>
</tr>
</tbody>
</table>

### SUMMARY STEPS

1. enable
2. configure terminal
3. controller {t1 | e1} slot/port
4. ima-group ima-group-number
5. exit
6. interface ATM slot /IMA group-number
7. no ip address
8. no atm ilmi-keepalive
9. pvc vpi/vci l2transport
10. `xconnect ip-address encapsulation mpls`
11. `backup peer peer-ip-address`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>

---

**Note**

Effective with Cisco IOS release 15.4(1)S, the TDM Pseudowire Redundancy over FRR feature is supported.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

**Step 2**

**Example:**

<table>
<thead>
<tr>
<th>configure terminal</th>
<th>Enters global configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 3**

**Example:**

| controller {t1 | e1} slot/port | Selects a T1 or E1 controller and enters controller configuration mode. |
|--------------------|--------------------------------------------------------------------------|
| Router(config)# controller e1 0/0 | |

**Step 4**

**Example:**

<table>
<thead>
<tr>
<th>ima-group ima-group-number</th>
<th>Assigns the interface to an IMA group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-controller)# ima-group 2</td>
<td>• ima-group-number—IMA group number.</td>
</tr>
</tbody>
</table>

**Step 5**

**Example:**

<table>
<thead>
<tr>
<th>exit</th>
<th>Exits controller configuration mode and enters global configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-controller)# exit</td>
<td></td>
</tr>
</tbody>
</table>

**Step 6**

**Example:**

<table>
<thead>
<tr>
<th>interface ATM slot /IMA group-number</th>
<th>Configures inverse multiplexing over ATM (IMA) group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface ATM0/IMA2</td>
<td>• slot—Specifies the slot location of the ATM IMA port adapter.</td>
</tr>
<tr>
<td></td>
<td>• group-number—Specifies the group number of the IMA group.</td>
</tr>
</tbody>
</table>

**Step 7**

**Example:**

<table>
<thead>
<tr>
<th>no ip address</th>
<th>Disables IP address configuration for the physical layer interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# no ip address</td>
<td></td>
</tr>
</tbody>
</table>

**Step 8**

**Example:**

<table>
<thead>
<tr>
<th>no atm ilmi-keepalive</th>
<th>Disables the Interim Local Management Interface (ILMI) keepalive parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# no atm ilmi-keepalive</td>
<td></td>
</tr>
</tbody>
</table>

**Step 9**

**Example:**

<table>
<thead>
<tr>
<th>pvc vpi/vci l2transport</th>
<th>Create or assigns a name to an ATM permanent virtual circuit (PVC), to specify the encapsulation type on an ATM PVC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# pvc 90/90 l2transport</td>
<td>• vpi—ATM network virtual path identifier (VPI) for this PVC.</td>
</tr>
<tr>
<td></td>
<td>• vci—ATM network virtual channel identifier (VCI) for this PVC.</td>
</tr>
</tbody>
</table>
Configuring LFA-FRR for CESoPSN

To configure LFA-FRR for CESoPSN, complete the following steps:

1. enable
2. configure terminal
3. controller {t1 | e1} slot/port
4. clock source internal
5. cem-group group-number timeslots timeslot-range
6. description descriptive-name
7. exit
8. interface cem slot/port
9. no ip address
10. cem group-number
11. xconnect ip-address encapsulation mpls
12. backup peer peer-ip-address

Note

Effective with Cisco IOS release 15.4(1)S, the TDM Pseudowire Redundancy over FRR feature is supported.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>xconnect ip-address encapsulation mpls</td>
<td>Binds an attachment circuit to a pseudowire, to configure an Any Transport over MPLS (AToM) static pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-cem)# xconnect 2.2.2.2 111 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>backup peer peer-ip-address</td>
<td>Specifies a redundant peer for a pseudowire VC.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-xconn)# backup peer 2.2.2.3 111</td>
<td></td>
</tr>
</tbody>
</table>

DETAILED STEPS

1. enable
2. configure terminal
3. controller {t1 | e1} slot/port
4. clock source internal
5. cem-group group-number timeslots timeslot-range
6. description descriptive-name
7. exit
8. interface cem slot/port
9. no ip address
10. cem group-number
11. xconnect ip-address encapsulation mpls
12. backup peer peer-ip-address

Purpose

Enables privileged EXEC mode.

- Enter your password if prompted.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

configure terminal  
*Example:*

Router# configure terminal

**Step 3**

controller {t1 | e1} slot/port  
*Example:*

Router(config)# controller e1 0/0

**Step 4**

clock source internal  
*Example:*

Router(config-controller)# clock source internal

**Step 5**

cem-group group-number timeslots timeslot-range  
*Example:*

Router(config-controller)# cem-group 0 timeslots 1-31

- group-number—Channel number to be used for this group of time slots.
- timeslot—Specifies that a list of time slots is to be used as specified by the timeslot-range argument.
- timeslot-range—List of the time slots to be included in the CEM channel. The list may include commas and hyphens with no spaces between the numbers.

**Step 6**

description descriptive-name  
*Example:*

Router(config-controller)# description E1 CESoPSN example

**Step 7**

exit  
*Example:*

Router(config)# exit

**Step 8**

interface cem slot/port  
*Example:*

Router(config)# interface CEM 0/0

**Step 9**

no ip address  
*Example:*

Removes an IP address or disables IP processing.
### Command or Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-cem)# no ip address</td>
<td>Defines a CEM channel.</td>
</tr>
</tbody>
</table>

**Step 10**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>cem group-number</td>
<td>Defines a CEM channel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem)# cem 0</td>
<td></td>
</tr>
</tbody>
</table>

**Step 11**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>xconnect</td>
<td>Binds an attachment circuit to a pseudowire, to configure an Any Transport over MPLS (AToM) static pseudowire.</td>
</tr>
<tr>
<td>ip-address</td>
<td></td>
</tr>
<tr>
<td>encapsulation</td>
<td></td>
</tr>
<tr>
<td>mpls</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem)# xconnect 2.2.2.2 111 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

**Step 12**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup peer peer-ip-address</td>
<td>Specifies a redundant peer for a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-xconn)# backup peer 2.2.2.3 111</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring LFA-FRR for SAToP

To configure LFA-FRR for SAToP, complete the following steps:

**Note**

Effective with Cisco IOS release 15.4(1)S, the TDM Pseudowire Redundancy over FRR feature is supported.

### SUMMARY STEPS

1. enable
2. configure terminal
3. controller {t1 | e1} slot/port
4. framing unframed
5. clock source internal
6. cem-group group-number unframed
7. description descriptive-name
8. exit
9. interface cem slot/port
10. no ip address
11. cem group-number
12. xconnect ip-address encapsulation mpls
13. backup peer peer-ip-address
## Detailed Steps

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | enable            | Enables privileged EXEC mode.  
| Example: | Router> enable     | • Enter your password if prompted. |

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>controller {t1</td>
<td>e1} slot/port</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# controller e1 0/0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>framing unframed</td>
<td>Specifies the framing format of a circuit emulation (CEM) T1 or E1 port.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# framing unframed</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clock source internal</td>
<td>Sets clocking for individual T1 or E1 links.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# clock source internal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | cem-group group-number unframed | Assigns channels on the T1 or E1 circuit to the CEM channel.  
| Example: | Router(config-controller)# cem-group 0 unframed  
|        | • group-number—Channel number to be used for this group of time slots.  
|        | • unframed—Specifies that a single CEM channel is being created including all time slots and the framing structure of the line. |

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>description descriptive-name</td>
<td>Specifies a descriptive name for the controller</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# description E1 SAToP example</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits controller configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface cem slot/port</td>
<td>Defines a CEM channel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface CEM 0/0</td>
<td>Removes an IP address or disables IP processing.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>no ip address</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no ip address</td>
<td>Defines a CEM channel.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>cem group-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# cem 0</td>
<td>Binds an attachment circuit to a pseudowire, to configure an Any Transport over MPLS (AToM) static pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>xconnect ip-address encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if-cem)# xconnect 2.2.2.2 111 encapsulation mpls</td>
<td>Specifies a redundant peer for a pseudowire VC.</td>
<td></td>
</tr>
<tr>
<td>• ip-address—IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• encapsulation—Specifies the tunneling method to encapsulate the data in the pseudowire.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• mpls—Specifies Multiprotocol Label Switching (MPLS) as the tunneling method.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>backup peer peer-ip-address</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if-cem-xconn)# backup peer 2.2.2.3 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• peer-ip-address—IP address of the remote peer.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Verification Examples for Remote LFA-FRR**

**Verifying Remote LFA-FRR Configuration**

To verify the remote LFA-FRR configuration, use the show commands described in the following examples.

To display information for an OSPF per-prefix LFA-FRR configuration, use the following show command:

```
Router# show ip ospf fast-reroute remote-lfa tunnels
OSPF Router with ID (1.1.1.1) (Process ID 1)
 Area with ID (0)
 Base Topology (MTID 0)
Interface MPLS-Remote-Lfa5
 Tunnel type: MPLS-LDP
 Tailend router ID: 5.5.5.5
 Termination IP address: 5.5.5.5
 Outgoing interface: Vlan4004
 First hop gateway: 71.14.1.4
 Tunnel metric: 2
 Protects:
 71.17.1.7 Vlan4003, total metric 4
Interface MPLS-Remote-Lfa6
```
Tunnel type: MPLS-LDP
Tailend router ID: 6.6.6.6
Termination IP address: 6.6.6.6
Outgoing interface: Vlan4003
First hop gateway: 71.17.1.7
Tunnel metric: 2
Protects:
71.14.1.4 Vlan4004, total metric 4

To display entries in the Cisco Express Forwarding (CEF) Forwarding Information Base (FIB), use the following show command.

Router# show ip cef 171.1.1.0 internal
171.1.1.0/24, epoch 0, RIB[I], refcount 5, per-destination sharing
sources: RIB, LTE
feature space:
IPRM: 0x00028000
LFD: 171.1.1.0/24 1 local label
local label info: global/542
contains path extension list
disposition chain 0x12E83850
label switch chain 0x12E83850
ifnums:
Vlan4004(30): 71.14.1.4
MPLS-Remote-Lfa6(37)
path 12C70E98, path list 12D52154, share 1/1, type attached nexthop, for IPv4, flags
has-repair
MPLS short path extensions: M0I flags = 0x20 label 31
nexthop 71.14.1.4 Vlan4004 label (31|537), adjacency IP adj out of Vlan4004, addr 71.14.1.4
12CD6A40
repair: attached-nexthop 6.6.6.6 MPLS-Remote-Lfa6 (12C70FE8)
path 12C70FE8, path list 12D52154, share 1/1, type attached nexthop, for IPv4, flags
repair, repair-only
nexthop 6.6.6.6 MPLS-Remote-Lfa6, repair, adjacency IP midchain out of MPLS-Remote-Lfa6
12CD7880
output chain: label (31|537)
FRR Primary (0x11139020)
<primary: TAG adj out of Vlan4004, addr 71.14.1.4 12D8A780>
<repair: TAG midchain out of MPLS-Remote-Lfa6 12CD6580 label 338 TAG adj out of Vlan4003,
addr 71.17.1.7 12CD7160>

To display local Routing Information Base (RIB) or locally redistributed routes use the following show command.

Router# show ip ospf rib 171.1.1.0
OSPF Router with ID (1.1.1.1) (Process ID 1)
Base Topology (MTID 0)
Codes: * - Best, > - Installed in global RIB
LSA: type/LSID/originator
*> 171.1.1.0/24, Intra, cost 2, area 0
SPF Instance 130, age 00:03:52
Flags: RIB, iSPF
via 71.14.1.4, Vlan4004
Flags: RIB, iSPF
LSA: 1/2.0.0.2/2.0.0.2
repair path via 6.6.6.6, MPLS-Remote-Lfa6, cost 4
Flags: RIB, Repair, IntfDj, BcastDj, CostWon
LSA: 1/2.0.0.2/2.0.0.2

To display information for an IS-IS per-prefix LFA-FRR configuration, use the following show command.
Router# show isis fast-reroute remote-lfa tunnels
Tag Null - Fast-Reroute Remote-LFA Tunnels:
  MPLS-Remote-Lfa1: use Vl4003, nexthop 71.17.1.7, end point 6.6.6.6
  MPLS-Remote-Lfa2: use Vl4004, nexthop 71.14.1.4, end point 5.5.5.5

To display entries in the CEF Forwarding Information Base (FIB) use the following show command.

Router# show ip cef 171.1.1.0 internal
171.1.1.0/24, epoch 0, RIB[1], refcount 5, per-destination sharing
  sources: RIB, LTE
  feature space:
    IPRM: 0x00028000
    LFD: 171.1.1.0/24 1 local label
    local label info: global/18
    contains path extension list
    disposition chain 0x128537C8
  ifnums:
    Vlan4004(30): 71.14.1.4
    MPLS-Remote-Lfa1(32)
    path 12C55CB4, path list 12C856E8, share 1/1, type attached nexthop, for IPv4, flags
    has-repair
    MPLS short path extensions: MOI flags = 0x20 label none
    nexthop 71.14.1.4 Vlan4004 label [none]23, adjacency IP adj out of Vlan4004, addr 71.14.1.4
    1139FA0
    repair: attached-nexthop 6.6.6.6 MPLS-Remote-Lfa1 (12C55D24)
    path 12C55D24, path list 12C856E8, share 1/1, type attached nexthop, for IPv4, flags
    repair, repair-only
    nexthop 6.6.6.6 MPLS-Remote-Lfa1, repair, adjacency IP midchain out of MPLS-Remote-Lfa1
    12D512C0
    output chain: label [none]23
    FRR Primary (0xA74F800)
    <primary: IP adj out of Vlan4004, addr 71.14.1.4 1139FA0>
    <repair: TAG midchain out of MPLS-Remote-Lfa1 11180740 label 366 TAG adj out of Vlan4003,
    addr 71.17.1.7 12D51520>

To display information about IS-IS FRR configurations, use the following show command.

Router# show isis fast-reroute summary
Tag null:
  IPv4 Fast-Reroute Protection Summary:
  Prefix Counts: Total Protected Coverage
  High priority: 0 0 0%
  Normal priority: 10 8 80%
  Total: 10 8 80%

To display paths for a specific route or for all routes under a major network that are stored in the IP local Routing Information Base (RIB), use the following show command.

Router# show isis rib 171.1.1.0
IPV4 local RIB for IS-IS process
IPV4 unicast topology base (TID 0, TOPOID 0x0) ------------
Repair path attributes:
  DS - Downstream, LC - Linecard-Disjoint, NP - Node-Protecting
  PP - Primary-Path, SR - SRLG-Disjoint
Routes under majornet 171.1.0.0/16:
  171.1.1.0/24
    (installed)
    repair path: 6.6.6.6(MPLS-Remote-Lfa1) metric:20 (DS,SR) LSP[2]
Verifying Remote LFA-FRR Configuration for EoMPLS on a GigabitEthernet Interface

To verify the remote LFA-FRR configuration for EoMPLS on a GigabitEthernet interface, use the show commands described in the following examples.

Router# show mpls l2transport vc 1 detail
Local interface: Gi0/0 up, line protocol up, Ethernet up
Destination address: 3.3.3.3, VC ID: 1, VC status: up
Output interface: Vl4000, imposed label stack {18 16}
Preferred path: not configured
Default path: active
Next hop: 71.12.1.2
Create time: 00:00:06, last status change time: 00:00:06
Last label FSM state change time: 00:00:06
Signaling protocol: LDP, peer 3.3.3.3:0 up
Targeted Hello: 1.1.1.1(LDP Id) -> 3.3.3.3, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: Not sent
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 323, remote 16
Group ID: local 0, remote 0
MTU: local 1500, remote 1500
Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On (configured: autosense)
Dataplane:
SSM segment/switch IDs: 4801/4799 (used), PWID: 1
VC statistics:
transit packet totals: receive 0, send 1009697
transit byte totals: receive 0, send 9693706
transit packet drops: receive 0, seq error 0, send 0
Local interface: Gi0/0 up, line protocol up, Ethernet up
Destination address: 4.4.4.4, VC ID: 1, VC status: standby
Output interface: Vl4000, imposed label stack {21 16}
Preferred path: not configured
Default path: active
Next hop: 71.12.1.2
Create time: 00:00:06, last status change time: 00:16:44
Last label FSM state change time: 00:00:06
Signaling protocol: LDP, peer 4.4.4.4:0 up
Targeted Hello: 1.1.1.1(LDP Id) -> 4.4.4.4, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LrdRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: Down(standby)
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 323, remote 16
Group ID: local 0, remote 0
MTU: local 1500, remote 1500
Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On (configured: autosense)
Dataplane:
SSM segment/switch IDs: 4801/4799 (used), PWID: 1
VC statistics:
transit packet totals: receive 0, send 1009697
transit byte totals: receive 0, send 9693706
transit packet drops: receive 0, seq error 0, send 0
Verifying Remote LFA-FRR Configuration for EoMPLS on an EVC Interface

To verify the remote LFA-FRR configuration for EoMPLS on an EVC interface, use the show commands described in the following examples.

Router# show mpls l2transport vc 3001 detail
Local interface: Gi0/0 up, line protocol up, Eth VLAN 200 up
Interworking type is Ethernet
Destination address: 3.3.3.3, VC ID: 1, VC status: up
Output interface: Vl4000, imposed label stack {18 16}
Preferred path: not configured
Default path: active
Next hop: 71.12.1.2
Create time: 00:13:47, last status change time: 00:04:20
Last label FSM state change time: 00:11:54
Signaling protocol: LDP, peer 3.3.3.3:0 up
Targeted Hello: 1.1.1.1(LDP Id) -> 3.3.3.3, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW I/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 16, remote 16
MTU: local 1500, remote 1500
Remote interface description:
MAC Withdraw: sent:1, received:0
Sequencing: receive disabled, send disabled
Control Word: On (configured: autosense)
Dataplane:
SSM segment/switch IDs: 1434251/4096 (used), PWID: 1
VC statistics:
transit packet totals: receive 0, send 260970
transit byte totals: receive 0, send 24009240
transit packet drops: receive 0, seq error 0, send 0
Local interface: Gi0/0 up, line protocol up, Eth VLAN 200 up
Interworking type is Ethernet
Destination address: 4.4.4.4, VC ID: 1, VC status: standby
Verifying Remote LFA-FRR Configuration on IS-IS

To verify the remote LFA-FRR configuration on IS-IS, use the show commands described in the following examples.

Router# show isis fast-reroute remote-lfa tunnels
Tag aggg - Fast-Reroute Remote-LFA Tunnels:
  No Remote-LFA tunnel
Tag Null - Fast-Reroute Remote-LFA Tunnels:
  No Remote-LFA tunnel
Tag agg - Fast-Reroute Remote-LFA Tunnels:
  MPLS-Remote-Lfa5: use Vl27, nexthop 27.27.27.2, end point 192.168.1.2
  MPLS-Remote-Lfa6: use Vl50, nexthop 50.50.50.2, end point 192.168.1.2

Verifying Remote LFA-FRR Configuration on ATM/IMA

To verify the remote LFA-FRR configuration on ATM/IMA, use the show commands described in the following example.

Router# show mpls 12 vc 90 detail
Local interface: AT0/IMA2 up, line protocol up, ATM AAL5 90/90 Basic 1 up
Destination address: 2.2.2.2, VC ID: 111, VC status: up
  Output interface: Vlan300, imposed label stack {29 32}
  Preferred path: not configured
  Default path: active
Next hop: point2point
Create time: 17:54:25, last status change time: 17:54:25
Last label FSM state change time: 17:54:25
Signaling protocol: LDP, peer 2.2.2.2:0 up
Targeted Hello: 170.0.0.201(LDP Id) -> 2.2.2.2, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 20, remote 32
Group ID: local 0, remote 0
MTU: local 0, remote 0
Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On (configured: autosense)

Verifying Remote LFA-FRR Configuration on CESoPSN

To verify the remote LFA-FRR configuration on CESoPSN, use the show commands described in the following example.

Router# show mpls l2 vc 111 detail
Local interface: CE0/0 up, line protocol up, CESoPSN Basic 1 up
Destination address: 2.2.2.2, VC ID: 111, VC status: up
Output interface: Vlan300, imposed label stack {29 32}
Preferred path: not configured
Default path: active
Next hop: point2point
Create time: 17:54:25, last status change time: 17:54:25
Last label FSM state change time: 17:54:25
Signaling protocol: LDP, peer 2.2.2.2:0 up
Targeted Hello: 170.0.0.201(LDP Id) -> 2.2.2.2, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 20, remote 32
Group ID: local 0, remote 0
MTU: local 0, remote 0
Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: On (configured: autosense)
Dataplane:
Verifying Remote LFA-FRR Configuration on SAToP

To verify the remote LFA-FRR configuration on SAToP, use the show commands described in the following example.

Router# show mpls l2 vc 111 detail

Local interface: CE0/0 up, line protocol up, SATOP Basic 1 up
Destination address: 2.2.2.2, VC ID: 111, VC status: up
Output interface: Vlan300, imposed label stack {29 32}
Preferred path: not configured
Default path: active
Next hop: point2point
Create time: 17:54:25, last status change time: 17:54:25
Last label FSM state change time: 17:54:25
Signaling protocol: LDP, peer 2.2.2.2:0 up
Targeted Hello: 170.0.0.201(LDP Id) -> 2.2.2.2, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
  LDP route watch : enabled
  Label/status state machine : established, LruRru
  Last local dataplane status rcvd: No fault
  Last BFD dataplane status rcvd: Not sent
  Last BFD peer monitor status rcvd: No fault
  Last local AC circuit status rcvd: No fault
  Last local AC circuit status sent: No fault
  Last local PW i/f circ status rcvd: No fault
  Last local LDP TLV status rcvd: No fault
  Last remote LDP TLV status rcvd: No fault
  Last remote LDP ADJ status rcvd: No fault
  MPLS VC labels: local 20, remote 32
Group ID: local 0, remote 0
MTU: local 0, remote 0
Remote interface description:
Sequencing: receive disabled, send disabled
Control Word: receive disabled, send disabled

Configuration Examples for Remote LFA-FRR

This section provides sample configuration examples for Remote LFA-FRR feature on the router.

Example: Configuring Remote LFA-FRR for IS-IS

The following is a sample configuration of Remote LFA-FRR for IS-IS on all nodes.

! mpls label protocol ldp
mpls ldp router-id lo0 force
mpls ldp discovery targeted-hello accept
no 13-over-l2 flush buffers
Example: Configuring Remote LFA-FRR for OSPF

The following is a sample configuration of Remote LFA-FRR for OSPF on all nodes.

```conf
! mpls label protocol ldp
mpls ldp router-id lo0 force
mpls ldp discovery targeted-hello accept
no l3-over-l2 flush buffers
asr901-platf-frr enable
router ospf 1
router-id 5.5.5.5
fast-reroute per-prefix enable area 0 prefix-priority low
fast-reroute per-prefix remote-lfa tunnel mpls-ldp
timers throttle spf 50 200 5000
timers throttle lsa 50 200 5000
timers lsa arrival 100
mpls ldp sync
```

Example: Configuring Remote LFA-FRR Globally

The following is a sample configuration of Remote LFA-FRR at a global level.

```conf
! mpls label protocol ldp
mpls ldp discovery targeted-hello accept
no l3-over-l2 flush buffers
asr901-platf-frr enable
!
```

Example: Configuring Remote LFA-FRR on a GigabitEthernet Interface

The following is a sample configuration of Remote LFA-FRR on a GigabitEthernet Interface.

```conf
! interface GigabitEthernet
no ip address
negotation auto
service instance 7 ethernet
encapsulation dot1q 7
```
Example: Configuring Remote LFA-FRR on an SVI Interface

The following is a sample configuration of Remote LFA-FRR on an SVI Interface.

```conf
rewrite ingress tag pop 1 symmetric
bridge-domain 7
!
```

Example: Configuring EoMPLS Pseudowire Redundancy over FRR

The following is a sample configuration of EoMPLS pseudowire redundancy over FRR.

```conf
interface GigabitEthernet0/0
no ip address
load-interval 30
negotiation auto
service instance 1 ethernet
 encapsulation dot1q 200
rewrite ingress tag pop 1 symmetric
xconnect 3.3.3.3 1 encapsulation mpls
 backup peer 4.4.4.4 1
 mtu 1500
!
```

Example: Configuring LFA-FRR on ATM/IMA

The following is a sample configuration of LFA-FRR on ATM/IMA, which also includes pseudowire redundancy.

```conf
controller E1 0/0
 ima-group 2
!
interface ATM0/IMA1
 no ip address
 no atm enable-ilmi-trap
 xconnect 2.2.2.2 90 encapsulation mpls
 backup peer 180.0.0.201 90
 !
```

Example: Configuring LFA-FRR on CESoPSN

The following is a sample configuration of LFA-FRR on CESoPSN, which also includes pseudowire redundancy.
Example: Configuring LFA-FRR on SAToP

The following is a sample configuration of LFA-FRR on SAToP, which also includes pseudowire redundancy.

```
! controller E1 0/0
clock source internal
cem-group 0 timeslots 1-31
description E1 CESoPSN example
!
interface CEM0/2
no ip address
cem 1
 xconnect 2.2.2.2 111 encapsulation mpls pw-class test
 backup peer 180.0.0.201 111
!
```

Additional References

The following sections provide references related to Remote Loop-Free Alternate - Fast Reroute feature.

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Router Commands</td>
<td></td>
</tr>
<tr>
<td>IS-IS Remote LFA FRR</td>
<td>IS-IS Remote Loop-Free Alternate Fast Reroute</td>
</tr>
<tr>
<td>OSPFv2 LFA FRR</td>
<td>OSPFv2 Loop-Free Alternate Fast Reroute</td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

Feature Information for Remote Loop-Free Alternate - Fast Reroute

Table 43: Feature Information for Remote Loop-Free Alternate - Fast Reroute, on page 694 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 43: Feature Information for Remote Loop-Free Alternate - Fast Reroute, on page 694 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
### Table 43: Feature Information for Remote Loop-Free Alternate - Fast Reroute

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Loop-Free Alternate - Fast Reroute</td>
<td>15.2(2)SN</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following sections provide information about this feature:</td>
</tr>
<tr>
<td>Remote Loop-Free Alternate - Fast Reroute for EoMPLS</td>
<td>15.3(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 routers. The following section provides information about this feature:</td>
</tr>
<tr>
<td>Remote Loop-Free Alternate - Fast Reroute for TDM Pseudowires</td>
<td>15.3(3)S</td>
<td>Support for TDM Pseudowires was added.</td>
</tr>
<tr>
<td>EoMPLS Pseudowire Redundancy over FRR</td>
<td>15.4(1)S</td>
<td>Support was added for EoMPLS pseudowire redundancy over FRR.</td>
</tr>
<tr>
<td>TDM Pseudowire Redundancy over FRR</td>
<td>15.4(1)S</td>
<td>Support was added for TDM pseudowire redundancy over FRR.</td>
</tr>
</tbody>
</table>
Digital Optical Monitoring

This feature module provides information on the digital optical monitoring (DOM) feature for the Cisco ASR 901 Series Aggregation Services Router.

- Finding Feature Information, on page 695
- Feature Overview, on page 695
- How to Enable Transceiver Monitoring, on page 696
- Examples, on page 697
- Additional References, on page 703
- Feature Information for Digital Optical Monitoring, on page 704

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Overview

The ASR 901 router supports DOM as per the standard SFF-8724 Multi-Source Agreement (MSA). This feature allows monitoring real-time parameters of the router, such as optical input and output power, temperature, laser bias current, and transceiver supply voltage. These parameters are monitored against the threshold values. The real-time DOM parameters can be monitored using command line interface or SNMP interface. Effective with Cisco IOS Release 15.3(3)S, Cisco ASR 901 supports DOM for both 1G and 10G SFPs.

DOM allows the user to view the threshold violation messages. To display the threshold violation messages, you must enable transceiver monitoring. For information on enabling transceiver monitoring, see How to Enable Transceiver Monitoring, on page 696.

The command line output for the real-time parameters is shown using the `show interfaces transceiver` command. To enable threshold notification in the transceiver via SNMP, use the `snmp-server enable traps` command.
transceiver command. You can use the show controllers gig 0/x command to check whether SFP’s are DOM capable. This command displays the SFP details.

How to Enable Transceiver Monitoring

Complete the following steps to enable transceiver monitoring:

Restrictions

- You need the transceiver module compatibility information for configuring transceiver monitoring. The compatibility matrix that lists the support for DOM in the Cisco transceiver modules is available at the following URL: http://www.cisco.com/en/US/docs/interfaces_modules/transceiver_modules/compatibility/matrix/OL_8031.html
- In case of combo ports with SFP and RJ45 provision, when SFP is inserted in slot or port and media type is not configured to SFP, DOM is functional only if global transceiver monitoring is enabled.
- CISCO-ENTITY-SENSOR-MIB traps are sent only once after the threshold violation. However, SYSLOG traps are sent according to the monitoring interval.

SUMMARY STEPS

1. enable
2. configure terminal
3. transceiver type all
4. monitoring
5. monitoring interval;

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> transceiver type all</td>
<td>Enters the transceiver type configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# transceiver type all</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> monitoring</td>
<td>Enables monitoring of all optical transceivers.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xcvr-type)# monitoring</td>
<td></td>
</tr>
</tbody>
</table>
Examples

The real-time parameters of the router, such as optical output power, optical input power, temperature, laser bias current, and transceiver supply voltage can be monitored using the `show interfaces transceiver` command.

This section provides sample output for monitoring the real-time parameters on the router:

Example: Displaying Transceiver Information

This example shows how to display transceiver information:

```
Router# show interfaces transceiver
```

If device is externally calibrated, only calibrated values are printed.
NA or N/A: not applicable, Tx: transmit, Rx: receive.
mA: milliamperes, dBm: decibels (milliwatts).

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Current (mA)</th>
<th>Optical Tx Power (dBm)</th>
<th>Optical Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10/10</td>
<td>36.9</td>
<td>3.25</td>
<td>537.7</td>
<td>-4.5</td>
<td>-9.7</td>
</tr>
<tr>
<td>G10/11</td>
<td>35.8</td>
<td>3.22</td>
<td>393.6</td>
<td>-5.5</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

Example: Displaying Detailed Transceiver Information

This example shows how to display detailed transceiver information:

```
Router# show interfaces transceiver detail
```

mA: milliamperes, dBm: decibels (milliwatts), NA or N/A: not applicable.
A2D readouts (if they differ), are reported in parentheses.
The threshold values are calibrated.

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>High Alarm Temperature Threshold (Celsius)</th>
<th>High Warn Temperature Threshold (Celsius)</th>
<th>Low Warn Temperature Threshold (Celsius)</th>
<th>Low Alarm Temperature Threshold (Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10/10</td>
<td>33.9</td>
<td>85.0</td>
<td>75.0</td>
<td>0.0</td>
<td>-5.0</td>
</tr>
<tr>
<td>G10/11</td>
<td>32.8</td>
<td>85.0</td>
<td>75.0</td>
<td>0.0</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Voltage (Volts)</th>
<th>High Alarm Voltage Threshold (Volts)</th>
<th>High Warn Voltage Threshold (Volts)</th>
<th>Low Warn Voltage Threshold (Volts)</th>
<th>Low Alarm Voltage Threshold (Volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10/10</td>
<td>3.25</td>
<td>3.70</td>
<td>3.59</td>
<td>3.09</td>
<td>3.00</td>
</tr>
<tr>
<td>G10/11</td>
<td>3.23</td>
<td>3.70</td>
<td>3.59</td>
<td>3.09</td>
<td>3.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Current (milliamperes)</th>
<th>High Alarm Current Threshold (mA)</th>
<th>High Warn Current Threshold (mA)</th>
<th>Low Warn Current Threshold (mA)</th>
<th>Low Alarm Current Threshold (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G10/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G10/11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Example: Displaying List of Supported Transceivers

This example shows how to display the list of supported DOM transceivers:

```
Router# show interfaces transceiver supported-list
```

<table>
<thead>
<tr>
<th>Transceiver Type</th>
<th>Cisco p/n min version supporting DOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWDM GBIC</td>
<td>ALL</td>
</tr>
<tr>
<td>DWDM SFP</td>
<td>ALL</td>
</tr>
<tr>
<td>RX only WDM GBIC</td>
<td>ALL</td>
</tr>
<tr>
<td>DWDM XENPAK</td>
<td>ALL</td>
</tr>
<tr>
<td>DWDM X2</td>
<td>ALL</td>
</tr>
<tr>
<td>DWDM XFP</td>
<td>ALL</td>
</tr>
<tr>
<td>CWDM GBIC</td>
<td>NONE</td>
</tr>
<tr>
<td>CWDM X2</td>
<td>ALL</td>
</tr>
<tr>
<td>CWDM XFP</td>
<td>ALL</td>
</tr>
<tr>
<td>XENPAK ZR</td>
<td>ALL</td>
</tr>
<tr>
<td>X2 ZR</td>
<td>ALL</td>
</tr>
<tr>
<td>XFP ZR</td>
<td>ALL</td>
</tr>
<tr>
<td>Rx_only_WDM_XENPAK</td>
<td>ALL</td>
</tr>
<tr>
<td>XENPAK_ER</td>
<td>10-1888-04</td>
</tr>
<tr>
<td>X2_ER</td>
<td>ALL</td>
</tr>
<tr>
<td>XFP_ER</td>
<td>ALL</td>
</tr>
<tr>
<td>XENPAK_LR</td>
<td>10-1838-04</td>
</tr>
<tr>
<td>X2_LR</td>
<td>ALL</td>
</tr>
<tr>
<td>XFP_LR</td>
<td>ALL</td>
</tr>
<tr>
<td>XENPAK_LW</td>
<td>ALL</td>
</tr>
<tr>
<td>X2_LW</td>
<td>ALL</td>
</tr>
<tr>
<td>XFP_LW</td>
<td>NONE</td>
</tr>
<tr>
<td>XENPAK SR</td>
<td>NONE</td>
</tr>
<tr>
<td>X2 SR</td>
<td>ALL</td>
</tr>
<tr>
<td>XFP SR</td>
<td>ALL</td>
</tr>
<tr>
<td>XENPAK LX4</td>
<td>NONE</td>
</tr>
<tr>
<td>X2 LX4</td>
<td>NONE</td>
</tr>
<tr>
<td>XFP LX4</td>
<td>NONE</td>
</tr>
<tr>
<td>XENPAK CX4</td>
<td>NONE</td>
</tr>
<tr>
<td>X2 CX4</td>
<td>NONE</td>
</tr>
<tr>
<td>SX GBIC</td>
<td>NONE</td>
</tr>
<tr>
<td>LX GBIC</td>
<td>NONE</td>
</tr>
<tr>
<td>ZX GBIC</td>
<td>NONE</td>
</tr>
<tr>
<td>CWDM SFP</td>
<td>ALL</td>
</tr>
<tr>
<td>Rx_only_WDM_SFP</td>
<td>NONE</td>
</tr>
<tr>
<td>SX_SFP</td>
<td>ALL</td>
</tr>
<tr>
<td>LX_SFP</td>
<td>ALL</td>
</tr>
<tr>
<td>ZX_SFP</td>
<td>ALL</td>
</tr>
</tbody>
</table>
Example: Displaying Threshold Tables

This example shows how to display the threshold tables for all transceivers on the router:

Router# `show interfaces transceiver threshold table`

<table>
<thead>
<tr>
<th>Transceiver Type</th>
<th>Optical Tx Min1</th>
<th>Optical Rx Min1</th>
<th>Temp Min1</th>
<th>Laser Bias Current Min1</th>
<th>Voltage Min1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWDM GBIC</td>
<td>-0.50</td>
<td>-28.50</td>
<td>0</td>
<td>N/A</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>-0.30</td>
<td>-28.29</td>
<td>5</td>
<td>N/A</td>
<td>4.75</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
<td>-6.69</td>
<td>60</td>
<td>N/A</td>
<td>5.25</td>
</tr>
<tr>
<td></td>
<td>3.50</td>
<td>6.00</td>
<td>70</td>
<td>N/A</td>
<td>5.50</td>
</tr>
<tr>
<td>DWDM SFP</td>
<td>-0.50</td>
<td>-28.50</td>
<td>0</td>
<td>N/A</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>-0.30</td>
<td>-28.29</td>
<td>5</td>
<td>N/A</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>4.30</td>
<td>-9.50</td>
<td>60</td>
<td>N/A</td>
<td>3.59</td>
</tr>
<tr>
<td></td>
<td>4.50</td>
<td>9.30</td>
<td>70</td>
<td>N/A</td>
<td>3.70</td>
</tr>
<tr>
<td>RX only WDM GBIC</td>
<td>N/A</td>
<td>-28.50</td>
<td>0</td>
<td>N/A</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>-28.29</td>
<td>5</td>
<td>N/A</td>
<td>4.75</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>-6.69</td>
<td>60</td>
<td>N/A</td>
<td>5.25</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>6.00</td>
<td>70</td>
<td>N/A</td>
<td>5.50</td>
</tr>
<tr>
<td>DWDM XENPAK</td>
<td>-1.50</td>
<td>-24.50</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>-1.29</td>
<td>-24.29</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
<td>-6.69</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3.50</td>
<td>4.00</td>
<td>70</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DWDM X2</td>
<td>-1.50</td>
<td>-24.50</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>-1.29</td>
<td>-24.29</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
<td>-6.69</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3.50</td>
<td>4.00</td>
<td>70</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>DWDM XFP</td>
<td>-1.50</td>
<td>-24.50</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>-1.29</td>
<td>-24.29</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3.29</td>
<td>-6.69</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>3.50</td>
<td>4.00</td>
<td>70</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CWDM X2</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>CWDM XFP</td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>XENPAK ZR</td>
<td>-0.50</td>
<td>-24.50</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>-0.80</td>
<td>-24.29</td>
<td>5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4.30</td>
<td>-6.69</td>
<td>60</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>4.50</td>
<td>4.00</td>
<td>70</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>X2 ZR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital Optical Monitoring

Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide

OL-30498-03
<table>
<thead>
<tr>
<th>Channel</th>
<th>Min1</th>
<th>Min2</th>
<th>Max1</th>
<th>Max2</th>
<th>XFP ZR</th>
<th>Rx_only_WDM_XENPAK</th>
<th>XENPAK_ER</th>
<th>X2_ER</th>
<th>XFP_ER</th>
<th>XENPAK_LR</th>
<th>X2_LR</th>
<th>XFP_LR</th>
<th>XENPAK_LW</th>
<th>X2_LW</th>
<th>X2 SR</th>
<th>XFP SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min1</td>
<td>-0.50</td>
<td>-0.80</td>
<td>4.50</td>
<td>4.30</td>
<td>-0.50</td>
<td>-0.80</td>
<td>-0.50</td>
<td>-5.00</td>
<td>-5.00</td>
<td>-8.50</td>
<td>-8.50</td>
<td>-8.50</td>
<td>-8.50</td>
<td>-8.50</td>
<td>-8.50</td>
<td>-10.30</td>
</tr>
<tr>
<td>Max1</td>
<td>0</td>
<td>5</td>
<td>70</td>
<td>60</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Max2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Example: Displaying Threshold Tables*
**Example: Displaying Threshold Violations**

This example shows how to display the threshold violations for all transceivers on a router:

```
Router# show interfaces transceiver threshold violations
Rx: Receive, Tx: Transmit.
DDDD: days, HH: hours, MM: minutes, SS: seconds
Port (Time since Last Known) (Time in slot) (Threshold Violation(s)) (Type(s) of Last Known Violation)
Gi0/10 0000:02:50:19 Not applicable Not applicable
Gi0/11 0000:02:51:15 Rx power low alarm -31.0 dBm < -17.1 dBm
```

**Example: Displaying Threshold Violations on a Specific Interface**

This example shows how to display violations for the transceiver on a specific interface:

```
Router# show interfaces GigabitEthernet transceiver
ITU Channel not available (Wavelength not available), Transceiver is externally calibrated.
```
If device is externally calibrated, only calibrated values are printed.
NA or N/A: not applicable, Tx: transmit, Rx: receive.
mA: milliamperes, dBm: decibels (milliwatts).

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Current (mA)</th>
<th>Tx Power (dBm)</th>
<th>Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/9</td>
<td>32.5</td>
<td>3.20</td>
<td>385.1</td>
<td>-5.5</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

**Example: When Transceiver Monitoring is Disabled**

This example shows how to disable transceiver monitoring for all transceivers:

```
Router(config-xcvr-type)# no monitoring
```

This example shows the sample output when transceiver monitoring is disabled:

```
Router# show interfaces transceiver detail
Transceiver monitoring is disabled for all interfaces.
mA: milliamperes, dBm: decibels (milliwatts), NA or N/A: not applicable.
A2D readouts (if they differ), are reported in parentheses.
The threshold values are calibrated.

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Current (mA)</th>
<th>Tx Power (dBm)</th>
<th>Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/10</td>
<td></td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gi0/11</td>
<td></td>
<td>3.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Current (mA)</th>
<th>Tx Power (dBm)</th>
<th>Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/10</td>
<td></td>
<td>3.25</td>
<td>3.70</td>
<td>3.59</td>
<td>3.09</td>
</tr>
<tr>
<td>Gi0/11</td>
<td></td>
<td>3.23</td>
<td>3.70</td>
<td>3.59</td>
<td>3.09</td>
</tr>
</tbody>
</table>

Example: Displaying SFP Details

The following is the sample output from the `show controller gig0/x` command.
Router# show controllers gig0/4
Switch Unit: 0 port: 10
PHY info:
 0x00: 0x1140 0x01: 0x79ED 0x02: 0x0362 0x03: 0x5DB1
 0x04: 0x0581 0x05: 0xC001 0x06: 0x006F 0x07: 0x2001
 0x08: 0x4FF5 0x09: 0x0600 0x0A: 0x7800 0x0B: 0x0000
 0x0C: 0x0000 0x0D: 0x0000 0x0E: 0x0000 0x0F: 0x3000
 0x10: 0x0001 0x11: 0x0F00 0x12: 0x0003 0x13: 0xFF0F
 0x14: 0x707F 0x15: 0x0000 0x16: 0x0000 0x17: 0x0F04
 0x18: 0x7067 0x19: 0x0FF1 0x1A: 0x257F 0x1B: 0xFF0F
 0x1C: 0x7EA8 0x1D: 0x064C 0x1E: 0x0000 0x1F: 0x0000

== SFP EEPROM content ==
Reg 0x00: 03 04 07 00 00 00 02 00
Reg 0x08: 00 00 00 01 00 00 00 64
Reg 0x10: 37 37 00 00 43 49 53 43
Reg 0x18: 4F 2D 53 55 4D 49 54 4F
Reg 0x20: 4D 4F 20 20 00 00 00 5F
Reg 0x28: 35 31 53 55 54 4D 49 4F
Reg 0x30: 31 32 33 34 35 36 37 38
Reg 0x38: 4F 2D 53 55 4D 49 54 4F
Reg 0x40: 00 00 00 00 00 00 00 00
Reg 0x48: 00 00 00 00 00 00 00 00
Reg 0x50: 00 00 00 00 00 00 00 00
Reg 0x58: 00 00 00 00 00 00 00 00
Reg 0x60: 00 00 00 00 00 00 00 00
Reg 0x68: 00 00 00 00 00 00 00 00
Reg 0x70: 00 00 00 00 00 00 00 00
Reg 0x78: 00 00 00 00 00 00 00 00
Reg 0x80: 00

identifier 0x03 (SFP)
connector 0x07 (LC)
sfp_transceiver_code 0x02 (1000BaseLX)
encoding 0x01 (8B10B)
br_nominal (100MHz) 13
length_9km (100m) 10
length_9m (100m) 100
length_50m (100m) 55
length_62_5m (100m) 55
length_cu (10m) 0
vendor_name CISCO-SUMITOMO
vendor_oui 0x00 00 5F
vendor_pn SCP6G44-C1-BMH
vendor_rev A
cc_base 0x28
options[0] 0x00000000
options[1] 0x0000001A
br_max (%) 0
br_min (%) 0
vendor_sn SPC15240CP6
date_code 11061228 (ymmdvv, v=vendor specific)
cc_ext 0x64
DOM support yes

Additional References

The following sections provide references to digital optical monitoring feature.
Feature Information for Digital Optical Monitoring

Table 44: Feature Information for Digital Optical Monitoring, on page 704 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

Table 44: Feature Information for Digital Optical Monitoring, on page 704 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 44: Feature Information for Digital Optical Monitoring

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Digital Optical Monitoring on Cisco ASR 901 Router</td>
<td>15.2(SN1)</td>
<td>This feature was introduced on the Cisco ASR 901 router. The following sections provide information about this feature:</td>
</tr>
</tbody>
</table>
Autonomic Networking Infrastructure

- Autonomic Networking, on page 705

Autonomic Networking

Autonomic Networking makes network devices intelligent by introducing self-management concepts that simplify network management for the network operator.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Autonomic Networking

- The Autonomic Control Plane (ACP) is built automatically only across Ethernet ports. It utilizes only IPv6 addressing.
- If the device has no start-up configuration, all interfaces are up by default, to exchange the adjacency discovery (AD) messages.
- The ACP is automatically built between two adjacent devices supporting the autonomic networking infrastructure. The interfaces on both devices need to be up (and be Ethernet interfaces). The device either needs to be unconfigured (greenfield rollout) or have an autonomic networking configured explicitly.
- The ACP can also automatically be built between two adjacent devices if there is an intervening non-autonomic layer 2 cloud such as a Metro-Ethernet service. This is achieved by the Channel Discovery protocol (CD) on the autonomic devices, which probes for working VLAN encapsulations.
- To build the ACP across intervening non-autonomic L3 devices, you need to explicitly configure a tunnel between the autonomic devices and enable `autonomic adjacency-discovery` on this tunnel.
- Autonomic Registrar, commonly known as registrar, is required for the Autonomic Networking Infrastructure (ANI) feature to work. At least one device in the network must be configured as a registrar to enroll new devices into the autonomic domain. In a network where all required devices are already enrolled into the autonomic domain, a registrar is not required.
• Each registrar supports only one autonomic domain. The registrar is needed only when new autonomic devices join the domain.
• All new devices must have a physical connectivity to at least one autonomic device to contact the registrar for authentication and authorization.
• A device can only be enrolled into one autonomic domain. Two devices enrolled into different domains will not build the autonomic control plane between each other.
• For autonomic intent, the registrar must be configured with domain ID.
• For Zero Touch Bootstrap to happen, there must be no startup-config file and the config-register must remain default i.e, 0x2102.

Restrictions for Autonomic Networking

General Restrictions
• Autonomic networking only supports unique device identifier (UDI)-based devices.
• Autonomic networking and Zero Touch Provisioning (ZTP) are different zero touch solutions. It is recommended that you do not test or use autonomic networking and ZTP at the same time.

Information About Autonomic Networking

Overview of Autonomic Networking
The aim of autonomic networking is to create self-managing networks to overcome the rapidly growing complexity of the Internet and other networks to enable their further growth. In a self-managing autonomic system, network management takes on a new role: instead of controlling the network elements individually and directly, the administrator defines network-wide policies and rules that guide the self-management process.

The following diagram provides a high-level architecture of an autonomic network.

Figure 37: High-Level Architecture of an Autonomic Network

Autonomic Networking is controlled by a separate software entity running on top of traditional operating systems that include networking components, such as IP, Open Shortest Path First (OSPF), and so forth. Traditional networking components are unchanged and unaware of the presence of the autonomic process.
The autonomic components use normal interfaces that are exposed by the traditional networking components and interact with different devices in the network. The autonomic components securely cooperate to add more intelligence to devices so that the devices in an autonomic network can autonomically configure, manage, protect, and heal themselves with minimal operator intervention. They can also securely consolidate their operations to present a simplified and abstracted view of the network to the operator.

Autonomic Networking Infrastructure

The Autonomic Networking Infrastructure (ANI) feature simplifies the network bootstrap functionality by removing the need for any kind of prestaging, thereby allowing devices to join a domain securely, after which devices can be configured. The goal of the Autonomic Networking Infrastructure feature is to make new and unconfigured devices securely reachable by an operator or network management system. This is carried out in the following steps:

1. One device is defined and configured as the registrar. The registrar is the first autonomic domain device.
2. The network administrator collects a list of legitimate device identifiers of the devices to be added to the network. This list controls the devices that are added to the autonomic domain. Devices are identified by their unique device identifier (UDI). The list is compiled as a simple text file, one UDI per line. This step is optional because in the absence of a whitelist, all devices are allowed to join the domain. A whitelist is an approved list of entities that is provided a particular privilege, service, mobility, access, or recognition. Whitelisting means to grant access.
3. The whitelist of known devices is uploaded to the registrar as part of its configuration. This step is optional.
4. Any new autonomic device that is directly connected to the registrar, or another already enrolled domain device, will automatically receive a domain certificate from the registrar.
5. The autonomic control plane is automatically established across the autonomic domain to make new devices reachable.

The benefits of Autonomic Networking Infrastructure are as follows:

- Autonomic discovery of Layer 2 topology and connectivity by discovering how to reach autonomic neighbors.
- Secure and zero touch identity of new devices by using the device name and domain certificate.
- A virtual autonomic control plane that enables communications between autonomic nodes.

Autonomic behavior is enabled by default on new devices. To enable autonomic behavior on existing devices, use the `autonomic connect` command. To disable, use the `no` form of this command.

The components of autonomic networking are as follows:

- **Registrar**—A domain-specific registration authority in a given enterprise that validates new devices in the domain, provides them with domain-wide credentials, and makes policy decisions. Policy decisions can include whether a new device can join a given domain based on a preloaded whitelist. The registrar also has a database of devices that join a given domain and the device details.
- **Channel Discovery**—Used to discover reachability between autonomic nodes across nonautonomic Layer 2 networks.
- **Adjacency Discovery**—Used to discover autonomic neighbors. Adjacency discovery is done on Layer 3. It is also possible to discover autonomic neighbors across pre-established Layer 3 generic routed encapsulation (GRE) tunnels.

New Device Joining the Autonomic Network

The figure below illustrates how a new device joins an autonomic network.
1. The new device sends out a *hello* message to the neighbor. In this case, the neighbor is part of an autonomic network domain.

2. The *hello* message includes the unique device identifier (UDI) of the new device.

3. The autonomic device acts as a proxy and allows the new device to join this autonomic network domain. The autonomic network device advertises itself with the domain information to its Layer 3 neighbors.

4. The new device is validated with the autonomic registrar on receiving the autonomic network *hello* message from the neighbor and thereby detecting the UDI information.

5. The new device advertises its domain certificate in its *hello* message with all neighbors. The neighbor information is exchanged every 10 seconds.

Note

If the neighbor information changes, the entry is deleted and neighbor discovery is restarted. In the absence of a domain certificate and devices working with UDI, UDI is exchanged at a 10-second interval.

Working of the Registrar

One device in the network is configured as the registrar to validate all new devices locally; and to accept all devices that try to join the domain managed by the registrar. The registrar issues a domain certificate to devices using the domain name provided by the administrator.

Note

The domain name is a group of devices in the network managed by the same set of rules. Any neighbor communicating with the registrar using the UDI certificate is sent an invitation to join the domain by registrar.

Currently, the registrar validates the new devices based on an optional list of UDIs that is specified when configuring the registrar. The list specifies a set of devices that are allowed to join the network.
The registrar maintains a database of all devices that join or fail to join the domain. The failed devices can try to join the domain again. The registrar database tracks all devices in the domain and associates each device with the following states:

- **Accepted** — Devices that successfully join the domain.
- **Pending** — Devices that are in the process of joining the domain.
- **Quarantine** — Devices that failed to join the domain.

Channel Discovery in Autonomic Networking

Service Discovery in Autonomic Networking

Autonomic networking uses the multicast Domain Name System (mDNS) infrastructure to discover various services required by the devices in the autonomic networking domain. Few of the services discovered by the network using the mDNS infrastructure are: the AAA server, the configuration server, the syslog server, and the autonomic networking registrar. Autonomic networking listens to the mDNS advertisements on all the devices in the domain. Autonomic networking initiates the mDNS advertisements from the devices hosting the services.

Autonomic Control Plane

When a new device in the domain receives a domain certificate, it exchanges the domain certificate in the hello messages with its neighbors. This creates an autonomic control plane between two autonomic devices of the same domain. There are different types of autonomic control planes that can be created based on the different capabilities of the devices. The autonomic control plane is established by using the following mechanisms:

- Configuring a loopback interface.
- Dynamically assigning an IPv6 address to the loopback interface.
• Configuring an autonomic VPN routing and forwarding (VRF).

IPsec on Link Local GRE IPv6 Tunnels in Autonomic Networking

Autonomic control plane (ACP) is created by building hop-by-hop IPv6 generic routing encapsulation (GRE) tunnels between the pairs of autonomic neighbors. The GRE tunnels require a valid source address and a destination address on the physical interfaces. As the GRE tunnels are hop-by-hop, autonomic networking uses the link local addresses of the physical interfaces as the source or destination addresses of the tunnels. As the physical interfaces have no global IPv6 addresses, IPsec and IKE work with the link local addresses of the physical interfaces.

How to Configure Autonomic Networking

Configuring the Registrar

SUMMARY STEPS

1. enable
2. configure terminal
3. autonomic connect
4. autonomic registrar
5. domain-id domain-name
6. device-accept “udi”
7. whitelist filename
8. no shut
9. exit
10. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enables privileged EXEC mode.
| enable | • Enter your password, if prompted. |
| **Example:** | |
| Device> enable | |

| **Step 2** | enters global configuration mode. |
| configure terminal | |
| **Example:** | |
| Device# configure terminal | |

| **Step 3** | connects a nonautonomic management device, such as an authentication, authorization, and accounting (AAA) server, or a syslog server, to the autonomic network. |
| autonomic connect | |
| **Example:** | |
| Device(config)# autonomic connect | |

<p>| Step 4 | enables a device as a registrar and enters registrar configuration mode. |
| autonomic registrar | |
| Example: | |
| Device(config)# autonomic registrar | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>domain-id domain-name</td>
<td>Represents a common group of all devices registering with the registrar.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-anra)# domain-id abc.com</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>device-accept "udi"</td>
<td>(Optional) Specifies the Unique Device Identifier (UDI) of a quarantined device to be accepted in the autonomic domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-anra)# device-accept "PID:A901-12C-FT-D SN:CAT1902U88Y"</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This command is not required when configuring the registrar. It is required only after the registrar is enabled to accept previously quarantined devices.</td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>whitelist filename</td>
<td>(Optional) Allows loading a file on the local device that contains a list of devices to be accepted in a given domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-anra)# whitelist flash:whitelist.txt PID:A901-12C-FT-D SN:CAT1602U32U PID:A901-12C-FT-D SN:CAT1604U92B</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The file must contain one UDI entry per line.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>no shut</td>
<td>Enables the autonomic registrar.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-anra)# no shut</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits registrar configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-anra)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Verifying and Monitoring Autonomic Networking Configuration

SUMMARY STEPS

1. enable
2. show autonomic device
3. show autonomic neighbors [detail]
4. show autonomic registrar devices [accepted | quarantine | whitelist]
5. show autonomic control plane [detail]
6. show autonomic interfaces
7. `debug autonomic {bootstrap | neighbor-discovery database | registrar | services} {aaa | all | ntp | events | packets} {info | moderate | severe}`

8. `clear autonomic {device | neighbor UDI}`

DETAILED STEPS

Step 1

`enable`

Example:

Device> enable

Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2

`show autonomic device`

Example:

Device# `show autonomic device`

- UDID: PID:A901-12C-FT-D SN:CAT1602U00U
- Device ID: 0006.f6ac.3be0-2
- Domain ID: manual-cisco
- Domain Certificate: (sub:)
- ou=manual-cisco+serialNumber=PID:A901-12C-FT-DSN:CAT1602U00U,cn=0006.f6ac.3be0-2
- Certificate Serial Number: 04
- Device Address: FD8F:E354:CCF9:0:6:F6AC:3BE0:2

Displays the current state of an autonomic device including the global details.

Step 3

`show autonomic neighbors [detail]`

Example:

Device# `show autonomic neighbors detail`

- UDID: "PID:A901-12C-FT-D SN:CAT1602U0C3"
- Device ID: 0006.f6ac.3be0-4
- Domain ID: manual-cisco
- State: Nbr inside the Domain
- Credential: Domain Cert
- Credential Validation: Passed
- Certificate Expiry Countdown: 31535585 (secs)
- Number of Links connected: 1
- Link:
 - Local Interface: Vlan4086(GigabitEthernet0/7)
 - Remote Interface: Vlan4026
 - IP Address: FE80::4255:39FF:FE8D:C93B
 - Uptime (Discovered Time): 00:06:36 (2014-07-21 12:43:07 IST)
 - Last Refreshed time: 7 seconds ago

Displays information about the discovered neighbors.

Step 4

`show autonomic registrar devices [accepted | quarantine | whitelist]`

Example:

Device# `show autonomic registrar`

- Domain ID: manual-cisco
Whitelist
Database URL nvram:
Status Autonomic Registrar Live
Address FD8F:E354:CCF9:0:6:F6AC:3BE0:1
Certificate (sub:) cn=ANRA-CS

Displays information about the autonomic registrar.

Step 5 show autonomic control plane [detail]

Example:
Device# show autonomic control-plane

VRF Name cisco_autonomic
Device Address FD08:2EEF:C2EE::D253:5185:547A
RPL Type - Node, Inst-Id = 0, OCP - 0, Mode = Storing
Neighbor ACP Channel ACP Security

PID:A901-4C-F-D SN:CAT1611U085 Tunnel100000

Displays information about the autonomic control plane.

Step 6 show autonomic interfaces
Displays information about the interfaces in the autonomic domain.

Step 7 debug autonomic {bootstrap | neighbor-discovery database | registrar | services} {aaa | all | ntp | events | packets} {info | moderate | severe}
Enables debugging autonomic network.

Step 8 clear autonomic {device | neighbor UDI}
Clears or resets autonomic information.

 • The clear autonomic device command clears or resets all the device specific AN information, including the information obtained in bootstrapping process.
 • The clear autonomic neighbor command clears the neighbor-related information learned in the neighbor discovery. If no neighbor is specified, it clears the entire neighbor database.

Additional References for Autonomic Networking

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Autonomic Networking commands</td>
<td>Cisco IOS Autonomic Networking Command Reference</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support and Documentation website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Autonomic Networking

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
IPv4 Multicast

This feature module describes how to configure IP multicast in an IPv4 network. IP multicast is an efficient way to use network resources, especially for bandwidth-intensive services such as audio and video.

- Finding Feature Information, on page 715
- Prerequisites for IPv4 Multicast, on page 715
- Restrictions for IPv4 Multicast, on page 716
- Information About IPv4 Multicast, on page 716
- Configuring IPv4 Multicast, on page 721
- Configuration Examples for IPv4 Multicast, on page 742
- Troubleshooting Tips, on page 746
- Additional References, on page 746
- Feature Information for IPv4 Multicast, on page 747

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IPv4 Multicast

- Cisco IOS Release 15.4(1)S or a later release that supports the IPv4 Multicast feature must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.
- You must enable the asr901-multicast source command on the SVI interface that is connected to the traffic source for PIM sparse mode.
Restrictions for IPv4 Multicast

- Source Specific Multicast (SSM) mapping takes a group G join from a host and identifies this group with an application associated with one or more sources. The SSM mapping can support only one such application per group G.

- When both SSM mapping and Internet Group Management Protocol Version 3 (IGMPv3) are enabled and the hosts already support IGMPv3 (but source specific information is not present), they start sending IGMPv3 group reports. These IGMPv3 group reports are not supported with SSM mapping and the router does not correctly associate sources with these reports.

- PIM Dense Mode is not supported.

- Only PIM version 2 is supported.

- PIM SM in VRF lite is not supported.

- Time-To-Live (TTL) threshold is not supported.

- Mroute ageing is not supported.

- Bi-Directional PIM (BIDIR-PIM) is not supported.

- Mroute based counter or rate statistics are not supported. Multicast counters are not supported.

- Multicast counters on physical and SVI interfaces are not supported till Cisco IOS Release 15.5(1)S.

- Multicast VPN (MVPN) is not supported.

- Multicast is not supported on Serial and MLPPP interfaces.

- PIM SSM IPv4 Multicast routing for VRF lite is supported only from Cisco IOS Release 15.4(3)S.

- Multiple L3 SVI interfaces on PoCH as replication VLAN's for multicast traffic are not supported.

- IP Multicast on loopback interface is not supported.

Information About IPv4 Multicast

IPv4 multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take advantage of multicast include video conferencing, corporate communications, distance learning, and distribution of software, stock quotes, and news.

IPv4 multicast routing enables a host (source) to send packets to a group of hosts (receivers) anywhere within the IP network by using a special form of IP address called the IP multicast group address. The sending host inserts the multicast group address into the IP destination address field of the packets and IP multicast routers and multilayer switches forward the incoming IP multicast packets out of all interfaces that lead to the members of the multicast group. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

Effective with Cisco IOS Release 15.4(1)S, IPv4 multicast is supported on the Cisco ASR 901 series routers. The router supports up to 500 unique multicast IP address entries, which includes both (*, G) and (S, G)
entries. Multicast support is provided for source and multicast groups using IGMP (IGMPv1 or IGMPv2 or IGMPv3) report messages.

Supported Protocols

- Basic multicast routing
- IP Multicast Routing for VRF Lite
- IGMP
- PIMv4 SSM
- PIMv4 SSM Mapping
- PIM MIB
- PIM sparse mode
- PIM BFD
- Static Rendezvous Point (RP)
- Auto RP
- Bootstrap router (BSR)

PIM SSM for IPv4

PIM SSM is the routing protocol that supports the implementation of SSM and is derived from the PIM sparse mode (PIM-SM). IGMP is the Internet Engineering Task Force (IETF) standards track protocol used for hosts to signal multicast group membership to routers. IGMPv3 supports source filtering, which is required for SSM. In order for SSM to run with IGMPv3, SSM must be supported in the device (the host where the application is running) and in the application itself.

Source Specific Multicast

SSM is a datagram delivery model that best supports one-to-many applications, also known as broadcast applications. SSM is a core networking technology for the Cisco implementation of IP multicast solutions targeted for audio and video broadcast application environments and is described in RFC 3569. The following two components together support SSM:

- PIM SSM
- IGMPv3

Protocol Independent Multicast

The PIM protocol maintains the current IP multicast service mode of receiver-initiated membership. PIM is not dependent on a specific unicast routing protocol; it is IP routing protocol independent, and can leverage whichever unicast routing protocols are used to populate the unicast routing table, including Open Shortest Path First (OSPF), Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS), and static routes. PIM uses unicast routing information to perform the multicast forwarding function.

Although PIM is called a multicast routing protocol, it actually uses the unicast routing table to perform the RPF check function instead of building up a completely independent multicast routing table. Unlike other routing protocols, PIM does not send and receive routing updates between routers.
For more information on SSM and PIM, see the IP Multicast Technology Overview document at:

PIM SSM Address Range

SSM can coexist with the Internet Standard Multicast (ISM) service by applying the SSM delivery model to a configured subset of the IP multicast group address range. The Cisco IOS software allows SSM configuration for an arbitrary subset of the IP multicast address range 224.0.0.0 through 239.255.255.255. When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use addresses in the SSM range (unless the application is modified to use explicit (S, G) channel subscription).

For groups within the SSM range, (S, G) channel subscriptions are accepted through IGMPv3 INCLUDE mode membership reports.

IGMP

IGMP is used to dynamically register individual hosts in a multicast group on a particular LAN. Enabling PIM on an interface also enables IGMP. IGMP provides a means to automatically control and limit the flow of multicast traffic throughout the network with the use of special multicast queriers and hosts.

For more information on IGMP, see the IP Multicast: IGMP Configuration Guide at:

IGMPv1

IGMP version 1 is a simple protocol consisting of two messages. It provides the basic query-response mechanism that allows the multicast device to determine which multicast groups are active and other processes that enable hosts to join a multicast group. RFC 1112 defines the IGMPv1 host extensions for IP multicasting.

IGMPv2

IGMP version 2 extends the functionality of IGMP, allowing such capabilities as the IGMP leave process, group-specific queries, and an explicit maximum response time field. IGMPv2 also adds the capability for devices to elect the IGMP querier without dependence on the multicast protocol to perform this task. RFC 2236 defines IGMPv2.

IGMPv3

IGMP version 3 provides for source filtering, which enables a multicast receiver host to signal to a device which groups it wants to receive multicast traffic from, and from which sources this traffic is expected. In addition, IGMPv3 supports the link local address 224.0.0.22, which is the destination IP address for IGMPv3 membership reports; all IGMPv3-capable multicast devices must listen to this address. RFC 3376 defines IGMPv3.

IGMP Snooping

IGMP snooping allows a router to examine IGMP packets and make forwarding decisions based on their content. IGMP, which runs at Layer 3 on a multicast router, generates Layer 3 IGMP queries in subnets where the multicast traffic has to be routed. Using IGMP snooping, the router intercepts IGMP messages from the host and updates its multicast table accordingly.
You can configure the router to use IGMP snooping in subnets that receive IGMP queries from either IGMP or the IGMP snooping querier. IGMP snooping constrains IPv4 multicast traffic at Layer 2 by configuring Layer 2 LAN ports dynamically to forward IPv4 multicast traffic only to those ports that want to receive it.

You can configure the IGMP snooping lookup method for each VLAN. Layer 3 IGMP snooping lookup uses destination IP addresses in the Layer 2 multicast table (This is the default behavior). Layer 2 IGMP snooping lookup uses destination MAC addresses in the Layer 2 multicast table.

For more information on IGMP snooping, see the IPv4 Multicast IGMP Snooping document at:

IGMP Snooping Support

IGMP snooping is supported with the following specifics:

- Source-specific IGMP snooping is not supported.
- When IGMP snooping is configured, unknown multicast packets are flooded to the BD.
- The `ip igmp snooping tcn flood` and `ip igmp snooping tcn query solicit` commands are not supported.

Layer 2 VPN on the Physical Interface

- Default and port-based Xconnect—IGMP packets (control and data) are sent over the L2 VPN session.
- Dot1Q based Xconnect—If Xconnect is configured for a customer VLAN, IGMP packets (control and data) are carried into an L2 VPN. If they are not IGMP control packets, they are handled as reserved multicast packets in the BD VLAN, and data packets are forwarded according to the data in the IGMP snooping tables.

Layer 3 IP Multicast with IP IGMP Snooping

- Flows destined for PIM Sparse Mode-enabled and PIM Source-Specific Multicast-enabled groups are forwarded using Layer 3 IP Multicast logic.
- Flows destined for groups that are populated using IGMP snooping table are forwarded using IGMP snooping forward logic.
- Flows that are common (destined to groups that are populated using PIM-SM or PIM-SSM and IGMP snooping):
 - The accept interface of PIM-SM or PIM-SSM Multicast Forwarding Information Base (MFI) is the same as the BD VLAN in which IGMP snooping based forwarding takes place.
 - Layer 3 forwarding takes place using output Layer 3 interface of PIM-SM or PIM-SSM MFI.
 - Layer 2 forwarding takes place using the output ports from the IGMP snooping logic.

REP and MSTP Interworking

- After the Resilient Ethernet Protocol (REP) and Multiple Spanning Tree Protocol (MSTP) topology change, the routers in the ring generate IGMP general queries, and the convergence is based on the host replying to the general queries.

The following are supported as part of IGMP snooping:

- IGMP report and query processing
- IPv4 IGMP snooping
• Packet forwarding at hardware within bridge domain using IP multicast address lookup and IPv4 IGMP information.

PIM SSM Mapping

PIM SSM mapping supports SSM transition in cases where neither the URD nor IGMP v3lite is available, or when supporting SSM on the end system is not feasible. SSM mapping enables you to leverage SSM for video delivery to legacy set-top boxes (STBs) that do not support IGMPv3 or for applications that do not take advantage of the IGMPv3 host stack. URD and IGMPv3lite are applications used on receivers which do not have SSM support.

SSM mapping introduces a means for the last hop router to discover sources sending to groups. When SSM mapping is configured, if a router receives an IGMPv1 or IGMPv2 membership report for a particular group G, the router translates this report into one or more (S, G) channel memberships for the well-known sources associated with this group.

SSM mapping only needs to be configured on the last hop router connected to receivers. No support is needed on any other routers in the network. When the router receives an IGMPv1 or IGMPv2 membership report for a group G, the router uses SSM mapping to determine one or more source IP addresses for the group G. SSM mapping then translates the membership report as an IGMPv3 report INCLUDE (G, [S1, G], [S2, G]...[Sn, G]) and continues as if it had received an IGMPv3 report.

Static SSM Mapping

SSM static mapping enables you to configure the last hop router to use a static map to determine the sources sending to groups. Static SSM mapping requires that you configure access lists (ACLs) to define group ranges. The groups permitted by those ACLs then can be mapped to sources using the `ip igmp static ssm-map` command.

Reverse Path Forwarding

Reverse-path forwarding is used for forwarding multicast datagrams. It functions as follows:

- If a router receives a datagram on an interface it uses to send unicast packets to the source, it means the packet has arrived on the RPF interface.
- If the packet arrives on the RPF interface, a router forwards the packet out the interfaces present in the outgoing interface list of a multicast routing table entry.
- If the packet does not arrive on the RPF interface, the packet is silently discarded to prevent loops.

PIM SSM uses source trees to forward datagrams; the RPF check is performed as follows:

- If a PIM router has source-tree state (that is, an [S, G] entry is present in the multicast routing table), the router performs the RPF check against the IPv4 address of the source of the multicast packet.
- Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes. (S, G) joins (which are source-tree states) are sent toward the source.

For more information on Reverse Path Forwarding, see the Configuring Unicast Reverse Path Forwarding document at: http://www.cisco.com/en/US/docs/ios/12_2/security/configuration-guide/scfprpf.html
IP Multicast VRF Lite

The IP Multicast VRF Lite feature provides IPv4 multicast support for multiple virtual routing and forwarding (VRF) contexts. The scope of these VRFs is limited to the router in which the VRFs are defined.

This feature enables separation between routing and forwarding, providing an additional level of security because no communication between devices belonging to different VRFs is allowed unless explicitly configured. The IPv4 Multicast VRF Lite feature simplifies the management and troubleshooting of traffic belonging to a specific VRF.

PIM BFD

Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols and independent of the higher layer protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning is easier and reconvergence time is consistent and predictable.

Protocol Independent Multicast (PIM) uses a hello mechanism for discovering new neighbors and for detecting failures between adjacent nodes. The minimum failure detection time in PIM is 3 times the PIM Query-Interval. To enable faster failure detection, the rate at which a PIM Hello message is transmitted on an interface is configurable. However, lower intervals increase the load on the protocol and can increase CPU and memory utilization and cause a system-wide negative impact on performance. Lower intervals can also cause PIM neighbors to expire frequently as the neighbor expiry can occur before the hello messages received from those neighbors are processed.

The BFD Support for Multicast (PIM) feature, also known as PIM BFD, registers PIM as a client of BFD. PIM can then utilize BFD to initiate a session with an adjacent PIM node to support BFD’s fast adjacency failure detection in the protocol layer. PIM registers just once for both PIM and IPv6 PIM.

At PIMs request (as a BFD client), BFD establishes and maintains a session with an adjacent node for maintaining liveness and detecting forwarding path failure to the adjacent node. PIM hellos will continue to be exchanged between the neighbors even after BFD establishes and maintains a BFD session with the neighbor. The behavior of the PIM hello mechanism is not altered due to the introduction of this feature.

Although PIM depends on the Interior Gateway Protocol (IGP) and BFD is supported in IGP, PIM BFD is independent of IGP's BFD.

Configuring IPv4 Multicast

Enabling IPv4 Multicast Routing

To configure IPv4 multicast on the Cisco ASR 901 series routers, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip multicast-routing
4. `asr901-platf-multicast enable`
5. `ip pim rp-address rp-address`
6. `interface type number`
7. `ip pim sparse-mode`
8. `asr901-multicast source`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip multicast-routing</td>
<td>Enables multicast routing.</td>
</tr>
<tr>
<td>Example: Router(config)# ip multicast-routing</td>
<td></td>
</tr>
<tr>
<td>Step 4 asr901-platf-multicast enable</td>
<td>Enables multicast on the Cisco ASR 901 series routers.</td>
</tr>
<tr>
<td>Example: Router(config)# asr901-platf-multicast enable</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip pim rp-address rp-address</td>
<td>Configures the address of a PIM RP for multicast groups.</td>
</tr>
<tr>
<td>Example: Router(config)# ip pim rp-address 192.168.0.1</td>
<td></td>
</tr>
<tr>
<td>Step 6 interface type number</td>
<td>Configures the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface vlan 5</td>
<td></td>
</tr>
<tr>
<td>Step 7 ip pim sparse-mode</td>
<td>Enables the PIM sparse mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Step 8 asr901-multicast source</td>
<td>Configures the router to send multicast packets to the CPU enabling it to transmit register packets to the RP.</td>
</tr>
<tr>
<td>Example: Router(config)# asr901-multicast source</td>
<td></td>
</tr>
</tbody>
</table>
Configuring PIM SSM

To configure PIM SSM, complete the following steps:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip pim ssm [default | range access-list]`
4. `interface type number`
5. `ip pim sparse-mode`
6. `ip igmp version 3`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 `ip pim ssm [default</td>
<td>range access-list]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ip pim ssm default</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>interface type number</code></td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface vlan 5</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>ip pim sparse-mode</code></td>
<td>Enables PIM on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ip pim sparse-mode</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring PIM SSM Mapping

To configure PIM SSM mapping, complete the following steps:

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **no ip igmp ssm-map query dns**
4. **ip igmp ssm-map enable**
5. **ip igmp ssm-map static** `access-list source-address`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no ip igmp ssm-map query dns</td>
<td>Disables DNS-based SSM mapping.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no ip igmp ssm-map query dns</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip igmp ssm-map enable</td>
<td>Enables SSM mapping for groups in the configured SSM range.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip igmp ssm-map enable</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip igmp ssm-map static <code>access-list source-address</code></td>
<td>Configures static SSM mapping.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip igmp ssm-map static 11 172.16.8.11</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Multicast Receivers in VRF Interface

The Cisco ASR 901 router supports multicast receivers in VRF interface, if source and RP are present in the global routing table. To configure multicast receivers in VRF interface, complete the following steps:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip mroute vrf vrf-name source-address mask fallback-lookup global`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip mroute vrf vrf-name source-address mask fallback-lookup global</code></td>
<td>Configures the RPF lookup originating in Multicast Receiver VRF interface to continue and to be resolved in global routing table using static mroute.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# ip mroute vrf ABC 100.0.0.2 255.255.255.255 fallback-lookup global</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Exits the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring IGMP Snooping

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on their content.
Restrictions

Cisco ASR 901 routers support only the following encapsulations for IGMP snooping:

- Untagged
- Dot1q (with or without rewrite)
- Routed QinQ (with rewrite pop 2)

These sections describe how to configure IGMP snooping:

Enabling IGMP Snooping Globally

IGMP snooping is enabled by default. If IGMP snooping is disabled, to globally enable IGMP snooping on the router, perform this procedure:

SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmp snooping
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | |
| Router# configure terminal | |

| **Step 3** ip igmp snooping | Enables IGMP snooping globally. |
| Example: | |
| Router(config)# ip igmp snooping | |

| **Step 4** exit | Exits global configuration mode and enters privileged EXEC mode. |
| Example: | |
| Router(config)# exit | |

Enabling IGMP Snooping on a VLAN

To enable IGMP snooping on a VLAN, perform this task:
SUMMARY STEPS

1. enable
2. configure terminal
3. ip igmp snooping
4. ip igmp snooping vlan vlan-id
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip igmp snooping</td>
<td>Enables IGMP snooping globally.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip igmp snooping</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip igmp snooping vlan vlan-id</td>
<td>Enables IGMP snooping on the VLAN. The VLAN ID ranges from 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip igmp snooping vlan 102</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring an IGMP Snooping Query

To configure IGMP snooping query characteristics for a router or for a VLAN, follow these steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. asr901-platf-multicast enable
4. ip igmp snooping vlan vlan-id
5. ip igmp snooping vlan vlan-id check rtr-alert-option
6. ip igmp snooping vlan vlan-id check ttl
7. ip igmp snooping vlan vlan-id immediate-leave
8. ip igmp snooping vlan vlan-id last-member-query-count interval
9. `ip igmp snooping vlan vlan-id last-member-query-interval interval`
10. `ip igmp snooping vlan vlan-id report-suppression`
11. `ip igmp snooping vlan vlan-id robustness-variable variable`
12. `ip igmp snooping vlan vlan-id static ip-address interface interface-name interface-number`
13. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>asr901-platf-multicast enable</code></td>
<td>Enables multicast on the Cisco ASR 901 Router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# asr901-platf-multicast enable</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ip igmp snooping vlan vlan-id</code></td>
<td>Enables IGMP snooping on a VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• <code>vlan-id</code>—Multicast group VLAN ID. The VLAN ID ranges from 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip igmp snooping vlan 5</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ip igmp snooping vlan vlan-id check rtr-alert-option</code></td>
<td>Enforces IGMP snooping check and enables a device or interface to intercept packets only if the Router Alert (rtr-alert) option is enabled.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip igmp snooping vlan 5 check rtr-alert-option</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ip igmp snooping vlan vlan-id check ttl</code></td>
<td>Accepts IGMP packets with TTL=1.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip igmp snooping vlan 5 check ttl</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ip igmp snooping vlan vlan-id immediate-leave</code></td>
<td>Minimizes the leave latency of IGMP memberships when IGMP Version 2 is used and only one receiver host is connected to each interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip igmp snooping vlan 5 immediate-leave</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ip igmp snooping vlan vlan-id last-member-query-count interval</code></td>
<td>Configures how often IGMP snooping sends query messages when an IGMP leave message is received.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• <code>interval</code>—The interval at which query messages are sent, in milliseconds. The range is from 1 to 7. The default is 2.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip igmp snooping vlan 5 last-member-query-count-count 3</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Step 9

`ip igmp snooping vlan vlan-id last-member-query-interval interval`

Enables report suppression on the bridge domain.

Example:

```
Router(config)# ip igmp snooping vlan 5
```

Step 10

`ip igmp snooping vlan vlan-id report-suppression`

Sets the last member query interval of the bridge domain.

Example:

```
Router(config)# ip igmp snooping vlan 5 last-member-query-interval 100
```

Step 11

`ip igmp snooping vlan vlan-id robustness-variable variable`

Sets the robust variable for the bridge domain.

Example:

```
Router(config)# ip igmp snooping vlan 5 robustness-variable 2
```

Step 12

`ip igmp snooping vlan vlan-id static ip-address interface interface-name interface-number`

Configures static group membership entries on an interface.

Example:

```
Router(config)# ip igmp snooping vlan 106 static 226.1.1.2 interface gigabitEthernet 0/10
```

Step 13

`end`

Exits global configuration mode and enters privileged EXEC mode.

Disabling IGMP Snooping

To disable IGMP snooping, follow these steps:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no ip igmp snooping`
4. `no ip igmp snooping vlan vlan-id`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>no ip igmp snooping</code></td>
<td></td>
</tr>
<tr>
<td><code>no ip igmp snooping vlan vlan-id</code></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose and Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>no ip igmp snooping</code></td>
<td>Disables IGMP snooping.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# no ip igmp snooping</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>no ip igmp snooping vlan vlan-id</code></td>
<td>Disables IGMP snooping from a VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# no ip igmp snooping vlan 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring IPv4 Multicast Routing for VRF Lite

To configure IPv4 multicast routing for VRF Lite, perform this task:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip multicast-routing vrf vrf-name`
4. `vrf definition vrf-name`
5. `rd route-distinguisher`
6. `address-family ipv4`
7. `exit address-family`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip multicast-routing vrf vrf-name</code></td>
<td>Names the VRF and enters VRF configuration mode. The (vrf-name) is the name assigned to a VRF.</td>
</tr>
</tbody>
</table>
Enabling a VRF Under the VLAN Interface

To configure a VRF under the VLAN interface, perform this task:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. vrf forwarding vrf-name
5. ip address ip-address
6. ip pim sparse-mode
7. ip ospf process-id area area-id
8. exit
9. ip pim vrf vrf-name ssm default

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 3</th>
<th>interface type number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# interface VLAN 80</td>
</tr>
</tbody>
</table>

Purpose: Specifies an interface type and number, and places the device in interface configuration mode.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>vrf forwarding vrf-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# vrf forwarding vpe_1</td>
</tr>
</tbody>
</table>

Purpose: Associates a VRF instance or a virtual network with an interface or subinterface. The *vrf-name* is the name assigned to a VRF.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>ip address ip-address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip address 192.108.1.27 255.255.255.0</td>
</tr>
</tbody>
</table>

Purpose: Sets a primary or secondary IP address for an interface.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>ip pim sparse-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip pim sparse-mode</td>
</tr>
</tbody>
</table>

Purpose: Enables PIM on an interface. The *sparse-mode* keyword enables sparse mode of operation.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>ip ospf process-id area area-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip ospf 1 area 0</td>
</tr>
</tbody>
</table>

Purpose: Enables OSPFv2 on an interface.

- **process-id** — A decimal value in the range 1 to 65535 that identifies the process ID.
- **area-id** — A decimal value in the range 0 to 4294967295, or an IP address.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>

Purpose: Exits interface configuration mode and enters global configuration mode.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>ip pim vrf vrf-name ssm default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# ip pim vrf vpe-1 ssm default</td>
</tr>
</tbody>
</table>

Purpose: Defines the Source Specific Multicast (SSM) range of IP multicast addresses.

- **vrf-name** — Name assigned to the VRF.
- **default** — Defines the SSM range access list to 232/8.

Note: This command should be configured on the Last Hop Router (LHR).

Configuring PIM BFD on an IPv4 Interface

To configure PIM BFD on an IPv4 interface, perform this task:
• This feature is supported only on switch virtual interfaces on which both PIM and BFD are supported.
• For ECMP, PIM BFD is used to detect quick neighbor failure.
• For non-ECMP, BFD for IGP should be configured for faster convergence.
• Timers that are less than 50 ms for 3 sessions are not supported.

Before you begin
• IP multicast must be enabled and Protocol Independent Multicast (PIM) must be configured on the interface.
• Ensure that Bidirectional Forwarding Detection (BFD) for IGP is always configured along with PIM.

SUMMARY STEPS
1. enable
2. configure terminal
3. interface type number
4. ip pim bfd

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface VLAN 80</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip pim bfd</td>
<td>Enables PIM BFD on an interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip pim bfd</td>
<td></td>
</tr>
</tbody>
</table>

Verifying IPv4 Multicast Routing

Use the following show command to verify the IPv4 multicast routing.
Verifying PIM SSM

Use the `show` commands listed below to verify the PIM SSM configuration.

To display the multicast groups with receivers that are directly connected to the router and that were learned through IGMP, use the `show ip igmp groups` command described in the following example.

```
Router# show ip igmp groups
```

```
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group Accounted
232.1.1.1 Vlan70 04:10:01 stopped 70.1.1.10
224.0.1.40 Vlan16 04:17:35 00:02:58 16.1.1.3
224.0.1.40 Vlan23 05:08:03 00:02:54 23.1.1.1
```

To display the contents of the IP multicast routing table, use the `show` command described in the following example.

```
Router# show ip mroute
```

```
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDB created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDB Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, G - Received BGP C-Mroute, g - Sent BGP C-Mroute, N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed, Q - Received BGP S-A Route, q - Sent BGP S-A Route, V - RD & Vector, v - Vector, p - PIM Joins on route, x - VxLAN group
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(9.1.1.1, 232.1.1.1), 00:00:03/00:02:57, flags: sTI
Incoming interface: Vlan16, RPF nbr 16.1.1.1
Outgoing interface list:
Vlan70, Forward/Sparse, 00:00:04/00:02:56
(5.1.1.1, 232.1.1.1), 00:00:04/00:02:56, flags: sTI
Incoming interface: Vlan16, RPF nbr 16.1.1.1
Outgoing interface list:
Vlan70, Forward/Sparse, 00:00:04/00:02:56
(*, 224.0.1.40), 00:00:12/00:02:47, RP 6.6.6.6, flags: SJCL
Incoming interface: Vlan16, RPF nbr 16.1.1.1
Outgoing interface list:
Vlan23, Forward/Sparse, 00:00:12/00:02:47
Verifying PIM SSM Mapping

Use the `show` commands listed below to verify the PIM SSM Mapping configuration.

To display information about SSM mapping, use the `show` command described in the following example.

```
Router# show ip igmp ssm-mapping
SSM Mapping : Enabled
DNS Lookup : Disabled
Cast domain : ssm-map.cisco.com
Name servers : 255.255.255.255
```

To display the sources that SSM mapping uses for a particular group, use the show command described in the following example.

```
Router# show ip igmp ssm-mapping 232.1.1.1
Group address: 232.1.1.1
Database : Static
Source list : 5.1.1.1
 9.1.1.1
```

To display the multicast groups with receivers that are directly connected to the router and that were learned through IGMP, use the show command described in the following examples.

- `• show ip igmp groups group-address`

```
Router# show ip igmp groups 232.1.1.1
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group Accounted
232.1.1.1 Vlan70 04:14:26 stopped 70.1.1.10
```

- `• show ip igmp groups interface-type interface-number`

```
Router# show ip igmp groups vlan70
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group Accounted
232.1.1.1 Vlan70 04:15:33 stopped 70.1.1.10
```

- `• show ip igmp groups interface-type detail`

```
Router# show ip igmp groups vlan70 detail
Flags: L - Local, U - User, SG - Static Group, VG - Virtual Group,
 SS - Static Source, VS - Virtual Source,
 Ac - Group accounted towards access control limit
Interface: Vlan70
Group: 232.1.1.1
Flags: SSM
Uptime: 04:15:37
Group mode: INCLUDE
Last reporter: 70.1.1.10
CSR Grp Exp: 00:02:04
```
Verifying Static Mroute

To display information about static mroute, use the `show ip mroute [vrf vrf-name] group-address` command described in the following examples.

Router# show ip mroute

mroute vrf VPN_A 239.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MEDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MEDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route,
x - VxLAN group
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode

(*, 239.1.1.1), 00:03:57/stopped, RP 4.4.4.4, flags: SJCL
Incoming interface: Vlan21, RPF nbr 21.1.1.1, using vrf IPv4 default
Outgoing interface list:
Vlan72, Forward/Sparse, 00:03:56/00:02:10

(70.1.1.10, 239.1.1.1), 00:00:49/stopped, flags: LT
Incoming interface: Vlan22, RPF nbr 22.1.1.2, using vrf IPv4 default
Outgoing interface list:
Vlan72, Forward/Sparse, 00:00:49/00:02:10

Verifying IGMP Snooping

Use the show commands listed below to verify the IGMP snooping configuration.

To display the IGMP snooping configuration of a device, use the `show ip igmp snooping` command, as shown in the following example:

Router# show ip igmp snooping

Global IGMP Snooping configuration:
-----------------------------------------------
IGMP snooping Oper State : Enabled
IGMPv3 snooping (minimal) : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
To display the IGMP snooping configuration, use the `show ip igmp snooping vlan bridge-domain` command, as shown in the following example:

```
Router# show ip igmp snooping vlan 105
```

Global IGMP Snooping configuration:
```

IGMP snooping Oper State : Enabled
IGMPv3 snooping (minimal) : Enabled
Report suppression : Enabled
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000
Check TTL-1 : No
Check Router-Alert-Option : No
```

Vlan 105:
```

IGMP snooping Admin State : Enabled
IGMP snooping Oper State : Enabled
IGMPv2 immediate leave : Disabled
Report suppression : Enabled
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000
Check TTL-1 : Yes
Check Router-Alert-Option : Yes
```

Vlan 101:
```

IGMP snooping Admin State : Enabled
IGMP snooping Oper State : Enabled
IGMPv2 immediate leave : Disabled
Report suppression : Enabled
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000
Check TTL-1 : Yes
Check Router-Alert-Option : Yes
```

Vlan 102:
```

IGMP snooping Admin State : Enabled
IGMP snooping Oper State : Enabled
IGMPv2 immediate leave : Disabled
Report suppression : Enabled
Robustness variable : 2
Last member query count : 2
Last member query interval : 1000
Check TTL-1 : Yes
Check Router-Alert-Option : Yes
```

IPv4 Multicast

Verifying IGMP Snooping
Verifying IP Multicast Routing for VRF Lite

Use the show commands listed below to verify IPv4 multicast routing for VRF Lite configuration.

To view information about the interfaces configured for Protocol Independent Multicast (PIM), use the show ip pim interface detail command:

Router# show ip pim vrf vpe_2 interface detail

Vlan80 is administratively down, line protocol is down
Internet address is 192.108.1.27/24
Multicast switching: fast
Multicast packets in/out: 0/0
Multicast TTL threshold: 0
PIM: enabled
   PIM version: 2, mode: sparse
   PIM DR: 0.0.0.0
   PIM neighbor count: 0
   PIM Hello/Query interval: 30 seconds
   PIM Hello packets in/out: 0/0
   PIM J/P interval: 60 seconds
   PIM State-Refresh processing: enabled
   PIM State-Refresh origination: disabled
   PIM NBMA mode: disabled
   PIM ATM multipoint signalling: disabled
   PIM domain border: disabled
   PIM neighbors rpf proxy capable: FALSE
   PIM BFD: disabled
   PIM Non-DR-Join: FALSE
   Multicast Tagswitching: disabled

To view the information in a PIM topology table, use the `show ip mroute vrf` command:

Router# show ip mroute vrf vpe_2

IP Multicast Forwarding is not enabled.
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPF-bit set, J - Join SPF, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URRD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
G - Received BGP C-Mroute, g - Sent BGP C-Mroute,
N - Received BGP Shared-Tree Prune, n - BGP C-Mroute suppressed,
Q - Received BGP S-A Route, q - Sent BGP S-A Route,
V - RD & Vector, v - Vector, p - PIM Joins on route,
X - VxLAN group
Outgoing interface flags: H - Hardware switched, A - Assert winner, p - PIM Join
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode

To view the forwarding entries and interfaces in the IP Multicast Forwarding Information Base (MFIB), use the `show ip mfib vrf` command:

Router# show ip mfib vrf

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
ET - Data Rate Exceeds Threshold, K - Keepalive
DDE - Data Driven Event, HW - Hardware Installed
ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB
MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary
MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client.
I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
NS - Negate Signalling, SP - Signal Present,
A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
MA - MFIB Accept, A2 - Accept backup,
RA2 - MRIB Accept backup, MA2 - MFIB Accept backup

Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
I/O Item Counts: FS Pkt Count/PS Pkt Count
Default
(*,224.0.0.0/4) Flags: C
SW Forwarding: 0/0/0/0, Other: 0/0/0/0
Verifying IP Multicast Routing for VRF Lite

VRF VPN_C
(*,224.0.0.0/4) Flags: C
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  HW Forwarding: 0/0/0/0, Other: NA/NA/NA
Vlan131 Flags: IC
  Pkts: 0/0
Vlan134 Flags: A
  Pkts: 0/0
(171.1.1.10,232.0.0.1) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  HW Forwarding: 0/0/0/0, Other: NA/NA/NA
Vlan134 Flags: A
  Pkts: 0/0
Vlan131 Flags: F NS
  Pkts: 0/0

VRF VPN_B
(*,224.0.0.0/4) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
Verifying PIM BFD Support

Use the `show` commands listed below to verify PIM BFD support.

To display a line-by-line listing of existing Bidirectional Forwarding Detection (BFD) adjacencies for an IPv4 neighbor, use the `show bfd neighbors ipv4` command:

```
Router# show bfd neighbors ipv4
```

IPv4 Sessions
NeighAddr LD/RD RH/RS State Int
101.101.101.1 1/3 Up Up Vl101

To display BFD’s registered clients such as PIM, OSPF, and so on, use the `show bfd neighbors ipv4 details` command:

```
Router# show bfd neighbors ipv4 details
```

IPv4 Sessions
NeighAddr LD/RD RH/RS State Int
Session state is UP and not using echo function.
Session Host: Software
OurAddr: 24.24.24.2
Handle: 3
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 126(0), Hello (hits): 50(36644)
Rx Count: 36656, Rx Interval (ms) min/max/avg: 1/56/45 last: 24 ms ago
Tx Count: 36647, Tx Interval (ms) min/max/avg: 1/56/46 last: 8 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: PIM CEF OSPF
Template: abc
Authentication(Type/Keychain): md5/ch1
last_tx_auth_seq: 5 last_rx_auth_seq 4
Uptime: 00:27:47
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
C bit: 0
Multiplier: 3 - Length: 48
My Discr.: 3 - Your Discr.: 3
Min tx interval: 50000 - Min rx interval: 50000
Min Echo interval: 0

IPv4 Sessions
NeighAddr LD/RD RH/RS State Int
101.101.101.1 1/3 Up Up Vl101
Session state is UP and not using echo function.
Session Host: Software
OurAddr: 101.101.101.2
Handle: 1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 126(0), Hello (hits): 50(37036)
Rx Count: 37014, Rx Interval (ms) min/max/avg: 1/56/46 last: 24 ms ago
Tx Count: 37037, Tx Interval (ms) min/max/avg: 1/60/46 last: 0 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: PIM CEF OSPF
Template: abc
Authentication(Type/Keychain): md5/chain1
last_tx_auth_seq: 4 last_rx_auth_seq 6
Uptime: 00:28:03
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
C bit: 0
Multiplier: 3 - Length: 48
My Discr.: 3 - Your Discr.: 1
Min tx interval: 50000 - Min rx interval: 50000
Min Echo interval: 0

Configuration Examples for IPv4 Multicast

Example: IPv4 Multicast Routing

The following is a sample configuration of IPv4 Multicast routing feature on the Router:

```
!
Building configuration...
Current configuration : 120 bytes
!
ip multicast-routing
asr901-platf-multicast enable
!
interface Vlan5
 asr901-multicast source
 ip address 22.1.1.2 255.255.255.0
 ip pim sparse-mode
!
end
```

Example: Configuring PIM SSM

The following is a sample configuration of PIM SSM on the Cisco ASR 901 Router:

```
!
Building configuration...
Current configuration : 116 bytes
!
ip multicast-routing
asr901-platf-multicast enable
!
ip pim ssm default
interface Vlan70
 ip address 70.1.1.2 255.255.255.0
 ip pim sparse-mode
```
Example: Configuring PIM SSM Mapping

The following is a sample configuration of PIM SSM Mapping on the Cisco ASR 901 Router:

```
! no ip domain lookup
ip domain multicast ssm.map.cisco.com
ip name-server 10.48.81.21
!
interface vlan10
description Sample IGMP Interface Configuration for SSM-Mapping Example
ip address 10.20.1.2 255.0.0.0
ip pim sparse-mode
ip igmp static-group 232.1.2.1 source ssm-map
ip igmp version 3
!
access-list 10 permit 232.1.2.10
access-list 11 permit 232.1.2.0 0.0.0.255
!
```

Example: Configuring Rendezvous Point


Example: Configuring Multicast Receivers in the VRF Interface

The following is a sample configuration multicast receivers in the VRF interface on the Cisco ASR 901 Router:

```
ip mroute vrf ABC 100.0.0.2 255.255.255.255 fallback-lookup global
```

Example: Configuring IGMP Snooping

The following is a sample IGMP snooping configuration:
Building configuration...

Current configuration : 3509 bytes

asr901-platf-multicast enable
ip multicast-routing
ip igmp snooping explicit-tracking limit 1000
ip igmp snooping vlan 106 immediate-leave
ip igmp snooping vlan 106 robustness-variable 3
ip igmp snooping vlan 106 last-member-query-count 6
ip igmp snooping vlan 106 last-member-query-interval 1000
ipv6 unicast-routing
ipv6 cef

Example: Configuring IPv4 Multicast Routing for VRF Lite

The following is a sample configuration of IPv4 multicast routing for VRF Lite:

vrf definition vpe_2
  rd 1.1.1.1:100
  address-family ipv4
  exit-address-family

ip multicast-routing
asr901-platf-multicast enable
license boot level AdvancedMetroIPAccess

ip multicast-routing vrf vpe_2
ip pim vrf vpe_2 ssm default

interface Vlan80
  vrf forwarding vpe_2
  ip address 192.108.1.27 255.255.255.0
  ip pim sparse-mode
  ip ospf 1 area 0
  shutdown

Example: Configuring PIM BFD on an IPv4 Interface

The following is a sample configuration of PIMv4 BFD on an interface:
Building configuration...

Current configuration : 6735 bytes
!
! Last configuration change at 17:19:42 IST Wed May 21 2014
!
version 15.4
hostname R1
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
clock timezone IST 5 30
ip cef
!
!
!
no ip domain lookup
ip multicast-routing

asr901-platf-multicast enable

interface Loopback1
ip address 3.3.3.3 255.255.255.255
ip ospf 1 area 0
!
!
interface GigabitEthernet0/0
no ip address
negotiation auto
service instance 24 ethernet
encapsulation dot1q 24
rewrite ingress tag pop 1 symmetric
bridge-domain 24
!
interface Vlan24
ip address 24.24.24.2 255.255.255.0
ip pim sparse-mode
ip pim bfd
ip igmp version 3
bfd interval 50 min_rx 50 multiplier 3
!
router ospf 1
router-id 3.3.3.3
timers throttle spf 50 50 5000
timers throttle lsa 10 20 5000
timers lsa arrival 10
timers pacing flood 5
network 24.24.24.0 0.0.0.255 area 0
network 25.25.25.0 0.0.0.255 area 0
network 55.55.55.0 0.0.0.255 area 0
Troubleshooting Tips

To display IGMP packets received and sent, use the following `debug` command:

```
Router# debug ip igmp
```

To display debugging messages about IGMP snooping, use the following `debug` command:

```
Router# debug ip igmp snooping
```

To display debugging messages about IP PIM, use the following `debug` command:

```
Router# debug ip pim hello
```

To display PIM packets received and sent, and to display PIM-related events for BFD, use the following `debug` command:

```
Router# debug ip pim bfd
```

To display debugging messages about BFD, use the following `debug` command:

```
Router# debug bfd event
```

Note: We recommend that you do not use these `debug` commands without TAC supervision.

Additional References

The following sections provide references related to IPv4 Multicast feature.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Router Commands</td>
<td></td>
</tr>
<tr>
<td>IP Multicast Technology Overview</td>
<td>IP Multicast: PIM Configuration Guide</td>
</tr>
</tbody>
</table>
### Standards and RFCs

<table>
<thead>
<tr>
<th>Standards/RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1112</td>
<td>Host Extensions for IP Multicasting</td>
</tr>
<tr>
<td>RFC 2236</td>
<td>Internet Group Management Protocol, Version 2</td>
</tr>
<tr>
<td>RFC 3376</td>
<td>Internet Group Management Protocol, Version 3</td>
</tr>
<tr>
<td>RFC 3569</td>
<td>Source-Specific Multicast</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

## Feature Information for IPv4 Multicast

The following table lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

### Table 45: Feature Information for IPv4 Multicast

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Source Specific Multicast        | 15.4(1)S | This feature was introduced on the Cisco ASR 901 Routers. The following section provides information about this feature:  
**Platform-Independent Cisco IOS Software Documentation**  
• See the “Configuring Source Specific Multicast” chapter of the *IP Multicast: IGMP Configuration Guide*. |
| Source Specific Multicast Mapping| 15.4(1)S | This feature was introduced on the Cisco ASR 901 Routers. The following section provides information about this feature:  
**Platform-Independent Cisco IOS Software Documentation**  
See the “SSM Mapping” chapter of the *IP Multicast: IGMP Configuration Guide*. |
| IGMP Version 1                   | 15.4(1)S | This feature was introduced on the Cisco ASR 901 Routers. The following section provides information about this feature:  
**Platform-Independent Cisco IOS Software Documentation**  
See the “Customizing IGMP” chapter of the *IP Multicast: IGMP Configuration Guide*. |
| IGMP Version 2                   | 15.4(1)S | This feature was introduced on the Cisco ASR 901 Routers. The following section provides information about this feature:  
**Platform-Independent Cisco IOS Software Documentation**  
See the “Customizing IGMP” chapter of the *IP Multicast: IGMP Configuration Guide*. |
| IGMP Version 3                   | 15.4(1)S | This feature was introduced on the Cisco ASR 901 Routers. The following section provides information about this feature:  
**Platform-Independent Cisco IOS Software Documentation**  
See the “Customizing IGMP” chapter of the *IP Multicast: IGMP Configuration Guide*. |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| IGMP Snooping                      | 15.4(2)S| This feature was introduced on the Cisco ASR 901 Routers. The following sections provide information about this feature:  
  - IGMP Snooping, on page 718  
  - Configuring IGMP Snooping, on page 725 |
| IP Multicast VRF Lite              | 15.4(3)S| This feature was introduced on the Cisco ASR 901 Routers. The following sections provide information about this feature:  
  - IP Multicast VRF Lite, on page 721  
  - Configuring IPv4 Multicast Routing for VRF Lite, on page 730 |
| BFD Support for Multicast (PIM)    | 15.4(3)S| This feature was introduced on the Cisco ASR 901 Routers. The following sections provide information about this feature:  
  - PIM BFD, on page 721  
  - Configuring PIM BFD on an IPv4 Interface, on page 732 |
CHAPTER 40

IPv6 Multicast

This feature module describes how to configure basic IP multicast in an IPv6 network.

- Prerequisites for IPv6 Multicast, on page 751
- Restrictions for IPv6 Multicast, on page 751
- Information About IPv6 Multicast, on page 752
- Configuring IPv6 Multicast, on page 757
- Configuration Examples for IPv6 Multicast, on page 791
- Troubleshooting Tips, on page 794

Prerequisites for IPv6 Multicast

- Cisco IOS Release 15.4(1)S or a later release that supports the IPv6 Multicast feature must be installed previously on the Cisco ASR 901 Series Aggregation Services Router.

- You must first enable IPv6 unicast routing on all interfaces of the device on which you want to enable IPv6 multicast routing.

Restrictions for IPv6 Multicast

- PIM Dense Mode is not supported.
- Bidirectional Protocol Independent Multicast (PIM) is not supported.
- You must disable the Source Specific Multicast (SSM) map query dns when static mapping is configured.
- You must configure the asr901-platf-multicast enable command to enable multicast on the router.
- You must enable the asr901-multicast source command on the SVI interface that is connected to the traffic source.
- Mroute based counter or rate statistics are not supported. Multicast counters are not supported.
- Multicast VPN (MVPN) is not supported.
- PIM IPv6 SSM in VRF lite is supported only from Cisco IOS release 15.4(3)S.
- PIM IPv6 SM in VRF lite is not supported.
- IPv6 PIM interface counters are not supported till Cisco IOS Release 15.5(1)S.

- Multicast is not supported on Serial and MLPPP interfaces.
- Multiple L3 SVI interfaces on PoCH as replication VLAN's for multicast traffic are not supported.
• IP Multicast on loopback interface is not supported.

Information About IPv6 Multicast

An IPv6 multicast group is an arbitrary group of receivers that want to receive a particular data stream. This group has no physical or geographical boundaries—receivers can be located anywhere on the Internet or in any private network. Receivers that are interested in receiving data flowing to a particular group must join the group by signaling their local device. This signaling is achieved with the MLD protocol.

Devices use the MLD protocol to learn whether members of a group are present on their directly attached subnets. Hosts join multicast groups by sending MLD report messages. The network then delivers data to a potentially unlimited number of receivers, using only one copy of the multicast data on each subnet. IPv6 hosts that wish to receive the traffic are known as group members.

Packets delivered to group members are identified by a single multicast group address. Multicast packets are delivered to a group using best-effort reliability, just like IPv6 unicast packets.

The multicast environment consists of senders and receivers. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

A multicast address is chosen for the receivers in a multicast group. Senders use that address as the destination address of a datagram to reach all members of the group.

Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group. A host can be a member of more than one multicast group at a time.

How active a multicast group is, its duration, and its membership can vary from group to group and from time to time. A group that has members may have no activity.

IPv6 Multicast Groups

An IPv6 address must be configured on an interface for the interface to forward IPv6 traffic. Configuring a site-local or global IPv6 address on an interface automatically configures a link-local address and activates IPv6 for that interface. Additionally, the configured interface automatically joins the following required multicast groups for that link:

• Solicited-node multicast group FF02:0:0:0:0:1:FF00::/104 for each unicast and anycast address assigned to the interface
• All-nodes link-local multicast group FF02::1
• All-routers link-local multicast group FF02::2

IPv6 Multicast Routing Implementation

The Cisco IOS software supports the following protocols to implement IPv6 multicast routing:

• MLD for IPv6: MLD is used by IPv6 routers to discover multicast listeners (nodes that want to receive multicast packets destined for specific multicast addresses) on directly attached links. There are two versions of MLD:
  • MLD version 1 is based on version 2 of the IGMP for IPv4
  • MLD version 2 is based on version 3 of the IGMP for IPv4.
• IPv6 multicast for Cisco IOS software uses both MLD version 2 and MLD version 1. MLD version 2 is fully backward-compatible with MLD version 1 (described in RFC 2710). Hosts that support only MLD version 1 interoperate with a router running MLD version 2. Mixed LANs with both MLD version 1 and MLD version 2 hosts are likewise supported.

• PIM is used between routers so that they can track which multicast packets to forward to each other and to their directly connected LANs.

• PIM in PIM SSM has the additional ability to report interest in receiving packets from specific source addresses (or from all but the specific source addresses) to an IP multicast address.

**Multicast Listener Discovery Protocol for IPv6**

To start implementing multicasting in a network, users must first define who receives the multicast. The MLD protocol is used by IPv6 devices to discover the presence of multicast listeners (for example, nodes that want to receive multicast packets) on their directly attached links, and to discover specifically which multicast addresses are of interest to those neighboring nodes. It is used for discovering local group and source-specific group membership. The MLD protocol provides a means to automatically control and limit the flow of multicast traffic throughout your network with the use of special multicast queriers and hosts.

The differences between multicast queriers and hosts are as follows:

• A querier is a network device that sends query messages to discover which network devices are members of a given multicast group.

• A host is a receiver that send report messages to inform the querier of a host membership.

A set of queriers and hosts that receive multicast data streams from the same source is called a multicast group. Queriers and hosts use MLD reports to join and leave multicast groups and to begin receiving group traffic.

MLD uses the Internet Control Message Protocol (ICMP) to carry its messages. All MLD messages are link-local with a hop limit of 1, and they all have the alert option set. The alert option implies an implementation of the hop-by-hop option header.

MLD has three types of messages:

• **Query**—General, group-specific, and multicast-address-specific. In a query message, the multicast address field is set to 0 when MLD sends a general query. The general query learns which multicast addresses have listeners on an attached link. Group-specific and multicast-address-specific queries are the same. A group address is a multicast address.

• **Report**—In a report message, the multicast address field is that of the specific IPv6 multicast address to which the sender is listening.

• **Done**—In a done message, the multicast address field is that of the specific IPv6 multicast address to which the source of the MLD message is no longer listening.

An MLD report must be sent with a valid IPv6 link-local source address, or the unspecified address (:). If the sending interface has not yet acquired a valid link-local address. Sending reports with the unspecified address is allowed to support the use of IPv6 multicast in the Neighbor Discovery Protocol.

For stateless autoconfiguration, a node is required to join several IPv6 multicast groups in order to perform duplicate address detection (DAD). Prior to DAD, the only address the reporting node has for the sending interface is a tentative one, which cannot be used for communication. Therefore, the unspecified address must be used.

MLD states that result from MLD version 2 or MLD version 1 membership reports can be limited globally or by interface. The MLD group limits feature provides protection against denial of service (DoS) attacks caused by MLD packets. Membership reports in excess of the configured limits are not entered in the MLD cache, and traffic for those excess membership reports are not forwarded.
MLD provides support for source filtering. Source filtering allows a node to report interest in listening to packets only from specific source addresses (as required to support SSM), or from all addresses except specific source addresses sent to a particular multicast address.

When a host using MLD version 1 sends a leave message, the device needs to send query messages to reconfirm that this host was the last MLD version 1 host joined to the group before it can stop forwarding traffic. This function takes about 2 seconds. This “leave latency” is also present in IGMP version 2 for IPv4 multicast.

**MLD Snooping**

MLD is a protocol used by IPv6 multicast routers to discover the presence of multicast listeners (nodes looking to receive IPv6 multicast packets) on its directly attached links, and to discover which multicast packets are of interest to neighboring nodes.

Using MLD snooping, IPv6 multicast data is selectively forwarded to a list of ports that looks to receive the data, instead of data being flooded to all the ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets.

For more information on MLD snooping, see the *IPv6 MLD Snooping* document at:

**MLD Snooping Support**

IP address-based MLD snooping is enabled on the Cisco ASR 901 Routers with the following specifics:

- Source specific MLD snooping is not supported.
- When MLD snooping is configured, unknown multicast packets are flooded to the BD.

**Layer 2 VPN on the Physical Interface**

- Default and port-based Xconnect—MLD packets (control and data) are sent over an L2 VPN session.
- Dot1Q-based Xconnect—If Xconnect is configured for a customer VLAN, MLD packets (control and data) are carried into an L2 VPN. If they are not MLD control packets they are handled as reserved multicast packets in the BD VLAN, and data packets are forwarded according to the data in the MLD snooping tables.

**Layer 3 IP Multicast with IP MLD Snooping**

- Flows destined for PIM Sparse Mode-enabled and PIM Source-Specific Multicast-enabled groups are forwarded using Layer 3 IP multicast logic.
- Flows destined for groups that are populated using data in the MLD snooping table are forwarded using MLD snooping forward logic.
- Flows that are common (destined for groups that are populated using PIM-SM or PIM-SSM and MLD snooping):
  - The accept interface of PIM-SM or PIM-SSM Multicast Forwarding Information Base (MFIB) is the same as the BD VLAN in which MLD snooping-based forwarding takes place.
  - Layer 3 forwarding takes place using Layer 3 interface output of PIM-SM or PIM-SSM MFIB.
  - Layer 2 forwarding takes place using the output ports from the MLD snooping logic.
The following are supported as part of MLD snooping:

- MLD message processing
- IPv6 MLD snooping
- Packet forwarding at hardware within bridge domain using IP multicast address lookup and IPv6 MLD information.

### Protocol Independent Multicast

Protocol Independent Multicast (PIM) is used between devices so that they can track which multicast packets to forward to each other and to their directly connected LANs. PIM works independently of the unicast routing protocol to perform send or receive multicast route updates like other protocols. Regardless of which unicast routing protocols are being used in the LAN to populate the unicast routing table, Cisco IOS PIM uses the existing unicast table content to perform the Reverse Path Forwarding (RPF) check instead of building and maintaining its own separate routing table.


### PIM Source Specific Multicast

PIM SSM is the routing protocol that supports the implementation of SSM and is derived from PIM SM. However, unlike PIM SM where data from all multicast sources are sent when there is a PIM join, the SSM feature forwards datagram traffic to receivers from only those multicast sources that the receivers have explicitly joined, thus optimizing bandwidth utilization and denying unwanted Internet broadcast traffic. Further, instead of the use of RP and shared trees, SSM uses information found on source addresses for a multicast group. This information is provided by receivers through the source addresses relayed to the last-hop devices by MLD membership reports, resulting in shortest-path trees directly to the sources.

In SSM, delivery of datagrams is based on the (S, G) channels. Traffic for one (S, G) channel consists of datagrams with an IPv6 unicast source address S and the multicast group address G as the IPv6 destination address. Systems receive this traffic by becoming members of the (S, G) channel. Signaling is not required, but receivers must subscribe or unsubscribe to (S, G) channels to receive or not receive traffic from specific sources.

MLD version 2 is required for SSM to operate. MLD allows the host to provide source information. Before SSM runs with MLD, SSM must be supported in the Cisco IPv6 device, the host where the application is running, and the application itself.


### Source Specific Multicast Mapping for IPv6

SSM mapping for IPv6 supports both static and dynamic Domain Name System (DNS) mapping for MLD version 1 receivers. This feature allows deployment of IPv6 SSM with hosts that are incapable of providing MLD version 2 support in their TCP/IP host stack and their IP multicast receiving application.

SSM mapping allows the device to look up the source of a multicast MLD version 1 report either in the running configuration of the device or from a DNS server. The device can then initiate an (S, G) join toward the source.

PIM-Sparse Mode

PIM-SM uses a pull model to deliver multicast traffic. Only network segments with active receivers that have explicitly requested the data receive the traffic.

PIM-SM distributes information about active sources by forwarding data packets on the shared tree. Because PIM-SM uses shared trees (at least, initially), it requires the use of a rendezvous point (RP). The RP must be administratively configured in the network.


Rendezvous Point

A rendezvous point (RP) is required only in networks running Protocol Independent Multicasts sparse mode (PIM-SM). The protocol is described in RFC 2362.

For more information on RP, see the Configuring a Rendezvous Point guide at: http://www.cisco.com/en/US/docs/ios/solutions_docs/ip_multicast/White_papers/rps.html

The recommended methods for configuring an RP in a PIM-SM network are given below:

- Static RP
- Bootstrap router
- Anycast RP

IPv6 Multicast VRF Lite

The IPv6 Multicast VRF Lite feature provides IPv6 multicast support for multiple virtual routing/forwarding contexts (VRFs). The scope of these VRFs is limited to the router in which the VRFs are defined.

This feature provides separation between routing and forwarding, providing an additional level of security because no communication between devices belonging to different VRFs is allowed unless it is explicitly configured. The IPv6 Multicast VRF Lite feature simplifies the management and troubleshooting of traffic belonging to a specific VRF.

---

Note

Only PIM SSM is supported, PIM SM is not supported in VRF Lite.

---

PIM BFD

Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols and independent of the higher layer protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning is easier and reconvergence time is consistent and predictable.

Protocol Independent Multicast (PIM) uses a hello mechanism for discovering new neighbors and for detecting failures between adjacent nodes. The minimum failure detection time in PIM is 3 times the PIM Query-Interval. To enable faster failure detection, the rate at which a PIM Hello message is transmitted on an interface is configurable. However, lower intervals increase the load on the protocol and can increase CPU and memory.
utilization and cause a system-wide negative impact on performance. Lower intervals can also cause PIM neighbors to expire frequently as the neighbor expiry can occur before the hello messages received from those neighbors are processed.

The BFD Support for Multicast (PIM) feature, also known as PIM BFD, registers PIM as a client of BFD. PIM can then utilize BFD to initiate a session with an adjacent PIM node to support BFD’s fast adjacency failure detection in the protocol layer. PIM registers just once for both PIM and IPv6 PIM.

At PIMs request (as a BFD client), BFD establishes and maintains a session with an adjacent node for maintaining liveness and detecting forwarding path failure to the adjacent node. PIM hellos will continue to be exchanged between the neighbors even after BFD establishes and maintains a BFD session with the neighbor. The behavior of the PIM hello mechanism is not altered due to the introduction of this feature.

Although PIM depends on the Interior Gateway Protocol (IGP) and BFD is supported in IGP, PIM BFD is independent of IGP’s BFD.

## Configuring IPv6 Multicast

### Enabling IPv6 Multicast Routing

To enable IPv6 Multicast Routing feature, complete the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ipv6 multicast-routing [vrf vrf-name]`
4. `asr901-platf-multicast enable`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enables multicast routing on all IPv6-enabled interfaces and enables multicast forwarding for PIM and MLD on all enabled interfaces of the device.</td>
</tr>
<tr>
<td><code>ipv6 multicast-routing [vrf vrf-name]</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 multicast-routing</td>
<td></td>
</tr>
</tbody>
</table>
Disabling IPv6 Multicast Forwarding

This procedure disables IPv6 multicast forwarding on the router. The IPv6 multicast forwarding is turned on by default when IPv6 multicast routing is enabled.

To disable IPv6 multicast forwarding, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no ipv6 mfib

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router> enable
```

- Enter your password if prompted.

| Step 2 | configure terminal | Enters the global configuration mode. |

**Example:**

```
Router# configure terminal
```

| Step 3 | no ipv6 mfib | Disables IPv6 multicast forwarding on the router. |

**Example:**

```
Router(config)# no ipv6 mfib
```

Disabling MLD Device-Side Processing

MLD is enabled on every interface when IPv6 multicast routing is configured. This procedure disables MLD router side processing on that interface. The router stops sending MLD queries and stops keeping track of MLD members on the LAN. If the `ipv6 mld join-group` command is configured on this interface, the interface continues with the MLD host functionality and report group membership when MLD query is received.

To turn off MLD device-side processing on a specified interface, complete the following steps:
SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no ipv6 mld router

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and places the</td>
</tr>
<tr>
<td>Example:</td>
<td>device in interface configuration mode.</td>
</tr>
<tr>
<td>Router(config)# interface vlan 105</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> no ipv6 mld router</td>
<td>Disables MLD device-side processing on a specified</td>
</tr>
<tr>
<td>Example:</td>
<td>interface.</td>
</tr>
<tr>
<td>Router(config)# no ipv6 mld router</td>
<td></td>
</tr>
</tbody>
</table>

Configuring MLD Protocol on an Interface

To configure Multicast Listener Discovery Protocol on an interface, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 mld query-interval seconds
5. ipv6 mld query-max-response-time seconds
6. ipv6 mld query-timeout seconds
7. ipv6 mld join-group [group-address] [include | exclude] {source-address | source-list [acl]}
8. ipv6 mld static-group [group-address] [include | exclude] {source-address | source-list [acl]}
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Specified an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface vlan 104</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Configures the frequency of MLD Host-Query packets transmitted. A designated router for a LAN is the only router that transmits queries. The default value is 60 seconds.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# ipv6 mld query-interval 60</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies the maximum query response time advertised in the MLD queries. Default value is 10 seconds. Configuring a value less than 10 seconds enables the router to prune groups faster.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# ipv6 mld query-max-response-time 20</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Specifies the timeout for the router to take over as the querier for the interface, after the previous querier has stopped querying. The default value is 2 * query-interval. If the router hears no queries for the timeout period, it becomes the querier.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# ipv6 mld query-timeout 130</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Configures MLD reporting for given group with MLDv1 or given source and group with MLDv2. The packets that are addressed to this group address are passed up to the client process in the router as well forwarded out the interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# ipv6 mld join-group ff04::12 exclude 2001:DB8::10:11</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Configures forwarding of traffic for the multicast group onto this interface and behave as if an MLD joiner was present on the interface. The packets to the group get</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Router(config-if)# ipv6 mld static-group ff04::10 include 100::1</td>
<td>fastswitched or hardware switched (whatever is available on the platform).</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> This command is not a sufficient condition for traffic to be forwarded onto the interface. Other conditions such as absence of a route, not being the DR or losing an assert can cause the router to not forward traffic even if the command is configured.</td>
</tr>
</tbody>
</table>

### Configuring MLD Snooping

MLD snooping is not enabled by default. You have to configure it globally, which enables snooping on all the VLANs.

You can enable and disable MLD snooping on a per-VLAN basis. However, if you disable MLD snooping globally, it is disabled on all the VLANs. If global snooping is enabled, you can enable or disable VLAN snooping.

**Restrictions**

Cisco ASR 901 Routers support only the following encapsulations for MLD snooping:

- Untagged
- Dot1q (with or without rewrite)
- Routed QinQ (with rewrite pop 2)

The following commands are not supported: `ipv6 mld snooping tcn flood` and `ipv6 mld snooping tcn query solicit`.

**Note**

In the context of REP and G8032, topology change may cause the routers in the ring topology to trigger general queries that may impact the convergence time (because this time is based on the report received from the host).

### Enabling MLD Snooping Globally

To enable MLD snooping globally on the router, perform this task:

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. ipv6 mld snooping  
4. exit
### Enabling MLD Snooping on a VLAN

To enable MLD snooping on a VLAN, perform this task:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ipv6 mld snooping`
4. `ipv6 mld snooping vlan vlan-id`
5. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 mld snooping</td>
<td>Enables MLD snooping globally.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 mld snooping</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> exit</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Static Multicast Group

Hosts or Layer 2 ports normally join multicast groups dynamically. However, you can also statically configure an IPv6 multicast address and member ports for a VLAN.

To add a Layer 2 port as a member of a multicast group, perform this task:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ipv6 mld snooping vlan vlan-id static ipv6-multicast-address interface interface-id
4. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 mld snooping vlan vlan-id static ipv6-multicast-address interface interface-id</td>
<td>Configures statically a multicast group with a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td>Example: Router(config)# ipv6 mld snooping vlan 104 static FF45::5 interface gigabitethernet0/4</td>
<td>• vlan-id—Multicast group VLAN ID. The VLAN ID ranges from 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• ipv6-multicast-address—The 128-bit group IPv6 address. The address must be in the form specified in RFC 2373.</td>
</tr>
</tbody>
</table>
### Purpose

Command or Action	Purpose

**Step 4**
- **end**
- **Example:**
  ```
 Router(config)# end
  ```

Exits global configuration mode and enters privileged EXEC mode.

---

### Configuring a Multicast Router Port

To add a multicast router port to a VLAN, perform this task:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ipv6 mld snooping vlan vlan-id mroute interface interface-id`
4. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
- `enable`
- **Example:**
  ```
 Router> enable
  ``` | Enables privileged EXEC mode.
  - Enter your password if prompted. |
| **Step 2**
- `configure terminal`
- **Example:**
  ```
 Router# configure terminal
  ``` | Enters global configuration mode. |
| **Step 3**
- `ipv6 mld snooping vlan vlan-id mroute interface interface-id`
- **Example:**
  ```
 Router(config)# ipv6 mld snooping vlan 104 mrouter interface gigabitEthernet 0/4
  ``` | Specifies the multicast router VLAN ID, and the interface of the multicast router.
  - `vlan-id`—Multicast group VLAN ID. The VLAN ID ranges from 1 to 1001 and 1006 to 4094.
  - `interface-id`—The member port. It can be a physical interface or a port channel. |
| **Step 4**
- `end`
- **Example:**
  ```
 Router(config)# end
  ``` | Exits global configuration mode and enters privileged EXEC mode. |

---

### Enabling MLD Immediate Leave

To enable MLDv1 Immediate Leave, follow these steps:
**SUMMARY STEPS**

1. enable
2. configure terminal
3. ipv6 mld snooping vlan *vlan-id* immediate-leave
4. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 mld snooping vlan <em>vlan-id</em> immediate-leave</td>
<td>Enables MLD Immediate Leave on the VLAN interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping vlan 104 immediate-leave</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring an MLD Snooping Query**

To configure MLD snooping query characteristics for the router or for a VLAN, follow these steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ipv6 mld snooping check hop-count
4. ipv6 mld snooping explicit-tracking limit *limit*
5. ipv6 mld snooping last-listener-query-count *count*
6. ipv6 mld snooping last-listener-query-interval *interval*
7. ipv6 mld snooping listener-message-suppression
8. ipv6 mld snooping robustness-variable *interval*
9. ipv6 mld snooping vlan *vlan-id*
10. end
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 mld snooping check hop-count</td>
<td>Enables hop-count checking.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping check hop-count</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 mld snooping explicit-tracking limit limit</td>
<td>Enables explicit host tracking.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping explicit-tracking limit 1000</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>ipv6 mld snooping last-listener-query-count count</td>
<td>Sets the last listener query count on a VLAN basis. This value overrides the value configured globally. The range is from 1 to 7. The default is 0. When set to 0, the global count value is used. Queries are sent 1 second apart.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping last-listener-query-count 3</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>ipv6 mld snooping last-listener-query-interval interval</td>
<td>Sets the maximum response time that the switch waits for after sending out a MASQ before deleting a port from the multicast group. The range is from 100 to 32,768 thousandths of a second. The default is 1000 (1 second).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping last-listener-query-interval 1000</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>ipv6 mld snooping listener-message-suppression</td>
<td>Enables listener message suppression.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping listener-message-suppression</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>ipv6 mld snooping robustness-variable interval</td>
<td>Sets the number of queries that are sent before the router deletes a listener (port) that does not respond to a general query. The range is from 1 to 3. The default is 2.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping robustness-variable 3</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>ipv6 mld snooping vlan vlan-id</td>
<td>Enables MLD snooping for VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>- vlan-id—Multicast group VLAN ID. The VLAN ID ranges from 1 to 1001 and 1006 to 4094.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# ipv6 mld snooping vlan 104</td>
<td></td>
</tr>
</tbody>
</table>
Disabling MLD Listener Message Suppression

To disable MLD listener message suppression, follow these steps:

**SUMMARY STEPS**
1. enable
2. configure terminal
3. no ipv6 mld snooping listener-message-suppression
4. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no ipv6 mld snooping listener-message-suppression</td>
<td>Disables listener message suppression.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no ipv6 mld snooping listener-message-suppression</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Rendezvous Point

To configure a rendezvous point (RP) in a Protocol Independent Multicast sparse mode (PIM-SM) network, see the Configuring a Rendezvous Point guide at:


This guide provides scenario descriptions and basic configuration examples for the following options:

• Static RP
• Bootstrap router
• Anycast RP

Configuring PIM SSM Options

To configure PIM Source-Specific Multicast options, complete the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 pim
5. ipv6 pim hello-interval interval-in-seconds
6. ipv6 pim join-prune-interval interval-in-seconds

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Router(config)# interface vlan 104</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ipv6 pim</td>
<td>Configures PIM, if it is disabled. PIM runs on every</td>
</tr>
<tr>
<td>Example:</td>
<td>interface after configuring IPv6 multicast routing.</td>
</tr>
<tr>
<td>Router(config-if)# ipv6 pim</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ipv6 pim hello-interval</td>
<td>Configures periodic hello interval for this interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Default is 30 seconds. Periodic hellos are sent out at</td>
</tr>
<tr>
<td>Router(config-if)# ipv6 pim hello-interval 45</td>
<td>intervals randomized by a small amount instead of on exact periodic interval.</td>
</tr>
<tr>
<td><strong>Step 6</strong> ipv6 pim join-prune-interval</td>
<td>Configures periodic Join-Prune announcement interval for this interface. Default is 60 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 pim join-prune-interval 75</td>
<td></td>
</tr>
</tbody>
</table>
Disabling PIM SSM Multicast on an Interface

To disable PIM SSM multicast on a specified interface, complete the following steps.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. no ipv6 pim

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2** configure terminal	Enters the global configuration mode.
Example:	
Router# configure terminal	

**Step 3** interface type number	Specifies an interface type and number, and enters interface configuration mode.
Example:	
Router(config)# interface vlan 104	

**Step 4** no ipv6 pim	Disables PIM on the specified interface.
Example:	
Router(config-if)# no ipv6 pim	

**Configuring IPv6 SSM Mapping**

When the SSM mapping feature is enabled, DNS-based SSM mapping is automatically enabled, which means that the device looks up the source of a multicast MLD version 1 report from a DNS server.

You can configure either DNS-based or static SSM mapping, depending on your device configuration. If you choose to use static SSM mapping, you can configure multiple static SSM mappings. If multiple static SSM mappings are configured, the source addresses of all matching access lists are used.

To configure IPv6 SSM mapping, complete the following steps.

**SUMMARY STEPS**

1. enable
2. configure terminal
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ipv6 mld [vrf vrf-name] ssm-map enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 mld ssm-map enable</td>
<td>Enables the SSM mapping feature for groups in the configured SSM range.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ipv6 mld [vrf vrf-name] ssm-map static access-list source-address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 mld ssm-map static SSM_MAP_ACL_2 2001:DB8::1::1</td>
<td>Configures static SSM mappings.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>no ipv6 mld [vrf vrf-name] ssm-map query dns</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no ipv6 mld ssm-map query dns</td>
<td>Disables DNS-based SSM mapping.</td>
</tr>
</tbody>
</table>

### Configuring IPv6 Multicast Routing for VRF Lite

To configure IPv6 multicast routing for VRF Lite, perform this task:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ipv6 multicast-routing vrf vrf-name
4. vrf definition vrf-name
5. rd route-distinguisher
6. address-family ipv6
7. exit-address-family
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 multicast-routing vrf vrf-name</td>
<td>Enables multicast routing using Protocol Independent Multicast (PIM) and Multicast Listener Discovery (MLD) on all IPv6-enabled interfaces of the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 multicast-routing vrf vpe_1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vrf definition vrf-name</td>
<td>Configures a VRF routing table instance and enter VRF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# vrf definition vpe_1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> rd route-distinguisher</td>
<td>Specifies a route distinguisher (RD) for a VRF instance. The <em>route-distinguisher</em> is an 8-byte value to be added to an IPv6 prefix to create a VPN IPv6 prefix.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# rd 1.1.1.1:100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> address-family ipv6</td>
<td>Specifies the address family submode for configuring routing protocols.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> exit-address-family</td>
<td>Exits the address family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router-af)# exit-address-family</td>
<td></td>
</tr>
</tbody>
</table>

### Enabling VRF Under a VLAN Interface

To configure VRF under a VLAN interface, perform this task:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. vrf forwarding vrf-name
5. ipv6 address ipv6-address
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface VLAN 80</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vrf forwarding vrf-name</td>
<td>Associates a Virtual Routing and Forwarding (VRF) instance or a virtual network with an interface or subinterface. The vrf-name is the name assigned to a VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# vrf forwarding vpe_1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ipv6 address ipv6-address</td>
<td>Configure an IPv6 address based on an IPv6 general prefix and enable IPv6 processing on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 address my-prefix 0:0:0:7272::72/64</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring PIM BFD on an IPv6 Interface

To configure PIM BFD on an IPv6 interface, perform this task:

**restriction**

- This feature is supported only on switch virtual interfaces on which both PIM and BFD are supported.
- For ECMP, PIM BFD is used to detect quick neighbor failure.
- For non-ECMP, BFD for IGP should be configured for faster convergence.
- Timers that are less than 50 ms for 3 sessions are not supported.

**Before you begin**

- IPv6 multicast must be enabled and Protocol Independent Multicast (PIM) must be configured on the interface.
- Ensure that Bidirectional Forwarding Detection (BFD) for IGP is always configured along with PIM.

### SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 pim bfd

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable Example: Router&gt; enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal Example: Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number Example: Router(config)# interface VLAN 80</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ipv6 pim bfd Example: Router(config-if)# ipv6 pim bfd</td>
<td>Enables PIMv6 BFD on an interface.</td>
</tr>
</tbody>
</table>

**Verifying IPv6 Multicast**

Use the **show** commands listed below to verify the IPv6 Multicast configuration.

To display the group membership information on various interfaces on a router, use the **show** command described in the following example.

```
Router# show ipv6 mld groups
MLD Connected Group Membership
Group Address Interface Uptime Expires
FF04::10 Vlan104 00:18:41 never
FF04::12 Vlan104 00:19:10 never
FF34::4 Vlan104 00:35:00 not used
FF45::5 Vlan104 00:35:04 00:01:44
```

To display the MLD interface specific parameters, use the **show** command described in the following example.

```
Router# show ipv6 mld interface vlan 104
Vlan104 is up, line protocol is up
Internet address is FE80::4255:39FF:FE89:6283/10
MLD is enabled on interface
Current MLD version is 2
MLD query interval is 60 seconds
MLD querier timeout is 130 seconds
MLD max query response time is 20 seconds
```
Last member query response interval is 1 seconds
MLD activity: 18 joins, 7 leaves
MLD querying router is FE80::4255:39FF:FE89:6283 (this system)

To display the MLD traffic counters, use the `show` command described in the following example.

```
Router# show ipv6 mld traffic
MLD Traffic Counters
Elapsed time since counters cleared: 02:29:12

+-------------------+----------+----------+
| | Received | Sent |
+-------------------+----------+----------+
| Valid MLD Packets | 784 | 385 |
| Queries | 4 | 167 |
| Reports | 776 | 218 |
| Leaves | 4 | 0 |
| Mtrace packets | 0 | 0 |
+-------------------+----------+----------+

Errors:
Malformed Packets 0
Martian source 10
Non link-local source 0
Hop limit is not equal to 1 0
```

To display interface specific information for PIM, use the `show` command described in the following example.

```
Router# show ipv6 pim interface
Interface PIM Nbr Hello DR
 Count Intvl Prior
+-------------+-----+-------+-----+
| Vlan102 | on | 1 | 30 |
| Address: FFE80::4255:39FF:FE89:5283
| DR: FFE80::4255:39FF:FE89:5284 |
| Null0 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| FastEthernet0/0 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| GigabitEthernet0/0/8 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| GigabitEthernet0/9 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| G10/10 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| G10/11 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| GigabitEthernet0/0 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| GigabitEthernet0/1 | off | 0 | 30 |
| Address: ::
| DR: not elected |
| GigabitEthernet0/2 | off | 0 | 30 |
| Address: ::
| DR: not elected |
```
To display the number of (*, G) and (S, G) membership reports present in the MLD cache, use the `show` command described in the following example.

```
Router# show ipv6 mld groups summary
MLD Route Summary
 No. of (*,G) routes = 9
 No. of (S,G) routes = 3
```

To display the number of PIM neighbors on each interface, as well as, the total number of PIM neighbors, use the `show` command described in the following example.

```
Router# show ipv6 pim neighbor count
Interface Nbr count
Vlan104 1
Vlan102 1
Total Nbrs 2
```

To display the number of PIM neighbors discovered, use the `show` command described in the following example.

```
Router# show ipv6 pim neighbor
```
PIM Neighbor Table
Mode: B - Bidir Capable, G - GenID Capable
Neighbor Address Interface Uptime Expires Mode DR pri
FE80::4255:39FF:FE89:5284 Vlan102 02:30:51 00:01:38 B G DR 1
FE80::4255:39FF:FE89:6284 Vlan104 00:09:49 00:01:16 B G DR 1

To display the information in the PIM topology table in a format similar to the `show ip mroute` command, use the `show` command described in the following example.

Router# show ipv6 mroute

Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group,
C - Connected, L - Local, I - Received Source Specific Host Report,
P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
J - Join SPT, Y - Joined MDT-data group,
y - Sending to MDT-data group
g - BGP signal originated, G - BGP Signal received,
N - BGP Shared-Tree Prune received, n - BGP C-Mroute suppressed,
q - BGP Src-Active originated, Q - BGP Src-Active received
E - Extranet
Timers: Uptime/Expires
Interface state: Interface, State
(2006::1, FF34::4), 00:38:41/never, flags: sPTI
  Incoming interface: Vlan102
  RPF nbr: FE80::4255:39FF:FE89:5284
  Immediate Outgoing interface list:
    Vlan104, Null, 00:38:41/never

(100::1, FF04::10), 00:22:21/never, flags: SI
  Incoming interface: Null
  RPF nbr: ::
  Immediate Outgoing interface list:
    Vlan104, Null, 00:22:21/never

(*, FF04::12), 00:22:50/never, RP 2021::2021, flags: SPCL
  Incoming interface: Vlan104
  RPF nbr: FE80::4255:39FF:FE89:6284
  Outgoing interface list: Null

  Incoming interface: Vlan104
  RPF nbr: FE80::4255:39FF:FE89:6284
  Outgoing interface list: Null

(*, FF45::5), 00:38:44/never, RP 2021::2021, flags: SP
  Incoming interface: Vlan104
  RPF nbr: FE80::4255:39FF:FE89:6284
  Outgoing interface list: Null

To display PIM topology table for given group or all groups, use the `show` command described in the following example.

Router# show ipv6 pim topology

IP PIM Multicast Topology Table
Entry state: (*/S,G)[RPT/SPT] Protocol Uptime Info Upstream Mode
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive,
RA - Really Alive, LH - Last Hop, DSS - Don't Signal Sources, RR - Register Received, SR - Sending Registers, E - MSDP External, DCC - Don't Check Connected, Y - Joined MDT-data group, y - Sending to MDT-data group
BGS - BGP Signal Sent, !BGS - BGP signal suppressed
SAS - BGP Src-Act Sent, SAR - BGP Src-Act Received

Interface state: Name, Uptime, Fwd, Info

(2006::1,FF34::4)
SSM SPT UP: 00:39:23 JP: Null(never) Flags:
  RPF: Vlan102,FE80::4255:39FF:FE89:5284
  Vlan104 00:39:23 off LI

(100::1,FF04::10)
SM UP: 00:23:04 JP: Null(never) Flags:
  RPF: ::
  Vlan104 00:23:04 off LI

(*,FF04::12)
SM UP: 00:23:33 JP: Null(never) Flags:
  RP: 2021::2021
  RPF: Vlan104,FE80::4255:39FF:FE89:6284
  Vlan104 00:23:33 off LI II

(2001::DB8::10:11,FF04::12)
SM RPT UP: 00:23:33 JP: Null(never) Flags:
  RP: 2021::2021
  RPF: Vlan104,FE80::4255:39FF:FE89:6284
  Vlan104 00:23:33 off LD ID

(**,FF45::5)
SM UP: 00:39:27 JP: Null(never) Flags:
  RP: 2021::2021
  RPF: Vlan104,FE80::4255:39FF:FE89:6284
  Vlan104 00:39:27 off LI IP PIM Multicast Topology Table

Entry state: (*/S,G)[RPT/SPT] Protocol Uptime Info
Entry flags: KAT - Keep Alive Timer, AA - Assume Alive, PA - Probe Alive, RA - Really Alive, LH - Last Hop, DSS - Don't Signal Sources, RR - Register Received, SR - Sending Registers, E - MSDP External, DCC - Don't Check Connected
Interface state: Name, Uptime, Fwd, Info
Interface flags: LI - Local Interest, LD - Local Disinterest, II - Internal Interest, ID - Internal Disinterest, LH - Last Hop, AS - Assert, AB - Admin Boundary

(*),**(0::11)
  RP: 51::1:1:2*
  RPF: Tunnel1,51::1:1:2*
  FastEthernet4/10 04:27:50 fwd Join(00:02:48) LI LH
  (47::1:13,FF04::E0:1:1:1)
SM SPT UP: 04:27:20 JP: Join(never) Flags: KAT(00:01:04) AA PA RA SR
  RPF: Vlan47,47::1:1:3*
  FastEthernet4/10 04:27:16 fwd Join(00:03:14)
  Tunnel0 04:27:17 fwd

To display the count of the ranges, (*, G), (S, G) and (S, G) RPT routes in the pim topology tables, use the `show` command described in the following example.
To display the IP multicast group mapping table, use the `show` command described in the following example. It shows group to mode mapping and RP information in case of sparse-mode groups.

```
Router# show ipv6 pim group-map FF0E::E0:1:1:1
```

```
IP PIM Group Mapping Table
(* indicates group mappings being used)
FF00::/8*
 SM, RP: 2021::2021
 RPF: V1104,FE80::4255:39FF:FE89:6284
 Info source: Static
 Uptime: 02:33:31, Groups: 3
```

To display the IPv6 multicast range-lists on a per client (config/autorp/BSR) and per mode (SSM/SM/DM/Bidir) basis, use the `show` command described in the following example.

```
Router# show ipv6 pim range-list
```

```
Static SSM Exp: never Learnt from: ::
 FF33::/32 Up: 02:33:46
 FF34::/32 Up: 02:33:46
 FF35::/32 Up: 02:33:46
 FF36::/32 Up: 02:33:46
 FF37::/32 Up: 02:33:46
 FF38::/32 Up: 02:33:46
 FF39::/32 Up: 02:33:46
 FF3A::/32 Up: 02:33:46
 FF3B::/32 Up: 02:33:46
 FF3C::/32 Up: 02:33:46
 FF3D::/32 Up: 02:33:46
 FF3E::/32 Up: 02:33:46
 FF3F::/32 Up: 02:33:46
Static SM RP: 2021::2021 Exp: never Learnt from: ::
 FF00::/8 Up: 02:33:44
```

To display information about the PIM register encapsulation and decapsulation tunnels, use the `show` command described in the following example.

```
Router# show ipv6 pim tunnel
```

```
Tunnel0*
 Type: PIM Encap
 RP: Embedded RP Tunnel
 Source: 2003::2
Tunnel1*
 Type: PIM Encap
 RP: 2021::2021
 Source: 2003::2
```
To display information about the PIM traffic counters, use the `show` command described in the following example.

```
Router# show ipv6 pim traffic
```

PIM Traffic Counters
Elapsed time since counters cleared: 02:34:35

<table>
<thead>
<tr>
<th>Counters</th>
<th>Received</th>
<th>Sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid PIM Packets</td>
<td>613</td>
<td>629</td>
</tr>
<tr>
<td>Hello</td>
<td>613</td>
<td>622</td>
</tr>
<tr>
<td>Join-Prune</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Data Register</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Null Register</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Register Stop</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Assert</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bidir DF Election</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Errors:
- Malformed Packets 0
- Bad Checksums 0
- Send Errors 0
- Packet Sent on Loopback Errors 0
- Packets Received on PIM-disabled Interface 0
- Packets Received with Unknown PIM Version 0
- Packets drops due to PIM queue limits 0

To display the average Join/Prune aggregation for the last (1000/10000/50000) packets for each interface, use the `show` command described in the following example.

```
Router# show ipv6 pim join-prune statistic
```

PIM Average Join/Prune Aggregation for last (1K/10K/50K) packets

<table>
<thead>
<tr>
<th>Interface</th>
<th>MTU</th>
<th>Transmitted</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan102</td>
<td>1500</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Null0</td>
<td>1500</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>FastEthernet0/0</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/8</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/9</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>G10/10</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>G10/11</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/0</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/1</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/2</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/3</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/4</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/5</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/6</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>GigabitEthernet0/7</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Vlan1</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Port-channel1</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Tunnel0</td>
<td>1452</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Loopback1</td>
<td>1280</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Vlan104</td>
<td>1500</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
<tr>
<td>Tunnel1</td>
<td>1452</td>
<td>0 / 0 / 0</td>
<td>0 / 0 / 0</td>
</tr>
</tbody>
</table>

To display the MRIB table, use the `show` command described in the following example. All entries are created by various clients of MRIB, such as, MLD, PIM and MFIB. The flags on each entry or interface, serve as communication mechanism between various clients of MRIB.
Router# show ipv6 mrib route FF0E::E0:1:1:1

IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain, C - Directly-Connected Check, S - Signal, IA - Inherit Accept, D - Drop
ET - Data Rate Exceeds Threshold, K - Keepalive, DDE - Data Driven Event ME - MoFRR ECMP Flow based, MNE - MoFRR Non-ECMP Flow based, MP - Primary MoFRR Non-ECMP Flow based entry
Interface flags: F - Forward, A - Accept, IC - Internal Copy, NS - Negate Signal, SP - Signal Present, II - Internal Interest, ID - Internal Disinterest, LI - Local Interest, LD - Local Disinterest, MD - mCAC Denied, MI - mLDP Interest A2 - MoFRR ECMP Backup Accept

(*,FF45::5) RPF nbr: FE80::4255:39FF:FE89:6284 Flags: C Vlan104 Flags: A LI

To display the count of the number of routes in the Multicast RIB, use the show command described in the following example.

Router# show ipv6 mrib route summary

MRIB Route-DB Summary
No. of (*,G) routes = 57
No. of (S,G) routes = 3
No. of Route x Interfaces (RxI) = 22

To display information about the various MRIB clients, use the show command described in the following example.

Router# show ipv6 mrib client

IP MRIB client-connections
igmp (0x0):309 (connection id 1)
pim (0x0):342 (connection id 2)
IPv6_mfib(0x1031AFB0):0.358 (connection id 3)

2024#show ipv6 mfib ff45::5

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, ET - Data Rate Exceeds Threshold, K - Keepalive, DDE - Data Driven Event, HW - Hardware Installed
ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB MoFRR Primary, RP - MRIB MoFRR Primary, F - MoFRR Primary
MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client.


Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
I/O Item Counts: Total/PKT Count/PKT Count
Default
(*,FF45::5) Flags: C
SW Forwarding: 0/0/0, Other: 0/0/0
HW Forwarding: 0/0/0, Other: NA/NA/NA
Vlan104 Flags: A
To display information about the IPv6 Multicast Forwarding Information Base, in terms of forwarding entries and interfaces, use the `show` command described in the following example.

```
Router# show ipv6 mfib FF0E::E0:1:1:1
```

IP Multicast Forwarding Information Base
Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, D - Drop
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
IC - Internal Copy, NP - Not platform switched
SP - Signal Present
Interface Counts: FS Pkt Count/PS Pkt Count
(*,FF0E::E0:1:1:1) Flags: C
Forwarding: 0/0/0/0, Other: 0/0/0
Tunnel1 Flags: A NS
FastEthernet4/10 Flags: F NS
Pkts: 0/0
(47::1:1:3,FF0E::E0:1:1:1) Flags:
Forwarding: 9592618/0/182/0, Other: 0/0/0
Vlan47 Flags: A
Tunnel0 Flags: F NS
Pkts: 0/0
FastEthernet4/10 Flags: F NS
Pkts: 0/9592618

To display the general MFIB configuration status and operational status, use the `show` command described in the following example.

```
Router# show ipv6 mfib status
```

IPv6 Multicast Forwarding (MFIB) status:
Configuration Status: enabled
Operational Status: running
Initialization State: Running
Total signalling packets queued: 0
Process Status: may enable - 3 - pid 358
Tables 1/1/0 (active/mrib/io)

To display summary information about the number of IPv6 MFIB entries and interfaces, use the `show` command described in the following example.

```
Router# show ipv6 mfib summary
```

Default
60 prefixes (60/0/0 fwd/non-fwd/deleted)
21 ioitems (21/0/0 fwd/non-fwd/deleted)
Forwarding prefixes: [3 (S,G), 11 (*,G), 46 (*,G/m)]
Table id 0x0, instance 0x1031AFB0
Database: epoch 0

2024#show ipv6 mfib in
2024#show ipv6 mfib int
2024#show ipv6 mfib interface
IPv6 Multicast Forwarding (MFIB) status:
  Configuration Status: enabled
  Operational Status: running
  Initialization State: Running
  Total signalling packets queued: 0
Verifying MLD Snooping

Use the show commands listed below to verify the MLD snooping configuration.

To verify whether IPv6 MLD snooping report suppression is enabled or disabled, use the show command used in the following example:

Router# show ipv6 mld snooping

Global MLD Snooping configuration:
---------------------------------------------
MLD snooping Oper State : Enabled
MLDv2 snooping : Enabled
Listener message suppression : Disabled
EHT DB limit/count : 1000/2
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 3
Last listener query interval : 1000
Check Hop-count=1 : Yes

Vlan 102:
--------
MLD snooping Admin State : Enabled
MLD snooping Oper State : Enabled
MLD immediate leave : Disabled
Explicit host tracking : Enabled
Listener message suppression : Enabled
Robustness variable : 3
Last listener query count : 3
Last listener query interval : 1000
EHT DB limit/count : 100000/0
Check Hop-count=1 : Yes

Vlan 104:
--------
MLD snooping Admin State : Enabled
MLD snooping Oper State : Enabled
MLD immediate leave : Enabled
Explicit host tracking : Enabled
Listener message suppression : Enabled
Robustness variable : 3
Last listener query count : 3
Last listener query interval : 1000
EHT DB limit/count : 100000/2
Check Hop-count=1 : Yes

Vlan 1001:
--------
MLD snooping Admin State : Enabled
MLD snooping Oper State : Enabled
MLD immediate leave : Disabled
Explicit host tracking : Enabled
Listener message suppression : Enabled
Robustness variable : 3
Last listener query count : 3
Last listener query interval : 1000
EHT DB limit/count : 100000/0
Check Hop-count=1 : Yes

To display all or a specified IP Version 6 (IPv6) multicast address information maintained by MLD snooping, use the `show` command described in the following example:

```
Router# show ipv6 mld snooping address
```

Flags: M -- MLD snooping, S -- Static

```
Vlan Group/source Type Version Port List

104 FF34::1 M v2 G10/6 G10/10 Po1 /2006::1 M G10/6 G10/10 Po1
104 FF34::2 M v2 G10/6 G10/10 Po1 /2006::1 M G10/6 G10/10 Po1
104 FF34::3 M v2 G10/6 G10/10 Po1 /2006::1 M G10/6 G10/10 Po1
104 FF02::FB M v2 G10/0
```

To display the number of multicast groups on a router or in a specified VLAN, use the `show` command described in the following example:
Router# **show ipv6 mld snooping address count**

Total number of groups: 4  
Total number of (S,G): 3

To display the MLD snooping membership summary on a router or in a specified VLAN, use the **show** command described in the following example:

**Router# show ipv6 mld snooping membership**

Snnooping Membership Summary for Vlan 104  
------------------------------------------
Total number of channels: 1  
Total number of hosts : 2

<table>
<thead>
<tr>
<th>Source/Group</th>
<th>Interface</th>
<th>Reporter</th>
<th>Uptime</th>
<th>Last-Join/Last-Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006::1/FF34::4</td>
<td>Gi0/1</td>
<td>FE80::4255:39FF:FE89:6284</td>
<td>00:47:22</td>
<td>00:00:11</td>
</tr>
<tr>
<td>2006::1/FF34::4</td>
<td>Gi0/10</td>
<td>FE80::200:4EFF:FE72:F91F</td>
<td>00:47:26</td>
<td>00:00:09</td>
</tr>
</tbody>
</table>

To display the MLD snooping that is dynamically learned and manually configured on the multicast router ports for a router or for a specific multicast VLAN, use the **show** command described in the following example:

**Router# show ipv6 mld snooping mrouter**

Vlan   ports  
---- -----
102    Po1(dynamic)  
104    Gi0/1(dynamic), Gi0/4(static)

To display the configuration and operation information for the MLD snooping configured on a router, use the **show** command described in the following example:

**Router# show ipv6 mld snooping querier**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>IP Address</th>
<th>MLD Version</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>FE80::4255:39FF:FE89:5284</td>
<td>v2</td>
<td>Po1</td>
</tr>
<tr>
<td>104</td>
<td>FE80::4255:39FF:FE89:6284</td>
<td>v2</td>
<td>Gi0/1</td>
</tr>
</tbody>
</table>

To verify a static member port and an IPv6 address, use the **show** command described in the following example:

**Router# show mac-address-table multicast mld-snooping**

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
</table>
To verify if IPv6 MLD snooping is enabled on a VLAN interface, use the `show` command described in the following example:

```
Router# show ipv6 mld snooping mrouter vlan 104
Vlan ports
---- -----
104 Gi0/1(dynamic), Gi0/4(static)
```

To verify if Immediate Leave is enabled on a VLAN interface, use the `show` command described in the following example:

```
Router# show ipv6 mld snooping vlan 104
Global MLD Snooping configuration:

MLD snooping Oper State : Enabled
MLDv2 snooping : Enabled
Listener message suppression : Disabled
EHT DB limit/count : 1000/2
TCN solicit query : Disabled
TCN flood query count : 2
Robustness variable : 3
Last listener query count : 3
Last listener query interval : 1000
Check Hop-count=1 : Yes
Vlan 104:

MLD snooping Admin State : Enabled
MLD snooping Oper State : Enabled
MLD immediate leave : Enabled
Explicit host tracking : Enabled
Listener message suppression : Enabled
Robustness variable : 3
Last listener query count : 3
Last listener query interval : 1000
EHT DB limit/count : 100000/2
Check Hop-count=1 : Yes
Query Interval : 125
Max Response Time : 10000
```

To verify the MLD snooping querier information for a router or for a VLAN, use the `show` command described in the following example:

```
Router# show ipv6 mld snooping querier vlan 102
IP address : FE80::4255:39FF:FE89:5284
MLD version : v2
Port : Gi0/3
Max response time : 10s
Query interval : 125s
Robustness variable : 2
```

### Verifying IPv6 Multicast Routing for VRF Lite

Use the `show` commands listed below to verify IPv6 multicast routing for VRF Lite configuration.
To view information about the interfaces configured for Protocol Independent Multicast (PIM), use the `show ipv6 pim interface` command:

```
Router# show ipv6 pim vrf VPN_B interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>PIM Nbr</th>
<th>Hello DR Count Intvl Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan122 on 1 30 1</td>
<td>Address: FE80::7EAD:74FF:FEDC:E4AC DR : this system</td>
<td></td>
</tr>
<tr>
<td>Vlan123 on 1 30 1</td>
<td>Address: FE80::7EAD:74FF:FEDC:E4AC DR : this system</td>
<td></td>
</tr>
<tr>
<td>Tunnel1 off 0 30 1</td>
<td>Address: FE80::7EAD:74FF:FEDC:E4B0 DR : not elected</td>
<td></td>
</tr>
</tbody>
</table>
```

To view the information in a PIM topology table, use the `show ipv6 mroute` command:

```
Router# show ipv6 mroute vrf VPN_B

Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, I - Received Source Specific Host Report, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, Y - Joined MDT-data group, y - Sending to MDT-data group g - BGP signal originated, G - BGP Signal received, N - BGP Shared-Tree Prune received, n - BGP C-Mroute suppressed, q - BGP Src-Active originated, Q - BGP Src-Active received E - Extranet
Timers: Uptime/Expires
Interface state: Interface, State

(170:1::3, FF36::1), 21:11:23/00:03:23, flags: sT
Incoming interface: Vlan122
RPF nbr: FE80::462B:FF:FE48:DA54
Immediate Outgoing interface list:
Vlan122, Forward, 21:11:23/00:03:23

(170:1::3, FF36::2), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:FF:FE48:DA54
Immediate Outgoing interface list:
Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::3), 21:11:23/00:02:33, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:FF:FE48:DA54
Immediate Outgoing interface list:
Vlan122, Forward, 21:11:23/00:02:33

(170:1::3, FF36::4), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:FF:FE48:DA54
Immediate Outgoing interface list:
Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::5), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:FF:FE48:DA54
Immediate Outgoing interface list:
```
To view the forwarding entries and interfaces in the IPv6 Multicast Forwarding Information Base (MFIB), use the `show ipv6 mfib` command:

```
Router# show ipv6 mfib vrf VPN_B
```

Entry Flags:  
- C - Directly Connected, S - Signal, IA - Inherit A flag,
- ET - Data Rate Exceeds Threshold, K - Keepalive
- DDE - Data Driven Event, HW - Hardware Installed
- ME - MoFRR ECMP entry, MNE - MoFRR Non-ECMP entry, MP - MFIB
- MoFRR Primary, RP - MRIB MoFRR Primary, P - MoFRR Primary
- MS - MoFRR Entry in Sync, MC - MoFRR entry in MoFRR Client.

I/O Item Flags:  
- IC - Internal Copy, NP - Not platform switched,
- NS - Negate Signalling, SP - Signal Present,
- A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
- MA - MFIB Accept, A2 - Accept backup,
- RA2 - MRIB Accept backup, MA2 - MFIB Accept backup

Forwarding Counts:  
Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second

Other counts:  
Total/RPF failed/Other drops

I/O Item Counts:  
FS Pkt Count/PS Pkt Count

```
Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::6), 21:11:23/00:02:33, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:3FF:FE48:DA54
Immediate Outgoing interface list:
 Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::7), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:3FF:FE48:DA54
Immediate Outgoing interface list:
 Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::8), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:3FF:FE48:DA54
Immediate Outgoing interface list:
 Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::9), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:3FF:FE48:DA54
Immediate Outgoing interface list:
 Vlan122, Forward, 21:11:23/00:03:13

(170:1::3, FF36::A), 21:11:23/00:03:13, flags: sT
Incoming interface: Vlan123
RPF nbr: FE80::462B:3FF:FE48:DA54
Immediate Outgoing interface list:
 Vlan122, Forward, 21:11:23/00:03:13
```

Pura-5#
Verifying IPv6 Multicast Routing for VRF Lite

(*,FF12::/16) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF20::/15) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF22::/16) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF30::/15) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF32::/16) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF33::/32) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF34::/32) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF35::/32) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(*,FF36::/32) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0

(170:1::3,FF36::1) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::2) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::3) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::4) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::5) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::6) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::7) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0

(170:1::3,FF36::8) Flags:  
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 955000/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0
(170:1::3,FF36::9) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 95500/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0
(170:1::3,FF36::A) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
HW Forwarding: 95500/12/60/5, Other: NA/NA/NA
Vlan123 Flags: A
Vlan122 Flags: F NS
Pkts: 0/0
(*,FF37::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF38::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF39::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF3A::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF3B::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF3C::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF3D::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF3E::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF3F::/32) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF40::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF42::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF50::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF52::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF60::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF62::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF70::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF72::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF80::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF82::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF90::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FF92::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FFA0::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FFA2::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FFB0::/15) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
(*,FFB2::/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0

Verifying IPv6 Multicast Routing for VRF Lite
Verifying PIM BFD Support

Use the `show` commands listed below to verify PIM BFD support.

To view a line-by-line listing of existing Bidirectional Forwarding Detection (BFD) adjacencies, use the `show bfd neighbors ipv6` command:

```
Router# show bfd neighbors ipv6
IPv6 Sessions
NeighAddr LD/RD RH/RS State Int
FE80::4255:39FF:FE89:5284 4/4 Up Up Vl24
FE80::FE99:47FF:FE37:FBC0 2/4 Up Up Vl101
```

To view all BFD protocol parameters, timers, and clients such as PIM, OSPF, and so on for each neighbor, use the `show bfd neighbors ipv6 details` command:

```
Router# show bfd neighbors ipv6 details
IPv6 Sessions
NeighAddr LD/RD RH/RS State Int
FE80::4255:39FF:FE89:5284 4/4 Up Up Vl24
Session state is UP and not using echo function.
Session Host: Software
OurAddr: FE80::4255:39FF:FE89:6284
Handle: 4
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 110(0), Hello (hits): 50(52910)
Rx Count: 52927, Rx Interval (ms) min/max/avg: 1/56/45 last: 40 ms ago
Tx Count: 52912, Tx Interval (ms) min/max/avg: 1/56/45 last: 12 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: PIM CEF OSPFv3
Template: abc
Authentication(Type/Keychain): md5/chain1
last_tx_auth_seq: 5 last_rx_auth_seq 4
Uptime: 00:40:05
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
C bit: 0
Multiplier: 3 - Length: 48
```
### IPv6 Multicast

#### My Discr.: 4 - Your Discr.: 4
Min tx interval: 50000 - Min rx interval: 50000
Min Echo interval: 0

**IPv6 Sessions**

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State Int</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE80::FE99:47FF:FE37::FBC0</td>
<td>2/4</td>
<td>Up</td>
<td>Up</td>
<td>Vl101</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.

**Session Host:** Software

**OurAddr:** FE80::4255:39FF:FE89:6284

**Handle:** 2

Local Diag: 0, Demand mode: 0, Poll bit: 0

MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3

Received MinRxInt: 50000, Received Multiplier: 3

Holddown (hits): 142(0), Hello (hits): 50(53327)

Rx Count: 53317, Rx Interval (ms) min/max/avg: 1/56/45 last: 8 ms ago

Tx Count: 53330, Tx Interval (ms) min/max/avg: 1/56/46 last: 24 ms ago

Elapsed time watermarks: 0 0 (last: 0)

Registered protocols: PIM CEF OSPFv3

**Template:** abc

Authentication (Type/Keychain): md5/chain1

last_tx_auth_seq: 4 last_rx_auth_seq 5

Uptime: 00:40:24

Last packet: Version: 1 - Diagnostic: 0

State bit: Up - Demand bit: 0

Poll bit: 0 - Final bit: 0

C bit: 0

Multiplier: 3 - Length: 48

My Discr.: 4 - Your Discr.: 2

Min tx interval: 50000 - Min rx interval: 50000

Min Echo interval: 0

---

## Configuration Examples for IPv6 Multicast

### Example: Enabling IPv6 Multicast Routing

The following is a sample configuration of IPv6 Multicast feature on the Router.

```
!
! ipv6 unicast-routing
ipv6 cef
ipv6 multicast-routing
asr901-platf-multicast enable
!
```

### Example: Configuring IPv6 SSM Mapping

The following is a sample configuration of IPv6 SSM mapping on the router.

```
!
! ipv6 mld ssm-map enable
ipv6 mld ssm-map static SSM_MAP_ACL_2 2001:DB8:1::1
ipv6 mld ssm-map query dns
```
Example: Configuring IPv6 MLD Snooping

The following is a sample configuration of IPv6 MLD snooping on a Cisco ASR 901 Router.

```
Building configuration...
!
!
asr901-platf-multicast enable
ip multicast-routing
ipv6 unicast-routing
ipv6 cef
ipv6 mld snooping explicit-tracking limit 1000
ipv6 mld snooping check hop-count
ipv6 mld snooping robustness-variable 3
ipv6 mld snooping last-listener-query-count 6
ipv6 mld snooping last-listener-query-interval 10000
ipv6 mld snooping vlan 104 mrouter interface Gi0/4
ipv6 mld snooping vlan 104 immediate-leave
ipv6 mld snooping vlan 104 static FF45::5 interface Gi0/4
ipv6 mld snooping
ipv6 multicast-routing
!
```

Example: Configuring Rendezvous Point


Example: Configuring IPv6 Multicast Routing for VRF Lite

The following is a sample configuration of IPv6 multicast routing for VRF Lite:

```
Building configuration...
!
!
vrf definition vpe_2
 rd 1.1.1.1:100

 address-family ipv4
 exit-address-family

 address-family ipv6
 exit-address-family


  ```
Example: Configuring BFD PIM on an IPv6 Interface

The following is a sample configuration of BFD PIM on an IPv6 interface:

```plaintext
! Building configuration...
Current configuration : 6679 bytes
!
! Last configuration change at 17:03:42 IST Wed May 21 2014
!
hostname R1
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
clock timezone IST 5 30
ip cef
!
!
!
no ip domain lookup
ip multicast-routing
ipv6 unicast-routing
ipv6 cef
ipv6 mld snooping
ipv6 multicast-routing
!
!
asr901-platf-multicast enable
```
Troubleshooting Tips

Use the following debug commands to enable the debug feature to help troubleshoot the IPv6 Multicast feature on the Cisco ASR 901 Router.

We recommend that you do not use these debug commands without TAC supervision.

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] debug ipv6 mld</td>
<td>Enables debugging MLD protocol activity.</td>
</tr>
<tr>
<td>[no] debug ipv6 mld snooping</td>
<td>Enables debugging IPv6 MLD snooping activity.</td>
</tr>
<tr>
<td>[no] debug ipv6 pim</td>
<td>Enables debugging PIM protocol activity.</td>
</tr>
<tr>
<td>[no] debug ipv6 pim neighbor</td>
<td>Enables debugging for PIM Hello message processing.</td>
</tr>
<tr>
<td>[no] debug ipv6 mrib route</td>
<td>Enables debugging MRIB routing entry related activity.</td>
</tr>
<tr>
<td>[no] debug ipv6 mrib client</td>
<td>Enables debugging MRIB client management activity.</td>
</tr>
<tr>
<td>Command Name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------------------------------------</td>
</tr>
<tr>
<td>[no] debug ipv6 mrib io</td>
<td>Enables debugging MRIB I/O events.</td>
</tr>
<tr>
<td>[no] debug ipv6 mrib table</td>
<td>Enables debugging MRIB table management activity.</td>
</tr>
<tr>
<td>[no] debug platform hardware cef ip multicast</td>
<td></td>
</tr>
<tr>
<td>[no] debug ip pim vrf</td>
<td>Enables debugging for PIM-related events.</td>
</tr>
<tr>
<td>[no] debug ipv6 pim neighbor</td>
<td>Enables debugging on PIM protocol activity.</td>
</tr>
<tr>
<td>[no] debug ipv6 pim bfd</td>
<td>Enables debugging on PIM protocol activity for BFD.</td>
</tr>
<tr>
<td>[no] debug bfd event</td>
<td>Enables debugging messages about BFD. on PIM protocol activity.</td>
</tr>
</tbody>
</table>
Troubleshooting Tips
CHAPTER 41

Configuring Switched Port Analyzer

This feature module describes how to configure a switched port analyzer (SPAN) on the Cisco ASR 901 Router.

- Finding Feature Information, on page 797
- SPAN Limitations and Configuration Guidelines, on page 797
- Understanding SPAN, on page 798
- Additional References, on page 802
- Feature Information for Switched Port Analyzer, on page 803

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

SPAN Limitations and Configuration Guidelines

The following limitations and configuration guidelines apply when configuring SPAN on the Cisco ASR 901 Router:

- Only one SPAN session is supported.
- Only one local SPAN destination interface is supported.
- You cannot configure a local SPAN destination interface to receive ingress traffic.
- Use a network analyzer to monitor interfaces.
- Outgoing CDP and BPDU packets are not replicated.
- Ethernet loopback and Traffic generator are not supported when SPAN is enabled. For egress SPAN, the traffic is mirrored before egress translate translation.
- Egress SPAN is only supported for port and not supported for VLAN, EFP, or Port-Channel interfaces.
- When you specify source interfaces and do not specify a traffic type [Transmit (Tx), Receive (Rx), or Both], both type is used by default.
• Use the no monitor session session_number command with no other parameters to clear the SPAN session number.

Understanding SPAN

The following sections describe SPAN:

Overview

Effective with Cisco IOS Release 15.4(1)S, the Cisco ASR 901 supports Local SPAN. Local SPAN supports a SPAN session entirely within one switch. You can analyze network traffic passing through ports or VLANs by using SPAN to send a copy of the traffic to another port on the switch that has been connected to a network analyzer or other monitoring or security devices. SPAN copies (or mirrors) traffic received or sent (or both) on source ports to a destination port for analysis. SPAN does not affect the switching of network traffic on the source ports, VLANs, or EFPs. You must dedicate the destination port for SPAN use. Except for traffic that is required for the SPAN session, destination ports do not receive or forward traffic.

Only traffic that enters or leaves source ports or traffic that enters or leaves source VLANs or EFPs can be monitored by using SPAN; traffic routed to a source VLAN cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN cannot be monitored; however, traffic that is received on the source VLAN and routed to another VLAN can be monitored. You can use the SPAN destination port to inject traffic from a network security device.

In Figure 40: Example of Local SPAN Configuration, on page 798, all traffic on Ethernet port 5 (the source port) is mirrored on Ethernet port 10. A network analyzer on Ethernet port 10 receives all the network traffic from Ethernet port 5 without being physically attached to Ethernet port 5.

Figure 40: Example of Local SPAN Configuration

SPAN does not affect the switching of network traffic that is received on source ports; a copy of the packets that are received by the source ports is still sent to the destination port.
SPAN Session

A local SPAN session is an association of a destination interface with a set of source interfaces. You configure SPAN sessions using parameters that specify the type of network traffic to monitor. SPAN sessions allow you to monitor traffic on one or more interfaces and to send either ingress traffic, egress traffic, or both to one destination interface. You can configure a SPAN session with separate sets of SPAN source interfaces or VLANs; overlapping sets are not supported.

SPAN sessions do not interfere with the normal operation of the switch. The show monitor session all command displays the operational status of a SPAN session.

A SPAN session remains inactive after system power-up until the destination interface is operational.

Source Interface

A source interface (also called a monitored interface) is an interface monitored for network traffic analysis. A source interface has these characteristics:

- A single VLAN, EFP, or port-channel source per session is supported for ingress.
- A single physical source port is supported for ingress and egress.
- A maximum of five physical ports can be used in a single session for ingress SPAN (Rx).
- When an interface is configured as a destination interface, it cannot be configured as a source interface.

Destination Interface

A destination interface (also called a monitoring interface) is a switched interface to which SPAN sends packets for analysis. You can have only one SPAN destination interface. A destination interface has these restrictions:

- It needs to be a single physical port.
- It cannot be used as an ingress interface.
- When an interface is configured as a destination interface, it cannot be configured as a source interface.

Traffic Types

Ingress SPAN (Rx) copies network traffic received by the source interfaces for analysis at the destination interface. Egress SPAN (Tx) copies network traffic transmitted from the source interfaces. Specifying the configuration option both copies network traffic received and transmitted by the source interfaces to the destination interface.

SPAN Traffic

Network traffic, including multicast, can be monitored using local SPAN. Multicast packet monitoring is enabled by default. In some local SPAN configurations, multiple copies of the same source packet are sent to the local SPAN destination interface. For example, a bidirectional (both ingress and egress) local SPAN session is configured for sources a1 and a2 to a destination interface d1. If a packet enters the switch through a1 and gets switched to a2, both incoming and outgoing packets are sent to destination interface d1; both packets would be the same (unless a Layer-3 rewrite had occurred, in which case the packets would be different).
Configuring SPAN

The following sections describe how to configure SPAN:

Creating a SPAN Session

To create a SPAN session:

SUMMARY STEPS

1. enable
2. configure terminal
3. monitor session {session_number} type local
4. source {interface interface_type slot/port} | {vlan vlan_ID} | {service instance id interface_type slot/port} [, | - | rx | tx | both]
5. {destination {interface interface_type slot/port}
6. no shutdown

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session {session_number} type local</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# monitor session 1 type local</td>
</tr>
<tr>
<td>Step 4</td>
<td>source {interface interface_type slot/port}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-mon-local)# source interface gigabitethernet 0/8</td>
</tr>
<tr>
<td>Step 5</td>
<td>{destination {interface interface_type slot/port}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-mon-local)# destination interface gigabitethernet 0/11</td>
</tr>
</tbody>
</table>
Removing Sources or Destination from a SPAN Session

To remove sources or destination from a SPAN session, use the following commands beginning in executive mode:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `no monitor session type number`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables the privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Clears existing SPAN configuration for a session.</td>
</tr>
<tr>
<td><code>no monitor session type number</code></td>
<td>Router(config)# no monitor session 1</td>
</tr>
</tbody>
</table>

**Configuration Examples for SPAN**

This section shows a sample configuration for local SPAN session on router:

```
monitor session 1 type local
source interface gigabitEthernet tx
destination interface gigabitEthernet
no shut
exit
```
Verifying Local SPAN

The following is sample output from the show monitor session all command.

```
Session 1

Type : Local Session
Status : Admin Enabled
Source Ports :
 TX Only : Gi0/8
Destination Ports : Gi0/11
 Encapsulation : Native
 Ingress: Disabled
```

The following is sample output from the show monitor session all detail command.

```
Session 1

Type : Local Session
Status : Admin Enabled
Description : -
Source Ports :
 RX Only : None
 TX Only : Gi0/8
 Both : None
Source VLANs :
 RX Only : None
 TX Only : None
 Both : None
Source EFPs :
 RX Only : None
 TX Only : None
 Both : None
Source RSPAN VLAN : None
Destination Ports : Gi0/11
 Encapsulation : Native
 Ingress: Disabled
Filter VLANs : None
Dest RSPAN VLAN : None
Source IP Address : None
Source IP VRF : None
Source ERSPAN ID : None
Destination IP Address : None
Destination IP VRF : None
MTU : None
Destination ERSPAN ID : None
Origin IP Address : None
IP QOS PREC : 0
IP TTL : 255
```

Additional References

The following sections provide references to Switched Port Analyzer feature.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Switched Port Analyzer

Table 46: Feature Information for Switched Port Analyzer, on page 804 lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to [http://www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
Table 46: Feature Information for Switched Port Analyzer, on page 804 lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switched Port Analyzer</td>
<td>15.4(1)S</td>
<td>This feature was introduced on the Cisco ASR 901 router. The following sections provide information about this feature:</td>
</tr>
</tbody>
</table>
IP Security

This feature module describes how to configure the Internet Key Exchange (IKE) protocol for basic IP Security (IPsec) Virtual Private Networks (VPNs). IKE is a key management protocol standard that is used in conjunction with the IPsec standard. IPsec is an IP security feature that provides robust authentication and encryption of IP packets.

- Prerequisites for IP Security, on page 805
- Restrictions for IP Security, on page 805
- Information About IP Security, on page 806
- Configuring IP Security, on page 808
- Configuration Examples for IP Security, on page 818
- NAT Traversal, on page 820
- Additional References, on page 826
- Feature Information for IP Security, on page 827

Prerequisites for IP Security

- For the IPsec and NAT/PAT to work on the ASR 901S router a physical loopback connection is required from the management port to any available Gigabit port before issuing the following command in configuration mode:

  platform mgmt loopback interface GigabitEthernet0/4.

  In this case, the physical connection is between the management port and Gigabit port 0/4.

Restrictions for IP Security

- This feature is available only on the new software image named asr901sec-universalk9.mz.
  - Policy-based VPNs are not supported.
  - Only the tunnel mode is supported, and only one tunnel is supported.

  The following features are not supported:
  - Authentication Header (AH) Hash Message Authentication Code (HMAC) with SHA512.
  - QoS on tunnel interface.
  - Combination of ESP as encryption and AH as hashing algorithm.
Information About IP Security

The following features are supported on the from Cisco IOS Release 15.4(2)S onwards.

IKE Security Protocol

The IKE protocol is a key management protocol standard that is used in conjunction with the IPsec standard. IKE enhances IPsec by providing additional features, flexibility, and ease of configuration for the IPsec standard.


Advanced Encryption Standard

Advanced Encryption Standard (AES) is a cryptographic algorithm that protects sensitive, unclassified information. AES offers a large key size and supports variable key lengths—the algorithm can specify a 128-bit key (the default), a 192-bit key, or a 256-bit key.


Triple DES Encryption

Triple DES (3DES) encryption is a strong form of encryption (168-bit) that allows sensitive information to be transmitted over untrusted networks. It enables customers, particularly in the finance industry, to utilize network-layer encryption.

For more information on 3DES Encryption, see the Configuring Internet Key Exchange for IPSec VPNs document at: http://www.cisco.com/en/US/docs/ios_xe/sec_secure_connectivity/configuration/guide/sec_key_exch_ipsec_xe.html

Encrypted Preshared Key

The Encrypted Preshared Key feature enables secure storage of plain text passwords in Type 6 (encrypted) format in NVRAM.

For more information on Encrypted Preshared Key, see the Encrypted Preshared Key document at: http://www.cisco.com/en/US/docs/ios-xml/ios/sec_conn_ikevpn/configuration/xe-3s/sec-encrypt-preshare.html
IKE Modes

IKE has two phases of key negotiation: phase 1 and phase 2. Phase 1 negotiates a security association (a key) between two IKE peers. The key negotiated in phase 1 enables IKE peers to communicate securely in phase 2. During phase 2 negotiation, IKE establishes keys (security associations) for other applications, such as IPsec.

Phase 1 negotiation can occur using main mode or aggressive mode. The main mode protects all information during the negotiation; this means that no information is available to a potential attacker. When main mode is used, the identities of the two IKE peers are hidden. Although this mode of operation is very secure, it is relatively costly in terms of the time it takes to complete the negotiation. Aggressive mode takes less time to negotiate keys between peers; however, it gives up some of the security provided by main mode negotiation. For example, the identities of the two parties trying to establish a security association are exposed to an eavesdropper.

The two modes serve different purposes and have different strengths. The main mode is slower than the aggressive mode, but the main mode is more secure and more flexible because it can offer an IKE peer more security proposals than the aggressive mode.

For more information on IKE modes, see the Configuring Internet Key Exchange for IPSec VPNs document at: http://www.cisco.com/en/US/docs/ios/ios_xe/sec_secure_connectivity/configuration/guide/sec_key_exch_ipsec_xe.html

Supported Components

The following components are supported as part of the IPsec feature:

- IPsec in tunnel mode
- Route-based IP security tunnels
- IKEv2 support - in addition to IKEv1
- Periodic dead peer detection (DPD)
- IKE main mode (including 3 two-way exchanges)
- Pre-Shared Key Exchange mechanism—DH group 1, 2, 5, 14, 15, 16, 19, 20, 21, 24
- Encapsulation Security Payload (ESP) support
- Encryption algorithms—AES (128,192,256), DES, and 3DES
- Authentication algorithms—MD5, SHA-1, and SHA-2
- IP security tunneling for CPU generated traffic for in-band traffic
- IP security tunneling for Layer 3 forwarded traffic
- Static routes
- Coexistence with Layer 2 traffic
- Coexistence with IP multicast
- ToS bytes preservation after encryption and decryption.
- NAT Traversal
Configuring IP Security

The following topology is used for the configurations listed in this document.

![Figure 41: Route-based VPN](image)

Creating a Preshared Key

A preshared key is a secret key previously shared between two routers, using a secure channel, before the key can be used. The key does not require the use of a certificate authority (CA), and is easier to set up in a small network with fewer than ten nodes.

Based on the topology listed above (Route-based IPsec), create a keyring and key for R1. Use the same keyring and key on R5. To create a preshared key, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. crypto keyring keyring-name
4. pre-shared-key address address key key

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>crypto keyring keyring-name</td>
<td>Defines a crypto keyring to be used during IKE authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Creating an ISAKMP Policy

An Internet Security Association and Key Management Protocol (ISAKMP) policy provides configuration of the security and encryption parameters used for the security parameters of the ISAKMP communication channel, such as hashing, encryption, and key length.

To create an ISAKMP policy, complete the following steps:

#### SUMMARY STEPS

1. enable
2. configure terminal
3. crypto isakmp policy *priority*
4. encryption aes 256
5. authentication pre-share
6. group 5
7. hash md5

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> crypto isakmp policy <em>priority</em></td>
<td>Defines an IKE policy and enters config-isakmp configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# crypto isakmp policy 10</td>
<td><em>priority</em>—IKE policy priority.</td>
</tr>
<tr>
<td><strong>Step 4</strong> encryption aes 256</td>
<td>Specifies the encryption algorithm within an IKE policy.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-isakmp)# encryption aes 256</td>
<td></td>
</tr>
</tbody>
</table>

---

**Purpose**

- **keyring-name**—Name of the crypto keyring.
- **address**—IP address of the remote peer.
- **key**—Name of the secret key.

#### Command or Action

Router(config)# crypto keyring VPN

**Step 4** pre-shared-key address *address* key *key*

**Example:**
Router(config-keyring)# pre-shared-key address 172.17.0.5 key AnotherSecretKey
### Purpose

**Command or Action**

**Step 5**

authentication pre-share

*Example:*

`Router(config-isakmp)# authentication pre-share`

Specifies the authentication method within an IKE policy.

**Step 6**

group 5

*Example:*

`Router(config-isakmp)# group 5`

Specifies one or more Diffie-Hellman (DH) group identifiers for use in an IKE policy.

**Step 7**

hash md5

*Example:*

`Router(config-isakmp)# hash md5`

Specifies the hashing algorithm within IKE policy.

---

### Creating an ISAKMP Profile

The ISAKMP profile is an enhancement to ISAKMP configuration. It enables modularity of ISAKMP configuration. The ISAKMP profile is required on both routers (R1 and R5. See the figure in Configuring IPSec section.) to match the peer IP address to the preshared key keyring.

To create an ISAKMP profile, complete the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto isakmp profile profile-name`
4. `keyring keyring-name`
5. `match identity address ip-address`
6. `exit`

**DETAILED STEPS**

**Step 1**

`enable`

*Example:*

```plaintext
Router> enable
```

Enables privileged EXEC mode.

- Enter your password if prompted.

**Step 2**

`configure terminal`

*Example:*

```plaintext
Router# configure terminal
```

Enters global configuration mode.

**Step 3**

`crypto isakmp profile profile-name`

*Example:*

```plaintext
Router(config)# crypto isakmp profile R1_to_R5
```

Defines an ISAKMP profile.

- `profile-name`—Name of the user profile.

**Step 4**

`keyring keyring-name`

*Example:*

```plaintext
Router(config)# keyring keyring-name
```

Configures a keyring with an ISAKMP profile.
Defining an IPsec Transform Set

An IPsec transform set is an acceptable combination of security protocols and algorithms. You should define an IPsec transform set on both the routers (R1 and R5. See the figure in Configuring IPsec section.).

To define an IPsec transform set, complete the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto ipsec transform-set transform-set-name transform1 transform2`
4. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Router&gt; enable</code></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>crypto ipsec transform-set transform-set-name transform1 transform2</code></td>
<td>Defines a transform set, an acceptable combination of security protocols and algorithms.</td>
</tr>
</tbody>
</table>
| **Example:** `Router(config)# crypto ipsec transform-set ESP-AES256-SHA1 esp-aes 256 esp-sha-hmac` | • `transform-set-name`—Name of the transform set to create (or modify).  
• `transform1/transform2`—Type of transform set. You can specify up to four transforms, one AH, one ESP encryption, one ESP authentication, and one |
Creating an IPsec Profile

An IPsec profile serves as a wrapper around one or more transform sets and other parameters used in the construction of an IPsec SA. You should create IPsec profiles on both the routers (R1 and R5. See the figure in Configuring IPsec section.).

To create an IPsec profile, complete the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto ipsec profile profile-name`
4. `set transform-set transform-set-name`
5. `set isakmp-profile profile-name`
6. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router&gt; enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>crypto ipsec profile profile-name</code></td>
<td>Defines the IPsec parameters that are to be used for IPsec encryption between two IPsec routers (See the figure in Configuring IPsec section) and enters IPsec profile configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# crypto ipsec profile Routed_VPN</code></td>
<td>• <code>profile-name</code>—Name of the crypto ipsec profile.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>set transform-set transform-set-name</code></td>
<td>Attaches the desired transform set to IPsec profile.</td>
</tr>
<tr>
<td>Example: <code>Router(ipsec-profile)# set transform-set ESP-AES256-SHA1</code></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 5**

set isakmp-profile *profile-name*

**Example:**

Router(ipsec-profile)# set isakmp-profile R1_to_R5

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attaches the desired ISAKMP profile to IPsec profile.</td>
<td>set isakmp-profile <em>profile-name</em></td>
</tr>
</tbody>
</table>

**Step 6**

exit

**Example:**

Router(ipsec-profile)# exit

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exits ipsec profile configuration mode and enters global configuration mode.</td>
<td>exit</td>
</tr>
</tbody>
</table>

## Creating a VPN Tunnel Interface

A routed tunnel interface on both the routers ((R1 and R5. See the figure in Configuring IPsec section.) acts as logical VPN edge. The tunnel interfaces serve to encapsulate or encrypt egress traffic and decapsulate or decrypt ingress traffic. You should create tunnels on both the routers.

To create a VPN tunnel interface, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. ip address primary-ip-address seconary-ip-address
5. tunnel source ip-address
6. tunnel destination ip-address
7. tunnel mode ipsec ipv4
8. tunnel protection ipsec profile *name*

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface Tunnel0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address primary-ip-address seconary-ip-address</td>
<td>Matches an identity from a peer in an ISAKMP profile.</td>
</tr>
<tr>
<td>Example:</td>
<td><em>ip-address</em>—The ip-address to match.</td>
</tr>
</tbody>
</table>
**Command or Action** | **Purpose**
---|---
Router(config-if)# ip address 192.168.0.1 255.255.255.252 | 

**Step 5**
**tunnel source** *ip-address*
**Example:**
Router(config-if)# tunnel source 172.17.0.1

Sets the source address for a tunnel interface.
- *ip-address*—Source IP address of the packets in the tunnel.

**Step 6**
**tunnel destination** *ip-address*
**Example:**
Router(config-if)# tunnel destination 172.17.0.5

Specifies the destination for a tunnel interface.
- *ip-address*—IP address of the host destination.

**Step 7**
**tunnel mode ipsec ipv4**
**Example:**
Router(config-if)# tunnel mode ipsec ipv4

Sets the encapsulation mode for a tunnel interface.

**Step 8**
**tunnel protection ipsec profile** *name*
**Example:**
Router(config-if)# tunnel protection ipsec profile Routed_VPN

Associates a tunnel interface with an IPsec profile.
- *name*—Name of the IPsec profile.

---

**Configuring Static Routing**

Route-based VPNs cannot automatically discover remote networks that are reachable over the VPN. To communicate this information, you should configure a static route.

To create a static route, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip route *ip-address* mask *interface* *number*
4. ip route *ip-address* mask *interface* *number*
5. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Verifying Static Routing

To display the contents of a routing table, use the `show ip route` commands, as shown in the following example:

```
Router# show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

172.17.0.0/24 is subnetted, 1 subnets
 C 172.17.0.0 is directly connected, GigabitEthernet0/1
 172.16.0.0/24 is subnetted, 1 subnets
 C 172.16.0.0 is directly connected, GigabitEthernet0/0
 10.0.0.0/24 is subnetted, 2 subnets
 S 10.0.3.0 [10/0] via 172.16.0.3
 C 10.0.1.0 is directly connected, Loopback1
 192.168.0.0/30 is subnetted, 1 subnets
 C 192.168.0.0 is directly connected, Tunnel0
 10.0.0.0/24 is subnetted, 1 subnets
 S 10.0.5.0 is directly connected, Tunnel0

To display current IKE SAs, use the `show crypto isakmp sa` command, as shown in the following example:

```
Router# show crypto isakmp sa

IPv4 Crypto ISAKMP SA
dst    src     state   conn-id status
172.17.0.5 172.17.0.1   QM_IDLE  4004 ACTIVE
```
Enabling Dynamic Routing

Route-based VPNs cannot automatically discover remote networks that are reachable over the VPN. To communicate this information, static routers (as mentioned in the section, Configuring Static Routing) or routing protocols can be configured. OSPF is the only protocol currently supported VPNs.

OSPF should be enabled for both the internal LAN interface (which a loopback pretending to be a /24 network) and the tunnel interface. An OSPF adjacency should form between R1 and R5 over the 192.168.0.0/30 network, inside the VPN.

To create a VPN tunnel interface, complete the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip ospf process-id area area-id
5. ip ospf mtu-ignore
6. exit
7. interface type number
8. router ospf process-id area area-id
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface Tunnel0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip ospf process-id area area-id</td>
<td>Enables Open Shortest Path First version 2 (OSPFv2) on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>• process-id—IP address of the host destination.</td>
</tr>
<tr>
<td>Router(config-if)# ip ospf 1 area 0</td>
<td>• area-id—A decimal value in the range from 0 to 4294967295, or an IP address.</td>
</tr>
<tr>
<td>Step 5 ip ospf mtu-ignore</td>
<td>Disables OSPF MTU mismatch detection on receiving database descriptor (DBD) packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip ospf mtu-ignore</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits interface configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface Loopback0</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>router ospf process-id area area-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip ospf 1 area 0</td>
</tr>
<tr>
<td></td>
<td>Enables OSPFv2 on an interface.</td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits interface configuration mode and enters global configuration mode.</td>
</tr>
</tbody>
</table>

Verifying Dynamic Routing

R1 and R5 should learn the LAN prefixes of each other through OSPF, and both networks should be immediately reachable through the VPN tunnel.

R1# show ip route

- Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
 - D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 - NL1 - OSPF NSSA external type 1, NL2 - OSPF NSSA external type 2
 - E1 - OSPF external type 1, E2 - OSPF external type 2
 - I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2
 - IA - IS-IS inter area, * - candidate default, U - per-user static route
 - o - ODR, p - periodic downloaded static route

- Gateway of last resort is not set

172.17.0.0/24 is subnetted, 1 subnets
 - C 172.17.0.0 is directly connected, GigabitEthernet0/1
 - 172.16.0.0/24 is subnetted, 1 subnets

172.16.0.0/24 is directly connected, GigabitEthernet0/0
 - 10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks

- S 10.0.0.0/24 [10/0] via 172.16.0.3

10.0.1.0/24 is directly connected, Loopback1
 - 10.0.5.1/32 [110/1001] via 192.168.0.2, 00:01:29, Tunnel0

192.168.0.0/30 is subnetted, 1 subnets
 - C 192.168.0.0 is directly connected, Tunnel0

R1# ping 10.0.5.1 source 10.0.1.1

- Type escape sequence to abort.
- Sending 5, 100-byte ICMP Echos to 10.0.5.1, timeout is 2 seconds:
- Packet sent with a source address of 10.0.1.1
- !!!!!
- Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms
Configuration Examples for IP Security

Example: Creating a Preshared Key

The following is a sample configuration for creating a preshared key and sharing it on two routers:

Router1

```bash
! crypto keyring VPN
  pre-shared-key address 172.17.0.5 key AnotherSecretKey
!```

**Router5**

```bash
! crypto keyring VPN
 pre-shared-key address 172.17.0.1 key AnotherSecretKey
!```

Example: Creating an ISAKMP Policy

The following is a sample configuration of an ISAKMP policy:

```bash
! crypto isakmp policy 10
  hash md5
  encr aes 256
  authentication pre-share
  group 5
!```

Example: Creating an ISAKMP Profile

The following is a sample configuration of an ISAKMP profile:

**Router1**

```bash
! crypto isakmp profile R1_to_R5
 keyring VPN
 match identity address 172.17.0.5 255.255.255.255
!```

Router5

```bash
! crypto isakmp profile R5_to_R1
  keyring VPN
  match identity address 172.17.0.1 255.255.255.255
!```
Example: Defining an IPsec Transform Set

The following is a sample configuration of an IPsec transform set:

```
! crypto ipsec transform-set ESP-AES256-SHA1 esp-aes 256 esp-sha-hmac
```

Example: Creating an IPsec Profile

The following is a sample configuration of an IPsec profile:

```
! crypto ipsec profile Routed_VPN
 set isakmp-profile R1_to_R5
 set transform-set ESP-AES256-SHA1
```

Example: Creating a VPN Tunnel Interface

The following is a sample configuration of a VPN tunnel interface:

```
Router1

! interface Tunnel0
 ip address 192.168.0.1 255.255.255.252
 tunnel source 172.17.0.1
 tunnel destination 172.17.0.5
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile Routed_VPN

Router5

! interface Tunnel0
 ip address 192.168.0.2 255.255.255.252
 tunnel source 172.17.0.5
 tunnel destination 172.17.0.1
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile Routed_VPN
```

Example: Configuring Static Routing

The following is a sample configuration of static routing:

```
Router1

! ip route 10.0.5.0 255.255.255.0 tunnel0
Example: Enabling Dynamic Routing

The following is a sample configuration of dynamic routing.

R1 and R5
router ospf 1
 interface Loopback1
 ip ospf 1 area 0
 interface Tunnel0
 ip ospf 1 area 0
 ip ospf mtu-ignore

NAT Traversal

The NAT Traversal feature provides support for IP Security (IPsec) traffic to travel through Network Address Translation (NAT) or Port Address Translation (PAT) points in the network. This feature provides this support by addressing many known incompatibilities between NAT and IPsec.

Before the introduction of this feature, a standard IPsec virtual private network (VPN) tunnel would not work if there were one or more NAT or PAT points in the delivery path of the IPsec packet. This feature makes NAT IPsec-aware; thereby, allowing remote access users to build IPsec tunnels to home gateways.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Restrictions for NAT Traversal

NAT Traversal feature has the following restrictions:

- NAT Traversal is only supported for IPv4.
- NAT Traversal supports IPsec end to end connectivity.
- NAT Traversal feature does not affect other feature functionality.
ASR 901S routers do not support volume-based rekey. For interoperability deployments, vendor IPsec peer should also disable the volume-based rekey to prevent IPsec tunnel to flap.

Information About NAT Traversal

Feature Design of IPsec NAT Traversal

The IPsec NAT Transparency feature provides support for IPsec traffic to travel through NAT or PAT points in the network by encapsulating IPsec packets in a User Datagram Protocol (UDP) wrapper, which allows the packets to travel across NAT devices. The following sections define the details of NAT traversal:

- IKE Phase 1 Negotiation NAT Detection, on page 821
- IKE Phase 2 Negotiation NAT Traversal Decision, on page 821
- UDP Encapsulation of IPsec Packets for NAT Traversal, on page 822
- UDP Encapsulated Process for Software Engines Transport Mode and Tunnel Mode ESP Encapsulation, on page 823

IKE Phase 1 Negotiation NAT Detection

During Internet Key Exchange (IKE) phase 1 negotiation, two types of NAT detection occur before IKE Quick Mode begins--NAT support and NAT existence along the network path.

To detect NAT support, you should exchange the vendor identification (ID) string with the remote peer. During Main Mode (MM) 1 and MM 2 of IKE phase 1, the remote peer sends a vendor ID string payload to its peer to indicate that this version supports NAT traversal. Thereafter, NAT existence along the network path can be determined.

Detecting whether NAT exists along the network path allows you to find any NAT device between two peers and the exact location of NAT. A NAT device can translate the private IP address and port to public value (or from public to private). This translation changes the IP address and port if the packet goes through the device. To detect whether a NAT device exists along the network path, the peers should send a payload with hashes of the IP address and port of both the source and destination address from each end. If both ends calculate the hashes and the hashes match, each peer knows that a NAT device does not exist on the network path between them. If the hashes do not match (that is, someone translated the address or port), then each peer needs to perform NAT traversal to get the IPsec packet through the network.

The hashes are sent as a series of NAT discovery (NAT-D) payloads. Each payload contains one hash. If multiple hashes exist, multiple NAT-D payloads are sent. In most environments, there are only two NAT-D payloads--one for the source address and port and one for the destination address and port. The destination NAT-D payload is sent first, followed by the source NAT-D payload, which implies that the receiver should expect to process the local NAT-D payload first and the remote NAT-D payload second. The NAT-D payloads are included in the third and fourth messages in Main Mode and in the second and third messages in Aggressive Mode (AM).

IKE Phase 2 Negotiation NAT Traversal Decision

While IKE phase 1 detects NAT support and NAT existence along the network path, IKE phase 2 decides whether or not the peers at both ends will use NAT traversal. Quick Mode (QM) security association (SA) payload in QM1 and QM2 is used to for NAT traversal negotiation.
Because the NAT device changes the IP address and port number, incompatibilities between NAT and IPsec can be created. Thus, exchanging the original source address bypasses any incompatibilities.

UDP Encapsulation of IPsec Packets for NAT Traversal

In addition to allowing IPsec packets to traverse across NAT devices, UDP encapsulation also addresses many incompatibility issues between IPsec and NAT and PAT. The resolved issues are as follows:

Incompatibility Between IPsec ESP and PAT--Resolved

If PAT finds a legislative IP address and port, it drops the Encapsulating Security Payload (ESP) packet. To prevent this scenario, UDP encapsulation is used to hide the ESP packet behind the UDP header. Thus, PAT treats and processes the ESP packet as a UDP packet.

Incompatibility Between Checksums and NAT--Resolved

In the new UDP header, the checksum value is always assigned to zero. This value prevents an intermediate device from validating the checksum against the packet checksum; thereby, resolving the TCP UDP checksum issue because NAT changes the IP source and destination addresses.

Incompatibility Between Fixed IKE Destination Ports and PAT--Resolved

PAT changes the port address in the new UDP header for translation and leaves the original payload unchanged. To see how UDP encapsulation helps to send IPSec packets, see the figures below.

Figure 42: Standard IPsec Tunnel Through a NAT/PAT Point (No UDP Encapsulation)
UDP Encapsulated Process for Software Engines Transport Mode and Tunnel Mode ESP Encapsulation

After the IPsec packet is encrypted by a hardware accelerator or a software crypto engine, a UDP header and a non-ESP marker (which is 4 bytes in length) are inserted between the original IP header and ESP header. The total length, protocol, and checksum fields are changed to match this modification.

NAT Keepalives

NAT keepalives are enabled to keep the dynamic NAT mapping alive during a connection between two peers. NAT keepalives are UDP packets with an unencrypted payload of 1 byte. Although the current dead peer detection (DPD) implementation is similar to NAT keepalives, there is a slight difference: DPD is used to detect peer status, while NAT keepalives are sent if the IPsec entity did not send or receive the packet at a specified period of time in seconds--valid range is from 5 to 3600.

If NAT keepalives are enabled (through the `crypto isakmp nat keepalive` command), users should ensure that the idle value is shorter than the NAT mapping expiration time, which is 20 seconds.

How to Configure NAT and IPsec

Configuring NAT Traversal

NAT Traversal is a feature that is auto detected by VPN devices. There are no configuration steps for a router running Cisco IOS Release 12.2(13)T. If both VPN devices are NAT-T capable, NAT Traversal is auto detected and auto negotiated.

Disabling NAT Traversal

You may wish to disable NAT traversal if you already know that your network uses IPsec-awareness NAT (spi-matching scheme). To disable NAT traversal, use the following commands:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. no crypto ipsec nat-transparency udp-encapsulation

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables higher privilege levels, such as privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>no crypto ipsec nat-transparency udp-encapsulation</td>
<td>Disables NAT traversal.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# no crypto ipsec nat-transparency udp-encapsulation</td>
</tr>
</tbody>
</table>

Configuring NAT Keepalives

To configure your router to send NAT keepalives, use the following commands:

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto isakmp nat keepalive seconds

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables higher privilege levels, such as privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto isakmp nat keepalive seconds</td>
<td>Allows an IPsec node to send NAT keepalive packets.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• seconds --The number of seconds between keepalive packets; range is from 5 to 3,600.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# crypto isakmp nat keepalive 20</td>
<td>When the timer is modified, it is modified for every Internet Security Association Key Management Protocol (ISAKMP) security association (SA) when the keepalive for that SA is sent based on the existing timer.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
</tbody>
</table>

Verifying IPsec Configuration

To verify your configuration, perform the following optional steps:

SUMMARY STEPS

1. **enable**
2. **show crypto ipsec sa [map map-name | address | identity] [detail**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables higher privilege levels, such as privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>show crypto ipsec sa [map map-name</td>
<td>address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# show crypto ipsec sa</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for IPsec and NAT

NAT Keepalives Configuration Example

The following example shows how to enable NAT keepalives to be sent every 20 seconds:

```
crypto isakmp policy 1
  encryption aes
  authentication pre-share
group 14
crypto isakmp key 1234 address 56.0.0.1
crypto isakmp nat keepalive 20
!`
crypto ipsec transform-set t2 esp-aes esp-sha-hmac
!
crypto map test2 10 ipsec-isakmp
set peer 56.0.0.1
set transform-set t2
match address 101

Additional References

The following sections provide references related to IP Security feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Router Commands</td>
<td></td>
</tr>
<tr>
<td>Internet Key Exchange for IPsec VPNs</td>
<td>Configuring Internet Key Exchange for IPsec VPNs</td>
</tr>
<tr>
<td>Security for VPNs with IPsec</td>
<td>Configuring Security for VPNs with IPsec</td>
</tr>
</tbody>
</table>

Standards

Table 47: Standard

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-IPSEC-FLOW-MONITOR-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td>• CISCO-IPSEC-MIB</td>
<td><a href="http://tools.cisco.com/ITDIT/MIBS/servlet/index">http://tools.cisco.com/ITDIT/MIBS/servlet/index</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

Table 48: Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for IP Security

The following table lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

---

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 49: Feature Information for IP Security

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| IP Security   | 15.4(2)S | This feature was introduced on the Series Routers. The following sections provide information about this feature:  
• Feature Overview  
• Configuring IPsec |
ITU-T G.8032 Ethernet Ring Protection Switching

The ITU-T G.8032 Ethernet Ring Protection Switching feature implements protection switching mechanisms for Ethernet layer ring topologies. This feature uses the G.8032 Ethernet Ring Protection (ERP) protocol, defined in ITU-T G.8032, to provide protection for Ethernet traffic in a ring topology, while ensuring that no loops are within the ring at the Ethernet layer. The loops are prevented by blocking traffic on either a predetermined link or a failed link.

Effective from Cisco IOS Release 15.4 (3) S, the Cisco ASR 901 Router supports G.8032 on port-channel interface.

This chapter provides information about the following topics:

- Finding Feature Information, on page 829
- Prerequisites for Configuring ITU-T G.8032 Ethernet Ring Protection Switching, on page 829
- Restrictions for Configuring ITU-T G.8032 Ethernet Ring Protection Switching, on page 830
- Information About Configuring ITU-T G.8032 Ethernet Ring Protection Switching, on page 830
- How to Configure ITU-T G.8032 Ethernet Ring Protection Switching, on page 838
- Configuration Examples for ITU-T G.8032 Ethernet Ring Protection Switching, on page 847
- Additional References, on page 849
- Feature Information for Configuring ITU-T G.8032 Ethernet Ring Protection Switching, on page 850

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for ITU-T G.8032 Ethernet Ring Protection Switching” section.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring ITU-T G.8032 Ethernet Ring Protection Switching

- The Ethernet Flow Points (EFPs) must be configured.
Restrictions for Configuring ITU-T G.8032 Ethernet Ring Protection Switching

- G.8032 is supported only on EFP bridgedomain on the physical interface and port-channel interface.
- G.8032 is supported only on EFP with dot1q, dot1ad, QinQ, or dot1ad-dot1Q encapsulation type.
- G.8032 is not supported on xconnect interface.
- G.8032 does not support more than two ERP instances per ring.
- CFM hardware offloading is supported on the Cisco ASR 901 Router only from Cisco IOS Release 15.4(3)S.
- Link flap occurs while configuring the inclusion or exclusion VLAN list.
- Admin shut down is highly recommended before making any changes in Connectivity Fault Management (CFM) configuration.
- The `efd notify` command must be used under CFM configuration to notify G.8032 of failures, if any.

Information About Configuring ITU-T G.8032 Ethernet Ring Protection Switching

The following features are supported on the Routers from Cisco IOS Release 15.4(2)S onwards.

G.8032 Overview

The G.8032 provides protection switching mechanisms, and a protocol for Ethernet layer network (ETH) rings. Ethernet rings provide wide-area multipoint connectivity more economically due to their reduced number of links. The mechanisms and protocol provide reliable and stable protection; and prevents loop formation, which could fatally affect network operation and service availability.

You can prevent loops in an Ethernet ring by ensuring that, at any moment, traffic can flow on all but one of the ring links, the Ring Protection Link (RPL), where the link is blocked in the working state. When the system detects a link failure, a Ring Automatic Protection Switching (RAPS) Signal Failure message is multicast to all the nodes, and the failed links end-point ports are blocked. When the RPL owner receives the message, it unblocks the RPL link. This triggers protection switching and a new traffic pattern is established on the ring. The blocked ports are then moved to the nodes next to the failed ones.

Effective from Cisco IOS Release 15.4(3)S, the Router supports G.8032 on port-channel interface and CFM hardware offloading.

The following functions of G.8032 are supported on the Router:

- Sub-second switching
- EFP bridge domain over physical and port-channel interfaces
- Up to six rings per node
• Up to two ERP instances per ring
• Open-ring and closed-ring support
• Open-ring without virtual channel
• G.8032-REP TCN interworking (TCN propagation)
• G.8032-G.8032 TCN interworking—TCN propagation from subring to major ring
• Effective from Cisco IOS Release 15.4 (3) S, the Router supports CFM hardware offloading with CCM interval 100ms, 10ms, and 3.3ms.
• Minimum supported convergence time is 100 ms for a single instance, and 200 ms for multiple instances.

**ITU-T G.8032 Ethernet Ring Protection Switching Functionality**

The Ethernet ring protection functionality includes the following:

• Loop avoidance
  • The use of learning, forwarding, and Filtering Database (FDB) mechanisms

Loop avoidance in an Ethernet ring is achieved by ensuring that, at any time, traffic flows on all but the Ring Protection Link (RPL).

The following is a list of RPL types (or RPL nodes) and their functions:

• RPL owner—Responsible for blocking traffic over the RPL so that no loops are formed in the Ethernet traffic. There can be only one RPL owner in a ring.

• RPL neighbor node—An Ethernet ring node adjacent to the RPL. It is responsible for blocking its end of the RPL under normal conditions. This node type is optional and prevents RPL usage when protected.

• RPL next-neighbornode—Next-neighbornodeisanEthernetringnodeadjacenttoanRPLownernodeorRPLneighbornode. It is mainly used for FDB flush optimization on the ring. This node is also optional.

The following figure illustrates the G.8032 Ethernet ring topology.

*Figure 44: G.8032 Ethernet Ring Topology*
Single-Ring Topology

The following figure shows a 4-node G.8032 single-ring topology. The RPL link is between node A and node D, and when the network works, the RPL link is blocked by the RPL owner node D and RPL neighbor node A.

Figure 45: Single-Ring Topology

Multiple-Rings Topology

The following figure shows two interconnected rings in the multiple-rings topology. Ring ERP1 consists of nodes A, B, C, and D, and the links between these nodes. Ring ERP2 consists of nodes C, D, E, and F, and the links between C-to-F, F-to-E, and E-to-D. Ring ERP2 on its own does not form a closed loop since the link of C-to-D is owned and controlled by ring ERP1. The closed loop for ring ERP2 can be accomplished by introducing an RAPS virtual channel between the interconnected nodes, C and D, of the subring. The RAPS messages of ring ERP2 are encapsulated and transmitted over this virtual channel. If the RAPS virtual channel is not used to close the subring, the RAPS messages are terminated at the interconnected nodes. The blocked ports on all the nodes in the ring block only the data traffic, not the RAPS messages to prevent segmentation of the RAPS channel for a nonvirtual channel ring implementation.
R-APS Control Messages

Nodes on the ring use control messages called Ring Automatic Protection Switching (R-APS) messages to coordinate the activities of switching the ring protection link (RPL) on and off. Any failure along the ring triggers a R-APS Signal Failure (R-APS SF) message in both directions of the nodes adjacent to the failed link, after the nodes have blocked the port facing the failed link. On obtaining this message, the RPL owner unblocks the RPL port.

---

**Note**

A single link failure in the ring ensures a loop-free topology.
CFM Protocols and Link Failures

Connectivity Fault Management (CFM) and link status messages are used to detect ring link failure and node failure. During the recovery phase, when the failed link is restored, the nodes adjacent to the restored link send RAPS No Request (RAPS-NR) messages. On obtaining this message, the RPL owner blocks the RPL port and sends a RAPS-NR or RAPS Root Blocked (RAPS-RB) message. These messages cause all other nodes, except the RPL owner in the ring, to unblock all the blocked ports. The Ethernet Ring Protection (ERP) protocol works for both unidirectional failure and multiple link failure scenarios in a ring topology.

When CFM monitoring is configured, note the following points:

- Static remote MEP (RMEP) checking should be enabled.
- The MEPs should be configured to enable Ethernet fault detection.

Note

The G.8032 ERP protocol uses CFM Continuity Check Messages (CCMs) at an interval of 3.3 ms. At this interval (which is supported only on selected platforms), SONET-like switching time performance and loop-free traffic can be achieved.

Note

For G.8032 with Connectivity Fault Management (CFM) hardware offload, the CFM VLANs must be included in the exclusion VLANs list to avoid the down state of G.8032 rings.

G.8032 Ring-Supported Commands and Functionality

A G.8032 ring supports these basic operator administrative commands:

- Force switch (FS)—Allows the operator to forcefully block a particular ring port. Note the following points about FS commands:
  - Effective even if there is an existing SF condition
  - Multiple FS commands for ring are supported
  - May be used to allow immediate maintenance operations

- Manual switch (MS)—Allows the operator to manually block a particular ring port. Note the following points about MS commands:
  - Ineffective in an existing FS or signal failure (SF) condition
  - Overridden by new FS or SF conditions
  - Multiple MS commands cancel all MS commands

- Clear— Cancels an existing FS or MS command on the ring port. The Clear command is used at the ring protection link (RPL) owner to clear a nonrevertive mode condition.

A G.8032 ring can support multiple instances. An instance is a logical ring running over a physical ring. Such instances are used for various reasons, such as load-balancing VLANs over a ring. For example, odd-numbered
VLANs may go in one direction of the ring, and even-numbered VLANs may go in the other direction. Specific VLANs can be configured under only one instance. They cannot overlap multiple instances. Otherwise, data traffic or Ring Automatic Protection Switching (R-APS) messages may cross logical rings, which is not desirable.

G.8032 ERP Timers

The G.8032 Ethernet Ring Protection (ERP) protocol specifies the use of different timers to avoid race conditions and unnecessary switching operations:

- Delay timers—Used by the Ring Protection Link (RPL) owner to verify that the network has stabilized before blocking the RPL. Note the following points about delay timers.
  - After a signal failure (SF) condition, a Wait-to-Restore (WTR) timer is used to verify that the SF is not intermittent.
  - The WTR timer can be configured by the operator. The default time interval is 5 minutes; the time interval ranges from 1 to 12 minutes.
  - After a force switch (FS) or a manual switch (MS) command is issued, a Wait-to-Block (WTB) timer is used to verify that no background condition exists.

  Note The WTB timer interval may be shorter than the WTR timer interval.

- Guard timer—Used by all nodes when changing state; the guard timer blocks latent outdated messages from causing unnecessary state changes. The guard timer can be configured. The default time interval is 500 ms; the time interval ranges from 10 to 2000 ms.

- Hold-off timers—Used by the underlying Ethernet layer to filter out intermittent link faults. The hold-off timer can be configured. The default time interval is 0 seconds; the time interval ranges from 0 to 10 seconds. Faults are reported to the ring protection mechanism only if this timer expires.

Protection Switching Functionality in a Single Link Failure and Recovery

The following figure illustrates protection switching functionality in a single-link failure.

The figure represents an Ethernet ring topology consisting of seven Ethernet ring nodes. The ring protection link (RPL) is the ring link between Ethernet ring nodes A and G. In this topology, both ends of the RPL are blocked. Ethernet ring node G is the RPL owner node, and Ethernet ring node A is the RPL neighbor node.
The following sequence describes the steps followed in the single-link failure:

1. A link operates in the normal condition.
2. A failure occurs.
3. Ethernet ring nodes C and D detect a local signal failure (SF) condition and after the hold-off time interval, block the failed ring port and perform the FDB flush.
4. Ethernet ring nodes C and D start sending Ring Automatic Protection Switching (R-APS) SF messages periodically along with the (node ID and bidirectional path-protected ring (BPR) identifier pair) on both ring ports while the SF condition persists.
5. All Ethernet ring nodes receiving an R-APS SF message perform the FDB flush. When the RPL owner node G and RPL neighbor node A receive an R-APS SF message, the Ethernet ring node unblocks its end of the RPL and performs the FDB flush.
6. All Ethernet ring nodes receiving a second R-APS SF message perform the FDB flush again; the additional FDB flush is because of the node ID and BPR-based configuration.
7. R-APS SF messages are detected on the Ethernet Ring indicating a stable SF condition. Further R-APS SF messages trigger no further action.

The following figure illustrates the steps taken in a revertive operation in a single-link failure.
The following sequence describes the steps followed in the single-link failure revertive (recovery) operation:

1. A link operates in the stable SF condition.

2. Recovery of link failure occurs.

3. Ethernet ring nodes C and D detect clearing of the SF condition, start the guard timer, and initiate periodic transmission of the R-APS No Request (NR) messages on both ring ports. (The guard timer prevents the reception of R-APS messages.)

4. When the Ethernet ring nodes receive an R-APS NR message, the node ID and BPR identifier pair of a receiving ring port is deleted and the RPL owner node starts the Wait-to-Restore (WTR) timer.

5. When the guard timer expires on Ethernet ring nodes C and D, the nodes may accept the new R-APS messages, if any. Ethernet ring node D receives an R-APS NR message with a higher node ID from Ethernet ring node C, and unblocks its nonfailed ring port.

6. When the WTR timer expires, the RPL owner node blocks its end of the RPL, sends R-APS (NR or route blocked [RB]) message with the (node ID and BPR identifier pair), and performs the FDB flush.

7. When Ethernet ring node C receives an R-APS (NR or RB) message, the node removes the block on its blocked ring ports, and stops sending R-APS NR messages. On the other hand, when the RPL neighbor node A receives an R-APS NR or RB message, the node blocks its end of the RPL. In addition, Ethernet ring nodes A to F perform the FDB flush when receiving an RAPS NR or RB message because of the node ID and BPR-based configuration.
# How to Configure ITU-T G.8032 Ethernet Ring Protection Switching

## Configuring the Ethernet Ring Profile

To configure an Ethernet ring profile, complete the following steps.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet ring g8032 profile profile-name`
4. `timer{guard seconds|hold-off seconds|wtr minutes}`
5. `non-revertive`
6. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** configure terminal | Enters global configuration mode. |
| Example:                     |         |
| Router# configure terminal   |         |

| **Step 3** ethernet ring g8032 profile profile-name | Creates the Ethernet ring profile and enters the Ethernet ring profile configuration mode. |
| Example:                                            |         |
| Router(config)# ethernet ring g8032 profile profile1 |         |

| **Step 4** timer{guard seconds|hold-off seconds|wtr minutes} | Specifies the time interval for the guard, hold-off, and Wait-to-Restore (WTR) timers. |
| Example:                                               |         |
| Router(config-erp-profile)# timer hold-off 5          |         |

| **Step 5** non-revertive | Specifies a nonrevertive Ethernet ring instance. By default, Ethernet ring instances are revertive. |
| Example:                 |         |
| Router(config-erp-profile)# non-revertive             |         |
Configuring an Ethernet Protection Ring

To configure an Ethernet Protection Ring (EPR), complete the following steps.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ethernet ring g8032 ring-name
4. port0 interface type number
5. monitor service instance instance-id
6. exit
7. port1 {interface type number | none}
8. monitor service instance instance-id
9. exit
10. exclusion-list vlan-ids vlan-id
11. open-ring
12. instance instance-id
13. description descriptive-name
14. profile profile-name
15. rpl {port0 | port1} { owner | neighbor | next-neighbor}
16. inclusion-list vlan-ids vlan-id
17. aps-channel
18. level level-value
19. port0 service instance instance-id
20. port1 service instance instance-id
21. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 3**

ethernet ring g8032 ring-name  
*Example:*
Router(config)# ethernet ring g8032 ring1  

Creates the Ethernet ring and enters the Ethernet ring port configuration mode.

**Step 4**

port0 interface type number  
*Example:*
Router(config-erp-ring)# port0 interface gigabitethernet 0/1  

Connects port0 of the local node to the Ethernet ring and enters Ethernet ring protection mode.

**Step 5**

monitor service instance instance-id  
*Example:*
Router(config-erp-ring-port)# monitor service instance 1  

(Optional) Assigns the Ethernet service instance to monitor the ring port (port0) and detect ring failures.

If this command is used, the service instance should be configured with CFM sessions. In such a scenario, CFM session failures, if any, will be tracked as G.8032 link failures.

*Note*  
We recommend that you use this command in microwave links where signal degradation will not be identified as physical link failures.

If this command is not used, G.8032 will track only the physical link failures.

**Step 6**

exit  
*Example:*
Router(config-erp-ring-port)# exit  

Exits the Ethernet ring port configuration mode.

**Step 7**

port1 {interface type number | none}  
*Example:*
Router(config-erp-ring)# port1 interface gigabitethernet 0/1  

Connects port1 of the local node to the Ethernet ring and enters the Ethernet ring protection mode.

**Step 8**

monitor service instance instance-id  
*Example:*
Router(config-erp-ring-port)# monitor service instance 2  

(Optional) Assigns the Ethernet service instance to monitor the ring port (port1) and detect ring failures.

If this command is used, the service instance should be configured with CFM sessions. In such a scenario, CFM session failures, if any, will be tracked as G.8032 link failures.

*Note*  
We recommend that you use this command in microwave links where signal degradation will not be identified as physical link failures.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
<td>If this command is not used, G.8032 will track only the physical link failures.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits Ethernet ring port configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-ring-port)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>(Optional) Specifies VLANs that are unprotected (unblocked) by the Ethernet ring protection mechanism.</td>
</tr>
<tr>
<td>exclusion-list vlan-ids vlan-id</td>
<td>If the command is not used, VLANS that are not defined in the inclusion list in Step 16 will be completely blocked for the traffic.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>If the command is used, VLANS that are not defined in the inclusion list and exclusion list will be completely blocked for the traffic.</td>
</tr>
<tr>
<td>Router(config-erp-ring)# exclusion-list vlan-ids 2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>(Optional) Specifies the Ethernet ring as an open ring.</td>
</tr>
<tr>
<td>open-ring</td>
<td>By default, Ethernet ring is closed.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-ring)# open-ring</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>Configures the Ethernet ring instance and enters the Ethernet ring instance configuration mode.</td>
</tr>
<tr>
<td>instance instance-id</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-ring)# instance 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>Specifies a descriptive name for the Ethernet ring instance.</td>
</tr>
<tr>
<td>description descriptive-name</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-inst)# description cisco_customer_instance</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td>Specifies the profile associated with the Ethernet ring instance configured in Step 12.</td>
</tr>
<tr>
<td>profile profile-name</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-inst)# profile profile1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong></td>
<td>Specifies the Ethernet ring port on the local node as the RPL owner, neighbor, or next neighbor.</td>
</tr>
<tr>
<td>rpl {port0</td>
<td>port1 } { owner</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-inst)# rpl port0 neighbor</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td>Specifies the VLANS that are protected by the Ethernet ring protection mechanism.</td>
</tr>
<tr>
<td>inclusion-list vlan-ids vlan-id</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-erp-inst)# inclusion-list vlan-ids 11</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Topology Change Notification Propagation

To configure topology change notification (TCN) propagation, complete the following steps.

#### SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. `ethernettcn-propogation G8032 to {REP | G8032}`
4. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
</tbody>
</table>

---

### Configuring Ethernet Ring Protection Switching

#### Purpose
Command or Action

**Step 17**

Enter the Ethernet ring instance `aps-channel` configuration mode.

Example:

Router(config-erp-inst)# `aps-channel`

**Step 18**

Specify the Automatic Protection Switching (APS) message level for the node on the Ethernet ring.

Example:

Router(config-erp-inst-aps)# `level 5`

All the nodes in the Ethernet ring must be configured at the same level. The default level is 7.

**Step 19**

Associates APS channel information with port 0.

Example:

Router(config-erp-inst-aps)# `port0 service instance instance-id`

**Step 20**

Associates APS channel information with port 1.

Example:

Router(config-erp-inst-aps)# `port1 service instance instance-id`

**Step 21**

Returns to privileged EXEC mode.

Example:

Router(config-erp-inst-aps)# `end`
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ethernet tcn-propogation G8032 to {REP</td>
<td>G8032}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config)# ethernet tcn-propagation G8032 to G8032</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Verifying Ethernet Ring Protection Configuration

#### Verifying ERP Switching Configuration

To verify an ERP switching configuration, use the `show ethernet ring g8032 configuration` command, as shown in this example:

*Router# show ethernet ring g8032 configuration*

```
Ethernet ring erp
Port0: Port-channel5 (Monitor: Service Instance 5)
Port1: Port-channel6 (Monitor: Service Instance 6)
Exclusion-list VLAN IDs: 5-6
Open-ring: no
Instance 1
 Description: ERP_FOR_VLANS_1000-1299
 Profile: erp
 RPL: port0 RPL Owner
 Inclusion-list VLAN IDs: 1000-1299
 APS channel
 Level: 6
 Port0: Service Instance 1000
 Port1: Service Instance 1000
 State: configuration resolved
Instance 2
 Description: ERP_FOR_VLANS_1500-1799
 Profile: erp
 RPL: Inclusion-list VLAN IDs: 1500-1799
 APS channel
 Level: 5
 Port0: Service Instance 1500
 Port1: Service Instance 1500
 State: configuration resolved
<cr>
```
**Verifying Functional State of a Ring**

To verify a brief description of the functional state of the ERP instance, use the `show ethernet ring g8032 brief [ring-name] [instance [instance-id]]` command, as shown in this example:

```
Router# show ethernet ring g8032 brief erp instance 1
R: Interface is the RPL-link
F: Interface is faulty
B: Interface is blocked
FS: Local forced switch
MS: Local manual switch

<table>
<thead>
<tr>
<th>RingName</th>
<th>Inst</th>
<th>NodeName</th>
<th>NodeState</th>
<th>Port0</th>
<th>Port1</th>
</tr>
</thead>
<tbody>
<tr>
<td>erp</td>
<td>1</td>
<td>Owner</td>
<td>Idle</td>
<td>R,B</td>
<td></td>
</tr>
</tbody>
</table>
```

**Verifying Ring Status**

To verify the status summary of a ring, use the `show ethernet ring g8032 status [ring-name] [instance [instance-id]]` command, as shown in this example:

```
Router# show ethernet ring g8032 status erp instance 1
Ethernet ring erp instance 1 is RPL Owner node in Idle State
Port0: Port-channel5 (Monitor: Service Instance 5)
 APS-Channel: Port-channel5
 Status: RPL, blocked
 Remote R-APS NodeId: 0000.0000.0000, BPR: 0
Port1: Port-channel6 (Monitor: Service Instance 6)
 APS-Channel: Port-channel6
 Status: Non-RPL
 Remote R-APS NodeId: 0000.0000.0000, BPR: 0
 APS Level: 6
 Profile: erp
 WTR interval: 1 minutes
 Guard interval: 2000 milliseconds
 HoldOffTimer: 0 seconds
 Revertive mode
```

**Verifying Ring Summary**

To view the summary of the number of ERP instances in each state of the ERP switching process, use the `show ethernet ring g8032 summary` command, as shown in this example:

```
Router# show ethernet ring g8032 summary
Chassis Node Id: 4403.a70c.4e98

States

Init 0
Idle 2
Protection 0
Manual Switch 0
Forced Switch 0
Pending 0

Total 2
```
Verifying Events and Messages in a Ring

To verify the number of events and R-APS messages received for an ERP instance, use the `show ethernet ring g8032 statistics` command, as shown in this example:

Router# `show ethernet ring g8032 statistics erp instance 1`
Statistics for Ethernet ring erp instance 1
Local SF detected:
  Port0: 1
  Port1: 0
FOP PM detected:
  Port0: 0
  Port1: 0
R-APS Port0(Tx/Rx) Port1(Tx/Rx)
  Last Tx time Last Rx time
  Last Rx time Last Rx time
--------------------------------------------------------------------------------
NR : 6/14 6/13
  Wed May 14 15:46:44.391 Wed May 14 15:46:44.391
  Wed May 14 15:47:42.699 Wed May 14 15:47:42.699
NR,RB : 157/0 157/0
  Wed May 14 16:00:34.391 Wed May 14 16:00:34.391
  Never Never
SF : 5/4 5/2
  Wed May 14 15:46:40.043 Wed May 14 15:46:40.043
  Wed May 14 15:46:44.639 Wed May 14 15:46:45.503
MS : 0/0 0/0
  Never Never
FS : 0/0 0/0
  Never Never
EVENT : 0/0 0/0
  Never Never
  Never Never
State Last entry into state time
--------------------------------------------------------------------------------
Init : Wed May 14 15:46:29.903
Idle : Wed May 14 15:47:44.391
Protection : Wed May 14 15:46:30.039
Manual Switch : Never
Forced Switch : Never
Pending : Wed May 14 15:46:44.391

Router# `show ethernet ring g8032 statistics erp instance 2`
Statistics for Ethernet ring erp instance 2
Local SF detected:
  Port0: 1
  Port1: 0
FOP PM detected:
  Port0: 0
  Port1: 0
R-APS Port0(Tx/Rx) Port1(Tx/Rx)
  Last Tx time Last Rx time
  Last Rx time Last Rx time
--------------------------------------------------------------------------------
NR : 6/14 6/13
  Wed May 14 15:46:44.395 Wed May 14 15:46:44.395
  Wed May 14 15:47:42.699 Wed May 14 15:47:42.699
NR,RB : 0/155 0/3
  Wed May 14 15:47:42.699 Wed May 14 15:47:42.699
Verifying Port Status of a Ring

To verify the Ethernet ring port status information for the interface, use the `show ethernet ring g8032 port status interface [type number]` command, as shown in this example:

```
Router# show ethernet ring g8032 port status interface po5
Port: Port-channel5
 Ring: erp
 Block vlan list: 1-4,7-1499,1800-4095
 Unblock vlan list: 5-6,1500-1799
 REQ/ACK: 0/0
 Instance 1 is in Blocked state
 Instance 2 is in Unblocked state
```

Verifying ERP Profile Settings

To verify the settings for one or more ERP profiles, use the `show ethernet ring g8032 profile [profile-name]` command, as shown in this example:

```
Router# show ethernet ring g8032 profile erp
Ethernet ring profile name: erp
 WTR interval: 1 minutes
 Guard interval: 2000 milliseconds
 HoldOffTimer: 0 seconds
 Revertive mode
```

Troubleshooting Tips

The following table lists the troubleshooting tips for Configuring the ITU-T G.8032 Ethernet Ring Protection feature.
We recommend that you do not use these debug commands without TAC supervision.

Table 50: Troubleshooting Tips for G.8032 ERP Configuration

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] debug ethernet ring g8032 all</td>
<td>Enables debugging all Ethernet Ring Protocol (ERP) messages.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 errors</td>
<td>Enables debugging ERP errors.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 events</td>
<td>Enables debugging ERP events.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 fsm</td>
<td>Enables debugging Finite State Machine (FSM) state changes for ERP instances</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 ha</td>
<td>Enables debugging ERP high availability (HA) features.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 packets</td>
<td>Enables debugging ERP packets.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 parser</td>
<td>Enables debugging ERP messages related to G.8032 parser.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 timing</td>
<td>Enables debugging timing of ERP events.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 memmgr</td>
<td>Enables debugging G.8032 memory manager messages.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 cfgmgr</td>
<td>Enables debugging G.8032 configuration manager messages.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 ctrlmgr</td>
<td>Enables debugging G.8032 control manager messages.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 instmgr</td>
<td>Enables debugging G.8032 instance manager messages.</td>
</tr>
<tr>
<td>[no] debug ethernet ring g8032 pseudo-preemption</td>
<td>Enables debugging G.8032 pseudo-preemption messages.</td>
</tr>
</tbody>
</table>

Configuration Examples for ITU-T G.8032 Ethernet Ring Protection Switching

Example: Configuration for Ethernet Ring Protection

The following is a sample ERP switching configuration:
Example: Configuration for Ethernet Ring Protection

Owner:

```
! ethernet ring g8032 profile closed_ring
timer wtr 1
timer guard 2000
ethernet ring g8032 pp_closed
port0 interface GigabitEthernet0/9
 monitor service instance 1
port1 interface GigabitEthernet0/10
 monitor service instance 5
instance 1
 profile closed_ring
 rpl port0 owner
 inclusion-list vlan-ids 1-10
 aps-channel
 level 5
 port0 service instance 10
 port1 service instance 10
!
!
Router# show run | sec cfm
asr901-platf-multi-nni-cfm
ethernet cfm ieee
ethernet cfm global
ethernet cfm domain closed_ring1 level 4
 service closed_ring1 evc closed_ring1 vlan 1 direction down
 continuity-check
 continuity-check interval 1s
 efd notify g8032
ethernet cfm domain closed_ring5 level 4
 service closed_ring5 evc closed_ring5 vlan 5 direction down
 continuity-check
 continuity-check interval 1s
 efd notify g8032
!
!
Neighbor:

Router# show run | sec ring
ethernet ring g8032 profile closed_ring
timer wtr 1
timer guard 2000
ethernet ring g8032 closed_ring
port0 interface GigabitEthernet0/9
 monitor service instance 5
port1 interface GigabitEthernet0/6
 monitor service instance 4
instance 1
 profile closed_ring
 rpl port0 neighbor
 inclusion-list vlan-ids 1-10
 aps-channel
 level 5
 port0 service instance 10
 port1 service instance 10
!
```
Additional References

The following sections provide references related to the Configuring ITU-T G.8032 Ethernet Ring Protection feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Command Reference</td>
<td>Cisco ASR 901 Series Aggregation Services Router Command Reference</td>
</tr>
<tr>
<td></td>
<td>Cisco ASR 901S Series Aggregation Services Router Command Reference</td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
Feature Information for Configuring ITU-T G.8032 Ethernet Ring Protection Switching

The following table lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 51: Feature Information for Configuring ITU-T G.8032 Ethernet Ring Protection Switching

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring ITU-T G.8032 Ethernet Ring Protection Switching</td>
<td>15.4(2)S</td>
<td>This feature was introduced on the Routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• G.8032 Overview, on page 830</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How to Configure ITU-T G.8032 Ethernet Ring Protection Switching, on page 838</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuration Examples for ITU-T G.8032 Ethernet Ring Protection Switching, on page 847</td>
</tr>
<tr>
<td>Psuedo Preemption Support</td>
<td>15.4(3)S</td>
<td>This feature was introduced on the Routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• G.8032 Overview, on page 830</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• How to Configure ITU-T G.8032 Ethernet Ring Protection Switching, on page 838</td>
</tr>
</tbody>
</table>
### Feature Information

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM Filtering Hardware Offload Support</td>
<td>15.4(3)S</td>
<td>This feature was introduced on the Routers. The following section provides information about this feature:</td>
</tr>
</tbody>
</table>

- G.8032 Overview, on page 830
CHAPTER 44

Configuring NAT for IP Address Conservation

This module describes how to configure Network Address Translation (NAT) for IP address conservation and how to configure the inside and outside source addresses. This module also provides information about the benefits of configuring NAT for IP address conservation.

NAT enables private IP internetworks that use nonregistered IP addresses to connect to the Internet. NAT operates on a device, usually connecting two networks, and translates the private (not globally unique) addresses in the internal network into legal addresses before packets are forwarded to the corresponding network.

NAT can be configured to advertise to the outside world only one address for the entire network. This provides additional security by effectively hiding the entire internal network behind that one address.

NAT is also used at the enterprise edge to allow internal users access to the Internet and to allow Internet access to internal devices such as mail servers.

- Finding Feature Information, on page 853
- Prerequisites for Configuring NAT for IP Address Conservation, on page 854
- Restrictions for Configuring NAT for IP Address Conservation, on page 854
- Information About Configuring NAT for IP Address Conservation, on page 854
- How to Configure NAT for IP Address Conservation, on page 857
- Configuration Examples for NAT for IP Address Conservation, on page 865
- Additional References, on page 866
- Feature Information for Configuring NAT for IP Address Conservation, on page 867

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for NAT” section.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Configuring NAT for IP Address Conservation

- This feature is supported only on the following PIDsof the Cisco ASR 901 Router: A901-6CZ-FS-D and A901-6CZ-FS-A.

Restrictions for Configuring NAT for IP Address Conservation

The following limitations and configuration guidelines apply when configuring NAT on the Cisco ASR 901 Router:

- NAT-T is not supported.
- Dynamic NAT with pools in the same network as on the NAT interfaces.
- Port channel for NAT and Port Address Translation (PAT) are not supported.
- Simple Network Management Protocol (SNMP) MIB is not supported for NAT.
- Dynamic NAT with Extended ACL is not supported.
- This feature is available only on the new software image named asr901sec-universalk9.mz. (This feature is not available on the standalone software image named asr901-universalk9.mz. If you use asr901sec-universalk9.mz in an unsupported Cisco ASR 901 PID, the router issues a warning message and loads the software with basic features.)
- Maximum bidirectional throughput supported for ESP-NAT traffic is 250 Mbps.
- TCP-NAT traffic with frame size greater than 1496 is not supported.

Note

Throughput is low with fragmentation (around 300 Kbps).

Information About Configuring NAT for IP Address Conservation

The following features are supported on the Cisco ASR 901 Routers from Cisco IOS Release 15.4(2)S onwards.

Overview

You can translate IP addresses into globally unique IP addresses when communicating outside your network. You can configure static or dynamic inside-source address translation as follows:

- Static translation establishes a one-to-one mapping between an inside local address and an inside global address. Static translation is useful when a host on the inside has to be accessed by a fixed address from the outside.
- Dynamic translation establishes mapping between an inside local address and a pool of global addresses.
The following figure shows the translation of a source address inside a network to a source address outside the network.

![Diagram showing IP address translation](image)

You can conserve addresses in the inside global address pool by allowing a device to use one global address for many local addresses. This type of Network Address Translation (NAT) configuration is called overloading. When overloading is configured, the device maintains enough information from higher-level protocols (for example, TCP or UDP port numbers) to translate the global address back to the correct local address. When multiple local addresses map to one global address, the TCP or UDP port numbers of each inside host distinguish between local addresses.

**How NAT Works**

A device that is configured with NAT will have at least one interface to the inside network and one to the outside network. In a typical environment, NAT is configured at the exit device between a stub domain and the backbone. When a packet leaves the domain, NAT translates the locally significant source address into a globally unique address. When a packet enters the domain, NAT translates the globally unique destination address into a local address. If more than one exit point exists, each NAT must have the same translation table.

If NAT cannot allocate an address because it has run out of addresses, it drops the packet and sends an Internet Control Message Protocol (ICMP) host unreachable packet to the destination.

**Types of NAT**

NAT operates on a router—generally connecting only two networks—and translates the private (inside local) addresses within the internal network into public (inside global) addresses before packets are forwarded to another network. This functionality gives you the option to configure NAT such that it will advertise only a single address for your entire network to the outside world. Doing this effectively hides the internal network from the world, giving you additional security.

The types of NAT include:

- **Static address translation (static NAT)**—Allows one-to-one mapping between local and global addresses.
- **Dynamic address translation (dynamic NAT)**—Maps unregistered IP addresses to registered IP addresses from a pool of registered IP addresses.
- **Overloading**—Maps multiple unregistered IP addresses to a single registered IP address (many to one) using different ports. This method is also known as PAT. By using overloading, thousands of users can be connected to the Internet by using only one real global IP address.
NAT Inside and Outside Addresses

The term inside in NAT context refers to networks owned by an organization, and which must be translated. When NAT is configured, hosts within this network will have addresses in one space (known as the local address space) that will appear to those outside the network as being in another space (known as the global address space).

Similarly, the term outside refers to those networks to which the stub network connects, and which are generally not under the control of an organization. Hosts in outside networks can also be subject to translation, and can thus have local and global addresses.

NAT uses the following definitions:

- **Inside local address**—An IP address that is assigned to a host on the inside network. The address is probably not a valid IP address assigned by the Network Information Center (NIC) or service provider.
- **Inside global address**—A valid IP address (assigned by the NIC or service provider) that represents one or more inside local IP addresses to the outside world.
- **Outside local address**—The IP address of an outside host as it appears to the inside network. Not necessarily a valid address, it is allocated from the address space that is routable on the inside.
- **Outside global address**—The IP address assigned to a host on the outside network by the owner of the host. The address is allocated from a globally routable address or network space.

Static IP Address Support

A public wireless LAN provides users of mobile computing devices with wireless connections to a public network, such as the Internet.

The NAT Static IP Address Support feature extends the capabilities of public wireless LAN providers to support users configured with a static IP address. By configuring a device to support users with a static IP address, public wireless LAN providers extend their services to a greater number of users.

Users with static IP addresses can use services of the public wireless LAN provider without changing their IP address. NAT entries are created for static IP clients, and a routable address is provided.

Supported Components

The following components are supported as part of the NAT feature:

- Static NAT and PAT
- Dynamic NAT and PAT with overload
- NAT and PAT support for Layer 3-forwarded traffic.
- Maximum number of inside and outside addresses is 10.
- Coexistence with Layer 2 and Layer 3 traffic
How to Configure NAT for IP Address Conservation

The tasks described in this section configure NAT for IP address conservation. You must configure at least one of the tasks described in this section. Based on your configuration, you may have to configure more than one task.

Configuring an Inside Source Address

Inside source addresses can be configured for static or dynamic translations. Based on your requirements, you can configure either static or dynamic translations.

Note
You must configure different IP addresses for an interface on which NAT is configured and for inside addresses that are configured, by using the `ip nat inside source static` command.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip_address mask
5. ip nat inside
6. exit
7. interface type number
8. ip address ip_address mask
9. ip nat outside
10. ip nat inside source static ilocal-ip global-ip
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface customer 10</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip address ip_address mask</td>
<td>Sets a primary IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip address 10.10.10.1 255.255.255.0</td>
<td></td>
</tr>
</tbody>
</table>

| Step 5 | ip nat inside | Connects the interface to the inside network, which is subject to NAT. |
| Example: | Router(config-if)# ip nat inside | |

| Step 6 | exit | Exits interface configuration mode and returns to global configuration mode. |
| Example: | Router(config-if)# exit | |

| Step 7 | interface type number | Specifies an interface type and number, and enters interface configuration mode. |
| Example: | Router(config)# interface vlan 40 | |

| Step 8 | ip address ip_address mask | Sets a primary IP address for an interface. |
| Example: | Router(config-if)# ip address 40.40.40.1 255.255.255.0 | |

| Step 9 | ip nat outside | Connects the interface to the outside network. |
| Example: | Router(config-if)# ip nat outside | |

| Step 10 | ip nat inside source static local-ip global-ip | Establishes static translation between an inside local address and an inside global address. |
| Example: | Router(config)# ip nat inside source static 10.10.10.2 40.40.40.1 | |

| Step 11 | end | Exits interface configuration mode and returns to privileged EXEC mode. |
| Example: | Router(config)# end | |

**Configuring Dynamic Translation of Inside Source Addresses Without Overload**

Dynamic translation establishes a mapping between an inside local addresses and a pool of global addresses. Dynamic translation is useful when multiple users on a private network have to access the Internet. The dynamically configured pool IP address can be used as required, and is released for use by other users when access to the Internet is no longer required.
Cisco ASR 901 Router does not differentiate between the dynamic translation with overload and dynamic translation without overload. By default, overloading is considered if translation exceeds the given pool.

Note
When inside global or outside local addresses belong to a directly connected subnet on a NAT device, the device adds IP aliases for them so that it can answer Address Resolution Protocol (ARP) requests. However, a situation where the device answers packets that are not destined for it, possibly causing a security issue, may arise. This may happen when an incoming Internet Control Message Protocol (ICMP) packet or a UDP packet that is destined for one of the alias addresses does not have a corresponding NAT translation in the NAT table, and the device itself runs a corresponding service, for example, Network Time Protocol (NTP). Such a situation might cause minor security risks.

Summary Steps

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask
5. ip nat inside
6. exit
7. interface type number
8. ip address ip-address mask
9. ip nat outside
10. exit
11. ip nat pool name start-ip end-ip {netmask netmask | prefix-length prefix-length}
12. access-list access-list-number permit source [source-wildcard]
13. ip nat inside source list access-list-number pool name
14. end

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface vlan 10</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>ip address <em>ip-address</em> mask</td>
<td>Sets a primary IP address for the interface.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-if)# ip address 10.10.10.1 255.255.255.0
```

| Step 5 | ip nat inside | Connects the interface to the inside network, that is subject to NAT. |

**Example:**

```
Router(config-if)# ip nat inside
```

| Step 6 | exit | Exits interface configuration mode and returns to the global configuration mode. |

**Example:**

```
Router(config-if)# exit
```

| Step 7 | interface *type* number | Specifies an interface type and number, and enters interface configuration mode. |

**Example:**

```
Router(config)# interface vlan 40
```

| Step 8 | ip address *ip-address* mask | Sets a primary IP address for the interface. |

**Example:**

```
Router(config-if)# ip address 40.40.40.1 255.255.255.0
```

| Step 9 | ip nat outside | Connects the interface to the outside network. |

**Example:**

```
Router(config-if)# ip nat outside
```

| Step 10 | exit | Exits interface configuration mode and returns to global configuration mode. |

**Example:**

```
Router(config-if)# exit
```

| Step 11 | ip nat pool name *start-ip* end-ip {netmask netmask | prefix-length prefix-length} | Defines a pool of global addresses to be allocated as required. |

**Example:**

```
Router(config)# ip nat pool net-208 50.50.50.1 50.50.50.10
netmask 255.255.255.0
```

| Step 12 | access-list access-list-number permit source [source-wildcard] | Defines a standard access list permitting those addresses that are to be translated. |

**Example:**

```
Router(config)# access-list 1
permit 10.10.10.2 0.0.0.0
```

| Step 13 | ip nat inside source list access-list-number pool *name* | Establishes dynamic source translation, specifying the access list defined in Step 12. |

**Example:**

```
Router(config)# ip nat inside source list access-list-number pool name
```
Configuring Dynamic Translation of Inside Source Addresses with Overload

You can conserve addresses in the inside global address pool by allowing a device to use one global address for many local addresses. This type of NAT configuration is called overloading. When overloading is configured, the device maintains enough information from higher-level protocols (for example, TCP or UDP port numbers) to translate the global address back to the correct local address. When multiple local addresses map to one global address, the TCP or UDP port numbers of each inside host distinguish between local addresses.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask
5. ip nat inside
6. exit
7. interface type number
8. ip address ip-address mask
9. ip nat outside
10. exit
11. ip nat pool name start-ip end-ip {netmask netmask | prefix-length prefix-length}
12. access-list access-list-number permit source [source-wildcard]
13. ip nat inside source list access-list-number pool name overload
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>Enter password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>3</td>
<td><code>interface type number</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface vlan 10</code></td>
</tr>
<tr>
<td>4</td>
<td><code>ip address ip-address mask</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip address</code></td>
</tr>
<tr>
<td></td>
<td>10.10.10.1 255.255.255.0</td>
</tr>
<tr>
<td>5</td>
<td><code>ip nat inside</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip nat inside</code></td>
</tr>
<tr>
<td>6</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# exit</code></td>
</tr>
<tr>
<td>7</td>
<td><code>interface type number</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface vlan 40</code></td>
</tr>
<tr>
<td>8</td>
<td><code>ip address ip-address mask</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip address</code></td>
</tr>
<tr>
<td></td>
<td>40.40.40.1 255.255.255.0</td>
</tr>
<tr>
<td>9</td>
<td><code>ip nat outside</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip nat outside</code></td>
</tr>
<tr>
<td>10</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# exit</code></td>
</tr>
<tr>
<td>11</td>
<td>`ip nat pool name start-ip end-ip {netmask netmask</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ip nat pool</code></td>
</tr>
<tr>
<td></td>
<td>net-208 50.50.50.1 50.50.50.10 netmask 255.255.255.0</td>
</tr>
<tr>
<td>12</td>
<td><code>access-list access-list-number permit source</code></td>
</tr>
<tr>
<td></td>
<td><code>[source-wildcard]</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# access-list 1</code></td>
</tr>
<tr>
<td></td>
<td>permit 10.10.10.2 0.0.0.0</td>
</tr>
</tbody>
</table>
To configure a static PAT, complete the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask
5. ip nat inside
6. exit
7. interface type number
8. ip address ip-address mask
9. ip nat outside
10. exit
11. ip nat outside source static tcp local-ip local-port global-ip global-port
12. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
configure terminal	
Example: Router# configure terminal	

<p>| <strong>Step 3</strong> | Specifies an interface type and number, and enters interface configuration mode. |
| interface type number | |
| Example: Router(config)# interface vlan 10 | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** | ip address *ip-address mask*  
*Example:*  
Router(config-if)# ip address  
10.10.10.1 255.255.255.0 |
| Sets a primary IP address for an interface. |
| **Step 5** | ip nat inside  
*Example:*  
Router(config-if)# ip nat inside |
| Connects the interface to the inside network, that is subject to NAT. |
| **Step 6** | exit  
*Example:*  
Router(config-if)# exit |
| Exits interface configuration mode and returns to global configuration mode. |
| **Step 7** | interface *type number*  
*Example:*  
Router(config)# interface vlan 40 |
| Specifies an interface type and number, and enters interface configuration mode. |
| **Step 8** | ip address *ip-address mask*  
*Example:*  
Router(config-if)# ip address  
40.40.40.1 255.255.255.0 |
| Sets a primary IP address for an interface. |
| **Step 9** | ip nat outside  
*Example:*  
Router(config-if)# ip nat outside |
| Connects the interface to the outside network. |
| **Step 10** | exit  
*Example:*  
Router(config-if)# exit |
| Exits interface configuration mode and returns to global configuration mode. |
| **Step 11** | ip nat outside source static tcp *local-ip local-port*  
*global-ip global-port*  
*Example:*  
Router(config)# ip nat outside source  
static tcp 10.10.10.2 23 40.40.40.10 2023 |
| Establishes static translation for outside network. Also, enables the use of Telnet to the device from the outside. |
| **Step 12** | end  
*Example:*  
Router(config)# end |
| Exits interface configuration mode and returns to privileged EXEC mode. |

---

**Verifying Configuration of NAT for IP Address Conservation**

To verify the NAT configuration, use the `show ip nat translation` command:

Router# show ip nat translation  
SNAT: Proto udp Inside local ip is 10.10.10.2 Inside global ip 40.40.40.10 input 1146 output
Configuration Examples for NAT for IP Address Conservation

Example: Configuring Inside Source Address

The following is a sample configuration of static NAT:

```plaintext
interface vlan10
ip address 10.10.10.1 255.255.255.0
ip nat inside

int vlan40
ip address 40.40.40.1 255.255.255.0
ip nat outside
ip nat inside source static 10.10.10.2 40.40.40.1
ip nat inside source static 192.168.1.2 40.40.40.2
```

Example: Configuring Dynamic Translation of Inside Source Addresses Without Overload

The following is a sample configuration of dynamic NAT without overload:

```plaintext
interface vlan10
ip address 10.10.10.1 255.255.255.0
ip nat inside
interface vlan192
ip address 192.168.0.1 255.255.255.0
ip nat inside
interface vlan40
ip address 40.40.40.1 255.255.255.0
ip nat outside
ip nat pool no-overload 50.50.50.10 50.50.50.10 netmask 255.255.255.0
access-list 7 permit 10.10.10.0 0.0.0.255
ip nat inside source list 7 pool no-overload
```

Example: Configuring Dynamic Translation of Inside Source Addresses with Overload

The following is a sample configuration of dynamic NAT with overload:

```plaintext
interface vlan10
ip address 10.10.10.1 255.255.255.0
ip nat inside
interface vlan192
ip address 192.168.0.1 255.255.255.0
ip nat inside
interface vlan40
ip address 40.40.40.1 255.255.255.0
ip nat outside
ip nat pool overload 50.50.50.10 50.50.50.10 netmask 255.255.255.0
access-list 7 permit 10.10.10.0 0.0.0.255
ip nat inside source list 7 pool overload
```
Example: Configuring Static PAT

The following is a sample configuration of static PAT:

```
interface vlan10
ip address 10.10.10.1 255.255.255.0
ip nat inside
interface vlan192
ip address 192.168.0.1 255.255.255.0
ip nat inside
interface vlan40
ip address 40.40.40.1 255.255.255.0
ip nat outside
ip nat inside source static tcp 10.10.10.2 23 40.40.40.1 2323
```

Additional References

The following sections provide references related to Configuring NAT for IP Address Conservation feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco ASR 901 Command Reference</td>
<td>Cisco ASR 901 Series Aggregation Services Router Command Reference</td>
</tr>
<tr>
<td>Cisco IOS Interface and Hardware Component Commands</td>
<td>Cisco IOS Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Configuring NAT for IP Address Conservation

The following table lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 52: Feature Information for NAT

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring NAT for IP Address Conservation</td>
<td>15.4(2)S</td>
<td>This feature was introduced on the Cisco ASR 901 Routers.</td>
</tr>
</tbody>
</table>
Auto-IP

In ring topology, when a device is inserted into the ring, the neighboring node interfaces require manual reconfiguration. The auto-IP feature addresses the problem of manually reconfiguring nodes during insertion, deletion, and movement of nodes within the ring. The auto-IP feature automatically provides IP addresses to the nodes inserted into the ring. For information on how to configure Auto-IP, see the IPv4 Addressing Configuration Guide, Cisco IOS XE Release 15.3(3)S.

The Auto-IP feature is supported on the Cisco ASR 901 series routers with the following restrictions:

- Auto-IP configuration is not supported on the switch virtual interface (SVI) associated with a port channel.
- Manual intervention is mandatory for inserting and deleting nodes because auto-IP is configured on the SVI.
- Auto-IP configuration is not supported for routers that are connected by a switch. It is supported only for directly connected routers.
- Auto-IP-Ring configuration needs to be removed manually on the SVI before defaulting or removing the SVI.
CHAPTER 46

Configuring the Wi-Fi Management Interface

This chapter describes how to configure the Wi-Fi management interface on the ASR 901S Series Aggregation Services Router.

The Wi-Fi management interface is used to connect safely and securely to the ASR 901S router, which is deployed on lamp posts and walls. This interface allows authorized field technicians to connect remotely to the installed router to monitor and debug the device and modify the image or the configuration, if needed.

Note

The Wi-Fi management interface is supported on the Cisco ASR 901S routers from Cisco IOS 15.4(3)S onwards.

- Configuring the Wi-Fi Management Interface, on page 871
- Restrictions for the Wi-Fi Management Interface, on page 872
- Information About the Wi-Fi Management Interface, on page 872
- Configuring the Wi-Fi Management Interface, on page 872
- Verifying Wi-Fi Management Interface Configurations, on page 880
- Additional References, on page 885
- Feature Information for the Wi-Fi Management Interface, on page 885

Configuring the Wi-Fi Management Interface

This chapter describes how to configure the Wi-Fi management interface on the ASR 901S Series Aggregation Services Router.

The Wi-Fi management interface is used to connect safely and securely to the ASR 901S router, which is deployed on lamp posts and walls. This interface allows authorized field technicians to connect remotely to the installed router to monitor and debug the device and modify the image or the configuration, if needed.

Note

The Wi-Fi management interface is supported on the Cisco ASR 901S routers from Cisco IOS 15.4(3)S onwards.
Restrictions for the Wi-Fi Management Interface

- Allows a maximum of two stations.
- Disallows traffic received from one station to be routed to another station.
- Disallows open system authentication.
- Supports only WPA2 PSK authentication mode.

Information About the Wi-Fi Management Interface

The Wi-Fi management interface on the ASR 901S router is based on IEEE 802.11b standards. An IP address is assigned to the Wi-Fi management interface and the router can provide the same subnet IP to the connected station based on these conditions: if the Wi-Fi management interface is configured as a DHCP relay agent and a DHCP server is connected with another Gigabit Ethernet interface of the router. The ASR 901S router receives IP traffic only from authenticated stations. Authorized stations can connect to the ASR 901S router and access the router CLI (user authentication is assumed). The router configuration can be modified using telnet/ssh over the Wi-Fi management interface.

To implement the Wi-Fi management interface, the ASR 901S router must be configured in the access point (AP) mode. Each ASR 901S router should be configured as an AP with a unique SSID. A station (STA) mode Wi-Fi capable device may be used to connect to the ASR 901S router via the air interface. For convenient debugging, all ASR 901S routers can be configured with a unique SSID derived from MAC address or serial number of the Wi-Fi interface. The presence of the ASR 901S router can be identified by checking the outgoing beacons from the router.

The ASR 901S router supports these authentication types: WPA2 pre-shared key and WPA2-Enterprise. In the Cisco IOS Release 15.4(3)S, only the Wi-Fi Protected Access II (WPA2) pre-shared key (PSK) mode is supported. The minimum length of a WPA2 pre-shared key should be 8 characters and a maximum of 63 characters.

The router can be configured to turn on the Wi-Fi interface as an 'always-on' feature or to be turned on when the backhaul connectivity is down. When the backhaul connectivity is down, the authentication of the station occurs over WPA-PSK. When the backhaul is up, then the authentication can be configured between either of WPA-PSK or WPA-Enterprise.

Note
In the Cisco IOS Release 15.4(3)S, the Wi-Fi interface is always enabled irrespective of backhaul connectivity.

Configuring the Wi-Fi Management Interface

- Enabling the Wi-Fi Interface, on page 873 (required)
- Assigning an IP Address, on page 874 (required)
- Configuring the WPA2 PSK, on page 876 (required)
- Configuring Virtual Access Point, on page 877 (required)
Enabling the Wi-Fi Interface

SUMMARY STEPS

1. `enable`
2. `show ip interface brief`
3. `show run interface dot0/0`
4. `configure terminal`
5. `interface dot11radio slot/port`
6. `no shut`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable`          | Enables privileged EXEC mode.  
• Enter your password if prompted. |
|        | **Example:**      |         |
|        | `Router> enable`  |         |
|        | **Example:**      |         |
|        | `Router# show ip interface brief` | Displays brief details of all the interfaces on the router. |
|        | **Example:**      |         |
|        | `Interface Status    IP-Address OK? Method Protocol   
GigabitEthernet0/0 up unassigned YES NVRAM  
GigabitEthernet0/1 up unassigned YES NVRAM  
GigabitEthernet0/2 down unassigned YES NVRAM  
GigabitEthernet0/3 up unassigned YES NVRAM  
GigabitEthernet0/4 down unassigned YES NVRAM  
GigabitEthernet0/5 up unassigned YES NVRAM  
Dot11Radio0/0 administratively down unassigned YES unset  
FastEthernet0/0 up 10.78.100.182 YES NVRAM  
Vlan1 down unassigned YES NVRAM |         |
|        | `Router# show run interface dot0/0` | Displays details of the Wi-Fi (radio) interface. The Wi-Fi (radio) interface is shut down by default. |
|        | **Example:**      |         |
|        | `Router# show run interface dot0/0` |         |
|        | `Building configuration...` |         |
|        | `Current configuration : 56 bytes !` |         |
### Configuring the Wi-Fi Management Interface

#### Assigning an IP Address

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface dot11Radio0/0</code>&lt;br&gt;<code>no ip address</code>&lt;br&gt;<code>shutdown</code>&lt;br&gt;<code>end</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> configure terminal&lt;br&gt;&lt;br&gt;&lt;b&gt;Example:&lt;/b&gt; <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>interface dot11radio slot/port</code>&lt;br&gt;&lt;br&gt;&lt;b&gt;Example:&lt;/b&gt; <code>Router# interface dot11radio 0/0</code></td>
<td>Enters interface configuration mode for the Wi-Fi (radio) interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong> <code>no shut</code>&lt;br&gt;&lt;br&gt;&lt;b&gt;Example:&lt;/b&gt; <code>Router(config-if)# no shut</code>&lt;br&gt;<code>Jun 17 16:32:25.918: %LINK-3-UPDOWN: Interface Dot11Radio0/0, changed state to up</code>&lt;br&gt;<code>Jun 17 16:32:26.918: %LINEPROTO-5-UPDOWN: Line protocol on Interface Dot11Radio0/0, changed state to up</code></td>
<td>Enables the Wi-Fi (radio) interface by changing the status from 'down' to 'up'. The <code>shut</code> command can be used to shut down the Wi-Fi interface.</td>
</tr>
<tr>
<td><strong>Step 7</strong> <code>end</code>&lt;br&gt;&lt;br&gt;&lt;b&gt;Example:&lt;/b&gt; <code>Router(config-if)# end</code></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>

**What to do next**

- To assign the IP address for the Wi-Fi management interface, see Assigning an IP Address, on page 874.
- To verify the Wi-Fi interface configuration details, see Verifying Wi-Fi Management Interface Configurations, on page 880.

### Assigning an IP Address

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface dot11radio slot/port`
4. `ip address ip address mask`
5. `end`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface dot11radio slot/port</td>
<td>Enters the interface configuration mode for the Wi-Fi (radio) interface.</td>
</tr>
<tr>
<td>Example: Router# interface dot11radio 0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip address mask</td>
<td>Assigns the IP address and mask for the Wi-Fi (radio) interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip address 2.2.2.2 255.255.0.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

### What to do next
- To configure the WPA2 PSK, see Configuring the WPA2 PSK, on page 876.
- To verify the assigned IP address, see Verifying IP Address, on page 875.

### Verifying IP Address

To verify the IP address assigned to the Wi-Fi interface, use the `show ip interface brief` command.

```
Router# show ip int br
Interface IP-Address OK? Method Status Protocol
GigabitEthernet0/0 unassigned YES NVRAM down down
GigabitEthernet0/1 unassigned YES NVRAM down down
GigabitEthernet0/2 unassigned YES NVRAM down down
GigabitEthernet0/3 unassigned YES NVRAM down down
GigabitEthernet0/4 unassigned YES NVRAM up up
GigabitEthernet0/5 unassigned YES NVRAM up up
Dot11Radio0/0 5.5.5.1 YES manual up up
FastEthernet0/0 10.106.148.1 YES NVRAM up up
Vlan1 unassigned YES NVRAM down down
Vlan1000 70.0.0.2 YES NVRAM up up
Router#
```
# Configuring the WPA2 PSK

## SUMMARY STEPS

1. enable  
2. configure terminal  
3. interface dot11radio slot/port  
4. wpa2 psk password  
5. end

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
Example:  
Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.  
Example:  
Router# configure terminal |
| **Step 3** interface dot11radio slot/port | Enters the interface configuration mode for the Wi-Fi (radio) interface.  
Example:  
Router# interface dot11radio 0/0 |
| **Step 4** wpa2 psk password | Assigns the WiFi Protected Access II (WPA2), Pre-Shared Key (PSK) for the Wi-Fi (radio) interface.  
Example:  
Router(config-if)# wpa2 psk adminuser1 |
| **Step 5** end | Exits configuration mode.  
Example:  
Router(config-if)# end |

### Note

The minimum length of a WPA2 pre-shared key should be 8 characters and a maximum of 63 characters. Using the no form of this command does not disable the WPA2 PSK configuration unless the VAP configuration is disabled first.

---

**What to do next**

To configure the router as a virtual access point, see Configuring Virtual Access Point, on page 877.
# Configuring Virtual Access Point

**Before you begin**

WPA2 PSK must be configured before configuring the Virtual Access Point (VAP).

## SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface dot11radio slot/port`
4. `vap ap wpa2 psk password [ssid] [channel channel number] [broadcast]`
5. `end`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>interface dot11radio slot/port</code></td>
<td>Enters the interface configuration mode for the Wi-Fi (radio) interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# interface dot11radio 0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>vap ap wpa2 psk password [ssid] [channel channel number] [broadcast]</code></td>
<td>Configures the Wi-Fi (radio) interface as a virtual access point (AP) using the WPA2 PSK, broadcasts the specified SSID to stations that access the Wi-Fi interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# vap ap adminuser1 cisco 5 broadcast</td>
<td><strong>Note</strong> • The default SSID configuration is hidden if the broadcast keyword is not specified. • The channel can be configured from 1 to 14 for any country. However, if the configured channel is not supported for a country, the country channel reverts to channel 1. This is reflected in the &quot;show dot11radio vap&quot; command output as &quot;Configured&quot; and &quot;InUse&quot; fields.</td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>end</code></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
What to do next

- To configure the country code for the Wi-Fi management interface, see Configuring the Country Code, on page 878.
- To verify the VAP configuration, see Verifying the VAP Configuration, on page 878.

Verifying the VAP Configuration

To verify the virtual access point (VAP) configuration, use the `show dot11radio vap` command.

```
Router# show dot11radio vap
vap status : running
channel : 5[inUse],5[configured]
ssid : ssid[broadcast]
beacon-period : 100
auth-type : WPA2 PSK
max stations : 1
wifi-interface : non-routable
country : JAPAN

Router#
```

Configuring the Country Code

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface dot11radio slot/port`
4. `world-mode dot11d [country-code [country code]]`
5. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

  - `enable`
  
  **Example:**
  
  `Router> enable`

| **Step 2**

  - `configure terminal`
  
  **Example:**
  
  `Router# configure terminal`

| **Step 3**

  - `interface dot11radio slot/port`
  
  **Example:**
  
  `Router# interface dot11radio 0/0`

Enables privileged EXEC mode.

- Enter your password if prompted.

Enters global configuration mode.

Enters the interface configuration mode for the Wi-Fi (radio) interface.
### Configuring the Wi-Fi Management Interface

#### Purpose
Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>world-mode dot11d [country-code [country code]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# world-mode dot11d country-code JP</td>
</tr>
</tbody>
</table>

Purpose
Enables 802.11d world mode operation. The default country code is US. To check the country code options, use the `show dot11 country-code` command.

Note
Using the `no` command reverts the specified country code to the default country-code, that is, US.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>

Exits configuration mode.

### What to do next

To verify the country code options available for the Wi-Fi management interface, see **Verifying the Country Code**, on page 879.

### Verifying the Country Code

To verify the available country codes for the Wi-Fi interface, use the `show dot11radio country-codes` command.

```
Router# show dot11radio country-codes
code country
AL ALBANIA
DZ ALGERIA
AR ARGENTINA
AM ARMENIA
AW ARUBA
AU AUSTRALIA
AT AUSTRIA
AZ AZERBAIJAN
BS BAHAMAS
BH BAHRAIN
BD BANGLADESH
BB BARBADOS
BY BELARUS
BE BELGIUM
BZ BELIZE
BM BERMUDA
BO BOLIVIA
BA BOSNIA AND HERZEGOVINA
BR BRAZIL
BN BRUNEI DARUSSALAM
BG BULGARIA
KH CAMBODIA
CA CANADA
CL CHILE
CN CHINA
CO COLOMBIA
CR COSTA RICA
...
UG UGANDA
UA UKRAINE
UG UGANDA
AE UNITED ARAB EMIRATES
```

---

**Cisco ASR 901S Series Aggregation Services Router Software Configuration Guide**

OL-30498-03

879
Verifying Wi-Fi Management Interface Configurations

The following CLIs display the Wi-Fi management interface configurations.

**Sample Output for the show interface dot11radio 0/0 command**

Router# show interface dot11radio0/0
Dot11Radio0/0 is up, line protocol is up
    Hardware is WiFi, address is 0022.3300.0003 (bia 0022.3300.0003)
    Internet address is 5.5.5.1/16
    MTU 1500 bytes, BW 11000 Kbit/sec, DLY 1000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    ARP type: ARPA, ARP Timeout 04:00:00
    Last input never, output never, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/2048/0/0 (size/max/drops/flushes); Total output drops: 2
    Queueing strategy: fifo
    Output queue: 2/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 minute output rate 0 bits/sec, 0 packets/sec
    0 packets input, 0 bytes, 0 no buffer
    Received 0 broadcasts (0 IP multicasts)
    0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
    0 input packets with dribble condition detected
    7 packets output, 420 bytes, 0 underruns
    0 output errors, 0 collisions, 3 interface resets
    0 unknown protocol drops
    0 babbles, 0 late collision, 0 deferred
    0 lost carrier, 0 no carrier
    0 output buffer failures, 0 output buffers swapped out
Router#

**Sample Output for the show interface dot11radio association command**

Router# show dot11radio association
--------station 1--------
    address : 5C:B5:24:B6:87:4E
    assoc-id : 1
    state : 211
    channel : 1
    txrate : 2 M
    rxrate : 2 M
    rssi : 35

**Sample Output for the show interface dot11radio mac-address command**

Router# show dot11radio mac-address
0022.3300.002a
Sample Output for the show interface dot11radio serial-number command

Router# show dot11radio serial-number
FOC1703N79P

Sample Output for the show interface dot11radio statistics command

Router# show dot11radio statistics
******** ath dev stats ********
  2  recv eol interrupts
 27  # packets sent on the interface
 153  # packets receive on the interface
 21962  tx management frames
 40  tx failed 'cuz too many retries
 13  tx rssi of last ack
12011 total number of bytes received
3321 total number of bytes transmitted
rssi of last ack[ctl, ch0]: 13
rssi of last ack[ctl, ch1]: 2
rx rssi from histogram [combined]
rssi of last rxv[ctl, ch0]: 11
rssi of last rxv[ctl, ch1]: 7
21895  beacons transmitted
Radio profile:
  37  number of received data packets
 116  number of received num mgmt packets
 10  number of transmit retries in hardware
Antenna profile:
  1  switched default/rx antenna
[0] tx 27  rx 1
[1] tx 0  rx 152

11n stats
 67  total tx data packets
  0  tx drops in wrong state
  0  tx drops due to qdepth limit
 51  tx when h/w queue depth is low
 16  tx pkts when h/w queue is busy
  0  tx completions
  0  tx pkts filtered for requeueing
  0  txq empty occurrences
  0  tx no skb for encapsulations
  0  tx no descriptors
  0  tx key setup failures
  0  tx no desc for legacy packets
 51  tx schedule pkt queue empty
  0  tx bars sent
  0  tx bar retries sent
  0  tx bar last frame failed
  0  tx bar excessive retries
  0  tx unaggregated frame completions
  0  tx unaggregated excessive retries
  0  tx unaggregated unacked frames
  0  tx unaggregated last frame failed
  0  tx aggregated completions
  0  tx block ack window advanced
  0  tx block ack window retries
  0  tx block ack window additions
  0  tx block ack window updates
  0  tx block ack window advances
  0  tx retries of sub frames
  0  tx excessive retries of aggregates
  0  tx no skb for aggr encapsualtion
  0  tx no desc for aggr
  0  tx enc key setup failures
tx aggregated excessive retry percent
tx aggregate subframe retry percent
tx aggregate subframe excessive retry percent
******** ieee80211 stats ********
  0 rx frame with bad version
  0 rx frame too short
  0 rx from wrong bssid
  0 rx w/ wrong direction
  0 rx discard 'cuz mcast echo
  0 rx discard 'cuz sta !assoc
  0 rx w/ wep but privacy off
  0 rx decapsulation failed
  0 rx discard mgt frames
  0 rx discard ctrl frames
  0 rx beacon frames
  0 rx rate set truncated
  0 rx required element missing
  0 rx element too big
  0 rx element too small
  0 rx element unknown
  0 rx frame w/ invalid chan
  0 rx frame chan mismatch
  0 nodes allocated (rx)
49 rx frame ssid mismatch
  0 rx w/ unsupported auth alg
  0 rx sta auth failure
  0 rx sta auth failure 'cuz of TKIP countermeasures
  0 rx assoc from wrong bssid
  0 rx assoc w/o auth
  0 rx assoc w/ cap mismatch
  0 rx assoc w/ no rate match
  0 rx assoc w/ bad WPA IE
  0 rx deauthentication
  0 rx disassociation
  0 rx action mgt
  0 rx frame w/ unknown subtype
  0 rx failed for lack of sk_buffer
  0 rx discard mgt frame received in ahdoc demo mode
  0 rx bad authentication request
  0 rx discard 'cuz port unauthorized
  0 rx failed 'cuz bad cipher/key type
  0 rx failed 'cuz key/cipher ctx not setup
  0 rx discard 'cuz acl policy
  0 rx fast frames
  0 rx fast frame failed 'cuz bad tunnel header
  0 tx failed for lack of sk_buffer
  3 tx failed for no node
  0 tx of unknown mgt frame
  0 tx failed 'cuz bad cipher/key type
  0 tx failed 'cuz no defkey
  0 tx failed 'cuz no space for crypto hdrs
  0 tx atheros fast frames successful
  0 tx atheros fast frames failed
  0 active scans started
  0 passive scans started
  0 nodes timed out inactivity
  0 cipher context malloc failed
  0 tkip crypto done in s/w
  0 tkip tx MIC done in s/w
  0 tkip rx MIC done in s/w
  0 tkip dropped frames 'cuz of countermeasures
  0 comp crypto done in s/w
  0 wep crypto done in s/w
  0 setkey failed 'cuz cipher rejected data
Verifying Wi-Fi Management Interface Configurations

- Setkey failed 'cuz no key index
- Driver key delete failed
- Setkey failed 'cuz unknown cipher
- Setkey failed 'cuz cipher module unavailable
- Setkey failed 'cuz cipher attach failed
- Crypto fell back to s/w implementation
- Setkey failed 'cuz driver key alloc failed
- En-MIC failed
- Merge failed-cap mismatch
- Merge failed-rate mismatch
- Ps-poll for unassoc. sta
- Ps-poll w/ incorrect aid
- Ps-poll w/ nothing to send

**** 80211 unicast stats ****

- 0 frames successfully transmitted
- 0 frames successfully received
- 0 rx w/o wep and privacy on
- 0 rx w/ incorrect keyid
- 0 rx decrypt okay
- 0 rx decrypt failed on crc
- 0 rx wep processing failed
- 0 rx seq# violation (TKIP)
- 0 rx format bad (TKIP)
- 0 rx MIC check failed (TKIP)
- 0 rx ICV check failed (TKIP)
- 0 rx seq# violation (CCMP)
- 0 rx format bad (CCMP)
- 0 rx MIC check failed (CCMP)
- 0 tx dropped by NIC
- 0 rx dropped by NIC
- 0 rx TKIP countermeasure activation count

**** 80211 multicast stats ****

- 0 frames successfully transmitted
- 0 frames successfully received
- 0 rx w/o wep and privacy on
- 0 rx w/ incorrect keyid
- 0 rx decrypt okay
- 0 rx decrypt failed on crc
- 0 rx wep processing failed
- 0 rx seq# violation (TKIP)
- 0 rx format bad (TKIP)
- 0 rx MIC check failed (TKIP)
- 0 rx ICV check failed (TKIP)
- 0 rx seq# violation (CCMP)
- 0 rx format bad (CCMP)
- 0 rx MIC check failed (CCMP)
- 0 tx dropped by NIC
- 0 rx dropped by NIC
- 2870097101 rx TKIP countermeasure activation count

router#

Note

To clear or reset the statistic information for the Wi-Fi management interface, use the clear dot11radio statistics command.
Additional References

The following sections provide references related to the Wi-Fi management interface.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>ASR 901S Command Reference</td>
<td>Cisco ASR 901S Series Aggregation Services Router Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>---</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>---</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

Feature Information for the Wi-Fi Management Interface

The Feature Information for Wi-Fi management interface table lists the release history for this feature and provides links to specific configuration information.
Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

The following table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

**Table 53: Feature Information for the Wi-Fi Management Interface**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wi-Fi Management Interface</td>
<td>15.4(3)S</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Information About the Wi-Fi Management Interface, on page 872</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring the Wi-Fi Management Interface, on page 872</td>
</tr>
</tbody>
</table>
IPv6 Routing: OSPFv3 Authentication Support with IPsec

In order to ensure that Open Shortest Path First version 3 (OSPFv3) packets are not altered and re-sent to the device, OSPFv3 packets must be authenticated. OSPFv3 uses the IPsec secure socket API to add authentication to OSPFv3 packets. This API supports IPv6.

• Finding Feature Information, on page 887
• Prerequisites for IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 887
• Restrictions for IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 888
• Information About IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 888
• How to Configure IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 889
• Configuration Examples for IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 891
• Additional References for IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 892
• Feature Information for IPv6 Routing: OSPFv3 Authentication Support with IPsec, on page 893

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IPv6 Routing: OSPFv3 Authentication Support with IPsec

Configure the IP Security (IPsec) secure socket application program interface (API) on OSPFv3 in order to enable authentication and encryption.
Restrictions for IPv6 Routing: OSPFv3 Authentication Support with IPsec

The OSPF for IPv6 (OSPFv3) Authentication Support with IPsec feature is not supported on the IP BASE license package. The Advanced Enterprise Services package license must be used.

Information About IPv6 Routing: OSPFv3 Authentication Support with IPsec

OSPFv3 Authentication Support with IPsec

In order to ensure that OSPFv3 packets are not altered and re-sent to the device, causing the device to behave in a way not desired by its system administrators, OSPFv3 packets must be authenticated. OSPFv3 uses the IPsec secure socket API to add authentication to OSPFv3 packets. This API supports IPv6.

OSPFv3 requires the use of IPsec to enable authentication. Crypto images are required to use authentication, because only crypto images include the IPsec API needed for use with OSPFv3.

In OSPFv3, authentication fields have been removed from OSPFv3 packet headers. When OSPFv3 runs on IPv6, OSPFv3 requires the IPv6 authentication header (AH) or IPv6 ESP header to ensure integrity, authentication, and confidentiality of routing exchanges. IPv6 AH and ESP extension headers can be used to provide authentication and confidentiality to OSPFv3.

To use the IPsec AH, you must enable the `ipv6 ospf authentication` command. To use the IPsec ESP header, you must enable the `ipv6 ospf encryption` command. The ESP header may be applied alone or in combination with the AH, and when ESP is used, both encryption and authentication are provided. Security services can be provided between a pair of communicating hosts, between a pair of communicating security gateways, or between a security gateway and a host.

To configure IPsec, you configure a security policy, which is a combination of the security policy index (SPI) and the key (the key is used to create and validate the hash value). IPsec for OSPFv3 can be configured on an interface or on an OSPFv3 area. For higher security, you should configure a different policy on each interface configured with IPsec. If you configure IPsec for an OSPFv3 area, the policy is applied to all of the interfaces in that area, except for the interfaces that have IPsec configured directly. Once IPsec is configured for OSPFv3, IPsec is invisible to you.

The secure socket API is used by applications to secure traffic. The API needs to allow the application to open, listen, and close secure sockets. The binding between the application and the secure socket layer also allows the secure socket layer to inform the application of changes to the socket, such as connection open and close events. The secure socket API is able to identify the socket; that is, it can identify the local and remote addresses, masks, ports, and protocol that carry the traffic requiring security.

Each interface has a secure socket state, which can be one of the following:

- **NULL**: Do not create a secure socket for the interface if authentication is configured for the area.
- **DOWN**: IPsec has been configured for the interface (or the area that contains the interface), but OSPFv3 either has not requested IPsec to create a secure socket for this interface, or there is an error condition.
GOING UP: OSPFv3 has requested a secure socket from IPsec and is waiting for a CRYPTO_SS_SOCKET_UP message from IPsec.

UP: OSPFv3 has received a CRYPTO_SS_SOCKET_UP message from IPsec.

CLOSING: The secure socket for the interface has been closed. A new socket may be opened for the interface, in which case the current secure socket makes the transition to the DOWN state. Otherwise, the interface will become UNCONFIGURED.

UNCONFIGURED: Authentication is not configured on the interface.

OSPFv3 will not send or accept packets while in the DOWN state.

How to Configure IPv6 Routing: OSPFv3 Authentication Support with IPsec

Configuring IPsec on OSPFv3

Once you have configured OSPFv3 and decided on your authentication, you must define the security policy on each of the devices within the group. The security policy consists of the combination of the key and the SPI. To define a security policy, you must define an SPI and a key.

You can configure an authentication or encryption policy either on an interface or for an OSPFv3 area. When you configure for an area, the security policy is applied to all of the interfaces in the area. For higher security, use a different policy on each interface.

You can configure authentication and encryption on virtual links.

Defining Authentication on an Interface

Before you begin

Before you configure IPsec on an interface, you must configure OSPFv3 on that interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. Do one of the following:
   • ospfv3 authentication {ipsec spi} {md5 | sha1} { key-encryption-type key} | null
   • ipv6 ospf authentication {null | ipsec spi authentication-algorithm [key-encryption-type] [key]}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Defining Authentication in an OSPFv3 Area

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 router ospf  process-id
4. area  area-id authentication ipsec spi   authentication-algorithm [key-encryption-type] key

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

Device> enable

Step 2

configure terminal

Example:

Device# configure terminal

Step 3

interface type number

Example:

Device(config)# interface ethernet 0/0

Step 4

Do one of the following:

- ospfv3 authentication {ipsec spi} {md5 | sha1} {key-encryption-type [key] null}
- ipv6 ospf authentication {null | ipsec spi} authentication-algorithm [key-encryption-type [key]]

Example:

Device(config-if)# ospfv3 authentication md5 0 27576134094768132473302031209727

Example:

Or

Device(config-if)# ipv6 ospf authentication ipsec spi 500 md5 1234567890abcdef1234567890abcdef

Note

For Cisco ASR 901 Series Routers, you should configure the OSPFv3 authentication of the VLAN interface, instead of the physical interface. See the below example:

Device(config)# interface VLAN 60
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**

**configure terminal**

**Example:**

```
Device# configure terminal
```

Enters global configuration mode.

**Step 3**

**ipv6 router ospf process-id**

**Example:**

```
Device(config)# ipv6 router ospf 1
```

Enables OSPFv3 router configuration mode.

**Step 4**

**area area-id authentication ipsec spi spi authentication-algorithm [key-encryption-type] key**

**Example:**

```
Device(config-rtr)# area 1 authentication ipsec spi 678 md5 1234567890ABCDEF1234567890ABCDEF
```

Enables authentication in an OSPFv3 area.

---

**Configuration Examples for IPv6 Routing: OSPFv3 Authentication Support with IPsec**

**Example: Defining Authentication on an Interface**

The following example shows how to define authentication on Ethernet interface 0/0:

```
interface Ethernet0/0
ipv6 enable
ipv6 ospf 1 area 0
ipv6 ospf authentication ipsec spi 500 md5 1234567890ABCDEF1234567890ABCDEF
```

The following example shows how to define authentication on a VLAN interface of the Cisco ASR 901 Series Router:

```
interface Vlan60
ipv6 ospf encryption ipsec spi 300 esp 3des 4D92199549E0F2EF009B4160F3580E5528A11A45017F3887
 md5 79054025245FB1A26E4BC422AEP54501
```

---
Example: Defining Authentication in an OSPFv3 Area

The following example shows how to define authentication on OSPFv3 area 0:

```
ipv6 router ospf 1
 router-id 10.11.11.1
 area 0 authentication ipsec spi 1000 md5 1234567890ABCDEF1234567890ABCDEF
```

Additional References for IPv6 Routing: OSPFv3 Authentication Support with IPsec

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
</tbody>
</table>

### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for IPv6 Routing: OSPFv3 Authentication Support with IPsec

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 54: Feature Information for IPv6 Routing: OSPF for IPv6 Authentication Support with IPsec

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Routing: OSPF for IPv6 Authentication Support with IPsec</td>
<td></td>
<td>OSPFv3 uses the IPsec secure socket API to add authentication to OSPFv3 packets. The following commands were introduced or modified: area authentication (IPv6), ipv6 ospf authentication, ipv6 router ospf, ospfv3 authentication.</td>
</tr>
</tbody>
</table>