ATM vs. TDM

Overall Comparison

<table>
<thead>
<tr>
<th>Issue</th>
<th>TDM</th>
<th>ATM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of ownership</td>
<td>⭐️⭐️</td>
<td>⭐⭐⭐⭐</td>
<td>ATM lowers recurring bandwidth and operation costs</td>
</tr>
<tr>
<td>Bandwidth efficiency</td>
<td>⭐️</td>
<td>⭐⭐⭐⭐</td>
<td>ATM enables different applications to share bandwidth while preserving QoS</td>
</tr>
<tr>
<td>Multiservice</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>ATM delivers multiservice capability without affecting bandwidth efficiency; TDM provides multiservice capability at the expense of bandwidth efficiency</td>
</tr>
<tr>
<td>Quality of service (QoS)</td>
<td>⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐</td>
<td>ATM enables QoS without affecting bandwidth efficiency; TDM enables QoS at the expense of bandwidth efficiency</td>
</tr>
<tr>
<td>Scalability</td>
<td>⭐️⭐️</td>
<td>⭐⭐⭐⭐</td>
<td>ATM networks can evolve to support emerging bandwidth-intensive applications</td>
</tr>
</tbody>
</table>

* = very poor
** = weak
*** = fair
**** = good
***** = excellent

Limitations of TDM

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Why</th>
<th>Detail</th>
</tr>
</thead>
</table>
| High recurring bandwidth cost | Bandwidth inefficiency | • Bandwidth is wasted with statically mapped CBR-like connections (M CR = SCR = PCR)
• During periods of no traffic, bandwidth is not reallocated to other applications
• Inability to efficiently accommodate bursty data applications
• When all available bandwidth is allocated, additional bandwidth must be procured |
| Limited application performance | QoS is delivered at the expense of bandwidth; limited bursting capability | • Cannot support bursty data, even during periods of voice silence, because bandwidth is statically allocated |
| Limited scalability to support traffic growth and new applications | Bandwidth generally limited to T3/E3; no trunking over public ATM services | • Increasing traffic and new applications require a migration path to broadband connectivity
• Architecture is not optimal for broadband services, especially for New World IP-based applications
• Public ATM services cannot be used for trunking |

Advantages of ATM

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Why</th>
<th>Detail</th>
</tr>
</thead>
</table>
| Savings in recurring bandwidth cost | Bandwidth efficiency gained with statistical multiplexing | • Bandwidth is dynamically shared among all applications
• Multiservice integration saves bandwidth
• Silence suppression for voice and repetitive pattern suppression for circuit data save bandwidth
• Use of public ATM services for trunking provides a cost-effective alternative to leased lines |
| Enhanced application performance | Efficient traffic management optimizes application throughput | • ABR with VSVD enables monitoring and adjusting of the cell rate of connections, avoiding congestion
• Large dynamically assigned buffers |
| Guaranteed QoS levels for different applications | User applications firewalled and fair allocation of excess bandwidth provided | QoS is guaranteed with:
• Per-virtual circuit queuing
• Per-virtual circuit rate scheduling
• Multiple classes of services (CoSs), including CBR, RT-VBR, NRT-VBR, UBR, ABR |
| Scalable architecture to support new applications | Evolution enabled to broadband connectivity | Traffic growth is accommodated by offering a migration path to broadband networking
• Architectured specifically for multiservice networks—enabling New World applications |
| Smooth migration path from TDM | Seamless integration into existing environments | • TDM CoSs and native ATM CoSs are supported
• Legacy interfaces (X.25, circuit data, voice) and native Frame Relay or ATM are supported |
Cisco Systems has more than 200 offices in the following countries. Addresses, phone numbers, and fax numbers are listed on the Cisco Connection Online Website at http://www.cisco.com/offices.

Argentina • Australia • Austria • Belgium • Brazil • Canada • Chile • China • Colombia • Costa Rica • Croatia • Czech Republic • Denmark • Dubai, UAE • Finland • France • Germany • Greece • Hong Kong • Hungary • India • Indonesia • Ireland • Israel • Italy • Japan • Korea • Luxembourg • Malaysia • Mexico • The Netherlands • New Zealand • Norway • Peru • Philippines • Poland • Portugal • Puerto Rico • Romania • Russia • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • Ukraine • United Kingdom • United States • Venezuela