- Index
- Preface
- Product Overview
- Virtual Switching Systems (VSS)
- Layer 2 LAN Port Configuration
- Flex Links
- EtherChannels
- IEEE 802.1ak MVRP and MRP
- VLAN Trunking Protocol (VTP)
- VLANs
- Private VLANs (PVLANs)
- Private Hosts
- IEEE 802.1Q Tunneling
- Layer 2 Protocol Tunneling
- Spanning Tree Protocols (STP, MST)
- Optional STP Features
- IP Unicast Layer 3 Switching
- Multiprotocol Label Switching (MPLS)
- MPLS VPN Support
- Ethernet over MPLS (EoMPLS)
- Virtual Private LAN Services (VPLS)
- Ethernet Virtual Connections (EVC)
- Layer 2 over Multipoint GRE (L2omGRE)
- IPv4 Multicast Layer 3 Features
- IPv4 Multicast IGMP Snooping
- IPv4 PIM Snooping
- IPv4 Multicast VLAN Registration (MVR)
- IPv4 IGMP Filtering
- IPv4 Router Guard
- IPv4 Multicast VPN Support
- IPv6 Multicast Layer 3 Features
- IPv6 MLD Snooping
- NetFlow Hardware Support
- Call Home
- System Event Archive (SEA)
- Backplane Platform Monitoring
- Local SPAN, RSPAN, and ERSPAN
- SNMP IfIndex Persistence
- Top-N Reports
- Layer 2 Traceroute Utility
- Mini Protocol Analyzer
- PFC QoS Overview
- PFC QoS Guidelines and Restrictions
- PFC QoS Classification, Marking, and Policing
- PFC QoS Policy Based Queueing
- PFC QoS Global and Interface Options
- AutoQoS
- MPLS QoS
- PFC QoS Statistics Data Export
- Cisco IOS ACL Support
- Cisco TrustSec (CTS)
- AutoSecure
- MAC Address-Based Traffic Blocking
- Port ACLs (PACLs)
- VLAN ACLs (VACLs)
- Policy-Based Forwarding (PBF)
- Denial of Service (DoS) Protection
- Control Plane Policing (CoPP)
- Dynamic Host Configuration Protocol (DHCP) Snooping
- IP Source Guard
- Dynamic ARP Inspection (DAI)
- Traffic Storm Control
- Unknown Unicast and Multicast Flood Control
- IEEE 802.1X Port-Based Authentication
- Configuring Web-Based Authentication
- Port Security
- Lawful Intercept
- Online Diagnostic Tests
- Migrating From a 12.2SX QoS Configuration
Environmental Monitoring
- Environmental Monitoring Overview
- How to Determine Sensor Temperature Thresholds
- How to Monitor the System Environmental Status
- Information About LED Environmental Indications
Note ● For complete syntax and usage information for the commands used in this chapter, see these publications:
http://www.cisco.com/en/US/products/ps11845/prod_command_reference_list.html
- Cisco IOS Release 15.0SY supports only Ethernet interfaces. Cisco IOS Release 15.0SY does not support any WAN features or commands.
http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html
Participate in the Technical Documentation Ideas forum
Environmental Monitoring Overview
Environmental monitoring of chassis components provides early-warning indications of possible component failures, which ensures a safe and reliable system operation and avoids network interruptions. This section describes the monitoring of these critical system components, which allows you to identify and rapidly correct hardware-related problems in your system.
How to Determine Sensor Temperature Thresholds
The system sensors set off alarms based on different temperature threshold settings. Use the show environment alarm threshold command to display the sensor temperature thresholds:
How to Monitor the System Environmental Status
To display system status information, enter the show environment [ alarm | cooling | status | temperature ] command. The keywords display the following information:
– status —Displays alarm status.
– thresholds —Displays alarm thresholds.
- cooling —Displays fan tray status, chassis cooling capacity, ambient temperature, and per-slot cooling capacity.
- status —Displays field-replaceable unit (FRU) operational status and power and temperature information.
- temperature —Displays FRU temperature information.
To view the system status information, enter the show environment command:
Information About LED Environmental Indications
The LEDs can indicate two alarm types: major and minor. Major alarms indicate a critical problem that could lead to the system being shut down. Minor alarms are for informational purposes only, giving you notice of a problem that could turn critical if corrective action is not taken.
When the system has an alarm (major or minor), that indicates an overtemperature condition, the alarm is not canceled nor is any action taken (such as module reset or shutdown) for 5 minutes. If the temperature falls 5°C (41°F) below the alarm threshold during this period, the alarm is canceled.
Table 1-1 lists the environmental indicators for the supervisor engine and switching modules.
Note See the Catalyst 6500 Series Switch Module Installation Guide for additional information on LEDs, including the supervisor engine SYSTEM LED.
|
|
|
|
---|---|---|---|
Supervisor engine temperature sensor exceeds major threshold |
Generates syslog message and an SNMP trap. If there is a redundancy situation, the system switches to a redundant supervisor engine and the active supervisor engine shuts down. If there is no redundancy situation and the overtemperature condition is not corrected, the system shuts down after 5 minutes. |
||
Supervisor engine temperature sensor exceeds minor threshold |
|||
Redundant supervisor engine temperature sensor exceeds major or minor threshold |
|||
If a major alarm is generated and the overtemperature condition is not corrected, the system shuts down after 5 minutes. |
|||
Generates syslog message and SNMP. Powers down the module (see the “How to Power Modules Off and On” section for instructions). |
|||
http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html
Participate in the Technical Documentation Ideas forum