NTP は、ネットワーク上のデバイス間の時刻の同期化を目的に設計されています。NTP はユーザ データグラム プロトコル(UDP)で稼働し、UDP は IP 上で稼働します。NTP は RFC 1305 で規定されています。
NTP ネットワークは通常、タイム サーバに接続されたラジオ クロックやアトミック クロックなど、正規の時刻源から時刻を取得します。NTP は、ネットワークにこの時刻を分配します。NTP はきわめて効率的で、1 分間に 1 パケットを使用するだけで、2 台のデバイスを 1 ミリ秒以内に同期化できます。
NTP では、信頼できるタイム ソースから各マシンが何 NTP「ホップ」隔たっているかを表すために、ストラタムという概念が使用されます。ストラタム 1 タイム サーバには、ラジオ クロックまたは原子時計が直接接続されており、ストラタム 2 タイム サーバは、NTP を使用してストラタム 1 タイム サーバから時刻を取得します(以降のストラタムも同様です)。NTP が稼働するデバイスは、タイム ソースとして、NTP を使用して通信するストラタム番号が最小のデバイスを自動的に選択します。この方法によって、NTP 時刻配信の自動編成型ツリーが効率的に構築されます。
NTP では、同期化されていないデバイスと同期化しないことによって、時刻が正確でないデバイスとの同期化を防ぎます。また、NTP では、複数のデバイスから報告される時刻を比較して、ストラタムの番号が小さくても、時刻が他のデバイスと大幅に異なるデバイスとは同期化しません。
NTP が稼働するデバイス間の通信(アソシエーション)は、通常静的に設定されます。各デバイスには、アソシエーションを作成すべきすべてのデバイスの IP アドレスが与えられます。アソシエーションのペアとなるデバイス間で NTP メッセージを交換することによって、正確な時刻の維持が可能になります。ただし、LAN 環境では、代わりに IP ブロードキャスト メッセージを使用するように NTP を設定できます。各デバイスを、単にブロードキャスト メッセージを送受信するように設定すればよいので、この代替手段によって設定の複雑さが緩和されます。ただし、情報の流れは一方向に限られます。
デバイス上で維持される時刻は、重要なリソースです。NTP のセキュリティ機能を使用して、不正確な時刻が誤って、あるいは意図的に設定されることがないようにしてください。その方法として、アクセス リストベースの制約方式と暗号化認証方式があります。
シスコによる NTP の実装では、ストラタム 1 サービスをサポートしていないため、ラジオ クロックまたは原子時計に接続できません。ネットワークの時刻サービスは、IP インターネット上のパブリック NTP サーバから取得することを推奨します。
次の図に NTP を使用した一般的なネットワークの例を示します。スイッチ A は、NTP サーバ モードで設定したスイッチ B、C、D の NTP マスターです。スイッチ B、C、D とスイッチ A の間にはサーバ アソシエーションが設定されています。スイッチ E はアップストリームおよびダウンストリーム スイッチ、スイッチ B およびスイッチ F それぞれの NTP ピアとして設定されます。
ネットワークがインターネットから切り離されている場合、シスコの NTP によって、実際には、他の方法で時刻を学習しているにもかかわらず、デバイスが NTP を使用して同期化しているように動作を設定できます。他のデバイスは、NTP によりこのデバイスと同期化されます。
複数のタイム ソースがある場合は、NTP は常に、より信頼性があると見なされます。NTP の時刻は、他の方法による時刻に優先します。
自社のホスト システムに NTP ソフトウェアを組み込んでいるメーカーが数社あり、UNIX システム用のバージョンやその派生ソフトウェアも一般に入手できます。このソフトウェアによって、ホスト システムも時間が同期化されます。