Flap List Troubleshooting for the Cisco CMTS

Revised: February 5, 2007, 0L-1467-08

This document describes how to configure and use the Flap List Troubleshooting feature on the Cisco Cable Modem Termination System (CMTS) routers. The flap list is a patented tool for the Cisco CMTS routers to diagnose potential problems with a particular cable modem or with a particular cable interface. The flap list tracks “flapping” cable modems, which are cable modems that have intermittent connectivity problems. Excessive flapping could indicate a problem with a particular cable modem or with the upstream or downstream portion of the cable plant.

Feature Specifications for Flap List Troubleshooting

<table>
<thead>
<tr>
<th>Feature History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
</tr>
<tr>
<td>Release 11.3 NA</td>
</tr>
<tr>
<td>Release 12.0(4)XA</td>
</tr>
<tr>
<td>Release 12.0(7)XR, 12.1(2)EC</td>
</tr>
<tr>
<td>Release 12.1(5)EC</td>
</tr>
<tr>
<td>Release 12.1(7)CX</td>
</tr>
<tr>
<td>12.2(4)BC1</td>
</tr>
</tbody>
</table>

Supported Platforms

Cisco uBR7100 series, Cisco uBR7200 series, Cisco uBR10012 universal broadband routers.

Finding Support Information for Platforms and Cisco IOS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS software image support. Access Cisco Feature Navigator at http://www.cisco.com/go/fn. You must have an account on Cisco.com. If you do not have an account or have forgotten your username or password, click Cancel at the login dialog box and follow the instructions that appear.
Contents

- Prerequisites for Flap List Troubleshooting, page 10-2
- Restrictions for Flap List Troubleshooting, page 10-2
- Information About Flap List Troubleshooting, page 10-2
- How to Configure Flap List Troubleshooting, page 10-5
- How to Monitor and Troubleshoot Using Flap Lists, page 10-12
- Configuration Examples for Flap List Troubleshooting, page 10-21
- Additional References, page 10-22

Prerequisites for Flap List Troubleshooting

- To configure and access the flap list using SNMP commands, you must be using an SNMPv3 manager and have configured the Cisco CMTS router for SNMP operations.

Restrictions for Flap List Troubleshooting

- The Cisco CMTS should be running the latest Cisco IOS Release 12.1 EC or Cisco IOS Release 12.2 EC, or later, release.
- The Flap List Troubleshooting feature can be used only with two-way cable modems. The flap-list does not support telco-return cable modems or set-top boxes.

Note

Since the cable flap list was originally developed, polling mechanisms have been enhanced to have an increased rate of 1/sec when polls are missed. Cable modems can go offline faster than the frequency hop period, which can cause the frequency to stay fixed while cable modems go offline. To compensate for this, reduce the hop period to 10 seconds.

Information About Flap List Troubleshooting

This section describes the following information about the Flap List Troubleshooting feature:

- Feature Overview, page 10-3
- Information in the Flap List, page 10-3
- Cisco Cable Manager and Cisco Broadband Troubleshooter, page 10-4
- Benefits, page 10-5
Feature Overview

The Flap List Troubleshooting is a patented tool that is incorporated in the Cisco IOS software for the Cisco Cable Modem Termination System (CMTS) universal broadband routers. The flap list tracks “flapping” cable modems, which are cable modems that have intermittent connectivity problems. A flapping cable modem can indicate either a problem with that particular cable modem, or it could indicate an RF noise problem with the upstream or downstream portion of the cable plant.

The flap-list feature supports any cable modem that conforms to the Data-over-Cable Service Interface Specifications (DOCSIS) because it does use any special messaging to poll cable modems or to request any special information from them. Instead, this feature monitors the normal registration and station maintenance activity that is already performed over a DOCSIS cable network.

This allows the Cisco CMTS to collect the flap-list data without generating additional packet overhead and without impacting network throughput and performance. It also means that although the Flap List Troubleshooting feature is a proprietary feature for Cisco CMTS routers, it is compatible with all DOCSIS-compliant cable modems. In addition, unlike other monitoring methods that use the Simple Network Management Protocol (SNMP), the flap list uses zero bandwidth.

Information in the Flap List

The Flap List Troubleshooting feature tracks the following situations:

- **Reinsertions**—A reinsertion occurs when the cable modem re-registers more frequently than the user-specified insertion time. A pattern of reinsertions can indicate either potential problems in the downstream or that the cable modem is being improperly provisioned.

- **Hits and Misses**—A hit occurs when a cable modem successfully responds to the station maintenance messages (MAC-layer “keepalive” messages) that the Cisco CMTS sends out to conform to the DOCSIS standard. A miss occurs when the cable modem does not respond to the request within the user-specified timeout period. A pattern of misses can indicate a potential problem in either the downstream or upstream path, or that a problem can be occurring in the registration process.

- **Power Adjustments**—DOCSIS cable modems can adjust their upstream transmission power levels to adjust to unstable cable plant signal levels, up to a maximum allowable power level. Repeated power adjustments usually indicate a problem with an amplifier in the upstream return path.

The flap-list feature is automatically enabled, but to use the flap list effectively, the cable system administrator should also typically do the following:

- Set up a script to periodically poll the flap list, for example, every 15 minutes.

- Examine the resulting data and perform trend analysis to identify cable modems that are consistently in the flap list.

- Query the billing and administrative database for cable modem MAC address-to-street address translation and generate a report. The reports can be given to the customer service department or the cable plant’s operations and maintenance department. Using these reports, maintenance personnel can quickly discern how characteristic patterns of flapping cable modems, street addresses, and flap statistics indicate which amplifier or feeder lines are faulty. The reports also help to quickly discern whether problems exist in your downstream or upstream path and whether the problem is ingress noise or equipment related.
The flap list provides a quick way to quickly diagnose a number of possible problems. For example, if a subscriber reports a problem, but the flap list for the cable interface that is providing services to them shows little or no flap-list activity, the cable technician can assume that the Cisco CMTS and cable plant are communicating reliably. The problem, therefore, is probably in the subscriber's computer equipment or in the local connection to the cable modem.

Similarly, a cable technician can use the pattern of reinsertions, hits and misses, and power adjustments to quickly troubleshoot the following types of problems:

- If a subscriber's cable modem shows a lot of flap-list activity, it is having some kind of communication problem. Either the cable modem's hardware is faulty, its installation is faulty, the coaxial cable being used is faulty, or some portion of the cable plant that services this cable modem is faulty.
- Focus on the top 10 percent of cable modems that are most active in the flap list, since these are the most likely to indicate consistent and pervasive plant or equipment problems that will continue to disrupt communication with the headend.
- Cable modems with more than 50 power adjustments per day have a suspect upstream path.
- Cable modems with approximately the same number of hits and misses and with a lot of insertions have a suspect downstream path (for example, low level into the cable modem).
- All cable modems incrementing the insertion at the same time indicates a problem with the provisioning servers.
- Cable modems with high cyclic redundancy check (CRC) errors have bad upstream paths or in-home wiring problems.
- Correlating cable modems on the same physical upstream port with similar flap-list statistics can quickly resolve outside plant problems to a particular node or geography.

In addition, the cable network administrators can use the flap list to collect quality control and upstream performance data. Typically, the network operations center (NOC) saves the flap list to a database on a local computer on a daily basis, providing the ability to generate reports that track upstream performance and installation quality control, as well as to provide trend reports on cable plant problems.

Tip

The system supports automatic power adjustments. The **show cable flap-list** and **show cable modem** commands indicate when the headend cable router has detected an unstable return path for a particular modem and has compensated with a power adjustment. An asterisk (*) appears in the power-adjustment field for a modem when a power adjustment has been made; an exclamation point (!) appears when the modem has reached its maximum power-transmit level and cannot increase its power level any further.

Cisco Cable Manager and Cisco Broadband Troubleshooter

The Flap List Troubleshooting feature is supported by Cisco Cable Manager (CCM), Release 2.0 or later, which is a UNIX-based software suite that manages routers and DOCSIS-compliant cable modems, generates performance reports, troubleshoots connectivity problems, views the network graphically, and edits DOCSIS configuration files. You can access the CCM locally from the CCM server console or remotely from a UNIX workstation or a PC.

The Flap List Troubleshooting feature also works together with the Cisco Broadband Troubleshooter (CBT), which is a graphical-based application to manage and diagnose problems on the hybrid fiber-coaxial (HFC) network. Radio frequency (RF) technicians can quickly isolate plant and provisioning problems and characterize upstream and downstream trouble patterns, including analyzing flapping modems.
Benefits

The Flap List Troubleshooting feature is a proactive way to manage and troubleshoot problems on an HFC network. Its use of passive monitoring is more scalable and efficient than techniques that send special messages to cable modems or that regularly poll the cable modems using Simple Network Management Protocol (SNMP) commands. Because it uses mechanisms that already exist in a DOCSIS network, it can be used with any DOCSIS-certified cable modem or set-top box.

The flap list provides a cable technician with both real-time and historical cable health statistics for quick, accurate problem isolation and network diagnosis. Using the flap list, a cable technician is able to do the following:

- Quickly learn how to characterize trouble patterns in the hybrid fiber-coaxial (HFC) network.
- Determine which amplifier or feeder line is faulty.
- Distinguish an upstream path problem from a downstream one.
- Isolate an ingress noise problem from a plant equipment problem.

How to Configure Flap List Troubleshooting

This section describes how to configure the flap list operation on the Cisco CMTS. You can use either the command-line interface (CLI) commands or Simple Network Management Protocol (SNMP) commands to configure the flap list, to remove a cable modem from the list, or to clear the flap-list counters.

- Configuring Flap List Operation Using the CLI (optional), page 10-5
- Clearing the Flap List and Counters Using the CLI (optional), page 10-7
- Enabling or Disabling Power Adjustment Using the CLI (optional), page 10-8
- Configuring Flap List Operation Using SNMP (optional), page 10-11
- Clearing the Flap List and Counters Using SNMP (optional), page 10-11

Configuring Flap List Operation Using the CLI (optional)

To configure the operation of the flap list, use the following procedure, beginning in EXEC mode. This procedure is optional, unless you want to change the default values for the flap list.

SUMMARY STEPS

1. enable
2. configure terminal
3. cable flap-list insertion-time seconds
4. cable flap-list power-adjust threshold db
5. cable flap-list miss-threshold misses
6. cable flap-list aging minutes
7. cable flap-list size number
8. exit
How to Configure Flap List Troubleshooting

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 cable flap-list insertion-time seconds</td>
<td>(Optional) Specifies the minimum insertion (registration) time interval in seconds. Any cable modem that makes a registration request more frequently than this period of time is placed in the flap list. The valid range is from 60 to 86400 seconds, with a default of 180 seconds.</td>
</tr>
<tr>
<td>Step 4 cable flap-list power-adjust threshold db</td>
<td>(Optional) Specifies the minimum power adjustment, in dB, that constitutes a flap-list event. The valid range is from 1 to 10 dB, with a default of 2 dB. (See the “Enabling or Disabling Power Adjustment Using the CLI (optional)” section on page 10-8.)</td>
</tr>
<tr>
<td>Step 5 cable flap-list miss-threshold misses</td>
<td>(Optional) Specifies the number of MAC-layer station maintenance (keepalive) messages that can be missed in succession before the CMTS places the cable modem in the flap list. The valid range is 1 to 12, with a default of 6.</td>
</tr>
<tr>
<td>Step 6 cable flap-list aging minutes</td>
<td>(Optional) Specifies how long, in minutes, the Cisco CMTS should keep information for cable modems in the flap list. The valid range is from 1 to 86400 minutes, with a default of 10080 minutes (1 week).</td>
</tr>
</tbody>
</table>

Command Usage:

- `enable` Enables privileged EXEC mode.
- `configure terminal` Enters global configuration mode.
- `cable flap-list insertion-time <seconds>` Specifies the minimum insertion (registration) time interval in seconds.
- `cable flap-list power-adjust threshold <db>` Specifies the minimum power adjustment, in dB, that constitutes a flap-list event.
- `cable flap-list miss-threshold <misses>` Specifies the number of MAC-layer station maintenance (keepalive) messages that can be missed in succession before the CMTS places the cable modem in the flap list.
- `cable flap-list aging <minutes>` Specifies how long, in minutes, the Cisco CMTS should keep information for cable modems in the flap list.
How to Configure Flap List Troubleshooting

Clearing the Flap List and Counters Using the CLI (optional)

To clear one or more cable modems from the flap list, or to clear the flap list counters for one or more cable modems (while still keeping the modems in the flap list), use the following procedure, beginning in EXEC mode.

SUMMARY STEPS

1. enable
2. clear cable flap-list \{mac-addr | all\} \{save-counters\}
3. clear cable modem \{mac-addr | ip-addr \{cable slot/port\} \{all | oui string | reject\}\} counters

Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cable flap-list size number</td>
<td>Specifies the maximum number of cable modems that can be kept in the flap list. The valid range is from 1 to 8191 cable modems, with a default of 100 cable modems.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# cable flap-list size 4000 Router(config)#</td>
<td>Tip To avoid wasting processor memory, do not set this value beyond the actual number of cable modems being serviced by the Cisco CMTS.</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# exit Router#</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(config)# cable flap-list size 4000
Router(config)
Chapter 10 Flap List Troubleshooting for the Cisco CMTS

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 clear cable flap-list {mac-addr</td>
<td>all} [save-counters]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
<tr>
<td>clear cable flap-list 0102.0304.0506 save-counters</td>
<td></td>
</tr>
<tr>
<td>clear cable flap-list 000C.0102.0304</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear cable flap-list 0102.0304.0506</td>
<td></td>
</tr>
<tr>
<td>Router# clear cable flap-list 000C.0102.0304</td>
<td></td>
</tr>
<tr>
<td>Step 3 clear cable modem {mac-addr</td>
<td>ip-addr</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear cable modem 172.12.23.45 counters</td>
<td></td>
</tr>
<tr>
<td>Router# clear cable modem oui Cisco counters</td>
<td></td>
</tr>
<tr>
<td>Router# clear cable modem reject counters</td>
<td></td>
</tr>
<tr>
<td>Router# clear cable modem c4/0 counters</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
</tbody>
</table>

Enabling or Disabling Power Adjustment Using the CLI (optional)

The Cisco CMTS can automatically monitor a cable modem’s power adjustments and determine whether a particular cable modem requires a change in the power adjustment method. To enable a cable interface to make automatic power adjustments, and to set the frequency threshold for when those adjustments are made, use the following procedure, beginning in EXEC mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface cable x/y
4. cable upstream n power-adjust
 { continue pwr-level | noise perc-pwr-adj | threshold value }
5. cable upstream n freq-adj averaging percent
6. exit
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable Router#</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface cable x/y</td>
<td>Enters cable interface configuration mode for the specified cable interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface cable 4/0 Router(config-if)#</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 4** cable upstream n power-adjust
 { continue pwr-level | noise perc-pwr-adj | threshold value } | Enables automatic power adjustment on an upstream port for this cable interface: |
| **Example:** Router(config-if)# cable upstream 0 power-adjust threshold 2 |
| | • n = Specifies the upstream port number. Valid values start with 0 for the first upstream port on the cable interface line card. |
| | • continue pwr-level = Specifies the power threshold value that determines the value of the Ranging Status field in the Ranging Response (RNG-RSP) messages that the CMTS sends to the CM. The valid range is from 2 to 15 dB, with a default of 2 dB. |
| | • threshold value = Specifies the power adjustment threshold. The threshold range is from 0 to 10 dB, with a default of 1 dB. |
| | • noise perc-pwr-adj = Specifies the percentage of power adjustment packets that is required to enable automatic power adjustments, which use an averaging algorithm to smooth out wide jumps in the power level. The valid range is 10 to 100 percent, with a default of 30 percent. |

Note Repeat **Step 4** for each upstream port on the cable interface.
Chapter 10 Flap List Troubleshooting for the Cisco CMTS

How to Configure Flap List Troubleshooting

Caution

The default settings are adequate for system operation. Amplitude averaging is an automatic procedure. In general, Cisco does not recommend that you adjust values. Cisco does recommend, however, that you clean up your cable plant should you encounter flapping cable modems.

Note

In some instances, you might adjust certain values for the `cable upstream power-adjust` command:

If CMs cannot complete ranging because they have reached maximum power levels, increase the `continue pwr-level` parameter beyond the default value of 2 dB. Values larger than 10 dB on “C” versions of cable interface line cards, or 5 dB on FPGA versions, are not recommended.

If the flap list shows CMs with a large number of power adjustments, but the CMs are not detected as “noisy,” decrease the `noise perc-pwr-adj` value. If too many CMs are unnecessarily detected as “noisy,” increase the percentage.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>cable upstream n freq-adj averaging percent</code></td>
<td>Specifies the percentage of frequency adjustment packets needed to change the adjustment method from the regular power-adjustment method to the automatic power adjustment method:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# cable upstream 0 freq-adj averaging 50</td>
<td>• <code>n</code> = Specifies the upstream port number. Valid values start with 0 for the first upstream port on the cable interface line card.</td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td>• <code>percent</code> = Specifies the percentage of frequency-adjustment packets required to switch from the regular power-adjustment method to the noise power-adjustment method. The valid range is from 10 to 100 percent.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Flap List Operation Using SNMP (optional)

To configure the Flap List Troubleshooting feature on the Cisco CMTS using SNMP, set the appropriate cssFlapObjects attributes in the CISCO-CABLE-SPECTRUM-MIB. Table 10-1 lists each of the configurable attributes:

Table 10-1 Flap-List Configuration Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccsFlapListMaxSize</td>
<td>Integer32</td>
<td>1 to 65536</td>
<td>The maximum number of modems that a flap list can support. The default is 100.</td>
</tr>
<tr>
<td>ccsFlapListCurrentSize</td>
<td>Integer32</td>
<td>1 to 65536</td>
<td>The current number of modems in the flap list.</td>
</tr>
<tr>
<td>ccsFlapAging</td>
<td>Integer32</td>
<td>1 to 86400</td>
<td>The flap entry aging threshold in minutes. The default is 10080 minutes (180 hours or 7 days).</td>
</tr>
<tr>
<td>ccsFlapInsertionTime</td>
<td>Integer32</td>
<td>60 to 86400</td>
<td>The worst-case insertion time, in seconds. If a cable modem has not completed the registration stage within this interval, the cable modem is inserted into the flap list. The default value is 90 seconds.</td>
</tr>
<tr>
<td>ccsFlapPowerAdjustThreshold</td>
<td>Integer32</td>
<td>1 to 10</td>
<td>When the power of the modem is adjusted beyond the power adjust threshold, the modem is inserted into the flap list.</td>
</tr>
<tr>
<td>ccsFlapMissThreshold</td>
<td>Unsigned32</td>
<td>1 to 12</td>
<td>When a cable modem does not acknowledge this number of consecutive MAC-layer station maintenance (keepalive) messages, the cable modem is placed in the flap list.</td>
</tr>
</tbody>
</table>

1. The allowable range when using SNMP for these parameters is 1 to 65536 (a 32-bit value), but the valid operational range is 1 to 8191.

Clearing the Flap List and Counters Using SNMP (optional)

To remove a cable modem from the flap list or to clear one or all of the flap-list counters, set the appropriate cssFlapObjects attributes in the CISCO-CABLE-SPECTRUM-MIB. Table 10-2 lists the attributes that clear the SNMP counters.

Table 10-2 Attributes to Clear the Flap List

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccsFlapResetAll</td>
<td>Boolean</td>
<td>Setting this object to True (1) resets all flap-list counters to zero.</td>
</tr>
<tr>
<td>ccsFlapClearAll</td>
<td>Boolean</td>
<td>Setting this object to True (1) removes all cable modems from the flap list, and destroys all entries in the ccsFlapTable. If a modem keeps flapping, the modem is added again into the flap list as a new entry.</td>
</tr>
</tbody>
</table>

Note

The ccsFlapLastClearTime attribute contains the date and time that the entries in the ccsFlapTable table were last cleared.
How to Monitor and Troubleshoot Using Flap Lists

- Displaying the Flap List Using the show cable flap-list Command, page 10-12
- Displaying the Flap List Using the show cable modem flap Command, page 10-16
- Displaying the Flap List Using SNMP, page 10-16
- Displaying Flap-List Information for Specific Cable Modems, page 10-17
- Troubleshooting Suggestions, page 10-19

Displaying the Flap List Using the show cable flap-list Command

To display the current contents of the flap list, use the `show cable flap-list` command in privileged EXEC mode. This command has the following syntax:

- `show cable flap-list` = Displays the complete flap list.
- `show cable flap-list sort-interface` = Displays the complete flap list sorted by cable interface.
- `show cable flap-list cable interface [upstream port]` = Displays the flap list for a specific cable interface, or for a specific upstream port on that cable interface.

To change the way the output is sorted, add one of the following optional keywords:

- `sort-flap` = Sorts the output by the number of times that the cable modem has flapped.
- `sort-time` = Sorts the output by the most recent time that the cable modem flapped.

The following example shows typical output of the `show cable flap-list` command.

```
UBR7100# show cable flap-list
Mac Addr       CableIF Tns    Hit   Miss    CRC  P-Adj   Flap    Time
0010.9500.461f C1/0 U1 56  18857   887  0    1    116 Jun 1 14:09:12
0010.9500.446e C1/0 U1 38  18686   2935 0    1    80 Jun 2 19:03:57
0010.9500.38ec C1/0 U2 63  18932   1040 0    3    137 Jun 2 09:30:09
0010.9500.4474 C1/0 U2 65  18913   1053 0    8    138 Jun 2 23:50:53
0010.9500.4672 C1/0 U2 56  18890   2327 0    6    124 Jun 2 10:44:14
0010.9500.38f0 C1/0 U2 50  18964   2083 0    5    111 Jun 2 20:46:56
0010.9500.4671 C1/0 U2 63  18775   3212 1    1    89 Jun 1 19:36:20
0010.9500.38e6 C1/0 U0 57  36133   1608 0    6    126 Jun 2 20:04:58
0010.9500.4674 C1/0 U2 56  36037   2379 0    4    121 Jun 3 00:34:12
0010.9500.4672 C1/0 U2 50  35781   2381 0    4    111 Jun 2 12:14:38
0010.9500.4614 C1/0 U2 40  21810   2362 0    502   586 Jun 2 21:43:02
0010.9500.3be9 C1/0 U2 63  22862   969 0    0    128 Jun 1 14:09:03
0010.9500.4609 C1/0 U2 55  22723   2127 0    0    112 Jun 1 14:08:02
0010.9500.3cb8 C1/0 U2 49  22607   1378 0    0    102 Jun 1 14:08:58
0010.9500.460d C1/0 U3 46  22477   2967 0    2    96 Jun 2 17:03:48
0010.9500.3cba C1/0 U3 39  22343   3058 0    0    81 Jun 1 14:13:16
0010.9500.3cb4 C1/0 U3 38  22238   2936 0    0    79 Jun 1 14:09:26
0010.9500.4612 C1/0 U3 38  22306   2928 0    0    79 Jun 1 14:09:29

Router#
```
Table 10-3 describes each field shown by the `show cable flap-list` command:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mac Addr</td>
<td>The MAC address for the CM.</td>
</tr>
<tr>
<td>CableIF</td>
<td>The cable interface line card, including upstream, for this CM.</td>
</tr>
</tbody>
</table>
| Ins | The number of times the CM comes up and inserts itself into the network. This counter indicates the number of times the RF link was abnormally reestablished into the network. This counter is increased when the time between initial link establishment and a reestablishment was less than the threshold parameter configured using the `show cable flap-list` command. Normal modem activity uses the following sequence:
 • Initial link insertion is followed by a station maintenance message between the CMTS and cable modem.
 • Power on
 • Initial maintenance
 • Station maintenance
 • Power off
When the link is broken, initial maintenance is repeated to reestablish the link.
 • Initial maintenance @ Time T1
 • Station maintenance
 • Initial maintenance @ Time T2
The Ins and Flap counters in the flap list are incremented whenever T2 – T1 < N where N is the insertion-time parameter configured in the `show cable flap-list insertion-time` command. This count may indicate intermittent downstream synchronization loss or DHCP or modem registration problems. In the latter case, the Ins count tends to track the Flap count. If the downstream is unstable (levels move outside the modem’s range occasionally), insertions can occur. If the modem cannot provision correctly, many insertions occur. If link reestablishment happens too frequently, the modem usually has a registration problem. To check for this potential problem, check to see if the insertion counter is the same order of magnitude as the Flap counter. |
| Hit | The number of times the CM responds to MAC-layer station maintenance (keepalive) messages. (The minimum hit rate is once per 30 seconds. It can indicate intermittent upstream, laser clipping, or common-path distortion. |
| Miss | The number of times the CM misses and does not respond to a MAC-layer station maintenance (keepalive) message. An 8 percent miss rate is normal for the Cisco cable interface line cards. It can indicate intermittent upstream, laser clipping, or common-path distortion. |
Chapter 10 Flap List Troubleshooting for the Cisco CMTS

How to Monitor and Troubleshoot Using Flap Lists

Note

The Hit and Miss columns are keepalive polling statistics between the CMTS and the cable modem. The station maintenance process occurs for every modem approximately every 25 seconds. When the CMTS receives a response from the modem, the event is counted as a hit. If the CMTS does not receive a response from the cable modem, the event is counted as a miss.

Ideally, the hit count should be much greater than the miss count. If a modem has a hit count much less than its miss count, then registration is failing. Noisy links cause the miss or hit ratio to deviate from a nominal 10 percent or less. High miss counts can indicate:

- Intermittent upstream possibly due to noise
- Laser clipping
- Common-path distortion
- Ingress or interference
- Too much or too little upstream attenuation

A cable modem fails to respond either because of noise or if it is down. Modems that log only misses and zero hits are assumed to be powered off. If noise caused a poll to be missed, then the transition from miss to hit is detected as a flap condition. The poll rate is increased to 1 per second whenever the modem misses a poll. This is used to accelerate the offline state detection and decrease station maintenance overhead.

Misses are not desirable, because they usually indicate a return path problem; however, having a small number of misses is normal. After 16 misses, the modem is assumed to have powered off and the link is broken.

The flap count is incremented if there are \(M \) consecutive misses, where \(M \) is configured in the `cable flap miss-threshold` command. The parameter value ranges from 1 to 12, with a default of 6.

Hit and miss analysis could be done after the Ins count stops incrementing. In general, if the hit and miss counts are about the same order of magnitude, and the CRC count is low or nonexistent, then the upstream is experiencing noise.

If the miss count is greater, then the modem is probably experiencing common-path distortion and is dropping out frequently or not completing registration. Check grounding connections and if you see noise disappear after breaking a cable connection, but build back up again later, check the end-of-line terminators. You may be using a substandard frequency translator instead of a Digital Signal Processor. If the line is simply noisy, but not too noisy, you see an increase in the percentage of misses. If it is very noisy, then more than 80% of the ranging responses (RNG-RSP) are missed and the modem has many insertions.

Table 10-3 `show cable flap-list` Command Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC</td>
<td>The number of cyclic redundancy check (CRC) errors for this cable modem. CRC errors are calculated on per modem basis and refer to upstream impairments. Cable modems with high CRC errors either have bad upstream paths, or have in-home wiring problems. The CRC counter field indicates:</td>
</tr>
<tr>
<td></td>
<td>- Intermittent upstream</td>
</tr>
<tr>
<td></td>
<td>- Laser clipping</td>
</tr>
<tr>
<td></td>
<td>- Common-path distortion</td>
</tr>
<tr>
<td></td>
<td>- Impulsive noise or interference</td>
</tr>
</tbody>
</table>
How to Monitor and Troubleshoot Using Flap Lists

P-Adj: The number of times the headend instructed the CM to adjust transmit (TX) power more than 3 dB. It can indicate amplifier degradation, poor connections, or thermal sensitivity.

* means the noise power-adjustment method is active for this modem.

! means the modem has reached its maximum transmit power.

The station maintenance poll in the CMTS constantly adjusts the modem transmit power, frequency, and timing. The power-adjustment (P-Adj) column indicates the number of times the modem’s power adjustment exceeded the threshold value. The power adjustment threshold may be set using the `cable flap-list power-adjust threshold` command with a value range of 0 to 10 dB and a default value of 2 dB. Tuning this threshold is recommended to decrease irrelevant entries in the flap list. Power-adjustment values of 2 dB and below continuously increment the P-Adj counter. The modem transmitter step size is 1.5 dB, whereas the headend may command 0.25 dB step sizes.

Power-adjustment flap strongly suggests upstream plant problems such as:

- Amplifier degradation
- Poor connections
- Thermal sensitivity
- Attenuation problem

The P-Adj column is often watched as an indicator of plant stability. It may give a forewarning of a future plant outage. If the upstream path contains too much or too little loss, the modem is undergoing many power adjustments.

Flap: The total number of times a modem has flapped, which is the sum of P-Adj and Ins values. This counter is incremented when one of the following events is detected:

- Unusual modem insertion or re-registration attempts. The Flap and the Ins counters are incremented when the modem tries to reestablish the RF link with the CMTS within a period of time that is less than the user-configured insertion interval value.

- Abnormal miss or hit ratio. The Flap counter is incremented when \(N \) consecutive misses are detected after a hit where \(N \) can be user-configured with a default value of 6.

- Unusual power adjustment. The Flap and P-Adj counters are incremented when the modem’s upstream power is adjusted beyond a user-configured power level.

Time: Time is the most recent time that the modem dropped the connection or flapped. The value is based on the clock configured on the local CMTS. If no time is configured, this value is based on the current uptime of the CMTS. When a cable modem meets one of the three flap-list criteria, the Flap counter is incremental and Time is set to the current time.

Table 10-3: show cable flap-list Command Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Adj</td>
<td>The number of times the headend instructed the CM to adjust transmit (TX) power more than 3 dB. It can indicate amplifier degradation, poor connections, or thermal sensitivity. * means the noise power-adjustment method is active for this modem. ! means the modem has reached its maximum transmit power. The station maintenance poll in the CMTS constantly adjusts the modem transmit power, frequency, and timing. The power-adjustment (P-Adj) column indicates the number of times the modem’s power adjustment exceeded the threshold value. The power adjustment threshold may be set using the <code>cable flap-list power-adjust threshold</code> command with a value range of 0 to 10 dB and a default value of 2 dB. Tuning this threshold is recommended to decrease irrelevant entries in the flap list. Power-adjustment values of 2 dB and below continuously increment the P-Adj counter. The modem transmitter step size is 1.5 dB, whereas the headend may command 0.25 dB step sizes. Power-adjustment flap strongly suggests upstream plant problems such as: - Amplifier degradation - Poor connections - Thermal sensitivity - Attenuation problem The P-Adj column is often watched as an indicator of plant stability. It may give a forewarning of a future plant outage. If the upstream path contains too much or too little loss, the modem is undergoing many power adjustments.</td>
</tr>
<tr>
<td>Flap</td>
<td>The total number of times a modem has flapped, which is the sum of P-Adj and Ins values. This counter is incremented when one of the following events is detected: - Unusual modem insertion or re-registration attempts. The Flap and the Ins counters are incremented when the modem tries to reestablish the RF link with the CMTS within a period of time that is less than the user-configured insertion interval value. - Abnormal miss or hit ratio. The Flap counter is incremented when (N) consecutive misses are detected after a hit where (N) can be user-configured with a default value of 6. - Unusual power adjustment. The Flap and P-Adj counters are incremented when the modem’s upstream power is adjusted beyond a user-configured power level.</td>
</tr>
<tr>
<td>Time</td>
<td>Time is the most recent time that the modem dropped the connection or flapped. The value is based on the clock configured on the local CMTS. If no time is configured, this value is based on the current uptime of the CMTS. When a cable modem meets one of the three flap-list criteria, the Flap counter is incremental and Time is set to the current time.</td>
</tr>
</tbody>
</table>
Displaying the Flap List Using the show cable modem flap Command

To display the contents of the flap list for a specific cable modem, use the `show cable modem flap` command in privileged EXEC mode. This command has the following syntax:

- `show cable modem [ip-address | mac-address] flap` = Displays the flap list for a specific cable modem, as identified by its IP address or MAC address.
- `show cable modem cable interface [upstream port] flap` = Displays the flap list for all cable modems on a specific cable interface.

Note
The `show cable modem flap` command displays information similar to that shown by the `show cable flap-list` command, except it displays this information on a per-modem basis.

The following example shows sample output for the `show cable modem flap` command for a particular cable modem:

```
Router# show cable modem 0010.7bb3.fcd1 flap
MAC Address    I/F       Ins   Hit   Miss  CRC   P-Adj   Flap  Time
0010.7bb3.fcd1 C5/0/U5   0     36278 92    0     369     372   Jun 1  13:05:23
```

Router#

The following example shows sample output for the `show cable modem flap` command for all cable modems on a specific cable interface:

```
Router# show cable modem c8/1/0 flap
MAC Address    I/F       Ins   Hit   Miss  CRC   P-Adj   Flap  Time
0050.7366.1243 C8/1/0/U1 6     29770 79    0     0       11    Apr 28 13:08:06
0002.b970.0027 C8/1/0/U4 6     29737 109   0     1       14    Apr 28 13:08:44
0006.5314.858d C8/1/0/U4 2     29635 41    0     0       4     Apr 28 13:09:21
```

Router#

See Table 10-3 on page 10-13 for a description of the fields shown by this command.

Displaying the Flap List Using SNMP

To display the contents of the flap list using SNMP, query the `ccsFlapTable` table in the `CISCO-CABLE-SPECTRUM-MIB`. This table contains an entry for each cable modem. Table 10-4 briefly describes each attribute in this table.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cssFlapMacAddr</td>
<td>MacAddress</td>
<td>MAC address of the cable modem’s cable interface. Identifies a flap-list entry for a flapping cable modem.</td>
</tr>
<tr>
<td>ccsFlapUpstreamIfIndex</td>
<td>InterfaceIndex</td>
<td>Upstream being used by the flapping cable modem.</td>
</tr>
<tr>
<td>ccsFlapDownstreamIfIndex</td>
<td>InterfaceIndex</td>
<td>Downstream being used by the flapping cable modem.</td>
</tr>
<tr>
<td>ccsFlapLastFlapTime</td>
<td>DateAndTime</td>
<td>Time stamp for the last time the cable modem flapped.</td>
</tr>
<tr>
<td>ccsFlapCreateTime</td>
<td>DateAndTime</td>
<td>Time stamp that this entry was added to the table.</td>
</tr>
</tbody>
</table>
Displaying Flap-List Information for Specific Cable Modems

To use SNMP requests to display flap-list information for a specific cable modem, use the cable modem’s MAC address as the index to retrieve entries from the ccsFlapTable. Use the following procedure to retrieve flap-list entries for a particular cable modem.

DETAILED STEPS

1. **Step 1** Convert the cable modem’s MAC address into a dotted decimal string. For example, the MAC address 000C.64ff.eb95 would become 0.12.100.255.235.149.
Step 2 Use the dotted decimal version of the MAC address as the instance for requesting information from the ccsFlapTable. For example, to retrieve the ccsFlapHits, ccsFlapMisses, and ccsFlapPowerAdjustments values for this cable modem, you would make an SNMP request for the following objects:

- `ccsFlapHits.0.12.100.255.235.149`
- `ccsFlapMisses.0.12.100.255.235.149`
- `ccsFlapPowerAdjustments.0.12.100.255.235.149`

Example

Assume that you want to retrieve the same flap-list information as the `show cable flap-list` command for a cable modem with the MAC address of 000C.64ff.eb95:

```
Router# show cable flap-list
MAC Address     Upstream     Ins   Hit   Miss  CRC   P-Adj Flap  Time
000C.64ff.eb95  Cable3/0/U4  3314  55605 50460 0    *42175 47533 Jan 27 02:49:10
Router#
```

Use an SNMP tool to retrieve the ccsFlapTable and filter it by the decimal MAC address. For example, using the standard Unix `getone` command, you would give the following command:

```
csh% getmany -v2c 192.168.100.121 public ccsFlapTable | grep 0.12.100.255.235.149
ccsFlapUpstreamIfIndex.0.12.100.255.235.149 = 15
ccsFlapDownstreamIfIndex.0.12.100.255.235.149 = 17
ccsFlapInsertionFails.0.12.100.255.235.149 = 3315
ccsFlapHits.0.12.100.255.235.149 = 55605
ccsFlapMisses.0.12.100.255.235.149 = 50460
ccsFlapCrcErrors.0.12.100.255.235.149 = 0
ccsFlapPowerAdjustments.0.12.100.255.235.149 = 42175
ccsFlapTotal.0.12.100.255.235.149 = 47534
ccsFlapLastFlapTime.0.12.100.255.235.149 = 07 d4 01 1b 02 33 1a 00
ccsFlapCreateTime.0.12.100.255.235.149 = 07 d4 01 16 03 23 22 00
ccsFlapRowStatus.0.12.100.255.235.149 = active(1)
ccsFlapInsertionFailNum.0.12.100.255.235.149 = 3315
ccsFlapHitNum.0.12.100.255.235.149 = 55605
ccsFlapMissNum.0.12.100.255.235.149 = 50460
ccsFlapCrcErrorNum.0.12.100.255.235.149 = 0
ccsFlapPowerAdjustmentNum.0.12.100.255.235.149 = 42175
ccsFlapTotalNum.0.12.100.255.235.149 = 47534
ccsFlapResetNow.0.12.100.255.235.149 = false(2)
ccsFlapLastResetTime.0.12.100.255.235.149 = 07 d4 01 16 03 20 18 00
```

To request just one particular value, use the decimal MAC address as the instance for that object:

```
csh% getone -v2c 172.22.85.7 public ccsFlapMisses.0.12.100.255.235.149
ccsFlapMisses.0.12.100.255.235.149 = 50736
```

Example

Assume that you want to retrieve the same flap-list information as the `show cable flap-list` command for a cable modem with the MAC address of 000C.64ff.eb95:

```
Router# show cable flap-list
```
Troubleshooting Suggestions

This section provides tips on how to interpret the flap-list counters, as well as how to determine the optimum power level for a flapping cable modem.

- **Troubleshooting Tips, page 10-19**
- **Performing Amplitude Averaging, page 10-19**
- **Using Other Related Commands, page 10-20**

Troubleshooting Tips

This section includes suggestions on how to interpret different network conditions based on the flap-list statistics:

- **Condition 1:** Low miss or hit ratio (< 2 percent for a Cisco uBR-MC16 card), low insertion, low P-Adj, low flap counter, and old time stamp.
 Analysis: This exhibits an optimal network situation.

- **Condition 2:** High ratio of misses over hits (> 10 percent).
 Analysis: Hit and miss analysis should be done after the Ins count stops incrementing. In general, if the hit and miss counts are about the same order of magnitude, the upstream can be experiencing noise. If the miss count is greater, then the modem is probably dropping out frequently and not completing registration. The upstream or downstream might not be stable enough for reliable link establishment. Very low hits and miss counters and high insertion counters indicate provisioning problems.

- **Condition 3:** Relatively high power-adjustment counter.
 Analysis: Indicates that the power-adjustment threshold is probably set at default value of 2 dB. The modem transmitter step size is 1.5 dB, but the headend can command 0.25 dB step sizes. Tuning your power threshold to 6 dB is recommended to decrease irrelevant entries in the flap list. The power-adjustment threshold can be set using `cable flap power threshold <0-10 dB>` in the Cisco IOS global configuration mode. A properly operating HFC network with short amplifier cascades can use a 2 to 3 dB threshold.

- **Condition 4:** High P-Adj and CRC errors.
 Analysis: This condition can indicate that the fiber node is clipping the upstream return laser. Evaluate the modems with the highest CRC count first. If the modems are not going offline (Ins = 0), this is not noticed by subscribers. However, they could receive slower service due to dropped IP packets in the upstream. This condition also results in input errors on the Cisco uBR7100 series router cable interface.

- **Condition 5:** High insertion rate.
 Analysis: If link reestablishment happens too frequently, the modem is usually having a registration problem. This is indicated by a high Ins counter, which tracks the Flap counter.

Performing Amplitude Averaging

The CMTS uses an averaging algorithm to determine the optimum power level for a cable modem with low carrier-to-noise ratio that is making excessive power adjustments—known as flapping. To avoid dropping flapping cable modems, the CMTS averages a configurable number of RNG-REQ messages before it makes power adjustments. By compensating for a potentially unstable return path, the CMTS maintains connectivity with affected cable modems. You can interpret these power adjustments, however, as indicating unstable return path connections.
The `show cable flap-list` and `show cable modem` commands are expanded to indicate to which paths the CMTS is making power adjustments and which modems have reached maximum transmit power settings. These conditions indicate unstable paths that should be serviced.

The following example shows the output of the `show cable flap-list` command:

```
Router# show cable flap-list
MAC Address     Upstream     Ins   Hit   Miss  CRC   P-Adj Flap  Time
0010.7bb3.fd19  Cable1/0/U1  0     2792  281   0    *45    58    Jul 27 16:54:50
0010.7bb3.fcfc  Cable1/0/U1  0     19    4     0    !43    43    Jul 27 16:55:01
0010.7bb3.fcdd  Cable1/0/U1  0     19    4     0    *3     3     Jul 27 16:55:01
```

The asterisk (*) indicates that the CMTS is using the power-adjustment method on this modem. An exclamation point (!) indicates that the modem has reached maximum transmit power.

Output of the `show cable modem` command appears below:

```
Router# show cable modem
```

```
Interface   Prim Online     Timing Rec    QoS CPE IP address      MAC address
Sid  State      Offset Power
Cable1/0/U0 1    online     2257    0.00  3   0   10.30.128.142   0090.8330.0217
Cable1/0/U0 2    online     2262  *-0.50  3   0   10.30.128.145   0090.8330.020f
Cable1/0/U0 3    online     2260  0.25  3   0   10.30.128.146   0090.8330.0211
Cable1/0/U0 4    online     2256  *0.75  3   0   10.30.128.143   0090.8330.0216
Cable1/0/U0 5    online     2265  *0.50  3   0   10.30.128.140   0090.8330.0214
Cable1/0/U0 6    online     2256  0.00  3   0   10.30.128.141   0090.8330.0215
Cable1/0/U0 7    online     4138  !-1.00  3   1   10.30.128.182   0050.7366.124d
Cable1/0/U0 8    online     4142  !-3.25  3   1   10.30.128.164   0050.7366.1245
Cable1/0/U0 9    online     4141  !-3.00  3   1   10.30.128.185   0050.7366.17e3
Cable1/0/U0 10   online     4142  !-2.75  3   1   10.30.128.181   0050.7366.17ab
Cable1/0/U0 11   online     4142  !-3.25  3   1   10.30.128.169   0050.7366.17ef
```

Similar to the `show cable flap-list` command display, the * symbol in the `show cable modem` command output indicates that the CMTS is using the power-adjustment method on this CM. The ! symbol indicates that the CM has reached maximum transmit power.

Using Other Related Commands

The following related Cisco IOS commands can be used to do maintenance on or display information about a cable modem.

- The following clears the counters for a cable modem (or all cable modems) in the station maintenance list:

  ```
  clear cable modem {mac-addr | ip-addr | all} counters
  ```

- The following displays the QoS, modem status, In and Out octets, IP and MAC addresses per SID:

  ```
  show int cable slot/port sid
  ```

- The following drops the modem’s RF link by removing a modem from the keepalive polling list. This forces the modem to reset. Note the warning below.

  ```
  clear cable-modem {mac-addr | ip-addr | all} reset
  ```

Tip

The `clear cable-modem all reset` command causes all modems to go offline and disrupt service for your users. It is best used in a test or nonproduction environment.
The following uses a MAC-layer ping to determine if the cable modem is online. It uses smaller data units on the wire than a standard IP ping, resulting in lower overhead. This command works even if the IP layer in the modem is down or has not completed registration:

```bash
ping DOCSIS cable-modem mac-addr | IP address
```

The following displays the timing offset, receive power, and QoS values by cable interface, SID, and MAC address:

```bash
show cable modem [ip-address | MAC-address]
```

The following displays the current allocation table and frequency assignments:

```bash
show cable spectrum-group [spectrum group number]
```

The following displays maximum, average, and minimum percent of online time and offline time for a given SID on a given cable router interface:

```bash
show int slot/port sid connectivity
```

The following command displays input and output rates, input errors, CRC, frames, overruns, underruns, collisions, interface resets. High input errors in the CMTS retrieved from this query suggest noisy upstream. In older versions of the chassis, loose midplane and line card screws caused a similar problem:

```bash
show interface slot/downstream-port
```

The following command displays upstream packet discards, errors, error-free packets, correctable and uncorrectable errors, noise, and micro-reflection statistics.

```bash
show interface slot/downstream-port upstream
```

Configuration Examples for Flap List Troubleshooting

The following excerpt from a configuration file shows a typical flap-list configuration:

```bash
!  cable flap-list insertion-time 120  
  cable flap-list power-adjust threshold 3  
  cable flap-list miss-threshold 4  
  cable flap-list aging 8  
  cable flap-list size 8191  

...
Additional References

For additional information related to the Flap List Troubleshooting feature, refer to the following references:

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTS Command Reference</td>
<td><em>Cisco Broadband Cable Command Reference Guide</em>, at the following URL:</td>
</tr>
<tr>
<td>Cisco IOS Release 12.2 Command Reference</td>
<td><em>Cisco IOS Release 12.2 Configuration Guides and Command References</em>, at the following URL:</td>
</tr>
<tr>
<td>Cisco Broadband Troubleshooter</td>
<td><em>Getting Started with Cisco Broadband Troubleshooter</em> and Release Notes, at the following URL:</td>
</tr>
<tr>
<td>Cisco uBR7100 Series Universal Broadband Router</td>
<td><em>Cisco uBR7100 Series Universal Broadband Router Hardware Installation Guide</em>, at the following URL:</td>
</tr>
<tr>
<td></td>
<td><em>Cisco uBR7100 Series Universal Broadband Router Software Configuration Guide</em>, at the following URL:</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-RFIPv1.1-I08-020301</td>
<td>Data-over-Cable Service Interface Specifications Radio Frequency Interface Specification (<a href="http://www.cablelabs.com/cablemodem">http://www.cablelabs.com/cablemodem</a>)</td>
</tr>
<tr>
<td>SP-BPI+-I08-020301</td>
<td>DOCSIS Baseline Privacy Interface Plus Specification (<a href="http://www.cablelabs.com/cablemodem">http://www.cablelabs.com/cablemodem</a>)</td>
</tr>
</tbody>
</table>

1. Not all supported standards are listed.
## Additional References

### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-CABLE-SPECTRUM-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

1. Not all supported MIBs are listed.

### RFCs

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature.</td>
<td>To locate and download Request for Comments (RFCs) and Internet Drafts, see the Internet Engineering Task Force (IETF) web site at the following URL: <a href="http://www.ietf.org/index.html">http://www.ietf.org/index.html</a></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>