Cisco BTS 10200 Softswitch System Description, Release 5.0

February 7, 2008
CONTENTS

Preface vii
 Objective vii
 Audience vii
 Organization vii
 Conventions viii
 Updates to this Document for Release 5.0 viii
 Obtaining Documentation, Obtaining Support, and Security Guidelines ix

CHAPTER 1
Cisco BTS 10200 Softswitch Technical Overview 1-1
 Introduction 1-1
 Cisco BTS 10200 Softswitch in the TMN Model 1-3
 Interoperability 1-4
 Overview of Features and Functions 1-4
 Network Features and Functions 1-5
 Subscriber Features and Functions 1-7
 Billing Features and Functions 1-8
 Operations, Maintenance, and Troubleshooting Features and Functions 1-8
 Provisioning Features and Functions 1-10
 System Administration Features and Functions 1-10
 Logical Components 1-11
 List of Logical Components 1-11
 CA Functions 1-12
 Signaling Adapters 1-12
 Billing Data Generation and Interfaces 1-13
 FS Functions 1-13
 EMS Functions 1-14
 EMS Communications 1-15
 SNMP Agent 1-16
 BDMS Functions 1-17
 Internal Secondary Authoritative DNS Server (ISADS) 1-18
 Reliability and Availability of Components 1-21
 Dual Active/Standy Configuration 1-24
 Process Restartability 1-25
 Automatic Restart Function 1-25
Asynchronous DNS Lookup Function 1-25
Cisco Specified Hardware 1-26
 General Hardware Description 1-26
 Important Notices 1-26
Cables 1-26
Operator Access 1-27

CHAPTER 2 Supported Signaling Protocols 2-1
 MGCP Line Signaling Support 2-2
 General Functions of the MGCP Interface 2-2
 Special Functions of MGCP Interface 2-2
 MGCP CAS Signaling Support 2-3
 SS7 Signaling Support Through SIGTRAN 2-4
 Interface to the SS7 Network 2-4
 Support for ISUP Variants 2-5
 ISUP Transparency with the Cisco PGW 2200 2-5
 PSTN Supplementary Services 2-6
 Call Progress Signaling for SIP Subscriber on Call Hold 2-7
 Limitations 2-7
 GTD Parameters Supported 2-7
 Billing Fields 2-9
 Cause Code Selection Precedence 2-9
 Troubleshooting 2-9
 Provisioning Procedure 2-10
 Additional SIGTRAN and SS7 Information 2-10
 ISDN Signaling Support 2-10
 H.323 Signaling Support 2-11
 SIP and SIP-T Signaling Support 2-13
 SIP Functions 2-13
 SIP Features 2-14
 SIP-T Support 2-15
 FCP Interface 2-15
 SIP Billing Support 2-15
 SIP and SIP-T References 2-15
 PacketCable-Based Signaling Support 2-15
 PacketCable-Based Functions 2-16
 Event Message Implementation 2-17
 Security Implementation 2-18
Preface

Revised: February 7, 2008, OL-11755-03

This document provides an overview of the components, functions and signaling protocols supported by the Cisco BTS 10200 Softswitch.

Objective

The owner/operator of a Cisco BTS 10200 Softswitch can use this document to better understand how the system interfaces with the network, and how it provides network and subscriber features in conjunction with other network elements.

Caution

Some features involve the use of other network elements (NEs) deployed in the service provider network, for example, gateways, media servers, announcement servers, eMTAs, and SIP phones. See the “Component Interoperability” section of the Release Notes for a complete list of the specific peripheral platforms, functions, and software loads that have been used in system testing for interoperability with the Cisco BTS 10200 Softswitch Release 5.0 software. Earlier or later releases of platform software might be interoperable with the Cisco BTS 10200 Softswitch and it might be possible to use other functions on these platforms. The list in the Release Notes certifies only that the required interoperability of these platforms, the functions listed, and the protocols listed have been successfully tested with the Cisco BTS 10200 Softswitch.

Audience

This document is designed for engineers, technicians, and system administrators who install, configure, and operate the Cisco BTS 10200 Softswitch.

Organization

This System Description contains the following chapters:

- Chapter 1, “Cisco BTS 10200 Softswitch Technical Overview”
- Chapter 2, “Supported Signaling Protocols”
This document also includes the “Glossary” and “Index”.

Tip

For preinstallation information, see the *Cisco BTS 10200 Softswitch Site Preparation and Network Communications Requirements*.

Conventions

This document uses the following conventions:

Note

Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the manual.

Caution

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Updates to this Document for Release 5.0

OL-11755-03, February 2008

The HTTP-FS (MBA) component was deleted.

Information on compliance to RFC documents was updated in the “SIP and SIP-T Signaling Support” section on page 2-13.

OL-11755-02, April 2007

Additional information was added to the descriptions of the CLI and MAINT shells in the “EMS Functions” section on page 1-14.

Links to additional information were updated in the “HTTP-FS Functions (Optional Component)” section on page 1-19.

The “Asynchronous DNS Lookup Function” section on page 1-25 was added.

Additional information on billing fields, cause code selection, and troubleshooting was added to the “ISUP Transparency with the Cisco PGW 2200” section on page 2-5.

OL-11755-01, December 2006

Chapter 1, “Cisco BTS 10200 Softswitch Technical Overview”:

- Several new features for Release 5.0 were described in the “Overview of Features and Functions” section.
- The procedural information for installation of HTTP-FS was removed from this chapter and moved to the *Cisco BTS 10200 Softswitch SIP Feature and Provisioning Guide*. (Descriptive information was not moved.)
- Additional information was added to the descriptions of the CLI and MAINT shells.
• Information was added to describe the internal secondary authoritative DNS server (ISADS).
• Information was added to describe the automatic restart function.

Chapter 2, “Supported Signaling Protocols”
• Information regarding the available codecs was updated.
• Information regarding the supported ISUP variants was updated.

Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

CHAPTER 1

Cisco BTS 10200 Softswitch Technical Overview

Revised: February 7, 2008, OL-11755-03

This chapter summarizes the features and functions of the Cisco BTS 10200 Softswitch. The following topics are discussed in this chapter:

- Introduction, page 1-1
- Cisco BTS 10200 Softswitch in the TMN Model, page 1-3
- Overview of Features and Functions, page 1-4
- Logical Components, page 1-11
- Reliability and Availability of Components, page 1-21
- Asynchronous DNS Lookup Function, page 1-25
- Cisco Specified Hardware, page 1-26

The companion to this document is the Cisco BTS 10200 Softswitch Network and Subscriber Feature Descriptions document. That document contains descriptions of network features, subscriber features, class of service (CoS) functions, outgoing call barring (OCB), feature interactions, and interactive voice response (IVR) features.

In previous releases, the System Description contained information on site preparation and network communications requirements. That preinstallation information has been moved to a new document, Cisco BTS 10200 Softswitch Site Preparation and Network Communications Requirements.

Introduction

The Cisco BTS 10200 Softswitch is a software-based, class-independent network switch. It provides call-control intelligence for establishing, maintaining, routing, and terminating voice calls on media gateways (MGWs) in the packet network, while seamlessly operating with legacy circuit-switched networks. In VoIP networks it processes incoming and outgoing calls between the packet network and the public switched telephone network (PSTN). The Cisco BTS 10200 Softswitch provides the major signaling functions performed by traditional Class 4 and Class 5 switching systems in the PSTN. It also provides more than 60 provisionable subscriber features, and management interfaces for provisioning, monitoring, control, and billing operations.
Introduction

The bearer-path infrastructure is provided by MGWs, which interface circuit-switched facilities with packet networks. The MGWs provide encoding, decoding, packetization, and depacketization functions.

When Cisco BTS 10200 Softswitch application software is installed on Cisco specified host machines, it creates a set of logical components. Together these logical components provide all of the features and functions of the Cisco BTS 10200 Softswitch. The disk drives in the host machines store the provisioned database and system-generated data. These logical components and the Cisco specified hardware are described later in this chapter.

The Cisco BTS 10200 Softswitch communicates with a wide range of network elements (NEs) including:

- Service provider network management and support systems
- Gateways to managed packet networks and the PSTN
- NEs that support network and subscriber services such as billing mediation and record keeping, interactive voice response (IVR), announcements, law enforcement and emergency services, and operator services.

When you order the Cisco BTS 10200 Softswitch software, your Cisco account team will work with you to determine appropriate hardware options, software loads, and database sizing options for each of your sites.

Note

The selected database sizing option is set when the Cisco BTS 10200 Softswitch software is installed on your system. Details of the software installation are provided in the *Cisco BTS 10200 Softswitch Application Installation Procedure*.

Cisco BTS 10200 Softswitch in the TMN Model

Figure 1-1 illustrates the role of the Cisco BTS 10200 Softswitch in the Telecommunications Management Network (TMN) model. The Cisco BTS 10200 Softswitch is involved in the Network Element Layer and Network Element Management Layer.

The role of each TMN layer is described below.

Business Management Layer roles:
- Network planning
- Intercarrier agreements
- Strategic planning
- Enterprise-level management

Service Management Layer roles:
- Customer interface
- Service provisioning
- Account management
- Customer-complaint management
- Integrated faults, billing, and quality of service (QoS)

Network Management Layer roles:
- End-to-end network view
- All data aggregated to the network view

Note The Call Agent (CA) and Element Management System (EMS) components of the Cisco BTS 10200 Softswitch shown in Figure 1-1 are described in the "Logical Components" section on page 1-11.
Interoperability

The Cisco BTS 10200 Softswitch interworks with a wide range of NEs, but there are certain limitations. We recommend that you keep the following caution in mind as you prepare to purchase and use NEs for your network.

⚠️ Caution

Some features involve the use of other NEs deployed in the service provider network, for example, gateways, media servers, announcement servers, eMTAs, and SIP phones. See the “Component Interoperability” section of the Release Notes document for a complete list of the specific peripheral platforms, functions, and software loads that have been used in system testing for interoperability with the Cisco BTS 10200 Softswitch Release 5.0 software. Earlier or later releases of platform software might be interoperable and it might be possible to use other functions on these platforms. The list in the Release Notes certifies only that the required interoperation of these platforms, the functions listed, and the protocols listed have been successfully tested with the Cisco BTS 10200 Softswitch.

Overview of Features and Functions

The Cisco BTS 10200 Softswitch provides a large number of features and functions. This section contains quick-reference lists of the features and functions in the following categories:

- Network Features and Functions, page 1-5
- Subscriber Features and Functions, page 1-7
- Billing Features and Functions, page 1-8
- Operations, Maintenance, and Troubleshooting Features and Functions, page 1-8
- Provisioning Features and Functions, page 1-10
- System Administration Features and Functions, page 1-10
This list is intended as a general overview. Additional features and functions are described within the complete documentation set for this product.

Network Features and Functions

The system supports the following network features and functions:

- **Call control intelligence** for establishing, maintaining, routing, and terminating voice calls on MGWs in the packet network, while seamlessly operating with circuit-switched networks.
- **Support** for a number of network signaling protocols, including MGCP, SIGTRAN (for SS7), H.323, PacketCable, Session Initiation Protocol (SIP), ISDN, and Channel-Associated Signaling (CAS).
- **PSTN-parity routing mechanisms** for voice calls, including local, national, international, operator services, and emergency services routing. (In North America, this includes local access and transport area (LATA) calls and interLATA calls.)
- **Support for the following types of calls:**
 - PSTN-to-packet network calls—Calls that originate on a PSTN network and terminate on a packet network (off-net calls)
 - Packet-to-PSTN network calls—Calls that originate on a packet network and terminate on a PSTN network (off-net calls)
 - Packet-to-packet calls—Calls that originate and terminate on a packet network (packet on-net calls)
 - PSTN-to-packet-to-PSTN calls—Calls that originate on an ingress PSTN circuit and travel over a packet network to terminate on an egress PSTN port
- **Support for the following types of routing,** configurable by command-line provisioning:
 - Trunk-based routing, with three trunk group (TG) selection options: least-cost routing, round robin, or sequential order
 - Policy routing, including origin-dependent routing, originating line information (OLI) routing, percent routing, point of presence (POP) routing, prefix-based routing, region-based routing, time-of-day routing, and NXX-based routing
 - Equal access routing.
- **Support for several types of trunk testing,** including T108, 911 Feature Group D Operator Support (FGD-OS), 911 Feature Group D, and loopback testing for NCS/MGCP subscriber endpoints.
- **Support for route advance**—The route table in the Cisco BTS 10200 Softswitch database allows the service provider to provision a list of up to 10 trunk groups (TG1 to TG10), and includes a parameter for selecting the priority of the TGs for routing (TG-SELECTION). The system attempts to route each call on the highest priority TG. If the call cannot be completed on the highest priority TG, the system attempts to use the next (lower priority) TG, a process known as route advance. The system attempts route advance to lower priority TGs up to five times. (Any TG in the list that is administratively out of service is not counted as an attempt.) If all five attempts fail, the call is released, and the system provides a release announcement.
- **Digit manipulation function,** which enables the Cisco BTS 10200 Softswitch to modify the calling party dial number, called party number, and nature of address (NOA) for both incoming and outgoing calls. This feature supports the use of:
 - North American Numbering Plan (NANP)
Overview of Features and Functions

- ITU-T E.164 numbering plan
- ANI- or DNIS-based routing

Note
The calling party number is based on ANI (automatic number identification), and the called party number is based on DNIS (dialed number identification service).

NOA values include international number, national number, operator call, subscriber number, test line, unknown, and up to six network-specific designations.

- Support for ANSI and ITU local number portability (LNP) procedures.
- Support for domestic and international equal-access direct dialing based on presubscribed interexchange carrier (PIC).
- Support for provisionable Common Language Location Identifier (CLLI) codes:
 - Provides identification of the local switch (Cisco BTS 10200 Softswitch) and the remote switch (the switch at the far end of the applicable trunk group).
 - Supports sending and receiving CLLI code in circuit validation response (CVR) messages. CVR messages are generated in response to a circuit validation test (CVT) message.
- Control of announcement servers.
- Communications with interactive voice response (IVR) servers.
- SIGTRAN-based communications with signaling gateways (SGs) that provide SS7 signaling and interoperability with legacy PSTN equipment.
- Support for several national ISUP versions.
- Support for ISUP transparency with the Cisco PGW 2200.
- Interoperability with PBX equipment through the ISDN-PRI and Channel-Associated Signaling (CAS) protocols.
- Generation of triggers, allowing service providers to offer enhanced services using external service platforms (consistent with the ITU CS-2 call model).
- Enhanced Centrex services (virtual office) for business subscribers, including telecommuters and mobile workers.
- Dial offload, which involves intercepting Internet traffic at inbound Class 5 locations and carrying this traffic over the packet network (instead of the PSTN) to the Internet service providers (ISPs).
- Call control functions for the H.323-based gateways and endpoints.
- Support for H.323 Annex E User Datagram Protocol (UDP) functionality, which preserves stable calls during a process restart or component switchover on the CA.
- Interworking with Cisco CallManager through the H.323 protocol.
- Call control functions for Tandem applications.
- Call control functions for SIP-enabled networks.
- Call control functions for PacketCable-based networks, including support for Common Open Policy Service (COPS), Network-Based Call Signaling (NCS) protocol, and Trunking Gateway Control Protocol (TGCP) signaling, as well as IPsec and dynamic quality of service (DQoS) features.
- T.38 fax relay.
- Public safety answering point (PSAP) support for enhanced 911 emergency services.
Overview of Features and Functions

- Interfaces for support of the Communications Assistance for Law Enforcement Act (CALEA), in both PacketCable and Cisco Service Independent Intercept (SII) architectures.
- Support for the automatic call gap (ACG) function with service control point (SCP) query.
- Provisionable option to suppress sending of Internet Control Message Protocol (ICMP) ping. The service provider can enable or disable the sending of ICMP pings to MGWs. The Cisco BTS 10200 Softswitch sends an ICMP ping only when an audit-endpoint (AUEP) attempt fails.
- An auditing and reporting function that provides data consistent with the North American Numbering Plan Administration (NANPA) audit requirements for primary and intermediate carriers. The NANPA audit report provides information on telephone-number data that is provisioned in the Cisco BTS 10200 Softswitch.
- Alerting notification to a third-party feature server—The service provider can use appropriately designed and configured feature servers to make use of this notification and data to provide value-added services to subscribers; for example, delivery of caller ID on a subscriber television or computer screen.
- (Release 5.0) SIP triggers (provided for MGCP and NCS subscribers only)—The SIP Triggers feature uses the SIP protocol, with some extensions, to enable the Cisco BTS 10200 Softswitch to interoperate with third-party application servers so that Multi-Service Operators (MSOs) can provide customers with enhanced features and services. The triggers can be used by the third-party servers to provide both originating services (such as TV caller ID, custom ringback, and voice dial), and enhanced terminating services.
- (Release 5.0) Call Agent controlled mode for RFC 2833 DTMF Relay—During call setup, the CA (the Cisco BTS 10200 Softswitch) can authorize an embedded multimedia terminal adapter (eMTA) or media gateway (MGW) to invoke RFC 2833 DTMF relay procedures.
- (Release 5.0) Support for PacketCable Multimedia (PCMM)-based quality of service (QoS) for type 1 clients. Type 1 clients refers to endpoints using SIP, MGCP, or H.323 as the call signaling protocol. (The system supports this PCMM-based feature in addition to all of the PacketCable-based features provided in earlier releases.)
- (Release 5.0) Emergency 911 overflow announcement—The system plays an announcement when all circuits to the emergency center are busy and the emergency call cannot be completed to the emergency center. This feature requires the announcement resource to be available and applicable.
- (Release 5.0) Emergency 911 trunk connection loss alarm—The Cisco BTS 10200 Softswitch is capable of generating a critical alarm of when an emergency trunk resource becomes remotely or locally blocked.

Note

See the Chapter 1, “Network Features,” in the Network and Subscriber Feature Descriptions document for complete coverage.

Subscriber Features and Functions

The system supports the following subscriber features and functions:

- Call processing, subscriber services and features, billing support and carrier class availability/reliability for subscribers and trunks connected to media gateways.
- A large number of voice-handling features, such as call waiting, call holding, call transferring, multiline hunting, privacy screening, and caller identification. See the Chapter 2, “Subscriber Features”, in the Network and Subscriber Feature Descriptions document for complete coverage.
• Class of service (CoS) screening and outgoing call barring (OCB). See the Chapter 3, “Class of Service and Outgoing Call Barring Features”, in the Network and Subscriber Feature Descriptions document for complete coverage.

• Limited call duration (LCD) service, including support for both prepaid (debit) and postpaid (credit) services.

• Temporarily disconnected subscriber status, including provisionable restrictions on incoming and outgoing calls

Billing Features and Functions

The system supports the following billing features and functions:

• Provisionable option for FTP or SFTP transfer of call data to a remote billing server or third-party billing mediation device

• User-provisionable billing collection and transfer parameters

• User-configurable billing reporting by call type

• Option for call detail block (CDB) or event message (EM) billing data formats

• Configurable option to use either a native file-naming convention or a PacketCable EM convention for CDB file names

• Option to designate billing as either flat rate or measured rate for individual subscribers

• Support for long-duration-call information in the billing record

• (Release 5.0) Metered billing with collection of metered “pulses” from operators signaled to UPC through SPIROU (French ISUP) ITX messages

Note

See the Cisco BTS 10200 Softswitch Billing Interface Guide for a complete description of the billing functions.

Operations, Maintenance, and Troubleshooting Features and Functions

The system supports the following operations, maintenance, and troubleshooting features and functions:

• Hardware sizing options appropriate for a variety of traffic types and call rates.

• Redundant hardware and software fail-safes to provide reliable operation and minimize the chance of an outage.

• Support for regular database backup and recovery of data from backup files.

Note

Data should be backed up on a daily basis and saved to a remote server. Data backup files are needed in the unlikely event that data in both the primary and secondary sides of any platform becomes corrupted. In such a case, the data must be restored from a backup file.

• Heap monitor—The system periodically monitors heap usage of all the processes started by a platform and issues an alarm when the heap usage of a process goes beyond a predefined threshold level.

• Periodic and scheduled audits of circuits to detect and clear hung circuits. Audits are performed on:
- SS7 circuits
- MGCP trunking gateway circuits

- Command-line-based dialed-number query tools:
 - A query verification tool (QVT)—This tool generates Transaction Capabilities Applications Part (TCAP) queries to the SCP database and reports query results.
 - A translation verification tool (TVT)—This tool determines the routing for a call by traversing through the tables provisioned in the database without originating any call.

- Traffic measurements, such as call-completion counters, resource status, and congestion information.
- Event and alarm reports, including user provisioning of report filters.
- Congestion detection and protection feature, with the following characteristics:
 - Detects internal messaging congestion caused by traffic overload or other extraordinary events and takes preventive action to avoid system failure.
 - When the Cisco BTS 10200 Softswitch is in a congested state, emergency messages are given special treatment and are allowed to pass through.

- Log archive file (LAF)—Transports trace log files to a remote archive server for storage. LAF is a continuously running daemon process on all nodes (components) of the Cisco BTS 10200 Softswitch. It wakes up every minute when active and checks if there are any new log files. The service provider can specify the external archive system, the target directory, and the disk quota for each trace log directory in the system. If there are any new log files in these trace log directories, LAF transfers them by sftp to an external archive server specified by the service provider.

- (Release 5.0) Automatic shared memory backup (ASMB)—Provides the ability to create a backup copy of the CA/FS shared memory database, which helps the operator restore a CA/FS system in the event of disaster. The restoration procedure should be run only if the shared memory is corrupted in both the active and standby sides of the network element.

- (Release 5.0) Automatic restart function—Attempts to automatically restart OOS-FAULTY platforms into a STANDBY state.
 It can also:
 - Initiate a platform switchover if a process experiences multiple restarts.
 - Automatically save useful debugging information if a platform shutdown occurs.

- (Release 5.0) Internal Secondary Authoritative DNS Server (ISADS)—A local DNS database that runs on Cisco BTS 10200 Softswitch host machines and shadows the primary DNS server in the service provider network. If the primary DNS server has a long outage, the ISADS can respond to DNS queries by the Cisco BTS 10200 Softswitch applications.

- (Release 5.0) Maintenance Release 1) Fast-audit and synchronization tools—Scripts that can be run on the root level of the host machines to perform database audits on the network elements of the system and synchronize any mismatches between network elements.

- (Release 5.0) BTSSTAT software utility—Displays the operational status of all components of the Cisco BTS 10200 Softswitch system.

- (Release 5.0) Call tracer (CTRAC) feature—A mechanism that marks each call with a unique ID. This allows the operator to use a UNIX grep or a similar command to filter out the lines of interest during a troubleshooting effort.
Provisioning Features and Functions

The system supports the following provisioning features and functions:

- A provisionable database containing data for basic call processing, billing, and special call features.
- Command autocompletion and context-sensitive help—See the preface of the Cisco BTS 10200 Softswitch Command Line Reference Guide for a description of this functionality.
- The synchronous provisioning feature provides a provisionable option that directs the system to wait for all provisioning commands to be executed before a control or status command is executed. The system also provides a CLI command that retrieves detailed information about pending transactions.
- Common Object Request Broker Architecture (CORBA) Adapter (CAD) interface—The CAD provides an abstraction of the Cisco BTS 10200 Softswitch in a consistent, object-oriented model. The CAD interface supports a means of provisioning the Cisco BTS 10200 Softswitch that parallels the CLI adapter capabilities. The system provides a secure socket layer (SSL) transport for the CORBA adapter. For CORBA details, see the Cisco BTS 10200 Softswitch CORBA Adapter Interface Specification Programmer’s Guide.
- Extensible Provisioning and Operations Manager (EPOM)—EPOM is a web-based application for real-time provisioning of the Cisco BTS 10200 Softswitch that allows authorized users to show, add, modify, and delete system components, and to query the status of the components. Provisioning tasks in Cisco EPOM generally match tasks done using CLI commands, but they are accomplished through a web browser interface. For EPOM details, see the Cisco Extensible Provisioning and Operations Manager document.
- (Release 5.0) Support for CMS subscriber provisioning through a SOAP/XML interface. The SOAP interface is compliant to a subset of the PacketCable 1.5 CMS provisioning specification, PKT-SP-CMSPROV1.5-101-050128 and provides a SOAP communication layer for the acceptance and translation of specific Cisco BTS 10200 Softswitch XML requests.

System Administration Features and Functions

The system supports the following system administration features and functions:

- Secure communications using SSH, SFTP, Secure XML, and HTTPS interfaces.
- Hardened Solaris OS—The Cisco BTS 10200 Softswitch runs on Sun Solaris. Processes and utilities in the UNIX system that are unsuitable for use in a softswitch environment have been disabled.
- Login authentication—The Cisco BTS 10200 Softswitch supports administrative login authentication using Lightweight Directory Access Protocol (LDAP) and RADIUS authentication clients. This functionality is applicable to the Cisco Extensible Provisioning and Operations Manager (EPOM) and Cisco Self-Service Phone Administration (SPA). The system can determine if the account is local or off-board, and transfer login responsibility for off-board accounts to the end-user Authorization, Authentication, and Accounting (AAA) servers. This capability is provisionable through command-line interface (CLI) commands.
• Communication with the existing Operations Support System (OSS) infrastructure—including network management systems (NMSs)—to support fault, configuration, accounting, performance, and security (FCAPS) functions.

Logical Components

This section discusses the logical components of the Cisco BTS 10200 Softswitch and describes the functions of each component. The information is organized as follows:

- List of Logical Components, page 1-11
- CA Functions, page 1-12
- FS Functions, page 1-13
- EMS Functions, page 1-14
- BDMS Functions, page 1-17
- Internal Secondary Authoritative DNS Server (ISADS), page 1-18

List of Logical Components

The Cisco BTS 10200 Softswitch consists of five independent logical components in a distributed architecture:

- Call Agent (CA)—Serves as a call management system and media gateway controller. It handles the establishment, processing, and teardown of telephony calls.
- Feature Servers (FSs)—Provide POTS, Tandem, Centrex, and Advanced Intelligent Network (AIN) services to the calls controlled by the CAs. The FSs also provide processing for service features such as call forwarding, call waiting, and LNP.

There are two types of FSs in the Cisco BTS 10200 Softswitch:

- FSPTC—FS for POTS, Tandem, and Centrex features
- FSAIN—FS for AIN services

- Element Management System (EMS)—Controls the entire Cisco BTS 10200 Softswitch and acts as a mediation device between an NMS and one or more CAs. It is also the interface for the provisioning, administration, and reporting features of the Cisco BTS 10200 Softswitch.
- Bulk Data Management System (BDMS)—Coordinates the collection of billing data from the CA, and the forwarding of billing records to the service provider billing mediation device.
- Internal Secondary Authoritative DNS Server (ISADS)—The ISADS provides the Cisco BTS 10200 Softswitch with an internal DNS database identical to the DNS database in the network. This internal DNS server can respond directly to DNS queries if necessary.
The architecture and interworking of the logical components (CA, FS, EMS, and BDMS are shown in Figure 1-2. The detailed functions of each component are described in the sections that follow.

Figure 1-2 Cisco BTS 10200 Softswitch Architecture, Showing Logical Components

CA Functions

The Call Agent (CA) provides monitoring and control of external NEs. It connects to multiple networks through the signaling adapter interface. This interface converts incoming and outgoing signaling (which is based on industry signaling standards) to and from the internal format of the CA. This interface allows the CA to connect to multiple networks and exchange signaling messages for setup, teardown, and transfer of calls.

Signaling Adapters

The signaling adapters perform the following functions:

- Provide uniform primitives (signaling indications) for all interactions between different protocol stacks and the CA modules
- Provide uniform data structures containing common information elements from different signaling protocols
- Provide call control primitives for exchanging all call signaling messages between CA and the signaling network
• Provide maintenance primitives for signaling link hardware maintenance and signaling protocol stack provisioning

Billing Data Generation and Interfaces

The CA supports the following billing data-generation methods:

• Call detail blocks (CDBs)—This is traditional post-call billing data, which the CA sends by internal communications to the BDMS (see Figure 1-3). The BDMS forwards this data by FTP or SFTP (a provisionable option) to a third-party billing mediation device. For additional information on the BDMS, see the “BDMS Functions” section on page 1-17.

• PacketCable event messages (EMs)—This is real-time call data flow, which is transferred directly from the CA to an external Record Keeping Server (RKS) that assembles call detail records (CDRs) from the EMs. The following billing interfaces are provided for EMs on the CA (see Figure 1-3):
 - Remote authentication dial-in user service (RADIUS)—Used by the CA to transmit EMs automatically to an external RKS
 - FTP—Used for manual transfer of EMs from the CA to the RKS

![Figure 1-3 CA Billing Interfaces](image)

<table>
<thead>
<tr>
<th>BDMS</th>
<th>SFTP, FTP</th>
<th>Third-party billing mediation device</th>
<th>External billing server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal communications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>RADIUS, FTP</td>
<td>Record Keeping Server</td>
<td></td>
</tr>
</tbody>
</table>

Caution

We strongly recommend that you not provision the system to generate CDBs and EMs simultaneously. Attempting to generate both types of records simultaneously can significantly degrade system performance.

Note

FTP sessions are used for file transfers initiated by the Cisco BTS 10200 Softswitch.

For additional descriptions and provisioning procedures applicable to CDB-based billing, see the Cisco BTS 10200 Softswitch Billing Interface Guide. For EM-based descriptions and provisioning procedures, see the Cisco BTS 10200 Softswitch PacketCable and Event Message Provisioning and Operations Guide.

FS Functions

There are two different types of Feature Servers (FSs) in the Cisco BTS 10200 Softswitch.
Logical Components

- FSPTC—FS for POTS, Tandem, and Centrex features
- FSAIN—FS for Advanced Intelligent Network services

Each FS communicates internally with the CA and externally (through a signaling gateway) with STPs that are part of the SS7 signaling system.

The FSs provide access to features through a well-defined interface. The Cisco BTS 10200 Softswitch architecture logically separates the FSs (which provide feature control) from the CA (which provides call control). This architecture also defines a clear interface, Feature Control Protocol (FCP), between the FSs and the CA. The FSs provide support for POTS, Centrex, AIN, 8XX service, and other enhanced services. The FSs are colocated on the same machine as the CA.

An FS is invoked from a call detection point (DP) in the CA. For each DP, the CA checks if any triggers are armed. If a trigger is armed, the CA checks if the trigger applies to the subscriber, group, or office (in that order). If the trigger is applicable, the CA invokes the FS associated with that trigger. The Cisco BTS 10200 Softswitch call processing mechanisms are based on the ITU CS-2 call model. For details on the call model and triggers, see the Cisco BTS 10200 Softswitch Network and Subscriber Feature Specifications document.

The FSAIN supports the automatic call gap (ACG) function for communications with a service control point (SCP). When an SCP sends a message to the FSAIN regarding the allowed query rate, the Cisco BTS 10200 Softswitch adjusts its query rate accordingly.

EMS Functions

The Element Management System (EMS) manages all of the Cisco BTS 10200 Softswitch components and provides operations, administration, maintenance, and provisioning (OAM&P) interfaces for monitoring and control. It provides the following user OAM&P capabilities:

- Access the system over a secure interface
- Perform system administration and security functions
- Show, add, change, or delete the database information through a local or remote interface
- Display reports of events, alarms, and faults
- Monitor and manage hardware
- Monitor and manage traffic measurements
- Monitor and manage queuing and audit functions
- Display and control the status of a component

The internal database contains the provisioned data for basic call processing, billing, and special call features. Key data structures are stored in shared memory and are accessible to any process in the system. A library of read/write locks controls access to shared memory. The data structures are implemented through Oracle in the EMS/BDMS and through an indexed database (IDX) in the CA/FS.

Note For additional information on using these functions, see the Cisco BTS 10200 Softswitch Operations and Maintenance Guide, the Cisco BTS 10200 Softswitch Provisioning Guide, and the Cisco BTS 10200 Softswitch Command Line Interface Reference Guide.
The EMS provides a flexible mechanism for transporting information over any protocol to any external device. The EMS interface design takes into account that each carrier has its own unique set of OSSs. The EMS provides a decoupling layer between the external protocols used within the service provider network and the internal protocols of the Cisco BTS 10200 Softswitch. The core system does not need to interpret the specific data formats used by the other carrier network elements.

EMS Communications

Operators, network administrators, and end users can communicate with the EMS from their workstations or PCs over the interfaces shown in Figure 1-4.

Figure 1-4 Preferred EMS Management Interfaces for Service Provider and End Users

The user interfaces include the following:
Logical Components

- Secure shell (SSH)—For provisioning in the CLI and Maintenance (MAINT) shells.
 - CLI shell—User interface for entering commands and their parameters in command-line format. The user must log in to the active EMS. The session terminates if it is idle for a provisonable number of minutes (see the idle-time parameter in the session table, default = 30 minutes) or if there is an EMS switchover from active to standby. This shell displays the CLI> prompt.
 - MAINT shell—Provides a maintenance interface for CLI commands that does not time out or disconnect on switchover. This shell can be used, if necessary, for maintenance and recovery purposes. The MAINT user can log in to either the active or standby EMS. This interface supplies a prompt based on the username, rather than a CLI> prompt.

Caution

The MAINT shell is not intended for normal provisioning activities. We strongly recommend that you use it only if the CLI shell is unusable in a maintenance or recovery scenario. An unattended MAINT session does not autodisconnect.

- Secure File Transfer Protocol (SFTP)—For bulk provisioning sessions. SSH and SFTP are always available on the Cisco BTS 10200 Softswitch, and there is no command to turn them off.

Note

For security purposes, Telnet is not supported.

- XML/CORBA and MACRO-XML/CORBA support the following:
 - CORBA provisioning and monitoring interface
 - Provisioning through the Cisco Extensible Provisioning and Operations Manager (EPOM) and the Cisco Self-Service Phone Administration (SPA)

Note

MACRO-XML/CORBA is a read-only interface that end users can configure and use to display large sets of data. It is used to streamline data queries and display complex data relationships.

- CORBA over SSL for communications with the Cisco BTS 10200 Softswitch
- Simple Network Management Protocol (SNMP)—Provides traps, status, control, and measurement functions, and provisionable community strings.
- Hypertext Transfer Protocol (HTTP) and Secure Hypertext Transfer Protocol (HTTPS)—Permit end users and service providers to perform many of the feature provisioning processes through the web-based Cisco SPA system. Access from the user’s web browser to the SPA server is through HTTP. Access from the service provider’s web browser is through HTTPS.

By default, SFTP sessions are used for file transfers initiated by elements outside the Cisco BTS 10200 Softswitch (and directed toward the Cisco BTS 10200 Softswitch). FTP sessions are used for file transfers initiated by the Cisco BTS 10200 Softswitch.

Note

The functions of the BDMS component, including billing-related communications links, are described in the “BDMS Functions” section on page 1-17.

SNMP Agent

The following functions are supported by the Cisco BTS 10200 Softswitch SNMP agent:
Logical Components

- Collection of statistics and traffic management data
- Status and control
- SNMP trap reports
- Bulk status and control

The SNMP agent supports SNMPv2c operations defined by the opticall.mib Management Information Base (MIB). The MIB is located in the directory /opt/BTSsnmp/etc on the EMS. The NMS needs to load the main MIB (opticall.mib), that in turn imports three other MIBs—IPCELL-TC, SNMPv2-TC, and SNMPv2-SMI. The main MIB uses variables from these other three MIBs.

BDMS Functions

The Bulk Data Management System (BDMS) stores billing data in the form of call detail blocks (CDBs). CDBs are assembled from billing messages generated in the CA when billing-related call events occur during call processing. The BDMS formats the CDBs into a flat ASCII-file format and transmits them to an external billing collection and mediation device that is part of the service provider billing system (see Figure 1-5). Finally, the BDMS forwards this data to an external billing mediation system or billing server, where it is assembled into CDRs.

The interface to the billing mediation device can vary from carrier to carrier. The BDMS supports a flexible profiling system that allows the Cisco BTS 10200 Softswitch to adapt to changes in the billing mediation device interface. The BDMS transmits billing records by FTP or SFTP to the mediation device at regular time intervals that are provisionable in the Cisco BTS 10200 Softswitch.

The BDMS provides the following billing functions:

- Supports batch record transmission using FTP and SFTP.
- Issues events as appropriate, including potential billing data overwrites.
- Saves billing data records in persistent store. The allocated storage space is provisionable by CLI commands and can range from 10 MB to 5 GB (default 1 GB).
- Supports user-provisionable billing subsystem parameters.
- Supports on-demand CDB queries based on file name, time interval, call type, service type, termination cause, terminating number, originating number, or last record(s) written.

See the Cisco BTS 10200 Softswitch Billing Interface Guide for CDB billing procedures and for detailed descriptions of basic call billing data and feature billing data.

FTP sessions are used for file transfers initiated by the Cisco BTS 10200 Softswitch.
Internal Secondary Authoritative DNS Server (ISADS)

Overview

The internal secondary authoritative DNS server (ISADS) provides the Cisco BTS 10200 Softswitch with an internal DNS database identical to the DNS database in the network. All the domain name queries from the Cisco BTS 10200 Softswitch go first to this internal server. If there is a long DNS outage in the network, a prolonged network outage, or a failure of an external DNS server, the internal DNS server can respond to DNS queries, and the Cisco BTS 10200 Softswitch can still perform its usual functions with less risk of interruption.

Feature Description

In the “cache database” design, if a user chooses to set up a named process, it acts only as a cache server. All the DNS queries, except those in its cache, are forwarded to other DNS servers (in this case, the primary DNS server and/or secondary DNS server). Even those responses from the cache are not authoritative. Therefore there is still a heavy dependence on the primary/secondary DNS servers in the network. If there is a long DNS outage, the data in the cache eventually expires. Cisco BTS 10200 Softswitch applications that issue queries to the DNS server get no response, or a slow response. This can cause applications to block for longer intervals. See Figure 1-6.
With the ISADS-based design, an ISADS can be directly configured and installed on every node of a Cisco BTS 10200 Softswitch system or just on the Call Agent (CA). The ISADS in the Cisco BTS 10200 Softswitch system periodically gets the database update from the primary DNS server. The ISADS basically mirrors the primary DNS server's database.

When a Cisco BTS 10200 Softswitch application issues a query, it first queries the ISADS. This ISADS responds directly, without contacting the outside primary DNS server. If there is a long primary DNS server outage in the network, the Cisco BTS 10200 Softswitch applications can always get an authoritative response. However, this internal DNS database can become outdated as time goes by. See Figure 1-7.
Restrictions and Limitations

The primary DNS server (which might not be a Cisco product) must support incremental zone transfer (IXFR) and dynamic update on the primary DNS server. If Berkeley Internet Name Daemon (BIND) is used as the primary, do not use a version of BIND older than Version 9. Check the manual or consult with the vendor that supplies the DNS program for your primary DNS server to verify that BIND Version 9 or later is being used. CNR Release 6.X also supports BIND.

Industry Standards

The ISADS capability is based on the following industry standards.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1034</td>
<td>Domain Names — Concepts and Facilities</td>
</tr>
<tr>
<td>RFC 1035</td>
<td>Domain Names — Implementation and Specification</td>
</tr>
<tr>
<td>RFC 1995</td>
<td>Incremental Zone Transfer in DNS</td>
</tr>
</tbody>
</table>

Installing

You must configure the primary DNS server and the Cisco BTS 10200 Softswitch hosts (where ISADS will be located). Set up the configuration file manually before the fresh installation. For details on how to set up the configuration files, refer to Appendix G of the Application Installation Procedure (Release 5.0). For information on how to configure existing systems, refer to Appendix H of the Application Installation Procedure (Release 5.0).

The installation will have a new parameter for the Cisco BTS 10200 Softswitch ISADS feature. In the opticall.cfg file (the customer configuration file), the parameter "NAMED_ENABLED" will be preserved to indicate whether or not the user wants to start up a named process.

NAMED_ENABLED has the following four possible values:

- n: Do not start up the named process.
- cache_only: Start up the named process as cache server only.
- secondary_dns_all_hosts: Start up the named process as an ISADS in all Cisco BTS 10200 Softswitch hosts in this system.
- secondary_dns_CA_only: Start up the named process as an ISADS in CA hosts only.

Set up the configuration file manually before the fresh installation/upgrade. The installation/upgrade should be done in a nonpeak hour, because the first download of the database from the primary DNS server to the ISADS servers might be time consuming.

Configuring

To configure the primary DNS server, refer to Appendix G of the Application Installation Procedure (Release 5.0).

To configure the internal secondary DNS server, refer to Appendix H of the Application Installation Procedure (Release 5.0).
Reliability and Availability of Components

The Cisco BTS 10200 Softswitch network configuration is shown in Figure 1-8. This configuration provides redundant host machines for the EMS/BDMS and CA/FS components, redundant management of local area networks (LANs), and six interfaces to the external routers. The configuration enhances security by separating management traffic from signaling traffic. As shown in the drawing, the service provider has the option of installing a backup management access network.

Figure 1-8Cisco BTS 10200 Softswitch Network Configuration

Notes for Figure 1-8

1. The following labels represent specific components and functions:
1. IF = Interface. The numbers in IF1, IF2, IF3, and IF4 match the order of appearance in the ifconfig process.

2. A* and B* represent physical IP addresses; A** and B** represent logical IP addresses.

3. Signaling: MGCP, SIP, and H.323 signaling functions use logical IP addresses that are transferred to the other signaling interface when the platform switches over.

4. OMS Hub carries internal communications.

2. The IP addresses shown in the figure are for illustration purposes only. IP address examples beginning with 10.89 indicate externally viewable addresses, and those beginning with 10.10 indicate internal nonroutable addresses. The actual IP address data for each Cisco BTS 10200 Softswitch is in the Network Information Data Sheet (NIDS) that was supplied with your specific system.

3. ICMP Router Discovery Protocol (IRDP) advertisement must be enabled on the routers. IRDP on the management network routers must be set to a priority lower than the IRDP level on the signaling network.

4. “To external NEs” refers to the following links in the service provider network:
 - Uplinks for external access to hosts, used for management services (by SSH, SFTP, and so forth), DNS services, and outbound billing data by FTP or SFTP
 - Uplinks for external communications, used for connection to external NEs over an IRDP-enabled network

5. To access the management network of the Cisco BTS 10200 Softswitch from an external host, we recommend that you deploy the external host on the same network as the CA management networks. If you prefer to deploy the external host on a different network, you must set up a static route on each of the CA hosts, and this allows for administrative access to the CAs from other networks.

6. To support full system redundancy, you must connect the external uplinks from the Catalyst switches to separate routers, as shown in Figure 1-8:
 - There must be dual (redundant) signaling uplinks from each Catalyst switch, so that each Catalyst switch is connected to each signaling router.
 - There must be a single management uplink from Catalyst Switch A to one of the management routers. A second management uplink, from Catalyst B to the other management router, is optional.
 - The routers must be connected to separate networks with diverse routing paths to the applicable external NEs and services (such as OSS, DNS, media gateways, and announcement servers).

7. It is important to ensure redundancy of the DNS lookup function, so that this function is not completely lost in the event of a network outage. We recommend that two (redundant) DNS units be deployed in the service provider network, and that the two DNS units be reachable over separate networks with diverse routing paths. We also recommend that you place the DNSs behind a load balancer so that a single IP address is exported to clients such as the Cisco BTS 10200 Softswitch.

Caution

If each external signaling uplink is not connected as described in Note 6., a single point of failure could cause a traffic interruption.

Note

The system provides additional support for DNS availability through the internal DNS functionality. See the “Internal Secondary Authoritative DNS Server (ISADS)” section on page 1-18.
8. The alarm panel refers to a terminal server (which could be a terminal server built into an alarm panel). It could be customer supplied or Cisco supplied, depending on the hardware options selected. The alarm panel supplied with some Cisco BTS 10200 Softswitch systems is not used for alarms or for aggregation or reporting of machine alarms; it is used as a form of terminal concentrator. The Cisco BTS 10200 Softswitch software does not transmit machine alarms through this port. Instead, machine alarms are sent in alarm reports, as described in the Cisco BTS 10200 Softswitch Operations and Maintenance Guide.

Figure 1-9 shows an example of communication paths between the Cisco BTS 10200 Softswitch and NEs in the managed network. The initial software configuration of the Cisco BTS 10200 Softswitch enables it to communicate with external NEs.

| Caution |

To ensure proper functioning of the network, you must configure the network with at least the level of redundancy, diverse routing, and IRDP functionality shown in this drawing. Otherwise, a single point of failure could cause a traffic interruption.

Figure 1-9 Uplinks and Communications Paths to NEs in the Managed Network

Notes for Figure 1-9:

1. IRDP on the management network routers must be set at a priority lower than the IRDP level on the signaling network.
2. The uplinks are used as follows:
 - Two uplinks for management services (through connection modes such as SSH and SFTP), DNS services, and outbound billing (through FTP and SFTP)
 - Four uplinks for external communications for VoIP signaling based on protocols such as MGCP, SIP, H.323, COPS, and SIGTRAN
Reliability and Availability of Components

Note

The four signaling uplinks must be connected to the appropriate internal VLANs of the Cisco BTS 10200 Softswitch, as shown in Figure 1-9.

3. See also the additional notes provided with Figure 1-8.

Dual Active/Standby Configuration

Each logical component (EMS, BDMS, CA, and FS) is deployed in a dual active/standby configuration, with the two sides running on separate computers (hosts). The active side of each component is backed up by a standby side on the other host. The communication paths among the components are also redundant. The redundant architecture supports the reliability and availability of the entire system. The active and standby sides of each logical component pair operate as follows:

- There is no traffic load-sharing between the active and standby sides; the active side performs all of the call processing, and the standby does none.
- Call and feature data from the active side are replicated to the standby side at specific checkpoints of a call (when a call is answered, released, and so forth).
- An automatic internal audit function runs on the standby side of each component—EMS, BDMS, CA, and FS. It checks all the shared memory tables in the components to verify consistency and to highlight any corruption. The audit reports any data structure inconsistencies or corruption by providing alarms and trace messages.
- Each side maintains a keepalive channel with the corresponding mate side. The keepalive process on each side determines if the mate is faulty. If there is a failure on the active side (or if the operator intentionally brings down the active side), the other side becomes active and takes over the traffic load. All stable calls continue to be processed without any calls being lost. There is no service outage, but during a switchover, transient calls can be impacted.

Note

H.323 call stability relies on H.323 Annex E functionality at both H.323 endpoints.

When the side that failed is brought back in service, it remains in standby mode and the system runs in normal duplex mode.

- IP Manager, a built-in IP management function, provides logical interfaces to several signaling-protocol components (such as MGCP, H.323, and SIP) for remote devices on the currently active CA/FS. If IP Manager detects a CA/FS platform failover (from primary to secondary or vice-versa), it transfers the IP addresses of the logical interfaces over to the newly active CA/FS side.

Note

IP Manager transfers IP addresses only if they are on the same subnet. In the case of a multihomed platform, when one of the interfaces fails, IP Manager does not transfer the IP address to a different interface.

- The operator can manually switch (force) either side to become active, which automatically forces the other side into standby mode.
Process Restartability

When a Cisco BTS 10200 Softswitch process exits because of an internal error (such as SIGSEGV on UNIX) or is terminated by the platform, the system automatically restarts the process that shut down. Restarting the process is a preferred alternative to switching over to the mate, because the restart preserves stable calls and also attempts to preserve transient calls. When a process is restarted, the process audits information such as resource states and attempts to repair inconsistencies. If a process experiences a high failure rate (even after repeated restarts), the system switches over to the mate.

Automatic Restart Function

The automatic restart function performs as follows:

- If a platform (EMS/FS/CA) transitions to OOS-FAULTY, the system automatically saves data useful for offline debugging (trace logs, status files, cores, and so forth). In many cases the system then automatically attempts to restart the platform to the STANDBY state. The automatic restart is intended to reduce the risk of outages by reducing the amount of time the system is in simplex mode.

- If a process exceeds the maximum number of restarts, the system initiates a switchover of the affected platform. A switchover is more efficient than allowing the platform to transition to the OOS-FAULTY state, which requires the standby side to go through the taxing database copy process. However, the system does not automatically save debugging data during this switchover.

For more detailed information on this process, see the Cisco BTS 10200 Softswitch Troubleshooting Guide.

Asynchronous DNS Lookup Function

The asynchronous DNS lookup feature allows the BTS 10200 to continue call processing for MGCP-based calls while it is performing a DNS lookup. (Synchronous lookup means that call processing is delayed until the DNS lookup is complete; asynchronous lookup means that call processing continues without waiting for the completion of the lookup.) This feature makes the BTS 10200 robust in case of DNS server failures.

If the DNS server(s) fail or exhibit poor response times, synchronous DNS function calls could seriously impact call processing by throttling new calls and failing existing calls. Very slow DNS responses from improperly provisioned media gateway (MGW) fully qualified domain names (FQDNs) or slower responses from any MGW FQDNs that are not provisioned in the DNS server seriously impact existing call processing. Even call processing for MGWs that have very fast DNS responses can be impacted.

The scope of this feature is limited to the MGCP interface only. The supported protocols include all gateway control protocols (xGCP), including PacketCable NCS and TGCP.

The BTS 10200 launches asynchronous DNS lookups to resolve FQDNs of the MGWs while attempting to send MGCP messages. It also makes the resolved IP addresses for FQDNs available to the standby side of the BTS 10200 for instant use without launching new DNS queries. When a BTS 10200 is started or restarted, it starts using the IP address in the BTS 10200 internal MGW DNS cache if available, and also triggers reconfirmation of that IP address from the DNS server.

The applicable parameters for this feature are src-addr-change-action and domain-name-caching-sup in the Media Gateway Profile (mgw-profile) table. There is also one provisionable timing parameter, max-num-of-dns-lookups in the Call Agent Configuration (ca-config) table. The operator can provision these parameters to accept or reject and confirm or ignore the IP address of any FQDN and update the...
IP address if it is different. When an MGW reboots, the BTS 10200 (if provisioned with the default setting, src-addr-change-action=confirm) reconfirms its IP address from a DNS server and updates it in the BTS 10200 internal MGW DNS cache if the IP address there is different.

Cisco Specified Hardware

The Cisco BTS 10200 Softswitch software must be loaded on the appropriate Cisco specified hardware. Hardware options are listed in the Cisco BTS 10200 Softswitch Release Notes.

General Hardware Description

Each newly installed Cisco BTS 10200 Softswitch requires the following hardware. See the Cisco BTS 10200 Softswitch Release Notes for information regarding specific hardware models and Solaris patch levels.

- Four UNIX-based host machines running the Solaris operating system.
- Two Cisco Catalyst Fast Ethernet Switches
- Terminal server (or alarm panel that includes a terminal server)
- DC power distribution unit (PDU) or two AC power strips, as applicable

Two host machines are used for the EMS/BDMS components, and two host machines are used for the CA/FS components. The use of duplex host machines supports the redundancy operations of the logical components.

Important Notices

Equipment must be mounted in racks or cabinets that meet local service provider site requirements. Rack configurations can vary according to service provider requirements and preferences.

Consult your Cisco account team to determine which platform option best fits your current and future network requirements and traffic levels. Your Cisco account team can also provide you with options for purchasing hardware directly from Cisco or through a reference sale.

Cisco TAC does not support hardware purchased directly from Sun or another vendor. Hardware support contracts should be purchased from Sun, or a Sun value added reseller.

Caution

Be sure to use one of the hardware sets specified by Cisco in the Cisco BTS 10200 Softswitch Release Notes. Cisco TAC supports only Cisco BTS 10200 Softswitch systems running on these Cisco specified hardware configurations. The software is not supported on any other types or combinations of hardware.

Cables

The procedures for connecting the intershelf cables (those that connect the various host machines and Ethernet Switches within the Cisco BTS 10200 Softswitch) are documented in the Cisco BTS 10200 Softswitch Cabling and IRDP Procedures. If your hardware was purchased as part of a complete integrated and tested system from Cisco Systems, the intershelf cables are included with your order.
Cables for connections to external NEs are not included with the Cisco BTS 10200 Softswitch order and are customer supplied.

Operator Access

System administrators and operators can access the Cisco BTS 10200 Softswitch using a number of interfaces, including secure shell (SSH) session to the EMS over Ethernet, and OSS and NMS connections. Communications can be interactive or in batch mode (batch mode uses SFTP). See the “EMS Functions” section on page 1-14 for additional user interface options.
Supported Signaling Protocols

Revised: February 7, 2008, OL-11755-03

The Cisco BTS 10200 Softswitch supports the following types of external signaling protocols:

- Media Gateway Control Protocol (MGCP) line
- MGCP Channel-Associated Signaling (CAS)
- Integrated Services Digital Network (ISDN) primary rate interface (PRI)
- Signaling Transport (SIGTRAN) for SS7 applications, including ISDN user part (ISUP) support for several national ISUP variants
- H.323
- Session Initiation Protocol (SIP) and SIP-T
- PacketCable-based signaling protocols:
 - Network-Based Call Signaling (NCS) protocol
 - Trunking Gateway Control Protocol (TGCP)
 - DQoS/COPS query and response protocol
 - Remote authentication dial-in user service (RADIUS) authentication protocol (IETF RFC 2865)

The Cisco BTS 10200 Softswitch interworks with a wide range of network elements (NEs), but there are certain limitations. We recommend that you keep the following caution in mind as you prepare to purchase and use NEs for your network.

Caution

Some signaling features involve the use of other NEs deployed in the service provider network, for example, gateways, media servers, announcement servers, eMTAs, H.323 endpoints, and SIP phones. See the “Component Interoperability” section of the Release Notes for a complete list of the specific peripheral platforms, functions, and software loads that have been used in system testing for interoperability with the Cisco BTS 10200 Softswitch Release 5.0 software. Earlier or later releases of platform software might be interoperable and it might be possible to use other functions on these platforms. The list in the Release Notes certifies only that the required interoperation of these platforms, the functions listed, and the protocols listed have been successfully tested with the Cisco BTS 10200 Softswitch.

The signaling types are described in more detail in the sections that follow:

- MGCP Line Signaling Support, page 2-2
- MGCP CAS Signaling Support, page 2-3
MGCP Line Signaling Support

Media gateways (MGWs) provide bearer paths between voice and packet networks. MGWs also provide connection control, endpoint control, auditing, and status functions. These gateways are equipped with voice coders that convert voice into packets, and voice decoders that convert packets into voice. Connections are grouped in calls, which means that a call can have one or more connections. One or more Call Agents (CAs) set up the connections and calls.

The Cisco BTS 10200 Softswitch connects to a variety of MGWs using Media Gateway Control Protocol (MGCP), and provides voice over IP (VoIP) bearer-path control. This implementation is based upon the evolving industry standards for MGCP, including the following MGCP variants:

- MGCP (IETF Version 0.1, Draft 5, February 1999)
- MGCP (IETF RFC 2705, Version 1.0, October 1999)

Note
The MGCP-VERSION and MGCP-VARIANT parameters in the MGW-PROFILE table are used to identify the MGCP version and variant that an MGW supports.

General Functions of the MGCP Interface

The MGCP interface performs the following functions:

- Handles MGW initialization
- Provides endpoint auditing
- Provides MGW fault management
- Provides maintenance and administration of each termination, MGW operational states, and so forth
- Carries call-control signaling
- Carries media-path control signaling

Special Functions of MGCP Interface

The Cisco BTS 10200 Softswitch supports several special-purpose MGCP-based functions:

- Codec selection service—The process a CA uses to find a common codec (coder/decoder) type between an originating and terminating call leg so a call can go through. The preferred codec type for originating and terminating calls is provisioned by the service provider using the QoS table in the Cisco BTS 10200 Softswitch database. The QoS can be configured for a subscriber or trunk group (TG). The CA makes a decision on actual codec type based on a combination of the following conditions:
Codec types available on the MGW—The MGW dynamic profile (list of supported codecs reported by MGW) or MGW static codec list (list of supported codecs configured in the Cisco BTS 10200 Softswitch).

The codec type provisioned in the QoS table—If a certain codec type is provisioned in the QoS table but not available in the MGW dynamic profile or TG profile, that type cannot be used. When no matching code is found, default pulse code modulation mu-law (PCMU) codec is used.

Several codec types are supported, including:

- G.711 mu-law (PCMU)—Default value for codec type
- G.711 A-law (PCMA)
- G.723.1 High rate
- G.723.1 Annex A High rate
- G.723.1 Low rate
- G.723.1 Annex A Low rate
- G.729

Additional codecs—See the QoS table in the Cisco BTS 10200 Softswitch CLI Database for a complete list.

- Resource Reservation Protocol (RSVP)—An Internet Engineering Task Force (IETF) protocol for providing integrated services and reserving resources on the IP network. The service provider provisions the preferred reservation profile (guaranteed, controlled load, or best effort) in the QoS table. When a reservation is needed on a connection, the Cisco BTS 10200 Softswitch specifies the preferred reservation profile to the gateway. Whether or not RSVP is used depends on the configuration of the gateway as well as the preferred reservation profile specified by the Cisco BTS 10200 Softswitch. If the best-effort RSVP profile is specified, RSVP is not performed.

- Announcement server—A media server that stores network-based announcements and plays them to a caller upon request from the Cisco BTS 10200 Softswitch. The announcement server interfaces with the Cisco BTS 10200 Softswitch using MGCP. Every Cisco BTS 10200 Softswitch in the network requires its own announcement server.

- Dual tone multifrequency (DTMF) signaling—Signaling that is transported across the IP network under MGCP control.

- Channel-Associated Signaling (CAS)—Signaling that is used with the MGCP interworking function.

- Voice over ATM (VoATM) support—Configurable parameters that support ATM extensions (AAL1, AAL2, and AAL5) on MGCP.

MGCP CAS Signaling Support

The Cisco BTS 10200 Softswitch supports the following MGCP CAS interfaces:

- Public safety answering point (PSAP) systems interface for 911 emergency services
- Operator services interface, including a legacy operator services interface that uses MF/T1 trunks

Note
The ATM adaptation layer (AAL) is a standards-based layer that allows multiple applications to have data converted to and from an ATM cell. It uses a protocol that translates data for higher-layer services into the size and format of an ATM cell.
PBX interfaces

Note: CAS is used with the MGCP interworking function.

SS7 Signaling Support Through SIGTRAN

The Cisco BTS 10200 Softswitch communicates with Signaling System 7 (SS7)-based PSTN switches and service control points (SCPs) by using a SIGTRAN-based signaling gateway (SG). The SIGTRAN interface carries all SS7 messages encapsulated in IP packets. The Cisco IP Transfer Point (ITP) is one of the SGs used with the Cisco BTS 10200 Softswitch for this purpose.

Interface to the SS7 Network

The basic interface of the Cisco BTS 10200 Softswitch to the SS7 network is shown in Figure 2-1.

For information on compatibility with specific Cisco ITPs, see the “Cisco ITP Signaling Gateways” section in the *Cisco BTS 10200 Softswitch Release Notes*.

The Cisco BTS 10200 Softswitch can be configured to have multiple originating point codes (OPCs). For information on OPCs, network configuration options, and subsystems, see the *Cisco BTS 10200 Softswitch SS7 SIGTRAN Solution Guide*.

For additional information, see the following standards and industry documents:

- ANSI T1.113, *Telecommunications Signaling System No. 7 (SS7)–Integrated Services Digital Network (ISDN) User Part (ISUP)*
- GR-317-CORE, *Switching System Requirements for Call Control Using the Integrated Services Digital Network User Part*
- GR-394-CORE, *Switching System Generic Requirements for Interexchange Carrier Interconnection Using the Integrated Services Digital Network User Part*
- GR-533-CORE, *LSSGR: Database Services Service Switching Points–Toll-Free Service*
- GR-1188-CORE, LSSGR: CLASS Feature: Calling Name Delivery Generic Requirements
- IETF RFC 2960, Stream Control Transport Protocol (SCTP)
- IETF draft-ietf-sigtran-sua-14.txt, Signalling Connection Control Part User Adaptation Layer (SUA)

Support for ISUP Variants

The Cisco BTS 10200 Softswitch supports the following ISUP variants:

- ANSI ISUP (for NANP region, based on Telcordia document GR-317)
- ITU93 White Book ISUP
- European Telecommunications Standards Institute (ETSI) v2 ISUP
- Q.761 Standard
- Q.761 China
- Q.761 Thailand
- Q.761 ETSI v3 Hungary
- Q.761 Standard 97
- Q.761 ETSI v3 France
- Q.761 ETSI v3 Poland
- Q.767 Standard
- Q.767 Mexico
- Q.767 Colombia

ISUP Transparency with the Cisco PGW 2200

ISUP transparency provides the capability for the Cisco BTS 10200 Softswitch to transfer Generic Transparency Descriptor (GTD) messages and information elements across an IP network to a Cisco PGW 2200. In the Cisco PGW 2200, the GTD messages are mapped to ISUP messages, repackaged, and sent out to the PSTN/SS7 network. ISUP transparency is important because it enables the transport of calls from a Session Initiation Protocol (SIP) network through an IP network and out to a PSTN network without any loss of signaling information. ISUP transparency is achieved with the use of the Cisco GTD mechanism. GTD provides a means to specify messages of various protocols used in the PSTN network in plain text format. In that format, they can be easily understood by the network elements (NEs) within the IP network or on the boundary between the PSTN and IP networks.

Note

This feature is supported in Cisco PGW Software Release 9.6(1) and Cisco BTS 10200 Softswitch Software Release 5.0.

The ISUP transparency function on the BTS-PGW interface, illustrated in Figure 2-2, passes normalized parameters to expedite (1) mapping at the PSTN interconnect side and (2) any feature invocation necessary on either the Cisco PGW 2200 or the Cisco BTS 10200 Softswitch. It adds support for GTD attachments to SIP-T trunk messages, allowing the Cisco BTS 10200 Softswitch to interwork with the Cisco PGW 2200 for interconnection to the PSTN.
When the Cisco BTS 10200 Softswitch generates SIP messages to be sent out on SIP-T trunks, a GTD attachment is generated based on the GTD parameters defined in the GTD-PARMS token in the Softswitch Trunk Group Profile (softsw-tg-profile) table. The Cisco PGW 2200 decodes GTD attachments of incoming SIP messages, and converts all GTD parameter contents to the equivalent ISUP values in the appropriate information element on the outgoing PSTN side.

When the egress trunk is a SIP-T trunk, the system supports the mapping of Progress Indication messages from the Cisco BTS 10200 Softswitch to SIP INFO messages with GTD attachments containing Call Progress (CPG) messages. This supported feature applies only to SIP subscribers. When a SIP INFO or RE-INVITE message is received over a SIP-T trunk with a GTD attachment containing a CPG message, a Progress Indication message is generated and sent to the system.

In the deployment model, the Cisco PGW 2200 is the PSTN gateway, and the Cisco BTS 10200 Softswitch provides a residential or Centrex application platform.

PSTN Supplementary Services

The following PSTN supplementary services are enabled by the ISUP transparency feature:

- **Number ID supplementary services**
 - Direct Dial In (DDI)
 - Calling Line Identification Presentation (CLIP)
 - Calling Line Identification Restriction (CLIR)

- **Call diversion supplementary services**
 - Call Forwarding Busy (CFB)
 - Call Forwarding No Reply (CFNR)
 - Call Forwarding Unconditional (CFU)
 - Call Waiting (CW)
 - Call Hold (HOLD)

- **Multiparty supplementary services**
 - Three-Party Service (3PTY)

- **Transparency requirements**
 - Ability to provision which parameters to transport over GTD
 - Call Forwarding No Answer (CFNA)
 - Call Waiting (CW)
 - Call Transfer (SIP Refer is not supported with SIP subscriber Hold signaling)
Chapter 2 Supported Signaling Protocols

SS7 Signaling Support Through SIGTRAN

- Ability to correlate billing records
- Functionality provided by the Cisco PGW 2200
 - Number Portability (NP)
 - NoA relay
 - Information/Information Request (INF/INR) and Identification Request/Identification Response (IDR/IDS) messaging
 - ITU Method 2 circuit selection
 - NoA modification and routing
 - Calling Party Category (CPC) based routing
 - Ability to modify A-number based on B-number and B-number based on A-number
 - Cause analysis
 - Redirecting A-number screening
 - Virtual VPN behavior
 - Calling Party Number (CGPN) Address Presentation Indicators

Call Progress Signaling for SIP Subscriber on Call Hold

The Cisco BTS 10200 Softswitch can be provisioned to send a call-hold event signal to the other party in the call when a SIP subscriber goes on or off hold. This provisioning is done by means of the SIP-SUB-SEND-CPG-ON-HOLD-SIGNAL token in the CA-CONFIG table. The default value of this token is N. Therefore, you must change this value to Y if you want this signal to be sent for all SIP subscribers.

Note

The message sent to mute the media path is always sent to the other party, regardless of this flag setting.

Limitations

This feature is subject to the following limitations:

- SIP Refer is not supported with SIP Subscriber Send CPG on Hold Signaling.
- Overdecadic digits are not supported.
- The Cisco PGW 2200 does not send INR messages to the Cisco BTS 10200 Softswitch. It responds to INR requests with an INF indication that there is no new information.

GTD Parameters Supported

Table 2-1 shows the GTD parameters supported by this feature and indicates the GTD messages in which each parameter is supported. The values in the GTD Parameter and Name columns of this table are placed in the static Generic Transparency Descriptor Parameter Values (gtd-parm-values) table. You select values from the GTD Parameter column to provision the GTD-PARMS token in the Softswitch Trunk Group Profile (softsw-tg-profile) table.

Enabling a parameter causes it to be encoded in an outgoing GTD attachment of a SIP message on the trunk group if the information is available in the call context.
Only the GTD parameter listed for each GTD message type is decoded when a SIP message with a GTD attachment is received by the system from the network.

For example, the GTD ACL parameter in a GTD REL message will be decoded if it is received, whether it is provisioned or not. However, a GTD UUS parameter received in a GTD REL message is ignored, even if it is provisioned, because it is not in the table.

Table 2-1 GTD Parameters and Supported GTD Messages

<table>
<thead>
<tr>
<th>GTD Parameter</th>
<th>Name</th>
<th>GTD IAM</th>
<th>GTD ACM</th>
<th>GTD CPG</th>
<th>GTD ANM</th>
<th>GTD CON</th>
<th>GTD REL</th>
<th>GTD SUS</th>
<th>GTD RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL</td>
<td>Automatic Congestion Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>ATP</td>
<td>Access Transport</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>BCI</td>
<td>Backward Call Indicators</td>
<td></td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAI</td>
<td>Cause Indicators</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDI</td>
<td>Call Diversion Information</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGN</td>
<td>Calling Party Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHN</td>
<td>Charge Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CID</td>
<td>Carrier Identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNN</td>
<td>Connected Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CPC</td>
<td>Calling Party Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPN</td>
<td>Called Party Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSI</td>
<td>Carrier Selection Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIS</td>
<td>Display Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>EVI</td>
<td>Event Information Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>FCI</td>
<td>Forward Call Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCI</td>
<td>Global Call Identification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GEA</td>
<td>Generic Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GED</td>
<td>Generic Digits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEN</td>
<td>Generic Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>GNO</td>
<td>Generic Notification</td>
<td></td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOC</td>
<td>Hop Counter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUR</td>
<td>Jurisdiction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOC</td>
<td>Nature of Connection Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF</td>
<td>Network Specific Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>OBI</td>
<td>Optional Backward Call Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>OCN</td>
<td>Original Called Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLI</td>
<td>Originating Line Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>Redirect Counter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RGN</td>
<td>Redirecting Number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNI</td>
<td>Redirection Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-1 GDT Parameters and Supported GDT Messages (continued)

<table>
<thead>
<tr>
<th>GDT Parameter</th>
<th>Name</th>
<th>GTD IAM</th>
<th>GTD ACM</th>
<th>GTD CPG</th>
<th>GTD ANM</th>
<th>GTD CON</th>
<th>GTD REL</th>
<th>GTD SUS</th>
<th>GTD RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN</td>
<td>Redirection Number</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNR</td>
<td>Redirection Number Restriction</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCI</td>
<td>Service Code Indicator</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRI</td>
<td>Suspend/Resume Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMR</td>
<td>Transmission Medium Required</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNS</td>
<td>Transit Network Selection</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UID</td>
<td>UID Indicators</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UUI</td>
<td>User-To-User Indicators</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UUS</td>
<td>User-To-User Information</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
Columns in Table 2-1 show the GDT message in which each GDT parameter is supported. This information is for reference only and is not provisionable.

Note
UID is only decoded. It is never encoded.

Billing Fields

The BTS 10200 and PGW 2200 produce their own independent billing records. Downstream billing mediation servers use the SIP Call ID to correlate the two records, if required. The SIP Call ID is available in the PGW 2200 CDR record, tag 4203, and in the BTS 10200 CDR record, fields 116 and 144.

Cause Code Selection Precedence

The system performs cause code selection according to the following order of precedence:

1. SIP header reason code
2. GTD body
3. SIP response code

Troubleshooting

There are no troubleshooting tools created specifically for the transparency feature. Use the existing tools to extract traces from log files on the BTS 10200 and the call trace and siptool capabilities on the PGW 2200. Both tools support ASCII attachments such as the GTD attachment.
Provisioning Procedure

See the “ISUP Transparency on the BTS-PGW ISUP Transparency” section in the Cisco BTS 10200 Softswitch Provisioning Guide.

Additional SIGTRAN and SS7 Information

For additional information on provisioning and using SIGTRAN and SS7 protocols on the Cisco BTS 10200 Softswitch, see the SIGTRAN Solution Guide.

ISDN Signaling Support

This section describes the Integrated Services Digital Network (ISDN) Primary Rate Interface (PRI) variants and supplementary services supported by the Cisco BTS 10200 Softswitch. ISDN PRI allows the Cisco BTS 10200 Softswitch to interconnect to small and medium businesses using legacy PBX PRI interfaces. The basic ISDN NEs and signaling connections are shown in Figure 2-3.

Note

Standby elements in the figure are omitted for clarity.

Figure 2-3 Example of ISDN NEs

The design provides for transport of PRI information elements (IEs) and messages. Interoperability is supported with the following PRI variants:

- Nortel DMS-100
- AT&T 4ESS
- Lucent 5ESS
- NI2

The Cisco BTS 10200 Softswitch supports the following capabilities:

- ISDN T1 PRI
- Q.921 and Q.931 network side
- ISDN backhaul communication of Q.931 messages from MGWs to the Cisco BTS 10200 Softswitch
- Facility Associated Signaling (FAS)
- Non-Facility Associated Signaling (NFAS)
- Backup D channel

Note
For additional details and procedures for the Cisco BTS 10200 Softswitch ISDN implementation, see the *Cisco BTS 10200 Softswitch ISDN Provisioning and Troubleshooting Guide*.

H.323 Signaling Support

The Cisco BTS 10200 Softswitch functions as a logical H.323 gateway to communicate with H.323 gatekeepers (GKs), and with Cisco CallManager and other H.323 gateways. The Cisco BTS 10200 Softswitch also provides signaling for other trunks and lines over MGCP and SIP protocols. In addition, it communicates with signaling gateways (SGs) for SS7 signaling and with trunking gateways (TGWs) that provide the bearer path to the PSTN. This allows H.323 Internet VoIP traffic to be carried seamlessly into the PSTN networks.

These signaling links are shown in [Figure 2-4](#).

Note
You can configure up to four logical H.323 gateways on the Cisco BTS 10200 Softswitch.
The interoperability between the Cisco BTS 10200 Softswitch, Cisco CallManager, and Cisco IOS H.323 gateways enhances the delivery of call control features between enterprise networks and service provider networks. These systems interoperate to provide subscriber features such as call forwarding, call waiting, call transfer, and three-way calling. The Cisco BTS 10200 Softswitch can be used to connect calls between two phones that reside on different Cisco CallManager systems (see Figure 2-5). Signaling of certain information, for example connected name and number information, is transparently passed from the terminating Cisco CallManager to the Cisco BTS 10200 Softswitch and back to the originating Cisco CallManager.
SIP and SIP-T Signaling Support

The Cisco BTS 10200 Softswitch uses Session Initiation Protocol (SIP) and SIP for telephones (SIP-T) signaling to communicate with other SIP-based NEs. This implementation is based upon the evolving industry standards for SIP, including IETF document RFC 3261, *SIP: Session Initiation Protocol*.

This section provides an overview of SIP implementation on the Cisco BTS 10200 Softswitch. For SIP feature details and applicable procedures, see the *Cisco BTS 10200 Softswitch SIP Protocol Guide* and the *Cisco BTS 10200 Softswitch SIP Protocol Provisioning Guide*.

SIP Functions

The Cisco BTS 10200 Softswitch supports both SIP trunks and SIP-based subscriber lines (SIP phones). It provides the following SIP-related functions:

- Protocol conversion between SIP and several other protocols, including SS7, PRI, H.323, MGCP, and CAS
- Tandem back-to-back user agent (UA) for direct SIP-to-SIP calls (trunk to trunk, phone to phone, and trunk to/from phone), and SIP-to-SIP-T calls
Note

There is no provisioning associated with the back-to-back UA functionality. The Cisco BTS 10200 Softswitch automatically acts as a back-to-back UA when there is a SIP-to-SIP call.

- SS7 bridging between softswitches by means of SIP-T methods
- Native support of SIP endpoints such as SIP phones, including authentication and registration management. (For example, the Cisco BTS 10200 Softswitch maintains the current location of SIP subscribers.)
- Verification of the SIP REGISTER message to ensure that it came from a provisioned endpoint

SIP roles performed by the Cisco BTS 10200 Softswitch include:
- User agent server (UAS)
- User agent client (UAC)
- Registrar

Applicable SIP references are listed in the “SIP and SIP-T References” section on page 2-15.

SIP Features

The Cisco BTS 10200 Softswitch supports the following SIP features:

- Reliable provisional response
- 3XX redirect response on SIP trunks
- SIP hairpin
- Third-party call control (3PCC)
- ANI-based routing for SIP calls
- DTMF relay for communications with interactive voice response (IVR) servers
 - SUBSCRIBE/NOTIFY method
 - INFO method
- Message waiting indicator
- Diversion header
- UAC and UAS forking
- SIP session timer
- Type of service (ToS) for SIP signaling
- DNS services (DNS SRV) lookup for initiating SIP calls
- DNS naming authority pointer (NAPTR) lookup for initiating SIP calls
- Mapping the carrier identification code (CIC) in the SIP uniform resource identifier (URI) to a transit network selection (TNS)
- SIP register
- SIP authentication
- SIP refer
- SIP trunk audit
- SIP-trunk route advance with provisionable timer for Invite retransmission

SIP-T Support

The Cisco BTS 10200 Softswitch supports SIP-T functions. SIP-T is used to bridge calls between two SS7 networks. SIP-T encapsulates the SS7 ISUP information elements (based on GR-317 ISUP version) and carries them through the packet network. It provides for encapsulation/decapsulation at the PSTN gateways and helps route the call through the packet network. SIP-T functions are described in IETF RFC 3398, *Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping*.

FCP Interface

The Cisco BTS 10200 Softswitch uses Feature Control Protocol (FCP) for internal communications between the Call Agent (CA) and Feature Server (FS) components. FCP is a Multipurpose Internet Mail Extension (MIME) application on top of SIP. FCP uses SIP for transport, and carries call state control and status information needed for feature control.

SIP Billing Support

The Cisco BTS 10200 Softswitch provides call data for billing on SIP calls. Specific fields are supported in the call detail records for calls that originate or terminate on a SIP trunk or subscriber line. For detailed information on billing management and data, see the *Cisco BTS 10200 Softswitch Billing Interface Guide*.

SIP and SIP-T References

The BTS 10200 SIP implementation is based on the evolving standards in the Internet Engineering Task Force (IETF) Request for Comments (RFC) publications, and may not be fully compliant in all cases. The BTS 10200 is largely compliant with RFC 3261. For the level of compliance with other RFC publications and drafts, see the specific feature descriptions in the *Cisco BTS 10200 Softswitch SIP Feature and Provisioning Guide*.

PacketCable-Based Signaling Support

This section summarizes Cisco BTS 10200 Softswitch support for PacketCable-based signaling and includes the following topics:

- PacketCable-Based Functions, page 2-16
- Event Message Implementation, page 2-17
- Security Implementation, page 2-18
PacketCable-Based Functions

In a PacketCable-based network, the Cisco BTS 10200 Softswitch functions as both a call management server (CMS) and a media gateway controller (MGC).

The Cisco BTS 10200 Softswitch provides call control, call routing, and signaling for several types of NEs:

- Multimedia terminal adapters (MTAs) and embedded MTAs (eMTAs)
- Cable modem termination systems (CMTSs)
- Trunking gateways (TGWs)

The Cisco BTS 10200 Softswitch supports cable access for voice application, including communications with the Cisco UBR 7246 and Cisco UBR 924 universal broadband routers. It also provides interfaces to Record Keeping Servers (RKSs) for billing purposes, and IP security functions.

The Cisco BTS 10200 Softswitch supports for the following PacketCable-based protocols and functions:

- Network-Based Call Signaling (NCS) protocol.
- Trunking Gateway Control Protocol (TGCP).

Note

The NCS protocol and TGCP are based on MGCP; they are referred to as profiles of MGCP.

- Dynamic Quality of Service (DQoS)/Common Open Policy Service (COPS) query and response protocol.
- RADIUS authentication protocol (IETF RFC 2865), used for transmission of event messages (EMs) to an external RKS for billing purposes.
- Security features, including implementation of IP security (IPsec) architecture, key management using Internet Key Exchange (IKE) and Kerberos, and encryption of certain IPsec keys.
- Interface for support of lawful intercept and the Communications Assistance for Law Enforcement Act (CALEA). See the “Lawful Intercept Interface” section in the Cisco BTS 10200 Softswitch Network and Subscriber Feature Descriptions document for a description of this feature.

Note

For detailed information on compliance with specific paragraphs of the IETF standards (for TGCP, IP Security, NCS, and so forth), contact your Cisco account team.

Figure 2-6 shows a typical network with PacketCable-based NEs and the applicable external interfaces of the Cisco BTS 10200 Softswitch.
Event Message Implementation

This section describes the implementation of the event message (EM) feature on the Cisco BTS 10200 Softswitch. EMs are real-time call data records containing information about network usage and activities. They are typically used for billing purposes in a PacketCable-based network. The Cisco BTS 10200 Softswitch (which performs the CMS and MGC functions) transfers EMs to an external RKS that assembles call detail records (CDRs) from the EMs.

Note

Event messages are also transmitted over RADIUS from the Cisco BTS 10200 Softswitch to a CALEA interface, with IPsec for encryption and authentication, and IKE for key management.

Figure 2-7 illustrates the PacketCable NEs and interfaces involved in the generation and processing of EMs.
Notes for Figure 2-7

1. **MGC to RKS**—EMs generated by the MGC function in the Cisco BTS 10200 Softswitch are sent to the RKS.
2. **CMS to RKS**—EMs generated by the CMS function in the Cisco BTS 10200 Softswitch are sent to the RKS.
3. **CMTS to RKS**—EMs generated by the CMTS are sent to the RKS. The Cisco BTS 10200 Softswitch (MGC/CMS) is not involved.
4. **CMS to CMTS**—The CMS function in the Cisco BTS 10200 Softswitch sends the Billing Correlation ID (BCID) to the CMTS using the DQoS GateSet message.
5. **CMS to MGC**—There is an internal exchange of originating/terminating information such as BCID and FEID.

Note For additional technical discussion, prerequisites, and provisioning steps, see the *Cisco BTS 10200 Softswitch PacketCable Protocol Guide.*

Security Implementation

The implementation of PKT-SP-SEC-I07-021127, *PacketCable Security Specification*, November 27, 2002, provides a security scheme for the voice-over-cable network based on a set of security protocols. These protocols, described in the documents listed below, provide authentication (to help prevent theft of bandwidth, denial-of-service attack, replay, and so forth) and enable message integrity, privacy, and confidentiality.

- IETF documents covering IPsec architecture:
- IETF documents covering key management protocols IKE and Kerberos with extensions:
 - RFC 2409, *The Internet Key Exchange (IKE)*, November 1998
 - RFC 1510, *The Kerberos Network Authentication Service (V5)*, September 1993, with updates presented in PKT-SP-SEC-I06-021018
The Cisco BTS 10200 Softswitch performs the security functions of the CMS and MGC in the PacketCable environment. It supports security in accordance with PKT-SP-SEC-I07-021127 for both signaling and media:

- **Signaling security**—For signaling from CMS to eMTA, CMS to CMTS, and MGC to TGW
- **Media (bearer) security**—For signaling between originating eMTA and terminating eMTA, which is facilitated by the CMS during call signaling setup.

A special parameter, IPSEC_ENABLED, must be set in the optcall configuration file (optcall.cfg) at the time of software installation to enable the IPsec feature. The IPSEC_ENABLED value cannot be changed by use of CLI commands.

Note

The value of the IPSEC_ENABLED parameter and all other optcall.cfg parameters for your installation are listed in the *Network Information Data Sheet* that Cisco provided with your system.
Revised: February 7, 2008, OL-11755-03

This glossary includes acronyms and terms used in this document, along with a number of terms used in other Cisco BTS 10200 Softswitch documentation and the voice-over-IP industry.

A

AAA Authorization, Authentication, and Accounting
AC automatic callback
AC_ACT automatic callback activation
AC_DEACT automatic callback deactivation
ACG automatic call gap
ACR anonymous call rejection
ACR_ACT anonymous call rejection activation
ACR_DEACT anonymous call rejection deactivation
ACRA anonymous call rejection activation
ACRD anonymous call rejection deactivation
ADSL asymmetric digital subscriber line
AGW access gateway
AIN Advanced Intelligent Network
AIOD automatic identified outward dialing
ALI automatic location identification
AMA automated message accounting
ANC Announcements module
ANI automatic number identification
ANS announcement server
ANSI American National Standards Institute
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>application programming interface</td>
</tr>
<tr>
<td>AR</td>
<td>automatic recall</td>
</tr>
<tr>
<td>AR_ACT</td>
<td>automatic recall activation</td>
</tr>
<tr>
<td>AR_DEACT</td>
<td>automatic recall deactivation</td>
</tr>
<tr>
<td>AT</td>
<td>access tandem</td>
</tr>
<tr>
<td>ATA</td>
<td>analog telephone adaptor</td>
</tr>
<tr>
<td>ATIS</td>
<td>Alliance for Telecommunications Industry Solutions</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>AUEP</td>
<td>audit-endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-number</td>
<td>DN that a user enters as the forward-to number, also referred to as MN</td>
</tr>
<tr>
<td>BAF</td>
<td>Bellcore AMA format</td>
</tr>
<tr>
<td>BBG</td>
<td>basic business group</td>
</tr>
<tr>
<td>BCM</td>
<td>Basic Call module</td>
</tr>
<tr>
<td>BDMS</td>
<td>Bulk Data Management System</td>
</tr>
<tr>
<td>BEM</td>
<td>billing event message</td>
</tr>
<tr>
<td>BGDP</td>
<td>basic group dialing plan</td>
</tr>
<tr>
<td>BGL</td>
<td>business group line</td>
</tr>
<tr>
<td>BLA</td>
<td>billing adapter</td>
</tr>
<tr>
<td>BLV</td>
<td>Busy Line Verification</td>
</tr>
<tr>
<td>BP</td>
<td>block pair</td>
</tr>
<tr>
<td>BRIDS</td>
<td>Bellcore rating input database system</td>
</tr>
<tr>
<td>BS</td>
<td>billing server</td>
</tr>
<tr>
<td>BTA</td>
<td>basic trading area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>Call Agent</td>
</tr>
</tbody>
</table>
CAC: carrier access code
CAD: CORBA adapter interface
CALEA: Communications Assistance for Law Enforcement Act
CAMA: centralized automatic message accounting
CAS: Channel-Associated Signaling
CAT: customer access treatment
CBLK: call block (reject caller)
CBR: constant bit rate
CCS: common channel signaling
CCW: cancel call waiting
CDB: call detail block
CDP: custom dial plan
CDR: call detail record
CE: computing element
CFB: call forwarding on busy
CFBVA: call forwarding on busy variable activation
CFBVD: call forwarding on busy variable deactivation
CFNA: call forwarding on no answer
CFNAVA: call forwarding on no answer variable activation
CFNAVD: call forwarding on no answer variable deactivation
CFU: call forwarding unconditional
CFUA: call forwarding unconditional activation
CFUD: call forwarding unconditional deactivation
CFVBBG: call forwarding variable for basic business group
CFVABBG: CFVBBG activation
CFx: A general reference to all of the forwarding features (CFB, CFNA and CFU)
CHD: call hold
CIC: circuit identification code, carrier identification code
CID: calling identity delivery; caller ID (see also CND)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIDB</td>
<td>calling identity delivery blocking</td>
</tr>
<tr>
<td>CIDCW</td>
<td>calling identity delivery on call waiting</td>
</tr>
<tr>
<td>CIDS</td>
<td>calling identity delivery and suppression (per call)</td>
</tr>
<tr>
<td>CIDSD</td>
<td>calling identity delivery and suppression (per call)—delivery part</td>
</tr>
<tr>
<td>CIDSS</td>
<td>calling identity delivery and suppression (per call)—suppression part</td>
</tr>
<tr>
<td>CIP</td>
<td>carrier identification parameter</td>
</tr>
<tr>
<td>CLASS</td>
<td>custom local area signaling services</td>
</tr>
<tr>
<td>CLC</td>
<td>Carrier liaison committee</td>
</tr>
<tr>
<td>CLEC</td>
<td>competitive local exchange carrier</td>
</tr>
<tr>
<td>CLEI</td>
<td>common language equipment identifier</td>
</tr>
<tr>
<td>CLI</td>
<td>command-line interface</td>
</tr>
<tr>
<td>CLIP</td>
<td>calling line identification presentation</td>
</tr>
<tr>
<td>CLIR</td>
<td>calling line identification restriction</td>
</tr>
<tr>
<td>CLLI</td>
<td>Common Language Location Identifier</td>
</tr>
<tr>
<td>CMIP</td>
<td>Common Management Information Protocol</td>
</tr>
<tr>
<td>CMS</td>
<td>call management system</td>
</tr>
<tr>
<td>CMTS</td>
<td>Cable modem termination system</td>
</tr>
<tr>
<td>CNAB</td>
<td>calling name delivery blocking</td>
</tr>
<tr>
<td>CNAM</td>
<td>calling name delivery</td>
</tr>
<tr>
<td>CND</td>
<td>calling number delivery, calling number display</td>
</tr>
<tr>
<td>CNDB</td>
<td>calling number delivery blocking</td>
</tr>
<tr>
<td>CNM</td>
<td>connection module, customer network management</td>
</tr>
<tr>
<td>CO</td>
<td>central office</td>
</tr>
<tr>
<td>COCUS</td>
<td>central office code utilization survey</td>
</tr>
<tr>
<td>CODEC</td>
<td>coder/decoder, compression/decompression</td>
</tr>
<tr>
<td>COPS</td>
<td>Common Open Policy Service Protocol</td>
</tr>
<tr>
<td>CORBA</td>
<td>Common Object Request Broker Architecture</td>
</tr>
<tr>
<td>COS</td>
<td>class of service</td>
</tr>
<tr>
<td>COT</td>
<td>customer-originated trace, continuity testing, central office termination</td>
</tr>
</tbody>
</table>
CPCN certificate of public convenience and necessity
CPE customer premises equipment
CPRK call park
CPRK_RET call park retrieve
CPSG call park subscriber group
CPU call pickup, central processing unit
CS Capability set (for example, CS-2)
CSA Callpath services architecture
CSN circuit switched network
CSR Carrier sensitive routing
CT call transfer, call type
CVR circuit validation response
CVT circuit validation test
CW call waiting
CWI call waiting indication

D
DA directory assistance, distinctive alerting
DACWI distinctive alerting call waiting indication
DPN directed call pickup without barge-in
DPU directed call pickup with barge-in
DF delivery function (CALEA)
DID direct inward dialing
DLEC data local exchange carrier
DN directory number
DND do not disturb
DNIS dialed number identification service
DNS domain name system
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD</td>
<td>direct outward dialing</td>
</tr>
<tr>
<td>DOW</td>
<td>day of week</td>
</tr>
<tr>
<td>DOY</td>
<td>day of year</td>
</tr>
<tr>
<td>DP</td>
<td>dial plan, dial pulse, demarcation point</td>
</tr>
<tr>
<td>DPN</td>
<td>directed call pickup without barge-in</td>
</tr>
<tr>
<td>DPN_O</td>
<td>directed call pickup without barge-in (originate)</td>
</tr>
<tr>
<td>DPN_T</td>
<td>directed call pickup without barge-in (terminate)</td>
</tr>
<tr>
<td>DPU</td>
<td>directed call pick-up with barge-in</td>
</tr>
<tr>
<td>DPU_O</td>
<td>directed call pickup with barge-in (originate)</td>
</tr>
<tr>
<td>DPU_T</td>
<td>directed call pickup with barge-in (terminate)</td>
</tr>
<tr>
<td>DQoS</td>
<td>dynamic quality of service</td>
</tr>
<tr>
<td>DRCW</td>
<td>distinctive ringing/call waiting</td>
</tr>
<tr>
<td>DRCW_ACT</td>
<td>distinctive ringing/call waiting activation</td>
</tr>
<tr>
<td>DPC</td>
<td>destination point code</td>
</tr>
<tr>
<td>DQoS</td>
<td>dynamic quality of service</td>
</tr>
<tr>
<td>DSL</td>
<td>digital subscriber line</td>
</tr>
<tr>
<td>DSP</td>
<td>digital signal processing</td>
</tr>
<tr>
<td>DSX</td>
<td>digital system cross-connect frame</td>
</tr>
<tr>
<td>DTMF</td>
<td>dual tone multifrequency</td>
</tr>
<tr>
<td>E</td>
<td>European equivalent of T1</td>
</tr>
<tr>
<td>E-1</td>
<td>European equivalent of T1</td>
</tr>
<tr>
<td>E-911</td>
<td>Enhanced 911</td>
</tr>
<tr>
<td>E & M</td>
<td>“Ear and Mouth” switch-to-switch signaling on PSTN</td>
</tr>
<tr>
<td>EA</td>
<td>equal access</td>
</tr>
<tr>
<td>EC</td>
<td>echo cancellation</td>
</tr>
<tr>
<td>ECSA</td>
<td>Exchange Carriers Standards Association</td>
</tr>
<tr>
<td>EDP</td>
<td>event detection point</td>
</tr>
</tbody>
</table>
EM
 event message

EMS
 Element Management System, Event Messages Specification (PacketCable)

eMTA
 Embedded multimedia terminal adapter

EPOM
 Extensible Provisioning and Operation Manager

ERC
 easily recognizable codes

ERQNT
 Embedded Request for Notification

ESB
 Emergency Service Bureau

ESL
 emergency service line

ESP
 encapsulating security payload

ETSI
 European Telecommunications Standards Institute

F

FCAPS
 fault, configuration, accounting, performance, and security

FCI
 furnish charging information

FCP
 Feature Control Protocol

FGB
 Feature group B

FGD
 Feature group D

FIM
 feature interaction manager

FS
 Feature Server

FSAIN
 Feature Server for Advanced Intelligent Network services

FSPTC
 Feature server for POTS, Tandem, and Centrex services

FTP
 File Transfer Protocol

FXO
 Foreign Exchange Office

FXS
 Foreign Exchange Station

G

GAP
 generic address parameter
<table>
<thead>
<tr>
<th>Glossary</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM</td>
<td>global system for mobile communications</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>H</td>
<td>hybrid fiber coax</td>
</tr>
<tr>
<td>HFC</td>
<td>home location register</td>
</tr>
<tr>
<td>HLR</td>
<td>home numbering plan area</td>
</tr>
<tr>
<td>HNPA</td>
<td>home numbering plan area</td>
</tr>
<tr>
<td>HTML</td>
<td>HyperText Markup Language</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>I</td>
<td>integrated access device</td>
</tr>
<tr>
<td>IAD</td>
<td>Internet Assigned Numbers Authority</td>
</tr>
<tr>
<td>IANA</td>
<td>Internet Assigned Numbers Authority</td>
</tr>
<tr>
<td>IAP</td>
<td>intercept access point</td>
</tr>
<tr>
<td>ICAP</td>
<td>Inter-call Agent Protocol</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>IDDD</td>
<td>international direct distance dialing</td>
</tr>
<tr>
<td>IE</td>
<td>information element</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IKE</td>
<td>Internet key exchange</td>
</tr>
<tr>
<td>ILEC</td>
<td>incumbent local exchange carrier</td>
</tr>
<tr>
<td>IMT</td>
<td>intermachine trunk</td>
</tr>
<tr>
<td>IN</td>
<td>intelligent network</td>
</tr>
<tr>
<td>INC</td>
<td>Industry Numbering Committee</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPM</td>
<td>impulses per minute</td>
</tr>
<tr>
<td>Ipsec</td>
<td>Internet Protocol (IP) security</td>
</tr>
<tr>
<td>IRDP</td>
<td>ICMP Router Discovery Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>ISA</td>
<td>ISDN adapter</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>ISFG</td>
<td>Incoming simulated facility group</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet service provider</td>
</tr>
<tr>
<td>ISS</td>
<td>ISDN stack</td>
</tr>
<tr>
<td>ISUP</td>
<td>ISDN user part</td>
</tr>
<tr>
<td>ITP</td>
<td>IP transfer point</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>IVR</td>
<td>interactive voice response</td>
</tr>
<tr>
<td>IXC</td>
<td>interexchange carrier</td>
</tr>
<tr>
<td>JCA</td>
<td>Java cryptography architecture, Java console agent</td>
</tr>
<tr>
<td>JCM</td>
<td>Java console module</td>
</tr>
<tr>
<td>JDBC</td>
<td>Java database connectivity</td>
</tr>
<tr>
<td>JMS</td>
<td>Java message service</td>
</tr>
<tr>
<td>KAM</td>
<td>keepalive module</td>
</tr>
<tr>
<td>Kbps</td>
<td>kilobits per second</td>
</tr>
<tr>
<td>KDC</td>
<td>key distribution center</td>
</tr>
<tr>
<td>LAF</td>
<td>log archive file</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LATA</td>
<td>local access and transport area</td>
</tr>
<tr>
<td>LCD</td>
<td>limited call duration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>LCR</td>
<td>least cost routing</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LEC</td>
<td>local exchange carrier</td>
</tr>
<tr>
<td>LERG</td>
<td>local exchange routing guide</td>
</tr>
<tr>
<td>LIDB</td>
<td>line information database</td>
</tr>
<tr>
<td>LNP</td>
<td>local number portability</td>
</tr>
<tr>
<td>LPC</td>
<td>local point code</td>
</tr>
<tr>
<td>LRN</td>
<td>local routing number</td>
</tr>
<tr>
<td>LRQ</td>
<td>location request (H.323 signaling)</td>
</tr>
<tr>
<td>LRU</td>
<td>least recently used</td>
</tr>
<tr>
<td>LSA</td>
<td>local serving area</td>
</tr>
<tr>
<td>LSSGR</td>
<td>LATA Switching Systems Generic Requirements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>megabits per second</td>
</tr>
<tr>
<td>Mbps</td>
<td>multiple call forwarding</td>
</tr>
<tr>
<td>MCF</td>
<td>media gateway control stack</td>
</tr>
<tr>
<td>MDC</td>
<td>midcall</td>
</tr>
<tr>
<td>MDN</td>
<td>multiple directory numbers</td>
</tr>
<tr>
<td>MF</td>
<td>multifrequency</td>
</tr>
<tr>
<td>MG (MGW)</td>
<td>media gateway</td>
</tr>
<tr>
<td>MGA</td>
<td>media gateway adapter</td>
</tr>
<tr>
<td>MGC</td>
<td>media gateway controller</td>
</tr>
<tr>
<td>MGCP</td>
<td>Media Gateway Control Protocol</td>
</tr>
<tr>
<td>MGW</td>
<td>media gateway</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MIME</td>
<td>Multipurpose Internet Mail Extensions</td>
</tr>
<tr>
<td>MLHG</td>
<td>multiline hunt group</td>
</tr>
</tbody>
</table>
MN (See B-number)
MN M maintenance module
ms millisecond
MSA Metropolitan Statistical Area
MSU message signal units
MTA Multimedia terminal adapter
MTP Message transport part
MTU maximum transmission unit
MWI message waiting indicator

N
NANP North American Numbering Plan
NANPA North American Numbering Plan Administration
NAS network access server
NCS Network-Based Call Signaling protocol
NE network element
NEBS Network Equipment Building Standards
NFAS Non-Facility Associated Signaling
NIS Network information service
NMS network management system
NO network operator
NOA nature of address
NOC network operations center
NOD nature of dial
NPA Numbering Plan Area
NSE name signaling event
NTP Network Time Protocol
NU network unit
nxx NANP digits: n=2, 3, …9 and x=0, 1, …9

O

OAM operations, administration, and maintenance, Operations administration module
OAM&P operations, administration, maintenance, and provisioning
OCB outgoing call barring
OCN operating company number
OBCSM originating basic call state machine
OI operator interrupt
OLI originating line information
OMS OptiCall Messaging System
OPC originating point code
OPT Open Packet Telephony
OS operating system
OSA open service adapter
OSFG outgoing simulated facility group
OSI Open Systems Interconnection
OSS Operations Support System
OSSGR Operator Services Systems Generic Requirements

P

PBX private branch exchange
PCM pulse code modulation
PCMA pulse code modulation A law
PCMU pulse code modulation mu law
PCPS Per-call presentation status
PCS personal communications services
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCSNDB</td>
<td>personal communications services numbering database</td>
</tr>
<tr>
<td>PDU</td>
<td>power distribution unit</td>
</tr>
<tr>
<td>PIC</td>
<td>presubscribed interexchange carrier; point in call</td>
</tr>
<tr>
<td>PLT</td>
<td>platform</td>
</tr>
<tr>
<td>POI</td>
<td>point of interface, point of interconnection</td>
</tr>
<tr>
<td>POP</td>
<td>point of presence</td>
</tr>
<tr>
<td>POPD</td>
<td>public office dialing plan</td>
</tr>
<tr>
<td>POSIX</td>
<td>Portable Operating System Interface UNIX</td>
</tr>
<tr>
<td>POTS</td>
<td>plain old telephone service</td>
</tr>
<tr>
<td>PPP</td>
<td>Point to Point Protocol</td>
</tr>
<tr>
<td>PPQ</td>
<td>point to point queuing</td>
</tr>
<tr>
<td>PPS</td>
<td>permanent presentation status</td>
</tr>
<tr>
<td>PRI</td>
<td>primary rate interface</td>
</tr>
<tr>
<td>PS</td>
<td>presentation status</td>
</tr>
<tr>
<td>PSAP</td>
<td>public safety answering point</td>
</tr>
<tr>
<td>PSTN</td>
<td>public switched telephone network</td>
</tr>
<tr>
<td>PVC</td>
<td>permanent virtual circuit</td>
</tr>
</tbody>
</table>

Q

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS</td>
<td>quality of service</td>
</tr>
<tr>
<td>QVT</td>
<td>query verification tool</td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACF</td>
<td>remote activation of call forwarding</td>
</tr>
<tr>
<td>RACF-PIN</td>
<td>remote activation of call forwarding personal ID number</td>
</tr>
<tr>
<td>RADIUS</td>
<td>remote authentication dial-in user service</td>
</tr>
<tr>
<td>RAID</td>
<td>redundant array of inexpensive disks</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RAS</td>
<td>remote access server</td>
</tr>
<tr>
<td>Registration, Admissions, and Status (signaling function in H.323 for communications to gatekeeper)</td>
<td></td>
</tr>
<tr>
<td>RCF</td>
<td>remote call forwarding</td>
</tr>
<tr>
<td>RDBS</td>
<td>routing database system</td>
</tr>
<tr>
<td>RDM</td>
<td>redundancy module</td>
</tr>
<tr>
<td>RDT</td>
<td>recall dial tone</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comment (IETF)</td>
</tr>
<tr>
<td>RGW</td>
<td>residential gateway</td>
</tr>
<tr>
<td>RIP</td>
<td>Routing Information Protocol</td>
</tr>
<tr>
<td>ROH</td>
<td>receiver off hook</td>
</tr>
<tr>
<td>RPC</td>
<td>remote point code, remote procedure call</td>
</tr>
<tr>
<td>RQNT</td>
<td>request for notification</td>
</tr>
<tr>
<td>RR</td>
<td>resource record</td>
</tr>
<tr>
<td>RSA</td>
<td>rural service area</td>
</tr>
<tr>
<td>RSIP</td>
<td>restart in progress</td>
</tr>
<tr>
<td>RSM</td>
<td>resource module</td>
</tr>
<tr>
<td>RSVP</td>
<td>Resource Reservation Protocol</td>
</tr>
<tr>
<td>RTM</td>
<td>routing module</td>
</tr>
<tr>
<td>RTP</td>
<td>Real Time Transport Protocol</td>
</tr>
<tr>
<td>R-UDP</td>
<td>Reliable User Datagram Protocol (Cisco Systems proprietary signaling backhaul protocol)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7A</td>
<td>SS7 adapter</td>
</tr>
<tr>
<td>S7S</td>
<td>SS7 stack (DGM&S)</td>
</tr>
<tr>
<td>SA</td>
<td>security association</td>
</tr>
<tr>
<td>SAC</td>
<td>service access calls</td>
</tr>
<tr>
<td>SAI</td>
<td>signaling adapter interface</td>
</tr>
<tr>
<td>SC1D</td>
<td>speed call 1-digit</td>
</tr>
<tr>
<td>SC1D_ACT</td>
<td>speed call 2-digit activation</td>
</tr>
<tr>
<td>SC2D</td>
<td>speed call 1-digit</td>
</tr>
<tr>
<td>SC2D_ACT</td>
<td>speed call 2-digit activation</td>
</tr>
<tr>
<td>SCA</td>
<td>selective call acceptance</td>
</tr>
<tr>
<td>SCA_ACT</td>
<td>selective call acceptance activation</td>
</tr>
<tr>
<td>SCF</td>
<td>selective call forwarding</td>
</tr>
<tr>
<td>SCF_ACT</td>
<td>selective call forwarding activation</td>
</tr>
<tr>
<td>SCP</td>
<td>service control point, signal control point</td>
</tr>
<tr>
<td>SCR</td>
<td>selective call rejection</td>
</tr>
<tr>
<td>SCR_ACT</td>
<td>selective call rejection activation</td>
</tr>
<tr>
<td>SDK</td>
<td>Software Development Kit</td>
</tr>
<tr>
<td>SDP</td>
<td>Session Description Protocol</td>
</tr>
<tr>
<td>SFG</td>
<td>simulated facility group</td>
</tr>
<tr>
<td>SFTP</td>
<td>Secure File Transfer Protocol (FTP)</td>
</tr>
<tr>
<td>SG</td>
<td>signaling gateway</td>
</tr>
<tr>
<td>SGCP</td>
<td>Simple Gateway Control Protocol</td>
</tr>
<tr>
<td>SIA</td>
<td>SIP adapter</td>
</tr>
<tr>
<td>SID</td>
<td>system identification number</td>
</tr>
<tr>
<td>SIGTRAN</td>
<td>Signaling Transport</td>
</tr>
<tr>
<td>SII</td>
<td>Cisco Service Independent Intercept architecture</td>
</tr>
<tr>
<td>SIM</td>
<td>service interaction manager</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>SLE</td>
<td>screening list editing</td>
</tr>
<tr>
<td>SMA</td>
<td>SNMP adapter</td>
</tr>
<tr>
<td>SMDS</td>
<td>switched multimegabit data service</td>
</tr>
<tr>
<td>SMS</td>
<td>service management system</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SOHO</td>
<td>small office home office</td>
</tr>
<tr>
<td>SP</td>
<td>service provider</td>
</tr>
</tbody>
</table>
SPA Self-Service Phone Administration
SPCS stored program control system
SQL Structured Query Language
SRST Survivable Route Site Telephony
SS7 Signaling System 7
SSF Service switching function
SSH secure shell
SSL secure sockets layer
SSP service switching point, signal switching point
STP signal transfer point
SVC switched virtual circuit

T

T1 trunk level 1
T3 trunk level 3
TAP Telocator Alphanumeric Paging Protocol
TBCSM terminating basic call state machine
TCAP Transaction Capabilities Application Part
TCP Transmission Control Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
TDD Telecommunications device for the deaf
TDM time-division multiplexing
TDP trigger detection point
TF toll free
TG trunk group
TGCP Trunking Gateway Control Protocol
TGW trunking gateway
TMN Telecommunications Management Network
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNS</td>
<td>transit network selection</td>
</tr>
<tr>
<td>TOD</td>
<td>time of day</td>
</tr>
<tr>
<td>TOPS</td>
<td>traffic operator position system</td>
</tr>
<tr>
<td>TOS</td>
<td>type of service</td>
</tr>
<tr>
<td>TPM</td>
<td>terminating point master</td>
</tr>
<tr>
<td>TRS</td>
<td>telecommunications relay services</td>
</tr>
<tr>
<td>TSAP</td>
<td>transport service access point</td>
</tr>
<tr>
<td>TTY</td>
<td>text typewriter</td>
</tr>
<tr>
<td>TVT</td>
<td>translation verification tool</td>
</tr>
<tr>
<td>TWC</td>
<td>three-way calling</td>
</tr>
<tr>
<td>UAA</td>
<td>user authentication adapter</td>
</tr>
<tr>
<td>UAC</td>
<td>user agent client</td>
</tr>
<tr>
<td>UAS</td>
<td>user agent server</td>
</tr>
<tr>
<td>UBR</td>
<td>universal broadband router (Cisco)</td>
</tr>
<tr>
<td>UCD</td>
<td>uniform call distribution</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>URI</td>
<td>uniform resource identifier</td>
</tr>
<tr>
<td>URL</td>
<td>universal resource locator</td>
</tr>
<tr>
<td>USTWC</td>
<td>usage-sensitive three-way calling</td>
</tr>
<tr>
<td>VBR</td>
<td>variable bit rate</td>
</tr>
<tr>
<td>VLAN</td>
<td>virtual LAN</td>
</tr>
<tr>
<td>VMWI</td>
<td>visual message waiting indicator</td>
</tr>
<tr>
<td>VoATM</td>
<td>voice over ATM</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>VoIP</td>
<td>voice over IP</td>
</tr>
<tr>
<td>VSC</td>
<td>vertical service code</td>
</tr>
<tr>
<td>WAN</td>
<td>wide area network</td>
</tr>
<tr>
<td>WFI</td>
<td>waiting for instruction</td>
</tr>
<tr>
<td>xDSL</td>
<td>(generic) digital subscriber line</td>
</tr>
</tbody>
</table>
Index

Numerics
- 3PCC 2-14
- 3XX redirect 2-14

A
- AAL 2-3
- AAL1 2-3
- AAL2 2-3
- AAL5 2-3
- ACG 1-14
- AC power strips 1-26
- active and standby sides 1-24
- alarm panel 1-26
- ANSI ISUP 2-5
- AT&T 4ESS 2-10
- ATM adaptation layer 2-3
- automatic call gap 1-14
- auto restart 1-25

B
- backup D channel 2-11
- BDMS 1-11
- Berkeley Internet Name Daemon 1-20
- billing:
 - functions 1-17
 - queries 1-17
 - storage space 1-17
- BIND 1-20
- versions 1-20
- BTS
- auto restart 1-25
- component architecture 1-12
- component availability 1-21
- component interworking 1-12
- components 1-11
- Bulk Data Management System 1-11
- bulk provisioning 1-16

C
- CA 1-11
- cable modem termination systems 2-16
- cables 1-26
- call detail blocks 1-13
- call detection point 1-14
- Call Forwarding Busy 2-6
- Call Forwarding No Answer 2-6
- Call Forwarding No Reply 2-6
- Call Forwarding Unconditional 2-6
- Call Hold 2-6
- Calling Line Identification Presentation 2-6
- Calling Line Identification Restriction 2-6
- Calling Party Category 2-7
- Calling Party Number 2-7
- call management server 2-16
- Call Transfer 2-6
- Call Waiting 2-6
- CDB 1-13
- provisioning 1-13
- CFB 2-6
- CFNA 2-6
- CFNR 2-6
- CFU 2-6
Index

CGPN 2-7
CIC to URI mapping 2-14
Cisco CallManager, interoperability 2-12
Cisco Catalyst Fast Ethernet Switches 1-26
Cisco PGW 2200 2-5
CLIP 2-6
CLIR 2-6
CLI shell 1-16
CMS 2-16
CMTSs 2-16
codecs 2-3
Common Open Policy Service 2-16
COPS 2-16
CPC 2-7
CW 2-6

D
DC power distribution unit 1-26
DDI 2-6
detection point 1-14
Direct Dial In 2-6
distributed architecture 1-11
diversion header 2-14
DNS
 configuring 1-20
DNS naming authority pointer 2-14
DNS SRV 2-14
DP 1-14
DQoS 2-16
Dynamic Quality of Service 2-16

E
Element Management System 1-11
EM
 provisioning 1-13
 embedded MTAs 2-16

EMS 1-11
 user limitations 1-16
eMTAs 2-16
ETSI v2 ISUP 2-5

F
Facility Associated Signaling 2-11
FAS 2-11
FCP 1-14
Feature Control Protocol 1-14
Feature Servers 1-11
FS 1-11
FSAIN 1-11, 1-14
FSPTC 1-11, 1-14
functions (summary) 1-1, 1-4

G
G.711 A-law 2-3
G.711 mu-law 2-3
G.723.1 Annex A High rate 2-3
G.723.1 Annex A Low rate 2-3
G.723.1 High rate 2-3
G.723.1 Low rate 2-3
G.729 2-3
Generic Transparency Descriptor 2-5
GTD 2-5

H
H.323
 gateway limitations 2-11
H.323 Annex E 1-24
 hardware 1-26
HOLD 2-6
ICMP Router Discovery Protocol 1-22
Identification Request/Identification Response 2-7
IDR/IDS 2-7
IDX 1-14
IKE 2-16
incremental zone transfer 1-20
indexed database 1-14
INF/INR 2-7
INFO 2-14
Information/Information Request 2-7
interfaces 2-1
internal database 1-14
Internal Secondary Authoritative DNS Server 1-11
Internet Key Exchange 2-16
interworking 1-4
IPsec 2-16
IP security 2-16
IPT (IP Transfer Point) 2-4
IRDP 1-22
ISADS 1-11
ISDN backhaul 2-10
ISDN T1 PRI 2-10
ISUP
 transparency 2-5
 variants 2-5
ITU93 White Book ISUP 2-5
ITU Method 2 circuit selection 2-7
IXFR 1-20

K
key management 2-16

L
logical components 1-11
 BDMS 1-17

CA 1-12
EMS 1-14
FS 1-13
Lucent 5ESS 2-10

M
MACRO-XML/CORBA 1-16
MAINT shell 1-16
media gateway controller 2-16
MGC 2-16
MGCP
 CAS interfaces 2-3
 functions 2-2
 variants 2-2
MIB
 loading 1-17
 location 1-17
MIME 2-15
MTAs 2-16
multimedia terminal adapters 2-16
Multipurpose Internet Mail Extension 2-15
MWI 2-14

N
NAPTR 2-14
NCS 2-16
NEs
 interworking 1-4
 limitations 1-4
Network-Based Call Signaling 2-16
Network Element Layer 1-3
Network Element Management Layer 1-3
Network Information Data Sheet 1-22
NFAS 2-11
NI2 2-10
NIDS 1-22
<table>
<thead>
<tr>
<th>NoA</th>
<th>modification and routing</th>
<th>2-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relay</td>
<td>2-7</td>
</tr>
<tr>
<td>Non-Facility Associated Signaling</td>
<td>2-11</td>
<td></td>
</tr>
<tr>
<td>Nortel DMS-100</td>
<td>2-10</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>2-7</td>
<td></td>
</tr>
<tr>
<td>Number Portability</td>
<td>2-7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th>operator services</th>
<th>2-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OSS interfaces</td>
<td>1-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>PacketCable-based signaling</th>
<th>2-15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PacketCable event messages</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>PBX interfaces</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>PCMA</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>PCMU</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>PDU</td>
<td>1-26</td>
</tr>
<tr>
<td></td>
<td>PGW</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>PRI (ISDN)</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>protocols</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>provisionable timer for INVITE</td>
<td>2-15</td>
</tr>
<tr>
<td></td>
<td>provisioning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bulk</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>PSAP</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Public safety answering point</td>
<td>2-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>Q.761 China</th>
<th>2-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q.761 ETSI v3 France</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.761 ETSI v3 Hungary</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.761 ETSI v3 Poland</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.761 Standard</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.761 Standard 97</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.767 Colombia</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.767 Mexico</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.767 Standard</td>
<td>2-5</td>
</tr>
<tr>
<td></td>
<td>Q.921</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>Q.931</td>
<td>2-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R</th>
<th>racks</th>
<th>1-26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RADIUS</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>RADIUS authentication</td>
<td>2-16</td>
</tr>
<tr>
<td></td>
<td>Record Keeping Server</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>registrar</td>
<td>2-14</td>
</tr>
<tr>
<td></td>
<td>reliability and availability</td>
<td>1-24</td>
</tr>
<tr>
<td></td>
<td>Reliable provisional response</td>
<td>2-14</td>
</tr>
<tr>
<td></td>
<td>Remote authentication dial-in user service</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>Resource Reservation Protocol</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>RFC 1034</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>RFC 1035</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>RFC 1995</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>RFC 2865</td>
<td>2-16</td>
</tr>
<tr>
<td></td>
<td>RKS</td>
<td>1-13</td>
</tr>
<tr>
<td></td>
<td>RSVP</td>
<td>2-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>Secure File Transfer Protocol</th>
<th>1-16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secure shell</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>Self-Service Phone Administration</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>SFTP</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>signaling</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>CAS</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>ISDN</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>MGCP</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>PacketCable</td>
<td>2-16</td>
</tr>
<tr>
<td></td>
<td>SIP and SIP-T</td>
<td>2-13</td>
</tr>
<tr>
<td></td>
<td>SS7</td>
<td>2-4</td>
</tr>
</tbody>
</table>
Index

signaling adapters 1-12
signaling protocols 2-1
SIGTRAN 2-4
SIP hairpin 2-14
SIP session timer 2-14
SIP-T 2-14
SIP-trunk route advance 2-15
SNMP 1-17
SNMPv2c 1-17
SNMPv2-SMI 1-17
Solaris patch levels 1-26
SPA 1-16
SSH 1-16
SUBSCRIBE/NOTIFY 2-14

User agent client 2-14
User agent server 2-14

V

Virtual VPN 2-7
VoATM 2-3
Voice over ATM 2-3

X

XML/CORBA 1-16

T

tandem back-to-back user agent 2-13
Telnet 1-16
terminal server 1-26
Third-party call control 2-14
Three-Party Service 2-6
TMN
 layers 1-3
 model 1-3
TNS 2-14
ToS 2-14
transit network selection 2-14
Trunking Gateway Control Protocol 2-16
type of service 2-14

U

UA 2-13
UAC 2-14
 forking 2-14
UAS 2-14
 forking 2-14