Release 15.1SY Supervisor Engine 2T Software Configuration Guide
Onboard Failure Logging (OBFL)
Downloads: This chapterpdf (PDF - 258.0KB) The complete bookPDF (PDF - 13.63MB) | The complete bookePub (ePub - 2.65MB) | The complete bookMobi (Mobi - 3.48MB) | Feedback

Table of Contents

Onboard Failure Logging (OBFL)

Prerequisites for OBFL

Restrictions for OBFL

Information About OBFL

Overview of OBFL

Information about Data Collected by OBFL

OBFL Data Overview

Temperature

Operational Uptime

Interrupts

Message Logging

Default Settings for OBFL

Enabling OBFL

Configuration Examples for OBFL

Enabling OBFL Message Logging: Example

OBFL Message Log: Example

OBFL Component Uptime Report: Example

OBFL Report for a Specific Time: Example

Onboard Failure Logging (OBFL)


Note • For complete syntax and usage information for the commands used in this chapter, see these publications:

http://www.cisco.com/en/US/products/ps11846/prod_command_reference_list.html

  • Cisco IOS Release 15.1SY supports only Ethernet interfaces. Cisco IOS Release 15.1SY does not support any WAN features or commands.


 


Tip For additional information about Cisco Catalyst 6500 Series Switches (including configuration examples and troubleshooting information), see the documents listed on this page:

http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html

Participate in the Technical Documentation Ideas forum


 

Prerequisites for OBFL

None.

Restrictions for OBFL

  • Software Restrictions—If a device (router or switch) intends to use linear flash memory as its OBFL storage media, Cisco IOS software must reserve a minimum of two physical sectors (or physical blocks) for the OBFL feature. Because an erase operation for a linear flash device is done on per-sector (or per-block) basis, one extra physical sector is needed. Otherwise, the minimum amount of space reserved for the OBFL feature on any device must be at least 8 KB.
  • Firmware Restrictions—If a line card or port adapter runs an operating system or firmware that is different from the Cisco IOS operating system, the line card or port adapter must provide device driver level support or an interprocess communications (IPC) layer that allows the OBFL file system to communicate to the line card or port adapter. This requirement is enforced to allow OBFL data to be recorded on a storage device attached to the line card or port adapter.
  • Hardware Restrictions—To support the OBFL feature, a device must have at least 8 KB of nonvolatile memory space reserved for OBFL data logging.

Information About OBFL

Overview of OBFL

The Onboard Failure Logging (OBFL) feature collects data such as operating temperatures, hardware uptime, interrupts, and other important events and messages from system hardware installed in a Cisco router or switch. The data is stored in nonvolatile memory and helps technical personnel diagnose hardware problems.

OBFL Data Overview

The OBFL feature records operating temperatures, hardware uptime, interrupts, and other important events and messages that can assist with diagnosing problems with hardware cards (or modules ) installed in a Cisco router or switch. Data is logged to files stored in nonvolatile memory. When the onboard hardware is started up, a first record is made for each area monitored and becomes a base value for subsequent records. The OBFL feature provides a circular updating scheme for collecting continuous records and archiving older (historical) records, ensuring accurate data about the system. Data is recorded in one of two formats: continuous information that displays a snapshot of measurements and samples in a continuous file, and summary information that provides details about the data being collected. The data is displayed using the show logging onboard command. The message “No historical data to display” is seen when historical data is not available.

Temperature

Temperatures surrounding hardware modules can exceed recommended safe operating ranges and cause system problems such as packet drops. Higher than recommended operating temperatures can also accelerate component degradation and affect device reliability. Monitoring temperatures is important for maintaining environmental control and system reliability. Once a temperature sample is logged, the sample becomes the base value for the next record. From that point on, temperatures are recorded either when there are changes from the previous record or if the maximum storage time is exceeded. Temperatures are measured and recorded in degrees Celsius.

Temperature Example

--------------------------------------------------------------------------------
TEMPERATURE SUMMARY INFORMATION
--------------------------------------------------------------------------------
Number of sensors : 12
Sampling frequency : 5 minutes
Maximum time of storage : 120 minutes
--------------------------------------------------------------------------------
Sensor | ID | Maximum Temperature 0C
--------------------------------------------------------------------------------
MB-Out 980201 43
MB-In 980202 28
MB 980203 29
MB 980204 38
EARL-Out 910201 0
EARL-In 910202 0
SSA 1 980301 38
SSA 2 980302 36
JANUS 1 980303 36
JANUS 2 980304 35
GEMINI 1 980305 0
GEMINI 2 980306 0
---------------------------------------------------------------
Temp Sensor ID
0C 1 2 3 4 5 6 7 8 9 10 11 12
---------------------------------------------------------------
No historical data to display
---------------------------------------------------------------
--------------------------------------------------------------------------------
TEMPERATURE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
Sensor | ID |
--------------------------------------------------------------------------------
MB-Out 980201
MB-In 980202
MB 980203
MB 980204
EARL-Out 910201
EARL-In 910202
SSA 1 980301
SSA 2 980302
JANUS 1 980303
JANUS 2 980304
GEMINI 1 980305
GEMINI 2 980306
 
-------------------------------------------------------------------------------
Time Stamp |Sensor Temperature 0C
MM/DD/YYYY HH:MM:SS | 1 2 3 4 5 6 7 8 9 10 11 12
-------------------------------------------------------------------------------
03/06/2007 22:32:51 31 26 27 27 NA NA 33 32 30 29 NA NA
03/06/2007 22:37:51 43 28 29 38 NA NA 38 36 36 35 NA NA
-------------------------------------------------------------------------------
 

To interpret this data:

  • Number of sensors is the total number of temperature sensors that will be recorded. A column for each sensor is displayed with temperatures listed under the number of each sensor, as available.
  • Sampling frequency is the time between measurements.
  • Maximum time of storage determines the maximum amount of time, in minutes, that can pass when the temperature remains unchanged and the data is not saved to storage media. After this time, a temperature record will be saved even if the temperature has not changed.
  • The Sensor column lists the name of the sensor.
  • The ID column lists an assigned identifier for the sensor.
  • Maximum Temperature 0C shows the highest recorded temperature per sensor.
  • Temp indicates a recorded temperature in degrees Celsius in the historical record. Columns following show the total time each sensor has recorded that temperature.
  • Sensor ID is an assigned number, so that temperatures for the same sensor can be stored together.

Operational Uptime

The operational uptime tracking begins when the module is powered on, and information is retained for the life of the module.

Operational Uptime Example

--------------------------------------------------------------------------------
UPTIME SUMMARY INFORMATION
--------------------------------------------------------------------------------
First customer power on : 03/06/2007 22:32:51
Total uptime : 0 years 0 weeks 2 days 18 hours 10 minutes
Total downtime : 0 years 0 weeks 0 days 8 hours 7 minutes
Number of resets : 130
Number of slot changes : 16
Current reset reason : 0xA1
Current reset timestamp : 03/07/2007 13:29:07
Current slot : 2
Current uptime : 0 years 0 weeks 1 days 7 hours 0 minutes
--------------------------------------------------------------------------------
Reset | |
Reason | Count |
--------------------------------------------------------------------------------
0x5 64
0x6 62
0xA1 4
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
UPTIME CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
Time Stamp | Reset | Uptime
MM/DD/YYYY HH:MM:SS | Reason | years weeks days hours minutes
--------------------------------------------------------------------------------
03/06/2007 22:32:51 0xA1 0 0 0 0 0
--------------------------------------------------------------------------------
 

The operational uptime application tracks the following events:

  • Date and time the customer first powered on a component.
  • Total uptime and downtime for the component in years, weeks, days, hours, and minutes.
  • Total number of component resets.
  • Total number of slot (module) changes.
  • Current reset timestamp to include the date and time.
  • Current slot (module) number of the component.
  • Current uptime in years, weeks, days, hours, and minutes.
  • Reset reason; see Table 7-1 to translate the numbers displayed.
  • Count is the number of resets that have occurred for each reset reason.

 

Table 7-1 Reset Reason Codes and Explanations

Reset Reason Code (in hex)
Component/Explanation

0x01

Chassis on

0x02

Line card hot plug in

0x03

Supervisor requests line card off or on

0x04

Supervisor requests hard reset on line card

0x05

Line card requests Supervisor off or on

0x06

Line card requests hard reset on Supervisor

0x07

Line card self reset using the internal system register

0x08

0x09

0x0A

Momentary power interruption on the line card

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

0x11

Off or on after Supervisor non-maskable interrupts (NMI)

0x12

Hard reset after Supervisor NMI

0x13

Soft reset after Supervisor NMI

0x14

0x15

Off or on after line card asks Supervisor NMI

0x16

Hard reset after line card asks Supervisor NMI

0x17

Soft reset after line card asks Supervisor NMI

0x18

0x19

Off or on after line card self NMI

0x1A

Hard reset after line card self NMI

0x1B

Soft reset after line card self NMI

0x21

Off or on after spurious NMI

0x22

Hard reset after spurious NMI

0x23

Soft reset after spurious NMI

0x24

0x25

Off or on after watchdog NMI

0x26

Hard reset after watchdog NMI

0x27

Soft reset after watchdog NMI

0x28

0x29

Off or on after parity NMI

0x2A

Hard reset after parity NMI

0x2B

Soft reset after parity NMI

0x31

Off or on after system fatal interrupt

0x32

Hard reset after system fatal interrupt

0x33

Soft reset after system fatal interrupt

0x34

0x35

Off or on after application-specific integrated circuit (ASIC) interrupt

0x36

Hard reset after ASIC interrupt

0x37

Soft reset after ASIC interrupt

0x38

0x39

Off or on after unknown interrupt

0x3A

Hard reset after unknown interrupt

0x3B

Soft reset after unknown interrupt

0x41

Off or on after CPU exception

0x42

Hard reset after CPU exception

0x43

Soft reset after CPU exception

0xA1

Reset data converted to generic data

Interrupts

Interrupts are generated by system components that require attention from the CPU such as ASICs and NMIs. Interrupts are generally related to hardware limit conditions or errors that need to be corrected.

The continuous format records each time a component is interrupted, and this record is stored and used as base information for subsequent records. Each time the list is saved, a timestamp is added. Time differences from the previous interrupt are counted, so that technical personnel can gain a complete record of the component’s operational history when an error occurs.

Interrupts Example

--------------------------------------------------------------------------------
INTERRUPT SUMMARY INFORMATION
--------------------------------------------------------------------------------
Name | ID | Offset | Bit | Count
--------------------------------------------------------------------------------
No historical data to display
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
CONTINUOUS INTERRUPT INFORMATION
--------------------------------------------------------------------------------
MM/DD/YYYY HH:MM:SS mmm | Name | ID | Offset | Bit
--------------------------------------------------------------------------------
03/06/2007 22:33:06 450 Port-ASIC #2 9 0x00E7 6
--------------------------------------------------------------------------------
 

To interpret this data:

  • Name is a description of the component including its position in the device.
  • ID is an assigned field for data storage.
  • Offset is the register offset from a component register’s base address.
  • Bit is the interrupt bit number recorded from the component’s internal register.
  • The timestamp shows the date and time that an interrupt occurred down to the millisecond.

Message Logging

The OBFL feature logs standard system messages. Instead of displaying the message to a terminal, the message is written to and stored in a file, so the message can be accessed and read at a later time. System messages range from level 1 alerts to level 7 debug messages, and these levels can be specified in the hw module logging onboard command.

Error Message Log Example

--------------------------------------------------------------------------------
ERROR MESSAGE SUMMARY INFORMATION
--------------------------------------------------------------------------------
Facility-Sev-Name | Count | Persistence Flag
MM/DD/YYYY HH:MM:SS
--------------------------------------------------------------------------------
No historical data to display
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
ERROR MESSAGE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
MM/DD/YYYY HH:MM:SS Facility-Sev-Name
--------------------------------------------------------------------------------
03/06/2007 22:33:35 %GOLD_OBFL-3-GOLD : Diagnostic OBFL: Diagnostic OBFL testing
 

To interpret this data:

  • A timestamp shows the date and time the message was logged.
  • Facility-Sev-Name is a coded naming scheme for a system message, as follows:

The Facility code consists of two or more uppercase letters that indicate the hardware device (facility) to which the message refers.

Sev is a single-digit code from 1 to 7 that reflects the severity of the message.

Name is one or two code names separated by a hyphen that describe the part of the system from where the message is coming.

  • The error message follows the Facility-Sev-Name codes. For more information about system messages, see the Cisco IOS System and Error Messages guide.
  • Count indicates the number of instances of this message that is allowed in the history file. Once that number of instances has been recorded, the oldest instance will be removed from the history file to make room for new ones.
  • The Persistence Flag gives a message priority over others that do not have the flag set.

Default Settings for OBFL

The OBFL feature is enabled by default. Because of the valuable information this feature offers technical personnel, it should not be disabled.

Enabling OBFL

To enable OBFL, perform this task:

 

Command or Action
Purpose

Step 1

Router> enable

Enables privileged EXEC mode (enter your password if prompted).

Step 2

Router# configure terminal

Enters global configuration mode.

Step 3

Router(config)# hw-module switch switch-number module module-number logging onboard [ message level { 1 - 7 }]

Enables OBFL on the specified hardware module.

Note By default, all system messages sent to a device are logged by the OBFL feature. You can define a specific message level (only level 1 messages, as an example) to be logged using the message level keywords.

Step 4

Router(config)# end

Ends global configuration mode.

Configuration Examples for OBFL

The important OBFL feature is the information that is displayed by the show logging onboard module privileged EXEC command. This section provides the following examples of how to enable and display OBFL records.

Enabling OBFL Message Logging: Example

The following example shows how to configure OBFL message logging at level 3:

Router(config)# hw-module switch 2 module 1 logging onboard message level 3

OBFL Message Log: Example

The following example shows how to display the system messages that are being logged for module 2:

Router# show logging onboard module 2 message continuous
 
--------------------------------------------------------------------------------
ERROR MESSAGE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
MM/DD/YYYY HH:MM:SS Facility-Sev-Name
--------------------------------------------------------------------------------
03/06/2007 22:33:35 %SWITCH_IF-3-CAMERR : [chars], for VCI [dec] VPI [dec] in stdby data path check, status: [dec]
--------------------------------------------------------------------------------

OBFL Component Uptime Report: Example

The following example shows how to display a summary report for component uptimes for module 2:

Router# show logging onboard module 2 uptime
 
--------------------------------------------------------------------------------
UPTIME SUMMARY INFORMATION
--------------------------------------------------------------------------------
First customer power on : 03/06/2007 22:32:51
Total uptime : 0 years 0 weeks 0 days 0 hours 35 minutes
Total downtime : 0 years 0 weeks 0 days 0 hours 0 minutes
Number of resets : 1
Number of slot changes : 0
Current reset reason : 0xA1
Current reset timestamp : 03/06/2007 22:31:34
Current slot : 2
Current uptime : 0 years 0 weeks 0 days 0 hours 35 minutes
--------------------------------------------------------------------------------
Reset | |
Reason | Count |
--------------------------------------------------------------------------------
No historical data to display
--------------------------------------------------------------------------------

OBFL Report for a Specific Time: Example

The following example shows how to display continuous reports for all components during a specific time period:

Router# show logging onboard module 3 continuous start 15:01:57 1 Mar 2007 end 15:04:57 3 Mar 2007
 
PID: WS-X6748-GE-TX , VID: , SN: SAL09063B85
 
--------------------------------------------------------------------------------
UPTIME CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
Time Stamp | Reset | Uptime
MM/DD/YYYY HH:MM:SS | Reason | years weeks days hours minutes
--------------------------------------------------------------------------------
03/01/2007 15:01:57 0xA1 0 0 0 10 0
03/03/2007 02:29:29 0xA1 0 0 0 5 0
--------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------
TEMPERATURE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
Sensor | ID |
--------------------------------------------------------------------------------
MB-Out 930201
MB-In 930202
MB 930203
MB 930204
EARL-Out 910201
EARL-In 910202
SSA 1 930301
SSA 2 930302
JANUS 1 930303
JANUS 2 930304
GEMINI 1 930305
GEMINI 2 930306
-------------------------------------------------------------------------------
Time Stamp |Sensor Temperature 0C
MM/DD/YYYY HH:MM:SS | 1 2 3 4 5 6 7 8 9 10 11 12
-------------------------------------------------------------------------------
03/01/2007 15:01:57 26 26 NA NA NA NA 0 0 0 0 0 0
03/01/2007 15:06:57 39 27 NA NA NA NA 39 37 36 29 32 32
03/01/2007 15:11:02 40 27 NA NA NA NA 40 38 37 30 32 32
03/01/2007 17:06:06 40 27 NA NA NA NA 40 38 37 30 32 32
03/01/2007 19:01:09 40 27 NA NA NA NA 40 38 37 30 32 32
03/03/2007 02:29:30 25 26 NA NA NA NA 0 0 0 0 0 0
03/03/2007 02:34:30 38 26 NA NA NA NA 39 37 36 29 31 31
03/03/2007 04:29:33 40 27 NA NA NA NA 40 38 36 30 32 32
03/03/2007 06:24:37 40 27 NA NA NA NA 40 38 36 29 32 32
03/03/2007 08:19:40 40 27 NA NA NA NA 40 38 36 29 32 32
03/03/2007 10:14:44 40 27 NA NA NA NA 40 38 36 30 32 32
03/03/2007 12:09:47 40 27 NA NA NA NA 40 38 36 30 32 32
03/03/2007 14:04:51 40 27 NA NA NA NA 40 38 36 30 32 32
-------------------------------------------------------------------------------
--------------------------------------------------------------------------------
CONTINUOUS INTERRUPT INFORMATION
--------------------------------------------------------------------------------
MM/DD/YYYY HH:MM:SS mmm | Name | ID | Offset | Bit
--------------------------------------------------------------------------------
03/01/2007 15:01:59 350 Port-ASIC #0 7 0x00E7 6
03/03/2007 02:29:34 650 Port-ASIC #0 7 0x00E7 6
--------------------------------------------------------------------------------
 
--------------------------------------------------------------------------------
ERROR MESSAGE CONTINUOUS INFORMATION
--------------------------------------------------------------------------------
MM/DD/YYYY HH:MM:SS Facility-Sev-Name
--------------------------------------------------------------------------------
03/01/2007 15:02:15 %GOLD_OBFL-3-GOLD : Diagnostic OBFL: Diagnostic OBFL testing
03/03/2007 02:29:51 %GOLD_OBFL-3-GOLD : Diagnostic OBFL: Diagnostic OBFL testing
--------------------------------------------------------------------------------
 


Tip For additional information about Cisco Catalyst 6500 Series Switches (including configuration examples and troubleshooting information), see the documents listed on this page:

http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html

Participate in the Technical Documentation Ideas forum