Layer 2 Attacks and Mitigation Techniques for the Cisco Catalyst 6500 Series

Switches Running Cisco IOS Software

ARP Poisoning (Man-in-the-Middle) Attack and Mitigation Techniques

A CSSTG SE Residency Program White Paper

Jeff King, CCIE 11873, CCSP, CISSP 80875

Kevin Lauerman, CCSP, CISSP 80877

Abstract

Security is at the forefront of most networks, and many companies implement a comprehensive security policy encompassing many of the OSI layers, from application layer all the way down to IP security. However, one area that is often left untouched is hardening Layer 2 and this can open the network to a variety of attacks and compromises.

This document will have a focus on understanding and preventing the ARP Poisoning (also known as the Man-In-The-Middle [MITM]) Layer 2 attack on the Cisco® Catalyst® 6500 switching series switch running Cisco IOS® Software. The Ettercap attack tool will be used to initiate Layer 2 attacks that you might encounter. Mitigation techniques to stop this attack are also covered.

A MacBook Pro and a Lenovo T61P (laptops) was used for these test and acted as the attacker in some cases and the victim in others. Both computers also ran VMware.

Note that the attacks performed in this white paper were done in a controlled lab environment. We do not recommend that you perform this attack on your enterprise network.

Test Equipment

A Cisco Catalyst 6509E switch with a Supervisor 720-3B running Cisco IOS Software 12.2(33)SXI1 in an Advanced Enterprise Feature Set and a WS-X6748-GE-TX (10/100/1000) Ethernet line card will be used. For the Attacker and Victim computers, an Apple MacBook Pro and a Lenovo T61P were used.

The MacBook Pro ran a native Mac OS X version 10.5.7 and also had VMware Fusion (2.0.5) with a Ubuntu 9.04 and a Windows XP SP2 Virtual Machine. The Lenovo T61P ran a Windows XP SP2 host OS and also had VMware with a Ubuntu 9.04 Virtual Machine. A Linksys USB300M (USB-to-10/100 Ethernet) NIC was used on each machine. By using this particular NIC, no Bridging or NAT functions were needed in VMware. The Ubuntu 9.04 and Windows XP Virtual Machines recognize the USB-to-Ethernet NIC, so the Virtual Machines network connection was independent of the host Operating Systems.

WireShark was used as the packet analyzer in addition to debugs on the Cisco Catalyst 6509E switch to show how the attack was unleashed and the response/actions of the switch.

ARP (Address Resolution Protocol) Poisoning (MITM) Attack

A Man-In-The-Middle (MITM) attack is achieved when an attacker poisons the ARP cache of two devices with the (48-bit) MAC address of their Ethernet NIC (Network Interface Card). Once the ARP cache has been successfully
poisoned, each of the victim devices send all their packets to the attacker when communicating to the other device. This puts the attacker in the middle of the communications path between the two victim devices; hence the name Man-In-The-Middle (MITM) attack. It allows an attacker to easily monitor all communication between victim devices.

The objective of this MITM attack is to take over a session. The intent is to intercept and view the information being passed between the two victim devices.

Three (3) scenarios were used for the MITM attack. They were as follows:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Static IP Address on Attacker machine</td>
</tr>
<tr>
<td>2</td>
<td>DHCP from 881 Router (DHCP Server) on Attacker machine</td>
</tr>
<tr>
<td>3</td>
<td>DHCP from Cisco Catalyst 6509E DHCP Server on Attacker machine</td>
</tr>
</tbody>
</table>

These (3) scenarios were chosen because they were all valid configurations that one might see in a customer's network; although scenario 2 and 3 are more likely in an enterprise network.

Scenario 1: Static IP Address on the Attacker Machine

In this scenario, the following hardware/software was used:

Victim 1:
- **Hardware:** Lenovo PC
- **Software:** Windows XP
- **IP Address:** 10.1.0.51/24
- **MAC Address:** 00:1c:25:1a:58:86
- **NIC:** Linksys USB300M (USB-to-Ethernet 10/100)
- **Cisco Catalyst 6509E Port:** GE 1/13

Victim 2:
- **Hardware:** Cisco Catalyst 6509E with a Supervisor 720-3B
- **Software:** Cisco IOS Software 12.2(33)SXI1
- **IP Address:** 10.1.0.1/24 (Interface VLAN 7)
- **MAC Address:** 00:d0:01:39:dc:00
- **Line Card:** WS-X6748-GE-TX (10/100/1000 Ethernet)

Attacker:
- **Hardware:** Apple MacBook Pro
- **Software:** Parent OS is OS X 10.5.7. Running Ubuntu 9.04 OS in VMware Fusion
- **Attack Tool:** Ettercap NG-0.7.3 running in Ubuntu 9.04 OS
- **IP Address:** 10.1.0.60/24 (Static IP)
- **MAC Address:** 00:23:69:48:b8:9c
- **NIC:** Linksys USB300M (USB-to-Ethernet 10/100)
- **Cisco Catalyst 6509E Port:** GE 1/2
The attacker machine ran the Ubuntu 9.04 operating system inside VMware Fusion. The host was a MacBook Pro laptop running OS X 10.5.7. A Linksys USB300M (10/100 Ethernet) USB-to-Ethernet NIC was used to connect the virtual machine (Ubuntu 9.04) to the WS-X6748-GE-TX line card in a Cisco Catalyst 6509E switch with a Supervisor 720-3B running Cisco IOS Software 12.2(33)SX1. Note that no bridging or NAT (Network Address Translation) was being used. The host operating systems on the attacker and the victim laptops were not using the Linksys USB300M NIC, but they were being used exclusively by the Virtual Machines running inside VMware on each laptop. In other words, no Bridging or NAT was being done between the host Operating System via VMware to the Virtual Machines. Each Virtual Machine used a dedicated 10/100 Ethernet NIC (USB-to-Ethernet).

Figure 1 shows how everything was connected for the test. Screen shots (snapshots) were taken throughout each test covered in this white paper. These screen shots help prove that the attacks worked and display the success of the attack mitigation.

Steps for the MITM (ARP Poisoning) Attack:

1. View initial ARP cache on the Victim PC (Windows XP)
2. View initial ARP cache on the Attacker PC (Ubuntu 9.04)
3. View initial MAC Address-Table on the Cisco Catalyst 6509E (Sup 720-3B)
4. Start Ettercap attack application on the Attacker PC (Ubuntu 9.04)
5. Configure Ettercap for “Unified Sniffing”
6. Select Interface (eth2) to sniff on Ubuntu 9.04 Attacker PC
7. Scan for host on wire
8. List hosts discovered and select targets for attack
9. Start sniffing
10. Start the MITM (ARP Poisoning) attack
11. Activate the "repoison_arp" plugin in Ettercap
12. Activate the "remote_browser" plugin in Ettercap
13. Open a Telnet session from the Victim to 10.1.0.1 (Int Vlan 7 on 6509E)
14. View "connections" in Ettercap for "active" connections (telnet session)
15. Select "active" session and then "view details"
16. View login and password between Victims (Windows XP and 6509E)
17. Perform "character injection" from Ettercap toward the 6509E (CLI)
18. Perform "character injection" from Ettercap toward Windows XP (Victim)
19. Open up web browser to from Windows XP Victim to CVDM on 6509E
20. Spawn browser on Attacker PC to view Victim's web pages being viewed
21. Scenario 2: DHCP from 881 Router (DHCP Server) on Attacker machine
22. Scenario 3: DHCP from Cisco Catalyst 6509E DHCP Server on Attacker machine
23. Mitigation of the MITM (ARP Poisoning) Attack
24. Summary

Initially, the ARP tables for the victim machine (Windows XP) are reviewed. (See Figure 2.)

Figure 2.

```
C:\Documents and Settings\klaurna\Desktop>arp -a
Interface: 10.1.0.51 -- 0x5
   Internet Address  Physical Address     Type
 10.1.0.1          00-0f-f8-6d-d8-00     dynamic
 10.1.0.50         00-23-69-24-c3-8c     dynamic
 10.1.0.66         00-23-69-4b-08-9c     dynamic
 10.1.0.61         00-23-df-a8-cf-58     dynamic
```

The attacker machine (Ubuntu 9.04) used the eth2 interface. Figure 3 is a snapshot of the network settings.
On the Cisco Catalyst 6509E switch, the MAC-Address-Table and the ARP cache is cleared with the commands shown in Figure 4.

Figure 5 shows the initial contents of the MAC-Address-Table and ARP cache.
From the above listed MAC-Address-Table, IP address 10.1.0.1 is Interface VLAN 7 on the Cisco Catalyst 6509E switch. IP address 10.1.0.51 is the victim PC running Windows XP, and 10.1.0.60 is the attacker running Ubuntu 9.04 OS (inside VMware Fusion).

On the attacker machine the Ettercap application is started. Please refer to the appendix for details on installing Ettercap and specific configuration file parameters that need to added or altered. Once Ettercap was started, the default “Promisc Mode” was verified under the options drop down menu. (See Figure 6.)

Figure 6.

![Ettercap](image1)

From the “Sniff” drop down menu, “Unified Sniffing” was selected (Figure 7).

Figure 7.

![Ettercap](image2)

Next the interface that was required to be analyzed was chosen; in this case, it was eth2 on the Ubuntu Attacker Virtual Machine (Figure 8).
A scan for the host on the wire was performed (Figure 9). Note that all of the devices for this paper are in VLAN.

Once the host scan was complete, the host list gathered by Ettercap was viewed (Figure 10).
As seen in Figure 11, Ettercap discovered (5) hosts on the LAN.

For the MITM attack, the Cisco Catalyst 6509E switch had the IP address of 10.1.0.1 (Interface VLAN 7) and the victim (Windows XP host) had the address 10.1.0.51 with a MAC address of 01:1c:25:1a:58:86. Once the attack was started, the MAC address of the attacker's NIC showed up on the switch and the victim machine's ARP cache.

Next the targets for the MITM attack were selected. The Cisco Catalyst 6509E (10.1.0.1) was selected as Target 1 and the Windows XP (10.1.0.51) as Target 2 (Figures 12 and 13).
Figure 12.
At this point, sniffing can be started. The “Start” drop down menu is chosen before selecting “Start Sniffing” (Figure 14).
Figure 14.

In order to start the MITM (ARP Poisoning) Attack, the “MITM” drop down menu item was chosen and “ARP Poisoning” was selected (Figure 15).

Figure 15.

When asked for optional parameters, the “Sniff Remote Connections” option was selected (Figure 16).
Under the “Plugins” drop down menu, two options were selected. Next the “Manage the plugins” option was selected (Figure 17).

The parameter named “repoison_arp” was chosen. A “*” beside the parameter was seen when it ran (Figure 18).

Next the “remote_browser” parameter was chosen. Later when the Victim's HTTP session was sniffed, this parameter allowed the attacker's web browser to automatically display the web pages the victim is seeing (Figure 19).
At the “View” drop down menu, “Connections” was selected. Note that nothing was seen showing up in the window until the Windows XP host (Victim) opened up a connection to the Cisco Catalyst 6509E switch (Figure 20).

The Windows XP host (Victim) opened up a Telnet session to 10.1.0.1 (Interface VLAN 7 on the Cisco Catalyst 6509E switch). (See Figure 21.)

In the snapshot below there were numerous TCP connections on the victim's Windows XP machine. The active connection with the source IP address of 10.1.0.51 and the destination address of 10.1.0.1 was found to start the snooping operation (Figure 22).
Once this connection was found, a right click on the entry enabled the option to select “view details” (Figure 23).

Details of the connection were then displayed with information such as TCP, source port, destination port, and so on (Figure 24).
Double clicking on the connection for both sides of the connection resulted in the screen splitting windows. The Windows XP host (victim) appeared on the left and the CLI window for the Cisco Catalyst 6509E on the right (Figure 25).

Figure 25.

![Figure 25](image)

Additionally the option of selecting “join Views” would result in all output being placed in a single window as shown in Figure 26.

Figure 26.

![Figure 26](image)

It can be clearly seen that the victim entered “cisco” as the enable password on the Cisco Catalyst 6509E switch. At this point, everything can be seen from both victims.

Characters can be injected into either side of the connection. In order to prove this, the Cisco IOS Software command “show version” was injected toward the Cisco Catalyst 6509E switch. In order to do this, **split screen view was required** while selecting the “Inject Data” button at the bottom of the screen in Figure 27.
Figure 27.

The “Join Views” view provides a much easier way to read the output. Here is what the Cisco Catalyst 6509E and the Windows XP victim PC saw when the data “show version” was injected. Note that a <cr> needs to be issued after entering the text you want to inject. (See Figure 28.)

Figure 28.

Next, data was injected toward the Windows XP victim machine. Back in split screen view the “inject data” button can be seen. It is important to select the correct IP address for the direction you want to inject data (Figure 29).
Figure 29.

The screen shot from the victim’s Windows XP telnet session window is shown below. At the bottom of the snapshot is the message that was sent to the victim.

Figure 30.

```
---BEGIN SSH SESSION--
Cisco IOS Software, a72003r2 Software (a72003r2-ipSERVICES9OS_JUN-22-2009_14:37:52 EDT), Version 12.2(35)SA33, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 2006-2008 by Cisco Systems, Inc.
Compiled Thu 24-Jul-08 20:52 by cmod_red_team

MIB System Bootstraps: Version 1,2(35) NetKILLS SU-IPKILLS (fc1)

 uptime is 2 days, 22 hours, 50 minutes
Uptime for this control processor is 2 days, 22 hours, 50 minutes
Time since bootstrap is 2 days, 22 hours, 50 minutes

System returned to ROM by power cycle at 2014-05-19T08:00Z (HP by power on)
System image file is "Type3/2003-ipSERVICES9OS_JUN-22-2009_14:37:52EDT.bin"

This product contains cryptographic features and is subject to United States and local country laws governing export, transfer, brokering and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/warp/export/crypto/tool/stay.html

If you require further assistance please contact us by sending email to export@cisco.com.

Cisco 1920 (ION48X4P2K) processor (revision 3.05) with 3393824K/1048004K bytes of memory, Processor board ID L3XMAH15V1LW
SRAM CPU at 66MHz, Implementation 0x0C0, Rev 1.2, 1536-KB 2-Cache
Last reset from poweron
3 Virtual Ethernet interfaces
60 Gigabit Ethernet interfaces
192K bytes of non-volatile configuration memory,
128K bytes of packet buffer memory,
16576K bytes of Flash Internal SIMM (Sector size 512K),
Configuration register is 0x0102

0000
0000
0000
0000
You have been hacked Mr. Administrator.
```
On the Ubuntu Virtual Machine (attacker), Wireshark, a free Network Analyzer software package, was running. The actual ARP poisoning packets being transmitted by Ettercap can be seen on this window as shown in Figure 31.

Figure 31.

Notice that MAC address 00:23:69:48:b8:9c was being advertised as the MAC address for both 10.1.0.51 and 10.1.0.1.

Note that after the successful ARP Poisoning of the switch, the hosts (10.1.0.51 and 10.1.0.61) have the real MAC Address in the switch’s MAC Address Table as the attacker (10.1.0.60) of 0023.6948.b89c. The “show arp” command on the switch can be used to display this.

Figure 32.

Using this attack to view a telnet session was easy. Viewing an active HTTP web browser session between the Windows XP Victim and another Cisco Catalyst switch is also possible. In this case, the victim would open up an http connection to 172.18.176.153. That happened to be a web connection for CiscoView Device Manager. Note that in order to do this, the targets in Ettercap should be cleared, and then select Target 1 as 172.18.176.153 and Target 2 as 10.1.0.51.

Figure 33.
Scenario 2: DHCP from 881 Router (DHCP Server) on Attacker machine

In this attack scenario, the following hardware/software was used:

Victim 1:
Hardware: Lenovo PC
Software: Windows XP
IP Address: 10.1.0.51/24
MAC Address: 00:1c:25:1a:58:86
NIC: Linksys USB300M (USB-to-Ethernet 10/100)
Cisco Catalyst 6509E Port: GE 1/13

Victim 2:
Hardware: Cisco Catalyst 6509E with a Supervisor 720-3B
Software: Cisco IOS Software 12.2(33)SXI1
IP Address: 10.1.0.1/24 (Interface VLAN 7)
MAC Address: 00:d0:01:39:dc:0
Line Card: WS-X6748-GE-TX (10/100/1000 Ethernet)

Attacker:
Hardware: Apple MacBook Pro
Software: Parent OS is OS X 10.5.7. running Windows XP OS in VMware Fusion
Attack Tool: Ettercap NG-0.7.3 (Windows XP)
IP Address: 10.1.0.77/24 (DHCP from DHCP Server on 881 Cisco IOS Software Router)
MAC Address: 00:23:69:50:4f:d2
NIC: Linksys USB300M (USB-to-Ethernet 10/100)
Cisco Catalyst 6509E Port: GE 1/3
Figure 34. ARP Poisoning (MITM) Attack—Scenario 2

All of the steps in the Ettercap set-up and attack are the same for Scenario 2, with the exception of this step: Target 2 will be the IP address of 10.1.0.77 (DHCP from 881 Cisco IOS Software Router) and the victim machine will be a Windows XP operating system running in VMware Fusion on a MacBook Pro. For a quick recap of the steps required to run the Ettercap attacker software, please refer to the page (6) this document.

As with Scenario 1, with no mitigation enabled on the switch, the MITM (ARP Poisoning) attack was successful.

Scenario 3: DHCP from Cisco Catalyst 6509E DHCP Server on Attacker machine

In this scenario, the following hardware/software was used:

Victim 1:
- **Hardware:** Lenovo PC
- **Software:** Windows XP
- **IP Address:** 10.1.0.51/24
- **MAC Address:** 00:1c:25:1a:58:86
- **NIC:** Linksys US B300M (USB-to-10/100 Ethernet)
- **Cisco Catalyst 6509E Port:** GE 1/13

Victim 2:
- **Hardware:** Cisco Catalyst 6509E with a Supervisor 720-3B
- **Software:** Cisco IOS Software 12.2(33)SXI1
IP Address: 10.1.0.1/24 (Interface VLAN 7)

MAC Address: 00:d0:01:39:dc:00

Line Card: WS-X6748-GE-TX (10/100/1000 Ethernet)

Attacker:

Hardware: Apple MacBook Pro

Software: Parent OS is OS X 10.5.7. Running Windows XP OS in VMware Fusion

Attack Tool: Ettercap NG-0.7.3 (Windows XP)

IP Address: 10.1.0.88/24 (DHCP from Cisco Catalyst 6509E as DHCP Server)

MAC Address: 00:23:69:50:4f:d2

NIC: Linksys USB300M (USB-to-Ethernet 10/100)

Cisco Catalyst 6509E Port: GE 1/3

Figure 35.

As with Scenario 2, in order not to repeat the same steps, all of the steps in the Ettercap set-up and attack are the same for Scenario 3 as Scenario 1, with the exception of this step: Target 2 will be the IP address of 10.1.0.88 (DHCP from Cisco Catalyst 6509E acting as the DHCP Server). As with Scenario 2, the victim machine will be a Windows XP operating system running in VMware Fusion on a MacBook Pro. For a recap of the steps to run the Ettercap attacker software, please refer to page (6) of this document.

It is no surprise that the results of this scenario were the same as Scenario 1 and Scenario 2. Without any mitigation enabled on the switch, the MITM (ARP Poisoning) attack was successful.
Mitigation for the MITM Attack

The primary Cisco IOS Software features on the Cisco Catalyst 6500E (Cisco IOS Software 12.2(33)SX11) that was used to mitigate the MITM (ARP Poisoning) attack are DHCP Snooping and Dynamic ARP Inspection (referred to as DAI throughout this paper). DAI has a dependency on DHCP Snooping. In order to run DAI, DHCP Snooping must be enabled.

The DHCP Snooping feature is covered in more detail in some of the upcoming DHCP related Layer 2 attacks. DAI is the focus of this section.

Dynamic ARP Inspection (DAI)

Dynamic ARP Inspection (DAI) is a security feature that is available on Cisco Catalyst 6500 Series switches running Cisco IOS Software or Cisco Catalyst OS. Dynamic ARP inspection helps prevent ARP poisoning and other ARP-based attacks by intercepting all ARP (Address Resolution Protocol) requests and responses, and by verifying their authenticity before updating the switch's local ARP cache or forwarding the packets to the intended destinations. Note that on Cisco Catalyst 6500 Series switches, Dynamic ARP requires Supervisor 2, Supervisor 32, or Supervisor 720. As previously stated, a Supervisor 720-3B was used in these tests.

The DAI verification consists primarily of intercepting each ARP packet and comparing its MAC address and IP address information against the MAC-IP bindings contained in a trusted binding table. DAI discards any ARP packets that are inconsistent with the information contained in the binding table. The trusted binding table is dynamically populated by DHCP snooping when this feature is enabled. In addition, DAI allows the configuration of static ARP ACLs to support systems that use statically configured IP addresses and that do not rely on DHCP.

DAI can also be configured to drop ARP packets with invalid IP addresses, such as 0.0.0.0 or 255.255.255.255, and ARP packets containing MAC addresses in their payloads that do not match the addresses specified in the Ethernet headers.

Another important feature of DAI is that it implements a configurable rate-limit function that controls the number of incoming ARP packets (default is 15pps on “untrusted” interfaces). This function is particularly important because all validation checks are performed by the CPU, and without a rate-limiter, the switch would be much more at risk to Denial-of-Service (DoS) attacks. When the rate of incoming ARP packets exceeds the configured limit (15pps default), the switch places the port in an “error-disabled” state.

The port remains in this state until you intervene. You can use the “errdisable recovery” global command on the switch to enable error disable recovery so that the ports will automatically emerge from the “error-disabled” state after a specified timeout period.

Figure 36 shows the format of the command and the available parameters:
Figure 36.

Note that there is an interface command ("ip arp inspection limit") that can be used to disable the default ARP rate-limiting without having to fully disable DAI on the switch. We will be showing this command later.

Similarly to DHCP snooping, DAI associates a trust state with each interface on the system. Packets arriving on trusted interfaces bypass all DAI validation checks, while those arriving on untrusted interfaces go through the DAI validation process. In a typical network configuration for DAI, all ports connected to host ports are configured as untrusted, while all ports connected to switches are configured as trusted. With this configuration, all ARP packets entering the network from a given switch will have passed the security check. By default, DAI is disabled on all VLANs, and all ports are configured as untrusted.

As previously mentioned, DAI populates its database of valid MAC address to IP address bindings through DHCP snooping. It also validates ARP packets against statically configured ARP ACLs. It is important to note that ARP ACLs have precedence over entries in the DHCP snooping database. ARP packets are first compared to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, then the packet will be denied even if a valid binding exists in the database populated by DHCP snooping.

DAI can be configured to drop ARP packets containing MAC addresses in the body of the ARP packet that do not match the addresses specified in the Ethernet headers. The difference is that in Cisco IOS Software the MAC address validation can be done based on source and destination MAC addresses:

- **Source MAC addresses**: DAI checks the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

- **Destination MAC addresses**: DAI checks the destination MAC address in the Ethernet header against the target MAC address in ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

Similarly to Cisco Catalyst OS, in Cisco IOS Software, DAI can be configured to drop ARP packets with invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, and target IP addresses are checked only in ARP responses.

Another difference between Cisco Catalyst OS and Cisco IOS Software is that in the later ARP inspection rate limiting is implemented per interface only, and not globally. The default threshold is also different, in Cisco IOS Software the rate for untrusted interfaces is by default set to 15pps.
Enabling MITM Mitigation and Results

The mitigation of the MITM (ARP Poisoning) attack is the same for each the (3) scenarios presented thus far. Since in most cases in an enterprise network the DHCP server will be external to the Cisco Catalyst switch, we will be using scenario 2 in the screen shots and CLI commands (scenario 2 – DHCP address to attacker with Cisco 881 Router acting as the DHCP Server).

The mitigation process begins by logging into the Cisco Catalyst 6509E switch and configuring DHCP Snooping (prerequisite for Dynamic ARP Inspection [DAI]). Below is screen shot of the configuration parameters needed to enable these features.

Enabling DHCP Snooping

Figure 37.

![Enabling DHCP Snooping](image)

Enabling Dynamic ARP Inspection (DAI)

Figure 38.

![Enabling Dynamic ARP Inspection](image)

As mentioned earlier in the section describing how DAI works, by default, DAI turns on ARP rate-limited to 15pps on untrusted ports. The only trusted ported that were configured was GE 1/47, which was the access switch port connected to the 881 Router (DHCP Server). Figure 39 shows the commands used on the trusted port.

Figure 39.

![Enabling Dynamic ARP Inspection](image)

In order to be able to scan for a host using Ettercap (with DHCP Snooping and DAI enabled on the switch), ARP Rate-Limiting (default is 15pps) was disabled on the attacker’s switch port. If this is not done then the switch will put port GE 1/3 into an error-disabled state. The attacker was connected to GE 1/3.
Here are the full interface configurations for the “trusted port” connecting to the DHCP Server (881 Router), victim machine, and attacker machine.

Figure 40.

```plaintext
6509E(config)
Enter configuration commands, one per line. End with CNTL/Z.
6509E(config)#int gi 1/5
6509E(config-if)#ip arp inspection limit none
6509E(config-if)#end
```

Figure 42. Victim Machine (Lenovo Windows XP @ 10.1.0.51/24)

```plaintext
interface GigabitEthernet1/13
  description *** Lenovo, Windows XP (Victim), 10.1.0.51/24 ***
  switchport
  switchport access vlan 7
  switchport mode access
```

Figure 43. Attacker Machine (Ubuntu running inside VMware Fusion on MacBook Pro @ 10.1.0.77 [DHCP])

```plaintext
interface GigabitEthernet1/3
  description *** MacBook Pro, VMware Fusion, Windows XP with 2nd Linksys USB300M NIC ***
  switchport
  switchport access vlan 7
  switchport mode access
  ip arp inspection limit none
```

Running the MITM (ARP Poisoning) Attack with Mitigation Enabled on the Switch

To see the full list of steps to perform this attack, please refer back to page (6) of this document. Keep in mind that scenario 2 was used for the attack, so the attacker was a Windows XP Virtual Machine (running VMware Fusion on MacBook Pro laptop) and the victim was the Lenovo host running Windows XP (10.1.0.51/24), who is connected to port GE 1/13 on the 6509E. The attacker machine gained a DHCP address (10.1.0.77/24 in this case) from an external DHCP Server; which was the 881 Router connected to port GE 1/47 on the Cisco Catalyst 6509E switch. The attacker (Windows XP host) was connected to port GE 1/3 on the switch.
Figure 44. Attacker getting a DHCP address from the external DHCP Server (881 Router)

```
C:\Documents and Settings\Administrator>ipconfig /all
Windows IP Configuration
  Host Name | : jeffk-d44797722
  Primary DNS Suffix | : unknown
  Node Type | : Unknown
  IP Routing Enabled | : No
  WINS Proxy Enabled | : No
  DNS Suffix Search List | : se_residency.com

Ethernet adapter Local Area Connection:
  Media State | : Media disconnected
  Description | : VMware Accelerated AMD PCNet Adapter
  Physical Address | : 00-0C-29-A3-FF-F7

Ethernet adapter Local Area Connection 2:
  Connection-specific DNS Suffix | : se_residency.com
  Description | : BOXX PCNetPCI USB 2.0 to Fast Ethernet Adapter
  Physical Address | : 00-23-6F-48-4F-B2
  Dhcp Enabled | : Yes
  Autoconfiguration Enabled | : Yes
  IP Address | : 10.1.0.77
  Subnet Mask | : 255.255.255.0
  Default Gateway | : 10.1.0.1
  DHCP Server | : 10.1.0.200
  DNS Servers | : 10.1.0.1
  Lease Obtained | : Wednesday, July 29, 2009 9:15:49 AM
  Lease Expires | : Monday, August 03, 2009 9:15:49 AM
```

Note that the victim machine (10.1.0.51) had a static IP address that was excluded from the DHCP Server IP pool of available addresses. Below is the DHCP Server portion of the configuration on the 881 Router that was acting as the external DHCP server.

Figure 45.

```
ip dhcp excluded-address 10.1.0.1 10.1.0.2
ip dhcp excluded-address 10.1.0.50 10.1.0.61
ip dhcp excluded-address 10.1.0.200

ip dhcp pool SE Residency
  network 10.1.0.0 255.255.255.0
  domain-name SE Residency.com
  dns-server 10.1.0.1
  default-router 10.1.0.1
  lease 5
```

Due to this setup and because DHCP Snooping and Dynamic ARP Inspection (DAI) was enabled on the Cisco Catalyst 6509E switch, the following commands (global configuration) were required.

Figure 46.

```
6509E#config t
Enter configuration commands, one per line. End with CNTL/Z.
6509E(config)#ip source binding 001c.251a.5886 vlan 7 10.1.0.51 interface gi1/13
6509E(config)#
6509E(config)#end
```

Without the static bindings for 10.1.0.51, the attacker would not be able to reach the victim and the following messages from the Cisco Catalyst 6509E switch would be seen:
This would not be necessary if the victim machine got an IP address from the DHCP Server.

In order for the attacker machine to be able to ping any host (with DHCP Snooping and DAI enabled in the switch), the attacker's IP address and MAC address must be in the DHCP Snooping Bindings Table. For this attacker, the address is in the table.

The Attacker could successfully ping their default gateway and the intended victim machine.

In this example output, all the static and DHCP Snooping bindings on the Cisco Catalyst 6509E switch are seen. Note that the static IP Source Bindings were added in an earlier step.
Figure 50.

```
559E#sho ip source binding
MacAddress       IpAddress       Lease(sec)  Type    VLAN  Interface
----------------- ----------------- ----------- ------- ------ -------------
00:23:60:58:4F:21 10.1.0.77       430984      dhcp-snooping 7  GigabitEthernet1/3
00:23:60:4F:2C:36 10.1.0.50       infinite   static   7  GigabitEthernet1/14
00:1C:25:1A:58:86 10.1.0.51       infinite   static   7  GigabitEthernet1/13
00:23:60:48:88:5C 10.1.0.66       infinite   static   7  GigabitEthernet1/2
Total number of bindings: 4
```

Without any additional parameters added, an output from the “sho ip dhcp snooping” command is shown. Recall that GE 1/47 is connected to the external DHCP Server (881 Router) and this port was configured as a “trusted” port.

Figure 51.

```
559E#sho ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
7
DHCP snooping is operational on following VLANs:
7
DHCP snooping is configured on the following L3 Interfaces:
Insertion of option 82 is disabled
Option 82 on untrusted port is not allowed
Verification of hwaddr field is enabled
Verification of gladdr field is enabled
DHCP snooping trust/rate is configured on the following Interfaces:
Interface       Trusted Rate limit (pps)
----------------- ------- --------------
GigabitEthernet1/47 yes   unlimited
```

Figure 52. Ettercap on the Attacker (Windows XP Host)
The Ettercap attacking steps have been compressed into just a few snapshots. The snapshot of Ettercap above running on the Windows XP host attacker shows that (4) hosts found during the host scan and those host are listed. Address 10.1.0.1 (Interface VLAN 7 on 6509E) and 10.1.0.51 (Victim) were selected as targets.

Before the attack from Ettercap was launched, the following debugs were enabled on the Cisco Catalyst 6509E switch.

Figure 53.

![Image of Ettercap setup debugs on Cisco Catalyst](image)

Select the MITM (ARP Poisoning) Attack, and enable the associated plugin to commence sniffing. Note that when running Ettercap on a Windows XP host, the plugin to re-poison ARP is not listed; whereas it is a valid and open when running Ettercap from within Ubuntu 9.04 (Linux host).

Figure 54.

![Image of Ettercap main window](image)

It can be seen that no connections exist from within Ettercap for the two targets. The output from the Cisco Catalyst 6509E regarding the ARP Inspection is shown in Figure 55.
Figure 55.

```
6509E#sho ip arp inspection
Source Mac Validation  : Disabled
Destination Mac Validation : Disabled
IP Address Validation  : Disabled

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Configuration</th>
<th>Operation</th>
<th>ACL Match</th>
<th>Static ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Enabled</td>
<td>Active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1003</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1005</td>
<td>Disabled</td>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>ACL Logging</th>
<th>DHCP Logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>7</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>10</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>20</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>50</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>255</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>1002</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>1003</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>1004</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>1005</td>
<td>Deny</td>
<td>Deny</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Forwarded</th>
<th>Dropped</th>
<th>DHCP Drops</th>
<th>ACL Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>586</td>
<td>1595</td>
<td>1595</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>255</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1004</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Additional output from the “show ip arp inspection” command on the switch is shown below.
The debug output from the Cisco Catalyst 6509E switch that was logged when the Ettercap MITM attack took place is shown below. Both DHCP Snooping and IP ARP Inspection debugs were enabled along with logging buffered.
Summary

ARP (Address Resolution Protocol) Poisoning, also known as Man-In-The-Middle (MITM), is a very effective attack if proper mitigation techniques have not been implemented. As the MITM attack requires the attacker to be on the same network as the intended victims, an attack would need to be initiated from the inside of the network. With the Ettercap tool being publicly available, and versions that run on both Windows and Linux based operating systems, most network could be susceptible to this attack if mitigation techniques were not in place.

By using the DHCP Snooping and Dynamic ARP Inspection (DAI) features, multiple types of Layer 2 attacks, including the ARP Poisoning (MITM) attack can be stopped.

DHCP Snooping is a security feature capable of intercepting DHCP messages crossing a switch and blocking bogus DHCP offers. DHCP Snooping uses the concept of trusted and untrusted ports. Typically, the trusted ports are used to reach DHCP servers or relay agents, while untrusted ports are used to connect to clients. All DHCP messages are allowed on trusted ports, while only DHCP client messages are accepted on untrusted ports. As neither servers nor relay agents are supposed to connect to untrusted ports, server messages like DHCPOFFER, DHCPACK, and DHCPNAK are dropped on untrusted ports. In addition, DHCP Snooping builds and maintains a MAC-to-IP binding table that is used to validate DHCP packets received from untrusted ports. DHCP Snooping discards all untrusted DHCP packets not consistent with the information in the binding table. For DHCP snooping to function properly, all DHCP servers must be connected to the switch through trusted interfaces. The DHCP Snooping binding table contains the MAC address, IP address, lease time in seconds, and VLAN port information for the DHCP clients on the untrusted ports of a switch. The information that is contained in a DHCP-snooping binding table is removed from the binding table when its lease expires or DHCP Snooping is disabled in the VLAN.

Dynamic ARP Inspection (DAI) is a security feature that helps prevent ARP poisoning and other ARP-based attacks by intercepting all ARP requests and responses, and by verifying their authenticity before updating the switch's local ARP cache or forwarding the packets to the intended destinations. The DAI verification consists primarily of intercepting each ARP packet and comparing its MAC address and IP address information against the MAC-IP bindings contained in a trusted binding table. DAI discards any ARP packets that are inconsistent with the information contained in the binding table. The trusted binding table is dynamically populated by DHCP snooping when this feature is enabled. In addition, DAI allows the configuration of static ARP ACLs to support systems that use statically configured IP addresses and that do not rely on DHCP. DAI can also be configured to drop ARP packets with invalid IP addresses, such as 0.0.0.0 or 255.255.255.255, and ARP packets containing MAC addresses in their payloads that do not match the addresses specified the Ethernet headers.

Another important feature of DAI is that it implements a configurable rate-limit function that controls the number of incoming ARP packets. This function is particularly important because all validation checks are performed by the CPU, and without a rate-limiter, there could be a DoS condition.

DAI associates a trust state with each interface on the system, similar to DHCP Snooping. Packets arriving on trusted interfaces bypass all DAI validation checks, while those arriving on untrusted interfaces go through the DAI validation process. In a typical network configuration for DAI, all ports connected to host ports are configured as untrusted, while all ports connected to switches are configured as trusted. With this configuration, all ARP packets entering the network from a given switch will have passed the security check. By default, DAI is disabled on all VLANs, and all ports are configured as untrusted.

As discussed earlier, DAI populates its database of valid MAC address to IP address bindings through DHCP snooping. It also validates ARP packets against statically configured ARP ACLs. It is important to note that ARP ACLs have precedence over entries in the DHCP snooping database. ARP packets are first compared to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, then the packet will be denied even if a valid binding exists in the database populated by DHCP snooping.
Note that configuring DHCP Snooping is a prerequisite to configure Dynamic ARP Inspection (DAI). It is also worth noting that if you plan to use any static IP addresses are planned to be used when configuring DHCP Snooping and DAI, a static IP-to-MAC address mapping must also be entered in your Cisco Catalyst 6500 switches configuration. For instance, lets say that we want to assign a static IP-to-MAC mapping for the IP address 10.1.0.60 with the MAC address of 0023.6948.B89C for interface GE1/2 on VLAN 7 is required. The global configuration command on switch would be:

```
ip source binding 0023.6948.B89C vlan 7 10.1.0.60 interface Gi1/2
```

References

Cisco Catalyst 6509E Configuration for Scenario 1

(Static IP Address on the Attacker Machine)

(Mitigation configured)

Figure 58. ARP Poisoning (MITM) Attack—Scenario 1
Building configuration...
Current configuration: 7513 bytes
!
upgrade fpd auto
version 12.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service counters max age 5
!
hostname 6509E
!
boot-start-marker
boot system flash disk0:
boot system disk0:s72033-adventerprisek9-mz.122-33.SXI1
boot-end-marker
!
security passwords min-length 1
logging buffered 4096 debugging
enable password xxxxx
!
no aaa new-model
ip subnet-zero!
!

!**
!* Configuration for enabling DHCP Snooping
!***
ip dhcp snooping vlan 7
no ip dhcp snooping information option
ip dhcp snooping
no ip domain-lookup
!

!**
!* Configuration for enabling Dynamic ARP Inspection (DAI)
!***

ip arp inspection vlan 7
ip arp inspection log-buffer entries 1024
ip arp inspection log-buffer logs 1024 interval 10

! Because we are using a Static IP Address in Scenario 1, we must configure
! a source binding since we have enabled DHCP Snooping and Dynamic
! ARP Inspection (DAI). This will bind the MAC address on the NIC on the
! Attacker Machine to the static IP address connected to port GE1/2 on vlan 7

!**

ip source binding 0023.6948.B89C vlan 7 10.1.0.60 interface Gi1/2
!

vtp domain CISCO
vtp mode transparent
mls netflow interface
no mls flow ip
mls cef error action reset
!
redundancy
!
keepalive-enable
mode sso
main-cpu
auto-sync running-config
spanning-tree mode pvst
!
!
**

! The "errdisable recovery cause all" command will automatically add the following
configuration
! commands to the switch

**

errdisable recovery cause udld
errdisable recovery cause bpduguard
errdisable recovery cause security-violation
errdisable recovery cause channel-misconfig
errdisable recovery cause pagp-flap
errdisable recovery cause dtp-flap
errdisable recovery cause link-flap
errdisable recovery cause gbic-invalid
errdisable recovery cause l2ptguard
errdisable recovery cause psecure-violation
errdisable recovery cause dhcp-rate-limit
errdisable recovery cause mac-limit
errdisable recovery cause unicast-flood
errdisable recovery cause vmps
errdisable recovery cause storm-control
errdisable recovery cause arp-inspection
errdisable recovery cause link-monitor-failure
errdisable recovery cause oam-remote-failure
errdisable recovery cause loopback
errdisable recovery cause interval 30
fabric timer 15
!
vlan internal allocation policy ascending
vlan access-log ratelimit 2000
!
vlan 7,10,20
!
vlan 50
 remote-span
!
vlan 255
!
!
interface GigabitEthernet1/1
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown
!
!
%!**

! GE1/2 Connected to “Attacker” Ubuntu 9.04 Virtual Machine running on the
! MacBook Pro inside VMware Fusion. In Scenario 1, the Ubuntu 9.04 Attacker
! machine will have an IP address of 10.1.0.60/24.

interface GigabitEthernet1/2
switchport
 switchport access vlan 7
 switchport mode access

! Configure DHCP Snooping ARP Rate Limiting on Attacker's switch port

ip dhcp snooping limit rate 10

! In order to be able to run a host scan using the Ettercap application on the
! Attacker PC (connected to GE1/3), we have to turn off the default ARP
! Rate-Limit of 15pps. The following command will do this. In a production
! environment, you would not want to use this command!.

ip arp inspection limit none

interface GigabitEthernet1/3
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown

interface GigabitEthernet1/4
 no ip address
 shutdown

interface GigabitEthernet1/5
 no ip address
 shutdown

interface GigabitEthernet1/6
 no ip address
shutdown
!
interface GigabitEthernet1/7
no ip address
shutdown
!
!
interface GigabitEthernet1/8
no ip address
shutdown
!
interface GigabitEthernet1/9
no ip address
shutdown
!
interface GigabitEthernet1/10
no ip address
shutdown
!
interface GigabitEthernet1/11
no ip address
shutdown
!
interface GigabitEthernet1/12
no ip address
shutdown
!
!**
! GE1/13 is connected to Victim 1, the Lenovo PC running Windows XP.
! It has an IP address of 10.1.0.51/24.
!**
interface GigabitEthernet1/13
switchport
switchport access vlan 7
switchport mode access
!
interface GigabitEthernet1/14
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown

interface GigabitEthernet1/15
 switchport
 shutdown

interface GigabitEthernet1/16
 no ip address
 shutdown

interface GigabitEthernet1/17
 no ip address
 shutdown

interface GigabitEthernet1/18
 no ip address
 shutdown

interface GigabitEthernet1/19
 no ip address
 shutdown

interface GigabitEthernet1/20
 no ip address
 shutdown

interface GigabitEthernet1/21
 no ip address
 shutdown

interface GigabitEthernet1/22
no ip address
shutdown

interface GigabitEthernet1/23
no ip address
shutdown

interface GigabitEthernet1/24
no ip address
shutdown

interface GigabitEthernet1/25
no ip address
shutdown

interface GigabitEthernet1/26
no ip address
shutdown

interface GigabitEthernet1/27
no ip address
shutdown

interface GigabitEthernet1/28
no ip address
shutdown

interface GigabitEthernet1/29
no ip address
shutdown

interface GigabitEthernet1/30
no ip address
shutdown
!
interface GigabitEthernet1/31
 no ip address
 shutdown
!
interface GigabitEthernet1/32
 no ip address
 shutdown
!
interface GigabitEthernet1/33
 no ip address
 shutdown
!
interface GigabitEthernet1/34
 no ip address
 shutdown
!
interface GigabitEthernet1/35
 no ip address
 shutdown
!
interface GigabitEthernet1/36
 no ip address
 shutdown
!
interface GigabitEthernet1/37
 no ip address
 shutdown
!
interface GigabitEthernet1/38
 no ip address
 shutdown
!
interface GigabitEthernet1/39
 no ip address
 shutdown

interface GigabitEthernet1/40
no ip address
shutdown

interface GigabitEthernet1/41
no ip address
shutdown

interface GigabitEthernet1/42
no ip address
shutdown

interface GigabitEthernet1/43
no ip address
shutdown

interface GigabitEthernet1/44
no ip address
shutdown

interface GigabitEthernet1/45
no ip address
shutdown

interface GigabitEthernet1/46
switchport
switchport access vlan 7
switchport mode access

interface GigabitEthernet1/47
description *** Connects to 881 Router Acting as DHCP Server [10.1.0.200] port 0/5, used in scenario 2 ***
switchport
switchport access vlan 7
switchport mode access
ip arp inspection trust
ip dhcp snooping trust
shutdown
!
interface GigabitEthernet1/48
 switchport
 switchport mode dynamic auto
!
interface GigabitEthernet5/1
 no ip address
 shutdown
!
interface GigabitEthernet5/2
 no ip address
 shutdown
!
interface Vlan1
 no ip address
 shutdown
!
interface Vlan7
 ip address 10.1.0.1 255.255.255.0
!
router eigrp 100
 network 10.1.0.0 0.0.0.255
 network 172.18.176.0 0.0.0.255
 no auto-summary
!
ip classless
!
no ip http server
no ip http secure-server
!
control-plane
!
dial-peer cor custom
!
alias exec sdsb show ip dhcp snooping binding
!
line con 0
 exec-timeout 0 0
line vty 0 4
 session-timeout 800
 password 12345
 login
 length 0
 transport preferred none
 transport input all
 transport output none
line vty 5 15
 login
 transport input lat pad udptn telnet rlogin ssh
!
scheduler process-watchdog terminate
scheduler switch allocate 1000 1000
scheduler allocate 400 100
mac-address-table aging-time 480
!
end
Cisco Catalyst 6509E Configuration for Scenario 2

(Cisco 881 Router acting as external DHCP Server)

(Mitigation configured)

Figure 59. ARP Poisoning (MITM) Attack—Scenario 2

6509E#wr t
Building configuration...

Current configuration: 7513 bytes

upgrade fpd auto
version 12.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service counters max age 5
! hostname 6509E
!
boot-start-marker
boot system flash disk0:
boot system disk0:s72033-adventerprisek9-mz.122-33.SXI1
boot-end-marker

! security passwords min-length 1
logging buffered 4096 debugging
enable password 12345
!
no aaa new-model
ip subnet-zero
!
!***
! Configuration for enabling DHCP Snooping
!***
ip dhcp snooping vlan 7
no ip dhcp snooping information option
ip dhcp snooping
no ip domain-lookup
!
!***
! Configuration for enabling Dynamic ARP Inspection (DAI)
!***
ip arp inspection vlan 7
ip arp inspection log-buffer entries 1024
ip arp inspection log-buffer logs 1024 interval 10
vtp domain CISCO
vtp mode transparent
mls netflow interface
no mls flow ip
mls cef error action reset
!
redundancy
keepalive-enable
mode sso
main-cpu
auto-sync running-config
spanning-tree mode pvst
The "errdisable recovery cause all" command will automatically add the following configuration commands to the switch:

```plaintext
errdisable recovery cause udld
errdisable recovery cause bpduguard
errdisable recovery cause security-violation
errdisable recovery cause channel-misconfig
errdisable recovery cause pagp-flap
errdisable recovery cause dtp-flap
errdisable recovery cause link-flap
errdisable recovery cause gbic-invalid
errdisable recovery cause l2ptguard
errdisable recovery cause psecure-violation
errdisable recovery cause dhcp-rate-limit
errdisable recovery cause mac-limit
errdisable recovery cause unicast-flood
errdisable recovery cause vmps
errdisable recovery cause storm-control
errdisable recovery cause arp-inspection
errdisable recovery cause link-monitor-failure
errdisable recovery cause oam-remote-failure
errdisable recovery cause loopback
errdisable recovery interval 30
fabric timer 15

vlan internal allocation policy ascending
vlan access-log ratelimit 2000

vlan 7,10,20

vlan 50
remote-span
```
vlan 255

interface GigabitEthernet1/1
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown

interface GigabitEthernet1/2
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown

GE1/3 Connected to “Attacker” Windows XP Virtual Machine running on the MacBook Pro inside VMware Fusion.

interface GigabitEthernet1/3
 switchport
 switchport access vlan 7
 switchport mode access

Configure DHCP Snooping ARP Rate Limiting on Attacker’s switch port

ip dhcp snooping limit rate 10

In order to be able to run a host scan using the Ettercap application on the Attacker PC (connected to GE1/3), we have to turn off the default ARP Rate-Limit of 15pps. The following command will do this. In a production environment, you would not want to use this command!.

ip arp inspection limit none
interface GigabitEthernet1/4
 no ip address
 shutdown
!
interface GigabitEthernet1/5
 no ip address
 shutdown
!
interface GigabitEthernet1/6
 no ip address
 shutdown
!
interface GigabitEthernet1/7
 no ip address
 shutdown
!
interface GigabitEthernet1/8
 no ip address
 shutdown
!
interface GigabitEthernet1/9
 no ip address
 shutdown
!
interface GigabitEthernet1/10
 no ip address
 shutdown
!
interface GigabitEthernet1/11
 no ip address
 shutdown
!
interface GigabitEthernet1/12
 no ip address
 shutdown
!
GE1/13 is connected to Victim 1, the Lenovo PC running Windows XP.
It has an IP address of 10.1.0.51/24.

interface GigabitEthernet1/13
switchport
switchport access vlan 7
switchport mode access
!
interface GigabitEthernet1/14
switchport
switchport access vlan 7
switchport mode access
shutdown
!
interface GigabitEthernet1/15
switchport
shutdown
!
interface GigabitEthernet1/16
no ip address
shutdown
!
interface GigabitEthernet1/17
no ip address
shutdown
!
interface GigabitEthernet1/18
no ip address
shutdown
!
interface GigabitEthernet1/19
no ip address
shutdown
!
interface GigabitEthernet1/20
no ip address
shutdown
!
interface GigabitEthernet1/21
 no ip address
 shutdown
!
interface GigabitEthernet1/22
 no ip address
 shutdown
!
interface GigabitEthernet1/23
 no ip address
 shutdown
!
interface GigabitEthernet1/24
 no ip address
 shutdown
!
interface GigabitEthernet1/25
 no ip address
 shutdown
!
interface GigabitEthernet1/26
 no ip address
 shutdown
!
interface GigabitEthernet1/27
 no ip address
 shutdown
!
interface GigabitEthernet1/28
 no ip address
 shutdown
!
interface GigabitEthernet1/29
 no ip address
 shutdown
interface GigabitEthernet1/30
no ip address
shutdown
!
interface GigabitEthernet1/31
no ip address
shutdown
!
interface GigabitEthernet1/32
no ip address
shutdown
!
interface GigabitEthernet1/33
no ip address
shutdown
!
interface GigabitEthernet1/34
no ip address
shutdown
!
interface GigabitEthernet1/35
no ip address
shutdown
!
interface GigabitEthernet1/36
no ip address
shutdown
!
interface GigabitEthernet1/37
no ip address
shutdown
!
interface GigabitEthernet1/38
no ip address
shutdown
!
interface GigabitEthernet1/39
no ip address
shutdown
!
interface GigabitEthernet1/40
no ip address
shutdown
!
interface GigabitEthernet1/41
no ip address
shutdown
!
interface GigabitEthernet1/42
no ip address
shutdown
!
interface GigabitEthernet1/43
no ip address
shutdown
!
interface GigabitEthernet1/44
no ip address
shutdown
!
interface GigabitEthernet1/45
no ip address
shutdown
!
interface GigabitEthernet1/46
switchport
switchport access vlan 7
switchport mode access
shutdown
!
GE1/47 connects to the Cisco 881 Router (port 0/5) that is acting as the external DHCP Server for scenario 2.

interface GigabitEthernet1/47
 description *** Connects to 881 Router Acting as DHCP Server [10.1.0.200] port 0/5 ***
 switchport
 switchport access vlan 7
 switchport mode access

! Configuring GE1/47 as a trusted port for both DHCP Snooping and Dynamic ARP Inspection (DAI)

 ip arp inspection trust
 ip dhcp snooping trust

! interface GigabitEthernet1/48
 switchport
 switchport mode dynamic auto

! interface GigabitEthernet5/1
 no ip address
 shutdown

! interface GigabitEthernet5/2
 no ip address
 shutdown

! interface Vlan1
 no ip address
 shutdown

! interface Vlan7
 ip address 10.1.0.1 255.255.255.0

! router eigrp 100
 network 10.1.0.0 0.0.0.255
network 172.18.176.0 0.0.0.255
no auto-summary
!
ip classless
!
noc ip http server
no ip http secure-server
!
control-plane
!
dial-peer cor custom
!
alias exec sdsb show ip dhcp snooping binding
!
line con 0
 exec-timeout 0 0
line vty 0 4
 session-timeout 800
 password 12345
 login
 length 0
 transport preferred none
 transport input all
 transport output none
line vty 5 15
 login
 transport input lat pad udptn telnet rlogin ssh
!
scheduler process-watchdog terminate
 scheduler switch allocate 1000 1000
 scheduler allocate 400 100
 mac-address-table aging-time 480
!
end
Cisco Catalyst 6509E Configuration for Scenario 3

(Cisco Catalyst 6509E switch acting as the internal DHCP Server)

(Mitigation configured)

Figure 60. ARP Poisoning (MITM) Attack—Scenario 3

```
6509E# wrt
Building configuration...
Current configuration: 7513 bytes
!
upgrade fpd auto
version 12.2
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
service counters max age 5
!
hostname 6509E
!
boot-start-marker
boot system flash disk0:
```
boot system disk0:s72033-adventerprisek9-mz.122-33.SXI1

boot-end-marker

!
security passwords min-length 1
logging buffered 4096 debugging
enable password xxxxxx
!
no aaa new-model
ip subnet-zero!
!

Cisco Catalyst 6509E being used as a DHCP Server. IP Pool defined. Test machines that use
! static IP addresses in the same subnet as the DHCP Server have been excluded from the
! DHCP IP Pool of addresses.

ip dhcp excluded-address 10.1.0.1 10.1.0.2
ip dhcp excluded-address 10.1.0.50 10.1.0.61
!
ip dhcp pool SE_Residency
network 10.1.0.0 255.255.255.0
domain-name SE_Residency.com
dns-server 10.1.0.1
default-router 10.1.0.1
lease 5
!

Configuration for enabling DHCP Snooping

ip dhcp snooping vlan 7
no ip dhcp snooping information option
ip dhcp snooping
no ip domain-lookup
!

Configuration for enabling Dynamic ARP Inspection (DAI)

ip arp inspection vlan 7
ip arp inspection log-buffer entries 1024
ip arp inspection log-buffer logs 1024 interval 10
vtp domain CISCO
vtp mode transparent
mls netflow interface
no mls flow ip
mls cef error action reset
!
redundancy
keepalive-enable
mode sso
main-cpu
auto-sync running-config
spanning-tree mode pvst
!
**
! The “errdisable recovery cause all” command will automatically add the following configuration
! commands to the switch
!*---
errdisable recovery cause udld
errdisable recovery cause bpduguard
errdisable recovery cause security-violation
errdisable recovery cause channel-misconfig
errdisable recovery cause pagp-flap
errdisable recovery cause dtp-flap
errdisable recovery cause link-flap
errdisable recovery cause gbic-invalid
errdisable recovery cause l2ptguard
errdisable recovery cause psecure-violation
errdisable recovery cause dhcp-rate-limit
errdisable recovery cause mac-limit
errdisable recovery cause unicast-flood
errdisable recovery cause vmps
errdisable recovery cause storm-control
errdisable recovery cause arp-inspection
errdisable recovery cause link-monitor-failure
errdisable recovery cause oam-remote-failure
errdisable recovery cause loopback
errdisable recovery interval 30
fabric timer 15
!
vlan internal allocation policy ascending
vlan access-log ratelimit 2000
!
vlan 7,10,20
!
vlan 50
 remote-span
!
vlan 255
!
!
interface GigabitEthernet1/1
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown
!
interface GigabitEthernet1/2
 switchport
 switchport access vlan 7
 switchport mode access
 shutdown
!

--

GE1/3 Connected to "Attacker" Windows XP Virtual Machine running on the
MacBook Pro inside VMware Fusion. Getting IP Address 10.1.0.88/24 from
the DHCP Server (Cisco Catalyst 6509E acting as DHCP Server).
--

interface GigabitEthernet1/3
 switchport
 switchport access vlan 7
 switchport mode access
Configure DHCP Snooping ARP Rate Limiting on Attacker's switch port

```
! ip dhcp snooping limit rate 10
!
```

**In order to be able to run a host scan using the Ettercap application on the Attacker PC (connected to GE1/3), we have to turn off the default ARP Rate-Limit of 15pps. The following command will do this. In a production environment, you would not want to use this command!.

```
ip arp inspection limit none
!
interface GigabitEthernet1/4
 no ip address
 shutdown
!
interface GigabitEthernet1/5
 no ip address
 shutdown
!
interface GigabitEthernet1/6
 no ip address
 shutdown
!
interface GigabitEthernet1/7
 no ip address
 shutdown
!
interface GigabitEthernet1/8
 no ip address
 shutdown
!
interface GigabitEthernet1/9
 no ip address
 shutdown
!
```
interface GigabitEthernet1/10
no ip address
shutdown
!
interface GigabitEthernet1/11
no ip address
shutdown
!
interface GigabitEthernet1/12
no ip address
shutdown
!

|**
| GE1/13 connected to "Victim 1" Lenovo PC running Windows XP. It uses IP
| Address 10.1.0.51/24.
|**

interface GigabitEthernet1/13
switchport
 switchport access vlan 7
 switchport mode access
!
interface GigabitEthernet1/14
switchport
 switchport access vlan 7
 switchport mode access
 shutdown
!
interface GigabitEthernet1/15
switchport
 shutdown
!
interface GigabitEthernet1/16
no ip address
 shutdown
!
interface GigabitEthernet1/17
no ip address
shutdown
!
!
interface GigabitEthernet1/18
 no ip address
 shutdown
!
interface GigabitEthernet1/19
 no ip address
 shutdown
!
interface GigabitEthernet1/20
 no ip address
 shutdown
!
interface GigabitEthernet1/21
 no ip address
 shutdown
!
interface GigabitEthernet1/22
 no ip address
 shutdown
!
interface GigabitEthernet1/23
 no ip address
 shutdown
!
interface GigabitEthernet1/24
 no ip address
 shutdown
!
interface GigabitEthernet1/25
 no ip address
 shutdown
!
interface GigabitEthernet1/26
 no ip address
shutdown
!
interface GigabitEthernet1/27
no ip address
shutdown
!
interface GigabitEthernet1/28
no ip address
shutdown
!
interface GigabitEthernet1/29
no ip address
shutdown
!
interface GigabitEthernet1/30
no ip address
shutdown
!
interface GigabitEthernet1/31
no ip address
shutdown
!
interface GigabitEthernet1/32
no ip address
shutdown
!
interface GigabitEthernet1/33
no ip address
shutdown
!
interface GigabitEthernet1/34
no ip address
shutdown
!
interface GigabitEthernet1/35
no ip address
shutdown
! interface GigabitEthernet1/36
 no ip address
 shutdown
!
interface GigabitEthernet1/37
 no ip address
 shutdown
!
interface GigabitEthernet1/38
 no ip address
 shutdown
!
interface GigabitEthernet1/39
 no ip address
 shutdown
!
interface GigabitEthernet1/40
 no ip address
 shutdown
!
interface GigabitEthernet1/41
 no ip address
 shutdown
!

!
interface GigabitEthernet1/45
 no ip address
 shutdown

interface GigabitEthernet1/46
 switchport
 switchport access vlan 7
 switchport mode access

interface GigabitEthernet1/47
 description *** Connects to 881 Router Acting as DHCP Server [10.1.0.200] port 0/5, used in scenario 2 ***
 switchport
 switchport access vlan 7
 switchport mode access
 ip arp inspection trust
 ip dhcp snooping trust
 shutdown

interface GigabitEthernet1/48
 switchport
 switchport mode dynamic auto

interface GigabitEthernet5/1
 no ip address
 shutdown

interface GigabitEthernet5/2
 no ip address
 shutdown

interface Vlan1
 no ip address
 shutdown

!
interface Vlan7
 ip address 10.1.0.1 255.255.255.0
!
!
router eigrp 100
 network 10.1.0.0 0.0.0.255
 network 172.18.176.0 0.0.0.255
 no auto-summary
!
ip classless
!
no ip http server
no ip http secure-server
!
control-plane
!
dial-peer cor custom
!
alias exec sdsb show ip dhcp snooping binding
!
line con 0
 exec-timeout 0 0
line vty 0 4
 session-timeout 800
 password 12345
 login
 length 0
 transport preferred none
 transport input all
 transport output none
line vty 5 15
 login
 transport input lat pad udp telnet rlogin ssh
!
scheduler process-watchdog terminate
scheduler switch allocate 1000 1000
scheduler allocate 400 100
mac-address-table aging-time 480
!
end

Appendix..68
Introduction to Ubuntu Install Guide for L2 Attack Tools..68

Ettercap..68
Ettercap Installation via Synaptic Package Manager..68
Modification of Ettercap initialization file “/etc/etter.conf”......................................73
Launching Ettercap..77

Yersinia ...79
Yersinia Installation via Synaptic Package Manager..79
Launching Yersinia’s Graphical Interface..79
Launching Yersinia’s Interactive Interface..81

packETH ..83
packETH Installation via Synaptic Package Manager..83
Launching packETH ..84

Wireshark ...85
Wireshark Installation via Synaptic Package Manager..85
Launching Wireshark ..86
Appendix

Introduction to Ubuntu Install Guide for L2 Attack Tools
This appendix is intended for those users that are not familiar with the Ubuntu Linux OS and want to be able to quickly download and use the Layer 2 attack and monitoring tools (Ettercap, Yersinia, packETH and Wireshark) that are utilized throughout these series of Layer 2 attack whitepapers. The Synaptic Package Manager in Ubuntu is the GUI application for installing software packages in the dpkg format with the file extensions of ".deb." This dpkg format was the first Linux packaging to integrate dependency information. The Debian Package Mgmt. system database tracks which software packages are installed, which version is installed, and other packages that it is dependent on. This allows you to automatically identify, download, and install all dependent applications that are part of your original application installation selection. The Synaptic Package Manager by default will only point to those dpkg repositories that are supported by Ubuntu Linux. If you want the Synaptic Package Manager to point to repositories that are not supported by Ubuntu, you must add those repositories to /etc/apt/sources.list.

This appendix covers the complete installation of the Ettercap application, modification of its initial configuration file (parameter values that provide privilege level, rerouting capabilities, remote browser capabilities, etc to ettercap) and where and how to launch the application. The other L2 attack and monitoring tool installations (Yersinia, packETH and Wireshark) are not covered in their entirety as the process is similar. These applications do differ in where and how they are launched and the appendix will cover these unique differences in detail.

Listed below is a summary of the different attack scenario’s and which L2 attack tools were used:

STP MiTM (Vlan) Attack—Yersinia, Ettercap, Wireshark
STP MiTM (ISL) Attack—Yersinia, Ettercap, packETH, Wireshark
ARP MiTM Attack—Ettercap, Wireshark
MAC Overflow Attack—Ettercap, Wireshark
DHCP Consumption Attack—Yersinia, Wireshark

Ettercap

Ettercap Installation via Synaptic Package Manager
Select “System>Administration>Synaptic Package Manager” to load Synaptic; the GUI application to download, install and remove applications on Ubuntu Linux. (See Figure 61.)
You will be required to enter your password to perform Administrative Tasks such as installing software (Figure 62).

Type “ettercap” in the Quick Search Field and the Synaptic Package Manager will locate the application for installation (Figure 63).
Select the "ettercap-gtk" application for the GUI version of Ettercap by left clicking your mouse on the application (Figure 64).

Left click on “Mark for Installation” (Figure 65).
Additional application dependencies have been identified. Mark this additional application for installation (Figure 66).

Ettercap has been marked along with its application dependency on “ettercap-common.” Go ahead and hit “Apply” to install both applications (Figure 67).
Hit “Apply” in the summary screen to confirm your installation selections (Figure 68).

Figure 68.
When your installation is complete, the “Changes applied” window will pop up. Close this window to proceed (Figure 69).

Figure 69.

![Changes applied window]

Synaptic will indicate that the applications have been successfully installed by the filled green boxes next to the application (Figure 70).

Figure 70.

![Synaptic package manager]

Modification of Ettercap initialization file “/etc/etter.conf”

We are going to use the terminal shell to modify the “/etc/etter.conf” file. Select “Applications>Accessories>Terminal” to open a terminal window (Figure 71).
When the terminal window opens, type **`sudo gedit /etc/etter.conf`** to open the file with the appropriate privileges to modify the file. You will be prompted for the root password to continue (Figure 72).

Figure 72.
The “ec_uid” and “ec_gid” values both need to be changed to “0” to provide the appropriate privilege level to Ettercap upon execution. The default values are “65534.” Change these to “0” as depicted in Figure 73.

Figure 73.

The “port_steal_send_delay” value needs to be changed to “1” microseconds. The default value is “2000” microseconds for the port steal send delay. We need to populate arp tables faster than Cisco’s default ARP table timeout values can clear them. (See Figure 74.)

Figure 74.
Comment out "#" the original remote browser command line and add the remote_browse command line as entered below—

mozilla is replaced with firefox. This fixes the MiTM remote browsing plugin within ettercap. This enables us to view the same web pages as a victim in real time (Figure 75).

Figure 75.

Uncomment the iptables commands by removing the "#" symbol. This will allow you to reroute traffic when performing a MiTM attack on behalf of the gateway and the victim (Figure 76).

Figure 76.
When you have completed these modifications, hit the “save” tab at the top of the editor (Figure 77).

Figure 77.

Laivering Ettercap

Ettercap can be launched from “Applications>System Tools” or you can right click on “ettercap” from “System Tools” and install a launcher to the desktop (Figure 78).

Figure 78.
Ettercap can now be launched from the Ubuntu Desktop (Figure 79).

Figure 79.

Double clicking on the Ettercap icon launches the following Ettercap application (Figure 80).

Figure 80.
Yersinia

Yersinia Installation via Synaptic Package Manager
Follow the same process as outlined in Figures 61 to 70 to install the Yersinia (Figure 81) application. Figure 81 depicts the currently installed application—as denoted by the green box next to the application.

Figure 81.

Launching Yersinia’s Graphical Interface
Yersinia must be launched from a terminal window. Click on “Applications>Accessories>Terminal” to open a terminal window (Figure 82).

Figure 82.
Give the terminal window root privilege by typing the command "sudo su" at the command prompt. You will be required to provide a root password. There are several different options to launch yersinia from the CLI—"-G" for Graphical or "-I" for interactive. The "yersinia-G" option loads the Graphical version of Yersinia depicted in Figure 83.

Figure 83.

The default Yersinia screen when using the Graphical option for launching the application (Figure 84).

Figure 84.
Launching Yersinia’s Interactive Interface

To launch the Interactive interface of Yersinia, you must be using a full size terminal window. Make sure you maximize your terminal session before launching the application with the “-I” option (Figure 85).

Figure 85.

Once the window is maximized launch Yersinia with the “-I” option from the CLI (Figure 86).

Figure 86.
If your window was not maximized, you will receive the error message depicted in Figure 87.

Figure 87.

The initial dialog screen informs you that eth0 has been selected as the default interface. You have an option to load an additional Ethernet interface if desired or to change the default interface. Press any key to proceed. (See Figure 88.)

Figure 88.
Type a lower case “h” to pull up the help screen of available commands. This is just another interface for using Yersinia. Our examples of L2 attacks all use the Graphical version of Yersinia. This should be enough to get you going if you choose to use the Interactive interface to Yersinia (Figure 89).

Figure 89.

packETH

packETH Installation via Synaptic Package Manager

Follow the same process as outlined in Figures 58 to 67 to install the packETH (Figure 90) application. Figure 90 depicts the currently installed application—as denoted by the green box next to the application.
Figure 90.

Launching packETH

packETH must be launched from a terminal window. Click on “Applications>Accessories>Terminal” to open a terminal window (Figure 91).

Figure 91.
Give the terminal window root privilege by typing the command “sudo su” at the command prompt. You will be required to provide a root password. Once you have root privilege, type “packeth” at the command prompt and hit enter (Figure 92).

Figure 92.

This is a partial view of the default window that appears for packETH upon launching. You will notice that this packet generator supports ver II, 802.3 and 802.1q frames. (See Figure 93.)

Figure 93.

Wireshark

Wireshark Installation via Synaptic Package Manager
Follow the same process as outlined in Figures 58 to 67 to install the Wireshark (Figure 94) application. Figure 94 depicts the currently installed application—as denoted by the green box next to the application. You will note that the Wireshark application is dependent on “wireshark-common.” The Synaptic Package Manager will identify the dependency and prompt you to also install “wireshark-common.” (See Figure 94.)
Wireshark can be launched from “Applications>Internet>Wireshark (as root)” by a single click or you can add the launcher to the desktop by right clicking on wireshark and then select “Add this launcher to desktop.” The Wireshark icon can be double clicked from the Desktop to launch the application. Launched application is depicted in Figures 95 and 96.
Figure 96.