ACE Monitoring

Architecture

The Cisco ACE Module is based on a purpose built multi-network processor architecture. All data received from the 16Gbps single interconnect to the switching fabric hits a Field Programmable Field Array (FPGA), which is known as the Classification and Distribution Engine (CDE). The CDE uses hashing algorithms to ensure a single connection traverses the same Network Processor (NP) for the duration of the connection. The NP’s used in the Cisco ACE Module are Four Intel Octeons (CN5860), each Octeon has 16 Cores and runs at 600 Mhz. The 4 NP’s make up the data plane (DP) and are responsible for handling all of the connection processing within the Cisco ACE Module. The control plane (CP) is maintained separately using a dedicated Sibyte processor. The control plane is responsible for managing the ACE configuration, health monitoring (aka probes), supporting management sessions (TELNET, SSH, SNMP, SYSLOG), and other control functions and control traffic. For additional details regarding the Cisco ACE Module architecture or connection processing, please ask your Cisco sales representative for a copy of the “Connection Handling Within The Cisco Ace Module Hardware Architecture” document.

The following diagram illustrates the main components of the Cisco ACE Module:

ACE30 Detailed Hardware Architecture

The handling of data traffic is done by each NP with 15 cores, each running a set of data plane software processes, the 16th core is used for management and runs periodic processes (timers). The data plane processes are grouped in the functional sets as follows:

- **Receive (RX)**
  The Receive function is a dedicated process function used that takes traffic from the CDE
and buffers it within the NP to be used by the other NP processes. RX also provides support for HTTP Normalization, Conformance to RFC 2616, MIME type validation, Length and Encoding checks, Port Misuse, Tunneling prevention, and so forth.

- **Fastpath**
  The Fastpath function is where the bulk of the low level data handling occurs such as MAC rewrite, NAT, TCP normalization, and so forth. Fastpath also performs NAT on the packet: depending on the configuration this includes MAC’s, IPs, L4 ports, TCP SEQ and ACK numbers.

- **TCP**
  Sending/Receiving TCP data from other NP functions when processing data at Layer 7 while the connection is fully proxied.

- **HTTP/L7/Fixup**
  This function provides support for HTTP and other Layer 7 application processing (fixups) such as: Header Matching, Rewriting, Cookie processing, persistent & pipelined connection support. For application fixes, it replaces IP addresses embedded within the application protocol data with the appropriate virtual IP address, server IP address, or client IP address and binds control and application channels together to ensure proper processing by the NP’s and real servers.

- **SSL**
  Performs SSL Record Layer processing inline with a hardware co-processor.

- **CCM (Connection Close Manager)**
  Removes the internal connection objects for an established connection upon receiving a TCP FIN sequence, receiving a TCP RST, or the connection timing out.

- **LB (Load Balancing)**
  Facilitates microengine to general processor communication and messaging. Allows for microengine functions to access general processor functions such as: load balancing, ssl state machine, FTP and RTSP fixups, HA heartbeats, and so forth.

- **Reassembly**
  Manages reassembly of fragmented packets and TCP/IP timer control during connection handling.

- **Inbound Connection Manager (ICM)**
  This processor is responsible for the creation of new connections. If the connection is to be load balance at Layer 3 or Layer 4 the ICM will facilitate the communication with the Xscale to select a real server for the connection destination. If the connection is Layer 7 then it will be passed on to the TCP NPU functions.
  Many counters on this processor are relevant to identify which kind of traffic is flowing through the system and how many connections are created, destroyed, timed-out, etc…

- **Outbound Connection Manager (OCM)**
  Establishes the connection to the destination for the client connections. The OCM is also used in TCP Re-use, the creation of syslogs for established connections, and NAT pool source address and source port selection.

- **The timers** process runs on a dedicated core (core #0) on each NP and handles all NP specific timers.
Monitoring NP's

A good indication of the load of the network processor cores in terms of packets and connections processing is provided with the following command:

```
ACE/Admin# show np 1 me-stats -up
0 proxies open.
ME % Utilization Statistics
--------------
Core 0:     3
Core 1:     0
Core 2:     0
Core 3:     0
Core 4:     0
Core 5:     0
Core 6:     0
Core 7:     0
Core 8:     0
Core 9:     0
Core 10:    0
Core 11:    0
Core 12:    0
Core 13:    0
Core 14:    0
Core 15:    0
```

```
ACE/Admin# show np 2 me-stats -up
0 proxies open.
ME % Utilization Statistics
--------------
Core 0:     0
Core 1:     0
Core 2:     0
Core 3:     0
Core 4:     0
Core 5:     0
Core 6:     0
Core 7:     0
Core 8:     0
Core 9:     0
Core 10:    0
Core 11:    0
Core 12:    0
Core 13:    0
Core 14:    0
Core 15:    0
```

```
ACE/Admin# show np 3 me-stats -up
0 proxies open.
ME % Utilization Statistics
--------------
Core 0:     0
Core 1:     0
Core 2:     0
Core 3:     0
Core 4:     0
Core 5:     0
Core 6:     0
Core 7:     0
Core 8:     0
Core 9:     0
Core 10:    0
Core 11:    0
Core 12:    0
Core 13:    0
Core 14:    0
Core 15:    0
```
Technical Overview

ACE/Admin# show np 4 me-stats -up
0 proxies open.
ME % Utilization Statistics
--------------
Core 0:                                           0
Core 1:                                           0
Core 2:                                           0
Core 3:                                           0
Core 4:                                           0
Core 5:                                           0
Core 6:                                           0
Core 7:                                           0
Core 8:                                           0
Core 9:                                           0
Core 10:                                          0
Core 11:                                          0
Core 12:                                          0
Core 13:                                          0
Core 14:                                          0
Core 15:                                          0

Note: All "show np …" commands must be executed for each of the network processors (1, 2, 3, and 4) and combined to obtain the total result.

The Network Processor cores operate safely at any percentage of utilization. NP cores approaching 100% is an indication that the traffic load is stressing its limit. Any core that reaches 100% utilization can cause back-pressure and may lead to dropped packets or in the worse case dropped connections.

Monitoring Backpressure

Back-pressure occurs if a bottle neck develops as traffic performance is increased. Back-pressure is the mechanism used to slow the system down if queues start to fill up internally as a result of a micro engine reaching its peak utilization. This can occur when the incoming traffic exceeds the Cisco ACE Module’s capacity. As back-pressure builds, FIFOs for the CDE, IXPs, and Nitrox, and internal queues for each ME can be filled. A sustained period of time where the Cisco ACE Module is running at to above capacity can lead to overflows and dropped packets. Once at capacity new packets are dropped, not necessarily entire connections. However, if the overflows continue, eventually it can lead to connections being dropped by the clients and servers.

- To monitor the CDE queues use the show cde health command and ensure the “Fifo Full drop count” is not incrementing.
  ACE/Admin# show cde health | include Fifo
  Fifo Full drop count

- To monitor the Fastpath processor function queues use the show np <1|2|3|4> me-stats “-s fp” command and ensure the “FastQ Transmit Backpressure”, “SlowQ Transmit Backpressure”, “Drop: Transmit Backpressure”, “Drop: Next-Hop queue full” are not incrementing.
  ACE/Admin# show np 1 me-stats "-s fp" | include Backpressure
  FastQ Transmit Backpressure: 0
  SlowQ Transmit Backpressure: 0
  Drop: Transmit Backpressure: 0

ACE/Admin# show np 1 me-stats "-s fp" | include queue
  Drop: Next-Hop queue full: 0

Note: If no output is seen with the command above, use the command "show np 1 me-stats “-s fp –v”, to include the counters with zero values, as these are not displayed by default.
To monitor the TCP processor function queues use the `show np <1|2|3|4> me-stats "-s tcp"` and ensure the "Drops due to FastTX queue full", "Drops due to Fastpath queue full", "Drops due to HTTP queue full", "Drops due to SSL queue full", "Drops due to AI queue full", and "Drops due to Fixup queue full" are not incrementing. If TCP receives backpressure, it can: drop packets, fail to ACK packets, and fail to properly track the next packet in the TCP connection.

```
ACE/Admin# show np 1 me-stats "-s tcp" | include queue
Drop reproxy msg queue full:                      0
Drops due to FastTX queue full:                   0
Drops due to Fastpath queue full:                 0
Drops due to HTTP queue full:                     0
Drops due to SSL queue full:                      0
Drops due to AI queue full:                       0
Drops due to Fixup queue full:                    0
```

**Note:** "Drop reproxy msg queue full" will increment based on the incoming connections when the reproxy msg queue is full. Ideally, it shouldn’t increment. When it increments, clients will receive connection reset.

**Monitor the control plane**

The **control processor** processes all control traffic (ARP, HSRP, ICMP to VIP’s, Routing, SYSLOGS, SNMP, Probes, and so forth), and handles configuration management to parse the CLI for syntactical error and enforce configuration dependencies/requirements before pushing the configuration to the data plane.

A 3 way moving average of the Control Plane processor utilization can be obtained using the show command:

```
ACE/Admin# show processes cpu | inc util
CPU utilization for five seconds: 81%; one minute: 15%; five minutes: 10%
```

```
ACE/Admin# show version | inc free
total: 956492 kB, free: 288268 kB
```
Relevant Metrics

Different traffic patterns and configurations can stress different portions of the system, and require different resources in the NPUs within the module. For this reason, there is no single metric or CPU utilization that can indicate the overall load on the system, but there are critical metrics that can be monitored to see if the current traffic pattern is approaching some bottlenecks.

The following sections describe the main metrics characterizing the load of the system and show how to check the relevant counters.

- Concurrent Connections – The number of simultaneous connections a device can support is a function of available memory. If the number of concurrent connections reaches the supported limit, no new connections can be established until existing connections are freed.
- Interconnects and Bandwidth – The bandwidth a device supports is based on the devices interconnection links into the network and the amount of time it takes to process application traffic. Exceeding the bandwidth can lead to packet loss at the interlinks or within the device itself.
- Connections per second (CPS) – Measures the number of new client connections to an application within a second. A connection setup can be a simple TCP three-way handshake with an immediate TCP reset, or more involved, such as SSL where TCP is setup, SSL is terminated, and a HTTP Request is processed before properly closing the SSL session and TCP connection. Although supported CPS typically vary between application types, exceeding the limit will result in new connection attempts being rejected
- Resource usage

1. Concurrent Connections (CC)

The Cisco ACE Module has allocated data plane memory to guarantee concurrent connection support for basic Layer 4 connections (such as TCP, UDP, IPSec), Layer 7 connections (proxied flows, typically for application aware load balancing or inspection, and SSL connection when using SSL acceleration. The Cisco ACE Module can support the maximum bi-directional concurrent connection limit regardless of the features enabled.

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Cisco ACE Module Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 4</td>
<td>4 Million</td>
</tr>
<tr>
<td>Layer 7</td>
<td>512 Thousand</td>
</tr>
</tbody>
</table>

The state for both directions (client-to-VIP/ACE and server-to-ACE) of a TCP connection is maintained via distinct connection objects. The following is an example of the current connection table.

```
ACE/Admin# show conn

total current connections : 6
conn-id    np dir proto vlan source                destination
state

6          1  in  TCP   110  10.82.217.52:1566     172.25.91.20:23    ESTAB
7          1  out TCP   110  172.25.91.20:23       10.82.217.52:1566  ESTAB
```
Note: The detail parameter can be added to provide, the connection idle time, the elapsed time of the connection, byte count, and packet count for each connection object.

In this example, a connection has been opened from client 209.165.201.22, which connected to VIP 172.16.1.100 on port 80, see blue highlight. The connection was received from VLAN 222 and sent out to VLAN 422, to server 192.168.1.20, without rewriting the source IP address of the client, see green highlight. The second line of the output (green highlight) indicates source and destination IPs and L4ports of the return traffic (server-to-client). This is why the client IP address now appears under the “destination” column.

The total number of concurrent connections per context is maintained in the show stats counters and in SNMP OIDs:

```
ACE/Admin# show stats connection
++------------------------------------------+
++------------------- Connection statistics --+
++------------------------------------------+
Total Connections Created  : 118
Total Connections Current  : 6
Total Connections Destroyed: 96
Total Connections Timed-out: 20
Total Connections Failed   : 0
```

Note: The “Total Connections Current” counter counts the number of used connection object, not the number of TCP flows. The number of TCP flows can be roughly determined as half the connection object, minus any UDP connections.

Note: To see the number of active SSL connections on all 4 NP’s combined, use the command: “show stats crypto server termination | inc active”

The “Connection Current” counter is always up to date and the maximum can be 8,000,000. Due to the Cisco ACE Module’s architecture, with distinct paths for new and established connections, the number of existing concurrent connections does not heavily impact the rate at which new connections can be set up. Nevertheless, a very large amount of concurrent connections will eventually affect the performance of the system in setting up new connections.
The number of concurrent connections is relevant when load balancing protocols which maintain many low-bandwidth and long-lived connections, such as TELNET, TN3270, and Terminal Services sessions.

TCP connections that are properly terminated via RST or FIN/FIN_ACK/ACK are immediately removed (Destroyed) from the concurrent connection table. If a TCP connection closes without being properly terminated it will be torn down with the TCP idle timers expire.

When deploying VIPs for load balancing application using UDP, adjust the idle timeout, to expedite the removal of UDP connections from the concurrent connections table. The default timeout is 3600 seconds (one hour), which is typically appropriate for TCP connections, but is often longer than is required for UDP flows. Depending on the application requirement the idle timeout for the UDP flows can often be set their minimum value. In addition UDP Fast Ageing and UDP Boost have been added to further increase performance and optimize load balancing in the Cisco ACE Module release 2.0.

The number of connections removed from the connection table can be checked using the connection statistics. Connections removed in the nominal case where they are properly closed due to the TCP fin sequence or forcing a close using a TCP reset are tracked using the “Total Connections Destroyed” counter highlighted in blue. The connections which have been removed due to one of the three types of idle timers (SYN, half open, connection idle) expiring are seen with the “Total connections Timed-out” counter.

```
ACE/Admin# show stats connection
+------------------------------------------+
<table>
<thead>
<tr>
<th>------- Connection statistics ------------</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Connections Created : 126</td>
</tr>
<tr>
<td>Total Connections Current : 2</td>
</tr>
<tr>
<td>Total Connections Destroyed: 96</td>
</tr>
<tr>
<td>Total Connections Timed-out: 28</td>
</tr>
<tr>
<td>Total Connections Failed : 0</td>
</tr>
</tbody>
</table>
```

Connections can be timed out because of one of the following reasons:

1. connection idle - one side of the connection (client to server or server to client) has not transmitted traffic for longer than the idle timeout configured for the virtual IP. Adjust using set timeout inactivity within the connection parameter-map
2. connection pending (embryonic) timeout – A TCP SYN has been sent to the selected server, and ACE is awaiting a SYN/ACK from the server so the TCP 3-way handshake can be completed. Adjust using set tcp timeout embryonic within the connection parameter-map
3. half closed – A TCP FIN has been sent to the selected server, and ACE is awaiting a FIN/ACK from the server so the TCP 3-way fin sequence can be completed. Adjust using set tcp timeout half-closed within the connection parameter-map

**Note:** The UDP protocol only uses the connection idle timer. Since UDP is a stateless protocol it does not have an initiation or closure handshake and thus does not require additional timeout checks.
When new connections reach the ACE and it has no more room for new connections in the connection table, it will reset the new connection and increment the "Drop [out of connections]:" counter:

```
ACE/Admin# show np 1 me-stats "–socm –vvv" | inc "of conn"
Drop [out of connections]:                        0
```

**Note:** Even when this counter increases, open connections are not affected.

2. Interconnects and Bandwidth

The Cisco ACE Module interconnects to the Cisco Catalyst 6500 switching backplane using a single switch fabric interface. The Cisco ACE Module has interconnects to the EOBC (100Mbps), Shared Bus (8Gbps), and Switch Fabric (20Gbps). The EOBC is used to allow the Cisco IOS Software session command access and to allow the Cisco ACE Module to boot from the Supervisor's storage if needed. The Shared Bus interconnect is only used if communication to classic cards are required. The Cisco ACE Module uses a single interconnect to the switching fabric to provide a 20G connection, to support up to 16Gbps of throughput. In Cisco IOS Software today there are no interfaces of type "16G," so the TenGigabitEthernet type has been used to indicate that it is indeed a single connection, without any need for etherchannel (as in case of the Cisco CSM). Although some of the information on the show interface TenGigabitEthernet X/Y options have no meaning with respect to a services modules, the following command options provide useful information: capabilities, counters, status, switchport, and trunk.

```
Router# show int TenGigabitEthernet 3/1 status

Port    Name          Status       Vlan        Duplex  Speed Type
Te3/1                 connected    trunk         full    10G MultiService
Module

Router# show int TenGigabitEthernet 3/1 counters

Port    InOctets   InUcastPkts   InMcastPkts   InBcastPkts
Te3/1       634859790       3554991       2014724       1887878

Port    OutOctets  OutUcastPkts  OutMcastPkts  OutBcastPkts
Te3/1           56939210        306341             0        310695

Router# show counters interface tenGigabitEthernet 3/1
64 bit counters:
0.         rxHCTotalPkts = 7457593
1.         txHCTotalPkts = 617036
2.         rxHCUnicastPkts = 3554991
3.         txHCUnicastPkts = 306341
4.         rxHCMulticastPkts = 2014724
5.         txHCMulticastPkts = 0
6.         rxHCBroadcastPkts = 1887878
7.         txHCBroadcastPkts = 310695
8.         rxHCOctets = 634859790
9.         txHCOctets = 56939210
10.        rxTxHCPkts64Octets = 0
11.        rxTxHCPkts65to127Octets = 0
12.        rxTxHCPkts128to255Octets = 0
13.        rxTxHCPkts256to511Octets = 0
14.        rxTxHCPkts512to1023Octets = 0
15.        txHCTrunkFrames = 0
16.        rxHCTrunkFrames = 0
17.        rxHCDropEvents = 0
18.        rxHCProcess = 0
```
32 bit counters:
0. rxCRCAlignErrors = 0
1. rxUndersizedPkts = 0
2. rxOversizedPkts = 0
3. rxFragmentPkts = 0
4. rxJabbers = 0
5. txCollisions = 0
6. ifInErrors = 0
7. ifOutErrors = 0
8. ifInDiscards = 0
9. ifInUnknownProtos = 0
10. ifOutDiscards = 0
11. txDelayExceededDiscards = 0
12. txCRC = 0
13. linkChange = 0
14. wrongEncapFrames = 0

All Port Counters
1. InPackets = 7457593
2. InOctets = 634859790
3. InUcastPkts = 3554991
4. InMcastPkts = 2014724
5. InBcastPkts = 1887878
6. OutPackets = 617036
7. OutOctets = 56939210
8. OutUcastPkts = 306341
9. OutMcastPkts = 0
10. OutBcastPkts = 310695
11. AlignErr = 0
12. FcSErr = 0
13. XmitErr = 0
14. RcvErr = 0
15. UnderSize = 0
16. SingleCol = 0
17. MultiCol = 0
18. LateCol = 0
19. ExcessiveCol = 0

The connection to the backplane is indeed 16G full-duplex, however consider that most traffic will traverse this connection twice. When estimating how much traffic can be sent across Cisco ACE, consider the following important factors:

1. While the connectivity between Cisco ACE and the backplane is FULL-DUPLEX, most packets have to traverse that connection TWICE (once from the input interface TO Cisco ACE, and once FROM Cisco ACE to the output interface). This means that a packet sent from a client to a server (or from a server to a client), which traverses Cisco ACE, will travel twice over that connection. For this reason, the absolute maximum 16Gbps bandwidth through Cisco ACE should account for both client-to-server traffic AND server-to-client traffic: their SUM cannot exceed 16Gbps. As an example, if there were a lab environment designed where server-to-client traffic represents 90%, and client-to-server represents 10%, the absolute maximum for client-to-server will be 1.6Gbps, while the max for server-to-client will be 14.4Gbps. If the lab environment is modified to observe and ideal case of completely symmetric case, the maximum would be 8Gbps in each direction.

   **Note:** A more exact calculation should also consider traffic consumed or generated by Cisco ACE itself (keepalives, for example), but that traffic is typically a very small percentage, compared to client-to-server and server-to-client traffic.

2. The bandwidth can be limited at 4Gbps or 8Gbps (rather than 16Gbps), depending on the licenses installed in Cisco ACE.
3. **Exact bandwidth depends on type of traffic, in particular average size of packets.** Check the other Cisco ACE scaling documents for more details on how 4 Cisco ACE Modules in the same chassis can scale to over 60Gbps.

4. **Due to the PPS limitation, you might not always be able to send 16Gbps through the module. The amount which can be sent depends on the average packet size of the traffic.** Lab performance tests indicate that an average packet size of 512bytes is enough to reach line-rate.

You can check how much traffic is currently being sent to and received from the Cisco ACE Module by showing the

```
Router# show int Po260
Port-channel260 is up, line protocol is up (connected)
Hardware is EtherChannel, address is 0002.fce1.65cb (bia 0002.fce1.65cd)
MTU 9216 bytes, BW 4000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Unknown duplex, Unknown Speed, link type is auto, media type is Gbic not connected
output flow-control is unsupported, input flow-control is unsupported
Members in this channel: G14/1 G14/2 G14/3 G14/4
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
Last clearing of "show interface" counters 0d01h
Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 39000 bits/sec, 35 packets/sec
5 minute output rate 44000 bits/sec, 45 packets/sec
```

The counters refer to the Catalyst 6500 perspective, so the input counters refer to traffic received from the ACE, while the output counters refer to traffic sent to the ACE.

3. **Connections per second (CPS)**

Connections per second is one of the hardest metrics to measure, since there is no hard limit. CPS performance heavily depends on configured features and traffic patterns.

The main factor that influences CPS performance is L4 vs. L7 processing. L4 performance is higher than L7 performance, since L4 balancing decisions are based on the first packet of each connection, while L7 balancing requires TCP termination, multi-packet buffering and parsing in order to make the balancing decision and set up a new connection.

You can check how many L4 and L7 connections have been set up by your Cisco ACE Module with the following command:

```
ACE/Admin# show stats loadbalance
```

```
+------------------------------------------+
|------- Loadbalance statistics -----------|
+------------------------------------------+
```
Total version mismatch : 0
Total Layer4 decisions : 2714
Total Layer4 rejections : 476
Total Layer7 decisions : 1388667
Total Layer7 rejections : 2164
Total Layer4 LB policy misses : 0
Total Layer7 LB policy misses : 0
Total times rserver was unavailable : 22
Total ACL denied : 0

**Note:** In a steady state system, when no configurations are taking place, if some of these counters are incrementing continuously it should raise flag.

### Device Monitoring

#### Device Availability

The state of the module can be monitored with the following MIB.

**MIB:** ciscoEntityFRUControlMIB

**Object:** cefcModuleOperStatus

**OID:** 1.3.6.1.4.1.9.9.117.1.2.1.1.2

**Possible Return Values:**

1: unknown
2: ok
3: disabled
14: outOfServiceEnvTemp
15: poweredDown

#### Fault Tolerance

The command `show ft group detail` provides information on the state of each module.

**My State:** Displays the state of the local ACE.

**Peer State:** Displays the state of the remote ACE.

A state of FSM_FT_STATE_ACTIVE lets you know the ACE module is the Active ACE.

A state of FSM_FT_STANDBY_HOT lets you know the ACE module is the Standby ACE, and that the configs are in sync.
Fault tolerance information can be monitored via the following MIB

**MIB:** CISCO-L4L7MODULE-REDUNDANCY-MIB  
**Object:** ciscoL4L7moduleRedundancyMIB  
**OID:** 1.3.6.1.4.1.9.9.650

**Description:**  
This MIB provides details about the fault tolerant statistics available in the `show ft peer`, `show ft group detail` and `show ft stats` command output.

**XML: Config Backup**  
The running-configuration can be monitored via the XML agent

```xml
xml_cmd=<request_raw>show running-config</request_raw>

<response_xml>
<exec_command>
<command>
show running-config
</command>
<status code="100" text="XML_CMD_SUCCESS"/>
<xml_show_result>
Output removed for brevity
</xml_show_result>
</exec_command>
</response_xml>
```

**Services Monitoring**

**Rserver**  
When monitoring rserver individually, the following MIBs will be used.

**MIB:** ciscoEnhancedSlbMIB  
**Object:** ciscoEnhancedSlbMIBNotifs
OID: 1.3.6.1.4.1.9.9.470.0

Possible Return Values:
4: cesRserverStateUp
5: cesRserverStateDown
6: cesRserverStateChange

Descriptions:
‘cesRserverStateUp’: This notification is generated when the real server identified in cesRserverTable changes state to 'inservice' by the user intervention

‘cesRserverStateDown’: This notification is generated when the real server identified in cesRserverTable changes to 'outOfService' state by the user intervention

‘cesRserverStateChange’: This notification generated when the real server identified in cesRserverTable changes to a new state other than that is initiated by the user

Real Server (rserver in a Serverfarm)
When monitoring rserver that is part of a serverfarm (which is referred to as RealServer), the following MIBs will be used.

MIB: ciscoEnhancedSlbMIB
Object: ciscoEnhancedSlbMIBNotifs
OID: 1.3.6.1.4.1.9.9.470.0

Possible Return Values:
1: cesRealServerStateUp
2: cesRealServerStateDown
3: cesRealServerStateChange

Descriptions:
'cesRealServerStateUp': This notification is generated when a real server changes to 'inService' state by the user intervention

'cesRealServerStateDown': This notification is generated when a real server changes to 'outOfService' state by the user intervention

'cesRealServerStateChange': This notification generated when a real server changes to a new state other than that is initiated by the user

Virtual Server

MIB: ciscoSlbMIB
Object: ciscoSlbMIBNotifications
OID: 1.3.6.1.4.1.9.9.161.2.0

Possible Return Values:

5: ciscoSlbVServerStateChange
6: ciscoSlbVServerVIPStateChange

Descriptions:

'ciscoSlbVServerStateChange': This notification is sent when a virtual IP address (VIP) is removed from a class map. This notification is sent with the following var-binds:

• slbVServerState
• slbVServerStateChangeDescr
• slbVServerClassMap
• slbVServerPolicyMap

The ciscoSlbVServerStateChange is specified in the CISCO-SLB-MIB.
‘ciscoSlbVServerVIPStateChange’: The state of Vserver changes. This notification is sent with the following var-binds:

- slbVServerState
- slbVServerStateChangeDescr
- slbVServerClassMap
- slbVServerPolicyMap
- slbVServerIpAddressType
- slbVServerIpAddress
- slbVServerProtocol

The change in the Vserver state could be due to a number of different reasons, such as binding to the interface, removing an active serverfarm from the policy, and associating the virtual IP address (VIP) with a class map.

The ciscoSlbVServerVIPStateChange is specified in the CISCO-SLB-MIB.

**XML: Show Serverfarm**

Serverfarms can be monitored via the XML agent. The output of this command can be parsed for glean useful information.

```xml
xml_cmd=<request_raw>show serverfarm SERVERFARM1</request_raw>
<response_xml>
<exec_command>
<command>
show serverfarm SERVERFARM1
</command>
<status code="100" text="XML_CMD_SUCCESS"/>
<xml_show_result>
servfarm : SERVERFARM1, type: HOST
total rservers : 1
-----------------------------

----------connections----------
```
### Technical Overview

<table>
<thead>
<tr>
<th>real</th>
<th>weight</th>
<th>state</th>
<th>current</th>
<th>total</th>
<th>failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>rserver: SERVERFARM1</td>
<td></td>
<td>OPERATIONAL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

```xml
<xml_show_result>
  </exec_command>
  </response_xml>
```

```xml
xml_cmd=<request_raw>show serverfarm SERVERFARM1 detail</request_raw>
<response_xml>
  <exec_command>
    <command>
      show serverfarm SERVERFARM1 detail
    </command>
    <status code="100" text="XML_CMD_SUCCESS"/>
    <xml_show_result>
      serverfarm : SERVERFARM1, type: HOST
      total rservers : 1
      active rservers: 1
      description : -
      state : ACTIVE
      predictor : ROUNDROBIN
      failaction : -
      back-inservice : 0
      partial-threshold : 0
      num times failover : 0
      num times back inservice : 0
      total conn-dropcount : 0
      ---------------------------------
      -----------connections-----------
      real             weight   state       current | total | failures |
      rserver: SERVERFARM1 | 161.44.52.238:5060 | 8      OPERATIONAL | 0   | 0     | 0     |
      max-conns        : -       , out-of-rotation count : -
      min-conns        : -       , out-of-rotation count : -
      conn-rate-limit  : -       , out-of-rotation count : -
      bandwidth-rate-limit : -     , out-of-rotation count : -
      retcode out-of-rotation count : -
      </xml_show_result>
  </exec_command>
  </response_xml>
```
Resources Monitoring

Resource monitoring will be very useful and helpful in taking a proactive look at current resource usage and plan for additional resource upgrade if necessary.

Concurrent Connections

MIB: ciscoL4L7moduleResourceLimitMIB
Object: ciscoL4L7ResourceLimitNotifs
OID: 1.3.6.1.4.1.9.9.480.0

Possible Return Values:
1: clrResourceLimitReached
2: clrResourceRateLimitReached

Descriptions:
clrResourceLimitReached: This notification is generated when the configured resource limit value specified in 'crlResourceLimitMax' is reached for a particular resource. This resource is identified by 'crlResourceLimitType' in ciscoL4L7ResourceLimitTable

CiscoResourceLimitType
1: all
2: macAddresses
3: concurrentConns
4: mgmtConnections
5: proxyConns
6: probes
7: stickyEntries
8: natTranslations
9: regexState
10: aclMemory
11: syslogBuffer
12: ipReassemBuffer
13: tcpOOOBuffe
14: sslConnections
15: hosts
16: ipsecSessions
17: asdmSessions
18: sshSessions
19: telnetSessions

**Concurrent Connections non-SLB**

MIB: CISCO-SLB-EXT-MIB

The following MIB objects for the ACE include non-SLB related connections as well:

- cslbxStatsCurrConnections
- cslbxStatsTimedOutConnections

**XML: Resource Usage**

Resource usage can be monitored via the XML agent. The output of this command can be parsed to glean useful information.

```
xm_cmd=<request_raw>show resource usage</request_raw>
<response_xml>
<exec_command>
<command>
show resource usage
</command>
<status code="100" text="XML_CMD_SUCCESS"/>
<xml_show_result>

<table>
<thead>
<tr>
<th>Resource</th>
<th>Current</th>
<th>Peak</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc-connections</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>640000</td>
</tr>
<tr>
<td>mgmt-connections</td>
<td>10</td>
<td>26</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>636</td>
<td>79201</td>
<td>0</td>
<td>20000000</td>
</tr>
</tbody>
</table>
```

---

Context: Admin

```
conce-connections 0
mgmt-connections 0
proxy-connections 0
xlates 0
bandwidth 410
```
<table>
<thead>
<tr>
<th>Metric</th>
<th>Context: ACS-AMEX</th>
<th>Context: ACS-TBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection rate</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>198</td>
<td>0</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>acl-memory</td>
<td>14848</td>
<td>0</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>11264</td>
<td>0</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Context: ACS-TBO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conc-connections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mgmt-connections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>acl-memory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Context: ACS-AMEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conc-connections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mgmt-connections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>acl-memory</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

© 2011 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value1</th>
<th>Value2</th>
<th>Value3</th>
<th>Value4</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>1104</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>2552</td>
<td>2616</td>
<td>0</td>
<td>47166260</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>Context: BAIKAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conc-connections</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>6400000</td>
</tr>
<tr>
<td>mgmt-connections</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>80</td>
<td>3044</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>1142</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>8240</td>
<td>8240</td>
<td>0</td>
<td>47166260</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>Context: Paul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conc-connections</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>6400000</td>
</tr>
<tr>
<td>mgmt-connections</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>Context</td>
<td>conc-connections</td>
<td>mgmt-connections</td>
<td>proxy-connections</td>
<td>xlates</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>--------</td>
</tr>
<tr>
<td>batch5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>batch6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2011 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>134144</td>
<td>134144</td>
<td>0</td>
<td>47166260</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
</tbody>
</table>

**Context: dcnteam**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>1008</td>
<td>1008</td>
<td>31444174</td>
<td>0</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
</tbody>
</table>

**Context: skinny**

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>1008</td>
<td>1008</td>
<td>31444174</td>
<td>0</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
</tbody>
</table>
<xml_show_result>

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>mgmt-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>47166260</td>
</tr>
<tr>
<td>regexp</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
</tbody>
</table>

Context: C2

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>conc-connections</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>6400000</td>
</tr>
<tr>
<td>mgmt-connections</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5000</td>
</tr>
<tr>
<td>proxy-connections</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>524286</td>
</tr>
<tr>
<td>xlates</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1048574</td>
</tr>
<tr>
<td>bandwidth</td>
<td>0</td>
<td>596</td>
<td>0</td>
<td>2000000000</td>
</tr>
<tr>
<td>connection rate</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1000000</td>
</tr>
<tr>
<td>ssl-connections rate</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>20000</td>
</tr>
<tr>
<td>mgmt-traffic rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125000000</td>
</tr>
<tr>
<td>mac-miss rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2000</td>
</tr>
<tr>
<td>inspect-conn rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6000</td>
</tr>
<tr>
<td>acl-memory</td>
<td>4528</td>
<td>4528</td>
<td>0</td>
<td>47166260</td>
</tr>
<tr>
<td>regexp</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>1048576</td>
</tr>
<tr>
<td>syslog buffer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4194304</td>
</tr>
<tr>
<td>syslog rate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1000000</td>
</tr>
</tbody>
</table>
</xml_show_result>
TCL Script Examples:

The following is an example TCL script that will connect to the ACE Admin context via the management interface, get a list of all contexts, and get running-configuration for each context and write that output to a file called `<context>.cfg`. This script uses HTTP. If you need secure transfer, you can use HTTPS instead. You will need to create a user with a role of Network-monitor to use for logging in via the XML interface.

Keep in mind that the management policy must allow either HTTP or HTTPS protocols:

```plaintext
class-map type management match-any remote-access
  match protocol http any
  match protocol https any
```

The Resource and SSL XML scripts do not actually do anything if an error condition occurs other than printing a message. You might want to add some code to fire off an email.

### I. XML Script Example (show conn count)

```plaintext
#!/usr/bin/tclsh

# Global login credentials
set user "username"
set pass "password"

# Global mgmt IP address of Admin context
set mgmt_ip "xx.xx.xx.xx"

# this procedure will execute a curl command to send the XML command to ACE. If the command fails to execute properly, the script will exit with and error. # if the command executes with no problem, then the output of the XML command is returned
proc issue_command { cmd } {
  global user pass mgmt_ip
```
if { [catch {set output [exec -- curl -s
          http://%{user}:%{pass}@%{mgmt_ip}/bin/xml_agent
          -d "xml_cmd=<request_raw>%{cmd}</request_raw>"} ] } error] }
{
  puts "Problem with exec: $error"
  exit 0
}

return $output

# Get a list of contexts from Admin context
set contexts [split [issue_command "show context | inc Name"] \n]

foreach line $contexts {

  if { [regexp {Name: (.*) ,} $line - context] } {
    puts "Getting config for $context"
    set out [issue_command "changeto $context
    show conn count"]
    if { [regexp {<xml_show_result>(.*)</xml_show_result>} $out -
        running_config]} {
      set fp [open "$context.cfg" w+]
      puts $fp $running_config
      close $fp
    }
  }
}  

II. XML Script Example (resource usage)

#!/usr/bin/tclsh

# Global login credentials
set user "username"
set pass "password"

# Global mgmt IP address of Admin context
set mgmt_ip "xx.xx.xx.xx"

# this procedure will execute a curl command to send the XML
# command to ACE. If the command fails to execute properly,
# the script will exit with an error.
# If the command executes with no problem, then the output
# of the XML command is returned
proc issue_command { cmd } {

    global user pass mgmt_ip

    if { [catch {set output [exec -- curl -s
        http://${user}:${pass}@${mgmt_ip}/bin/xml_agent
        -d "xml_cmd=<request_raw>${cmd}</request_raw>"} } error] }
    {
        puts "Problem with exec: $error"
        exit 0
    }

    return $output

}

# Max of 80%
set max_percent ".8"

# Get a list of contexts from Admin context
set contexts [split [issue_command "show context | inc Name"] 

# list of resources to check (see below for more rate selection possibilities)
# Ace-Mod3/Admin# sho resource usage context dcnteam resource rate  ?
# bandwidth Show bandwidth in bytes per second
# connections Show connections per second
# inspect-conn Show rtsp/ftp inspect connections per second
# mac-miss Show mac miss traffic punted to CP packets per second
# mgmt-traffic Show management traffic bytes per second
# ssl-connections Show SSL connection rate
# syslog Show syslog messages per second
set resources {bandwidth connections ssl-connections}

foreach line $contexts {
    if { [regexp {Name: (.*) ,} $line - context] } {
        puts "\n -- Checking resource usage for $context --"

        foreach resource $resources {
            # Output Example for parsing
            # Ace-Mod3/Admin# sho resource usage context dcnteam resource rate ssl-connections
            # Allocation

            puts "$resource:"

            # Other output
        }
    }
}

<table>
<thead>
<tr>
<th>Denied</th>
<th>Resource</th>
<th>Current</th>
<th>Peak</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

# Context: dcnteam

```bash
# Context: dcnteam
ssl-connections rate 0 0 0 20000

set usage($resource) [issue_command 
  "show resource usage context $context resource rate $resource"]

if { [regexp {\s+\S+\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)}
      $usage($resource) - current peak min max denied] } {

  # at this point, each value (Current, Peak, Min, Max, and Denied)
  # are in the appropriately named variable (current, peak, min,
  # max, and denied)

  # determine is peak is greater than 80% of Max
  if { $peak > [expr {$max * $max_percent}] } {
    puts "\tPROBLEM: Peak ($peak) is 80% of Max ($max)
    for resource $resource"

    # at this point, should send an alert to let someone know
    # there is a problem

  } else {
    puts "\t$resource: OK ($peak)"
  }
}
```

Sample Output:

```
./check_resources

-- Checking resource usage for Admin --
  bandwidth: OK (1166)
  connections: OK (1)
  ssl-connections: OK (0)

-- Checking resource usage for ACS-AMEX --
  bandwidth: OK (0)
```
connections: OK (0)
ssl-connections: OK (0)

-- Checking resource usage for ACS-TBO --
bandwidth: OK (0)
connections: OK (0)
ssl-connections: OK (0)

-- Checking resource usage for BAIKAL --
bandwidth: OK (356)
connections: OK (2)
ssl-connections: OK (0)

-- Checking resource usage for C2 --
bandwidth: OK (0)
connections: OK (0)
ssl-connections: OK (0)

-- Checking resource usage for Paul --
bandwidth: OK (100)
connections: OK (1)
ssl-connections: OK (0)

-- Checking resource usage for batch5 --
bandwidth: OK (0)
connections: OK (0)
ssl-connections: OK (0)

-- Checking resource usage for batch6 --
bandwidth: OK (0)
connections: OK (0)
ssl-connections: OK (0)

-- Checking resource usage for dcnteam --
bandwidth: OK (0)
connections: OK (0)
ssl-connections: OK (0)

-- Checking resource usage for skinny --
bandwidth: OK (0)
connections: OK (0)
ssl-connections: OK (0)
III. XML Script Example (SSL Certificate expiration)

```tcl
#!/usr/bin/tclsh

# Global login credentials
set user "username"
set pass "password"

# Global mgmt IP address of Admin context
set mgmt_ip "xx.xx.xx.xx"

# this procedure will execute a curl command to send the XML
# command to ACE. If the command fails to execute properly,
# the script will exit with an error.
# If the command executes with no problem, then the output
# of the XML command is returned
proc issue_command { cmd } {
    global user pass mgmt_ip
    if { [catch {set output [exec -- curl -s
        http://${user}:${pass}@${mgmt_ip}/bin/xml_agent
        -d "xml_cmd=<request_raw>${cmd}</request_raw>"} error] } }
    {
        puts "Problem with exec: $error"
        exit 0
    }
    return $output
}

set current_date [clock seconds]

# Get a list of contexts from Admin context
set contexts [split [issue_command "show context | inc Name"] 

foreach line $contexts {
    if { [regexp {Name: (.*) ,} $line - context] } {

        # output example
        # Ace-Mod3/Paul# sho crypto files | inc CERT
        # test-cert.pem 787 PEM Yes CERT

        set crypto_out [issue_command
```
 Technical Overview

"changeto ${context}\nshow crypto files | inc CERT"

foreach elem [split $crypto_out \n] {

    if { [regexp {^{\S+}\d+\S+} $elem - cert] } {
        set cert_out [issue_command\n        "changeto ${context}\nshow crypto certificate $cert | inc After"]

        if { [regexp {Not After :\s+(.* GMT)} $cert_out - cert_date] } {

            # check if certificate After date is less than today's date
            if { [clock scan $cert_date] < $current_date} {
                puts "Context: $context - $cert is expired ($cert_date)"
                # should send an alert!!
            } else {
                puts "Context: $context - $cert is NOT expired ($cert_date)"
                # get certificate After date minus 90 days
                set cert_90_date [clock scan "-90 day" -base\n                                    [clock scan $cert_date]]

                # check if certificate After date expires within next 90 days
                if { $cert_90_date < $current_date} {
                    puts "Content: $context - $cert will expire within 90 days\n                    ($cert_date)"
                    # should send an alert!!
                } else {
                }
            }
        } else {
        }
    }
}

Sample Output:
.
./check_certificates
Context: Admin - testcer.pem is expired (May 24 23:59:59 2007 GMT)
Context: Paul - test-cert.pem is NOT expired (May 28 22:18:36 2008 GMT)
Content: Paul - test-cert.pem will NOT expire within 90 days (May 28 22:19:36 2008 GMT)