Catalyst 2950 Desktop Switch Software Configuration Guide
Cisco IOS Release 12.1(11)EA1 and 12.1(11)YJ
November 2002

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number: DOC-7814982=
Text Part Number: 78-14982-01
CHAPTER 2
Using the Command-Line Interface 2-1
 IOS Command Modes 2-1
 Getting Help 2-3
 Specifying Ports in Interface Configuration Mode 2-4
 Abbreviating Commands 2-5
 Using no and default Forms of Commands 2-5
 Understanding CLI Messages 2-5
 Using Command History 2-6
 Changing the Command History Buffer Size 2-6
 Recalling Commands 2-6
 Disabling the Command History Feature 2-7
 Using Editing Features 2-7
 Enabling and Disabling Editing Features 2-7
 Editing Commands through Keystrokes 2-8
 Editing Command Lines that Wrap 2-9
 Searching and Filtering Output of show and more Commands 2-10
 Accessing the CLI 2-10
 Accessing the CLI from a Browser 2-11

CHAPTER 3
Getting Started with CMS 3-1
 Features 3-2
 Front Panel View 3-4
 Cluster Tree 3-6
 Front-Panel Images 3-7
 Redundant Power System LED 3-8
 Port Modes and LEDs 3-8
 VLAN Membership Modes 3-9
 Topology View 3-10
 Topology Icons 3-12
 Device and Link Labels 3-13
 Colors in the Topology View 3-14
 Topology Display Options 3-15
 Menus and Toolbar 3-15
 Menu Bar 3-15
 Toolbar 3-20
 Front Panel View Popup Menus 3-21
 Device Popup Menu 3-21
 Port Popup Menu 3-21
CHAPTER 4
Assigning the Switch IP Address and Default Gateway 4-1
Understanding the Boot Process 4-1
Assigning Switch Information 4-2
Default Switch Information 4-3
Understanding DHCP-Based Autoconfiguration 4-3
DHCP Client Request Process 4-4
Configuring the DHCP Server 4-5
Configuring the TFTP Server 4-5
Configuring the DNS 4-6
Configuring the Relay Device 4-6
Obtaining Configuration Files 4-7
Example Configuration 4-8
Manually Assigning IP Information 4-10
Checking and Saving the Running Configuration 4-10

CHAPTER 5
Configuring IE2100 CNS Agents 5-1
Understanding IE2100 Series Configuration Registrar Software 5-1
CNS Configuration Service 5-2
CNS Event Service 5-3
NameSpace Mapper 5-3
What You Should Know About ConfigID, DeviceID, and Host Name 5-3
ConfigID 5-3
DeviceID 5-4
Host Name and DeviceID 5-4
Using Host Name, DeviceID, and ConfigID 5-4
Understanding CNS Embedded Agents 5-5
Initial Configuration 5-5
Incremental (Partial) Configuration 5-6
Synchronized Configuration 5-6
Configuring CNS Embedded Agents 5-6
Enabling Automated CNS Configuration 5-6
Enabling the CNS Event Agent 5-8
Enabling the CNS Configuration Agent 5-9
Enabling an Initial Configuration 5-9
Enabling a Partial Configuration 5-12
Displaying CNS Configuration 5-13

CHAPTER 6
Clustering Switches 6-1
Understanding Switch Clusters 6-2
Command Switch Characteristics 6-3
Standby Command Switch Characteristics 6-3
Candidate Switch and Member Switch Characteristics 6-4
Planning a Switch Cluster 6-5
Automatic Discovery of Cluster Candidates and Members 6-5
Discovery through CDP Hops 6-6
Discovery through Non-CDP-Capable and Noncluster-Capable Devices 6-7
Discovery through the Same Management VLAN 6-8
Discovery through Different Management VLANs 6-9
Discovery of Newly Installed Switches 6-10
HSRP and Standby Command Switches 6-12
Virtual IP Addresses 6-13
Other Considerations for Cluster Standby Groups 6-13
Automatic Recovery of Cluster Configuration 6-15
IP Addresses 6-15
Host Names 6-16
Passwords 6-16
SNMP Community Strings 6-16
TACACS+ and RADIUS 6-17
Access Modes in CMS 6-17
Management VLAN 6-18
LRE Profiles 6-18
Availability of Switch-Specific Features in Switch Clusters 6-19
Creating a Switch Cluster 6-19
Enabling a Command Switch 6-19
Adding Member Switches 6-20
Creating a Cluster Standby Group 6-22
Verifying a Switch Cluster 6-24
Using the CLI to Manage Switch Clusters 6-25
Catalyst 1900 and Catalyst 2820 CLI Considerations 6-25
Using SNMP to Manage Switch Clusters 6-26

CHAPTER 7

Administering the Switch 7-1
Preventing Unauthorized Access to Your Switch 7-1
Protecting Access to Privileged EXEC Commands 7-2
Default Password and Privilege Level Configuration 7-2
Setting or Changing a Static Enable Password 7-3
Protecting Enable and Enable Secret Passwords with Encryption 7-4
Disabling Password Recovery 7-5
Setting a Telnet Password for a Terminal Line 7-6
Configuring Username and Password Pairs 7-7
Configuring Multiple Privilege Levels 7-8
Setting the Privilege Level for a Command 7-8
Changing the Default Privilege Level for Lines 7-9
Logging into and Exiting a Privilege Level 7-10
Controlling Switch Access with TACACS+ 7-10
Understanding TACACS+ 7-10
TACACS+ Operation 7-12
Configuring TACACS+ 7-12
Default TACACS+ Configuration 7-13
Contents

Identifying the TACACS+ Server Host and Setting the Authentication Key 7-13
Configuring TACACS+ Login Authentication 7-14
Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services 7-16
Starting TACACS+ Accounting 7-17
Displaying the TACACS+ Configuration 7-17

Controlling Switch Access with RADIUS 7-18
Understanding RADIUS 7-18
RADIUS Operation 7-19
Configuring RADIUS 7-20
Default RADIUS Configuration 7-20
Identifying the RADIUS Server Host 7-20
Configuring RADIUS Login Authentication 7-23
Defining AAA Server Groups 7-25
Configuring RADIUS Authorization for User Privileged Access and Network Services 7-27
Starting RADIUS Accounting 7-28
Configuring Settings for All RADIUS Servers 7-29
Configuring the Switch to Use Vendor-Specific RADIUS Attributes 7-29
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 7-30
Displaying the RADIUS Configuration 7-31

Configuring the Switch for Local Authentication and Authorization 7-32

Configuring the Switch for Secure Shell 7-33
Understanding SSH 7-33
Configuring SSH 7-33

Managing the System Time and Date 7-34
Understanding the System Clock 7-34
Understanding Network Time Protocol 7-34
Configuring NTP 7-36
Default NTP Configuration 7-37
Configuring NTP Authentication 7-37
Configuring NTP Associations 7-38
Configuring NTP Broadcast Service 7-39
Configuring NTP Access Restrictions 7-40
Configuring the Source IP Address for NTP Packets 7-42
Displaying the NTP Configuration 7-43

Configuring Time and Date Manually 7-43
Setting the System Clock 7-44
Displaying the Time and Date Configuration 7-44
Configuring the Time Zone 7-45
Configuring Summer Time (Daylight Saving Time) 7-46
Configuring a System Name and Prompt 7-48
 Default System Name and Prompt Configuration 7-48
 Configuring a System Name 7-48
 Configuring a System Prompt 7-49
Understanding DNS 7-49
 Default DNS Configuration 7-50
 Setting Up DNS 7-50
 Displaying the DNS Configuration 7-51
Creating a Banner 7-51
 Default Banner Configuration 7-51
 Configuring a Message-of-the-Day Login Banner 7-52
 Configuring a Login Banner 7-53
Managing the MAC Address Table 7-54
 Building the Address Table 7-54
 MAC Addresses and VLANs 7-55
 Default MAC Address Table Configuration 7-55
 Changing the Address Aging Time 7-55
 Removing Dynamic Address Entries 7-56
 Configuring MAC Address Notification Traps 7-56
 Adding and Removing Static Address Entries 7-58
 Adding and Removing Secure Addresses 7-59
 Displaying Address Table Entries 7-60
Managing the ARP Table 7-61
Switch Software Releases 7-61

Chapter 8 8-1
Configuring 802.1X Port-Based Authentication 8-1
 Understanding 802.1X Port-Based Authentication 8-1
 Device Roles 8-2
 Authentication Initiation and Message Exchange 8-3
 Ports in Authorized and Unauthorized States 8-4
 Supported Topologies 8-5
Configuring 802.1X Authentication 8-5
 Default 802.1X Configuration 8-6
 802.1X Configuration Guidelines 8-7
 Enabling 802.1X Authentication 8-8
 Configuring the Switch-to-RADIUS-Server Communication 8-9
 Enabling Periodic Re-Authentication 8-10
 Manually Re-Authenticating a Client Connected to a Port 8-11
 Changing the Quiet Period 8-11
Changing the Switch-to-Client Retransmission Time 8-12
Setting the Switch-to-Client Frame-Retransmission Number 8-13
Enabling Multiple Hosts 8-13
Resetting the 802.1X Configuration to the Default Values 8-14
Displaying 802.1X Statistics and Status 8-14

CHAPTER 9
Configuring the Switch Interfaces 9-1
 Understanding Interface Types 9-1
 Access Ports 9-2
 Trunk Ports 9-2
 Port-Based VLANs 9-3
 EtherChannel Port Groups 9-3
 Connecting Interfaces 9-3
 Using the Interface Command 9-4
 Procedures for Configuring Interfaces 9-4
 Configuring a Range of Interfaces 9-6
 Configuring and Using Interface-Range Macros 9-8
Configuring Switch Interfaces 9-9
 Default Ethernet Interface Configuration 9-10
 SFP Configuration 9-10
 Configuring Interface Speed and Duplex Mode 9-11
 Configuration Guidelines 9-12
 Setting the Interface Speed and Duplex Parameters 9-13
 Configuring Media Types for Gigabit Interfaces 9-14
 Configuring IEEE 802.3X Flow Control on Gigabit Ethernet Ports 9-14
 Adding a Description for an Interface 9-16

 Monitoring and Maintaining the Interfaces 9-16
 Monitoring Interface and Controller Status 9-16
 Clearing and Resetting Interfaces and Counters 9-19
 Shutting Down and Restarting the Interface 9-19

CHAPTER 10
Configuring LRE 10-1
 Ports on the 2950 LRE 10-1
 LRE Links and LRE Profiles 10-2
 LRE Profiles 10-2
 LRE Sequences 10-4
 CPE Ethernet Links 10-5
 Configuring LRE Ports 10-5
 Environmental Guidelines for LRE Links 10-6
GUIDELINES FOR USING LRE PROFILES 10-7

CPE ETHERNET LINK GUIDELINES 10-7

CONSIDERATIONS FOR CONNECTED CISCO 575 LRE CPEs 10-7

CONSIDERATIONS FOR CONNECTED CISCO 585 LRE CPEs 10-8

ASSIGNING A GLOBAL PROFILE TO ALL LRE PORTS 10-8

ASSIGNING A PROFILE TO A SPECIFIC LRE PORT 10-9

ASSIGNING A GLOBAL SEQUENCE TO ALL LRE PORTS 10-9

ASSIGNING A SEQUENCE TO A SPECIFIC LRE PORT 10-10

USING RATE SELECTION TO AUTOMATICALLY ASSIGN PROFILES 10-10

PRECEDENCE 10-11

PROFILE LOCKING 10-11

LINK QUALIFICATION AND SNR MARGINS 10-12

LRE LINK PERSISTENCE 10-14

LRE LINK MONITOR 10-14

UPGRADING LRE SWITCH FIRMWARE 10-15

CONFIGURING FOR AN LRE UPGRADE 10-15

PERFORMING AN LRE UPGRADE 10-16

GLOBAL CONFIGURATION OF LRE UPGRADES 10-17

CONTROLLER CONFIGURATION OF LRE UPGRADES 10-17

LRE UPGRADE BEHAVIOR DETAILS 10-18

LRE UPGRADE EXAMPLE 10-18

CHAPTER 11

CONFIGURING STP 11-1

UNDERSTANDING SPANNING-TREE FEATURES 11-1

STP OVERVIEW 11-2

SUPPORTED SPANNING-TREE INSTANCES 11-2

BRIDGE PROTOCOL DATA UNITS 11-2

ELECTION OF THE ROOT SWITCH 11-3

BRIDGE ID, SWITCH PRIORITY, AND EXTENDED SYSTEM ID 11-4

SPANNING-TREE TIMERS 11-4

CREATING THE SPANNING-TREE TOPOLOGY 11-5

SPANNING-TREE INTERFACE STATES 11-5

BLOCKING STATE 11-7

LISTENING STATE 11-7

LEARNING STATE 11-7

FORWARDING STATE 11-7

DISABLED STATE 11-8

SPANNING-TREE ADDRESS MANAGEMENT 11-8

STP AND IEEE 802.1Q TRUNKS 11-8
Chapter 11

Spanning Tree and Redundant Connectivity 11-8
Accelerated Aging to Retain Connectivity 11-9

Configuring Spanning-Tree Features 11-9
 Default STP Configuration 11-10
 STP Configuration Guidelines 11-10
 Disabling STP 11-12
 Configuring the Root Switch 11-12
 Configuring a Secondary Root Switch 11-14
 Configuring the Port Priority 11-15
 Configuring the Path Cost 11-16
 Configuring the Switch Priority of a VLAN 11-18
 Configuring the Hello Time 11-19
 Configuring the Forwarding-Delay Time for a VLAN 11-19
 Configuring the Maximum-Aging Time for a VLAN 11-20
 Configuring STP for Use in a Cascaded Stack 11-20

Displaying the Spanning-Tree Status 11-21

Chapter 12

Configuring RSTP and MSTP 12-1

Understanding RSTP 12-2
 Port Roles and the Active Topology 12-2
 Rapid Convergence 12-3
 Synchronization of Port Roles 12-4
 Bridge Protocol Data Unit Format and Processing 12-5
 Processing Superior BPDU Information 12-6
 Processing Inferior BPDU Information 12-6
 Topology Changes 12-6

Understanding MSTP 12-7
 Multiple Spanning-Tree Regions 12-7
 IST, CIST, and CST 12-8
 Operations Within an MST Region 12-8
 Operations Between MST Regions 12-9
 Hop Count 12-10
 Boundary Ports 12-10

Interoperability with 802.1D STP 12-11

Configuring RSTP and MSTP Features 12-11
 Default RSTP and MSTP Configuration 12-12
 RSTP and MSTP Configuration Guidelines 12-12
 Specifying the MST Region Configuration and Enabling MSTP 12-13
 Configuring the Root Switch 12-14
Contents

Chapter 12
Configuring a Secondary Root Switch 12-16
Configuring the Port Priority 12-17
Configuring the Path Cost 12-18
Configuring the Switch Priority 12-19
Configuring the Hello Time 12-19
Configuring the Forwarding-Delay Time 12-20
Configuring the Maximum-Aging Time 12-21
Configuring the Maximum-Hop Count 12-21
Specifying the Link Type to Ensure Rapid Transitions 12-22
Restarting the Protocol Migration Process 12-22
Displaying the MST Configuration and Status 12-23

Chapter 13
Configuring Optional Spanning-Tree Features 13-1
Understanding Optional Spanning-Tree Features 13-1
Understanding Port Fast 13-2
Understanding BPDU Guard 13-3
Understanding BPDU Filtering 13-3
Understanding UplinkFast 13-4
Understanding Cross-Stack UplinkFast 13-5
How CSUF Works 13-6
Events That Cause Fast Convergence 13-7
Limitations 13-8
Connecting the Stack Ports 13-8
Understanding BackboneFast 13-10
Understanding Root Guard 13-12
Understanding Loop Guard 13-13
Configuring Optional Spanning-Tree Features 13-13
Default Optional Spanning-Tree Configuration 13-14
Enabling Port Fast 13-14
Enabling BPDU Guard 13-15
Enabling BPDU Filtering 13-16
Enabling UplinkFast for Use with Redundant Links 13-17
Enabling Cross-Stack UplinkFast 13-18
Enabling BackboneFast 13-19
Enabling Root Guard 13-19
Enabling Loop Guard 13-20
Displaying the Spanning-Tree Status 13-21
CHAPTER 14

Configuring VLANs 14-1

Understanding VLANs 14-1
Supported VLANs 14-2
VLAN Port Membership Modes 14-3

Configuring Normal-Range VLANs 14-4
Token Ring VLANs 14-5
Normal-Range VLAN Configuration Guidelines 14-5
VLAN Configuration Mode Options 14-6
VLAN Configuration in config-vlan Mode 14-6
VLAN Configuration in VLAN Configuration Mode 14-6

Saving VLAN Configuration 14-7
Default Ethernet VLAN Configuration 14-8
Creating or Modifying an Ethernet VLAN 14-8
Deleting a VLAN 14-10
Assigning Static-Access Ports to a VLAN 14-11

Configuring Extended-Range VLANs 14-12
Default VLAN Configuration 14-12
Extended-Range VLAN Configuration Guidelines 14-12
Creating an Extended-Range VLAN 14-13

Displaying VLANs 14-14

Configuring VLAN Trunks 14-15
Trunking Overview 14-15
802.1Q Configuration Considerations 14-16
Default Layer 2 Ethernet Interface VLAN Configuration 14-17
Configuring an Ethernet Interface as a Trunk Port 14-17
Interaction with Other Features 14-17
Configuring a Trunk Port 14-18
Defining the Allowed VLANs on a Trunk 14-19
Changing the Pruning-Eligible List 14-20
Configuring the Native VLAN for Untagged Traffic 14-20
Load Sharing Using STP 14-21
Load Sharing Using STP Port Priorities 14-21
Load Sharing Using STP Path Cost 14-23

Configuring VMPS 14-24
Understanding VMPS 14-25
Dynamic Port VLAN Membership 14-25
VMPS Database Configuration File 14-26
Default VMPS Configuration 14-27
VMPS Configuration Guidelines 14-28
Contents

CHAPTER 14
Configuring the VMPS Client
- Entering the IP Address of the VMPS
- Configuring Dynamic Access Ports on VMPS Clients
- Reconfirming VLAN Memberships
- Changing the Reconfirmation Interval
- Changing the Retry Count
- Monitoring the VMPS
- Troubleshooting Dynamic Port VLAN Membership
- VMPS Configuration Example

CHAPTER 15
Configuring VTP
- Understanding VTP
 - The VTP Domain
 - VTP Modes
 - VTP Advertisements
 - VTP Version 2
 - VTP Pruning
- Configuring VTP
 - Default VTP Configuration
 - VTP Configuration Options
 - VTP Configuration in Global Configuration Modes
 - VTP Configuration in VLAN Configuration Mode
 - VTP Configuration Guidelines
 - Domain Names
 - Passwords
 - Upgrading from Previous Software Releases
 - VTP Version
 - Configuration Requirements
- Configuring a VTP Server
- Configuring a VTP Client
- Disabling VTP (VTP Transparent Mode)
- Enabling VTP Version 2
- Enabling VTP Pruning
- Adding a VTP Client Switch to a VTP Domain
- Monitoring VTP

CHAPTER 16
Configuring Voice VLAN
- Understanding Voice VLAN
- Configuring Voice VLAN
Default Voice VLAN Configuration 16-2
Voice VLAN Configuration Guidelines 16-3
Configuring a Port to Connect to a Cisco 7960 IP Phone 16-3
 Configuring Ports to Carry Voice Traffic in 802.1Q Frames 16-4
 Configuring Ports to Carry Voice Traffic in 802.1P Priority Tagged Frames 16-4
 Overriding the CoS Priority of Incoming Data Frames 16-5
 Configuring the IP Phone to Trust the CoS Priority of Incoming Data Frames 16-6
Displaying Voice VLAN 16-6

CHAPTER 17
Configuring IGMP Snooping and MVR 17-1
 Understanding IGMP Snooping 17-1
 Joining a Multicast Group 17-2
 Leaving a Multicast Group 17-4
 Immediate-Leave Processing 17-4
Configuring IGMP Snooping 17-5
 Default IGMP Snooping Configuration 17-5
 Enabling or Disabling IGMP Snooping 17-5
 Setting the Snooping Method 17-6
 Configuring a Multicast Router Port 17-7
 Configuring a Host Staticly to Join a Group 17-8
 Enabling IGMP Immediate-Leave Processing 17-9
 Disabling IP Multicast-Source-Only Learning 17-9
Displaying IGMP Snooping Information 17-11
Understanding Multicast VLAN Registration 17-13
 Using MVR in a Multicast Television Application 17-13
Configuring MVR 17-15
 Default MVR Configuration 17-15
 MVR Configuration Guidelines and Limitations 17-16
 Configuring MVR Global Parameters 17-16
 Configuring MVR Interfaces 17-17
Displaying MVR Information 17-19
Configuring IGMP Filtering 17-20
 Default IGMP Filtering Configuration 17-21
 Configuring IGMP Profiles 17-21
 Applying IGMP Profiles 17-22
 Setting the Maximum Number of IGMP Groups 17-23
Displaying IGMP Filtering Configuration 17-24
CHAPTER 18
Configuring Port-Based Traffic Control 18-1
Configuring Storm Control 18-1
Understanding Storm Control 18-1
Default Storm Control Configuration 18-2
Enabling Storm Control 18-2
Disabling Storm Control 18-3
Configuring Protected Ports 18-3
Configuring Port Security 18-4
Understanding Port Security 18-5
Secure MAC Addresses 18-5
Security Violations 18-6
Default Port Security Configuration 18-7
Port Security Configuration Guidelines 18-7
Enabling and Configuring Port Security 18-7
Enabling and Configuring Port Security Aging 18-10
Displaying Port-Based Traffic Control Settings 18-12

CHAPTER 19
Configuring UDLD 19-1
Understanding UDLD 19-1
Configuring UDLD 19-3
Default UDLD Configuration 19-3
Enabling UDLD Globally 19-4
Enabling UDLD on an Interface 19-4
Resetting an Interface Shut Down by UDLD 19-5
Displaying UDLD Status 19-6

CHAPTER 20
Configuring CDP 20-1
Understanding CDP 20-1
Configuring CDP 20-2
Default CDP Configuration 20-2
Configuring the CDP Characteristics 20-2
Disabling and Enabling CDP 20-3
Disabling and Enabling CDP on an Interface 20-4
Monitoring and Maintaining CDP 20-5

CHAPTER 21
Configuring SPAN and RSPAN 21-1
Understanding SPAN and RSPAN 21-1
SPAN and RSPAN Concepts and Terminology 21-3
CHAPTER 21
Configuring SPAN

SPAN Session 21-3
Traffic Types 21-3
Source Port 21-4
Destination Port 21-5
Reflector Port 21-5
VLAN-Based SPAN 21-6
SPAN Traffic 21-6
SPAN and RSPAN Interaction with Other Features 21-7
SPAN and RSPAN Session Limits 21-8
Default SPAN and RSPAN Configuration 21-8

Configuring SPAN 21-8
SPAN Configuration Guidelines 21-8
Creating a SPAN Session and Specifying Ports to Monitor 21-9
Removing Ports from a SPAN Session 21-11
Specifying VLANs to Monitor 21-12
Specifying VLANs to Filter 21-13

Configuring RSPAN 21-14
RSPAN Configuration Guidelines 21-14
Creating an RSPAN Session 21-15
Creating an RSPAN Destination Session 21-16
Removing Ports from an RSPAN Session 21-17
Specifying VLANs to Monitor 21-18
Specifying VLANs to Filter 21-19

Displaying SPAN and RSPAN Status 21-20

CHAPTER 22
Configuring RMON

Understanding RMON 22-1
Configuring RMON 22-2
Default RMON Configuration 22-3
Configuring RMON Alarms and Events 22-3
Configuring RMON Collection on an Interface 22-5
Displaying RMON Status 22-6

CHAPTER 23
Configuring System Message Logging

Understanding System Message Logging 23-1
Configuring System Message Logging 23-2
System Log Message Format 23-2
Default System Message Logging Configuration 23-3
Disabling and Enabling System Message Logging 23-4
ACL Numbers 25-8
Creating a Numbered Standard ACL 25-9
Creating a Numbered Extended ACL 25-10
Creating Named Standard and Extended ACLs 25-13
Applying Time Ranges to ACLs 25-15
Including Comments About Entries in ACLs 25-17
Creating Named MAC Extended ACLs 25-18
Creating MAC Access Groups 25-19
Applying ACLs to Terminal Lines or Physical Interfaces 25-20
Applying ACLs to a Terminal Line 25-20
Applying ACLs to a Physical Interface 25-21
Displaying ACL Information 25-21
Displaying ACLs 25-22
Displaying Access Groups 25-23
Examples for Compiling ACLs 25-23
Numbered ACL Examples 25-25
Extended ACL Examples 25-25
Named ACL Example 25-25
Commented IP ACL Entry Examples 25-25

CHAPTER 26
Configuring QoS 26-1
Understanding QoS 26-2
Basic QoS Model 26-3
Classification 26-4
Classification Based on QoS ACLs 26-5
Classification Based on Class Maps and Policy Maps 26-6
Policing and Marking 26-6
Mapping Tables 26-7
Queueing and Scheduling 26-7
How Class of Service Works 26-7
Port Priority 26-8
Port Scheduling 26-8
CoS and WRR 26-8
Configuring QoS 26-9
Default QoS Configuration 26-9
Configuration Guidelines 26-10
Configuring Classification Using Port Trust States 26-10
Configuring the Trust State on Ports within the QoS Domain 26-11
Configuring the CoS Value for an Interface 26-13
Replacing a Failed Command Switch with a Cluster Member 28-9
Replacing a Failed Command Switch with Another Switch 28-10
Recovering from Lost Member Connectivity 28-11
Preventing Autonegotiation Mismatches 28-12
Troubleshooting LRE Port Configuration 28-12
GBIC and SFP Module Security and Identification 28-13
Using Debug Commands 28-14
 Enabling Debugging on a Specific Feature 28-14
 Enabling All-System Diagnostics 28-15
 Redirecting Debug and Error Message Output 28-15
Using the crashinfo File 28-15

Supported MIBs A-1
 MIB List A-1
 Using FTP to Access the MIB Files A-2

APPENDIX B

Working with the IOS File System, Configuration Files, and Software Images B-1
 Working with the Flash File System B-1
 Displaying Available File Systems B-2
 Setting the Default File System B-3
 Displaying Information about Files on a File System B-3
 Changing Directories and Displaying the Working Directory B-4
 Creating and Removing Directories B-4
 Copying Files B-5
 Deleting Files B-5
 Creating, Displaying, and Extracting tar Files B-6
 Creating a tar File B-6
 Displaying the Contents of a tar File B-7
 Extracting a tar File B-7
 Displaying the Contents of a File B-8
 Working with Configuration Files B-8
 Guidelines for Creating and Using Configuration Files B-9
 Configuration File Types and Location B-10
 Creating a Configuration File By Using a Text Editor B-10
 Copying Configuration Files By Using TFTP B-11
 Preparing to Download or Upload a Configuration File By Using TFTP B-11
 Downloading the Configuration File By Using TFTP B-12
 Uploading the Configuration File By Using TFTP B-12
Contents

Catalyst 2950 Desktop Switch Software Configuration Guide

Copying Configuration Files By Using FTP B-13
Preparing to Download or Upload a Configuration File By Using FTP B-13
Downloading a Configuration File By Using FTP B-14
Uploading a Configuration File By Using FTP B-15

Copying Configuration Files By Using RCP B-16
Preparing to Download or Upload a Configuration File By Using RCP B-17
Downloading a Configuration File By Using RCP B-17
Uploading a Configuration File By Using RCP B-18

Clearing Configuration Information B-19
Clearing the Startup Configuration File B-19
Deleting a Stored Configuration File B-20

Working with Software Images B-20
Image Location on the Switch B-20
tar File Format of Images on a Server or Cisco.com B-21

Copying Image Files By Using TFTP B-22
Preparing to Download or Upload an Image File By Using TFTP B-22
Downloading an Image File By Using TFTP B-23
Uploading an Image File By Using TFTP B-24

Copying Image Files By Using FTP B-25
Preparing to Download or Upload an Image File By Using FTP B-25
Downloading an Image File By Using FTP B-26
Uploading an Image File By Using FTP B-28

Copying Image Files By Using RCP B-29
Preparing to Download or Upload an Image File By Using RCP B-29
Downloading an Image File By Using RCP B-30
Uploading an Image File By Using RCP B-32

INDEX
Preface

Audience

The Catalyst 2950 Desktop Switch Software Configuration Guide is for the network manager responsible for configuring the Catalyst 2950 switches, hereafter referred to as the switches. Before using this guide, you should be familiar with the concepts and terminology of Ethernet and local area networking.

Purpose

This guide provides information about configuring and troubleshooting a Catalyst 2950 or Catalyst 2950 Long-Reach Ethernet (LRE) switch or switch clusters. It includes descriptions of the management interface options and the features supported by the switch software. The non-LRE switch is supported by either the standard software image (SI) or the enhanced software image (EI). The EI provides a richer set of features, including access control lists (ACLs), enhanced quality of service (QoS) features, the Secure Shell Protocol, extended-range VLANs, and Remote Switch Port Analyzer (RSPAN). For a list of switches that support the SI and the EI, see Table 1-1 on page 1. The 2950 LRE switch is supported by an a variation of the enhanced software image [12.1(11)LRE].

Use this guide with other documents for information about these topics:

- Requirements—This guide assumes that you have met the hardware and software requirements and cluster compatibility requirements described in the release notes.
- Start-up information—This guide assumes that you have assigned switch IP information and passwords by using the setup program described in the release notes.
- Cluster Management Suite (CMS) information—This guide provides an overview of the CMS web-based, switch management interface. For information about CMS requirements and the procedures for browser and plug-in configuration and accessing CMS, refer to the release notes. For CMS field-level window descriptions and procedures, refer to the CMS online help.
- Cluster configuration—This guide provides information about planning for, creating, and maintaining switch clusters. Because configuring switch clusters is most easily performed through CMS, this guide does not provide the command-line interface (CLI) procedures. For the cluster commands, refer to the command reference for this release.
- CLI command information—This guide provides an overview for using the CLI. For complete syntax and usage information about the commands that have been specifically created or changed for the switches, refer to the command reference for this release.
This guide does not describe system messages you might encounter or how to install your switch. For more information, refer to the Catalyst 2950 Desktop Switch System Message Guide for this release and to the Catalyst 2950 Desktop Switch Hardware Installation Guide.

Note
This guide does not repeat the concepts and CLI procedures provided in the standard Cisco IOS Release 12.1 documentation. For information about the standard IOS Release 12.1 commands, refer to the IOS documentation set available from the Cisco.com home page at Service and Support > Technical Documents. On the Cisco Product Documentation home page, select Release 12.1 from the Cisco IOS Software drop-down list.

Note
This guide describes the features for Catalyst 2950 switches. Cisco IOS Release 12.1(11)EA1 is not for use with the Long-Reach Ethernet (LRE) switches. Do not install release 12.1(11)EA1 on Catalyst 2950 LRE switches, and do not install release 12.1(11)YJ on non-LRE switches.

Organization
This guide is organized into these chapters:

Chapter 1, “Overview,” lists the software features of this release and provides examples of how the switch can be deployed in a network.

Chapter 2, “Using the Command-Line Interface,” describes how to access the command modes, use the CLI, and describes CLI messages that you might receive. It also describes how to get help, abbreviate commands, use no and default forms of commands, use command history and editing features, and how to search and filter the output of show and more commands.

Chapter 3, “Getting Started with CMS,” describes the CMS web-based, switch management interface. For information about configuring your web browser and accessing CMS, refer to the release notes. For field-level descriptions of all CMS windows and procedures for using the CMS windows, refer to the online help.

Chapter 4, “Assigning the Switch IP Address and Default Gateway,” describes how to create the initial switch configuration (for example, assign the switch IP address and default gateway information) by using a variety of automatic and manual methods.

Chapter 5, “Configuring IE2100 CNS Agents,” describes how to configure Cisco Intelligence Engine 2100 (IE2100) Series Cisco Networking Services (CNS) embedded agents on your switch. By using the IE2100 Series Configuration Registrar network management application, you can automate initial configurations and configuration updates by generating switch-specific configuration changes, sending them to the switch, executing the configuration change, and logging the results.

Chapter 6, “Clustering Switches,” describes switch clusters and the considerations for creating and maintaining them. The online help provides the CMS procedures for configuring switch clusters. Configuring switch clusters is most easily performed through CMS; therefore, CLI procedures are not provided. Cluster commands are described in the Catalyst 2950 Desktop Switch Command Reference.

Chapter 7, “Administering the Switch,” describes how to perform one-time operations to administer your switch. It describes how to prevent unauthorized access to your switch through the use of passwords, privilege levels, the Terminal Access Controller Access Control System Plus (TACACS+), and the Remote Authentication Dial-In User Service (RADIUS) and the Secure Shell (SSH) Protocol. It also describes how to set the system date and time, set system name and prompt, create a login banner, and how to manage the MAC address and Address Resolution Protocol (ARP) tables.
Chapter 8, “Configuring 802.1X Port-Based Authentication,” describes how to configure 802.1X port-based authentication to prevent unauthorized devices (clients) from gaining access to the network. As LANs extend to hotels, airports, and corporate lobbies, insecure environments could be created.

Chapter 9, “Configuring the Switch Interfaces,” defines the types of interfaces on the switch. It describes the `interface` global configuration command and provides procedures for configuring physical interfaces.

Chapter 10, “Configuring LRE,” describes how to configure LRE-specific features on your switch.

Chapter 11, “Configuring STP,” describes how to configure the Spanning Tree Protocol (STP) on your switch.

Chapter 12, “Configuring RSTP and MSTP,” describes how to configure the Cisco implementation of the IEEE 802.1W Rapid STP (RSTP) and the IEEE 802.1S Multiple STP (MSTP) on your switch. RSTP provides rapid convergence, and MSTP enables VLANs to be grouped into a spanning-tree instance.

Chapter 13, “Configuring Optional Spanning-Tree Features,” describes how to configure optional spanning-tree features that can be used when your switch is running the per-VLAN spanning-tree (PVST) or the MSTP.

Chapter 14, “Configuring VLANs,” describes how to create and maintain VLANs. It includes information about the VLAN database, VLAN configuration modes, extended-range VLANs, VLAN trunks, and the VLAN Membership Policy Server (VMPS).

Chapter 15, “Configuring VTP,” describes how to use the VLAN Trunking Protocol (VTP) VLAN database for managing VLANs. It includes VTP characteristics and configuration.

Chapter 16, “Configuring Voice VLAN,” describes how to configure voice VLANs on the switch for a connection to an IP phone.

Chapter 17, “Configuring IGMP Snooping and MVR,” describes how to configure Internet Group Management Protocol (IGMP) snooping. It also describes Multicast VLAN Registration (MVR), a local IGMP snooping feature available on the switch, and how to use IGMP filtering to control multicast group membership.

Chapter 18, “Configuring Port-Based Traffic Control,” describes how to reduce traffic storms by setting broadcast, multicast, and unicast storm-control threshold levels; how to protect ports from receiving traffic from other ports on a switch; how to configure port security by using secure MAC addresses; and how to set the aging time for all secure addresses.

Chapter 19, “Configuring CDP,” describes how to configure Cisco Discovery Protocol (CDP) on your switch.

Chapter 20, “Configuring SPAN and RSPAN,” describes how to configure Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN), which select network traffic for analysis by a network analyzer such as a SwitchProbe device or other Remote Monitoring (RMON) probe.

Chapter 21, “Configuring RMON,” describes how to configure remote monitoring (RMON). The RMON feature, which is used with the Simple Network Management Protocol (SNMP) agent in the switch, means that you can monitor all the traffic flowing among switches on all connected LAN segments.

Chapter 22, “Configuring System Message Logging,” describes how to configure system message logging. It describes the message format and how to change the message display destination device, limit the type of messages sent, configure the UNIX server syslog daemon, and define the UNIX system logging facility and timestamp messages.

Chapter 23, “Configuring SNMP,” describes how to configure the Simple Network Management Protocol (SNMP). It describes how to configure community strings, enable trap managers and traps, set the agent contact and location information, and how to limit TFTP servers used through SNMP.
Chapter 25, “Configuring Network Security with ACLs,” describes how to configure network security by using access control lists (ACLs).

Chapter 26, “Configuring QoS,” describes how to configure quality of service (QoS) on your switch. With this feature, you can provide preferential treatment to certain types of traffic.

Chapter 27, “Configuring EtherChannels,” describes how to bundle a set of individual ports into a single logical link on the interfaces.

Chapter 28, “Troubleshooting,” describes how to identify and resolve software problems related to the IOS software.

Appendix A, “Supported MIBs,” lists the supported MIBs for this release and how to use FTP to access the MIB files.

Conventions

This guide uses these conventions to convey instructions and information:

Command descriptions use these conventions:

- Commands and keywords are in **boldface** text.
- Arguments for which you supply values are in *italic*.
- Square brackets ([]) indicate optional elements.
- Braces ({ }) group required choices, and vertical bars (|) separate the alternative elements.
- Braces and vertical bars within square brackets ([{ | }]) indicate a required choice within an optional element.

Interactive examples use these conventions:

- Terminal sessions and system displays are in *screen* font.
- Information you enter is in **boldface screen** font.
- Nonprinting characters, such as passwords or tabs, are in angle brackets (< >).

Notes, cautions, and tips use these conventions and symbols:

- **Note** means *reader take note*. Notes contain helpful suggestions or references to materials not contained in this manual.

- **Caution** means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

- **Tip** means *the following will help you solve a problem*. The tips information might not be troubleshooting or even an action, but could be useful information.
Related Publications

These documents provide complete information about the switch and are available from this Cisco.com site:

You can order printed copies of documents with a DOC-xxxxxx= number from the Cisco.com sites and from the telephone numbers listed in the “Obtaining Documentation” section on page xxix.

- Release Notes for the Catalyst 2950 Switch (not orderable but is available on Cisco.com)
- Release Notes for the Catalyst 2900 Series and Catalyst 3500 Series XL Switches (not orderable but is available on Cisco.com)

Switch requirements and procedures for initial configurations and software upgrades tend to change and therefore appear only in the release notes. Before installing, configuring, or upgrading the switch, refer to the release notes on Cisco.com for the latest information.

- Catalyst 2950 Desktop Switch Command Reference (order number DOC-7811381=)
- Catalyst 2950 Desktop Switch System Message Guide (order number DOC-7814233=)
- Catalyst 2950 Desktop Switch Hardware Installation Guide (order number DOC-7811157=)
- Catalyst GigaStack Gigabit Interface Converter Hardware Installation Guide (order number DOC-786460=)
- CWDM Passive Optical System Installation Note (not orderable but is available on Cisco.com)
- 1000BASE-T GBIC Installation Notes (not orderable but is available on Cisco.com)
- Cisco LRE CPE Hardware Installation Guide (order number DOC-7811469=)
- Installation Notes for the Cisco LRE 48 POTS Splitter (not orderable but is available on Cisco.com)
- Release Notes for the Catalyst 2950 Desktop Switch, 12.1(11)YJ (not orderable but is available on Cisco.com)

Obtaining Documentation

These sections explain how to obtain documentation from Cisco Systems.

World Wide Web

You can access the most current Cisco documentation on the World Wide Web at this URL:

http://www.cisco.com

Translated documentation is available at this URL:

Documentation CD-ROM

Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM package, which is shipped with your product. The Documentation CD-ROM is updated monthly and may be more current than printed documentation. The CD-ROM package is available as a single unit or through an annual subscription.

Ordering Documentation

You can order Cisco documentation in these ways:

- Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from the Networking Products MarketPlace:
 http://www.cisco.com/cgi-bin/order/order_root.pl
- Registered Cisco.com users can order the Documentation CD-ROM through the online Subscription Store:
 http://www.cisco.com/go/subscription
- Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco Systems Corporate Headquarters (California, U.S.A.) at 408 526-7208 or, elsewhere in North America, by calling 800 553-NETS (6387).

Documentation Feedback

If you are reading Cisco product documentation on the World Wide Web, you can send us your comments by completing the online survey. When you display the document listing for this platform, click Give Us Your Feedback. After you display the survey, select the manual that you wish to comment on. Click Submit to send your comments to the Cisco documentation group.

You can e-mail your comments to bug-doc@cisco.com.

To submit your comments by mail, use the response card behind the front cover of your document, or write to the following address:

Cisco Systems
Attn: Document Resource Connection
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com as a starting point for all technical assistance. Customers and partners can obtain online documentation, troubleshooting tips, and sample configurations from online tools by using the Cisco Technical Assistance Center (TAC) Web Site. Cisco.com registered users have complete access to the technical support resources on the Cisco TAC Web Site.
Cisco.com

Cisco.com is the foundation of a suite of interactive, networked services that provides immediate, open access to Cisco information, networking solutions, services, programs, and resources at any time, from anywhere in the world.

Cisco.com is a highly integrated Internet application and a powerful, easy-to-use tool that provides a broad range of features and services to help you with these tasks:

- Streamline business processes and improve productivity
- Resolve technical issues with online support
- Download and test software packages
- Order Cisco learning materials and merchandise
- Register for online skill assessment, training, and certification programs

If you want to obtain customized information and service, you can self-register on Cisco.com. To access Cisco.com, go to this URL:

http://www.cisco.com

Technical Assistance Center

The Cisco Technical Assistance Center (TAC) is available to all customers who need technical assistance with a Cisco product, technology, or solution. Two levels of support are available: the Cisco TAC Web Site and the Cisco TAC Escalation Center.

Cisco TAC inquiries are categorized according to the urgency of the issue:

- Priority level 4 (P4)—You need information or assistance concerning Cisco product capabilities, product installation, or basic product configuration.
- Priority level 3 (P3)—Your network performance is degraded. Network functionality is noticeably impaired, but most business operations continue.
- Priority level 2 (P2)—Your production network is severely degraded, affecting significant aspects of business operations. No workaround is available.
- Priority level 1 (P1)—Your production network is down, and a critical impact to business operations will occur if service is not restored quickly. No workaround is available.

The Cisco TAC resource that you choose is based on the priority of the problem and the conditions of service contracts, when applicable.

Cisco TAC Website

You can use the Cisco TAC Web Site to resolve P3 and P4 issues yourself, saving both cost and time. The site provides around-the-clock access to online tools, knowledge bases, and software. To access the Cisco TAC Web Site, go to this URL:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco service contract have complete access to the technical support resources on the Cisco TAC Web Site. The Cisco TAC Web Site requires a Cisco.com login ID and password. If you have a valid service contract but do not have a login ID or password, go to this URL to register:

http://www.cisco.com/register/
Obtaining Technical Assistance

If you are a Cisco.com registered user, and you cannot resolve your technical issues by using the Cisco TAC Web Site, you can open a case online by using the TAC Case Open tool at this URL:

http://www.cisco.com/tac/caseopen

If you have Internet access, we recommend that you open P3 and P4 cases through the Cisco TAC Web Site.

Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses priority level 1 or priority level 2 issues. These classifications are assigned when severe network degradation significantly impacts business operations. When you contact the TAC Escalation Center with a P1 or P2 problem, a Cisco TAC engineer automatically opens a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country, go to this URL:

Before calling, please check with your network operations center to determine the level of Cisco support services to which your company is entitled: for example, SMARTnet, SMARTnet Onsite, or Network Supported Accounts (NSA). When you call the center, please have available your service agreement number and your product serial number.
Overview

This chapter provides these topics about the Catalyst 2950 switch software:

- Features, page 1-1
- Management Options, page 1-7
- Network Configuration Examples, page 1-8
- Where to Go Next, page 1-21

Features

The Catalyst 2950 software supports the switches listed in Table 1-1 and in the release notes.

Table 1-1 Switches Supported

<table>
<thead>
<tr>
<th>Switch</th>
<th>Software Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst 2950-12</td>
<td>SI<sup>1</sup></td>
</tr>
<tr>
<td>Catalyst 2950-24</td>
<td>SI</td>
</tr>
<tr>
<td>Catalyst 2950C-24</td>
<td>EI<sup>2</sup></td>
</tr>
<tr>
<td>Catalyst 2950G-12-EI</td>
<td>EI</td>
</tr>
<tr>
<td>Catalyst 2950G-24-EI</td>
<td>EI</td>
</tr>
<tr>
<td>Catalyst 2950G-24-EI-DC</td>
<td>EI</td>
</tr>
<tr>
<td>Catalyst 2950G-48-EI</td>
<td>EI</td>
</tr>
<tr>
<td>Catalyst 2950SX-24</td>
<td>SI</td>
</tr>
<tr>
<td>Catalyst 2950T-24</td>
<td>EI</td>
</tr>
<tr>
<td>Catalyst 2950ST-24-LRE</td>
<td>YJ<sup>3</sup></td>
</tr>
<tr>
<td>Catalyst 2950ST-8-LRE</td>
<td>YJ</td>
</tr>
</tbody>
</table>

1. SI = standard software image
2. EI = enhanced software image
3. YJ = enhanced software image for LRE switches

Note: The SI and EI images are for non-LRE switches only; use the YJ release for LRE switches.
Chapter 1 | Overview

Features

This section describes the features supported in this release:

Some features require that you have the EI installed on your switch. For a list of the switches that support the EI, see Table 1-1, or refer to the release notes for this release.

LRE Switch-Specific Support

The Long-Reach Ethernet (LRE) switches support all of these listed EI features in addition to some specific features for LRE:

- Data, voice, and video transmission through categorized and noncategorized unshielded twisted-pair cable (Category 1, 2, and 3 structured and unstructured cable, such as existing telephone lines) in multi-unit, multidwelling, and multitenant buildings

- Up to 15 Mbps of bandwidth to remote Ethernet devices at distances of up to 4921 feet (1500 m) on each switch LRE port

- Compliance with American National Standards Institute (ANSI) and European Telecommunication Standards Institute (ETSI) standards for spectral-mode compatibility with asymmetric digital subscriber line (ADSL), Integrated Services Digital Network (ISDN), and digital telephone networks

- Configuration and monitoring of connections between:
 - Switch LRE ports and the Ethernet ports on remote LRE customer premises equipment (CPE) devices, such as the Cisco 575 LRE CPE and Cisco 585 LRE CPE
 - CPE Ethernet ports and remote Ethernet devices, such as a PC

- Support for connecting to the public switched telephone network (PSTN) through plain old telephone service (POTS) splitters such as the Cisco LRE 48 POTS Splitter

- Support for the rate selection, a utility that allows for automatic selection of transmission rates through profiles and profile sequences

- A set of additional rate profiles

- Support for Reed-Solomon error correction

- Additional MIB support

- Support for the secure shell (SSH) and SNMPv3 crypto, with a protected port on 585 CPE devices

- Support for small form-factor pluggable (SFP) devices instead of gigabit interface converters (GBIC); GigaStack is not supported on the 2950 LRE

Note

Most Catalyst 2950 features also work on the Catalyst 2950 LRE switch, with the difference that LRE switches use Long-Reach Ethernet rather than Fast Ethernet and Gigabit for the Gigabit ports.

Ease of Use and Ease of Deployment

- Cluster Management Suite (CMS) software for simplifying switch and switch cluster management through a web browser, such as Netscape Communicator or Microsoft Internet Explorer, from anywhere in your intranet

For information about the Cisco LRE CPE devices, refer to the Cisco LRE CPE Hardware Installation Guide. For information about the nonhomologated Cisco LRE POTS splitter, refer to the Installation Notes for the Cisco LRE 48 POTS Splitter.
Switch clustering technology used with CMS for
- Unified configuration, monitoring, authentication, and software upgrade of multiple switches (refer to the release notes for a list of eligible cluster members).
- Automatic discovery of candidate switches and creation of clusters of up to 16 switches that can be managed through a single IP address.
- Extended discovery of cluster candidates that are not directly connected to the command switch.
- Hot Standby Router Protocol (HSRP) for command-switch redundancy. The redundant command switches used for HSRP must have compatible software releases.

Note See the “Advantages of Using CMS and Clustering Switches” section on page 1-7. Refer to the release notes for the CMS, cluster hardware, software, and browser requirements.

Performance
- Autosensing of speed on the 10/100 and 10/100/1000 ports and autonegotiation of duplex mode on the 10/100 ports for optimizing bandwidth
- IEEE 802.3X flow control on Gigabit Ethernet ports operating in full-duplex mode
- Fast EtherChannel and Gigabit EtherChannel for enhanced fault tolerance and for providing up to 2 Gbps of bandwidth between switches, routers, and servers
- Support for frames larger than 1500 bytes. The Catalyst 2950G-12-EI, 2950G-24-EI, 2950G-24-EI-DC, and 2950G-48-EI switches running Cisco IOS Release 12.1(6)EA2 or later support frame sizes from 1500 to 1530 bytes
- Per-port broadcast storm control for preventing faulty end stations from degrading overall system performance with broadcast storms
- Port Aggregation Protocol (PAgP) for automatic creation of EtherChannel links
- Internet Group Management Protocol (IGMP) snooping support to limit flooding of IP multicast traffic
- Multicast VLAN registration (MVR) to continuously send multicast streams in a multicast VLAN while isolating the streams from subscriber VLANs for bandwidth and security reasons
- IGMP filtering for controlling the set of multicast groups to which hosts on a switch port can belong
- Protected port (private VLAN edge port) option for restricting the forwarding of traffic to designated ports on the same switch
- Dynamic address learning for enhanced security

Manageability
- Cisco Intelligence Engine 2100 (IE2100) Series Cisco Networking Services (CNS) embedded agents for automating switch management, configuration storage and delivery (available only with the EI)
- Dynamic Host Configuration Protocol (DHCP)-based autoconfiguration for automatically configuring the switch during startup with IP address information and a configuration file that it receives during DHCP-based autoconfiguration

Note DHCP replaces the Bootstrap Protocol (BOOTP) feature autoconfiguration to ensure retrieval of configuration files by unicast TFTP messages. BOOTP is available in earlier software releases for this switch.
Features

- Address Resolution Protocol (ARP) for identifying a switch through its IP address and its corresponding MAC address
- Cisco Discovery Protocol (CDP) versions 1 and 2 for network topology discovery and mapping between the switch and other Cisco devices on the network
- Network Time Protocol (NTP) for providing a consistent timestamp to all switches from an external source
- Directed unicast requests to a Trivial File Transfer Protocol (TFTP) server for obtaining software upgrades from a TFTP server
- Default configuration storage in Flash memory to ensure that the switch can be connected to a network and can forward traffic with minimal user intervention
- In-band management access through a CMS web-based session
- In-band management access through up to 16 simultaneous Telnet connections for multiple command-line interface (CLI)-based sessions over the network
- In-band management access through Simple Network Management Protocol (SNMP) versions 1, 2c, and 3 get and set requests
- Out-of-band management access through the switch console port to a directly-attached terminal or to a remote terminal through a serial connection and a modem

Note For additional descriptions of the management interfaces, see the “Management Options” section on page 1-7.

Redundancy

- HSRP for command-switch redundancy
- UniDirectional link detection (UDLD) on all Ethernet ports for detecting and disabling unidirectional links on fiber-optic interfaces caused by incorrect fiber-optic wiring or port faults
- IEEE 802.1D Spanning Tree Protocol (STP) for redundant backbone connections and loop-free networks. STP has these features:
 - Per-VLAN Spanning Tree (PVST) for balancing load across VLANs
 - UplinkFast, cross-stack UplinkFast, and BackboneFast for fast convergence after a spanning-tree topology change and for achieving load balancing between redundant uplinks, including Gigabit uplinks and cross-stack Gigabit uplinks
- IEEE 802.1S Multiple STP (MSTP) for grouping VLANs into a spanning-tree instance, and providing for multiple forwarding paths for data traffic and load balancing (available only with the EI)
- IEEE 802.1W Rapid STP (RSTP) for rapid convergence of the spanning tree by immediately transitioning root and designated ports to the forwarding state (available only with the EI)
- Optional spanning-tree features available:
 - Port Fast for eliminating the forwarding delay by enabling a port to immediately transition from the blocking state to the forwarding state
 - BPDU guard for shutting down Port Fast-enabled ports that receive BPDUs
 - BPDU filtering for preventing a Port Fast-enabled port from sending or receiving BPDUs
 - Root guard for preventing switches outside the network core from becoming the spanning-tree root
- Loop guard for preventing alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link

Note
The switch supports up to 64 spanning-tree instances.

VLAN Support
- The switches support 250 port-based VLANs for assigning users to VLANs associated with appropriate network resources, traffic patterns, and bandwidth

Note
The Catalyst 2950-12, Catalyst 2950-24, and Catalyst 2950SX-24 switches support only 64 port-based VLANs.

- The switch supports up to 4094 VLAN IDs to allow service provider networks to support the number of VLANs allowed by the IEEE 802.1Q standard (available only with the EI)
- IEEE 802.1Q trunking protocol on all ports for network moves, adds, and changes; management and control of broadcast and multicast traffic; and network security by establishing VLAN groups for high-security users and network resources
- VLAN Membership Policy Server (VMPS) for dynamic VLAN membership
- VLAN Trunking Protocol (VTP) pruning for reducing network traffic by restricting flooded traffic to links destined for stations receiving the traffic
- Dynamic Trunking Protocol (DTP) for negotiating trunking on a link between two devices and for negotiating the type of trunking encapsulation (802.1Q) to be used
- Voice VLAN for creating subnets for voice traffic from Cisco IP Phones

Security
- Bridge protocol data unit (BPDU) guard for shutting down a Port Fast-configured port when an invalid configuration occurs
- Protected port option for restricting the forwarding of traffic to designated ports on the same switch
- Password-protected access (read-only and read-write access) to management interfaces (CMS and CLI) for protection against unauthorized configuration changes
- Port security option for limiting and identifying MAC addresses of the stations allowed to access the port
- Port security aging to set the aging time for secure addresses on a port
- Multilevel security for a choice of security level, notification, and resulting actions
- MAC-based port-level security for restricting the use of a switch port to a specific group of source addresses and preventing switch access from unauthorized stations (available only with the EI)
- Terminal Access Controller Access Control System Plus (TACACS+), a proprietary feature for managing network security through a TACACS server
- IEEE 802.1X port-based authentication to prevent unauthorized devices from gaining access to the network
- Standard and extended IP access control lists (ACLs) for defining security policies (available only with the EI)
Quality of Service and Class of Service

- Classification
 - IEEE 802.1P class of service (CoS) with four priority queues on the switch 10/100 and LRE ports and eight priority queues on the Gigabit ports for prioritizing mission-critical and time-sensitive traffic from data, voice, and telephony applications
 - IP Differentiated Services Code Point (IP DSCP) and class of service (CoS) marking priorities on a per-port basis for protecting the performance of mission-critical applications (only available with the EI)
 - Flow-based packet classification (classification based on information in the MAC, IP, and TCP/UDP headers) for high-performance quality of service at the network edge, allowing for differentiated service levels for different types of network traffic and for prioritizing mission-critical traffic in the network (only available in the EI)
 - Support for IEEE 802.1P CoS scheduling for classification and preferential treatment of high-priority voice traffic
 - Trusted boundary (detect the presence of a Cisco IP phone, trust the CoS value received, and ensure port security. If the IP phone is not detected, disable the trusted setting on the port and prevent misuse of a high-priority queue.)

- Policing
 - Traffic-policing policies on the switch port for allocating the amount of the port bandwidth to a specific traffic flow
 - Policing traffic flows to restrict specific applications or traffic flows to metered, predefined rates
 - Up to 60 policers on ingress Gigabit-capable Ethernet ports
 Up to six policers on ingress 10/100 ports
 Granularity of 1 Mbps on 10/100 ports and 8 Mbps on 10/100/1000 ports
 - Out-of-profile markdown for packets that exceed bandwidth utilization limits

Note: Policing is available only in the EI.

- Egress Policing and Scheduling of Egress Queues—Four egress queues on all switch ports. Support for strict priority and weighted round-robin (WRR) CoS policies

Monitoring

- Switch LEDs that provide visual port and switch status
- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) for traffic monitoring on any port or VLAN

Note: RSPAN is available only in the EI.

- Four groups (history, statistics, alarms, and events) of embedded remote monitoring (RMON) agents for network monitoring and traffic analysis
- MAC address notification for tracking the MAC addresses that the switch has learned or removed
- Syslog facility for logging system messages about authentication or authorization errors, resource issues, and time-out events
Management Options

The switches are designed for plug-and-play operation: you only need to assign basic IP information to the switch and connect it to the other devices in your network. If you have specific network needs, you can configure and monitor the switch—on an individual basis or as part of a switch cluster—through its various management interfaces.

This section discusses these topics:

- Management Interface Options, page 1-7
- Advantages of Using CMS and Clustering Switches, page 1-7

Management Interface Options

You can configure and monitor individual switches and switch clusters by using these interfaces:

- CMS—CMS is a graphical user interface that can be launched from anywhere in your network through a web browser such as Netscape Communicator or Microsoft Internet Explorer. CMS is already installed on the switch. Using CMS, you can configure and monitor a standalone switch, a specific cluster member, or an entire switch cluster. You can also display network topologies to gather link information and display switch images to modify switch and port level settings.

 For more information about CMS, see Chapter 3, “Getting Started with CMS.”

- CLI—The switch IOS CLI software is enhanced to support desktop-switching features. You can configure and monitor the switch and switch cluster members from the CLI. You can access the CLI either by connecting your management station directly to the switch console port or by using Telnet from a remote management station.

 For more information about the CLI, see Chapter 2, “Using the Command-Line Interface.”

- IE2100—Cisco Intelligence Engine 2100 Series Configuration Registrar is a network management device that works with embedded CNS Agents in the switch software. You can automate initial configurations and configuration updates by generating switch-specific configuration changes, sending them to the switch, executing the configuration change, and logging the results.

 For more information about IE2100, see Chapter 5, “Configuring IE2100 CNS Agents.”

- SNMP—SNMP provides a means to monitor and control the switch and switch cluster members. You can manage switch configuration settings, performance, and security and collect statistics by using SNMP management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView.

 You can manage the switch from an SNMP-compatible management station that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of MIB extensions and four RMON groups.

 For more information about using SNMP, see the Chapter 24, “Configuring SNMP.”

Advantages of Using CMS and Clustering Switches

Using CMS and switch clusters can simplify and minimize your configuration and monitoring tasks. You can use Cisco switch clustering technology to manage up to 16 interconnected and supported Catalyst switches through one IP address as if they were a single entity. This can conserve IP addresses if you have a limited number of them. CMS is the easiest interface to use and makes switch and switch cluster management accessible to authorized users from any PC on your network.
By using switch clusters and CMS, you can:

- Manage and monitor interconnected Catalyst switches (refer to the release notes for a list of supported switches), regardless of their geographic proximity and interconnection media, including Ethernet, Fast Ethernet, Fast EtherChannel, Cisco GigaStack Gigabit Interface Converter (GBIC), Gigabit Ethernet, and Gigabit EtherChannel connections.

- Accomplish multiple configuration tasks from a single CMS window without needing to remember CLI commands to accomplish specific tasks.

- Apply actions from CMS to multiple ports and multiple switches at the same time to avoid re-entering the same commands for each individual port or switch. Here are some examples of globally setting and managing multiple ports and switches:
 - Port configuration such as speed and duplex settings
 - Port and console port security settings
 - NTP, STP, VLAN, and quality of service (QoS) configurations
 - Inventory and statistic reporting and link and switch-level monitoring and troubleshooting
 - Group software upgrades

- View a topology of interconnected devices to identify existing switch clusters and eligible switches that can join a cluster. You can also use the topology to quickly identify link information between switches.

- Monitor real-time status of a switch or multiple switches from the LEDs on the front-panel images. The system, redundant power system (RPS), and port LED colors on the images are similar to those on the physical LEDs.

- Use an interactive mode that takes you step-by-step through configuring complex features such as VLANs, ACLs, and QoS.

- Use a wizard that prompts you to provide the minimum required information to configure complex features such as QoS priorities for video traffic, priority levels for data applications, and security.

For more information about CMS, see Chapter 3, “Getting Started with CMS.” For more information about switch clusters, see Chapter 6, “Clustering Switches.”

Network Configuration Examples

This section provides network configuration concepts and includes examples of using the switch to create dedicated network segments and interconnecting the segments through Fast Ethernet and Gigabit Ethernet connections.

Design Concepts for Using the Switch

As your network users compete for network bandwidth, it takes longer to send and receive data. When you configure your network, consider the bandwidth required by your network users and the relative priority of the network applications they use.

Table 1-2 describes what can cause network performance to degrade and how you can configure your network to increase the bandwidth available to your network users.
Bandwidth alone is not the only consideration when designing your network. As your network traffic profiles evolve, consider providing network services that can support applications such as voice and data integration and security.

Table 1-3 describes some network demands and how you can meet those demands.

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
</table>
| Too many users on a single network segment and a growing number of users accessing the Internet | • Create smaller network segments so that fewer users share the bandwidth, and use VLANs and IP subnets to place the network resources in the same logical network as the users who access those resources most.
• Use full-duplex operation between the switch and its connected workstations. |
| • Increased power of new PCs, workstations, and servers | • Connect global resources—such as servers and routers to which network users require equal access—directly to the Fast Ethernet or Gigabit Ethernet switch ports so that they have their own Fast Ethernet or Gigabit Ethernet segment.
• Use the Fast EtherChannel or Gigabit EtherChannel feature between the switch and its connected servers and routers. |
| • High demand from networked applications (such as e-mail with large attached files) and from bandwidth-intensive applications (such as multimedia) | |

Table 1-3 Providing Network Services

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>High demand for multimedia support</td>
<td>• Use IGMP and MVR to efficiently forward multicast traffic.</td>
</tr>
</tbody>
</table>
| High demand for protecting mission-critical applications | • Use VLANs and protected ports to provide security and port isolation.
• Use VLAN trunks, cross-stack UplinkFast, and BackboneFast for traffic-load balancing on the uplink ports so that the uplink port with a lower relative port cost is selected to carry the VLAN traffic. |
| An evolving demand for IP telephony | • Use QoS to prioritize applications such as IP telephony during congestion and to help control both delay and jitter within the network.
• Use switches that support at least two queues per port to prioritize voice and data traffic as either high- or low-priority, based on 802.1P/Q. |
| A growing demand for using existing infrastructure to transport data and voice from a home or office to the Internet or an intranet at higher speeds | • Use the Catalyst 2950 LRE switches to provide up to 15 Mb of IP connectivity over existing infrastructure (existing telephone lines). |

Figure 1-1 shows configuration examples of using the Catalyst switches to create these networks:

• Cost-effective wiring closet—A cost-effective way to connect many users to the wiring closet is to connect up to nine Catalyst 2900 XL, Catalyst 2950, Catalyst 3500 XL, and Catalyst 3550 switches through GigaStack GBIC connections. When you use a stack of Catalyst 2950G-48 switches, you can connect up to 432 users. To preserve switch connectivity if one switch in the stack fails, connect the bottom switch to the top switch to create a GigaStack loopback, and enable cross-stack UplinkFast on the cross-stack Gigabit uplinks.
You can create backup paths by using Fast Ethernet, Gigabit, Fast EtherChannel, or Gigabit EtherChannel links. Using Gigabit modules on two of the switches, you can have redundant uplink connections to a Gigabit backbone switch such as the Catalyst 3550-12G switch. If one of the redundant connections fails, the other can serve as a backup path. You can configure the stack members and the Catalyst 3550-12G switch as a switch cluster to manage them through a single IP address.

- **High-performance workgroup**—For users who require high-speed access to network resources, use Gigabit modules to connect the switches directly to a backbone switch in a star configuration. Each switch in this configuration provides users with a dedicated 1-Gbps connection to network resources in the backbone. Compare this with the switches in a GigaStack configuration, where the 1-Gbps connection is shared among the switches. With the high speed uplink to the distribution server, the user can efficiently obtain and store data from servers. Using these Gigabit modules also provides flexibility in media and distance options:
 - 1000BASE-T GBIC: copper connections of up to 328 feet (100 meters)
 - 1000BASE-SX GBIC: fiber-optic connections of up to 1804 feet (550 meters)
 - 1000BASE-LX/LH GBIC: fiber-optic connections of up to 32,808 feet (10 kilometers)
 - 1000BASE-ZX GBIC: fiber-optic connections of up to 328,084 feet (100 kilometers)
 - GigaStack GBIC module for creating a 1-Gbps stack configuration of up to nine supported switches. The GigaStack GBIC supports one full-duplex link (in a point-to-point configuration) or up to nine half-duplex links (in a stack configuration) to other Gigabit Ethernet devices. Using the required Cisco proprietary signaling and cabling, the GigaStack GBIC-to-GigaStack GBIC connection cannot exceed 3 feet (1 meter).
 - Catalyst 2950 LRE switches support SFP GBIC as well as 10/100/1000 copper connections

- **Redundant Gigabit backbone**—Using HSRP, you can create backup paths between Catalyst 3550-12T-L3 switches. To enhance network reliability and load balancing for different VLANs and subnets, you can connect the Catalyst 2950 switches, again in a star configuration, to two backbone switches. If one of the backbone switches fails, the second backbone switch preserves connectivity between the switches and network resources.
Small to Medium-Sized Network Configuration

Figure 1-2 shows a configuration for a network that has up to 250 users. Users in this network require e-mail, file-sharing, database, and Internet access.

You optimize network performance by placing workstations on the same logical segment as the servers they access most often. This divides the network into smaller segments (or workgroups) and reduces the amount of traffic that travels over a network backbone, thereby increasing the bandwidth available to each user and improving server response time.
A network backbone is a high-bandwidth connection (such as Fast Ethernet or Gigabit Ethernet) that interconnects segments and network resources. It is required if numerous segments require access to the servers. The Catalyst 2900, Catalyst 2950, Catalyst 3500, and Catalyst 3550 switches in this network are connected through a GigaStack GBIC on each switch to form a 1-Gbps network backbone. This GigaStack can also be configured as a switch cluster, with primary and secondary command switches for redundant cluster management.

Workstations are connected directly to the 10/100 switch ports for their own 10- or 100-Mbps access to network resources (such as web and mail servers). When a workstation is configured for full-duplex operation, it receives up to 200 Mbps of dedicated bandwidth from the switch.

Servers are connected to the GBIC module ports on the switches, allowing 1-Gbps throughput to users when needed. When the switch and server ports are configured for full-duplex operation, the links provide 2 Gbps of bandwidth. For networks that do not require Gigabit performance from a server, connect the server to a Fast Ethernet or Fast EtherChannel switch port.

Connecting a router to a Fast Ethernet switch port provides multiple, simultaneous access to the Internet through one line.

Figure 1-2 Small to Medium-Sized Network Configuration

[Diagram showing network configuration]
Collapsed Backbone and Switch Cluster Configuration

Figure 1-3 shows a configuration for a network of approximately 500 employees. This network uses a collapsed backbone and switch clusters. A collapsed backbone has high-bandwidth uplinks from all segments and subnetworks to a single device, such as a Gigabit switch, that serves as a single point for monitoring and controlling the network. You can use a Catalyst 3550-12T-L3 switch, as shown, or a Catalyst 3508G XL switch to create a Gigabit backbone. A Catalyst 3550-12T-L3 backbone switch provides the benefits of inter-VLAN routing and allows the router to focus on WAN access.

The workgroups are created by clustering all the Catalyst switches except the Catalyst 4908G-L3 switch. Using CMS and Cisco switch clustering technology, you can group the switches into multiple clusters, as shown, or into a single cluster. You can manage a cluster through the IP address of its active and standby command switches, regardless of the geographic location of the cluster members.

This network uses VLANs to segment the network logically into well-defined broadcast groups and for security management. Data and multimedia traffic are configured on the same VLAN. Voice traffic from the Cisco IP Phones are configured on separate voice VLAN IDs (VVIDs). You can have up to four VVIDs per wiring closet. If data, multimedia, and voice traffic are assigned to the same VLAN, only one VLAN can be configured per wiring closet. For any switch port connected to Cisco IP Phones, 802.1P/Q QoS gives forwarding priority to voice traffic over data traffic.

Grouping servers in a centralized location provides benefits such as security and easier maintenance. The Gigabit connections to a server farm provide the workgroups full access to the network resources (such as a call-processing server running Cisco CallManager software, a DHCP server, or an IP/TV multicast server).

Cisco IP Phones are connected—using standard straight-through, twisted-pair cable with RJ-45 connectors—to the 10/100 inline-power ports on the Catalyst 3524-PWR XL switches and to the 10/100 ports on the Catalyst 2950 switches. These multiservice switch ports automatically detect if an IP phone is connected. Cisco CallManager controls call processing, routing, and IP phone features and configuration. Users with workstations running Cisco SoftPhone software can place, receive, and control calls from their PCs. Using Cisco IP Phones, Cisco CallManager software, and Cisco SoftPhone software integrates telephony and IP networks, and the IP network supports both voice and data.

Each 10/100 inline-power port on the Catalyst 3524-PWR XL switches provides ~48 VDC power to the Cisco IP Phone. The IP phone can receive redundant power when it also is connected to an AC power source. IP phones not connected to the Catalyst 3524-PWR XL switches receive power from an AC power source.
Large Campus Configuration

Figure 1-4 shows a configuration for a network of more than 1000 users. Because it can aggregate up to 130 Gigabit connections, a Catalyst 6500 multilayer switch is used as the backbone switch.

You can use the workgroup configurations shown in previous examples to create workgroups with Gigabit uplinks to the Catalyst 6500 switch. For example, you can use switch clusters that have a mix of Catalyst 2950 switches.

The Catalyst 6500 switch provides the workgroups with Gigabit access to core resources:

- Cisco 7000 series router for access to the WAN and the Internet.
- Server farm that includes a call-processing server running Cisco CallManager software. Cisco CallManager controls call processing, routing, and IP phone features and configuration.
- Cisco Access gateway (such as Cisco Access Digital Trunk Gateway or Cisco Access Analog Trunk Gateway) that connects the IP network to the Public Switched Telephone Network (PSTN) or to users in an IP telephony network.
Figure 1-4 Large Campus Configuration

Network Configuration Examples

Catalyst 6500 switch

Cisco 7200 or 7500 router
Cisco access gateway

WAN

IP telephony network or PSTN

Cisco CallManager

Servers

Catalyst 2950, 2900, 3500, and 3550 GigaStack cluster

1 Gbps (2 Gbps full duplex)

Catalyst 3524-PWR GigaStack cluster

Cisco IP Phones

Workstations running Cisco SoftPhone software

Cisco IP Phones
Hotel Network Configuration

Figure 1-5 shows the Catalyst 2950 LRE switches in a hotel network environment with approximately 200 rooms. This network includes a PBX switchboard, a router, and high-speed servers.

Connected to the telephone line in each hotel room is an LRE CPE device, such as a Cisco LRE CPE device. The LRE CPE device provides:

- Two RJ-11 ports, one for connecting to the telephone jack on the wall and one for connecting to a POTS telephone.
- One or more RJ-45 Ethernet ports for connecting to devices such as a customer’s laptop, the room’s IP phone, the television set-top box, or a room environmental control device. A Cisco 575 LRE CPE provides one Ethernet connection; a Cisco 585 LRE CPE provides four.

When connected to the CPE device, the Ethernet devices and room telephone share the same telephone line.

Note

All telephones not directly connected to the hotel room CPE device require microfilters with a 300-ohm termination. Microfilters improve voice call quality when voice and data equipment are using the same telephone line. They also prevent nonfiltered telephone rings and nonfiltered telephone transitions (such as on-hook to off-hook) from interrupting the Ethernet connection.

Through a patch panel, the telephone line from each room connects to a nonhomologated POTS splitter, such as the Cisco LRE 48 POTS Splitter. The splitter routes data (high-frequency) and voice (low-frequency) traffic from the telephone line to a Catalyst 2950 LRE switch and digital private branch exchange (PBX). The PBX routes voice traffic to the PSTN.

If a PBX is not on-site, a homologated POTS splitter is required to connect directly to the PSTN.

Note

Consult the regulations for connecting to the PSTN in your area.

Note

Cisco LRE products can share lines with analog telephones, Integrated Services Digital Network (ISDN) telephone network, and PBX switches that use the 0 to 700 kHz frequency range.

Data to and from the room devices (such as e-mail for the laptop and IP multicast traffic for the television) are transferred through the LRE link, which is established between the CPE RJ-11 wall port and the LRE port on an LRE switch. The upstream and downstream rates on the LRE link are controlled by a profile configured on each LRE port. If the LRE switch was connected to the PSTN through a homologated POTS splitter, all LRE ports would use an ANSI-compliant LRE profile named LRE-998-15-4.

The Catalyst 2950 LRE switches are cascaded through their 10/100/1000 switch ports. Each switch also has a 10/100/1000 connection to an aggregation switch, such as a 3550-12G switch. The aggregation switch can connect to:

- Accounting, billing, and provisioning servers.
- A router that provides Internet access to the premises.
You can manage the switches as a switch cluster and through the cluster management suite (CMS). You can also manage and monitor the individual CPE devices from the LRE switches to which they are connected. The Catalyst 2950 LRE switch ports support the same software features as 10/100/1000 switch ports. For example, you can configure port-based VLANs on the LRE ports to provide individual port security and protected ports to further prevent unwanted broadcasts within the VLANs.

Figure 1-5 Hotel Network Configuration

[Diagram of a hotel network configuration showing various devices such as laptops, POTS telephones, IP phones, set-top boxes, and environmental controls connected to the network through Catalyst 2950 LRE switches.]
Multidwelling Network Using Catalyst 2950 Switches

A growing segment of residential and commercial customers are requiring high-speed access to Ethernet metropolitan-area networks (MANs). Figure 1-6 shows a configuration for a Gigabit Ethernet MAN ring using Catalyst 3550 multilayer switches as aggregation switches in the mini-point-of-presence (POP) location. These switches are connected through 1000BASE-X GBIC ports.

The resident switches can be Catalyst 2950 switches, providing customers with high-speed connections to the MAN. Catalyst LRE Layer 2 only switches also can be used as residential switches for customers requiring connectivity through existing telephone lines. The Catalyst LRE switches can then be connected to another residential switch or to an aggregation switch. For more information about the LRE switches, refer to the Catalyst 2950 Series Hardware Installation Guide.

All ports on the residential Catalyst 2950 switches (and Catalyst LRE switches if they are included) are configured as 802.1Q trunks with protected port and STP root guard features enabled. The protected port feature provides security and isolation between ports on the switch, ensuring that subscribers cannot view packets destined for other subscribers. STP root guard prevents unauthorized devices from becoming the STP root switch. All ports have IGMP snooping or CGMP enabled for multicast traffic management. ACLs on the uplink ports to the aggregating Catalyst 3550 multilayer switches provide security and bandwidth management.

The aggregating switches and routers provide services such as those described in the previous examples, “Small to Medium-Sized Network Configuration” and “Large Campus Configuration.”
Figure 1-6 Catalyst 2950 Switches in a MAN Configuration

- Cisco 12000 Gigabit switch routers
- Catalyst 6500 switches
- Mini-POP Gigabit MAN
- Catalyst 3550 multilayer switches
- Residential location
- Residential gateway (hub)
- Set-top box
- TV
- PC
- Service Provider POP
- Set-top box
- TV
Long-Distance, High-Bandwidth Transport Configuration

To use the feature described in this section, you must have the EI installed on your Catalyst 2950 switch. This feature does not apply to the Catalyst 2950 LRE switches.

Figure 1-7 shows a configuration for transporting Gigabits of data from one location to an off-site backup facility over a single fiber-optic cable. The Catalyst switches have Coarse Wave Division Multiplexer (CWDM) fiber-optic GBIC modules installed. The CWDM GBIC modules can connect to distances of up to 393,701 feet (74.5 miles or 120 kilometers). Depending on the CWDM GBIC module, data is sent at wavelengths from 1470 to 1610 nanometers (nm). The higher the wavelength, the farther the transmission can travel. A common wavelength for long-distance transmissions is 1550 nm.

Up to eight CWDM GBIC modules, with any combination of wavelengths, can connect to a Cisco CWDM Passive Optical System. It combines (or multiplexes) the different CWDM wavelengths, allowing them to travel simultaneously on the same fiber-optic cable. The Cisco CWDM Passive Optical System on the receiving end separates (or demultiplexes) the different wavelengths.

Using CWDM technology with the switches translates to farther data transmission and an increased bandwidth capacity (up to 8 Gbps) on a single fiber-optic cable.

For more information about the CWDM GBIC modules and CWDM Passive Optical System, refer to the CWDM Passive Optical System Installation Note.
Where to Go Next

Before configuring the switch, review these sections for start up information:

- Chapter 2, “Using the Command-Line Interface”
- Chapter 3, “Getting Started with CMS”
- Chapter 4, “Assigning the Switch IP Address and Default Gateway”
- Chapter 5, “Configuring IE2100 CNS Agents”
Using the Command-Line Interface

This chapter describes the IOS command-line interface (CLI) that you can use to configure your switches. It contains these sections:

- IOS Command Modes, page 2-1
- Getting Help, page 2-3
- Abbreviating Commands, page 2-5
- Using no and default Forms of Commands, page 2-5
- Understanding CLI Messages, page 2-5
- Using Command History, page 2-6
- Using Editing Features, page 2-7
- Searching and Filtering Output of show and more Commands, page 2-10
- Accessing the CLI, page 2-10

IOS Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as `show` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.
Table 2-1 describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the host name `Switch`.

Table 2-1 Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session with your switch.</td>
<td><code>Switch></code></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td><code>Switch#</code></td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td><code>Switch(config)#</code></td>
<td>To exit to privileged EXEC mode, enter <code>exit</code> or <code>end</code>, or press <code>Ctrl-Z</code>.</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
<tr>
<td>Config-vlan</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td><code>Switch(config-vlan)#</code></td>
<td>To exit to global configuration mode, enter the <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or <code>end</code>.</td>
<td>Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file.</td>
</tr>
<tr>
<td>Config-lre-sequence</td>
<td>While in global configuration mode, enter the <code>lre sequence <sequence_name></code> command.</td>
<td><code>config-seq#</code></td>
<td>To exit to global configuration mode, enter the <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or <code>end</code>.</td>
<td>Use this mode to create new sequences or to add or delete profiles in a user-defined sequence.</td>
</tr>
<tr>
<td>Config-lre-controller</td>
<td>While in global configuration mode, enter the <code>lre controller <controller_name></code> command.</td>
<td><code>config-controller#</code></td>
<td>To exit to global configuration mode, enter the <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or <code>end</code>.</td>
<td>Use this mode for all upgrade related commands (for further information on upgrading, see the “Upgrading LRE Switch Firmware” section on page 10-15).</td>
</tr>
</tbody>
</table>
Getting Help

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command, as shown in Table 2-2.

Table 2-2 Help Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Obtain a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
<td>Obtain a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# di?</td>
</tr>
<tr>
<td></td>
<td>dir disable disconnect</td>
</tr>
<tr>
<td>abbreviated-command-entry<Tab></td>
<td>Complete a partial command name.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# sh conf<tab></td>
</tr>
<tr>
<td></td>
<td>Switch# show configuration</td>
</tr>
<tr>
<td>?</td>
<td>List all commands available for a particular command mode.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch> ?</td>
</tr>
</tbody>
</table>
Specifying Ports in Interface Configuration Mode

To configure a port, you need to specify the interface type, slot, and switch-port number with the `interface` configuration command. For example, to configure port 4 on a switch, you enter:

```
switch(config)#interface fa 0/4
```

To configure port 4 on a 10/100 module in the first module slot on the switch, you enter:

```
switch(config)#interface fa 1/4
```

- **Interface type**—Each switch in the Catalyst 2950 and Catalyst 3550 platform supports different types of interfaces. To display a complete list of the interface types supported on your switch, enter the `interface ?` global configuration command. This example shows what the `interface ?` command displays on a Catalyst 2950 LRE switch:

```
lreswitch(config)#interface ?
Async                 Async interface
BVI                    Bridge-Group Virtual Interface
Dialer                  Dialer interface
GE-WAN             GigabitEthernetWAN IEEE 802.3z
GigabitEthernet    GigabitEthernet IEEE 802.3z
Group-Async        Async Group interface
Lex                     Lex interface
LongReachEthernet  Long Reach Ethernet
Loopback           Loopback interface
Multilink             Multilink-group interface
Null                  Null interface
Port-channel       Ethernet Channel of interfaces
Transparent          Transparent interface
Tunnel               Tunnel interface
Virtual-Template   Virtual Template interface
Virtual-TokenRing  Virtual TokenRing
Vlan                   Catalyst Vlans
fcps                   Fiber Channel
range                  interface range command
```

Note
The multilink and virtual-TokenRing interface types are not supported on the Catalyst 2950 LRE switches.

- **Slot number**—The slot number on the switch. On the modular Catalyst 2900 XL switches, the slot number is 1 or 2. On non-modular Catalyst 2950 LRE and Catalyst 3500 XL switches, the slot number is 0.
Abbreviating Commands

You have to enter only enough characters for the switch to recognize the command as unique. This example shows how to enter the `show configuration` privileged EXEC command:

```
Switch# show conf
```

Using no and default Forms of Commands

Almost every configuration command also has a `no` form. In general, use the `no` form to disable a feature or function or reverse the action of a command. For example, the `no shutdown` interface configuration command reverses the shutdown of an interface. Use the command without the keyword `no` to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a `default` form. The `default` form of a command returns the command setting to its default. Most commands are disabled by default, so the `default` form is the same as the `no` form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the `default` command enables the command and sets variables to their default values.

Understanding CLI Messages

Table 2-3 lists some error messages that you might encounter while using the CLI to configure your switch.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: "show con"</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command are displayed.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command are displayed.</td>
</tr>
<tr>
<td>% Invalid input detected at <code>^</code> marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command are displayed.</td>
</tr>
</tbody>
</table>
Using Command History

The IOS provides a history or record of commands that you have entered. This feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize the command history feature to suit your needs as described in these sections:

- Changing the Command History Buffer Size, page 2-6
- Recalling Commands, page 2-6
- Disabling the Command History Feature, page 2-7

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:

```
Switch# terminal history [size number-of-lines]
```

The range is from 0 to 256.

Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:

```
Switch(config-line)# history [size number-of-lines]
```

The range is from 0 to 256.

Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in Table 2-4:

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
<td>Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
<td>Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
</tbody>
</table>

| show history | While in privileged EXEC mode, list the last several commands that you just entered. The number of commands that are displayed is determined by the setting of the terminal history global configuration command and history line configuration command. |

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.
Disabling the Command History Feature

The command history feature is automatically enabled.
To disable the feature during the current terminal session, enter the `terminal no history` privileged EXEC command.
To disable command history for the line, enter the `no history` line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line. It contains these sections:

- Enabling and Disabling Editing Features, page 2-7
- Editing Commands through Keystrokes, page 2-8
- Editing Command Lines that Wrap, page 2-9

Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it.
To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

```
Switch# terminal editing
```

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

```
Switch(config-line)# editing
```

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Switch(config-line)# no editing
```
Editing Commands through Keystrokes

Table 2-5 shows the keystrokes that you need to edit command lines.

Table 2-5 Editing Commands through Keystrokes

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke¹</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make changes or corrections.</td>
<td>Press Ctrl-B, or press the left arrow key.</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-F, or press the right arrow key.</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-A.</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-E.</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Esc B.</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td></td>
<td>Press Esc F.</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-T.</td>
<td>Transpose the character to the left of the cursor with the character located at the cursor.</td>
</tr>
<tr>
<td>Recall commands from the buffer and paste them in the command line.</td>
<td>Press Ctrl-Y.</td>
<td>Recall the most recent entry in the buffer.</td>
</tr>
<tr>
<td>The switch provides a buffer with the last ten items that you deleted.</td>
<td>Press Esc Y.</td>
<td>Recall the next buffer entry. The buffer contains only the last 10 items that you have deleted or cut. If you press Esc Y more than ten times, you cycle to the first buffer entry.</td>
</tr>
<tr>
<td>Delete entries if you make a mistake or change your mind.</td>
<td>Press the Delete or Backspace key.</td>
<td>Erase the character to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-D.</td>
<td>Delete the character at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-K.</td>
<td>Delete all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Delete all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-W.</td>
<td>Delete the word to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc D.</td>
<td>Delete from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Capitalize or lowercase words or capitalize a set of letters.</td>
<td>Press Esc C.</td>
<td>Capitalize at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc L.</td>
<td>Change the word at the cursor to lowercase.</td>
</tr>
<tr>
<td></td>
<td>Press Esc U.</td>
<td>Capitalize letters from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Designate a particular keystroke as an executable command, perhaps as a shortcut.</td>
<td>Press Ctrl-V or Esc Q.</td>
<td></td>
</tr>
</tbody>
</table>
You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note: The More prompt is used for any output that has more lines than can be displayed on the terminal screen, including show command output. You can use the Return and Space bar keystrokes whenever you see the More prompt.

Press the Return key. Scroll down one line.

Press the Space bar. Scroll down one screen.

Press Ctrl-L or Ctrl-R. Redisplay the current command line.

In this example, the access-list global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
Switch(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
Switch(config)# $t tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
Switch(config)# $108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45

After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right:

Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1$

The software assumes you have a terminal screen that is 80 columns wide. If you have a width other than that, use the terminal width privileged EXEC command to set the width of your terminal.
Use line wrapping with the command history feature to recall and modify previous complex command entries. For information about recalling previous command entries, see the “Editing Commands through Keystrokes” section on page 2-8.

Searching and Filtering Output of show and more Commands

You can search and filter the output for show and more commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see.

To use this functionality, enter a show or more command followed by the pipe character (|), one of the keywords begin, include, or exclude, and an expression that you want to search for or filter out:

```
command | {begin | include | exclude} regular-expression
```

Expressions are case sensitive. For example, if you enter `exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

This example shows how to include in the output display only lines where the expression `protocol` appears:

```
Switch# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet0/1 is up, line protocol is down
GigabitEthernet0/2 is up, line protocol is up
```

Accessing the CLI

Before you can access the CLI, you need to connect a terminal or PC to the switch console port and power on the switch as described in the hardware installation guide that shipped with your switch. Then, to understand the boot process and the options available for assigning IP information, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access. For more information, see the “Setting a Telnet Password for a Terminal Line” section on page 7-6.

You can establish a connection with the switch in one of two ways:

- Connecting the switch console port to a management station or dial-up modem. For information about connecting to the console port, refer to the switch hardware installation guide.

- Using any Telnet TCP/IP package from a remote management station. The switch must have network connectivity with the Telnet client, and the switch must have an enable secret password configured.

For information about configuring the switch for Telnet access, see the “Setting a Telnet Password for a Terminal Line” section on page 7-6. The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

After you connect through the console port or through a Telnet session, the user EXEC prompt appears on the management station.
Chapter 2 Using the Command-Line Interface

Accessing the CLI from a Browser

This procedure assumes you have met the software requirements (including browser and Java plug-in configurations) and have assigned IP information and a Telnet password to the switch or command switch, as described in the release notes.

To access the CLI from a web browser, follow these steps:

Step 1 Start one of the supported browsers.
Step 2 In the URL field, enter the IP address of the command switch.
Step 3 When the Cisco Systems Access page appears, click Telnet to start a Telnet session.

You can also access the CLI by clicking Monitor the router- HTML access to the command line interface from the Cisco Systems Access page. For information about the Cisco Systems Access page, see the “Accessing CMS” section in the release notes.

Step 4 Enter the switch password.

The user EXEC prompt appears on the management station.

Note Copies of the CMS pages that you display are saved in your browser memory cache until you exit the browser session. A password is not required to redisplay these pages, including the Cisco Systems Access page. You can access the CLI by clicking Web Console - HTML access to the command line interface from a cached copy of the Cisco Systems Access page. To prevent unauthorized access to CMS and the CLI, exit your browser to end the browser session.
Getting Started with CMS

This chapter provides these topics about the Cluster Management Suite (CMS) software:

- Features, page 3-2
- Front Panel View, page 3-4
- Topology View, page 3-10
- Menus and Toolbar, page 3-15
- Interaction Modes, page 3-25
- Wizards, page 3-26
- Online Help, page 3-26
- CMS Window Components, page 3-28
- Accessing CMS, page 3-30
- Verifying Your Changes, page 3-32
- Saving Your Configuration, page 3-33
- Restoring Your Configuration, page 3-33
- CMS Preferences, page 3-33
- Using Different Versions of CMS, page 3-34
- Where to Go Next, page 3-34

Note

- For system requirements and for browser and Java plug-in configuration procedures, refer to the release notes.
- For procedures for using CMS, refer to the online help.

Note

This chapter describes CMS on the Catalyst 2950 and Catalyst 2950 LRE switches. Refer to the appropriate switch documentation for descriptions of the web-based management software used on other Catalyst switches.
Features

CMS provides these features (see Figure 3-1) for managing switch clusters and individual switches from Web browsers such as Netscape Communicator or Microsoft Internet Explorer:

- Two views of your network that can be displayed at the same time:
 - The Front Panel view displays the front-panel image of a specific switch or the front-panel images of all switches in a cluster. From this view, you can select multiple ports or multiple switches and configure them with the same settings.

 When CMS is launched from a command switch, the Front Panel view displays the front-panel images of all switches in the cluster. When CMS is launched from a noncommand switch, the Front Panel view displays only the front panel of the specific switch.

 \[
 \text{Note}\text{ CMS from a standalone switch or from a noncommand switch is referred to as Device Manager (also referred to as Switch Manager). Device Manager is for configuring an individual switch. When you select Device Manager for a specific switch in the cluster, you launch a separate CMS session. The Device Manager interface can vary between the Catalyst switch platforms.}
 \]

 - The Topology view displays a network map that uses icons that represent switch clusters, cluster members, cluster candidates, neighboring devices that are not eligible to join a cluster, and link types. From this view, you can select multiple switches and configure them to run with the same settings. You can also display link information in the form of link reports and link graphs.

 This view is available only when CMS is launched from a command switch.

- Menus and toolbar to access configuration and management options:
 - The menu bar provides the complete list of options for managing a single switch and switch clusters.

 - The toolbar provides buttons for commonly used switch and cluster configuration options and information windows such as legends and online help.

 - The port popup menu, in the Front Panel view, provides options specific for configuring and monitoring switch ports.

 - The device popup menu, in either the Front Panel or the Topology views, provides switch and cluster configuration and monitoring options.

 - The candidate, member, and link popup menus provide options for configuring and monitoring devices and links in the Topology view.

 The toolbar and popup menus provide quick ways to access frequently used menu-bar options.

- Tools to simplify configuration tasks:
 - Interactive modes—guide mode and expert mode—that control the presentation of some complex configuration options.

 - Wizards that require minimal information from you to configure some complex features.

 - Comprehensive online help that provides high-level concepts and procedures for performing tasks from the window.
- Two levels of access to the configuration options: read-write access for users allowed to change switch settings; read-only access for users allowed to only view switch settings.
- Consistent set of GUI components (such as tabs, buttons, drop-down lists, tables, and so on) for a uniform approach to viewing and setting configuration parameters (see Figure 3-1).

Figure 3-1 CMS Features

- **Menu bar**
- **Toolbar**
- Move the cursor over the icon to display the tool tip. For example, the button displays the legend of icons and color codes.
- Click **Guide** or **Expert** interaction mode to change how some configuration options are presented to you.

Front Panel view of the cluster.
Topology view of the cluster.
Front Panel View

When CMS is launched from a command switch, the Front Panel view displays the front-panel images of all the switches in the cluster (see Figure 3-2 for a 2950 LRE switch and Figure 3-3 for a 2950 non-LRE switch). You can use the cursor to re-arrange the order of the switches in this window.

Figure 3-2 Front Panel View from a 2950 LRE Command Switch

Cluster tree.

Right-click a member switch image to display the device pop-up menu, and select an option to view or change system-related settings.

Right-click the command switch image to display the cluster pop-up menu, and select a cluster-related option.
Figure 3-3 Front Panel View from a 2950 Command Switch

When CMS is launched from a standalone or noncommand member switch, the Front Panel view displays only the front panel of the specific switch (see Figure 3-5 for a 2950 switch and Figure 3-4 for a 2950 LRE switch).

Figure 3-4 Front Panel View from a Standalone 2950 LRE Switch
Cluster Tree

The cluster tree (see Figure 3-2 for LRE switches and Figure 3-3 for non-LRE switches) appears in the left frame of the Front Panel view and shows the name of the cluster and a list of its members. The sequence of the cluster-tree icons (see Figure 3-6) mirror the sequence of the Front-Panel images. You can change the sequence by selecting View > Arrange Front Panel. The colors of the devices in the cluster tree show the status of the devices (see Table 3-1).

If you want to configure switch or cluster settings on one or more switches, select the appropriate Front-Panel image.

- To select a front-panel image, click either the cluster-tree icon or the corresponding front-panel image. The front-panel image is then highlighted with a yellow outline.
- To select multiple front-panel images, press the Ctrl key, and left-click the cluster-tree icons or the front-panel images. To deselect an icon or image, press the Ctrl key, and left-click the icon or image.

If the cluster has many switches, you might need to scroll down the window to display the rest of the front-panel images. Instead of scrolling, you can click an icon in the cluster tree, and CMS then scrolls and displays the corresponding front-panel image.

Table 3-1 Cluster Tree Icon Colors

<table>
<thead>
<tr>
<th>Color</th>
<th>Device Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Switch is operating normally.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The internal fan of the switch is not operating, or the switch is receiving power from an RPS.</td>
</tr>
<tr>
<td>Red</td>
<td>Switch is not powered up, has lost power, or the command switch is unable to communicate with the member switch.</td>
</tr>
</tbody>
</table>
Front-Panel Images

You can manage the switch from a remote station by using the front-panel images. The front-panel images are updated based on the network polling interval that you set from CMS > Preferences.

This section includes descriptions of the LED images. Similar descriptions of the switch LEDs are provided in the switch hardware installation guide.

Note

The Preferences window is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-31.

Figure 3-7 shows the port icons as they appear in the Front Panel. To select a port, click the port on the Front Panel. The port is then highlighted with a yellow outline. To select multiple ports, you can:

- Press the left mouse button, drag the pointer over the group of ports that you want to select, and then release the mouse button.
- Press the Ctrl key, and click the ports that you want to select.
- Right-click a port, and select Select All Ports from the port popup menu.

Figure 3-7 Port Icons

Table 3-2 describes the colors representing the wavelengths on the CWDM GBIC modules. For port status LED information, see the “Port Modes and LEDs” section on page 3-8.
Chapter 3 Getting Started with CMS

Front Panel View

Redundant Power System LED

The Redundant Power System (RPS) LED shows the RPS status (see Table 3-3). Certain switches in the switch cluster use a specific RPS model:

- Cisco RPS 300 (model PWR300-AC-RPS-N1)—Catalyst 2900 LRE XL, Catalyst 2950, Catalyst 3524-PWR XL, and Catalyst 3550 switches
- Cisco RPS 600 (model PWR600-AC-RPS)—Catalyst 2900 XL and Catalyst 3500 XL switches, except the Catalyst 2900 LRE XL and Catalyst 3524-PWR XL switches

Refer to the appropriate switch hardware documentation for RPS descriptions specific for the switch.

<table>
<thead>
<tr>
<th>Table 3-2 Port Icon Colors for the CWDM GBIC Module Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>1470 nanometers (nm)</td>
</tr>
<tr>
<td>1490 nm</td>
</tr>
<tr>
<td>1510 nm</td>
</tr>
<tr>
<td>1530 nm</td>
</tr>
<tr>
<td>1550 nm</td>
</tr>
<tr>
<td>1570 nm</td>
</tr>
<tr>
<td>1590 nm</td>
</tr>
<tr>
<td>1610 nm</td>
</tr>
</tbody>
</table>

Table 3-3 RPS LED

<table>
<thead>
<tr>
<th>Color</th>
<th>RPS Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black (off)</td>
<td>RPS is off or is not installed.</td>
</tr>
<tr>
<td>Green</td>
<td>RPS is connected and operational.</td>
</tr>
<tr>
<td>Blinking green</td>
<td>RPS is providing power to another switch in the stack.</td>
</tr>
<tr>
<td>Amber</td>
<td>RPS is connected but not functioning.</td>
</tr>
<tr>
<td></td>
<td>The RPS could be in standby mode. To put the RPS in Active mode, press the Standby/Active button on the RPS, and the LED should turn green. If it does not, one of these conditions could exist:</td>
</tr>
<tr>
<td></td>
<td>• One of the RPS power supplies could be down. Contact Cisco Systems.</td>
</tr>
<tr>
<td></td>
<td>• The RPS fan could have failed. Contact Cisco Systems.</td>
</tr>
<tr>
<td>Blinking amber</td>
<td>Internal power supply of the switch is down, and redundancy is lost. The switch is operating on the RPS.</td>
</tr>
</tbody>
</table>

Port Modes and LEDs

The port modes (see Table 3-4) determine the type of information displayed through the port LEDs. When you change port modes, the meanings of the port LED colors (see Table 3-5) also change.

Note

The bandwidth utilization mode (UTIL LED) does not appear on the front-panel images. Select Reports > Bandwidth Graphs to display the total bandwidth in use by the switch. Refer to the switch hardware installation guide for information about using the UTIL LED.
To select or change a mode, click the Mode button until the desired mode LED is green.

Table 3-4 Port Modes

<table>
<thead>
<tr>
<th>Mode LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>Link status of the ports or the Ethernet link status on the remote customer premises equipment (CPE) device. This is the default mode except for the Catalyst 2950 LRE switches.</td>
</tr>
<tr>
<td>DUPLX</td>
<td>Duplex setting on the ports. The default setting on the 10/100 ports is auto. The default setting on the 10/100/1000 ports is full.</td>
</tr>
<tr>
<td>SPEED</td>
<td>Speed setting on the ports. The default setting on the 10/100 and 10/100/1000 ports is auto.</td>
</tr>
</tbody>
</table>

Table 3-5 Port LEDs

<table>
<thead>
<tr>
<th>Port Mode</th>
<th>Port LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>Cyan (off)</td>
<td>No link.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Link present.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Link fault. Error frames can affect connectivity, and errors such as excessive collisions, CRC errors, and alignment and jabber errors are monitored for a link-fault indication. Port is not forwarding. Port was disabled by management, by an address violation, or by Spanning Tree Protocol (STP). Note After a port is reconfigured, the port LED can remain amber for up to 30 seconds as STP checks the switch for possible loops.</td>
</tr>
<tr>
<td></td>
<td>Brown</td>
<td>No link and port is administratively shut down.</td>
</tr>
<tr>
<td>DUPLX</td>
<td>Cyan (off)</td>
<td>Port is operating in half-duplex mode.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Port is operating in full-duplex mode.</td>
</tr>
<tr>
<td>SPEED</td>
<td>Cyan (off)</td>
<td>Port is operating at 10 Mbps (10/100 ports) or no link (10/100/1000 ports and GBIC module ports).</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Port is operating at 100 Mbps (10/100 ports) or 1000 Mbps (GBIC module ports).</td>
</tr>
<tr>
<td></td>
<td>Blinking green</td>
<td>Port is operating at 1000 Mbps (10/100/1000 ports).</td>
</tr>
</tbody>
</table>

VLAN Membership Modes

Ports in the Front Panel view are outlined by colors (see Table 3-6) when you click **Highlight VLAN Port Membership Modes** on the Configure VLANs tab on the VLAN window (VLAN > VLAN > Configure VLANs). The colors show the VLAN membership mode of each port. The VLAN membership mode determines the kind of traffic the port carries and the number of VLANs it can belong to. For more information about these modes, see the “VLAN Port Membership Modes” section on page 14-3.

Note
This feature is not supported on the Catalyst 1900 and Catalyst 2820 switches.
The Topology view displays how the devices within a switch cluster are connected and how the switch cluster is connected to other clusters and devices. From this view, you can add and remove cluster members. This view provides two levels of detail of the network topology:

- When you right-click a cluster icon and select Expand Cluster, the Topology view displays the switch cluster in detail. This view shows the command switch and member switches in a cluster. It also shows candidate switches that can join the cluster. This view does not display the details of any neighboring switch clusters. (See Figure 3-8).

- When you right-click a command-switch icon and select Collapse Cluster, the cluster is collapsed and represented by a single icon. The view shows how the cluster is connected to other clusters, candidate switches, and devices that are not eligible to join the cluster (such as routers, access points, IP phones, and so on). (See Figure 3-9).

Note

The Topology view displays only the switch cluster and network neighborhood of the specific command or member switch that you access. To display a different switch cluster, you need to access the command switch or member switch of that cluster.

You can arrange the device icons in this view. To move a device icon, click and drag the icon. To select multiple device icons, you can either:

- Press the left mouse button, drag the pointer over the group of device icons that you want to select, and then release the mouse button.

- Press the **Ctrl** key, and click the device icons that you want to select.

After selecting the icons, drag the icons to any area in the view.

Table 3-6 VLAN Membership Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static access</td>
<td>Light green</td>
</tr>
<tr>
<td>Dynamic access</td>
<td>Pink</td>
</tr>
<tr>
<td>802.1Q trunk</td>
<td>Peach</td>
</tr>
<tr>
<td>Negotiate trunk</td>
<td>White</td>
</tr>
</tbody>
</table>

Topology View

The Topology view displays how the devices within a switch cluster are connected and how the switch cluster is connected to other clusters and devices. From this view, you can add and remove cluster members. This view provides two levels of detail of the network topology:

- When you right-click a cluster icon and select Expand Cluster, the Topology view displays the switch cluster in detail. This view shows the command switch and member switches in a cluster. It also shows candidate switches that can join the cluster. This view does not display the details of any neighboring switch clusters. (See Figure 3-8).

- When you right-click a command-switch icon and select Collapse Cluster, the cluster is collapsed and represented by a single icon. The view shows how the cluster is connected to other clusters, candidate switches, and devices that are not eligible to join the cluster (such as routers, access points, IP phones, and so on). (See Figure 3-9).

Note

The Topology view displays only the switch cluster and network neighborhood of the specific command or member switch that you access. To display a different switch cluster, you need to access the command switch or member switch of that cluster.

You can arrange the device icons in this view. To move a device icon, click and drag the icon. To select multiple device icons, you can either:

- Press the left mouse button, drag the pointer over the group of device icons that you want to select, and then release the mouse button.

- Press the **Ctrl** key, and click the device icons that you want to select.

After selecting the icons, drag the icons to any area in the view.
Figure 3-8 Expand Cluster View

Figure 3-9 Collapse Cluster View
Topology Icons

The Topology view and the cluster tree use the same set of device icons to represent clusters, command and standby command switches, and member switches (see Figure 3-10). The Topology view also uses additional icons to represent these types of neighboring devices:

- Customer premises equipment (CPE) devices that are connected to Long-Reach Ethernet (LRE) switches
- Devices that are not eligible to join the cluster, such as Cisco IP phones, Cisco access points, and Cisco Discovery Protocol (CDP)-capable hubs and routers

Note

The System Switch Processor (SSP) card in the Cisco Integrated Communications System (ICS) 7750 appears as a Layer 2 switch. SSP cards are not eligible to join switch clusters.

- Devices that are identified as unknown devices, such as some Cisco devices and third-party devices

Tip

Neighboring devices are only displayed if they are connected to cluster members. To display neighboring devices in the Topology view, either add the switch to which they are connected to a cluster, or enable that switch as a command switch.

Note

Candidate switches are distinguished by the color of their device label. Device labels and their colors are described in the “Colors in the Topology View” section on page 3-14.

To select a device, click the icon. The icon is then highlighted. To select multiple devices, you can either:

- Press the left mouse button, drag the pointer over the group of icons that you want to select, and then release the mouse button.
- Press the Ctrl key, and click the icons that you want to select.

Figure 3-10 Topology-View Device Icons

The Topology view also uses a set of link icons (see Figure 3-11) to show the link type and status between two devices. To select a link, click the link that you want to select. To select multiple links, press the Ctrl key, and click the links that you want to select.
Device and Link Labels

The Topology view displays device and link information by using these labels:

- Cluster and switch names
- Switch MAC and IP addresses
- Link type between the devices
- Link speed and IDs of the interfaces on both ends of the link

When using these labels, keep these considerations in mind:

- The IP address displays only in the labels for the command switch and member switches.
- The label of a neighboring cluster icon only displays the IP address of the command-switch IP address.
- The displayed link speeds are the actual link speeds except on the LRE links, which display the administratively assigned speed settings.

You can change the label settings from the Topology Options window, which is displayed by selecting View > Topology Options.
Colors in the Topology View

The colors of the Topology view icons show the status of the devices and links (see Table 3-7, Table 3-8, and Table 3-9).

Table 3-7 Device Icon Colors

<table>
<thead>
<tr>
<th>Icon Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>The device is operating.</td>
</tr>
<tr>
<td>Yellow¹</td>
<td>The internal fan of the switch is not operating, or the switch is receiving power from an RPS.</td>
</tr>
<tr>
<td>Red¹</td>
<td>The device is not operating.</td>
</tr>
</tbody>
</table>

¹ Available only on the cluster members.

Table 3-8 Single Link Icon Colors

<table>
<thead>
<tr>
<th>Link Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Active link</td>
</tr>
<tr>
<td>Red</td>
<td>Down or blocked link</td>
</tr>
</tbody>
</table>

Table 3-9 Multiple Link Icon Colors

<table>
<thead>
<tr>
<th>Link Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both green</td>
<td>All links are active.</td>
</tr>
<tr>
<td>One green; one red</td>
<td>At least one link is active, and at least one other link is down or blocked.</td>
</tr>
<tr>
<td>Both red</td>
<td>All links are down or blocked.</td>
</tr>
</tbody>
</table>

The color of a device label shows the cluster membership of the device (see Table 3-10).

Table 3-10 Device Label Colors

<table>
<thead>
<tr>
<th>Label Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>A cluster member, either a member switch or the command switch</td>
</tr>
<tr>
<td>Cyan</td>
<td>A candidate switch that is eligible to join the cluster</td>
</tr>
<tr>
<td>Yellow</td>
<td>An unknown device or a device that is not eligible to join the cluster</td>
</tr>
</tbody>
</table>
Topography Display Options

You can set the type of information displayed in the Topology view by changing the settings in the Topology Options window. To display this window, select View > Topology Options. From this window, you can select:

- Device icons (including IP Phones, CPE devices, Neighbors, Access Points, and Candidates) that you want displayed in or filtered from the Topology View window
- Interface IDs and Actual Speed values that you want displayed in the Link window
- Host Names, IP addresses, and MAC address labels that you want displayed in the Node window

Menus and Toolbar

The configuration and monitoring options for configuring switches and switch clusters are available from menus and a toolbar.

Menu Bar

The menu bar provides the complete list of options for managing a single switch and switch cluster. Options displayed from the menu bar can vary:

- Access modes affect the availability of features from CMS. The footnotes in Table 3-11 describe the availability of an option based on your access mode in CMS: read-only (access level 1–14) and read-write (access level 15). For more information about how access modes affect CMS, see the “Access Modes in CMS” section on page 3-31.
- The option for enabling a command switch is only available from a CMS session launched from a command-capable switch.
- Cluster management tasks, such as upgrading the software of groups of switches, are available only from a CMS session launched from a command switch.
- If you launch CMS from a specific switch, the menu bar displays the features supported only by that switch.
- If you launch CMS from a command switch, the menu bar displays the features supported on the switches in the cluster, with these exceptions:
 - If the command switch is a Layer 3 switch, such as a Catalyst 3550 switch, the menu bar displays the features of all Layer 3 and Layer 2 switches in the cluster.
 - If the command switch is a Layer 2 switch, such as a Catalyst 2950 or Catalyst 3500 XL switch, the menu bar displays the features of all Layer 2 switches in the cluster. The menu bar does not display Layer 3 features even if the cluster has Catalyst 3550 Layer 3 member switches.
Note

- We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch:
 - If your switch cluster has a Catalyst 3550 switch, that switch should be the command switch.
 - If your switch cluster has Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches, the Catalyst 2950 should be the command switch.
 - If your switch cluster has Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, and Catalyst 3500 XL switches, either the Catalyst 2900 XL or Catalyst 3500 XL should be the command switch.

- Standby command switches must meet these requirements:
 - When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
 - When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

We strongly recommend that the command switch and standby command switches are of the same switch platform and that both are running the same level of software (SI or EI). In the event of a failover, the standby command switch must support the same configuration and services that are running on the command switch.

- If you have a Catalyst 3550 command switch, the standby command switches should be Catalyst 3550 switches.
- If you have a Catalyst 2950 command switch, the standby command switches should be Catalyst 2950 switches.
- If you have a Catalyst 2900 XL or Catalyst 3500 XL command switch, the standby command switches should be Catalyst 2900 XL and Catalyst 3500 XL switches.

Refer to the release notes for the Catalyst switches that can be part of a switch cluster.

Note

Unless noted otherwise, Table 3-11 lists the menu-bar options available from a Catalyst 2950 command switch when the cluster contains only Catalyst 2950 member switches. The menu bar of the command switch displays all menu-bar options available from the cluster, including options from member switches from other cluster-capable switch platforms.
Table 3-11 Menu Bar

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td></td>
</tr>
<tr>
<td>Page Setup</td>
<td>Set default document printer properties to be used when printing from CMS.</td>
</tr>
<tr>
<td>Print Preview</td>
<td>View the way the CMS window or help file will appear when printed.</td>
</tr>
<tr>
<td>Print</td>
<td>Print a CMS window or help file.</td>
</tr>
<tr>
<td>Guide Mode/Expert Mode(^1)</td>
<td>Select which interaction mode to use when you select a configuration option.</td>
</tr>
<tr>
<td>Preferences(^2)</td>
<td>Set CMS display properties, such as polling intervals, the default views to open at startup, and the color of administratively shutdown ports.</td>
</tr>
<tr>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>IP Addresses(^2)</td>
<td>Configure IP information for a switch.</td>
</tr>
<tr>
<td>SNMP(^2)</td>
<td>Enable and disable Simple Network Management Protocol (SNMP), enter community strings, and configure end stations as trap managers.</td>
</tr>
<tr>
<td>System Time(^2)</td>
<td>Configure the system time or configure the Network Time Protocol (NTP).</td>
</tr>
<tr>
<td>HTTP Port(^2)</td>
<td>Configure the Hypertext Transfer Protocol (HTTP) port number.</td>
</tr>
<tr>
<td>Users and Passwords</td>
<td>Configure usernames and passwords for privilege levels 0 to 15.</td>
</tr>
<tr>
<td>Console Baud Rate(^2)</td>
<td>Change the baud rate for the switch console port.</td>
</tr>
<tr>
<td>MAC Addresses(^2)</td>
<td>Enter dynamic, secure, and static addresses in a switch address table. You can also define the forwarding behavior of static addresses.</td>
</tr>
<tr>
<td>ARP(^2)</td>
<td>Display the device Address Resolution Protocol (ARP) table, and configure the ARP cache timeout setting.</td>
</tr>
<tr>
<td>Save Configuration(^1)</td>
<td>Save the configuration for the cluster or switch to Flash memory.</td>
</tr>
<tr>
<td>Restore Configuration</td>
<td>Restore the configuration file to one or more switches in the cluster.</td>
</tr>
<tr>
<td>Software Upgrade(^1)</td>
<td>Upgrade the software for the cluster or a switch.</td>
</tr>
<tr>
<td>LRE Software Upgrade</td>
<td>Upgrade the binary on the switch.</td>
</tr>
<tr>
<td>System Reload(^1)</td>
<td>Reboot the switch with the latest installed software.</td>
</tr>
<tr>
<td>Event Notification</td>
<td>Create notification IDs that generate e-mail notifications when system events occur.</td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
</tr>
<tr>
<td>Cluster Manager(^3)</td>
<td>Launch a CMS session from the member switch.</td>
</tr>
<tr>
<td>Create Cluster(^4)</td>
<td>Designate a command switch, and name a cluster.</td>
</tr>
<tr>
<td>Delete Cluster(^5)</td>
<td>Delete a cluster.</td>
</tr>
<tr>
<td>Add to Cluster(^5)</td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Remove from Cluster(^1)(^5)</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Standby Command Switches(^2)(^5)</td>
<td>Create a Hot Standby Router Protocol (HSRP) standby group to provide command-switch redundancy.</td>
</tr>
<tr>
<td>Hop Count(^2)(^5)</td>
<td>Enter the number of hops away that a command switch looks for members and for candidate switches.</td>
</tr>
<tr>
<td>Device</td>
<td></td>
</tr>
<tr>
<td>Device Manager(^3)</td>
<td>Launch Device Manager for a specific switch.</td>
</tr>
<tr>
<td>Host Name(^1)</td>
<td>Change the host name of a switch.</td>
</tr>
</tbody>
</table>
Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>STP</td>
<td>Display and configure STP parameters for a switch.</td>
</tr>
<tr>
<td>IGMP Snooping</td>
<td>Enable and disable Internet Group Management Protocol (IGMP) snooping and IGMP Immediate-Leave processing on the switch. Join or leave multicast groups, and configure multicast routers.</td>
</tr>
<tr>
<td>802.1X</td>
<td>Configure 802.1X authentication of devices as they are attached to LAN ports in a point-to-point infrastructure.</td>
</tr>
<tr>
<td>ACL</td>
<td>Create and maintain access control lists (ACLs), and attach ACLs to specific ports.</td>
</tr>
<tr>
<td>Security Wizard</td>
<td>Filter certain traffic, such as HTTP traffic, to certain networks or devices. Restrict access to servers, networks, or application data from certain networks or devices.</td>
</tr>
<tr>
<td>QoS</td>
<td>Display submenu options to enable and disable quality of service (QoS) and to configure or modify these parameters:</td>
</tr>
<tr>
<td></td>
<td>- Trust settings</td>
</tr>
<tr>
<td></td>
<td>- Queues</td>
</tr>
<tr>
<td></td>
<td>- Maps</td>
</tr>
<tr>
<td></td>
<td>- Classes (guide mode available)</td>
</tr>
<tr>
<td></td>
<td>- Policies (guide mode available)</td>
</tr>
<tr>
<td>AVVID Wizards</td>
<td>Voice Wizard—Configure a port to send or receive voice traffic.</td>
</tr>
<tr>
<td></td>
<td>Video Wizard—Optimize multiple video servers for sending video traffic.</td>
</tr>
<tr>
<td></td>
<td>Data Wizard—Provide a higher priority to specific applications.</td>
</tr>
<tr>
<td>LRE Profiles</td>
<td>Set profiles for a switch.</td>
</tr>
<tr>
<td>LRE Rate Selection</td>
<td>Set rate selection parameters for automatically assigning profiles, setting signal-to-noise (SNR) margins, locking profiles, and qualifying links.</td>
</tr>
<tr>
<td>Port</td>
<td>Display and configure port parameters on a switch.</td>
</tr>
<tr>
<td>Port Search</td>
<td>Search for a port through its description.</td>
</tr>
<tr>
<td>Port Security</td>
<td>Enable port security on a port.</td>
</tr>
<tr>
<td>EtherChannels</td>
<td>Group ports into logical units for high-speed links between switches.</td>
</tr>
<tr>
<td>SPAN</td>
<td>Enable Switch Port Analyzer (SPAN) port monitoring.</td>
</tr>
<tr>
<td>Protected Port</td>
<td>Configure a port to prevent it from receiving bridged traffic from another port on the same switch.</td>
</tr>
<tr>
<td>Flooding Control</td>
<td>Block the normal flooding of unicast and multicast packets, and enable the switch to block packet storms.</td>
</tr>
<tr>
<td>VLAN</td>
<td>Display VLAN membership, assign ports to VLANs, and configure 802.1Q trunks. Display and configure the VLAN Trunking Protocol (VTP) for interswitch VLAN membership.</td>
</tr>
<tr>
<td>Management VLAN</td>
<td>Change the management VLAN on the switch.</td>
</tr>
<tr>
<td>VMPS</td>
<td>Configure the VLAN Membership Policy Server (VMPS).</td>
</tr>
</tbody>
</table>
Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice VLAN(^2)</td>
<td>Configure a port to use a voice VLAN for voice traffic, separating it from the VLANs for data traffic.</td>
</tr>
</tbody>
</table>

Reports

<table>
<thead>
<tr>
<th>Reports</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory</td>
<td>Display the device type, software version, IP address, and other information about a switch.</td>
</tr>
<tr>
<td>Port Statistics</td>
<td>Display port statistics.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Link Graphs</td>
<td>Display a graph showing the bandwidth being used for the selected link.</td>
</tr>
<tr>
<td>Link Reports</td>
<td>Display the link report for two connected devices. If one device is an unknown device or a candidate, only the cluster-member side of the link displays.</td>
</tr>
<tr>
<td>ACL Reports</td>
<td>Display a report about ACL statistics.</td>
</tr>
<tr>
<td>Multicast</td>
<td>Display reports about multicast or IGMP statistics.</td>
</tr>
<tr>
<td>Resource Monitor</td>
<td>Display masks for ACL and QoS policy maps.</td>
</tr>
<tr>
<td>System Messages</td>
<td>Display the most recent system messages (IOS messages and switch-specific messages) sent by the switch software.</td>
</tr>
</tbody>
</table>

This option is available on the Catalyst 2950 or Catalyst 3550 switches. It is not available from the Catalyst 2900 XL and Catalyst 3500 XL switches. You can display the system messages of the Catalyst 2900 XL and Catalyst 3500 XL switches when they are in a cluster where the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later or a Catalyst 3550 switch running Release 12.1(8)EA1 or later. For more information about system messages, refer to the switch system message guide.

Tools

<table>
<thead>
<tr>
<th>Tools</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping and Trace</td>
<td>Perform a ping, Layer 2 traceroute, or Layer 3 traceroute operation on or to a specific address.</td>
</tr>
</tbody>
</table>

Note If you perform a Layer 3 traceroute operation, information about Layer 2 devices in the path are not displayed.

View

<table>
<thead>
<tr>
<th>View</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td>Update the views with the latest status.</td>
</tr>
<tr>
<td>Front Panel</td>
<td>Display the Front Panel view.</td>
</tr>
<tr>
<td>Arrange Front Panel(^1) (^5)ppp</td>
<td>Rearrange the order in which switches appear in the Front Panel view.</td>
</tr>
<tr>
<td>Topology(^5)</td>
<td>Display the Topology view.</td>
</tr>
<tr>
<td>Topology Options(^5)</td>
<td>Select the information to be displayed in the Topology view.</td>
</tr>
<tr>
<td>Automatic Topology Layout(^5)</td>
<td>Request CMS to rearrange the topology layout.</td>
</tr>
<tr>
<td>Save Topology Layout(^1) (^5)</td>
<td>Save the presentation of the cluster icons that you arranged in the Topology view to Flash memory.</td>
</tr>
</tbody>
</table>

Window

<table>
<thead>
<tr>
<th>Window</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td>List the open windows in your CMS session.</td>
</tr>
</tbody>
</table>

Help

<table>
<thead>
<tr>
<th>Help</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Obtain an overview of the CMS interface.</td>
</tr>
<tr>
<td>What’s New</td>
<td>Obtain a description of the new CMS features.</td>
</tr>
</tbody>
</table>
Table 3-11 Menu Bar (continued)

<table>
<thead>
<tr>
<th>Menu-Bar Options</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help For Active Window</td>
<td>Display the help for the active open window. This is the same as clicking Help from the active window.</td>
</tr>
<tr>
<td>Contents</td>
<td>List all of the available online help topics.</td>
</tr>
<tr>
<td>Legend</td>
<td>Display the legend that describes the icons, labels, and links.</td>
</tr>
<tr>
<td>About</td>
<td>Display the CMS version number.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the “Access Modes in CMS” section on page 3-31.
2. Some options from this menu option are not available in read-only mode.
3. Available only from a Device Manager session on a cluster member.
4. Available only from a Device Manager session on a command-capable switch that is not a cluster member.
5. Available only from a cluster management session.

ToolBar

The toolbar buttons display commonly-used switch and cluster configuration options and information windows such as legends and online help. Hover the cursor over an icon to display the feature. Table 3-12 describes the toolbar options, from left to right on the toolbar.

Table 3-12 Toolbar Buttons

<table>
<thead>
<tr>
<th>Toolbar Option</th>
<th>Keyboard Shortcut</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td>Ctrl-P</td>
<td>Print a CMS window or help file.</td>
</tr>
<tr>
<td>Preferences¹</td>
<td>Ctrl-R</td>
<td>Set CMS display properties, such as polling intervals, the views to open at CMS startup, and the color of administratively shutdown ports.</td>
</tr>
<tr>
<td>Save Configuration²</td>
<td>Ctrl-S</td>
<td>Save the configuration for the cluster or switch to Flash memory.</td>
</tr>
<tr>
<td>Software Upgrade²</td>
<td>Ctrl-U</td>
<td>Upgrade the software for the cluster or a switch.</td>
</tr>
<tr>
<td>Port Settings³</td>
<td>–</td>
<td>Display and configure port parameters on a switch.</td>
</tr>
<tr>
<td>VLAN¹</td>
<td>–</td>
<td>Display VLAN membership, assign ports to VLANs, and configure 802.1Q trunks.</td>
</tr>
<tr>
<td>Inventory</td>
<td>–</td>
<td>Display the device type, the software version, the IP address, and other information about a switch.</td>
</tr>
<tr>
<td>Refresh</td>
<td>–</td>
<td>Update the views with the latest status.</td>
</tr>
<tr>
<td>Front Panel</td>
<td>–</td>
<td>Display the Front Panel view.</td>
</tr>
<tr>
<td>Topology³</td>
<td>–</td>
<td>Display the Topology view.</td>
</tr>
<tr>
<td>Topology Options³</td>
<td>–</td>
<td>Select the information to be displayed in the Topology view.</td>
</tr>
<tr>
<td>Save Topology Layout³</td>
<td>–</td>
<td>Save the presentation of the cluster icons that you arranged in the Topology view to Flash memory.</td>
</tr>
<tr>
<td>Legend</td>
<td>–</td>
<td>Display the legend that describes the icons, labels, and links.</td>
</tr>
<tr>
<td>Help For Active Window</td>
<td>F1 key</td>
<td>Display the help for the active open window. This is the same as clicking Help from the active window.</td>
</tr>
</tbody>
</table>
Front Panel View Popup Menus

These popup menus are available in the Front Panel view.

Device Popup Menu

You can display all switch and cluster configuration windows from the menu bar, or you can display commonly used configuration windows from the device popup menu (see Table 3-13). To display the device popup menu, click the switch icon from the cluster tree or the front-panel image itself, and right-click.

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Manager(^1)</td>
<td>Launch Device Manager for the switch.</td>
</tr>
<tr>
<td>Host Name(^2)</td>
<td>Change the name of the switch.</td>
</tr>
<tr>
<td>Delete Cluster(^3,,,4)</td>
<td>Delete a cluster.</td>
</tr>
<tr>
<td>Remove from Cluster(^3,,,4)</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device and port on either end of the link and the state of the link.</td>
</tr>
</tbody>
</table>

1. Available from a cluster member switch but not from the command switch.
2. Not available in read-only mode. For more information about the read-only mode, see the “Access Modes in CMS” section on page 3-31.
3. Available only from the command switch.
4. Available only from a cluster-management session.

Port Popup Menu

You can display all port configuration windows from the Port menu on the menu bar, or you can display commonly used port configuration windows from the port popup menu (see Table 3-14). To display the port popup menu, click a specific port image, and right-click.

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Settings(^1)</td>
<td>Display and configure port settings.</td>
</tr>
<tr>
<td>VLAN(^1)</td>
<td>Define the VLAN mode for a port or ports and add ports to VLANs. Not available for the Catalyst 1900 and Catalyst 2820 switches.</td>
</tr>
<tr>
<td>Port Security(^1,,,2)</td>
<td>Enable port security on a port.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the “Access Modes in CMS” section on page 3-31.
2. Some options from this menu option are not available in read-only mode.
3. Available only from a cluster-management session.
Topology View Popup Menus

These popup menus are available in the Topology view.

Link Popup Menu

You can display reports and graphs for a specific link displayed in the Topology view (see Table 3-15). To display the link popup menu, click the link icon, and right-click.

Table 3-15 Link Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Report</td>
<td>Display the link report for two connected devices. If one device is an unknown device or a candidate, only the cluster member side of the link displays.</td>
</tr>
<tr>
<td>Link Graph</td>
<td>Display a graph showing the current bandwidth used by the selected link. You can change the graph polling interval by selecting CMS > Preferences.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device and port on either end of the link and the state of the link.</td>
</tr>
</tbody>
</table>

The Link Report and Link Graph options are not available if at both ends of the link are

- Candidate switches
- Catalyst 1900 and Catalyst 2820 switches
- Devices that are not eligible to join the cluster

If multiple links are configured between two devices, when you click the link icon and right-click, the Multilink Content window appears (see Figure 3-12). Click the link icon in this window, and right-click to display the link popup menu specific for that link.
Device Popup Menus

Specific devices in the Topology view display a specific popup menu:

- Cluster (see Table 3-16)
- Command switch (see Table 3-17)
- Member or standby command switch (see Table 3-18)
- Candidate switch with an IP address (see Table 3-19)
- Candidate switch without an IP address (see Table 3-20)
- Neighboring devices (see Table 3-21)

The Device Manager option in these popup menus is available in read-only mode on Catalyst 2900 XL and Catalyst 3500 XL switches running Release 12.0(5)WC2 and later. It is also available on Catalyst 2950 switches running Release 12.1(6)EA2 and later and on Catalyst 3550 switch running Release 12.1(8)EA1 or later. It is not available on the Catalyst 1900 and Catalyst 2820 switches.

To display a device popup menu, click an icon, and right-click.

Table 3-16 Device Popup Menu of a Cluster Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand cluster</td>
<td>View a cluster-specific topology view.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>
Table 3-17 Device Popup Menu of a Command-Switch Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collapse cluster</td>
<td>View the neighborhood outside a specific cluster.</td>
</tr>
<tr>
<td>Host Name(^1)</td>
<td>Change the host name of a switch.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the "Access Modes in CMS" section on page 3-31.

Table 3-18 Device Popup Menu of a Member or Standby Command-Switch Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove from Cluster(^1)</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Host Name(^1)</td>
<td>Change the host name of a switch.</td>
</tr>
<tr>
<td>Device Manager(^2)</td>
<td>Launch Device Manager for a switch.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Available only from a cluster-management session.
2. Available from a cluster member switch but not from the command switch.

Table 3-19 Device Popup Menu of a Candidate-Switch Icon (When the Candidate Switch Has an IP Address)

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Cluster(^1)</td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Device Manager(^2)</td>
<td>Launch Device Manager for a switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the "Access Modes in CMS" section on page 3-31.

2. Available from a cluster member switch but not from the command switch.

Table 3-20 Device Popup Menu of a Candidate-Switch Icon (When the Candidate Switch Does Not Have an IP Address)

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Cluster(^1)</td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Not available in read-only mode. For more information about the read-only and read-write access modes, see the "Access Modes in CMS" section on page 3-31.
Interaction Modes

You can change the interaction mode of CMS to either guide or expert mode. Guide mode steps you through each feature option and provides information about the parameter. Expert mode displays a configuration window in which you configure the feature options.

Guide Mode

Guide mode is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-31.

Guide mode is for users who want a step-by-step approach for completing a specific configuration task. This mode is not available for all features. A menu-bar option that has a person icon means that guide mode is available for that option.

When you click Guide Mode and then select a menu-bar option that supports guide mode, CMS displays a specific parameter of the feature with information about the parameter field. To configure the feature, you provide the information that CMS requests in each step until you click Finish in the last step. Clicking Cancel at any time closes and ends the configuration task without applying any changes.

If Expert Mode is selected and you want to use guide mode, you must click Guide Mode before selecting an option from the menu bar, tool bar, or popup menu. If you change the interaction mode after selecting a configuration option, the mode change does not take effect until you select another configuration option.

Expert Mode

Expert mode is for users who prefer to display all the parameter fields of a feature in a single CMS window. Information about the parameter fields is available by clicking the Help button.

Table 3-21 Device Popup Menu of a Neighboring-Device Icon

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Manager(^1)</td>
<td>Access the web management interface of the device.</td>
</tr>
<tr>
<td></td>
<td>Note This option is available on Cisco access points, but not on Cisco IP phones, hubs, routers and on unknown devices such as some Cisco devices and third-party devices.</td>
</tr>
<tr>
<td>Disqualification Code</td>
<td>Display the reason why the device could not join the cluster.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

1. Available from a cluster member switch but not from the command switch.
Wizards

Note Wizards are not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-31.

Wizards simplify some configuration tasks on the switch. Similar to the guide mode, wizards provide a step-by-step approach for completing a specific configuration task. Unlike guide mode, a wizard does not prompt you to provide information for all of the feature options. Instead, it prompts you to provide minimal information and then uses the default settings of the remaining options to set up default configurations.

Wizards are not available for all features. A menu-bar option that has wizard means that selecting that option launches the wizard for that feature.

Tool Tips

CMS displays a popup message when you move your mouse over these devices:
- A yellow device icon in the cluster tree or in Topology view—A popup displays a fault message, such as that the RPS is faulty or that the switch is unavailable because you are in read-only mode.
- A red device icon in the cluster tree or in Topology view—A popup displays a message that the switch is down.

If you move your mouse over a table column heading, a popup displays the full heading.

Online Help

CMS provides comprehensive online help to assist you in understanding and performing configuration and monitoring tasks from the CMS windows (see Figure 3-13Figure 3-14).
- Feature help, available from the menu bar by selecting Help > Contents, provides background information and concepts on the features.
- Dialog-specific help, available from Help on the CMS windows, provides procedures for performing tasks.
- Index of help topics.
- Glossary of terms used in the online help.

You can send us feedback about the information provided in the online help. Click Feedback to display an online form. After completing the form, click Submit to send your comments to Cisco. We appreciate and value your comments.
Chapter 3 Getting Started with CMS

Figure 3-13 Help Contents and Index

Glossary of terms used in the online help.
Legend of icons and color codes.
Feature help, such as concepts.
Information about the CMS interface.

Enter the first letters of the topic, and click **Find** to search the index.
Click **Feedback** to send us your comments about the online help.
Click **Back** and **Forward** to redisplay previously displayed pages.

Figure 3-14 Help Contents and Index

Supplemental help information.
Glossary of terms used in the online help.
Legend of icons and color codes.
Feature help, such as concepts.
Information about the CMS interface.

Enter the first letters of the topic, and click **Find** to search the index.
Click **Feedback** to send us your comments about the online help.
Click **Back** and **Forward** to redisplay previously displayed pages.
CMS Window Components

CMS windows consistently present configuration information. Figure 3-15 shows the components of a typical CMS window.

Figure 3-15 CMS Window Components

Host Name List

To display or change the configuration of a cluster member, you need to select the specific switch from the Host Name drop-down list. The list appears in the configuration window of each feature and lists only the cluster members that support that feature. For example, the Host Name list on the VLAN window does not include Catalyst 1900 and Catalyst 2820 switches even though they are part of the cluster. Similarly, the Host Name list on the LRE Profiles window only lists the LRE switches in the cluster.
Tabs, Lists, and Tables

Some CMS windows have tabs that present different sets of information. Tabs are arranged like folder headings across the top of the window. Click the tab to display its information.

Listed information can often be changed by selecting an item from a list. To change the information, select one or more items, and click Modify. Changing multiple items is limited to those items that apply to at least one of the selections.

Some CMS windows present information in a table format. You can edit the information in these tables.

Note
You can resize the width of the columns to display the column headings, or you can hover your cursor over the heading to display a popup description of the column.

Filter Editor

When you click Filter in a CMS window that contains a table, the Filter Editor window appears. The column names in the table become the field names in this window. You can enter selection criteria in these field names to filter out table rows that you do not want displayed. For procedures on using the Filter Editor, refer to the online help.

Icons Used in Windows

Some window have icons for sorting information in tables, for showing which cells in a table are editable, and for displaying further information from Cisco.com (see Figure 3-16).

Figure 3-16 Window Icons

- Sorted in Ascending Order
- Sorted in Descending Order
- Editable Table Cell
- Web Link
Buttons

These are the most common buttons that you use to change the information in a CMS window:

- **OK**—Save any changes and close the window. If you made no changes, the window closes. If CMS detects errors in your entry, the window remains open. For more information about error detection, see the “Error Checking” section on page 3-32.
- **Apply**—Save any changes made in the window and leave the window open. If you made no changes, the Apply button is disabled.
- **Refresh**—Update the CMS window with the latest status of the device. Unsaved changes are lost.
- **Cancel**—Do not save any changes made in the window and close the window.
- **Help**—Display procedures on performing tasks from the window.
- **Modify**—Display the secondary window for changing information on the selected item or items. You usually select an item from a list or table and click Modify.

Accessing CMS

This section assumes the following:

- You know the IP address and password of the command switch or a specific switch. This information is either:
 - Assigned to the switch by following the setup program, as described in the release notes.
 - Changed on the switch by following the information in the “Assigning Switch Information” section on page 4-2 and “Preventing Unauthorized Access to Your Switch” section on page 7-1. Considerations for assigning IP addresses and passwords to a command switch and cluster members are described in the “IP Addresses” section on page 6-15 and the “Passwords” section on page 6-16.
- You know your access privilege level to the switch.
- You have referred to the release notes for system requirements and have followed the procedures for installing the required Java plug-ins and configuring your browser.

⚠️ **Caution**

Copies of the CMS pages you display are saved in your browser memory cache until you exit the browser session. A password is not required to redisplay these pages, including the Cisco Systems Access page. You can access the CLI by clicking Monitor the router - HTML access to the command line interface from a cached copy of the Cisco Systems Access page. To prevent unauthorized access to CMS and the CLI, exit your browser to end the browser session.

⚠️ **Note**

If you have configured the Terminal Access Controller Access Control System Plus (TACACS+) or Remote Authentication Dial-In User Service (RADIUS) feature on the switch, you can still access the switch through CMS. For information about how inconsistent authentication configurations in switch clusters can affect access through CMS, see the “TACACS+ and RADIUS” section on page 6-17.
To access CMS, follow these steps:

Step 1 Enter the switch IP address and your privilege level in the browser **Location** field (Netscape Communicator) or Address field (Microsoft Internet Explorer). For example:

http://10.1.126.45:184/level/14/

where 10.1.126.45 is the switch IP address, 184 is the HTTP port, and level/14 is the privilege level. You do not need to enter the HTTP port if the switch is using HTTP port 80 (the default) or enter the privilege level if you have read-write access to the switch (privilege level is 15). For information about the HTTP port, see the “HTTP Access to CMS” section on page 3-32. For information about privilege levels, see the “Access Modes in CMS” section on page 3-31.

Step 2 When prompted for a username and password, enter only the switch enable password. CMS prompts you a second time for a username and password. Enter only the enable password again.

If you configure a local username and password, make sure you enable it by using the **ip http authentication** global configuration command. Enter your username and password when prompted.

Step 3 Click **Web Console**.

If you access CMS from a standalone or member switch, Device Manager appears. If you access CMS from a command switch, you can display the Front Panel and Topology views.

Access Modes in CMS

CMS provides two levels of access to the configuration options: read-write access and read-only access. Privilege levels 0 to 15 are supported.

- Privilege level 15 provides you with read-write access to CMS.
- Privilege levels 1 to 14 provide you with read-only access to CMS. Any options in the CMS windows, menu bar, toolbar, and popup menus that change the switch or cluster configuration are not shown in read-only mode.
- Privilege level 0 denies access to CMS.

If you do not include a privilege level when you access CMS, the switch verifies if you have privilege-level 15. If you do not, you are denied access to CMS. If you do have privilege-level 15, you are granted read-write access. Therefore, you do not need to include the privilege level if it is 15.

Entering zero denies access to CMS. For more information about privilege levels, see the “Preventing Unauthorized Access to Your Switch” section on page 7-1.

Note

- If your cluster has these member switches running earlier software releases and if you have read-only access to these member switches, some configuration windows for those switches display incomplete information:
 - Catalyst 2900 XL or Catalyst 3500 XL member switches running Release 12.0(5)WC2 or earlier
 - Catalyst 2950 member switches running Release 12.0(5)WC2 or earlier
 - Catalyst 3550 member switches running Release 12.1(6)EA1 or earlier

For more information about this limitation, refer to the release notes.
Verify Your Changes

CMS provides notification cues to help you track and confirm the changes you make.

Change Notification

A green border around a field or table cell means that you made an unsaved change to the field or table cell. Previous information in that field or table cell is displayed in the window status bar. When you save the changes or if you cancel the change, the green border disappears.

Error Checking

A red border around a field means that you entered invalid data in the field. An error message also displays in the window status bar. When you enter valid data in the field, a green border replaces the red border until you either save or cancel the change.

If there is an error in communicating with the switch or if you make an error while performing an action, a message notifies you about the error.
Saving Your Configuration

Note
The Save Configuration option is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-31.

Tip
As you make cluster configuration changes (except for changes to the Topology view and in the Preferences window), make sure that you periodically save the configuration from the command switch. The configuration is saved on the command and member switches.

The front-panel images and CMS windows always display the running configuration of the switch. When you make a configuration change to a switch or switch cluster, the change becomes part of the running configuration. The change does not automatically become part of the configuration file in Flash memory, which is the startup configuration used each time the switch restarts. If you do not save your changes to Flash memory, they are lost when the switch restarts.

Note
Catalyst 1900 and Catalyst 2820 switches automatically save configuration changes to Flash memory as they occur.

To save all configuration changes, you must select Administration > Save Configuration. For CMS procedures for saving your switch configuration, refer to the online help.

Restoring Your Configuration

After you save a switch configuration, you can restore the configuration to one or more switches for these reasons:

- You made an incorrect change to the current running configuration and want to reload a saved configuration.
- You need to reload a switch after a switch failure or power failure.
- You want to copy the configuration of a switch to other switches.

For CMS procedures for restoring a switch configuration, refer to the online help.

CMS Preferences

When you exit from CMS, your CMS preferences are saved to your PC in a file called .cms_properties. You can copy this file to other PCs. The file is stored in a default configuration directory, such as C:\Documents and Settings\username. If you cannot locate the CMS preferences file, select Start > Search > For Files or Folders..., and search for .cms_properties.

Note
In previous CMS versions, the preferences were saved in Flash memory when you exited from CMS.
Using Different Versions of CMS

When managing switch clusters through CMS, remember that clusters can have a mix of switch models using different IOS releases and that CMS in earlier IOS releases and on different switch platforms might look and function differently from CMS in this IOS release.

When you select **Device > Device Manager** for a cluster member, a new browser session is launched, and the CMS version for that switch is displayed.

Here are examples of how CMS can differ between IOS releases and switch platforms:

- On Catalyst switches running Release 12.0(5)WC2 or earlier or Release 12.1(6)EA1 or earlier, the CMS versions in those software releases might appear similar but are not the same as this release. For example, the Topology view in this release is not the same as the Topology view or Cluster View in those earlier software releases.

- CMS on the Catalyst 1900 and Catalyst 2820 switches is referred to as *Switch Manager*. Cluster management options are not available on these switches. This is the earliest version of CMS.

Refer to the documentation specific to the switch and its IOS release for descriptions of the CMS version you are using.

Where to Go Next

Before configuring the switch, refer to these places for start-up information:

- Switch release notes on Cisco.com:
 - CMS software requirements
 - Procedures for running the setup program
 - Procedures for browser configuration
 - Procedures for accessing CMS

- Chapter 4, “Assigning the Switch IP Address and Default Gateway”
- Chapter 7, “Administering the Switch”

The rest of this guide provides information about and CLI procedures for the software features supported in this release. For CMS procedures and window descriptions, refer to the online help.
Assigning the Switch IP Address and Default Gateway

This chapter describes how to create the initial switch configuration (for example, assign the switch IP address and default gateway information) by using a variety of automatic and manual methods.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding the Boot Process, page 4-1
- Assigning Switch Information, page 4-2
- Checking and Saving the Running Configuration, page 4-10

Understanding the Boot Process

Before you can assign switch information (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth), you need to install and power on the switch as described in the hardware installation guide that shipped with your switch.

The normal boot process involves the operation of the boot loader software, which performs these activities:

- Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.
- Performs power-on self-test (POST) for the CPU subsystem. It tests the CPU DRAM and the portion of the Flash device that makes up the Flash file system.
- Initializes the Flash file system on the system board.
- Loads a default operating system software image into memory and boots the switch.

The boot loader provides access to the Flash file system before the operating system is loaded. Normally, the boot loader is used only to load, uncompress, and launch the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.
The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door mechanism provides enough access to the system so that if it is necessary, you can format the Flash file system, reinstall the operating system software image by using the XMODEM Protocol, recover from a lost or forgotten password, and finally restart the operating system. For more information, see the “Recovering from Corrupted Software” section on page 28-6 and the “Recovering from a Lost or Forgotten Password” section on page 28-6.

Before you can assign switch information, make sure you have connected a PC or terminal to the console port, and configured the PC or terminal-emulation software baud rate and character format to match those of the switch console port. For more information, refer to the hardware installation guide that shipped with your switch.

Assigning Switch Information

You can assign IP information through the switch setup program, through a Dynamic Host Configuration Protocol (DHCP) server, or manually.

Use the switch setup program if you are a new user and want to be prompted for specific IP information. With this program, you can also configure a host name and an enable secret password. It gives you the option of assigning a Telnet password (to provide security during remote management) and configuring your switch as a command or member switch of a cluster or as a standalone switch. For more information about the setup program, refer to the release notes on Cisco.com.

Use a DHCP server for centralized control and automatic assignment of IP information once the server is configured.

Note

If you are using DHCP, do not respond to any of the questions in the setup program until the switch receives the dynamically-assigned IP address and reads the configuration file.

Use the manual method of configuration if you are an experienced user familiar with the switch configuration steps; otherwise, use the setup program described earlier.

This section contains this configuration information:

- Default Switch Information, page 4-3
- Understanding DHCP-Based Autoconfiguration, page 4-3
- Manually Assigning IP Information, page 4-10
Default Switch Information

Table 4-1 shows the default switch information.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet mask</td>
<td>No IP address or subnet mask are defined.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>No default gateway is defined.</td>
</tr>
<tr>
<td>Enable secret password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Host name</td>
<td>The factory-assigned default host name is Switch.</td>
</tr>
<tr>
<td>Telnet password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Cluster command switch functionality</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Cluster name</td>
<td>No cluster name is defined.</td>
</tr>
</tbody>
</table>

Understanding DHCP-Based Autoconfiguration

The DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and a mechanism for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices.

During DHCP-based autoconfiguration, your switch (DHCP client) is automatically configured at startup with IP address information and a configuration file.

With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your switch. However, you need to configure the DHCP server for various lease options associated with IP addresses. If you are using DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.

The DHCP server can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your switch.
DHCP Client Request Process

When you boot your switch, the switch automatically requests configuration information from a DHCP server only if a configuration file is not present on the switch.

DHCP autoconfiguration does not occur under these conditions:

- When a configuration file is present and the `service config` global configuration command is disabled on the switch.
- When a configuration file is present and the `service config` global configuration command is enabled on the switch. In this case, the switch broadcasts TFTP requests for the configuration file.

Figure 4-1 shows the sequence of messages that are exchanged between the DHCP client and the DHCP server.

![DHCP Client and Server Message Exchange](image)

The client, Switch A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.

In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the switch receives depends on how you configure the DHCP server. For more information, see the “Configuring the DHCP Server” section on page 4-5.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address. If the switch accepts replies from a BOOTP server and configures itself, the switch broadcasts, instead of unicasts, TFTP requests to obtain the switch configuration file.
Configuring the DHCP Server

You should configure the DHCP server with reserved leases that are bound to each switch by the switch hardware address.

If you want the switch to receive IP address information, you must configure the DHCP server with these lease options:

- IP address of the client (required)
- Subnet mask of the client (required)
- DNS server IP address (optional)
- Router IP address (default gateway address to be used by the switch) (required)

If you want the switch to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:

- TFTP server name (required)
- Boot filename (the name of the configuration file that the client needs) (recommended)
- Host name (optional)

Depending on the settings of the DHCP server, the switch can receive IP address information, the configuration file, or both.

If you do not configure the DHCP server with the lease options described earlier, it replies to client requests with only those parameters that are configured. If the IP address and subnet mask are not in the reply, the switch is not configured. If the router IP address or TFTP server name are not found, the switch might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

The DHCP server can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay. For more information, see the “Configuring the Relay Device” section on page 4-6. If your DHCP server is a Cisco device, refer to the “IP Addressing and Services” section in the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1.

Configuring the TFTP Server

Based on the DHCP server configuration, the switch attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the switch with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the switch attempts to download the specified configuration file from the specified TFTP server.

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the switch attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the switch’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).
Assigning the Switch IP Address and Default Gateway

Chapter 4

Assigning Switch Information

For the switch to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:

- The configuration file named in the DHCP reply (the actual switch configuration file).
- The network-config or the cisconet.cfg file (known as the default configuration files).
- The router-config or the ciscortr.cfg file (These files contain commands common to all switches. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the switch, or if it is to be accessed by the switch through the broadcast address (which occurs if the DHCP server response does not contain all the required information described earlier), a relay must be configured to forward the TFTP packets to the TFTP server. For more information, see the “Configuring the Relay Device” section on page 4-6. The preferred solution is to configure the DHCP server with all the required information.

Configuring the DNS

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP address map on the DNS server. The TFTP server contains the configuration files for the switch.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database.

The DNS server can be on the same or on a different LAN as the switch. If it is on a different LAN, the switch must be able to access it through a router.

Configuring the Relay Device

You must configure a relay device when a switch sends broadcast packets that need to be responded to by a host on a different LAN. Examples of broadcast packets that the switch might send are DHCP, DNS, and in some cases, TFTP packets. You must configure this relay device to forward received broadcast packets on an interface to the destination host.

If the relay device is a Cisco router, enable IP routing (ip routing global configuration command), and configure helper addresses by using the ip helper-address interface configuration command.

For example, in Figure 4-2, configure the router interfaces as follows:

On interface 10.0.0.2:

```
router(config-if)# ip helper-address 20.0.0.2
router(config-if)# ip helper-address 20.0.0.3
router(config-if)# ip helper-address 20.0.0.4
```

On interface 20.0.0.1:

```
router(config-if)# ip helper-address 10.0.0.1
```
Obtaining Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the switch obtains its configuration information in these ways:

- The IP address and the configuration filename is reserved for the switch and provided in the DHCP reply (one-file read method).
 - The switch receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, completes its boot-up process.

- The IP address and the configuration filename is reserved for the switch, but the TFTP server address is not provided in the DHCP reply (one-file read method).
 - The switch receives its IP address, subnet mask, and the configuration filename from the DHCP server. The switch sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, completes its boot-up process.

- Only the IP address is reserved for the switch and provided in the DHCP reply. The configuration filename is not provided (two-file read method).
 - The switch receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the network-confg or cisconet.cfg default configuration file. (If the network-confg file cannot be read, the switch reads the cisconet.cfg file.)

 The default configuration file contains the host names-to-IP-address mapping for the switch. The switch fills its host table with the information in the file and obtains its host name. If the host name is not found in the file, the switch uses the host name in the DHCP reply. If the host name is not specified in the DHCP reply, the switch uses the default Switch as its host name.

 After obtaining its host name from the default configuration file or the DHCP reply, the switch reads the configuration file that has the same name as its host name (hostname-confg or hostname.cfg, depending on whether network-confg or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.

 If the switch cannot read the network-confg, cisconet.cfg, or the hostname file, it reads the router-confg file. If the switch cannot read the router-confg file, it reads the ciscorrt.cfg file.
The switch broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.

Example Configuration

Figure 4-3 shows a sample network for retrieving IP information by using DHCP-based autoconfiguration.

Table 4-2 shows the configuration of the reserved leases on the DHCP server.

<table>
<thead>
<tr>
<th>Table 4-2</th>
<th>DHCP Server Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch-1</td>
<td>Switch-2</td>
</tr>
<tr>
<td>Binding key (hardware address)</td>
<td>00e0.9f1e.2001</td>
</tr>
<tr>
<td>IP address</td>
<td>10.0.0.21</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Router address</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>DNS server address</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>TFTP server name</td>
<td>maritsu or 10.0.0.3</td>
</tr>
<tr>
<td>Boot filename (configuration file) (optional)</td>
<td>switch1-config</td>
</tr>
<tr>
<td>Host name (optional)</td>
<td>switch1</td>
</tr>
</tbody>
</table>
DNS Server Configuration
The DNS server maps the TFTP server name maritsu to IP address 10.0.0.3.

TFTP Server Configuration (on UNIX)
The TFTP server base directory is set to /tftpserver/work. This directory contains the network-config file used in the two-file read method. This file contains the host name to be assigned to the switch based on its IP address. The base directory also contains a configuration file for each switch (switch1-config, switch2-config, and so forth) as shown in this display:

```
prompt> cd /tftpserver/work/
prompt> ls
network-config
switch1-config
switch2-config
switch3-config
switch4-config
prompt> cat network-config
ip host switch1 10.0.0.21
ip host switch2 10.0.0.22
ip host switch3 10.0.0.23
ip host switch4 10.0.0.24
```

DHCP Client Configuration
No configuration file is present on Switch 1 through Switch 4.

Configuration Explanation
In Figure 4-3, Switch 1 reads its configuration file as follows:

- It obtains its IP address 10.0.0.21 from the DHCP server.
- If no configuration filename is given in the DHCP server reply, Switch 1 reads the network-config file from the base directory of the TFTP server.
- It adds the contents of the network-config file to its host table.
- It reads its host table by indexing its IP address 10.0.0.21 to its host name (switch1).
- It reads the configuration file that corresponds to its host name; for example, it reads switch1-config from the TFTP server.

Switches 2 through 4 retrieve their configuration files and IP addresses in the same way.
Manually Assigning IP Information

Beginning in privileged EXEC mode, follow these steps to manually assign IP information to multiple switched virtual interfaces (SVIs) or ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface vlan vlan-id</td>
<td>Enter interface configuration mode, and enter the VLAN to which the IP information is assigned. The range is 1 to 4094 when the enhanced software image is installed and 1 to 1001 when the standard software image is installed; do not enter leading zeros.</td>
</tr>
<tr>
<td>3</td>
<td>ip address ip-address subnet-mask</td>
<td>Enter the IP address and subnet mask.</td>
</tr>
<tr>
<td>4</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td>ip default-gateway ip-address</td>
<td>Enter the IP address of the next-hop router interface that is directly connected to the switch where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the switch. Once the default gateway is configured, the switch has connectivity to the remote networks with which a host needs to communicate. Note When your switch is configured to route with IP, it does not need to have a default gateway set.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch IP address, use the **no ip address** interface configuration command. If you are removing the address through a Telnet session, your connection to the switch will be lost. To remove the default gateway address, use the **no ip default-gateway** global configuration command.

For information on setting the switch system name, protecting access to privileged EXEC commands, and setting time and calendar services, see Chapter 7, “Administering the Switch.”

Checking and Saving the Running Configuration

You can check the configuration settings you entered or changes you made by entering this privileged EXEC command:

```
Switch# show running-config
```

```
Building configuration...

Current configuration : 2081 bytes
!
version 12.1
no service pad
service timestamps debug uptime
service timestamps log datetime
no service password-encryption
service sequence-numbers
```
hostname Switch
!
enable secret 5 1ej9.$DMUvAUAnZ0AmvmgqBEzIXEO
!
ip subnet-zero
!
vlan 3020
c luster enable Test 0
c luster member 1 mac-address 0030.9439.0900
c luster member 2 mac-address 0001.425b.4d80
!
spanning-tree extend system-id
!
!
interface Port-channel1
no ip address
!
interface FastEthernet0/1
switchport mode access
switchport voice vlan 400
switchport priority extend cos 5
no ip address
spanning-tree portfast trunk
!
interface FastEthernet0/2
switchport mode access
no ip address
!
interface FastEthernet0/3
switchport mode access
switchport voice vlan 350
no ip address
spanning-tree portfast trunk
!
interface FastEthernet0/4
switchport mode access
no ip address
!
interface FastEthernet0/5
switchport mode access
switchport voice vlan 4046
no ip address
shutdown
spanning-tree portfast trunk
!
interface FastEthernet0/6
switchport mode access
switchport voice vlan 4011
no ip address
shutdown
spanning-tree portfast trunk
!
interface GigabitEthernet0/1
no ip address
shutdown
!
interface GigabitEthernet0/2
To store the configuration or changes you have made to your startup configuration in Flash memory, enter this privileged EXEC command:

```
Switch# copy running-config startup-config
```

This command saves the configuration settings that you made. If you fail to do this, your configuration will be lost the next time you reload the system. To display information stored in the NVRAM section of Flash memory, use the `show startup-config` or `more startup-config` privileged EXEC command.
Configuring IE2100 CNS Agents

This chapter describes how to configure the Intelligence Engine 2100 (IE2100) Series Cisco Networking Services (CNS) embedded agents on your switch. To use the feature described in this chapter, you must have the enhanced software image (EI) installed on your switch.

For complete syntax and usage information for the commands used in this section, refer to the Cisco Intelligence Engine 2100 Series Configuration Registrar Manual, and select Cisco IOS Software Release 12.2 > New Feature Documentation > 12.2(2)T on Cisco.com.

This chapter consists of these sections:
- Understanding IE2100 Series Configuration Registrar Software, page 5-1
- Understanding CNS Embedded Agents, page 5-5
- Configuring CNS Embedded Agents, page 5-6
- Displaying CNS Configuration, page 5-13

Understanding IE2100 Series Configuration Registrar Software

The IE2100 Series Configuration Registrar is a network management device that acts as a configuration service for automating the deployment and management of network devices and services (see Figure 5-1). Each Configuration Registrar manages a group of Cisco IOS devices (switches and routers) and the services that they deliver, storing their configurations and delivering them as needed. The Configuration Registrar automates initial configurations and configuration updates by generating device-specific configuration changes, sending them to the device, executing the configuration change, and logging the results.

The Configuration Registrar supports standalone and server modes and has these CNS components:
- Configuration service (web server, file manager, and namespace mapping server)
- Event service (event gateway)
- Data service directory (data models and schema)

In standalone mode, the Configuration Registrar supports an embedded CNS Directory Service. In this mode, no external directory or other data store is required. In server mode, the Configuration Registrar supports the use of a user-defined external directory.
These sections contain this conceptual information:

- CNS Configuration Service, page 5-2
- CNS Event Service, page 5-3
- What You Should Know About ConfigID, DeviceID, and Host Name, page 5-3

CNS Configuration Service

The CNS Configuration Service is the core component of the Configuration Registrar. It consists of a configuration server that works with CNS configuration agents located on the switch. The CNS Configuration Service delivers device and service configurations to the switch for initial configuration and mass reconfiguration by logical groups. Switches receive their initial configuration from the CNS Configuration Service when they start up on the network for the first time.

The CNS Configuration Service uses the CNS Event Service to send and receive configuration change events and to send success and failure notifications.

The configuration server is a web server that uses configuration templates and the device-specific configuration information stored in the embedded (standalone mode) or remote (server mode) directory. Configuration templates are text files containing static configuration information in the form of CLI commands. In the templates, variables are specified using lightweight directory access protocol (LDAP) URLs that reference the device-specific configuration information stored in a directory.

The configuration agent can perform a syntax check on received configuration files and publish events to indicate the success or failure of the syntax check. The configuration agent can either apply configurations immediately or delay the application until receipt of a synchronization event from the configuration server.
CNS Event Service

The Configuration Registrar uses the CNS Event Service for receipt and generation of configuration events. The CNS event agent resides on the switch and facilitates the communication between the switch and the event gateway on the Configuration Registrar.

The CNS Event Service is a highly-scalable publish-and-subscribe communication method. The CNS Event Service uses subject-based addressing to send messages to their destinations. Subject-based addressing conventions define a simple, uniform namespace for messages and their destinations.

NameSpace Mapper

The Configuration Registrar includes the NameSpace Mapper (NSM) that provides a lookup service for managing logical groups of devices based on application, device ID or group ID, and event.

Cisco IOS devices recognize only event subject-names that match those configured in Cisco IOS software; for example, cisco.cns.config.load. You can use the namespace mapping service to designate events by using any desired naming convention. When you have populated your data store with your subject names, NSM resolves your event subject-name strings to those known by IOS.

For a subscriber, when given a unique device ID and event, the namespace mapping service returns a set of events to which to subscribe. Similarly, for a publisher, when given a unique group ID, device ID, and event, the mapping service returns a set of events on which to publish.

What You Should Know About ConfigID, DeviceID, and Host Name

The Configuration Registrar assumes that a unique identifier is associated with each configured switch. This unique identifier can take on multiple synonyms, where each synonym is unique within a particular namespace. The event service uses namespace content for subject-based addressing of messages.

The Configuration Registrar intersects two namespaces, one for the event bus and the other for the configuration server. Within the scope of the configuration server namespace, the term configID is the unique identifier for a device. Within the scope of the event bus namespace, the term deviceID is the CNS unique identifier for a device.

Because the Configuration Registrar uses both the event bus and the configuration server to provide configurations to devices, you must define both configID and deviceID for each configured switch.

Within the scope of a single instance of the configuration server, no two configured switches can share the same value for configID. Within the scope of a single instance of the event bus, no two configured switches can share the same value for deviceID.

ConfigID

Each configured switch has a unique configID, which serves as the key into the Configuration Registrar directory for the corresponding set of switch CLI attributes. The configID defined on the switch must match the configID for the corresponding switch definition on the Configuration Registrar.

The configID is fixed at boot time and cannot be changed until reboot, even when the switch host name is reconfigured.
DeviceID

Each configured switch participating on the event bus has a unique deviceID, which is analogous to the switch source address so that the switch can be targeted as a specific destination on the bus. All switches configured with the `cns config partial` global configuration command must access the event bus. Therefore, the deviceID, as originated on the switch, must match the deviceID of the corresponding switch definition in the Configuration Registrar.

The origin of the deviceID is defined by the Cisco IOS host name of the switch. However, the deviceID variable and its usage reside within the event gateway, which is adjacent to the switch.

The logical Cisco IOS termination point on the event bus is embedded in the event gateway, which in turn functions as a proxy on behalf of the switch. The event gateway represents the switch and its corresponding deviceID to the event bus.

The switch declares its host name to the event gateway immediately after the successful connection to the event gateway. The event gateway couples the deviceID value to the Cisco IOS host name each time this connection is established. The event gateway caches this deviceID value for the duration of its connection to the switch.

Host Name and DeviceID

The deviceID is fixed at the time of the connection to the event gateway and does not change even when the switch host name is reconfigured.

When changing the switch host name on the switch, the only way to refresh the deviceID is to break the connection between the switch and the event gateway. Enter the `no cns event` global configuration command followed by the `cns event` global configuration command.

When the connection is re-established, the switch sends its modified host name to the event gateway. The event gateway redefines the deviceID to the new value.

Caution

When using the Configuration Registrar user interface, you must first set the deviceID field to the host name value that the switch acquires after—not before—you use the `cns config initial` global configuration command at the switch. Otherwise, subsequent `cns config partial` global configuration command operations malfunction.

Using Host Name, DeviceID, and ConfigID

In standalone mode, when a host name value is set for a switch, the configuration server uses the host name as the deviceID when an event is sent on host name. If the host name has not been set, the event is sent on the cn=<value> of the device.

In server mode, the host name is not used. In this mode, the unique deviceID attribute is always used for sending an event on the bus. If this attribute is not set, you cannot update the switch.

These and other associated attributes (tag value pairs) are set when you run Setup on the Configuration Registrar.

Note

For more information about running the setup program on the Configuration Registrar, refer to the Cisco Intelligence Engine 2100 Series Configuration Registrar Manual.
Understanding CNS Embedded Agents

The CNS event agent feature allows the switch to publish and subscribe to events on the event bus and works with the CNS configuration agent. The CNS configuration agent feature supports the switch by providing:

- Initial configurations
- Incremental (partial) configurations
- Synchronized configuration updates

Initial Configuration

When the switch first comes up, it attempts to get an IP address by broadcasting a Dynamic Host Configuration Protocol (DHCP) request on the network. Assuming there is no DHCP server on the subnet, the distribution switch acts as a DHCP relay agent and forwards the request to the DHCP server. Upon receiving the request, the DHCP server assigns an IP address to the new switch and includes the Trivial File Transfer Protocol (TFTP) server IP address, the path to the bootstrap configuration file, and the default gateway IP address in a unicast reply to the DHCP relay agent. The DHCP relay agent forwards the reply to the switch.

The switch automatically configures the assigned IP address on interface VLAN 1 (the default) and downloads the bootstrap configuration file from the TFTP server. Upon successful download of the bootstrap configuration file, the switch loads the file in its running configuration.

The embedded CNS agents initiate communication with the IE2100 Configuration Registrar by using the appropriate configID and eventID. The Configuration Registrar maps the configID to a template and downloads the full configuration file to the switch.

Figure 5-2 shows a sample network configuration for retrieving the initial bootstrap configuration file by using DHCP-based autoconfiguration.

![Figure 5-2 Initial Configuration Overview](image-url)
Incremental (Partial) Configuration

After the network is running, new services can be added by using the CNS configuration agent. Incremental (partial) configurations can be sent to the switch. The actual configuration can be sent as an event payload by way of the event gateway (push operation) or as a signal event that triggers the switch to initiate a pull operation.

The switch can check the syntax of the configuration before applying it. If the syntax is correct, the switch applies the incremental configuration and publishes an event that signals success to the configuration server. If the switch does not apply the incremental configuration, it publishes an event showing an error status. When the switch has applied the incremental configuration, it can write it to nonvolatile RAM (NVRAM) or wait until signaled to do so.

Synchronized Configuration

When the switch receives a configuration, it can defer application of the configuration upon receipt of a write-signal event. The write-signal event tells the switch not to save the updated configuration into its NVRAM. The switch uses the updated configuration as its running configuration. This ensures that the switch configuration is synchronized with other network activities before saving the configuration in NVRAM for use at the next reboot.

Configuring CNS Embedded Agents

The CNS agents embedded in the switch IOS software allow the switch to be connected and automatically configured as described in the “Enabling Automated CNS Configuration” section on page 5-6. If you want to change the configuration or install a custom configuration, see these sections for instructions:

- Enabling the CNS Event Agent, page 5-8
- Enabling the CNS Configuration Agent, page 5-9

Enabling Automated CNS Configuration

To enable automated CNS configuration of the switch, you must first complete the prerequisites in Table 5-1. When you complete them, power on the switch. At the setup prompt, do nothing: The switch begins the initial configuration as described in the “Initial Configuration” section on page 5-5. When the full configuration file is loaded on your switch, you need to do nothing else.
Table 5-1 Prerequisites for Enabling Automatic Configuration

<table>
<thead>
<tr>
<th>Device</th>
<th>Required Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access switch</td>
<td>Factory default (no configuration file)</td>
</tr>
<tr>
<td>Distribution switch</td>
<td>- IP helper address</td>
</tr>
<tr>
<td></td>
<td>- Enable DHCP relay agent</td>
</tr>
<tr>
<td></td>
<td>- IP routing (if used as default gateway)</td>
</tr>
<tr>
<td>DHCP server</td>
<td>- IP address assignment</td>
</tr>
<tr>
<td></td>
<td>- TFTP server IP address</td>
</tr>
<tr>
<td></td>
<td>- Path to bootstrap configuration file on the TFTP server</td>
</tr>
<tr>
<td></td>
<td>- Default gateway IP address</td>
</tr>
<tr>
<td>TFTP server</td>
<td>- Create a bootstrap configuration file that includes the CNS configuration commands that enable the switch to communicate with the IE2100 Configuration Registrar.</td>
</tr>
<tr>
<td></td>
<td>- Configure the switch to use either the switch MAC address or the serial number (instead of the default host name) to generate the configID and eventID.</td>
</tr>
<tr>
<td></td>
<td>- Configure the CNS event agent to push the configuration file to the switch.</td>
</tr>
<tr>
<td>IE2100 Configuration Registrar</td>
<td>Create one or more templates for each type of device, and map the configID of the device to the template.</td>
</tr>
</tbody>
</table>

Note

For more information about running the setup program and creating templates on the Configuration Registrar, refer to the *Cisco Intelligence Engine 2100 Series Configuration Registrar Manual*.
Enabling the CNS Event Agent

You must enable the CNS event agent on the switch before you enable the CNS configuration agent.

Beginning in privileged EXEC mode, follow these steps to enable the CNS event agent on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>cns event (ip-address</td>
</tr>
<tr>
<td></td>
<td>• For (ip-address</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For port number, enter the port number for the event gateway. The default port number is 11011.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter backup to show that this is the backup gateway. (If omitted, this is the primary gateway.)</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For init-retry retry-count, enter the number of initial retries before switching to backup. The default is 3.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For keepalive seconds, enter how often the switch sends keepalive messages. For retry-count, enter the number of unanswered keepalive messages that the switch sends before the connection is terminated. The default for each is 0.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For source ip-address, enter the source IP address of this device.</td>
</tr>
<tr>
<td></td>
<td>Note Though visible in the command-line help string, the encrypt and force-fmt1 keywords are not supported.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show cns event connections Verify information about the event agent.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable the CNS event agent, use the `no cns event {ip-address | hostname}` global configuration command.

This example shows how to enable the CNS event agent, set the IP address gateway to 10.180.1.27, set 120 seconds as the keepalive interval, and set 10 as the retry count.

```
Switch(config)# cns event 10.180.1.27 keepalive 120 10
```

Enabling the CNS Configuration Agent

After enabling the CNS event agent, start the CNS configuration agent on the switch. You can enable the configuration agent with these commands:

- the `cns config initial` global configuration command enables the configuration agent and initiates an initial configuration on the switch.
- the `cns config partial` global configuration command enables the configuration agent and initiates a partial configuration on the switch. You can then remotely send incremental configurations to the switch from the Configuration Registrar.

Enabling an Initial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the CNS configuration agent and initiate an initial configuration on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>cns config connect-intf</code> interface-prefix [ping-interval seconds] [retries num]</td>
<td>Enter the connect-interface-config submode, and specify the interface for connecting to the Configuration Registrar.</td>
</tr>
<tr>
<td>• Enter the <code>interface-prefix</code> for the connecting interface. You must specify the interface type but need not specify the interface number.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For <code>ping-interval seconds</code>, enter the interval between successive ping attempts. The range is 1 to 30 seconds. The default is 10 seconds.</td>
<td></td>
</tr>
<tr>
<td>• (Optional) For <code>retries num</code>, enter the number of ping retries. The range is 1 to 30. The default is 5.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5 Configuring IE2100 CNS Agents

Configuring CNS Embedded Agents

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>config-cli</td>
<td>Enter <code>config-cli</code> to connect to the Configuration Registrar through the interface defined in <code>cns config connect-intf</code>. Enter <code>line-cli</code> to connect to the Registrar through modem dialup lines.</td>
</tr>
<tr>
<td>line-cli</td>
<td></td>
</tr>
</tbody>
</table>

Note
The `config-cli` interface configuration command accepts the special directive character `&` that acts as a placeholder for the interface name. When the configuration is applied, the `&` is replaced with the interface name. For example, to connect through FastEthernet0/0, the command `config-cli ip route 0.0.0.0 0.0.0.0 &` generates the command `ip route 0.0.0.0 0.0.0.0 FastEthernet0/0`.

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname name</td>
<td>Enter the host name for the switch.</td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip route network-number</td>
<td>Establish a static route to the Configuration Registrar whose IP address is <code>network-number</code>.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>cns id interface num {dns-reverse</td>
<td>ipaddress</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>or cns id {hardware-serial</td>
<td>hostname</td>
</tr>
</tbody>
</table>

- For `interface num`, enter the type of interface—for example, Ethernet, Group-Async, Loopback, or Virtual-Template. This setting specifies from which interface the IP or MAC address should be retrieved to define the unique ID.

- For `{dns-reverse | ipaddress | mac-address}` enter `dns-reverse` to retrieve the host name and assign it as the unique ID, enter `ipaddress` to use the IP address, or enter `mac-address` to use the MAC address as the unique ID.

- (Optional) Enter `event` to set the ID to be the event-id value used to identify the switch.

- For `{hardware-serial | hostname | string string}`, enter `hardware-serial` to set the switch serial number as the unique ID, enter `hostname` (the default) to select the switch host name as the unique ID, or enter an arbitrary text string for `string string` as the unique ID.
Chapter 5 Configuring IE2100 CNS Agents

Configuring CNS Embedded Agents

Step 8

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`cns config initial {ip-address</td>
<td>hostname} [port-number] [event] [no-persist] [page page] [source ip-address] [syntax-check]`</td>
</tr>
</tbody>
</table>

- For `{ip-address | hostname}`, enter the IP address or the host name of the configuration server.
- (Optional) For `port-number`, enter the port number of the configuration server. The default port number is 80.
- (Optional) Enable `event` for configuration success, failure, or warning messages when the configuration is finished.
- (Optional) Enable `no-persist` to suppress the automatic writing to NVRAM of the configuration pulled as a result of entering the `cns config initial` global configuration command. If the `no-persist` keyword is not entered, using the `cns config initial` command causes the resultant configuration to be automatically written to NVRAM.
- (Optional) For `page page`, enter the web page of the initial configuration. The default is `/Config/config/asp`.
- (Optional) Enter `source ip-address` to use for source IP address.
- (Optional) Enable `syntax-check` to check the syntax when this parameter is entered.

Note Though visible in the command-line help string, the `encrypt` keyword is not supported.

Step 9

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 10

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show cns config connections</code></td>
<td>Verify information about the configuration agent.</td>
</tr>
</tbody>
</table>

Step 11

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

To disable the CNS configuration agent, use the `no cns config initial {ip-address | hostname}` global configuration command.

This example shows how to configure an initial configuration on a remote switch. The switch host name is the unique ID. The CNS Configuration Registrar IP address is 172.28.129.22.

```
Switch(config)# cns config connect-intf serial ping-interval 1 retries 1
Switch(config-cns-conn-if)# config-cli ip address negotiated
Switch(config-cns-conn-if)# config-cli encapsulation ppp
Switch(config-cns-conn-if)# config-cli ip directed-broadcast
Switch(config-cns-conn-if)# config-cli no keepalive
Switch(config-cns-conn-if)# config-cli no shutdown
Switch(config-cns-conn-if)# exit
Switch(config)# hostname RemoteSwitch
RemoteSwitch(config)# ip route 10.1.1.1 255.255.255.255 11.11.11.1
RemoteSwitch(config)# cns id Ethernet 0 ipaddress
RemoteSwitch(config)# cns config initial 10.1.1.1 no-persist
```
Enabling a Partial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the CNS configuration agent and to initiate a partial configuration on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>cns config partial {ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show cns config stats or show cns config outstanding</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable the CNS configuration agent, use the no cns config partial \{ip-address | hostname\} global configuration command. To cancel a partial configuration, use the cns config cancel privileged EXEC command.
Displaying CNS Configuration

You can use the privileged EXEC commands in Table 5-2 to display CNS Configuration information.

Table 5-2 Displaying CNS Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cns config connections</td>
<td>Displays the status of the CNS configuration agent connections.</td>
</tr>
<tr>
<td>show cns config outstanding</td>
<td>Displays information about incremental (partial) CNS configurations that have started but are not yet completed.</td>
</tr>
<tr>
<td>show cns config stats</td>
<td>Displays statistics about the CNS configuration agent.</td>
</tr>
<tr>
<td>show cns event connections</td>
<td>Displays the status of the CNS event agent connections.</td>
</tr>
<tr>
<td>show cns event stats</td>
<td>Displays statistics about the CNS event agent.</td>
</tr>
<tr>
<td>show cns event subject</td>
<td>Displays a list of event agent subjects that are subscribed to by applications.</td>
</tr>
</tbody>
</table>
Clustering Switches

This chapter provides these topics to help you get started with switch clustering:

- Understanding Switch Clusters, page 6-2
- Planning a Switch Cluster, page 6-5
- Creating a Switch Cluster, page 6-19
- Using the CLI to Manage Switch Clusters, page 6-25
- Using SNMP to Manage Switch Clusters, page 6-26

Configuring switch clusters is more easily done from the Cluster Management Suite (CMS) web-based interface than through the command-line interface (CLI). Therefore, information in this chapter focuses on using CMS to create a cluster. See Chapter 3, “Getting Started with CMS,” for additional information about switch clusters and the clustering options. For complete procedures about using CMS to configure switch clusters, refer to the online help.

For the CLI cluster commands, refer to the switch command reference.

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and for the required software versions and browser and Java plug-in configurations.

Note
This chapter focuses on Catalyst 2950 switch clusters. It also includes guidelines and limitations for clusters mixed with other cluster-capable Catalyst switches, but it does not provide complete descriptions of the cluster features for these other switches. For complete cluster information for a specific Catalyst platform, refer to the software configuration guide for that switch.
Understanding Switch Clusters

A switch cluster is a group of connected Catalyst switches that are managed as a single entity. In a switch cluster, 1 switch must be the command switch and up to 15 switches can be member switches. The total number of switches in a cluster cannot exceed 16 switches. The command switch is the single point of access used to configure, manage, and monitor the member switches. Cluster members can belong to only one cluster at a time.

The benefits of clustering switches include:

- Management of Catalyst switches regardless of their interconnection media and their physical locations. The switches can be in the same location, or they can be distributed across a Layer 2 or Layer 3 (if your cluster is using a Catalyst 3550 multilayer switch as a Layer 3 router between the Layer 2 switches in the cluster) network. Cluster members are connected to the command switch according to the connectivity guidelines described in the “Automatic Discovery of Cluster Candidates and Members” section on page 6-5.

- Command-switch redundancy if a command switch fails. One or more switches can be designated as standby command switches to avoid loss of contact with cluster members. A cluster standby group is a group of standby command switches.

- Management of a variety of Catalyst switches through a single IP address. This conserves on IP addresses, especially if you have a limited number of them. All communication with the switch cluster is through the command switch IP address.

For other clustering benefits, see the “Advantages of Using CMS and Clustering Switches” section on page 1-7.

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and the required software versions.

These sections describe:

- Command Switch Characteristics, page 6-3
- Standby Command Switch Characteristics, page 6-3
- Candidate Switch and Member Switch Characteristics, page 6-4
Command Switch Characteristics

A Catalyst 2950 command switch must meet these requirements:

- It is running Release 12.0(5.2)WC(1) or later.
- It has an IP address.
- It has Cisco Discovery Protocol (CDP) version 2 enabled (the default).
- It is not a command or member switch of another cluster.
- If the Catalyst 2950 command switch is running Release 12.1(9)EA1 or later, it is connected to the standby command switches through the management VLAN and to the member switches through a common VLAN.
- If the Catalyst 2950 command switch is running a release earlier than Release 12.1(9)EA1, it is connected to the standby command switches and member switches through its management VLAN.

Note

The CMP-NAT-ACL access list is created when a device is configured as the command switch. Configuring any other access list on the switch can restrict access to it and affect the discovery of member and candidate switches.

- We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch:
 - If your switch cluster has a Catalyst 3550 switch, that switch should be the command switch.
 - If your switch cluster has Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches, the Catalyst 2950 should be the command switch. (The Catalyst 2950 LRE switches can be the command switch of Catalyst 2950 member switches running IOS version 12.1(11) or earlier.
 - If your switch cluster has Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, and Catalyst 3500 XL switches, either the Catalyst 2900 XL or Catalyst 3500 XL should be the command switch.

Standby Command Switch Characteristics

A Catalyst 2950 standby command switch must meet these requirements:

- It is running Release 12.0(5.2)WC(1) or later.
- It has an IP address.
- It has CDP version 2 enabled.
- If the Catalyst 2950 standby command switch is running Release 12.1(9)EA1 or later, it is connected to other standby switches through its management VLAN and to all member switches through a common VLAN.
- If the Catalyst 2950 standby command switch is running a release earlier than Release 12.1(9)EA1, it is connected to the command switch and to other standby command switches and member switches through its management VLAN.
Catalyst 2950 command switches running Release 12.1(9)EA1 or later can connect to standby command switches in the management VLAN.

- It is redundantly connected to the cluster so that connectivity to member switches is maintained.
- It is not a command or member switch of another cluster.

Note

- Standby command switches must meet these requirements:
 - When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
 - When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.
 - We strongly recommend that the command switch and standby command switches are of the same switch platform.
 - If you have a Catalyst 3550 command switch, the standby command switches should be Catalyst 3550 switches.
 - If you have a Catalyst 2950 command switch, the standby command switches should be Catalyst 2950 switches.
 - If you have a Catalyst 2900 XL or Catalyst 3500 XL command switch, the standby command switches should be Catalyst 2900 XL and Catalyst 3500 XL switches.

Candidate Switch and Member Switch Characteristics

Candidate switches are cluster-capable switches that have not yet been added to a cluster. Member switches are switches that have actually been added to a switch cluster. Although not required, a candidate or member switch can have its own IP address and password (for related considerations, see the “IP Addresses” section on page 6-15 and “Passwords” section on page 6-16).

To join a cluster, a candidate switch must meet these requirements:

- It is running cluster-capable software.
- It has CDP version 2 enabled.
- It is not a command or member switch of another cluster.
- If the Catalyst 2950 member or candidate switch is running Release 12.1(9)EA1 or later, it is connected to the command switch through at least one common VLAN.
- If the Catalyst 2950 member or candidate switch is running a release earlier than Release 12.1(9)EA1, it is connected to the command switch through the command-switch management VLAN.
Planning a Switch Cluster

Anticipating conflicts and compatibility issues is a high priority when you manage several switches through a cluster. This section describes these guidelines, requirements, and caveats that you should understand before you create the cluster:

- Automatic Discovery of Cluster Candidates and Members, page 6-5
- HSRP and Standby Command Switches, page 6-12
- IP Addresses, page 6-15
- Host Names, page 6-16
- Passwords, page 6-16
- SNMP Community Strings, page 6-16
- TACACS+ and RADIUS, page 6-17
- Access Modes in CMS, page 6-17
- Management VLAN, page 6-18
- LRE Profiles, page 6-18
- Availability of Switch-Specific Features in Switch Clusters, page 6-19

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and for the required software versions and browser and Java plug-in configurations.

Automatic Discovery of Cluster Candidates and Members

The command switch uses Cisco Discovery Protocol (CDP) to discover member switches, candidate switches, neighboring switch clusters, and edge devices in star or cascaded topologies.

Note

Do not disable CDP on the command switch, on cluster members, or on any cluster-capable switches that you might want a command switch to discover. For more information about CDP, see Chapter 20, “Configuring CDP.”

Following these connectivity guidelines ensures automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices:

- Discovery through CDP Hops, page 6-6
- Discovery through Non-CDP-Capable and Noncluster-Capable Devices, page 6-7
- Discovery through the Same Management VLAN, page 6-8
- Discovery through Different Management VLANs, page 6-9
- Discovery of Newly Installed Switches, page 6-10
Discovery through CDP Hops

By using CDP, a command switch can discover switches up to seven CDP hops away (the default is three hops) from the edge of the cluster. The edge of the cluster is where the last member switches are connected to the cluster and to candidate switches. For example, member switches 9 and 10 in Figure 6-1 are at the edge of the cluster.

You can set the number of hops the command switch searches for candidate and member switches by selecting Cluster > Hop Count. When new candidate switches are added to the network, the command switch discovers them and adds them to the list of candidate switches.

In Figure 6-1, the command switch is running a release earlier than Release 12.1(9)EA1 and has ports assigned to management VLAN 16. In Figure 6-2, the command switch is running Release 12.1(9)EA1 or later and has ports assigned to VLANs 16 and 62. The CDP hop count is three. Each command switch discovers switches 11, 12, 13, and 14 because they are within three hops from the edge of the cluster. It does not discover switch 15 because it is four hops from the edge of the cluster.

Figure 6-1 Discovery through CDP Hops (Command Switch Running a Release Earlier than Release 12.1(9)EA1)
Discovery through Non-CDP-Capable and Noncluster-Capable Devices

If a command switch is connected to a non-CDP-capable third-party hub (such as a non-Cisco hub), it can discover cluster-enabled devices connected to that third-party hub. However, if the command switch is connected to a noncluster-capable Cisco device, it cannot discover a cluster-enabled device connected beyond the noncluster-capable Cisco device.

Figure 6-3 shows that the command switch discovers the Catalyst 3500 XL switch, which is connected to a third-party hub. However, the command switch does not discover the Catalyst 2950 switch that is connected to a Catalyst 5000 switch.

Refer to the release notes for the Catalyst switches that can be part of a switch cluster.
Discovery through the Same Management VLAN

A Catalyst 2900 XL command switch, a Catalyst 2950 command switch running a release earlier than Release 12.1(9)EA1, or a Catalyst 3500 XL command switch must connect to all cluster members through its management VLAN. The default management VLAN is VLAN 1. For more information about management VLANs, see the “Management VLAN” section on page 6-18.

Note
You can avoid this limitation by using, whenever possible, a Catalyst 3550 command switch or a Catalyst 2950 command switch running Release 12.1(9)EA1 or later. These command switches can manage cluster members even if they belong to different management VLANs. See the “Discovery through Different Management VLANs” section on page 6-9.

The command switch in Figure 6-4 has ports assigned to management VLAN 9. It discovers all but these switches:

- Switches 7 and 10 because their management VLAN (VLAN 4) is different from the command-switch management VLAN (VLAN 9)
- Switch 9 because automatic discovery does not extend beyond a noncandidate device, which is switch 7

Figure 6-4 Discovery through the Same Management VLAN

![Diagram showing the discovery through the same management VLAN](image)
Discovery through Different Management VLANs

We recommend using a Catalyst 3550 command switch or a Catalyst 2950 command switch running Release 12.1(9)EA1 or later. These command switches can discover and manage member switches in different VLANs and different management VLANs. Catalyst 3550 member switches and Catalyst 2950 member switches running Release 12.1(9)EA1 or later must be connected through at least one VLAN in common with the command switch. All other member switches must be connected to the command switch through their management VLAN.

In contrast, a Catalyst 2900 XL command switch, a Catalyst 2950 command switch running a release earlier than Release 12.1(9)EA1, or a Catalyst 3500 XL command switch must connect to all cluster members through its management VLAN. The default management VLAN is VLAN 1. For information about discovery through the same management VLAN on these switches, see the “Discovery through the Same Management VLAN” section on page 6-8.

The Catalyst 2950 command switch (running Release 12.1(9)EA1 or later) in Figure 6-5 and the Catalyst 3550 command switch in Figure 6-6 have ports assigned to VLANs 9, 16, and 62. The management VLAN on the Catalyst 2950 command switch is VLAN 9. Each command switch discovers the switches in the different management VLANs except these:

- Switches 7 and 10 (switches in management VLAN 4) because they are not connected through a common VLAN (meaning VLANs 62 and 9) with the command switch.
- Switch 9 because automatic discovery does not extend beyond a noncandidate device, which is switch 7.

Figure 6-5 Discovery through Different Management VLANs with a Layer 2 Command Switch
Discovery of Newly Installed Switches

To join a cluster, the new, out-of-the-box switch must be connected to the cluster through one of its access ports. An access port (AP) carries the traffic of and belongs to the management VLAN. By default, the new switch and its access ports are assigned to management VLAN 1.

When the new switch joins a cluster, its default management VLAN changes to the VLAN of the immediately upstream neighbor. The new switch also configures its access port to belong to the VLAN of the immediately upstream neighbor.

The command switch (running a release earlier than Release 12.1(9)EA1) in Figure 6-7 belongs to management VLAN 16. When the new Catalyst 2900 LRE XL and Catalyst 2950 switches join the cluster, their management VLAN and access ports change from VLAN 1 to VLAN 16.

The command switch (running Release 12.1(9)EA1 or later) in Figure 6-8 belongs to VLANs 9 and 16. When the new Catalyst 3550 and Catalyst 2950 switches join the cluster:

- The Catalyst 3550 switch and its access port are assigned to VLAN 9.
- The Catalyst 2950 switch and its access port are assigned to management VLAN 16.
Figure 6-7 Discovery of Newly Installed Switches in the Same Management VLAN

Command switch

VLAN 16

Catalyst 2950 switch (Management VLAN 16)

VLAN 16

New (out-of-box) Catalyst 2900 LRE XL switch

AP

Catalyst 3500 XL switch (Management VLAN 16)

VLAN 16

New (out-of-box) Catalyst 2950 switch

Figure 6-8 Discovery of Newly Installed Switches in Different Management VLANs

Command switch

VLAN 9

Catalyst 2950 switch (Management VLAN 9)

VLAN 9

New (out-of-box) Catalyst 3550 switch

AP

Catalyst 3500 XL switch (Management VLAN 16)

VLAN 16

New (out-of-box) Catalyst 2950 switch
HSRP and Standby Command Switches

The switch supports Hot Standby Router Protocol (HSRP) so that you can configure a group of standby command switches. Because a command switch manages the forwarding of all communication and configuration information to all the member switches, we strongly recommend that you configure a cluster standby command switch to take over if the primary command switch fails.

A cluster standby group is a group of command-capable switches that meet the requirements described in the “Standby Command Switch Characteristics” section on page 6-3. Only one cluster standby group can be assigned per cluster.

- When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
- When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
- When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

The cluster standby group is an HSRP group. Disabling HSRP disables the cluster standby group.

The switches in the cluster standby group are ranked according to HSRP priorities. The switch with the highest priority in the group is the active command switch (AC). The switch with the next highest priority is the standby command switch (SC). The other switches in the cluster standby group are the passive command switches (PC). If the active command switch and the standby command switch become disabled at the same time, the passive command switch with the highest priority becomes the active command switch. For the limitations to automatic discovery, see the “Automatic Recovery of Cluster Configuration” section on page 6-15. For information about changing HSRP priority values, refer to the standby priority interface configuration mode command in the IOS Release 12.1 documentation set. The HSRP commands are the same for changing the priority of cluster standby group members and router-redundancy group members.

The HSRP standby hold time interval should be greater than or equal to 3 times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and hello time intervals, refer to the Release 12.1 documentation set on Cisco.com.

These connectivity guidelines ensure automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices. These topics also provide more detail about standby command switches:

- Virtual IP Addresses, page 6-13
- Other Considerations for Cluster Standby Groups, page 6-13
- Automatic Recovery of Cluster Configuration, page 6-15
Virtual IP Addresses

You need to assign a unique virtual IP address and group number and name to the cluster standby group. This information must be configured on the management VLAN on the active command switch. The active command switch receives traffic destined for the virtual IP address. To manage the cluster, you must access the active command switch through the virtual IP address, not through the command-switch IP address. This is in case the IP address of the active command switch is different from the virtual IP address of the cluster standby group.

If the active command switch fails, the standby command switch assumes ownership of the virtual IP address and becomes the active command switch. The passive switches in the cluster standby group compare their assigned priorities to determine the new standby command switch. The passive standby switch with the highest priority then becomes the standby command switch. When the previously active command switch becomes active again, it resumes its role as the active command switch, and the current active command switch becomes the standby command switch again. For more information about IP address in switch clusters, see the “IP Addresses” section on page 6-15.

Other Considerations for Cluster Standby Groups

These requirements also apply:

- Standby command switches must meet these requirements:
 - When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
 - When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

We strongly recommend that the command switch and standby command switches are of the same switch platform.

- If you have a Catalyst 3550 command switch, the standby command switches should be Catalyst 3550 switches.
- If you have a Catalyst 2950 command switch, the standby command switches should be Catalyst 2950 switches.
- If you have a Catalyst 2900 XL or Catalyst 3500 XL command switch, the standby command switches should be Catalyst 2900 XL and Catalyst 3500 XL switches.

- Only one cluster standby group can be assigned to a cluster.
All standby-group members must be members of the cluster.

Note: There is no limit to the number of switches that you can assign as standby command switches. However, the total number of switches in the cluster—which would include the active command switch, standby-group members, and member switches—cannot be more than 16.

Each standby-group member (see Figure 6-9) must be connected to the command switch through its management VLAN. Each standby-group member must also be redundantly connected to each other through the management VLAN.

Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL member switches must be connected to the cluster standby group through their management VLANs.

Note: Catalyst 2950 standby command switches running Release 12.1(9)EA1 or later can connect to candidate and member switches in VLANs different from their management VLANs.

For more information about VLANs in switch clusters, see these sections:
- “Discovery through the Same Management VLAN” section on page 6-8
- “Discovery through Different Management VLANs” section on page 6-9

Figure 6-9 VLAN Connectivity between Standby-Group Members and Cluster Members
Automatic Recovery of Cluster Configuration

The active command switch continually forwards cluster-configuration information (but not device-configuration information) to the standby command switch. This ensures that the standby command switch can take over the cluster immediately after the active command switch fails.

Automatic discovery has these limitations:

- This limitation applies only to clusters that have Catalyst 2950 and Catalyst 3550 command and standby command switches: If the active command switch and standby command switch become disabled at the same time, the passive command switch with the highest priority becomes the active command switch. However, because it was a passive standby command switch, the previous command switch did not forward cluster-configuration information to it. The active command switch only forwards cluster-configuration information to the standby command switch. You must therefore rebuild the cluster.

- This limitation applies to all clusters: If the active command switch fails and there are more than two switches in the cluster standby group, the new command switch does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL member switches. You must re-add these member switches to the cluster.

- This limitation applies to all clusters: If the active command switch fails and becomes active again, it does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL member switches. You must again add these member switches to the cluster.

When the previously active command switch resumes its active role, it receives a copy of the latest cluster configuration from the active command switch, including members that were added while it was down. The active command switch sends a copy of the cluster configuration to the cluster standby group.

IP Addresses

You must assign IP information to a command switch. You can access the cluster through the command-switch IP address. If you configure a cluster standby group, you must use the standby-group virtual IP address to manage the cluster from the active command switch. Using the virtual IP address ensures that you retain connectivity to the cluster if the active command switch fails and that a standby command switch becomes the active command switch.

If the active command switch fails and the standby command switch takes over, you must either use the standby-group virtual IP address or the IP address available on the new active command switch to access the cluster.

You can assign an IP address to a cluster-capable switch, but it is not necessary. A member switch is managed and communicates with other member switches through the command-switch IP address. If the member switch leaves the cluster and it does not have its own IP address, you then must assign IP information to it to manage it as a standalone switch.

Note

Changing the command switch IP address ends your CMS session on the switch. Restart your CMS session by entering the new IP address in the browser Location field (Netscape Communicator) or Address field (Internet Explorer), as described in the release notes.

For more information about IP addresses, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”
Host Names

You do not need to assign a host name to either a command switch or an eligible cluster member. However, a host name assigned to the command switch can help to identify the switch cluster. The default host name for the switch is *Switch*.

If a switch joins a cluster and it does not have a host name, the command switch appends a unique member number to its own host name and assigns it sequentially as each switch joins the cluster. The number means the order in which the switch was added to the cluster. For example, a command switch named *eng-cluster* could name the fifth cluster member *eng-cluster-5*.

If a switch has a host name, it retains that name when it joins a cluster. It retains that host name even after it leaves the cluster.

If a switch received its host name from the command switch, was removed from a cluster, was then added to a new cluster, and kept the same member number (such as 5), the old host name (such as *eng-cluster-5*) is overwritten with the host name of the command switch in the new cluster (such as *mkg-cluster-5*). If the switch member number changes in the new cluster (such as 3), the switch retains the previous name (*eng-cluster-5*).

Passwords

You do not need to assign passwords to an individual switch if it will be a cluster member. When a switch joins a cluster, it inherits the command-switch password and retains it when it leaves the cluster. If no command-switch password is configured, the member switch inherits a null password. Member switches only inherit the command-switch password.

If you change the member-switch password to be different from the command-switch password and save the change, the switch is not manageable by the command switch until you change the member-switch password to match the command-switch password. Rebooting the member switch does not revert the password back to the command-switch password. We recommend that you do not change the member-switch password after it joins a cluster.

For more information about passwords, see the “Preventing Unauthorized Access to Your Switch” section on page 7-1.

For password considerations specific to the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides for those switches.

SNMP Community Strings

A member switch inherits the command-switch first read-only (RO) and read-write (RW) community strings with *@esN* appended to the community strings:

- `command-switch-readonly-community-string@esN`, where *N* is the member-switch number.
- `command-switch-readwrite-community-string@esN`, where *N* is the member-switch number.

If the command switch has multiple read-only or read-write community strings, only the first read-only and read-write strings are propagated to the member switch.

The switches support an unlimited number of community strings and string lengths. For more information about SNMP and community strings, see Chapter 24, “Configuring SNMP.”

For SNMP considerations specific to the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides specific to those switches.
TACACS+ and RADIUS

Inconsistent authentication configurations in switch clusters cause CMS to continually prompt for a user name and password. If Terminal Access Controller Access Control System Plus (TACACS+) is configured on a cluster member, it must be configured on all cluster members. Similarly, if Remote Authentication Dial-In User Service (RADIUS) is configured on a cluster member, it must be configured on all cluster members. Further, the same switch cluster cannot have some members configured with TACACS+ and other members configured with RADIUS.

For more information about TACACS+, see the “Controlling Switch Access with TACACS+” section on page 7-10. For more information about RADIUS, see the “Controlling Switch Access with RADIUS” section on page 7-18.

Access Modes in CMS

CMS provides two levels of access to the configuration options: read-write access and read-only access. Privilege levels 0 to 15 are supported.

- Privilege level 15 provides you with read-write access to CMS.
- Privilege levels 1 to 14 provide you with read-only access to CMS. Any options in the CMS windows, menu bar, toolbar, and popup menus that change the switch or cluster configuration are not shown in read-only mode.
- Privilege level 0 denies access to CMS.

For more information about CMS access modes, see the “Access Modes in CMS” section on page 3-31.

Note

- If your cluster has these member switches running earlier software releases and if you have read-only access to these member switches, some configuration windows for those switches display incomplete information:
 - Catalyst 2900 XL or Catalyst 3500 XL member switches running Release 12.0(5)WC2 or earlier
 - Catalyst 2950 member switches running Release 12.0(5)WC2 or earlier
 - Catalyst 3550 member switches running Release 12.1(6)EA1 or earlier
 For more information about this limitation, refer to the release notes.
- These switches do not support read-only mode on CMS:
 - Catalyst 1900 and Catalyst 2820
 - Catalyst 2900 XL switches with 4-MB CPU DRAM
 In read-only mode, these switches appear as unavailable devices and cannot be configured from CMS.
Management VLAN

Communication with the switch management interfaces is through the command-switch IP address. The IP address is associated with the management VLAN, which by default is VLAN 1. To manage switches in a cluster, the command switch, member switches, and candidate switches must be connected through ports assigned to the command-switch management VLAN.

Note
- If the command switch is a Catalyst 2950 running Release 12.1(9)EA1 or later, candidate and member switches can belong to different management VLANs. However, they must connect to the command switch through their management VLAN.
- Catalyst 2950 standby command switches running Release 12.1(9)EA1 or later can connect to candidate and member switches in VLANs different from their management VLANs.
- This section applies Catalyst 2900 LRE XL switches only and is not applicable for the Catalyst 2950 LRE switch.

If you add a new, out-of-box switch to a cluster and the cluster is using a management VLAN other than the default VLAN 1, the command switch automatically senses that the new switch has a different management VLAN and has not been configured. The command switch issues commands to change the management VLAN of the new switch to the one the cluster is using. This automatic VLAN change only occurs for new, out-of-box switches that do not have a config.text file and that have no changes to the running configuration. For more information, see the “Discovery of Newly Installed Switches” section on page 6-10.

You can change the management VLAN of a member switch (not the command switch). However, the command switch will not be able to communicate with it. In this case, you will need to manage the switch as a standalone switch.

You can globally change the management VLAN for the cluster as long as each member switch has either a trunk connection or a connection to the new command-switch management VLAN. From the command switch, use the `cluster management vlan` global configuration command to change the cluster management VLAN to a different management VLAN.

Caution
You can change the management VLAN through a console connection without interrupting the console connection. However, changing the management VLAN ends your CMS session. Restart your CMS session by entering the new IP address in the browser **Location** field (Netscape Communicator) or **Address** field (Microsoft Internet Explorer), as described in the release notes.

For more information about changing the management VLAN, see the “Management VLAN” section on page 6-18.

LRE Profiles

A configuration conflict occurs if a switch cluster has Long-Reach Ethernet (LRE) switches that use both private and public profiles. If one LRE switch in a cluster is assigned a public profile, all LRE switches in that cluster must have that same public profile. Before you add an LRE switch to a cluster, make sure that you assign it the same public profile used by other LRE switches in the cluster.

A cluster can have a mix of LRE switches that use different private profiles.
Availability of Switch-Specific Features in Switch Clusters

The menu bar on the command switch displays all options available from the switch cluster. Therefore, features specific to a member switch are available from the command-switch menu bar. For example, **Device > LRE Profile** appears in the command-switch menu bar when at least one Catalyst 2900 LRE XL switch is in the cluster.

Creating a Switch Cluster

Using CMS to create a cluster is easier than using the CLI commands. This section provides this information:

- Enabling a Command Switch, page 6-19
- Adding Member Switches, page 6-20
- Creating a Cluster Standby Group, page 6-22
- Verifying a Switch Cluster, page 6-24

This section assumes you have already cabled the switches, as described in the switch hardware installation guide, and followed the guidelines described in the “Planning a Switch Cluster” section on page 6-5.

Note

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and for the required software versions and browser and Java plug-in configurations.

Enabling a Command Switch

The switch you designate as the command switch must meet the requirements described in the “Command Switch Characteristics” section on page 6-3, the “Planning a Switch Cluster” section on page 6-5, and the release notes.

Note

- We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch:
 - If your switch cluster has a Catalyst 3550 switch, that switch should be the command switch.
 - If your switch cluster has Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches, the Catalyst 2950 should be the command switch.
 - If your switch cluster has Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, and Catalyst 3500 XL switches, either the Catalyst 2900 XL or Catalyst 3500 XL should be the command switch.

You can enable a command switch, name the cluster, and assign an IP address and a password to the command switch when you run the setup program during initial switch setup. For information about using the setup program, refer to the release notes.
If you did not enable a command switch during initial switch setup, launch Device Manager from a command-capable switch, and select **Cluster > Create Cluster**. Enter a cluster number (the default is 0), and use up to 31 characters to name the cluster (see **Figure 6-10**). Instead of using CMS to enable a command switch, you can use the **cluster enable** global configuration command.

Figure 6-10 Create Cluster Window

![Create Cluster Window](image)

Enter up to 31 characters to name the cluster.

Adding Member Switches

As explained in the “Automatic Discovery of Cluster Candidates and Members” section on page 6-5, the command switch automatically discovers candidate switches. When you add new cluster-capable switches to the network, the command switch discovers them and adds them to a list of candidate switches. To display an updated cluster candidates list from the Add to Cluster window (**Figure 6-11**), either relaunch CMS and redisplay this window, or follow these steps:

1. Close the Add to Cluster window.
2. Select **View > Refresh**.
3. Select **Cluster > Add to Cluster** to redisplay the Add to Cluster window.

From CMS, there are two ways to add switches to a cluster:

- Select **Cluster > Add to Cluster**, select a candidate switch from the list, click **Add**, and click **OK**. To add more than one candidate switch, press **Ctrl**, and make your choices, or press **Shift**, and choose the first and last switch in a range.
- Display the Topology view, right-click a candidate-switch icon, and select **Add to Cluster** (see **Figure 6-12**). In the Topology view, candidate switches are cyan, and member switches are green. To add more than one candidate switch, press **Ctrl**, and left-click the candidates that you want to add.

Instead of using CMS to add members to the cluster, you can use the **cluster member** global configuration command from the command switch. Use the **password** option in this command if the candidate switch has a password.

You can select 1 or more switches as long as the total number of switches in the cluster does not exceed 16 (this includes the command switch). When a cluster has 16 members, the **Add to Cluster** option is not available for that cluster. In this case, you must remove a member switch before adding a new one.

If a password has been configured on a candidate switch, you are prompted to enter it before it can be added to the cluster. If the candidate switch does not have a password, any entry is ignored.

If multiple candidate switches have the same password, you can select them as a group, and add them at the same time.
If a candidate switch in the group has a password different from the group, only that specific candidate switch is not added to the cluster.

When a candidate switch joins a cluster, it inherits the command-switch password. For more information about setting passwords, see the “Passwords” section on page 6-16.

For additional authentication considerations in switch clusters, see the “TACACS+ and RADIUS” section on page 6-17.

Figure 6-11 Add to Cluster Window

Select a switch, and click Add. Press Ctrl and left-click to select more than one switch.

Enter the password of the candidate switch. If no password exists for the switch, leave this field blank.
Creating a Cluster Standby Group

The cluster standby group members must meet the requirements described in the “Standby Command Switch Characteristics” section on page 6-3 and “HSRP and Standby Command Switches” section on page 6-12. To create a cluster standby group, select Cluster > Standby Command Switches (see Figure 6-13).

Instead of using CMS to add switches to a standby group and to bind the standby group to a cluster, you can use the standby ip, the standby name, and the standby priority interface configuration commands and the cluster standby group global configuration command.

Note

- When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
- When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
- When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.
These abbreviations are appended to the switch host names in the Standby Command Group list to show their eligibility or status in the cluster standby group:

- **AC**—Active command switch
- **SC**—Standby command switch
- **PC**—Member of the cluster standby group but not the standby command switch
- **HC**—Candidate switch that can be added to the cluster standby group
- **CC**—Command switch when HSRP is disabled

You must enter a virtual IP address for the cluster standby group. This address must be in the same subnet as the IP addresses of the switch. The group number must be unique within the IP subnet. It can be from 0 to 255, and the default is 0. The group name can have up to 31 characters.

The Standby Command Configuration window uses the default values for the **preempt** and **name** commands that you have set by using the CLI. If you use this window to create the HSRP group, all switches in the group have the **preempt** command enabled. You must also provide a name for the group.

Note

The HSRP standby hold time interval should be greater than or equal to 3 times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and hello time intervals, refer to the Cisco IOS Release 12.1 documentation set on Cisco.com.

Figure 6-13 Standby Command Configuration Window

![Figure 6-13 Standby Command Configuration Window](image-url)
Verifying a Switch Cluster

When you finish adding cluster members, follow these steps to verify the cluster:

Step 1 Enter the command switch IP address in the browser **Location** field (Netscape Communicator) or **Address** field (Microsoft Internet Explorer) to access all switches in the cluster.

Step 2 Enter the command-switch password.

Step 3 Select **View > Topology** to display the cluster topology and to view link information (see Figure 3-8 on page 3-11). For complete information about the Topology view, including descriptions of the icons, links, and colors, see the “Topology View” section on page 3-10.

Step 4 Select **Reports > Inventory** to display an inventory of the switches in the cluster (see Figure 6-14).

The summary includes information such as switch model numbers, serial numbers, software versions, IP information, and location.

You can also display port and switch statistics from **Reports > Port Statistics** and **Port > Port Settings > Runtime Status**.

Instead of using CMS to verify the cluster, you can use the **show cluster members** user EXEC command from the command switch or use the **show cluster** user EXEC command from the command switch or from a member switch.

Figure 6-14 Inventory Window

If you lose connectivity with a member switch or if a command switch fails, see the “Using Recovery Procedures” section on page 28-6.

For more information about creating and managing clusters, refer to the online help. For information about the cluster commands, refer to the switch command reference.
Using the CLI to Manage Switch Clusters

You can configure member switches from the CLI by first logging into the command switch. Enter the `rcommand` user EXEC command and the member switch number to start a Telnet session (through a console or Telnet connection) and to access the member switch CLI. The command mode changes, and the IOS commands operate as usual. Enter the `exit` privileged EXEC command on the member switch to return to the command-switch CLI.

This example shows how to log into member-switch 3 from the command-switch CLI:

```
switch# rcommand 3
```

If you do not know the member-switch number, enter the `show cluster members` privileged EXEC command on the command switch. For more information about the `rcommand` command and all other cluster commands, refer to the switch command reference.

The Telnet session accesses the member-switch CLI at the same privilege level as on the command switch. The IOS commands then operate as usual. For instructions on configuring the switch for a Telnet session, see the “Disabling Password Recovery” section on page 7-5.

Catalyst 1900 and Catalyst 2820 CLI Considerations

If your switch cluster has Catalyst 1900 and Catalyst 2820 switches running standard edition software, the Telnet session accesses the management console (a menu-driven interface) if the command switch is at privilege level 15. If the command switch is at privilege level 1 to 14, you are prompted for the password to access the menu console.

Command-switch privilege levels map to the Catalyst 1900 and Catalyst 2820 member switches running standard and Enterprise Edition Software as follows:

- If the command-switch privilege level is 1 to 14, the member switch is accessed at privilege level 1.
- If the command-switch privilege level is 15, the member switch is accessed at privilege level 15.

Note

The Catalyst 1900 and Catalyst 2820 CLI is available only on switches running Enterprise Edition Software.

For more information about the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides for those switches.
Using SNMP to Manage Switch Clusters

When you first power on the switch, SNMP is enabled if you enter the IP information by using the setup program and accept its proposed configuration. If you did not use the setup program to enter the IP information and SNMP was not enabled, you can enable it as described in the “Configuring SNMP” section on page 24-5. On Catalyst 1900 and Catalyst 2820 switches, SNMP is enabled by default.

When you create a cluster, the command switch manages the exchange of messages between member switches and an SNMP application. The cluster software on the command switch appends the member switch number (@esN, where N is the switch number) to the first configured read-write and read-only community strings on the command switch and propagates them to the member switch. The command switch uses this community string to control the forwarding of gets, sets, and get-next messages between the SNMP management station and the member switches.

Note When a cluster standby group is configured, the command switch can change without your knowledge. Use the first read-write and read-only community strings to communicate with the command switch if there is a cluster standby group configured for the cluster.

If the member switch does not have an IP address, the command switch redirects traps from the member switch to the management station, as shown in Figure 6-15. If a member switch has its own IP address and community strings, the member switch can send traps directly to the management station, without going through the command switch.

If a member switch has its own IP address and community strings, they can be used in addition to the access provided by the command switch. For more information about SNMP and community strings, see Chapter 24, “Configuring SNMP.”

Figure 6-15 SNMP Management for a Cluster

![SNMP Management for a Cluster Diagram](image-url)
Administering the Switch

This chapter describes how to perform one-time operations to administer your switch. This chapter consists of these sections:

- Preventing Unauthorized Access to Your Switch, page 7-1
- Protecting Access to Privileged EXEC Commands, page 7-2
- Controlling Switch Access with TACACS+, page 7-10
- Controlling Switch Access with RADIUS, page 7-18
- Configuring the Switch for Local Authentication and Authorization, page 7-32
- Configuring the Switch for Secure Shell, page 7-33
- Managing the System Time and Date, page 7-34
- Configuring a System Name and Prompt, page 7-48
- Creating a Banner, page 7-51
- Managing the MAC Address Table, page 7-54
- Managing the ARP Table, page 7-61
- Switch Software Releases, page 7-61

Preventing Unauthorized Access to Your Switch

You can prevent unauthorized users from reconfiguring your switch and viewing configuration information. Typically, you want network administrators to have access to your switch while you restrict access to users who dial from outside the network through an asynchronous port, connect from outside the network through a serial port, or connect through a terminal or workstation from within the local network.

To prevent unauthorized access into your switch, you should configure one or more of these security features:

- At a minimum, you should configure passwords and privileges at each switch port. These passwords are locally stored on the switch. When users attempt to access the switch through a port or line, they must enter the password specified for the port or line before they can access the switch. For more information, see the “Protecting Access to Privileged EXEC Commands” section on page 7-2.
Protecting Access to Privileged EXEC Commands

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Security Command Reference for Release 12.1.

This section describes how to control access to the configuration file and privileged EXEC commands. It contains this configuration information:

- Default Password and Privilege Level Configuration, page 7-2
- Setting or Changing a Static Enable Password, page 7-3
- Protecting Enable and Enable Secret Passwords with Encryption, page 7-4
- Disabling Password Recovery, page 7-5
- Setting a Telnet Password for a Terminal Line, page 7-6
- Configuring Username and Password Pairs, page 7-7
- Configuring Multiple Privilege Levels, page 7-8

Default Password and Privilege Level Configuration

Table 7-1 shows the default password and privilege level configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>
Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Beginning in privileged EXEC mode, follow these steps to set or change a static enable password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 enable password password| Define a new password or change an existing password for access to privileged EXEC mode.
By default, no password is defined.
For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. It can contain the question mark (?) character if you precede the question mark with the key combination Ctrl-v when you create the password; for example, to create the password abc?123, do this:

Enter abc.
Enter Ctrl-v.
Enter ?123.
When the system prompts you to enter the enable password, you need not precede the question mark with the Ctrl-v; you can simply enter abc?123 at the password prompt. |
| Step 3 end | Return to privileged EXEC mode. |
| Step 4 show running-config | Verify your entries. |
| Step 5 copy running-config startup-config | (Optional) Save your entries in the configuration file.
The enable password is not encrypted and can be read in the switch configuration file. |

To remove the password, use the no enable password global configuration command.

This example shows how to change the enable password to l1u2c3k4y5. The password is not encrypted and provides access to level 15 (traditional privileged EXEC mode access):

Switch(config)# enable password l1u2c3k4y5
Protecting Enable and Enable Secret Passwords with Encryption

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a Trivial File Transfer Protocol (TFTP) server, you can use either the `enable password` or `enable secret` global configuration commands. Both commands accomplish the same thing; that is, you can establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify.

We recommend that you use the `enable secret` command because it uses an improved encryption algorithm.

If you configure the `enable secret` command, it takes precedence over the `enable password` command; the two commands cannot be in effect simultaneously.

Beginning in privileged EXEC mode, follow these steps to configure encryption for enable and enable secret passwords:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>`enable password [level level] {password</td>
<td>encryption-type encrypted-password}<code>or</code>enable secret [level level] {password</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For <code>level</code>, the range is from 0 to 15. Level 1 is normal user EXEC mode privileges. The default level is 15 (privileged EXEC mode privileges). • For <code>password</code>, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined. • (Optional) For <code>encryption-type</code>, only type 5, a Cisco proprietary encryption algorithm, is available. If you specify an encryption type, you must provide an encrypted password—an encrypted password you copy from another Catalyst2950 switch configuration.</td>
</tr>
<tr>
<td>3</td>
<td>service password-encryption</td>
<td>(Optional) Encrypt the password when the password is defined or when the configuration is written. Encryption prevents the password from being readable in the configuration file.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
If both the enable and enable secret passwords are defined, users must enter the enable secret password. Use the `level` keyword to define a password for a specific privilege level. After you specify the level and set a password, give the password only to users who need to have access at this level. Use the `privilege level` global configuration command to specify commands accessible at various levels. For more information, see the “Configuring Multiple Privilege Levels” section on page 7-8.

If you enable password encryption, it applies to all passwords including username passwords, authentication key passwords, the privileged command password, and console and virtual terminal line passwords.

To remove a password and level, use the `no enable password [level level]` or `no enable secret [level level]` global configuration command. To disable password encryption, use the `no service password-encryption` global configuration command.

This example shows how to configure the encrypted password 1FaD0$Xyti5Rkls3LoyxzS8 for privilege level 2:

```
Switch(config)# enable secret level 2 5 $1$FaD0$Xyti5Rkls3LoyxzS8
```

Disabling Password Recovery

The default configuration for Catalyst 2950 LRE switches allows an end user with physical access to the switch to recover from a lost password by interrupting the start process while the switch is powering up and then by entering a new password. The password recovery disable feature for Catalyst 2950 LRE switches allows the system administrator to protect access to the switch password by disabling part of this functionality and allowing the user to interrupt the start process only by agreeing to set the system back to the default configuration. With password recovery disabled, you can still interrupt the start process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted.

The password recovery disable feature is valid only on Catalyst 2950 LRE switches; it is not available for Catalyst 2950 Gigabit Ethernet switches.

Note

If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the start process and sets the system back to defaults. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the XMODEM protocol. For more information, see the “Recovering from a Lost or Forgotten Password” section on page 28-6.
Beginning in privileged EXEC mode, follow these steps to disable password recovery:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>no service password-recovery</td>
<td>Disable password recovery. This setting is saved in an area of the Flash memory that is accessible by the boot loader and the IOS image, but it is not part of the file system and is not accessible by any user.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show version</td>
<td>Verify the configuration by checking the last few lines of the display.</td>
</tr>
</tbody>
</table>

To re-enable password recovery, use the `service password-recovery` global configuration command.

Note
Disabling password recovery does not work if you have set the switch to start manually by using the `boot manual` global configuration command because this command allows the user to automatically see the boot loader prompt (`switch:`) after power cycling the switch.

Setting a Telnet Password for a Terminal Line

When you power-up your switch for the first time, an automatic setup program runs to assign IP information and to create a default configuration for continued use. The setup program also prompts you to configure your switch for Telnet access through a password. If you neglected to configure this password during the setup program, you can configure it now through the command-line interface (CLI).

Beginning in privileged EXEC mode, follow these steps to configure your switch for Telnet access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Attach a PC or workstation with emulation software to the switch console port.</td>
</tr>
<tr>
<td></td>
<td>The default data characteristics of the console port are 9600, 8, 1, no parity. You might need to press the Return key several times to see the command-line prompt.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>enable password</td>
<td>Enter privileged EXEC mode.</td>
</tr>
<tr>
<td><code>password</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>line vty 0 15</td>
<td>Configure the number of Telnet sessions (lines), and enter line configuration mode.</td>
</tr>
<tr>
<td></td>
<td>There are 16 possible sessions on a command-capable switch. The 0 and 15 mean that you are configuring all 16 possible Telnet sessions.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>password <code>password</code></td>
<td>Enter a Telnet password for the line or lines. For password, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Protecting Access to Privileged EXEC Commands

To remove the password, use the `no password` global configuration command.

This example shows how to set the Telnet password to `let45me67in89`:

```
Switch(config)# line vty 10
Switch(config-line)# password let45me67in89
```

Configuring Username and Password Pairs

You can configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or interfaces and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.

Beginning in privileged EXEC mode, follow these steps to establish a username-based authentication system that requests a login username and a password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | `username name [privilege level] {password encryption-type password}` Enter the username, privilege level, and password for each user.
 - For `name`, specify the user ID as one word. Spaces and quotation marks are not allowed.
 - (Optional) For `level`, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 1 gives user EXEC mode access.
 - For `encryption-type`, enter 0 to specify that an unencrypted password will follow. Enter 7 to specify that a hidden password will follow.
 - For `password`, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the `username` command. |
| Step 3 | `line console 0` or `line vty 0 15` Enter line configuration mode, and configure the console port (line 0) or the VTY lines (line 0 to 15). |
| Step 4 | `login local` Enable local password checking at login time. Authentication is based on the username specified in Step 2. |
| Step 5 | `end` Return to privileged EXEC mode. |
| Step 6 | `show running-config` Verify your entries. |
| Step 7 | `copy running-config startup-config` (Optional) Save your entries in the configuration file. |
To disable username authentication for a specific user, use the no username name global configuration command. To disable password checking and allow connections without a password, use the no login line configuration command.

Configuring Multiple Privilege Levels

By default, the IOS software has two modes of password security: user EXEC and privileged EXEC. You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.

For example, if you want many users to have access to the clear line command, you can assign it level 2 security and distribute the level 2 password fairly widely. But if you want more restricted access to the configure command, you can assign it level 3 security and distribute that password to a more restricted group of users.

This section includes this configuration information:

- Setting the Privilege Level for a Command, page 7-8
- Changing the Default Privilege Level for Lines, page 7-9
- Logging into and Exiting a Privilege Level, page 7-10

Setting the Privilege Level for a Command

Beginning in privileged EXEC mode, follow these steps to set the privilege level for a command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>privilege mode level level command</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>enable password level level password</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
Protecting Access to Privileged EXEC Commands

When you set a command to a privilege level, all commands whose syntax is a subset of that command are also set to that level. For example, if you set the `show ip traffic` command to level 15, the `show` commands and `show ip` commands are automatically set to privilege level 15 unless you set them individually to different levels.

To return to the default privilege for a given command, use the `no privilege mode level level` global configuration command.

This example shows how to set the `configure` command to privilege level 14 and define `SecretPswd14` as the password users must enter to use level 14 commands:

```
Switch(config)# privilege exec level 14 configure
Switch(config)# enable password level 14 SecretPswd14
```

Changing the Default Privilege Level for Lines

Beginning in privileged EXEC mode, follow these steps to change the default privilege level for a line:

```
Step 1 configure terminal
Enter global configuration mode.

Step 2 line vty line
Select the virtual terminal line on which to restrict access.

Step 3 privilege level level
Change the default privilege level for the line.
For level, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the `enable` password.

Step 4 end
Return to privileged EXEC mode.

Step 5 show running-config
Verify your entries.
The first command displays the password and access level configuration.

Step 6 copy running-config startup-config
(Optional) Save your entries in the configuration file.

users can override the privilege level you set using the `privilege level` line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the `disable` command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

To return to the default line privilege level, use the `no privilege level` line configuration command.
Logging into and Exiting a Privilege Level

Beginning in privileged EXEC mode, follow these steps to log in to a specified privilege level and to exit to a specified privilege level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable level</td>
<td>Log in to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is 0 to 15.</td>
</tr>
<tr>
<td>disable level</td>
<td>Exit to a specified privilege level.</td>
</tr>
<tr>
<td></td>
<td>For level, the range is 0 to 15.</td>
</tr>
</tbody>
</table>

Controlling Switch Access with TACACS+

This section describes how to enable and configure Terminal Access Controller Access Control System Plus (TACACS+), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. TACACS+ is facilitated through authentication, authorization, accounting (AAA) and can be enabled only through AAA commands.

Note

For complete syntax and usage information for the commands used in this section, refer to the _Cisco IOS Security Command Reference for Release 12.1_.

This section contains this configuration information:

- Understanding TACACS+, page 7-10
- TACACS+ Operation, page 7-12
- Configuring TACACS+, page 7-12
- Displaying the TACACS+ Configuration, page 7-17

Understanding TACACS+

TACACS+ is a security application that provides centralized validation of users attempting to gain access to your switch. TACACS+ services are maintained in a database on a TACACS+ daemon typically running on a UNIX or Windows NT workstation. You should have access to and should configure a TACACS+ server before the configuring TACACS+ features on your switch.

TACACS+ provides for separate and modular authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—independently. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The goal of TACACS+ is to provide a method for managing multiple network access points from a single management service. Your switch can be a network access server along with other Cisco routers and access servers. A network access server provides connections to a single user, to a network or subnetwork, and to interconnected networks as shown in Figure 7-1.
TACACS+, administered through the AAA security services, can provide these services:

- **Authentication**—Provides complete control of authentication through login and password dialog, challenge and response, and messaging support. The authentication facility can conduct a dialog with the user (for example, after a username and password are provided, to challenge a user with several questions, such as home address, mother's maiden name, service type, and social security number). The TACACS+ authentication service can also send messages to user screens. For example, a message could notify users that their passwords must be changed because of the company's password aging policy.

- **Authorization**—Provides fine-grained control over user capabilities for the duration of the user’s session, including but not limited to setting autocommands, access control, session duration, or protocol support. You can also enforce restrictions on what commands a user can execute with the TACACS+ authorization feature.

- **Accounting**—Collects and sends information used for billing, auditing, and reporting to the TACACS+ daemon. Network managers can use the accounting facility to track user activity for a security audit or to provide information for user billing. Accounting records include user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes.

The TACACS+ protocol provides authentication between the switch and the TACACS+ daemon, and it ensures confidentiality because all protocol exchanges between the switch and the TACACS+ daemon are encrypted.

You need a system running the TACACS+ daemon software to use TACACS+ on your switch.
TACACS+ Operation

When a user attempts a simple ASCII login by authenticating to a switch using TACACS+, this process occurs:

1. When the connection is established, the switch contacts the TACACS+ daemon to obtain a username prompt, which is then displayed to the user. The user enters a username, and the switch then contacts the TACACS+ daemon to obtain a password prompt. The switch displays the password prompt to the user, the user enters a password, and the password is then sent to the TACACS+ daemon.

   TACACS+ allows a conversation to be held between the daemon and the user until the daemon receives enough information to authenticate the user. The daemon prompts for a username and password combination, but can include other items, such as the user’s mother’s maiden name.

2. The switch eventually receives one of these responses from the TACACS+ daemon:
   a. ACCEPT—The user is authenticated and service can begin. If the switch is configured to require authorization, authorization begins at this time.
   b. REJECT—The user is not authenticated. The user can be denied access or is prompted to retry the login sequence, depending on the TACACS+ daemon.
   c. ERROR—An error occurred at some time during authentication with the daemon or in the network connection between the daemon and the switch. If an ERROR response is received, the switch typically tries to use an alternative method for authenticating the user.
   d. CONTINUE—The user is prompted for additional authentication information.

   After authentication, the user undergoes an additional authorization phase if authorization has been enabled on the switch. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3. If TACACS+ authorization is required, the TACACS+ daemon is again contacted, and it returns an ACCEPT or REJECT authorization response. If an ACCEPT response is returned, the response contains data in the form of attributes that direct the EXEC or NETWORK session for that user, determining the services that the user can access:
   - Telnet, Secure Shell (SSH), rlogin, or privileged EXEC services
   - Connection parameters, including the host or client IP address, access list, and user timeouts

Configuring TACACS+

This section describes how to configure your switch to support TACACS+. At a minimum, you must identify the host or hosts maintaining the TACACS+ daemon and define the method lists for TACACS+ authentication. You can optionally define method lists for TACACS+ authorization and accounting. A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used, thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.
This section contains this configuration information:

- Default TACACS+ Configuration, page 7-13
- Identifying the TACACS+ Server Host and Setting the Authentication Key, page 7-13
- Configuring TACACS+ Login Authentication, page 7-14
- Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services, page 7-16
- Starting TACACS+ Accounting, page 7-17

Default TACACS+ Configuration

TACACS+ and AAA are disabled by default.

To prevent a lapse in security, you cannot configure TACACS+ through a network management application. When enabled, TACACS+ can authenticate users accessing the switch through the CLI.

Note
Although TACACS+ configuration is performed through the CLI, the TACACS+ server authenticates HTTP connections that have been configured with a privilege level of 15.

Identifying the TACACS+ Server Host and Setting the Authentication Key

You can configure the switch to use a single server or AAA server groups to group existing server hosts for authentication. You can group servers to select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list and contains the list of IP addresses of the selected server hosts.

Beginning in privileged EXEC mode, follow these steps to identify the IP host or host maintaining TACACS+ server and optionally set the encryption key:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>tacacs-server host hostname [port integer] [timeout integer] [key string]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa new-model</td>
</tr>
</tbody>
</table>
To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.

### Configuring TACACS+ Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various interfaces. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific interface before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all interfaces except those that have a named method list explicitly defined. A defined method list overrides the default method list.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

---

**Command** | **Purpose**
--- | ---
**Step 4** | `aaa group server tacacs+ group-name` *(Optional)* Define the AAA server-group with a group name. This command puts the switch in a server group subconfiguration mode.

**Step 5** | `server ip-address` *(Optional)* Associate a particular TACACS+ server with the defined server group. Repeat this step for each TACACS+ server in the AAA server group. Each server in the group must be previously defined in Step 2.

**Step 6** | `end` Return to privileged EXEC mode.

**Step 7** | `show tacacs` Verify your entries.

**Step 8** | `copy running-config startup-config` *(Optional)* Save your entries in the configuration file.
Beginning in privileged EXEC mode, follow these steps to configure login authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>aaa new-model</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>aaa authentication login {default</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>line [console</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>login authentication {default</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To disable AAA, use the **no aaa new-model** global configuration command. To disable AAA authentication, use the **no aaa authentication login** [default | list-name] method1 [method2... ] global configuration command. To either disable TACACS+ authentication for logins or to return to the default value, use the **no login authentication** [default | list-name] line configuration command.

### Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is located either in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the **aaa authorization** global configuration command with the **tacacs+** keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The **aaa authorization exec tacacs+ local** command sets these authorization parameters:

- Use TACACS+ for privileged EXEC access authorization if authentication was performed by using TACACS+.
- Use the local database if authentication was not performed by using TACACS+.

**Note**

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify TACACS+ authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>aaa authorization network tacacs+</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>aaa authorization exec tacacs+</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable authorization, use the **no aaa authorization** [network | exec] method1 global configuration command.
Starting TACACS+ Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable TACACS+ accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>aaa accounting network start-stop tacacs+</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>aaa accounting exec start-stop tacacs+</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable accounting, use the **no aaa accounting** `{network | exec} {start-stop} method1...` global configuration command.

Displaying the TACACS+ Configuration

To display TACACS+ server statistics, use the **show tacacs** privileged EXEC command.
Controlling Switch Access with RADIUS

This section describes how to enable and configure the Remote Authentication Dial-In User Service (RADIUS), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. RADIUS is facilitated through AAA and can be enabled only through AAA commands.

**Note**

For complete syntax and usage information for the commands used in this section, refer to the *Cisco IOS Security Command Reference for Release 12.1*.

This section contains this configuration information:

- Understanding RADIUS, page 7-18
- RADIUS Operation, page 7-19
- Configuring RADIUS, page 7-20
- Displaying the RADIUS Configuration, page 7-31

Understanding RADIUS

RADIUS is a distributed client/server system that secures networks against unauthorized access. RADIUS clients run on supported Cisco routers and switches, including Catalyst 3550 multilayer switches and Catalyst 2950 series switches. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information. The RADIUS host is normally a multiuser system running RADIUS server software from Cisco (Cisco Secure Access Control Server version 3.0), Livingston, Merit, Microsoft, or another software provider. For more information, refer to the RADIUS server documentation.

Use RADIUS in these network environments that require access security:

- Networks with multiple-vendor access servers, each supporting RADIUS. For example, access servers from several vendors use a single RADIUS server-based security database. In an IP-based network with multiple vendors’ access servers, dial-in users are authenticated through a RADIUS server that has been customized to work with the Kerberos security system.
- Turnkey network security environments in which applications support the RADIUS protocol, such as in an access environment that uses a smart card access control system. In one case, RADIUS has been used with Enigma’s security cards to validate users and to grant access to network resources.
- Networks already using RADIUS. You can add a Cisco switch containing a RADIUS client to the network. This might be the first step when you make a transition to a TACACS+ server. See Figure 7-2 on page 7-19.
- Network in which the user must only access a single service. Using RADIUS, you can control user access to a single host, to a single utility such as Telnet, or to the network through a protocol such as IEEE 802.1X. For more information about this protocol, see Chapter 8, “Configuring 802.1X Port-Based Authentication.”
- Networks that require resource accounting. You can use RADIUS accounting independently of RADIUS authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and end of services, showing the amount of resources (such as time, packets, bytes, and so forth) used during the session. An Internet service provider might use a freeware-based version of RADIUS access control and accounting software to meet special security and billing needs.
RADIUS is not suitable in these network security situations:

- Multiprotocol access environments. RADIUS does not support AppleTalk Remote Access (ARA), NetBIOS Frame Control Protocol (NBFCP), NetWare Asynchronous Services Interface (NASI), or X.25 PAD connections.
- Switch-to-switch or router-to-router situations. RADIUS does not provide two-way authentication. RADIUS can be used to authenticate from one device to a non-Cisco device if the non-Cisco device requires authentication.
- Networks using a variety of services. RADIUS generally binds a user to one service model.

**Figure 7-2  Transitioning from RADIUS to TACACS+ Services**

![](image)

**RADIUS Operation**

When a user attempts to log in and authenticate to a switch that is access controlled by a RADIUS server, these events occur:

1. The user is prompted to enter a username and password.
2. The username and encrypted password are sent over the network to the RADIUS server.
3. The user receives one of these responses from the RADIUS server:
   a. ACCEPT—The user is authenticated.
   b. REJECT—The user is either not authenticated and is prompted to re-enter the username and password, or access is denied.
   c. CHALLENGE—A challenge requires additional data from the user.
   d. CHALLENGE PASSWORD—A response requests the user to select a new password.

The ACCEPT or REJECT response is bundled with additional data that is used for privileged EXEC or network authorization. Users must first successfully complete RADIUS authentication before proceeding to RADIUS authorization, if it is enabled. The additional data included with the ACCEPT or REJECT packets includes these items:

- Telnet, SSH, rlogin, or privileged EXEC services
- Connection parameters, including the host or client IP address, access list, and user timeouts
Configuring RADIUS

This section describes how to configure your switch to support RADIUS. At a minimum, you must identify the host or hosts that run the RADIUS server software and define the method lists for RADIUS authentication. You can optionally define method lists for RADIUS authorization and accounting.

A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used (such as TACACS+ or local username lookup), thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

You should have access to and should configure a RADIUS server before configuring RADIUS features on your switch.

This section contains this configuration information:
- Default RADIUS Configuration, page 7-20
- Identifying the RADIUS Server Host, page 7-20 (required)
- Configuring RADIUS Login Authentication, page 7-23 (required)
- Defining AAA Server Groups, page 7-25 (optional)
- Configuring RADIUS Authorization for User Privileged Access and Network Services, page 7-27 (optional)
- Starting RADIUS Accounting, page 7-28 (optional)
- Configuring Settings for All RADIUS Servers, page 7-29 (optional)
- Configuring the Switch to Use Vendor-Specific RADIUS Attributes, page 7-29 (optional)
- Configuring the Switch for Vendor-Proprietary RADIUS Server Communication, page 7-30 (optional)

Default RADIUS Configuration

RADIUS and AAA are disabled by default.

To prevent a lapse in security, you cannot configure RADIUS through a network management application. When enabled, RADIUS can authenticate users accessing the switch through the CLI.

Identifying the RADIUS Server Host

Switch-to-RADIUS-server communication involves several components:
- Host name or IP address
- Authentication destination port
- Accounting destination port
- Key string
- Timeout period
- Retransmission value
You identify RADIUS security servers by their host name or IP address, host name and specific UDP port numbers, or their IP address and specific UDP port numbers. The combination of the IP address and the UDP port number creates a unique identifier, allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address.

If two different host entries on the same RADIUS server are configured for the same service—for example, accounting—the second host entry configured acts as a fail-over backup to the first one. Using this example, if the first host entry fails to provide accounting services, the switch tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order that they are configured.)

A RADIUS server and the switch use a shared secret text string to encrypt passwords and exchange responses. To configure RADIUS to use the AAA security commands, you must specify the host running the RADIUS server daemon and a secret text (key) string that it shares with the switch.

The timeout, retransmission, and encryption key values can be configured globally for all RADIUS servers, on a per-server basis, or in some combination of global and per-server settings. To apply these settings globally to all RADIUS servers communicating with the switch, use the three unique global configuration commands: `radius-server timeout`, `radius-server retransmit`, and `radius-server key`. To apply these values on a specific RADIUS server, use the `radius-server host` global configuration command.

**Note**

If you configure both global and per-server functions (timeout, retransmission, and key commands) on the switch, the per-server timer, retransmission, and key value commands override global timer, retransmission, and key value commands. For information on configuring these setting on all RADIUS servers, see the “Configuring Settings for All RADIUS Servers” section on page 7-29.

You can configure the switch to use AAA server groups to group existing server hosts for authentication. For more information, see the “Defining AAA Server Groups” section on page 7-25.

Beginning in privileged EXEC mode, follow these steps to configure per-server RADIUS server communication. This procedure is required.
### Command Purpose

**Step 1**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>radius-server host</td>
<td>Specify the IP address or host name of the remote RADIUS server host.</td>
</tr>
<tr>
<td>(hostname</td>
<td>ip-address)</td>
</tr>
<tr>
<td>[auth-port port-number]</td>
<td>port for authentication requests.</td>
</tr>
<tr>
<td>[acct-port port-number]</td>
<td>(Optional) For acct-port port-number, specify the UDP destination</td>
</tr>
<tr>
<td>[timeout seconds]</td>
<td>port for accounting requests.</td>
</tr>
<tr>
<td>[retransmit retries]</td>
<td>(Optional) For timeout seconds, specify the time interval that the</td>
</tr>
<tr>
<td>[key string]</td>
<td>switch waits for the RADIUS server to reply before resending. The</td>
</tr>
<tr>
<td></td>
<td>range is 1 to 1000. This setting overrides the radius-server timeout</td>
</tr>
<tr>
<td></td>
<td>global configuration command setting. If no timeout is set with the</td>
</tr>
<tr>
<td></td>
<td>radius-server host command, the setting of the radius-server timeout</td>
</tr>
<tr>
<td></td>
<td>command is used.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For retransmit retries, specify the number of times a</td>
</tr>
<tr>
<td></td>
<td>RADIUS request is resent to a server if that server is not responding</td>
</tr>
<tr>
<td></td>
<td>or responding slowly. The range is 1 to 1000. If no retransmit value</td>
</tr>
<tr>
<td></td>
<td>is set with the radius-server host command, the setting of the</td>
</tr>
<tr>
<td></td>
<td>radius-server retransmit global configuration command is used.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For key string, specify the authentication and encryption</td>
</tr>
<tr>
<td></td>
<td>key used between the switch and the RADIUS daemon running on the</td>
</tr>
<tr>
<td></td>
<td>RADIUS server.</td>
</tr>
</tbody>
</table>

**Note**

The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the radius-server host command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.

To configure the switch to recognize more than one host entry associated with a single IP address, enter this command as many times as necessary, making sure that each UDP port number is different. The switch software searches for hosts in the order in which you specify them. Set the timeout, retransmit, and encryption key values to use with the specific RADIUS host.

**Step 3**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Step 4**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

**Step 5**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the specified RADIUS server, use the **no radius-server host hostname | ip-address** global configuration command.

This example shows how to configure one RADIUS server to be used for authentication and another to be used for accounting:

```
Switch(config)# radius-server host 172.29.36.49 auth-port 1612 key rad1
Switch(config)# radius-server host 172.20.36.50 acct-port 1618 key rad2
```
This example shows how to configure host1 as the RADIUS server and to use the default ports for both authentication and accounting:

Switch(config)# radius-server host host1

Note You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, refer to the RADIUS server documentation.

Configuring RADIUS Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various interfaces. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific interface before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named default). The default method list is automatically applied to all interfaces except those that have a named method list explicitly defined.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication. This procedure is required.
Controlling Switch Access with RADIUS

Command | Purpose
---|---
**Step 1** | configure terminal
Enter global configuration mode.
**Step 2** | aaa new-model
Enable AAA.
**Step 3** | aaa authentication login {default | list-name} method1 [method2...]
Create a login authentication method list.
- To create a default list that is used when a named list is *not* specified in the `login authentication` command, use the `default` keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.
- For `list-name`, specify a character string to name the list you are creating.
- For `method1...`, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.

Select one of these methods:
- **enable**—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the `enable password` global configuration command.
- **group radius**—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server. For more information, see the “Identifying the RADIUS Server Host” section on page 7-20.
- **line**—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the `password password` line configuration command.
- **local**—Use the local username database for authentication. You must enter username information in the database. Use the `username name password` global configuration command.
- **local-case**—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the `username password` global configuration command.
- **none**—Do not use any authentication for login.
**Step 4** | line {console | tty | vty} line-number [ending-line-number]
Enter line configuration mode, and configure the lines to which you want to apply the authentication list.
**Step 5** | login authentication {default | list-name}
Apply the authentication list to a line or set of lines.
- If you specify `default`, use the default list created with the `aaa authentication login` command.
- For `list-name`, specify the list created with the `aaa authentication login` command.
**Step 6** | end
Return to privileged EXEC mode.
**Step 7** | show running-config
Verify your entries.
**Step 8** | copy running-config startup-config
(Optional) Save your entries in the configuration file.
To disable AAA, use the `no aaa new-model` global configuration command. To disable AAA authentication, use the `no aaa authentication login {default | list-name} method1 [method2...]` global configuration command. To either disable RADIUS authentication for logins or to return to the default value, use the `no login authentication {default | list-name}` line configuration command.

**Defining AAA Server Groups**

You can configure the switch to use AAA server groups to group existing server hosts for authentication. You select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list, which lists the IP addresses of the selected server hosts.

Server groups also can include multiple host entries for the same server if each entry has a unique identifier (the combination of the IP address and UDP port number), allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. If you configure two different host entries on the same RADIUS server for the same service, (for example, accounting), the second configured host entry acts as a fail-over backup to the first one.

You use the `server` group server configuration command to associate a particular server with a defined group server. You can either identify the server by its IP address or identify multiple host instances or entries by using the optional `auth-port` and `acct-port` keywords.
Beginning in privileged EXEC mode, follow these steps to define the AAA server group and associate a particular RADIUS server with it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>radius-server host</strong> {hostname</td>
</tr>
</tbody>
</table>

Specify the IP address or host name of the remote RADIUS server host.
- (Optional) For **auth-port** port-number, specify the UDP destination port for authentication requests.
- (Optional) For **acct-port** port-number, specify the UDP destination port for accounting requests.
- (Optional) For **timeout** seconds, specify the time interval that the switch waits for the RADIUS server to reply before resending. The range is 1 to 1000. This setting overrides the **radius-server timeout** global configuration command setting. If no timeout is set with the **radius-server host** command, the setting of the **radius-server timeout** command is used.
- (Optional) For **retransmit** retries, specify the number of times a RADIUS request is resent to a server if that server is not responding or responding slowly. The range is 1 to 1000. If no retransmit value is set with the **radius-server host** command, the setting of the **radius-server retransmit** global configuration command is used.
- (Optional) For **key** string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.

**Note**  
The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the **radius-server host** command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.

To configure the switch to recognize more than one host entry associated with a single IP address, enter this command as many times as necessary, making sure that each UDP port number is different. The switch software searches for hosts in the order in which you specify them. Set the timeout, retransmit, and encryption key values to use with the specific RADIUS host.

| Step 3 | aaa new-model |
| Step 4 | aaa group server radius **group-name** |
| Step 5 | server **ip-address** |
| Step 6 | end |
| Step 7 | show running-config |
To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command. To remove a server group from the configuration list, use the `no aaa group server radius group-name` global configuration command. To remove the IP address of a RADIUS server, use the `no server ip-address` server group configuration command.

In this example, the switch is configured to recognize two different RADIUS group servers (group1 and group2). Group1 has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```text
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```

### Configuring RADIUS Authorization for User Privileged Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `radius` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec radius local` command sets these authorization parameters:

- Use RADIUS for privileged EXEC access authorization if authentication was performed by using RADIUS.
- Use the local database if authentication was not performed by using RADIUS.

**Note**

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.
Beginning in privileged EXEC mode, follow these steps to specify RADIUS authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa authorization network radius</td>
<td>Configure the switch for user RADIUS authorization for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3 aaa authorization exec radius</td>
<td>Configure the switch for user RADIUS authorization to determine if the user has privileged EXEC access. The exec keyword might return user profile information (such as autocmd information).</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

**Starting RADIUS Accounting**

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable RADIUS accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa accounting network start-stop radius</td>
<td>Enable RADIUS accounting for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3 aaa accounting exec start-stop radius</td>
<td>Enable RADIUS accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.
Configuring Settings for All RADIUS Servers

Beginning in privileged EXEC mode, follow these steps to configure global communication settings between the switch and all RADIUS servers:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>radius-server key <em>string</em></td>
<td>Specify the shared secret text string used between the switch and all RADIUS servers. <strong>Note</strong>: The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>3</td>
<td>radius-server retransmit <em>retries</em></td>
<td>Specify the number of times the switch sends each RADIUS request to the server before giving up. The default is 3; the range 1 to 1000.</td>
</tr>
<tr>
<td>4</td>
<td>radius-server timeout <em>seconds</em></td>
<td>Specify the number of seconds a switch waits for a reply to a RADIUS request before resending the request. The default is 5 seconds; the range is 1 to 1000.</td>
</tr>
<tr>
<td>5</td>
<td>radius-server deadtime <em>minutes</em></td>
<td>Specify the number of minutes a RADIUS server, which is not responding to authentication requests, to be skipped, thus avoiding the wait for the request to timeout before trying the next configured server. The default is 0; the range is 1 to 1440 minutes.</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td>show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting for the retransmit, timeout, and deadtime, use the no forms of these commands.

Configuring the Switch to Use Vendor-Specific RADIUS Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the switch and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option by using the format recommended in the specification. Cisco’s vendor-ID is 9, and the supported option has vendor-type 1, which is named *cisco-avpair*. The value is a string with this format:

```
protocol : attribute sep value *
```

*Protocol* is a value of the Cisco protocol attribute for a particular type of authorization. *Attribute* and *value* are an appropriate attribute-value (AV) pair defined in the Cisco TACACS+ specification, and *sep* is = for mandatory attributes and * for optional attributes. This allows the full set of features available for TACACS+ authorization to also be used for RADIUS.
For example, the following AV pair activates Cisco’s *multiple named ip address pools* feature during IP authorization (during PPP’s IPCP address assignment):

```
cisco-avpair= “ip:addr-pool=first”
```

The following example shows how to provide a user logging in from a switch with immediate access to privileged EXEC commands:

```
cisco-avpair= “shell:priv-lvl=15”
```

Other vendors have their own unique vendor-IDs, options, and associated VSAs. For more information about vendor-IDs and VSAs, refer to RFC 2138, “Remote Authentication Dial-In User Service (RADIUS).”

Beginning in privileged EXEC mode, follow these steps to configure the switch to recognize and use VSAs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> radius-server vsa send [accounting</td>
<td>Enable the switch to recognize and use VSAs as defined by RADIUS IETF attribute 26.</td>
</tr>
<tr>
<td>authentication]</td>
<td>• (Optional) Use the <strong>accounting</strong> keyword to limit the set of recognized vendor-specific attributes to only accounting attributes.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Use the <strong>authentication</strong> keyword to limit the set of recognized vendor-specific attributes to only authentication attributes.</td>
</tr>
<tr>
<td></td>
<td>If you enter this command without keywords, both accounting and authentication vendor-specific attributes are used.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For a complete list of RADIUS attributes or more information about vendor-specific attribute 26, refer to the “RADIUS Attributes” appendix in the *Cisco IOS Security Configuration Guide for Release 12.1*.

**Configuring the Switch for Vendor-Proprietary RADIUS Server Communication**

Although an IETF draft standard for RADIUS specifies a method for communicating vendor-proprietary information between the switch and the RADIUS server, some vendors have extended the RADIUS attribute set in a unique way. Cisco IOS software supports a subset of vendor-proprietary RADIUS attributes.

As mentioned earlier, to configure RADIUS (whether vendor-proprietary or IETF draft-compliant), you must specify the host running the RADIUS server daemon and the secret text string it shares with the switch. You specify the RADIUS host and secret text string by using the `radius-server` global configuration commands.
Beginning in privileged EXEC mode, follow these steps to specify a vendor-proprietary RADIUS server host and a shared secret text string:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server host {hostname | ip-address} non-standard</td>
</tr>
<tr>
<td>Step 3</td>
<td>radius-server key string</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete the vendor-proprietary RADIUS host, use the `no radius-server host \{hostname \| ip-address\} non-standard` global configuration command.

This example shows how to specify a vendor-proprietary RADIUS host and to use a secret key of `rad124` between the switch and the server:

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```

### Displaying the RADIUS Configuration

To display the RADIUS configuration, use the `show running-config` privileged EXEC command.
Configuring the Switch for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The switch then handles authentication and authorization. No accounting is available in this configuration.

Beginning in privileged EXEC mode, follow these steps to configure the switch for local AAA:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>aaa new-model</code> Enable AAA.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>aaa authentication login default local</code> Set the login authentication to use the local username database. The <code>default</code> keyword applies the local user database authentication to all interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>aaa authorization exec local</code> Configure user AAA authorization to determine if the user is allowed to run an EXEC shell by checking the local database.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>aaa authorization network local</code> Configure user AAA authorization for all network-related service requests.</td>
</tr>
</tbody>
</table>
| Step 6  | `username name [privilege level] [password encryption-type password]` Enter the local database, and establish a username-based authentication system. Repeat this command for each user.  
  * For `name`, specify the user ID as one word. Spaces and quotation marks are not allowed.  
  * (Optional) For `level`, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 0 gives user EXEC mode access.  
  * For `encryption-type`, enter 0 to specify that an unencrypted password follows. Enter 7 to specify that a hidden password follows.  
  * For `password`, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the `username` command. |
| Step 7  | `end` Return to privileged EXEC mode. |
| Step 8  | `show running-config` Verify your entries. |
| Step 9  | `copy running-config startup-config` (Optional) Save your entries in the configuration file. |

To disable AAA, use the `no aaa new-model` global configuration command. To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.
Configuring the Switch for Secure Shell

This section describes how to configure the Secure Shell (SSH) feature. To use this feature, the crypto (encrypted) multilayer software image must be installed on your switch. You must download this software image from Cisco.com. For more information, refer to the release notes for this release.

Note

For complete syntax and usage information for the commands used in this section, refer to the “Secure Shell Commands” section in the Cisco IOS Security Command Reference for Release 12.1.

Understanding SSH

SSH is a protocol that provides a secure, remote connection to a Layer 2 or a Layer 3 device. There are two versions of SSH: SSH version 1 and SSH version 2. This software release only supports SSH version 1.

SSH provides more security for remote connections than Telnet by providing strong encryption when a device is authenticated. The SSH feature has an SSH server and an SSH integrated client. The client supports these user authentication methods:

- TACACS+ (for more information, see the “Controlling Switch Access with TACACS+” section on page 7-10)
- RADIUS (for more information, see the “Controlling Switch Access with RADIUS” section on page 7-18)
- Local authentication and authorization (for more information, see the “Configuring the Switch for Local Authentication and Authorization” section on page 7-32)

For more information about SSH, refer to the “Configuring Secure Shell” section in the Cisco IOS Security Configuration Guide for Release 12.2.

Note

The SSH feature in this software release does not support IP Security (IPSec).

Configuring SSH

Before configuring SSH, download the crypto software image from Cisco.com. For more information, refer to the release notes for this release.

For information about configuring SSH and displaying SSH settings, refer to the “Configuring Secure Shell” section in the Cisco IOS Security Configuration Guide for Release 12.2.
Managing the System Time and Date

You can manage the system time and date on your switch using automatic configuration, such as the Network Time Protocol (NTP), or manual configuration methods.

Note
For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This section contains this configuration information:
- Understanding the System Clock, page 7-34
- Understanding Network Time Protocol, page 7-34
- Configuring NTP, page 7-36
- Configuring Time and Date Manually, page 7-43

Understanding the System Clock

The heart of the time service is the system clock. This clock runs from the moment the system starts up and keeps track of the date and time.

The system clock can then be set from these sources:
- Network Time Protocol
- Manual configuration

The system clock can provide time to these services:
- User show commands
- Logging and debugging messages

The system clock keeps track of time internally based on Universal Time Coordinated (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that the time is correctly displayed for the local time zone.

The system clock keeps track of whether the time is authoritative or not (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time is available only for display purposes and is not redistributed. For configuration information, see the “Configuring Time and Date Manually” section on page 7-43.

Understanding Network Time Protocol

The NTP is designed to time-synchronize a network of devices. NTP runs over User Datagram Protocol (UDP), which runs over IP. NTP is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two devices to within a millisecond of one another.
NTP uses the concept of a *stratum* to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.

NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

The communications between devices running NTP (known as *associations*) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

Cisco’s implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet. Figure 7-3 show a typical network example using NTP.

If the network is isolated from the Internet, Cisco’s implementation of NTP allows a device to act as though it is synchronized through NTP, when in fact it has determined the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.
Configuring NTP

The Catalyst 2950 switches do not have a hardware-supported clock, and they cannot function as an NTP master clock to which peers synchronize themselves when an external NTP source is not available. These switches also have no hardware support for a calendar. As a result, the `ntp update-calendar` and the `ntp master` global configuration commands are not available.

This section contains this configuration information:

- Default NTP Configuration, page 7-37
- Configuring NTP Authentication, page 7-37
- Configuring NTP Associations, page 7-38
- Configuring NTP Broadcast Service, page 7-39
- Configuring NTP Access Restrictions, page 7-40
- Configuring the Source IP Address for NTP Packets, page 7-42
- Displaying the NTP Configuration, page 7-43
Default NTP Configuration

Table 7-2 shows the default NTP configuration.

Table 7-2  Default NTP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP authentication</td>
<td>Disabled. No authentication key is specified.</td>
</tr>
<tr>
<td>NTP peer or server associations</td>
<td>None configured.</td>
</tr>
<tr>
<td>NTP broadcast service</td>
<td>Disabled; no interface sends or receives NTP broadcast packets.</td>
</tr>
<tr>
<td>NTP access restrictions</td>
<td>No access control is specified.</td>
</tr>
<tr>
<td>NTP packet source IP address</td>
<td>The source address is determined by the outgoing interface.</td>
</tr>
</tbody>
</table>

NTP is enabled on all interfaces by default. All interfaces receive NTP packets.

Configuring NTP Authentication

This procedure must be coordinated with the administrator of the NTP server; the information you configure in this procedure must be matched by the servers used by the switch to synchronize its time to the NTP server.

Beginning in privileged EXEC mode, follow these steps to authenticate the associations (communications between devices running NTP that provide for accurate timekeeping) with other devices for security purposes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp authenticate</td>
<td>Enable the NTP authentication feature, which is disabled by default.</td>
</tr>
<tr>
<td>Step 3 ntp authentication-key number md5 value</td>
<td>Define the authentication keys. By default, none are defined.</td>
</tr>
<tr>
<td></td>
<td>• For number, specify a key number. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>• md5 specifies that message authentication support is provided by using the message digest algorithm 5 (MD5).</td>
</tr>
<tr>
<td></td>
<td>• For value, enter an arbitrary string of up to eight characters for the key.</td>
</tr>
<tr>
<td></td>
<td>The switch does not synchronize to a device unless both have one of these authentication keys, and the key number is specified by the ntp trusted-key key-number command.</td>
</tr>
<tr>
<td>Step 4 ntp trusted-key key-number</td>
<td>Specify one or more key numbers (defined in Step 3) that a peer NTP device must provide in its NTP packets for this switch to synchronize to it.</td>
</tr>
<tr>
<td></td>
<td>By default, no trusted keys are defined.</td>
</tr>
<tr>
<td></td>
<td>For key-number, specify the key defined in Step 3.</td>
</tr>
<tr>
<td></td>
<td>This command provides protection against accidentally synchronizing the switch to a device that is not trusted.</td>
</tr>
</tbody>
</table>
Managing the System Time and Date

To disable NTP authentication, use the **no ntp authenticate** global configuration command. To remove an authentication key, use the **no ntp authentication-key number** global configuration command. To disable authentication of the identity of a device, use the **no ntp trusted-key key-number** global configuration command.

This example shows how to configure the switch to synchronize only to devices providing authentication key 42 in the device’s NTP packets:

```
Switch(config)# ntp authenticate
Switch(config)# ntp authentication-key 42 md5 aNiceKey
Switch(config)# ntp trusted-key 42
```

### Configuring NTP Associations

An NTP association can be a peer association (this switch can either synchronize to the other device or allow the other device to synchronize to it), or it can be a server association (meaning that only this switch synchronizes to the other device, and not the other way around).

Beginning in privileged EXEC mode, follow these steps to form an NTP association with another device:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ntp peer ip-address [version number] [key keyid] [source interface] [prefer]</td>
</tr>
<tr>
<td>or</td>
<td>ntp server ip-address [version number] [key keyid] [source interface] [prefer]</td>
</tr>
</tbody>
</table>

No peer or server associations are defined by default.

- For *ip-address* in a peer association, specify either the IP address of the peer providing, or being provided, the clock synchronization. For a server association, specify the IP address of the time server providing the clock synchronization.
- (Optional) For *number*, specify the NTP version number. The range is 1 to 3. By default, version 3 is selected.
- (Optional) For *keyid*, enter the authentication key defined with the **ntp authentication-key** global configuration command.
- (Optional) For *interface*, specify the interface from which to pick the IP source address. By default, the source IP address is taken from the outgoing interface.
- (Optional) Enter the **prefer** keyword to make this peer or server the preferred one that provides synchronization. This keyword reduces switching back and forth between peers and servers.
Managing the System Time and Date

You need to configure only one end of an association; the other device can automatically establish the association. If you are using the default NTP version (version 3) and NTP synchronization does not occur, try using NTP version 2. Many NTP servers on the Internet run version 2.

To remove a peer or server association, use the `no ntp peer ip-address` or the `no ntp server ip-address` global configuration command.

This example shows how to configure the switch to synchronize its system clock with the clock of the peer at IP address 172.16.22.44 using NTP version 2:

```
Switch(config)# ntp server 172.16.22.44 version 2
```

### Configuring NTP Broadcast Service

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP addresses of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, the information flow is one-way only.

The switch can send or receive NTP broadcast packets on an interface-by-interface basis if there is an NTP broadcast server, such as a router, broadcasting time information on the network. The switch can send NTP broadcast packets to a peer so that the peer can synchronize to it. The switch can also receive NTP broadcast packets to synchronize its own clock. This section provides procedures for both sending and receiving NTP broadcast packets.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send NTP broadcast packets to peers so that they can synchronize their clock to the switch:

```
Step 1 configure terminal
Step 2 interface interface-id
Step 3 ntp broadcast [version number] [key keyid] [destination-address]
Step 4 end
Step 5 show running-config
```

**Command**	**Purpose**
Step 3 end | Return to privileged EXEC mode.
Step 4 show running-config | Verify your entries.

You need to configure only one end of an association; the other device can automatically establish the association. If you are using the default NTP version (version 3) and NTP synchronization does not occur, try using NTP version 2. Many NTP servers on the Internet run version 2.

To remove a peer or server association, use the `no ntp peer ip-address` or the `no ntp server ip-address` global configuration command.

This example shows how to configure the switch to synchronize its system clock with the clock of the peer at IP address 172.16.22.44 using NTP version 2:

```
Switch(config)# ntp server 172.16.22.44 version 2
```

### Configuring NTP Broadcast Service

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP addresses of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, the information flow is one-way only.

The switch can send or receive NTP broadcast packets on an interface-by-interface basis if there is an NTP broadcast server, such as a router, broadcasting time information on the network. The switch can send NTP broadcast packets to a peer so that the peer can synchronize to it. The switch can also receive NTP broadcast packets to synchronize its own clock. This section provides procedures for both sending and receiving NTP broadcast packets.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send NTP broadcast packets to peers so that they can synchronize their clock to the switch:

```
Step 1 configure terminal
Step 2 interface interface-id
Step 3 ntp broadcast [version number] [key keyid] [destination-address]
Step 4 end
Step 5 show running-config
```

**Command**	**Purpose**
Step 3 end | Return to privileged EXEC mode.
Step 4 show running-config | Verify your entries.
To disable the interface from sending NTP broadcast packets, use the `no ntp broadcast` interface configuration command.

This example shows how to configure an interface to send NTP version 2 packets:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ntp broadcast version 2
```

Beginning in privileged EXEC mode, follow these steps to configure the switch to receive NTP broadcast packets from connected peers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the interface to receive NTP broadcast packets, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ntp broadcast client</code> Enable the interface to receive NTP broadcast packets. By default, no interfaces receive NTP broadcast packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>exit</code> Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ntp broadcastdelay microseconds</code> (Optional) Change the estimated round-trip delay between the switch and the NTP broadcast server. The default is 3000 microseconds; the range is 1 to 999999.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable an interface from receiving NTP broadcast packets, use the `no ntp broadcast client` interface configuration command. To change the estimated round-trip delay to the default, use the `no ntp broadcastdelay` global configuration command.

This example shows how to configure an interface to receive NTP broadcast packets:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ntp broadcast client
```

### Configuring NTP Access Restrictions

You can control NTP access on two levels as described in these sections:

- Creating an Access Group and Assigning a Basic IP Access List, page 7-41
- Disabling NTP Services on a Specific Interface, page 7-42
Creating an Access Group and Assigning a Basic IP Access List

Beginning in privileged EXEC mode, follow these steps to control access to NTP services by using access lists:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2    | ntp access-group {query-only | serve-only | serve | peer} access-list-number | Create an access group, and apply a basic IP access list. The keywords have these meanings:  
  1. **query-only**—Allows only NTP control queries.  
  2. **serve-only**—Allows only time requests.  
  3. **serve**—Allows time requests and NTP control queries, but does not allow the switch to synchronize to the remote device.  
  4. **peer**—Allows time requests and NTP control queries and allows the switch to synchronize to the remote device.  
For **access-list-number**, enter a standard IP access list number from 1 to 99. |
| 3    | access-list access-list-number permit source [source-wildcard] | Create the access list.  
  - For **access-list-number**, enter the number specified in Step 2.  
  - Enter the **permit** keyword to permit access if the conditions are matched.  
  - For **source**, enter the IP address of the device that is permitted access to the switch.  
  - (Optional) For **source-wildcard**, enter the wildcard bits to be applied to the source.  
**Note** When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end. |
| 4    | end | Return to privileged EXEC mode. |
| 5    | show running-config | Verify your entries. |
| 6    | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

The access group keywords are scanned in this order, from least restrictive to most restrictive:

1. **peer**—Allows time requests and NTP control queries and allows the switch to synchronize itself to a device whose address passes the access list criteria.
2. **serve**—Allows time requests and NTP control queries, but does not allow the switch to synchronize itself to a device whose address passes the access list criteria.
3. **serve-only**—Allows only time requests from a device whose address passes the access list criteria.
4. **query-only**—Allows only NTP control queries from a device whose address passes the access list criteria.
If the source IP address matches the access lists for more than one access type, the first type is granted. If no access groups are specified, all access types are granted to all devices. If any access groups are specified, only the specified access types are granted.

To remove access control to the switch NTP services, use the `no ntp access-group {query-only | serve-only | serve | peer}` global configuration command.

This example shows how to configure the switch to allow itself to synchronize to a peer from access list 99. However, the switch restricts access to allow only time requests from access list 42:

```
Switch# configure terminal
Switch(config)# ntp access-group peer 99
Switch(config)# ntp access-group serve-only 42
Switch(config)# access-list 99 permit 172.20.130.5
Switch(config)# access list 42 permit 172.20.130.6
```

Disabling NTP Services on a Specific Interface

NTP services are enabled on all interfaces by default.

Beginning in privileged EXEC mode, follow these steps to disable NTP packets from being received on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to disable.</td>
</tr>
<tr>
<td>Step 3 ntp disable</td>
<td>Disable NTP packets from being received on the interface. By default, all interfaces receive NTP packets.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable receipt of NTP packets on an interface, use the `no ntp disable` interface configuration command.

Configuring the Source IP Address for NTP Packets

When the switch sends an NTP packet, the source IP address is normally set to the address of the interface through which the NTP packet is sent. Use the `ntp source` global configuration command when you want to use a particular source IP address for all NTP packets. The address is taken from the specified interface. This command is useful if the address on an interface cannot be used as the destination for reply packets.
Beginning in privileged EXEC mode, follow these steps to configure a specific interface from which the IP source address is to be taken:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>ntp source type number</strong></td>
<td>Specify the interface type and number from which the IP source address</td>
</tr>
<tr>
<td></td>
<td>is taken.</td>
</tr>
<tr>
<td></td>
<td>By default, the source address is determined by the outgoing interface.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The specified interface is used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the **source** keyword in the **ntp peer** or **ntp server** global configuration command as described in the “Configuring NTP Associations” section on page 7-38.

### Displaying the NTP Configuration

You can use two privileged EXEC commands to display NTP information:

- `show ntp associations [detail]`
- `show ntp status`

For detailed information about the fields in these displays, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.

### Configuring Time and Date Manually

If no other source of time is available, you can manually configure the time and date after the system is restarted. The time remains accurate until the next system restart. We recommend that you use manual configuration only as a last resort. If you have an outside source to which the switch can synchronize, you do not need to manually set the system clock.

This section contains this configuration information:

- Setting the System Clock, page 7-44
- Displaying the Time and Date Configuration, page 7-44
- Configuring the Time Zone, page 7-45
- Configuring Summer Time (Daylight Saving Time), page 7-46
Managing the System Time and Date

Chapter 7 Administering the Switch

Setting the System Clock

If you have an outside source on the network that provides time services, such as an NTP server, you do not need to manually set the system clock.

Beginning in privileged EXEC mode, follow these steps to set the system clock:

**Command**	**Purpose**
**Step 1** | clock set hh:mm:ss day month year or clock set hh:mm:ss month day year
Manually set the system clock using one of these formats.
- For hh:mm:ss, specify the time in hours (24-hour format), minutes, and seconds. The time specified is relative to the configured time zone.
- For day, specify the day by date in the month.
- For month, specify the month by name.
- For year, specify the year (no abbreviation).

**Step 2** | show running-config
Verify your entries.

**Step 3** | copy running-config startup-config
(Optional) Save your entries in the configuration file.

This example shows how to manually set the system clock to 1:32 p.m. on July 23, 2001:

Switch# clock set 13:32:00 23 July 2001

Displaying the Time and Date Configuration

To display the time and date configuration, use the show clock [detail] privileged EXEC command.

The system clock keeps an authoritative flag that shows whether the time is authoritative (believed to be accurate). If the system clock has been set by a timing source such as NTP, the flag is set. If the time is not authoritative, it is used only for display purposes. Until the clock is authoritative and the authoritative flag is set, the flag prevents peers from synchronizing to the clock when the peers’ time is invalid.

The symbol that precedes the show clock display has this meaning:
- *—Time is not authoritative.
- (blank)—Time is authoritative.
- .—Time is authoritative, but NTP is not synchronized.
Configuring the Time Zone

Beginning in privileged EXEC mode, follow these steps to manually configure the time zone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: clock timezone zone hours-offset [minutes-offset]</td>
<td>Set the time zone.</td>
</tr>
<tr>
<td></td>
<td>The switch keeps internal time in universal time coordinated (UTC), so</td>
</tr>
<tr>
<td></td>
<td>this command is used only for display purposes and when the time is</td>
</tr>
<tr>
<td></td>
<td>manually set.</td>
</tr>
<tr>
<td></td>
<td>• For zone, enter the name of the time zone to be displayed when</td>
</tr>
<tr>
<td></td>
<td>standard time is in effect. The default is UTC.</td>
</tr>
<tr>
<td></td>
<td>• For hours-offset, enter the hours offset from UTC.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For minutes-offset, enter the minutes offset from UTC.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The minutes-offset variable in the clock timezone global configuration command is available for those cases where a local time zone is a percentage of an hour different from UTC. For example, the time zone for some sections of Atlantic Canada (AST) is UTC-3.5, where the 3 means 3 hours and .5 means 50 percent. In this case, the necessary command is clock timezone AST -3 30.

To set the time to UTC, use the no clock timezone global configuration command.
Configuring Summer Time (Daylight Saving Time)

Beginning in privileged EXEC mode, follow these steps to configure summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>clock summer-time zone recurring [week day month hh:mm week day month hh:mm [offset]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

This example shows how to specify that summer time starts on the first Sunday in April at 02:00 and ends on the last Sunday in October at 02:00:

```
Switch(config)# clock summer-time PDT recurring 1 Sunday April 2:00 last Sunday October 2:00
```
Beginning in privileged EXEC mode, follow these steps if summer time in your area does not follow a recurring pattern (configure the exact date and time of the next summer time events):

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><strong>clock summer-time zone date</strong> [month date year hh:mm month date year hh:mm [offset]] or <strong>clock summer-time zone date</strong> [date month year hh:mm date month year hh:mm [offset]]</td>
<td>Configure summer time to start on the first date and end on the second date. Summer time is disabled by default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <strong>zone</strong>, specify the name of the time zone (for example, PDT) to be displayed when summer time is in effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <strong>week</strong>, specify the week of the month (1 to 5 or last).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <strong>day</strong>, specify the day of the week (Sunday, Monday...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <strong>month</strong>, specify the month (January, February...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <strong>hh:mm</strong>, specify the time (24-hour format) in hours and minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <strong>offset</strong>, specify the number of minutes to add during summer time. The default is 60.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

To disable summer time, use the `no clock summer-time` global configuration command.

This example shows how to set summer time to start on October 12, 2000, at 02:00, and end on April 26, 2001, at 02:00:

Switch(config)# clock summer-time pdt date 12 October 2000 2:00 26 April 2001 2:00
Configuring a System Name and Prompt

You configure the system name on the switch to identify it. By default, the system name and prompt are *Switch*.

If you have not configured a system prompt, the first 20 characters of the system name are used as the system prompt. A greater-than symbol [>] is appended. The prompt is updated whenever the system name changes, unless you manually configure the prompt by using the `prompt` global configuration command.

**Note**

For complete syntax and usage information for the commands used in this section, refer to the *Cisco IOS Configuration Fundamentals Command Reference* and the *Cisco IOS IP and IP Routing Command Reference for Release 12.1*.

This section contains this configuration information:

- Default System Name and Prompt Configuration, page 7-48
- Configuring a System Name, page 7-48
- Configuring a System Prompt, page 7-49
- Understanding DNS, page 7-49

Default System Name and Prompt Configuration

The default switch system name and prompt is *Switch*.

Configuring a System Name

Beginning in privileged EXEC mode, follow these steps to manually configure a system name:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>hostname name</td>
<td>Manually configure a system name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default setting is <em>switch</em>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The name must follow the rules for ARPANET host names. They must start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with a letter, end with a letter or digit, and have as interior characters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>only letters, digits, and hyphens. Names can be up to 63 characters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you set the system name, it is also used as the system prompt. You can override the prompt setting by using the `prompt` global configuration command.

To return to the default hostname, use the `no hostname` global configuration command.
Configuring a System Prompt

Beginning in privileged EXEC mode, follow these steps to manually configure a system prompt:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 prompt string</td>
<td>Configure the command-line prompt to override the setting from the hostname command.</td>
</tr>
<tr>
<td></td>
<td>The default prompt is either switch or the name defined with the hostname global configuration command, followed by an angle bracket (&gt;) for user EXEC mode or a pound sign (#) for privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>The prompt can consist of all printing characters and escape sequences.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default prompt, use the no prompt [string] global configuration command.

Understanding DNS

The DNS protocol controls the Domain Name System (DNS), a distributed database with which you can map host names to IP addresses. When you configure DNS on your switch, you can substitute the host name for the IP address with all IP commands, such as ping, telnet, connect, and related Telnet support operations.

IP defines a hierarchical naming scheme that allows a device to be identified by its location or domain. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco Systems is a commercial organization that IP identifies by a com domain name, so its domain name is cisco.com. A specific device in this domain, for example, the File Transfer Protocol (FTP) system is identified as ftp.cisco.com.

To keep track of domain names, IP has defined the concept of a domain name server, which holds a cache (or database) of names mapped to IP addresses. To map domain names to IP addresses, you must first identify the host names, specify the name server that is present on your network, and enable the DNS.

This section contains this configuration information:
- Default DNS Configuration, page 7-50
- Setting Up DNS, page 7-50
- Displaying the DNS Configuration, page 7-51
Default DNS Configuration

Table 7-3 shows the default DNS configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS enable state</td>
<td>Enabled.</td>
</tr>
<tr>
<td>DNS default domain name</td>
<td>None configured.</td>
</tr>
<tr>
<td>DNS servers</td>
<td>No name server addresses are configured.</td>
</tr>
</tbody>
</table>

Setting Up DNS

Beginning in privileged EXEC mode, follow these steps to set up your switch to use the DNS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip domain-name name</td>
</tr>
<tr>
<td></td>
<td>Define a default domain name that the software uses to complete unqualified host names (names without a dotted-decimal domain name).</td>
</tr>
<tr>
<td></td>
<td>Do not include the initial period that separates an unqualified name from the domain name.</td>
</tr>
<tr>
<td></td>
<td>At start time, no domain name is configured; however, if the switch configuration comes from a BOOTP or Dynamic Host Configuration Protocol (DHCP) server, the default domain name might be set by the BOOTP or DHCP server (if the servers were configured with this information).</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>ip name-server server-address1</td>
</tr>
<tr>
<td></td>
<td>Specify the address of one or more name servers to use for name and address resolution.</td>
</tr>
<tr>
<td></td>
<td>You can specify up to six name servers. Separate each server address with a space. The first server specified is the primary server. The switch sends DNS queries to the primary server first. If that query fails, the backup servers are queried.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip domain-lookup</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enable DNS-based host name-to-address translation on your switch. This feature is enabled by default.</td>
</tr>
<tr>
<td></td>
<td>If your network devices require connectivity with devices in networks for which you do not control name assignment, you can dynamically assign device names that uniquely identify your devices by using the global Internet naming scheme (DNS).</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If you use the switch IP address as its hostname, the IP address is used and no DNS query occurs. If you configure a hostname that contains no periods (.), a period followed by the default domain name is appended to the hostname before the DNS query is made to map the name to an IP address. The default
domain name is the value set by the `ip domain-name` global configuration command. If there is a period (.) in the hostname, the IOS software looks up the IP address without appending any default domain name to the hostname.

To remove a domain name, use the `no ip domain-name name` global configuration command. To remove a name server address, use the `no ip name-server server-address` global configuration command. To disable DNS on the switch, use the `no ip domain-lookup` global configuration command.

### Displaying the DNS Configuration

To display the DNS configuration information, use the `show running-config` privileged EXEC command.

### Creating a Banner

You can configure a message-of-the-day (MOTD) and a login banner. The MOTD banner displays on all connected terminals at login and is useful for sending messages that affect all network users (such as impending system shutdowns).

The login banner also displays on all connected terminals. It is displayed after the MOTD banner and before the login prompts.

**Note**

For complete syntax and usage information for the commands used in this section, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.

This section contains this configuration information:
- Default Banner Configuration, page 7-51
- Configuring a Message-of-the-Day Login Banner, page 7-52
- Configuring a Login Banner, page 7-53

### Default Banner Configuration

The MOTD and login banners are not configured.
### Configuring a Message-of-the-Day Login Banner

You can create a single or multiline message banner that appears on the screen when someone logs in to the switch.

Beginning in privileged EXEC mode, follow these steps to configure a MOTD login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> banner motd c message c</td>
<td>Specify the message of the day.</td>
</tr>
<tr>
<td></td>
<td>For c, enter the delimiting character of your choice, for example, a pound sign (#), and press the Return key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded.</td>
</tr>
<tr>
<td></td>
<td>For message, enter a banner message up to 255 characters. You cannot use the delimiting character in the message.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the MOTD banner, use the **no banner motd** global configuration command.

This example shows how to configure a MOTD banner for the switch by using the pound sign (#) symbol as the beginning and ending delimiter:

```
Switch(config)# banner motd #
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
#
Switch(config)#
```

This example shows the banner displayed from the previous configuration:

```
Unix> telnet 172.2.5.4
Trying 172.2.5.4...
Connected to 172.2.5.4.
Escape character is '^]'.

This is a secure site. Only authorized users are allowed.
For access, contact technical support.

User Access Verification

Password:
```
## Configuring a Login Banner

You can configure a login banner to be displayed on all connected terminals. This banner appears after the MOTD banner and before the login prompt.

Beginning in privileged EXEC mode, follow these steps to configure a login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>banner login ( c ) message ( c )</td>
</tr>
<tr>
<td>Specify the login message.</td>
<td></td>
</tr>
<tr>
<td>For ( c ), enter the delimiting character of your choice, for example, a pound sign (#), and press the <strong>Return</strong> key. The delimiting character signifies the beginning and end of the banner text. Characters after the ending delimiter are discarded.</td>
<td></td>
</tr>
<tr>
<td>For message, enter a login message up to 255 characters. You cannot use the delimiting character in the message.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td>Verify your entries.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>

To delete the login banner, use the **no banner login** global configuration command.

This example shows how to configure a login banner for the switch by using the dollar sign ($) symbol as the beginning and ending delimiter:

```
Switch(config)# banner login $
Access for authorized users only. Please enter your username and password.
$
Switch(config)#
```
Managing the MAC Address Table

The MAC address table contains address information that the switch uses to forward traffic between ports. All MAC addresses in the address table are associated with one or more ports. The address table includes these types of addresses:

- Dynamic address: a source MAC address that the switch learns and then ages when it is not in use.
- Static address: a manually entered unicast or multicast address that does not age and that is not lost when the switch resets.

The address table lists the destination MAC address, the associated VLAN ID, and port number associated with the address.

Note

For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

This section contains this configuration information:

- Building the Address Table, page 7-54
- MAC Addresses and VLANs, page 7-55
- Default MAC Address Table Configuration, page 7-55
- Changing the Address Aging Time, page 7-55
- Removing Dynamic Address Entries, page 7-56
- Configuring MAC Address Notification Traps, page 7-56
- Adding and Removing Static Address Entries, page 7-58
- Adding and Removing Secure Addresses, page 7-59
- Displaying Address Table Entries, page 7-60

Building the Address Table

With multiple MAC addresses supported on all ports, you can connect any port on the switch to individual workstations, repeaters, switches, routers, or other network devices. The switch provides dynamic addressing by learning the source address of packets it receives on each port and adding the address and its associated port number to the address table. As stations are added or removed from the network, the switch updates the address table, adding new dynamic addresses and aging out those that are not in use.

The aging interval is configured on a per-switch basis. However, the switch maintains an address table for each VLAN, and STP can accelerate the aging interval on a per-VLAN basis.

The switch sends packets between any combination of ports, based on the destination address of the received packet. Using the MAC address table, the switch forwards the packet only to the port or ports associated with the destination address. If the destination address is on the port that sent the packet, the packet is filtered and not forwarded. The switch always uses the store-and-forward method: complete packets are stored and checked for errors before transmission.
MAC Addresses and VLANs

All addresses are associated with a VLAN. An address can exist in more than one VLAN and have different destinations in each. Multicast addresses, for example, could be forwarded to port 1 in VLAN 1 and ports 9, 10, and 11 in VLAN 5.

Each VLAN maintains its own logical address table. A known address in one VLAN is unknown in another until it is learned or statically associated with a port in the other VLAN. Addresses that are statically entered in one VLAN must be configured as static addresses in all other VLANs or remain unlearned in the other VLANs.

Default MAC Address Table Configuration

Table 7-4 shows the default MAC address table configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Dynamic addresses</td>
<td>Automatically learned</td>
</tr>
<tr>
<td>Static addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Changing the Address Aging Time

Dynamic addresses are source MAC addresses that the switch learns and then ages when they are not in use. You can change the aging time setting for all VLANs or for a specified VLAN.

Setting too short an aging time can cause addresses to be prematurely removed from the table. Then when the switch receives a packet for an unknown destination, it floods the packet to all ports in the same VLAN as the receiving port. This unnecessary flooding can impact performance. Setting too long an aging time can cause the address table to be filled with unused addresses, which prevents new addresses from being learned. Flooding results, which can impact switch performance.

Beginning in privileged EXEC mode, follow these steps to configure the dynamic address table aging time:

**Step 1**
configure terminal

Enter global configuration mode.

**Step 2**
mac address-table aging-time [0 | 10-1000000] [vlan vlan-id]

Set the length of time that a dynamic entry remains in the MAC address table after the entry is used or updated.

The range is 10 to 1000000 seconds. The default is 300. You can also enter 0, which disables aging. Static address entries are never aged or removed from the table.

For vlan-id, valid IDs are 1 to 4094 when the enhanced software image (EI) is installed and 1 to 1005 when the standard software image (SI) is installed. Do not enter leading zeros.

**Step 3**
end

Return to privileged EXEC mode.
To return to the default value, use the `no mac address-table aging-time` global configuration command.

### Removing Dynamic Address Entries

To remove all dynamic entries, use the `clear mac address-table dynamic` command in privileged EXEC mode. You can also remove a specific MAC address (`clear mac address-table dynamic address mac-address`), remove all addresses on the specified physical port or port channel (`clear mac address-table dynamic interface interface-id`), or remove all addresses on a specified VLAN (`clear mac address-table dynamic vlan vlan-id`).

To verify that dynamic entries have been removed, use the `show mac address-table dynamic` privileged EXEC command.

### Configuring MAC Address Notification Traps

MAC address notification enables you to track users on a network by storing the MAC address activity on the switch. Whenever the switch learns or removes a MAC address, an SNMP notification can be generated and sent to the NMS. If you have many users coming and going from the network, you can set a trap interval time to bundle the notification traps and reduce network traffic. The MAC notification history table stores the MAC address activity for each hardware port for which the trap is enabled. MAC address notifications are generated for dynamic and secure MAC addresses; events are not generated for self addresses, multicast addresses, or other static addresses.

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table aging-time</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal <strong>Enter global configuration mode.</strong></td>
</tr>
</tbody>
</table>
| **Step 2** | `snmp-server host host-addr {traps | informs} {version 1 | 2c | 3} community-string notification-type` **Specify the recipient of the trap message.**
  - For `host-addr`, specify the name or address of the NMS.
  - Specify `traps` (the default) to send SNMP traps to the host. Specify `informs` to send SNMP informs to the host.
  - Specify the SNMP version to support. Version 1, the default, is not available with informs.
  - For `community-string`, specify the string to send with the notification operation. Though you can set this string by using the `snmp-server host` command, we recommend that you define this string by using the `snmp-server community` command before using the `snmp-server host` command.
  - For `notification-type`, use the `mac-notification` keyword.
| **Step 3** | `snmp-server enable traps mac-notification` **Enable the switch to send MAC address traps to the NMS.** |
| **Step 4** | `mac address-table notification` **Enable the MAC address notification feature.** |
| **Step 5** | `mac address-table notification [interval value] | [history-size value]` **Enter the trap interval time and the history table size.**
  - (Optional) For `interval value`, specify the notification trap interval in seconds between each set of traps that are generated to the NMS. The range is 0 to 2147483647 seconds; the default is 1 second.
  - (Optional) For `history-size value`, specify the maximum number of entries in the MAC notification history table. The range is 0 to 500; the default is 1. |
| **Step 6** | `interface interface-id` **Enter interface configuration mode, and specify the interface on which to enable the SNMP MAC address notification trap.** |
| **Step 7** | `snmp trap mac-notification {added | removed}` **Enable the MAC address notification trap.**
  - Enable the MAC notification trap whenever a MAC address is `added` on this interface.
  - Enable the MAC notification trap whenever a MAC address is `removed` from this interface. |
| **Step 8** | end **Return to privileged EXEC mode.** |
Managing the MAC Address Table

### Managing the MAC Address Table

To disable the switch from sending MAC address notification traps, use the `no snmp-server enable traps mac-notification` global configuration command. To disable the MAC address notification traps on a specific interface, use the `no snmp trap mac-notification {added | removed} interface` configuration command. To disable the MAC address notification feature, use the `no mac address-table notification` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address notification traps to the NMS, enable the MAC address notification feature, set the interval time to 60 seconds, set the history-size to 100 entries, and enable traps whenever a MAC address is added on Fast Ethernet interface 0/4.

```
Switch(config)# snmp-server host 172.20.10.10 traps private
Switch(config)# snmp-server enable traps mac-notification
Switch(config)# mac address-table notification
Switch(config)# mac address-table notification interval 60
Switch(config)# mac address-table notification history-size 100
Switch(config)# interface fastethernet0/4
Switch(config-if)# snmp trap mac-notification added
```

You can verify the previous commands by entering the `show mac address-table notification interface` and the `show mac address-table notification` privileged EXEC commands.

### Adding and Removing Static Address Entries

A static address has these characteristics:

- It is manually entered in the address table and must be manually removed.
- It can be a unicast or multicast address.
- It does not age and is retained when the switch restarts.

You can add and remove static addresses and define the forwarding behavior for them. The forwarding behavior determines how a port that receives a packet forwards it to another port for transmission. Because all ports are associated with at least one VLAN, the switch acquires the VLAN ID for the address from the ports that you specify. You can specify a different list of destination ports for each source port.

A static address in one VLAN must be a static address in other VLANs. A packet with a static address that arrives on a VLAN where it has not been statically entered is flooded to all ports and not learned.

You add a static address to the address table by specifying the destination MAC address (unicast or multicast) and the VLAN from which it is received. Packets received with this destination address are forwarded to the interface specified with the `interface-id` option.
Beginning in privileged EXEC mode, follow these steps to add a static address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mac address-table static mac-addr</td>
<td>Add a static address to the MAC address table.</td>
</tr>
<tr>
<td>vlan vlan-id interface interface-id</td>
<td>• For <code>mac-addr</code>, specify the destination MAC address (unicast or</td>
</tr>
<tr>
<td></td>
<td>multicast) to add to the address table. Packets with this</td>
</tr>
<tr>
<td></td>
<td>destination address received in the specified VLAN are</td>
</tr>
<tr>
<td></td>
<td>forwarded to the specified interface.</td>
</tr>
<tr>
<td></td>
<td>• For <code>vlan-id</code>, specify the VLAN for which the packet with the</td>
</tr>
<tr>
<td></td>
<td>specified MAC address is received. Valid VLAN IDs are 1 to 4094</td>
</tr>
<tr>
<td></td>
<td>when the EI is installed and 1 to 1005 when the SI is installed;</td>
</tr>
<tr>
<td></td>
<td>do not enter leading zeros.</td>
</tr>
<tr>
<td></td>
<td>• For <code>interface-id</code>..., specify the interface to which the</td>
</tr>
<tr>
<td></td>
<td>received packet is forwarded. Valid interfaces include</td>
</tr>
<tr>
<td></td>
<td>physical ports.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show mac address-table static</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove static entries from the address table, use the `no mac address-table static mac-addr vlan vlan-id interface interface-id` global configuration command.

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination address, the packets is forwarded to the specified interface:

Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet0/1

### Adding and Removing Secure Addresses

A secure address is a manually entered unicast address or dynamically learned address that is forwarded to only one port per VLAN. If you enter a static address that is already assigned to another port, the request will be rejected.

Secure addresses can be learned dynamically if the configured secure addresses do not reach the maximum limit of the port.

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling `sticky learning`. When sticky learning is enabled, the interface converts all the dynamic secure MAC addresses, including those that were learned dynamically before sticky learning is enabled, to sticky secure MAC addresses. It adds all the sticky secure MAC addresses to the running configuration. For more information, see the “Secure MAC Addresses” section on page 18-5.
Beginning in privileged EXEC mode, follow these steps to add a secure address:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify an interface, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>switchport port-security mac-address mac-address</td>
<td>Add a secure address.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show port-security</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a secure address, use the **no switchport port-security mac-address mac-address** global configuration command.

**Displaying Address Table Entries**

You can display the MAC address table by using one or more of the privileged EXEC commands described in Table 7-5:

**Table 7-5 Commands for Displaying the MAC Address Table**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table multicast</td>
<td>Displays the Layer 2 multicast entries for all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
Managing the ARP Table

To communicate with a device (over Ethernet, for example), the software first must determine the 48-bit MAC or the local data link address of that device. The process of determining the local data link address from an IP address is called address resolution.

The Address Resolution Protocol (ARP) associates a host IP address with the corresponding media or MAC addresses and the VLAN ID. Taking an IP address as input, ARP determines the associated MAC address. Once a MAC address is determined, the IP-MAC address association is stored in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests and replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP). By default, standard Ethernet-style ARP encapsulation (represented by the arpa keyword) is enabled on the IP interface.

ARP entries added manually to the table do not age and must be manually removed.

For CLI procedures, refer to the Cisco IOS Release 12.1 documentation on Cisco.com.

Switch Software Releases

The switch software is regularly updated with new features and bug fixes, and you might want to upgrade your Catalyst 2950 switch with the latest software release. New software releases are posted on Cisco.com and are available through authorized resellers. Cisco also supplies a TFTP server that you can download from Cisco.com.

Before upgrading a switch, first find out the version of the software that the switch is running. You can do this by selecting Reports > Inventory or by using the show version user EXEC command.

Knowing the software version is important, especially for:

- Compatibility reasons (for example, for switch clusters)
- LRE and non-LRE Catalyst 2950 switches, which do not share the same software image. The LRE-only image cannot be installed on non-LRE switches. The non-LRE image does not include LRE functionality and should not be installed on LRE switches.

Refer to the release notes (http://www.cisco.com/univercd/cc/td/doc/product/lan/cat2950/12111YJ/ol236205.htm) for

- Switch requirements
- Switch upgrade guidelines and procedures
Configuring 802.1X Port-Based Authentication

This chapter describes how to configure IEEE 802.1X port-based authentication to prevent unauthorized devices (clients) from gaining access to the network. As LANs extend to hotels, airports, and corporate lobbies, insecure environments could be created.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding 802.1X Port-Based Authentication, page 8-1
- Configuring 802.1X Authentication, page 8-5
- Displaying 802.1X Statistics and Status, page 8-14

Understanding 802.1X Port-Based Authentication

The IEEE 802.1X standard defines a client-server-based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

These sections describe 802.1X port-based authentication:

- Device Roles, page 8-2
- Authentication Initiation and Message Exchange, page 8-3
- Ports in Authorized and Unauthorized States, page 8-4
- Supported Topologies, page 8-5
Device Roles

With 802.1X port-based authentication, the devices in the network have specific roles as shown in Figure 8-1.

- **Client**—the device (workstation) that requests access to the LAN and switch services and responds to requests from the switch. The workstation must be running 802.1X-compliant client software such as that offered in the Microsoft Windows XP operating system. (The client is the *supplicant* in the IEEE 802.1X specification.)

  ![Figure 8-1 802.1X Device Roles](image)

- **Authentication server**—performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN and switch services. Because the switch acts as the proxy, the authentication service is transparent to the client. In this release, the Remote Authentication Dial-In User Service (RADIUS) security system with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server; it is available in Cisco Secure Access Control Server version 3.0. RADIUS operates in a client/server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

- **Switch** (edge switch or wireless access point)—controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The switch includes the RADIUS client, which is responsible for encapsulating and decapsulating the Extensible Authentication Protocol (EAP) frames and interacting with the authentication server.

  When the switch receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified or examined during encapsulation, and the authentication server must support EAP within the native frame format. When the switch receives frames from the authentication server, the server’s frame header is removed, leaving the EAP frame, which is then encapsulated for Ethernet and sent to the client.

  The devices that can act as intermediaries include the Catalyst 3550 multilayer switch, the Catalyst 2950 switch, or a wireless access point. These devices must be running software that supports the RADIUS client and 802.1X.
### Authentication Initiation and Message Exchange

The switch or the client can initiate authentication. If you enable authentication on a port by using the `dot1x port-control auto` interface configuration command, the switch must initiate authentication when it determines that the port link state transitions from down to up. It then sends an EAP-request/identity frame to the client to request its identity (typically, the switch sends an initial identity/request frame followed by one or more requests for authentication information). Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client’s identity.

**Note**

If 802.1X is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client sends frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated. For more information, see the “Ports in Authorized and Unauthorized States” section on page 8-4.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized. For more information, see the “Ports in Authorized and Unauthorized States” section on page 8-4.

The specific exchange of EAP frames depends on the authentication method being used. Figure 8-2 shows a message exchange initiated by the client using the One-Time-Password (OTP) authentication method with a RADIUS server.

**Figure 8-2  Message Exchange**

- **Client**
  - EAPOL-Start
  - EAP-Request/Identity
  - EAP-Response/Identity
  - EAP-Request/OTP
  - EAP-Response/OTP
  - EAP-Success

- **Catalyst 2950 or 3550 switch**
  - EAPOL-Logoff

- **Authentication server (RADIUS)**
  - RADIUS Access-Request
  - RADIUS Access-Challenge
  - RADIUS Access-Request
  - RADIUS Access-Accept

Port Authorized

Port Unauthorized
Ports in Authorized and Unauthorized States

The switch port state determines whether or not the client is granted access to the network. The port starts in the unauthorized state. While in this state, the port disallows all ingress and egress traffic except for 802.1X protocol packets. When a client is successfully authenticated, the port transitions to the authorized state, allowing all traffic for the client to flow normally.

If a client that does not support 802.1X is connected to an unauthorized 802.1X port, the switch requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1X-enabled client connects to a port that is not running the 802.1X protocol, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the `dot1x port-control` interface configuration command and these keywords:

- **force-authorized**—disables 802.1X authentication and causes the port to transition to the authorized state without any authentication exchange required. The port sends and receives normal traffic without 802.1X-based authentication of the client. This is the default setting.

- **force-unauthorized**—causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the interface.

- **auto**—enables 802.1X authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port transitions from down to up or when an EAPOL-start frame is received. The switch requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the switch by using the client’s MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can resend the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to transition to the unauthorized state.

If the link state of a port transitions from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.
Supported Topologies

The 802.1X port-based authentication is supported in two topologies:

- Point-to-point
- Wireless LAN

In a point-to-point configuration (see Figure 8-1 on page 8-2), only one client can be connected to the 802.1X-enabled switch port. The switch detects the client when the port link state changes to the up state. If a client leaves or is replaced with another client, the switch changes the port link state to down, and the port returns to the unauthorized state.

Figure 8-3 shows 802.1X port-based authentication in a wireless LAN. The 802.1X port is configured as a multiple-host port that becomes authorized as soon as one client is authenticated. When the port is authorized, all other hosts indirectly attached to the port are granted access to the network. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), the switch denies access to the network to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and the wireless access point acts as a client to the switch.

Figure 8-3  Wireless LAN Example

Configuring 802.1X Authentication

These sections describe how to configure 802.1X port-based authentication on your switch:

- Default 802.1X Configuration, page 8-6
- 802.1X Configuration Guidelines, page 8-7
- Enabling 802.1X Authentication, page 8-8 (required)
- Configuring the Switch-to-RADIUS-Server Communication, page 8-9 (required)
- Enabling Periodic Re-Authentication, page 8-10 (optional)
- Manually Re-Authenticating a Client Connected to a Port, page 8-11 (optional)
- Changing the Quiet Period, page 8-11 (optional)
- Changing the Switch-to-Client Retransmission Time, page 8-12 (optional)
- Setting the Switch-to-Client Frame-Retransmission Number, page 8-13 (optional)
- Enabling Multiple Hosts, page 8-13 (optional)
- Resetting the 802.1X Configuration to the Default Values, page 8-14 (optional)
### Default 802.1X Configuration

Table 8-1 shows the default 802.1X configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication, authorization, and accounting (AAA)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>• IP address</td>
<td>• None specified.</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>• 1812.</td>
</tr>
<tr>
<td>• Key</td>
<td>• None specified.</td>
</tr>
<tr>
<td>Per-interface 802.1X enable state</td>
<td>Disabled (force-authorized).</td>
</tr>
<tr>
<td></td>
<td>The port sends and receives normal traffic without 802.1X-based authentication of the client.</td>
</tr>
<tr>
<td>Periodic re-authentication</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Number of seconds between re-authentication attempts</td>
<td>3600 seconds.</td>
</tr>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client).</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the switch should wait for a response to an EAP request/identity frame from the client before resending the request).</td>
</tr>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the switch will send an EAP-request/identity frame before restarting the authentication process).</td>
</tr>
<tr>
<td>Multiple host support</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the switch waits for a response before resending the request to the client).</td>
</tr>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the switch waits for a reply before resending the response to the server. This setting is not configurable.)</td>
</tr>
</tbody>
</table>
802.1X Configuration Guidelines

These are the 802.1X authentication configuration guidelines:

- When 802.1X is enabled, ports are authenticated before any other Layer 2 features are enabled.
- The 802.1X protocol is supported on Layer 2 static-access ports, but it is not supported on these port types:
  - Trunk port—If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, the port mode is not changed.
  - Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1X on a dynamic port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, the port mode is not changed.
  - Dynamic-access ports—If you try to enable 802.1X on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
  - EtherChannel port—Before enabling 802.1X on the port, you must first remove it from the EtherChannel. If you try to enable 802.1X on an EtherChannel or on an active port in an EtherChannel, an error message appears, and 802.1X is not enabled. If you enable 802.1X on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
  - Secure port—You cannot configure a secure port as an 802.1X port. If you try to enable 802.1X on a secure port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to a secure port, an error message appears, and the security settings are not changed.
  - Switched Port Analyzer (SPAN) destination port—You can enable 802.1X on a port that is a SPAN destination port; however, 802.1X is disabled until the port is removed as a SPAN destination. You can enable 802.1X on a SPAN source port.
Enabling 802.1X Authentication

To enable 802.1X port-based authentication, you must enable AAA and specify the authentication method list. A method list describes the sequence and authentication methods to be queried to authenticate a user.

The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle, the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure 802.1X port-based authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
</tbody>
</table>
| Step 3  | aaa authentication dot1x {default} method1 [method2...] | Create an 802.1X authentication method list. To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces. Enter at least one of these keywords:  
  - group radius—Use the list of all RADIUS servers for authentication.  
  - none—Use no authentication. The client is automatically authenticated by the switch without using the information supplied by the client. |
| Step 4  | interface interface-id | Enter interface configuration mode, and specify the interface connected to the client that is to be enabled for 802.1X authentication. |
| Step 5  | dot1x port-control auto | Enable 802.1X authentication on the interface. For feature interaction information with trunk, dynamic, dynamic-access, EtherChannel, secure, and SPAN ports, see the “802.1X Configuration Guidelines” section on page 8-7. |
| Step 6  | end | Return to privileged EXEC mode. |
| Step 7  | show dot1x | Verify your entries. Check the Status column in the 802.1X Port Summary section of the display. An enabled status means the port-control value is set either to auto or to force-unauthorized. |
| Step 8  | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable AAA, use the no aaa new-model global configuration command. To disable 802.1X AAA authentication, use the no aaa authentication dot1x {default | list-name} method1 [method2...] global configuration command. To disable 802.1X authentication, use the dot1x port-control force-authorized or the no dot1x port-control interface configuration command.
This example shows how to enable AAA and 802.1X on Fast Ethernet port 0/1:

```
Switch# configure terminal
Switch(config)# aaa new-model
Switch(config)# aaa authentication dot1x default group radius
Switch(config)# interface fastethernet0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# end
```

### Configuring the Switch-to-RADIUS-Server Communication

RADIUS security servers are identified by their host name or IP address, host name and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Beginning in privileged EXEC mode, follow these steps to configure the RADIUS server parameters on the switch. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>radius-server host {hostname</td>
<td>ip-address} auth-port port-number key string</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the specified RADIUS server, use the **no radius-server host {hostname | ip-address}** global configuration command.
This example shows how to specify the server with IP address 172.20.39.46 as the RADIUS server, to use port 1612 as the authorization port, and to set the encryption key to rad123, matching the key on the RADIUS server:

```
Switch(config)# radius-server host 172.120.39.46 auth-port 1612 key rad123
```

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, `radius-server retransmit`, and the `radius-server key` global configuration commands. For more information, see the “Configuring Settings for All RADIUS Servers” section on page 7-29.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, refer to the RADIUS server documentation.

### Enabling Periodic Re-Authentication

You can enable periodic 802.1X client re-authentication and specify how often it occurs. If you do not specify a time period before enabling re-authentication, the number of seconds between re-authentication attempts is 3600.

Automatic 802.1X client re-authentication is a global setting and cannot be set for clients connected to individual ports. To manually re-authenticate the client connected to a specific port, see the “Manually Re-Authenticating a Client Connected to a Port” section on page 8-11.

Beginning in privileged EXEC mode, follow these steps to enable periodic re-authentication of the client and to configure the number of seconds between re-authentication attempts:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>dot1x re-authentication</td>
</tr>
<tr>
<td></td>
<td>Enable periodic re-authentication of the client, which is disabled by</td>
</tr>
<tr>
<td></td>
<td>default.</td>
</tr>
<tr>
<td>Step 3</td>
<td>dot1x timeout re-authperiod <code>seconds</code></td>
</tr>
<tr>
<td></td>
<td>Set the number of seconds between re-authentication attempts.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 4294967295; the default is 3600 seconds.</td>
</tr>
<tr>
<td></td>
<td>This command affects the behavior of the switch only if periodic</td>
</tr>
<tr>
<td></td>
<td>re-authentication is enabled.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show dot1x</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>copy running-config startup-config</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable periodic re-authentication, use the `no dot1x re-authentication` global configuration command. To return to the default number of seconds between re-authentication attempts, use the `no dot1x timeout re-authperiod` global configuration command.

This example shows how to enable periodic re-authentication and set the number of seconds between re-authentication attempts to 4000:

```
Switch(config)# dot1x re-authentication
Switch(config)# dot1x timeout re-authperiod 4000
```
Manually Re-Authenticating a Client Connected to a Port

You can manually re-authenticate the client connected to a specific port at any time by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command. If you want to enable or disable periodic re-authentication, see the “Enabling Periodic Re-Authentication” section on page 8-10.

This example shows how to manually re-authenticate the client connected to Fast Ethernet port 0/1:

```
Switch# dot1x re-authenticate interface fastethernet0/1
Starting reauthentication on FastEthernet0/1
```

Changing the Quiet Period

When the switch cannot authenticate the client, the switch remains idle for a set period of time, and then tries again. The idle time is determined by the quiet-period value. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a smaller number than the default.

Beginning in privileged EXEC mode, follow these steps to change the quiet period:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>dot1x timeout quiet-period seconds</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show dot1x</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To return to the default quiet time, use the `no dot1x timeout quiet-period` global configuration command.

This example shows how to set the quiet time on the switch to 30 seconds:

```
Switch(config)# dot1x timeout quiet-period 30
```
Changing the Switch-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the switch with an EAP-response/identity frame. If the switch does not receive this response, it waits a set period of time (known as the retransmission time) and then resends the frame.

**Note**

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to change the amount of time that the switch waits for client notification:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 dot1x timeout tx-period</td>
<td>Set the number of seconds that the switch waits for a response to an</td>
</tr>
<tr>
<td></td>
<td>EAP-request/identity frame from the client before resending the request.</td>
</tr>
<tr>
<td></td>
<td>The range is 1 to 65535 seconds; the default is 30.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission time, use the `no dot1x timeout tx-period` global configuration command.

This example shows how to set 60 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request:

```
Switch(config)# dot1x timeout tx-period 60
```
## Setting the Switch-to-Client Frame-Retransmission Number

In addition to changing the switch-to-client retransmission time, you can change the number of times that the switch sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

**Note**

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to set the switch-to-client frame-retransmission number:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>dot1x max-req <code>count</code></td>
<td>Set the number of times that the switch sends an EAP-request/identity frame to the client before restarting the authentication process. The range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission number, use the `no dot1x max-req` global configuration command.

This example shows how to set 5 as the number of times that the switch sends an EAP-request/identity request before restarting the authentication process:

```
Switch(config)# dot1x max-req 5
```

## Enabling Multiple Hosts

You can attach multiple hosts to a single 802.1X-enabled port as shown in Figure 8-3 on page 8-5. In this mode, only one of the attached hosts must be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), all attached clients are denied access to the network.

Beginning in privileged EXEC mode, follow these steps to allow multiple hosts (clients) on an 802.1X-authorized port that has the `dot1x port-control` interface configuration command set to `auto`.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface <code>interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to which multiple hosts are indirectly attached.</td>
</tr>
<tr>
<td>3</td>
<td>dot1x multiple-hosts</td>
<td>Allow multiple hosts (clients) on an 802.1X-authorized port. Make sure that the <code>dot1x port-control</code> interface configuration command set is set to <code>auto</code> for the specified interface.</td>
</tr>
</tbody>
</table>
Chapter 8  Configuring 802.1X Port-Based Authentication

Displaying 802.1X Statistics and Status

To disable multiple hosts on the port, use the **no dot1x multiple-hosts** interface configuration command.

This example shows how to enable 802.1X on Fast Ethernet interface 0/1 and to allow multiple hosts:

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x multiple-hosts
```

**Resetting the 802.1X Configuration to the Default Values**

Beginning in privileged EXEC mode, follow these steps to reset the 802.1X configuration to the default values:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>dot1x default</td>
<td>Reset the configurable 802.1X parameters to the default values.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Displaying 802.1X Statistics and Status**

To display 802.1X statistics for all interfaces, use the **show dot1x statistics** privileged EXEC command. To display 802.1X statistics for a specific interface, use the **show dot1x statistics interface interface-id** privileged EXEC command.

To display the 802.1X administrative and operational status for the switch, use the **show dot1x** privileged EXEC command. To display the 802.1X administrative and operational status for a specific interface, use the **show dot1x interface interface-id** privileged EXEC command.

For detailed information about the fields in these displays, refer to the command reference for this release.
Configuring the Switch Interfaces

This chapter defines the types of interfaces on the switch and describes how to configure them. The chapter has these sections:

- Understanding Interface Types, page 9-1
- Using the Interface Command, page 9-4
- Configuring Switch Interfaces, page 9-9
- Monitoring and Maintaining the Interfaces, page 9-16

Note

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the online Cisco IOS Interface Command Reference for Release 12.1.

Understanding Interface Types

This section describes the different types of interfaces supported by the switch with references to chapters that contain more detailed information about configuring these interface types. The rest of the chapter describes configuration procedures for switch ports.

Switch ports are Layer 2-only interfaces associated with a physical port. They are used for managing the physical interface and associated Layer 2 protocols and do not handle routing or bridging. A switch port can be an access port or a trunk port.

You can configure a port as an access port or trunk port or let the Dynamic Trunking Protocol (DTP) operate on a per-port basis to determine if a switch port should be an access port or a trunk port by negotiating with the port on the other end of the link.

Configure switch ports by using the `switchport` interface configuration commands. For detailed information about configuring access port and trunk port characteristics, see Chapter 14, “Configuring VLANs.”

Note

The physical switch ports switches can be 10/100 Ethernet ports, 10/100/1000 Ethernet ports, 100BASE-FX ports, 1000BASE-SX ports, GBIC module ports, and Long-Reach Ethernet (LRE) ports. For more information, refer to the switch hardware installation guide.
These sections describe these types of interfaces:

- **Access Ports**, page 9-2
- **Trunk Ports**, page 9-2
- **Port-Based VLANs**, page 9-3
- **EtherChannel Port Groups**, page 9-3
- **Connecting Interfaces**, page 9-3

### Access Ports

An access port belongs to and carries the traffic of only one VLAN. Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives a tagged packet (Inter-Switch Link [ISL] or 802.1Q tagged), the packet is dropped, the source address is not learned, and the frame is counted in the No destination statistic. An access port can forward a tagged packet (802.1P and 802.1Q).

Two types of access ports are supported:

- Static access ports are manually assigned to a VLAN.
- VLAN membership of dynamic access ports is learned through incoming packets. By default, a dynamic access port is a member of no VLAN, and forwarding to and from the port is enabled only when the VLAN membership of the port is discovered. Dynamic access ports on the switch are assigned to a VLAN by a VLAN Membership Policy Server (VMPS). The VMPS can be a Catalyst 6000 series switch; the Catalyst 2950 switch does not support the function of a VMPS.

### Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database. Only IEEE 802.1Q trunk ports are supported. An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An 802.1Q trunk port is assigned a default Port VLAN ID (PVID), and all untagged traffic travels on the port default PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sentuntagged. All other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 1005 when the standard software image [SI] is installed or VLAN ID 1 to 4094 when the enhanced software image [EI] is installed) are in the allowed list. A trunk port can only become a member of a VLAN if VTP knows of the VLAN and the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

**Note**

VLAN 1 cannot be excluded from the allowed list.

For more information about trunk ports, see Chapter 14, “Configuring VLANs.”
Port-Based VLANs

A VLAN is a switched network that is logically segmented by function, team, or application, without regard to the physical location of the users. For more information about VLANs, see Chapter 14, “Configuring VLANs.” Packets received on a port are forwarded only to ports that belong to the same VLAN as the receiving port. Network devices in different VLANs cannot communicate with one another without a Layer 3 device to route traffic between the VLANs.

VLAN partitions provide hard firewalls for traffic in the VLAN, and each VLAN has its own MAC address table. A VLAN comes into existence when a local port is configured to be associated with the VLAN, when the VLAN Trunking Protocol (VTP) learns of its existence from a neighbor on a trunk, or when a user creates a VLAN.

To configure normal-range VLANs (VLAN IDs 1 to 1005), use the `vlan vlan-id` global configuration command to enter config-vlan mode or the `vlan database` privileged EXEC command to enter VLAN configuration mode. The VLAN configurations for VLAN IDs 1 to 1005 are saved in the VLAN database. To configure extended-range VLANs (VLAN IDs 1006 to 4094) when the EI is installed, you must use config-vlan mode with VTP mode set to transparent. Extended-range VLANs are not added to the VLAN database. When VTP mode is transparent, the VTP and VLAN configuration is saved in the switch running configuration, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command.

Add ports to a VLAN by using the `switchport` interface configuration commands:
- Identify the interface.
- For a trunk port, set trunk characteristics, and if desired, define the VLANs to which it can belong.
- For an access port, set and define the VLAN to which it belongs.

EtherChannel Port Groups

EtherChannel port groups provide the ability to treat multiple switch ports as one switch port. These port groups act as a single logical port for high-bandwidth connections between switches or between switches and servers. An EtherChannel balances the traffic load across the links in the channel. If a link within the EtherChannel fails, traffic previously carried over the failed link changes to the remaining links. You can group multiple trunk ports into one logical trunk port or group multiple access ports into one logical access port. Most protocols operate over either single ports or aggregated switch ports and do not recognize the physical ports within the port group. Exceptions are the DTP, the Cisco Discovery Protocol (CDP), and the Port Aggregation Protocol (PAgP), which operate only on physical ports.

When you configure an EtherChannel, you create a port-channel logical interface and assign an interface to the EtherChannel. For Layer 2 interfaces, the logical interface is dynamically created. You manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command. This command binds the physical and logical ports together. For more information, see Chapter 27, “Configuring EtherChannels.”

Connecting Interfaces

Devices within a single VLAN can communicate directly through any switch. Ports in different VLANs cannot exchange data without going through a routing device or routed interface.

With a standard Layer 2 switch, ports in different VLANs have to exchange information through a router. In the configuration shown in Figure 9-1, when Host A in VLAN 20 sends data to Host B in VLAN 30, it must go from Host A to the switch, to the router, back to the switch, and then to Host B.
Using the Interface Command

To configure a physical interface (port), use the `interface` global configuration command to enter interface configuration mode and to specify the interface type, slot, and number.

- **Type**—Fast Ethernet (fastethernet or fa) for 10/100 Ethernet or Gigabit Ethernet (gigabitethernet or gi)
- **Slot**—The slot number on the switch (always 0 on this switch).
- **Port number**—The interface number on the switch. The port numbers always begin at 1, starting at the left when facing the front of the switch, for example, fastethernet 0/1, fastethernet 0/2. If there is more than one media type (for example, 10/100 ports and Gigabit Ethernet ports), the port number starts again with the second media: gigabitethernet 0/1, gigabitethernet 0/2.

You can identify physical interfaces by physically checking the interface location on the switch. You can also use the IOS show privileged EXEC commands to display information about a specific interface or all the interfaces on the switch. The remainder of this chapter primarily provides physical interface configuration procedures.

This section describes how to configure all types of interfaces and how to configure a range of interfaces:

- Procedures for Configuring Interfaces, page 9-4
- Configuring a Range of Interfaces, page 9-6
- Configuring and Using Interface-Range Macros, page 9-8

Procedures for Configuring Interfaces

These general instructions apply to all interface configuration processes.

**Step 1** Enter the `configure terminal` command at the privileged EXEC prompt:

```
Switch# configure terminal
```
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#

Step 2  Enter the **interface** global configuration command. Identify the interface type and the number of the connector. In this example, Gigabit Ethernet interface 0/1 is selected:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)#

**Note**  You do not need to add a space between the interface type and interface number. For example, in the preceding line, you can specify either **gigabitethernet 0/1**, **gigabitethernet0/1**, **gi 0/1**, or **gi0/1**.

Step 3  Follow each **interface** command with the interface configuration commands your particular interface requires. The commands you enter define the protocols and applications that will run on the interface. The commands are collected and applied to the interface when you enter another interface command or enter **end** to return to privileged EXEC mode. You can also configure a range of interfaces by using the **interface range** or **interface range macro** global configuration commands. Interfaces configured in a range must be the same type and must be configured with the same feature options.

Step 4  After you configure an interface, verify its status by using the **show** privileged EXEC commands listed in the “Monitoring and Maintaining the Interfaces” section on page 9-16.

Enter the **show interfaces** privileged EXEC command to see a list of all interfaces on or configured for the switch. A report is provided for each interface that the device supports or for the specified interface:

Switch# show interfaces
Vlan1 is up, line protocol is up
  Hardware is EtherSVI, address is 0000.0000.0000 (bia 0000.0000.00
  Internet address is 10.1.1.64/24
  MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
   reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:35, output 2d14h, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/40, 1 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
       264251 packets input, 163850228 bytes, 0 no buffer
       Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
       0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
       380 packets output, 26796 bytes, 0 underruns
       0 output errors, 0 interface resets
       0 output buffer failures, 0 output buffers swapped out
FastEthernet0/1 is up, line protocol is down
  Hardware is Fast Ethernet, address is 0000.0000.0001 (bia 0000.00
  MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
   reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  Auto-duplex, Auto-speed
  input flow-control is off, output flow-control is off
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input never, output never, output hang never
  Last clearing of "show interface" counters never
You can use the interface range global configuration command to configure multiple interfaces with the same configuration parameters. When you enter the interface-range configuration mode, all command parameters that you enter are attributed to all interfaces within that range until you exit this mode.

Beginning in privileged EXEC mode, follow these steps to configure a range of interfaces with the same parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface range {port-range</td>
<td>macro macro_name}</td>
</tr>
<tr>
<td></td>
<td>• You can use the interface range command to configure up to five port ranges or a previously defined macro.</td>
</tr>
<tr>
<td></td>
<td>• The macro variable is explained in the “Configuring and Using Interface-Range Macros” section on page 9-8.</td>
</tr>
<tr>
<td></td>
<td>• Each comma-separated port-range must consist of the same port type. You do not need to enter spaces before or after the comma.</td>
</tr>
<tr>
<td></td>
<td>• When you define a range, the space between the first port and the hyphen is required.</td>
</tr>
<tr>
<td>Step 3</td>
<td>You can now use the normal configuration commands to apply the configuration parameters to all interfaces in the range.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces [interface-id]</td>
<td>Verify the configuration of the interfaces in the range.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When using the interface range global configuration command, note these guidelines:

• Valid entries for port-range:
  - vlan vlan-ID - vlan-ID, where VLAN ID is from 1 to 1005 with the SI installed or 1 to 4094 with the EI installed
  - fastethernet slot/{first port} - {last port}, where slot is 0
- **gigabitethernet** slot/first port - {last port}, where slot is 0
- **port-channel** port-channel-number - port-channel-number, where port-channel-number is from 1 to 6

- You must add a space between the interface numbers and the hyphen when using the **interface range** command. For example, the command `interface range fastethernet 0/1 - 5` is a valid range; the command `interface range fastethernet 0/1-5` is not a valid range.

- The **interface range** command works only with VLAN interfaces that have been configured with the **interface vlan** command (the `show running-config` privileged EXEC command output shows the configured VLAN interfaces). VLAN interfaces that do not appear by using the `show running-config` command cannot be used with the **interface range** command.

- All interfaces in a range must be the same type; that is, all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or VLAN interfaces.

This example shows how to use the **interface range** global configuration command to enable Fast Ethernet interfaces 0/1 to 0/5:

```
Switch# configure terminal
Switch(config)# interface range fastethernet0/1 - 5
Switch(config-if-range)# no shutdown
Switch(config-if-range)#
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet0/2, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet0/3, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet0/4, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet0/5, changed state to up
*Oct 6 08:24:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/05, changed state to up
*Oct 6 08:24:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to up
*Oct 6 08:24:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/4, changed state to up
```

This example shows how to use a comma to add different interface type strings to the range to enable all Fast Ethernet interfaces in the range 0/1 to 0/3 and Gigabit Ethernet interfaces 0/1 and 0/2:

```
Switch# configure terminal
Switch(config)# interface range fastethernet0/1 - 3, gigabitethernet0/1 - 2
Switch(config-if-range)# no shutdown
Switch(config-if-range)#
*Oct 6 08:29:28: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
*Oct 6 08:29:28: %LINK-3-UPDOWN: Interface FastEthernet0/2, changed state to up
*Oct 6 08:29:28: %LINK-3-UPDOWN: Interface FastEthernet0/3, changed state to up
*Oct 6 08:29:28: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up
*Oct 6 08:29:28: %LINK-3-UPDOWN: Interface GigabitEthernet0/2, changed state to up
*Oct 6 08:29:29: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to up
*Oct 6 08:29:29: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to up
*Oct 6 08:29:29: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up
*Oct 6 08:29:29: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/2, changed state to up
*Oct 6 08:29:29: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to up
```

If you enter multiple configuration commands while you are in interface-range mode, each command is executed as it is entered. The commands are not batched together and executed after you exit interface-range mode. If you exit interface-range configuration mode while the commands are being executed, some commands might not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface-range configuration mode.
### Configuring and Using Interface-Range Macros

You can create an interface-range macro to automatically select a range of interfaces for configuration. Before you can use the `macro` keyword in the `interface range macro` global configuration command string, you must use the `define interface-range` global configuration command to define the macro.

Beginning in privileged EXEC mode, follow these steps to define an interface-range macro:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> define interface-range <strong>macro_name</strong></td>
<td>Define the interface-range macro, and save it in NVRAM.</td>
</tr>
<tr>
<td><strong>interface-range</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface range <strong>macro_name</strong></td>
<td>Select the interface range to be configured by using the values saved</td>
</tr>
<tr>
<td></td>
<td>in the interface-range macro called <strong>macro_name</strong>. You can now use the</td>
</tr>
<tr>
<td></td>
<td>configuration to all interfaces in the defined macro.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show running-config</td>
<td>include define</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no define interface-range **macro_name**` global configuration command to delete a macro.

When using the `define interface-range` global configuration command, note these guidelines:

- Valid entries for `interface-range`:
  - `vlan vlan-ID - vlan-ID`, where VLAN ID is from 1 to 1005 with the SI installed or 1 to 4094 with the EI installed
  - `fastethernet slot/{first port} - {last port}`, where slot is 0
  - `gigabitethernet slot/{first port} - {last port}`, where slot is 0
  - `port-channel port-channel-number - port-channel-number`, where `port-channel-number` is from 1 to 6.

- You must add a space between the interface numbers and the hyphen when entering an `interface-range`. For example, `fastethernet 0/1 - 5` is a valid range; `fastethernet 0/1-5` is not a valid range.

- The VLAN interfaces must have been configured with the `interface vlan` command. The `show running-config` privileged EXEC command output shows the configured VLAN interfaces. VLAN interfaces that do not appear by using the `show running-config` command cannot be used as `interface-ranges`.

- All interfaces in a range must be the same type; that is, all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs, but you can combine multiple interface types in a macro.
This example shows how to define an interface-range macro named *enet_list* to select Fast Ethernet ports 1 to 4 and to verify the macro configuration:

```plaintext
Switch# configure terminal
Switch(config)# define interface-range enet_list fastethernet0/1 - 4
Switch(config)# end
Switch# show running-config | include define
define interface-range enet_list FastEthernet0/1 - 4
```

This example shows how to create a multiple-interface macro named *macro1*:

```plaintext
Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet0/1 - 2, fastethernet0/5 - 7
Switch(config)# end
Switch#
```

This example shows how to enter interface range configuration mode for the interface-range macro *enet_list*:

```plaintext
Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
```

This example shows how to delete the interface-range macro *enet_list* and to verify that it has been deleted.

```plaintext
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch# show run | include define
```

## Configuring Switch Interfaces

The switch supports these interface types:

- Physical ports—Switch ports, including access, trunk, and LRE ports
- VLANs—Switch virtual interfaces (SVIs)
- Port-channels—EtherChannel of interfaces

These sections describe the default interface configuration and the optional features that you can configure on most physical interfaces:

- Default Ethernet Interface Configuration, page 9-10
- SFP Configuration, page 9-10
- Configuring Interface Speed and Duplex Mode, page 9-11
- Configuring Media Types for Gigabit Interfaces, page 9-14
- Configuring IEEE 802.3X Flow Control on Gigabit Ethernet Ports, page 9-14
- Adding a Description for an Interface, page 9-16
Default Ethernet Interface Configuration

Table 9-1 shows the Ethernet interface default configuration. For more details on the VLAN parameters listed in the table, see Chapter 14, “Configuring VLANs.” For details on controlling traffic to the port, see Chapter 18, “Configuring Port-Based Traffic Control.”

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Layer 2.</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 1005 with the SI installed or 1 to 4094 with the EI installed.</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Switchport mode dynamic desirable (supports DTP).</td>
</tr>
<tr>
<td>Port enable state</td>
<td>All ports are enabled.</td>
</tr>
<tr>
<td>Port description</td>
<td>None defined.</td>
</tr>
<tr>
<td>Speed</td>
<td>Autonegotiate.</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>Autonegotiate.</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control is set to off for receive and desired for send for Gigabit Ethernet ports.</td>
</tr>
</tbody>
</table>
| EtherChannel (PAgP)           | Disabled on all Ethernet ports.  
                                | See Chapter 27, “Configuring EtherChannels.”                                    |
| Broadcast, multicast, and unicast storm control | Disabled.  
                                | See the “Default Storm Control Configuration” section on page 18-2.            |
| Protected port                | Disabled.  
                                | See the “Configuring Protected Ports” section on page 18-3.                   |
| Port security                 | Disabled.  
                                | See the “Default Port Security Configuration” section on page 18-7.            |
| Port Fast                     | Disabled.                                                                       |
| Media Type                    | Media type is set to prefer-sfp by default.                                     |

SFP Configuration

The Catalyst 2950 LRE switch has four physical input ports that are logically bundled as two ports. Each logical port consists of a copper 10/100/1000 port and a fiber-optic small form-factor pluggable (SFP) module slot. These ports display as a vertical column on the front panel and are labeled Uplink Port 1 and Uplink Port 2 on the Catalyst 2950 LRE switch.

Within each port, you can use only one of the two physical ports, either the SFP module port or the 10/100/1000 port. For example, you can connect to either the SFP module port or the 10/100/1000 port under Uplink Port 1. The default operation is that if the SFP module is plugged in, the fiber-optic medium has the priority over copper medium. If the SFP module is not plugged in, then the copper medium becomes active. If the SFP module is plugged in later (even after the copper medium establishes the link), then the link of the copper medium will be disconnected and the fiber-optic medium will
become active. In that scenario, a valid configuration is to install the fiber-optic under Uplink Port 1 by having an SFP module plugged in, and to install the copper under Uplink Port 2 without the SFP module plugged in.

**Note**
By using the media-type auto-select command in Cisco IOS command-line interface (CLI), you can configure the Catalyst 2950 LRE so that the SFP module port does not take precedence over the 10/100/1000 port. In that scenario, whichever media type establishes a link first will have precedence over the other.

For more information about the media-type auto-select, media-type sfp, and media-type rj45 commands, refer to the Catalyst 2950 Desktop Switch Command Reference.

### Configuring Interface Speed and Duplex Mode

The 10/100 Ethernet interfaces on the Catalyst 2950 switch operate in 10 or 100 Mbps and in either full- or half-duplex mode. (There are no 10/100 Ethernet interfaces on the Catalyst 2950 LRE switch.) The 10/100/1000 Ethernet interfaces operate in 10, 100, or 1000 Mbps only in full-duplex mode. In full-duplex mode, two stations can send and receive at the same time. When packets can flow in both directions simultaneously, effective Ethernet bandwidth doubles to 20 Mbps for 10-Mbps interfaces, to 200 Mbps for Fast Ethernet interfaces, and to 2 Gbps for Gigabit interfaces. Full-duplex communication is often an effective solution to collisions, which are major constrictions in Ethernet networks. Normally, 10-Mbps ports operate in half-duplex mode, which means that stations can either receive or send.

On the Catalyst 2950 LRE switch, the copper media (10/100/1000) of the Gigabit interface operate in 10/100 full-duplex or half-duplex mode and 1000 Mbps only in full-duplex mode. The fiber-optic media of the Gigabit interface only operate in 1000 Mbps and full-duplex mode.

**Note**
You cannot configure speed and duplex on the LRE ports by normal speed and duplex commands, but need the special local speed and local duplex commands.

You can configure interface speed on Fast Ethernet (10/100-Mbps) and Gigabit Ethernet (10/100/1000-Mbps) interfaces on the Catalyst 2950 switch; you cannot configure speed on 100BASE-FX, 1000BASE-SX, and Gigabit Interface Converter (GBIC) module interfaces. You can configure duplex mode on any Fast Ethernet interfaces that are not set to autonegotiate; you cannot configure duplex mode on 100BASE-FX, 1000BASE-SX, and GBIC-module interfaces. The 10/100/1000 interfaces can operate only in full-duplex mode.

**Note**
The speed and duplex commands are meant for copper media. The fiber-optic media always operate as 1000 Mbps with full auto negotiation no matter what has been setting for speed and duplex from the command line. For example, you can use the command-line interface to configure the speed to be 10 Mbps and half-duplex. If the fiber-optic medium is active, then the switch attempts to perform auto negotiation as 1000 Mbps with full autonegotiation. If the copper medium is active, then the switch advertises as 10 Mbps and half-duplex.
You cannot configure speed or duplex mode on Gigabit Interface Converter (GBIC) ports, but for certain types of GBICs, you can configure speed to not negotiate (nongotiate) if the GBIC ports are connected to a device that does not support autonegotiation.

These sections describe how to configure the interface speed and duplex mode:

- Configuration Guidelines, page 9-12
- Setting the Interface Speed and Duplex Parameters, page 9-13

The CPE Ethernet port settings have special considerations and different default settings from the switch 10/100 ports. For this information, see the CPE device considerations in the “CPE Ethernet Links” section on page 10-5.

### Configuration Guidelines

When configuring an interface speed and duplex mode, note these guidelines:

- Ethernet ports set to 1000 Mbps should always be set to full duplex.
- Gigabit Ethernet ports that do not match the settings of an attached device can lose connectivity and do not generate statistics.
- If both ends of the line support autonegotiation, we highly recommend the default setting of autonegotiation.
- When connecting an interface to a 100BASE-T device that does not autonegotiate, set the duplex mode to full or half to match the device, and set the speed to auto. Autonegotiation for the speed setting selects the correct speed even if the attached device does not autonegotiate, but duplex mode must be explicitly set.
- When connecting an interface to a Gigabit Ethernet device that does not autonegotiate, disable autonegotiation on the switch and set the duplex and flow control parameters to be compatible with the remote device.
- 100BASE-FX ports operate only at 100 Mbps and in full-duplex mode.
- 1000BASE-SX ports operate only at 1000 Mbps and in full-duplex mode.
- GigaStack-to-GigaStack cascade connections operate in half-duplex mode, and GigaStack-to-GigaStack point-to-point connections operate in full-duplex mode.
- When Spanning Tree Protocol (STP) is enabled and a port is reconfigured, the switch can take up to 30 seconds to check for loops. The port LED is amber while STP reconfigures.

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.
Setting the Interface Speed and Duplex Parameters

Note The Ethernet link settings on the CPE Ethernet ports have special considerations and different default settings from the 10/100 ports. For this information, see the “Ports on the 2950 LRE” section on page 10-1.

Beginning in privileged EXEC mode, follow these steps to set the speed and duplex mode for a physical interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode and the physical interface identification.</td>
</tr>
<tr>
<td>Step 3 speed (10</td>
<td>100</td>
</tr>
<tr>
<td>Step 4 duplex {auto</td>
<td>full</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show interfaces interface-id</td>
<td>Display the interface speed and duplex mode configuration.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no speed and no duplex interface configuration commands to return the interface to the default speed and duplex settings (autonegotiate). To return all interface settings to the defaults, use the default interface interface-id interface configuration command.

This example shows how to set the interface speed to 10 Mbps and the duplex mode to half on FastEthernet interface 0/3 and to verify the configuration:

```
Switch# configure terminal
Switch(config)# interface fastethernet0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
Switch(config)# end
Switch# show running-config
Building configuration...

Current configuration : 1954 bytes
!
version 12.1
no service pad
service timestamps debug uptime
```
Configuring Media Types for Gigabit Interfaces

You can use the `media-type` interface configuration command to configure the media-type for Gigabit interfaces. The `media-type` interface configuration command allows you to enable or disable fiber-optic or copper connections on a Long-Reach Ethernet (LRE) switch. It also allows you to manually set the port to select an SFP connector or an RJ45 connector. Use the no form of this command to return to the default setting of SFP-preferred. To configure media types, use the command:

```
media-type {auto-select | sfp | rj45}
```

See the Catalyst 2950 Desktop Switch Command Reference for further details.

Configuring IEEE 802.3X Flow Control on Gigabit Ethernet Ports

Flow control is supported only on switch and module ports operating at 1000 Mbps. Flow control enables connected Gigabit Ethernet ports to control traffic rates during congestion by allowing congested nodes to pause link operation at the other end. If one port experiences congestion and cannot receive any more traffic, it notifies the other port to stop sending until the condition clears. When the local device detects any congestion at its end, it can notify the link partner or the remote device of the congestion by sending a pause frame. Upon receipt of a pause frame, the remote device stops sending any data packets, which prevents any loss of data packets during the congestion period.

We strongly recommend that you do not configure IEEE 802.3X flowcontrol when quality of service (QoS) is configured on the switch. Before configuring flowcontrol on an interface, make sure to return to the default QoS settings listed in the “Default QoS Configuration” section on page 26-9.

Flow control can be implemented in two forms, symmetric and asymmetric. The symmetric implementation is suitable for point-to-point links, and asymmetric is suitable for hub-to-end node connections, where it is desirable for the hub to pause the end system, but not vice-versa. You use the `flowcontrol` interface configuration command to set the interface’s ability to receive and send pause frames to on, off, or desired. The default state for Gigabit Ethernet ports is receive off and send desired. The default state for Fast Ethernet ports is receive off and send off.
These rules apply to flow control settings on the device:

- **receive on (or desired) and send on**: Flow control operates in both directions; both the local and the remote devices can send pause frames to show link congestion.

- **receive on (or desired) and send desired**: The port can receive pause frames and can send pause frames if the attached device supports flow control.

- **receive on (or desired) and send off**: The port cannot send pause frames but can operate with an attached device that is required to or can send pause frames; the port can receive pause frames.

- **receive off and send on**: The port sends pause frames if the remote device supports flow control but cannot receive pause frames from the remote device.

- **receive off and send desired**: The port cannot receive pause frames but can send pause frames if the attached device supports flow control.

- **receive off and send off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

**Note** For details about the command settings and the resulting flow control resolution on local and remote ports, refer to the `flowcontrol` interface configuration command in the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure flow control on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>flowcontrol {receive</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable flow control, use the `flowcontrol receive off` and `flowcontrol send off` interface configuration commands.

This example shows how to turn off all flow control on Gigabit Ethernet interface 0/1 and to display the results:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# flowcontrol receive off
Switch(config-if)# flowcontrol send off
Switch(config-if)# end
Switch# show running-config
```
Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description appears in the output of these commands: `show configuration`, `show running-config`, and `show interfaces`.

Beginning in privileged EXEC mode, follow these steps to add a description for an interface:

1. Use the `no description` interface configuration command to delete the description.

This example shows how to add a description on Fast Ethernet interface 0/4 and to verify the description:

```
Switch# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/4
Switch(config-if)# description Connects to Marketing
Switch(config-if)# end
Switch# show interfaces fastethernet0/4 description
```

Monitoring and Maintaining the Interfaces

You can perform the tasks in these sections to monitor and maintain interfaces:

- Monitoring Interface and Controller Status, page 9-16
- Clearing and Resetting Interfaces and Counters, page 9-19
- Shutting Down and Restarting the Interface, page 9-19

Monitoring Interface and Controller Status

Commands entered at the privileged EXEC prompt display information about the interface, including the version of the software and the hardware, the controller status, and statistics about the interfaces. Table 9-2 lists some of these interface monitoring commands. (You can display the full list of `show` commands by using the `show ?` command at the privileged EXEC prompt.) These commands are fully described in the *Cisco IOS Interface Command Reference for Release 12.1*. 
Chapter 9  Configuring the Switch Interfaces

Monitoring and Maintaining the Interfaces

Table 9-2  Show Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [interface-id]</td>
<td>Display the status and configuration of all interfaces or a specific interface.</td>
</tr>
<tr>
<td>show interfaces interface-id status [err-disabled]</td>
<td>Display interface status or a list of interfaces in error-disabled state.</td>
</tr>
<tr>
<td>show interfaces [media</td>
<td>&lt;interface-id&gt; media]</td>
</tr>
<tr>
<td>show interfaces [interface-id] switchport</td>
<td>Display administrative and operational status of switching (nonrouting) ports.</td>
</tr>
<tr>
<td>show interfaces [interface-id] description</td>
<td>Display the description configured on an interface or all interfaces and the interface status.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the usability status of all interfaces configured for IP or the specified interface.</td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td>Display the running configuration in RAM for the interface.</td>
</tr>
<tr>
<td>show version</td>
<td>Display the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
</tbody>
</table>

This example shows how to display the status of all interfaces:

```
Switch# show interfaces status

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Status</th>
<th>Vlan</th>
<th>Duplex</th>
<th>Speed</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa0/1</td>
<td>connected</td>
<td>1</td>
<td>a-full</td>
<td>a-100</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/2</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
<tr>
<td>Fa0/3</td>
<td>notconnect</td>
<td>1</td>
<td>auto</td>
<td>auto</td>
<td>10/100BaseTX</td>
<td></td>
</tr>
</tbody>
</table>

<output truncated>

| Fa0/23| notconnect | 1 | auto | auto | 10/100BaseTX |
| Fa0/24| notconnect | 1 | auto | auto | 10/100BaseTX |
| G10/1 | notconnect | 1 | auto | auto | unknown |
| G10/2 | notconnect | 1 | auto | auto | unknown |
```

This example shows how to display the status of switching ports:

```
Switch# show interfaces switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001

Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled

Voice VLAN: dot1p (Inactive)
Appliance trust: 5
Name: Fa0/2
Switchport: Enabled
Administrative Mode: static access
```
Operational Mode: down

<output truncated>

This example shows how to display the running configuration of Fast Ethernet interface 0/2:

Switch# show running-config interface fastethernet0/2
Building configuration...

Current configuration : 131 bytes
!
interface FastEthernet0/2
  switchport mode access
  switchport protected
  no ip address
  mls qos cos 7
  mls qos cos override
end

This example shows the output of the show interfaces privileged EXEC commands for a Catalyst 2950 LRE switch:

Switch# show interfaces lo0/2

LongReachEthernet0/2 is up, line protocol is up
  Hardware is Long Reach Ethernet, address is 0056.895a.7e82 (bia 0056.895a.7e82)
  MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
  reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  Half-duplex, 100Mb/s
  input flow-control is off, output flow-control is off
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input never, output 00:00:00, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue :0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 2000 bits/sec, 2 packets/sec
    1 packets input, 64 bytes, 0 no buffer
    Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
    0 input packets with dribble condition detected
    368 packets output, 33134 bytes, 0 underruns
    0 output errors, 0 collisions, 2 interface resets
    0 babbles, 0 late collision, 0 deferred
    0 lost carrier, 0 no carrier
    0 output buffer failures, 0 output buffers swapped out

Note: For a Catalyst 2950 LRE switch, the show interfaces privileged EXEC command for a LRE interface displays the statistics for the LRE interface rather than the statistics for the Ethernet port(s) on the CPE device. In addition, the speed and duplex of the LRE interface is never auto-negotiated, but is always forced (in other words, the speed and duplex will be 100 Mbps and half-duplex, 100 Mbps and full-duplex, 10 Mbps and half-duplex, or 10 Mbps and full-duplex).
Clearing and Resetting Interfaces and Counters

Table 9-3 lists the `clear` privileged EXEC commands that you can use to clear counters and reset interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear counters</td>
<td>Clear interface counters.</td>
</tr>
<tr>
<td>clear interface</td>
<td>Reset the hardware logic on an interface.</td>
</tr>
<tr>
<td>clear line</td>
<td>Reset the hardware logic on an asynchronous serial line.</td>
</tr>
</tbody>
</table>

To clear the interface counters shown by the `show interfaces` privileged EXEC command, use the `clear counters` privileged EXEC command. The `clear counters` command clears all current interface counters from the interface unless optional arguments are specified to clear only a specific interface type from a specific interface number.

**Note**

The `clear counters` privileged EXEC command does not clear counters retrieved by using Simple Network Management Protocol (SNMP), but only those seen with the `show interfaces` privileged EXEC command output.

This example shows how to clear and reset the counters on Fast Ethernet interface 0/5:

```
Switch# clear counters fastethernet0/5
Clear "show interface" counters on this interface [confirm] y
Switch# *Sep 30 08:42:55: %CLEAR-5-COUNTERS: Clear counter on interface FastEthernet0/5 by vty1 (171.69.115.10)
```

Use the `clear interface` or `clear line` privileged EXEC command to clear and reset an interface or serial line. Under most circumstances, you do not need to clear the hardware logic on interfaces or serial lines.

This example shows how to clear and reset Fast Ethernet interface 0/5:

```
Switch# clear interface fastethernet0/5
```

Shutting Down and Restarting the Interface

Shutting down an interface disables all functions on the specified interface and marks the interface as unavailable on all monitoring command displays. This information is communicated to other network servers through all dynamic routing protocols. The interface is not mentioned in any routing updates.

Beginning in privileged EXEC mode, follow these steps to shut down an interface:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>interface (vlan vlan-id)</td>
<td>Select the interface to be configured.</td>
</tr>
<tr>
<td>Step 3</td>
<td>shutdown</td>
<td>Shut down an interface.</td>
</tr>
</tbody>
</table>
Use the no shutdown interface configuration command to restart the interface.

This example shows how to shut down Fast Ethernet interface 0/5:

```
Switch# configure terminal
Switch(config)# interface fastethernet0/5
Switch(config-if)# shutdown
```

*Sep 30 08:33:47: %LINK-5-CHANGED: Interface FastEthernet0/5, changed state to administratively down

This example shows how to re-enable Fast Ethernet interface 0/5:

```
Switch# configure terminal
Switch(config)# interface fastethernet0/5
Switch(config-if)# no shutdown
```

*Sep 30 08:36:00: %LINK-3-UPDOWN: Interface FastEthernet0/5, changed state to up

To verify that an interface is disabled, enter the show interfaces privileged EXEC command. A disabled interface is shown as administratively down in the show interfaces command output.

The shutdown command shuts down the LRE link when applied to an LRE interface. To shut down the Fast Ethernet port(s) on the CPE device use this command in interface configuration scope:

```
cpe shutdown [port <num>]
```
Configuring LRE

This chapter describes how to configure the Long-Reach Ethernet (LRE) features on your switch. This chapter consists of these sections:

- Ports on the 2950 LRE, page 10-1
- LRE Links and LRE Profiles, page 10-2
- Configuring LRE Ports, page 10-5
- Upgrading LRE Switch Firmware, page 10-15

Note

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the online Cisco IOS Interface Command Reference for Release 12.1.

Ports on the 2950 LRE

The Catalyst 2950 LRE switches use Long-Reach Ethernet (LRE) technology to transfer data, voice, and video traffic over categorized and noncategorized unshielded twisted-pair cable (Category 1, 2, and 3 structured and unstructured cable such as existing telephone lines).

Connecting a switch LRE port to a remote Ethernet device (such as a PC) requires two types of connections:

- LRE link—This is the connection between the switch LRE port and the RJ-11 wall port on an LRE customer premises equipment (CPE) device such as the Cisco 575 LRE CPE or Cisco 585 LRE CPE. This connection can be through categorized or noncategorized unshielded twisted-pair cable and can extend to distances of up to 4921 feet (1500 m).
- CPE Ethernet link—This is the connection between the CPE Ethernet port and an Ethernet device, such as a PC. This connection is through standard Category 5 cabling and can extend to distances of up to 328 feet (100 m).

The actual line speed in either direction between a switch LRE port and remote Ethernet device depends on the LRE link speed and the CPE Ethernet link speed. For example, if a PC Ethernet port is configured to 100 Mbps and the LRE port is configured with an upstream link speed of 5.69 Mbps, the actual upload rate provided to the PC user is 5.69 Mbps, not 100 Mbps.

For LRE troubleshooting information, see the “Troubleshooting LRE Port Configuration” section on page 28-12. Additional LRE details are in the switch command reference.
LRE Links and LRE Profiles

The LRE link settings define the connection between the switch LRE port and the CPE RJ-11 wall port. The LRE link provides symmetric and asymmetric bandwidth for data, voice, and video traffic. Symmetric transmission is when the downstream and upstream bandwidths are the same. Asymmetric transmission is when the downstream and the upstream bandwidths differ. Downstream transmission refers to the traffic going from the LRE switch to the CPE device. Upstream transmission refers to the traffic going from the CPE device to the LRE switch.

The switch controls upstream and downstream rates on the LRE link by using configurations called profiles. Depending on the profile, the upstream and downstream bands on an LRE link can range from approximately 1 Megabit per second (Mbps) to 18.750 Mbps.

This section discusses these topics:
- LRE Profiles, page 10-2
- LRE Sequences, page 10-4
- CPE Ethernet Links, page 10-5

LRE Profiles

You can assign profiles on a per-port or switch-wide basis. When the LRE switch establishes a link with the CPE device, the switch downloads its profile settings to the CPE device so that the switch and CPE device operate with the same configuration.

The LRE switches are shipped with system-defined profiles. You can configure a profile on either a global or per-port basis. By default, all LRE ports on the switch are enabled with the LRE-10 profile. This default profile allows the upstream and downstream transmission rate on the LRE link to be 12.5 Mbps.

Table 10-1 contains the full list of LRE profiles, as well as their downstream and upstream rates (in Mbps and their theoretical upstream and downstream signal-to-noise (SNR) rates (in decibels).

---

**Note**
Consult the regulations for connecting to the PSTN in your area.

**Note**
Use the rates and distances in Table 10-1 as guidelines only. Factors such as the type of cable that you use, how it is bundled, and the interference and noise on the LRE link can affect the actual LRE link performance. Contact Cisco Systems for information about limitations and optimization of LRE link performance. The downstream and upstream rates in the table are slightly less than the gross data rates displayed by the `show controllers lre profile names` privileged EXEC command.
Your data rates will always be less than the gross data rate listed in table. A small percentage of the link rate is used by 2950 LRE switch for supervisory functions with the CPE device connected remotely.

In general, profiles are named for the data rate that you expect to achieve and not the gross data rate as given in the table. All system-defined profiles have the prefix LRE, followed by the downstream user data rate and then the upstream user data rate. If the profile is symmetric, only one data rate is given. The two profiles defined to comply with public frequency usage plans 998 and 997 (LRE-998-15-4 and LRE-997-10-4) are exceptions to this. These two uniquely named profiles work in any private deployment.

- If you are not using sequences and you have not assigned a profile to an LRE port, the port has a default value of LRE-10. Port profiles have priority over global profiles. If you assign a global profile to the switch, the switch uses the global profile except on any LRE ports on which a specific profile was assigned.

  When you assign a different profile to a switch LRE port, the port immediately resets and uses the newly assigned profile.

### Table 10-1 LRE Profiles

<table>
<thead>
<tr>
<th>Profile Name</th>
<th>LRE Link Downstream Rate (Mbps)</th>
<th>LRE Link Upstream Rate (Mbps)</th>
<th>Theoretical Min SNR Downstream</th>
<th>Theoretical Min SNR Upstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRE-15</td>
<td>16.667</td>
<td>18.750</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>LRE-10 (default)</td>
<td>12.500</td>
<td>12.500</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>LRE-5</td>
<td>6.250</td>
<td>6.250</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>LRE-997-10-4</td>
<td>12.500</td>
<td>4.688</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>LRE-15LL</td>
<td>16.667</td>
<td>18.750</td>
<td>31</td>
<td>25</td>
</tr>
<tr>
<td>LRE-10LL</td>
<td>12.500</td>
<td>12.500</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>LRE-5LL</td>
<td>6.250</td>
<td>6.250</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>LRE-10-5</td>
<td>12.500</td>
<td>6.250</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>LRE-10-3</td>
<td>12.500</td>
<td>3.125</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>LRE-10-1</td>
<td>12.500</td>
<td>1.563</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>LRE-8</td>
<td>9.375</td>
<td>9.375</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>LRE-7</td>
<td>8.333</td>
<td>8.333</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>LRE-15-3</td>
<td>16.667</td>
<td>3.125</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>LRE-15-1</td>
<td>16.667</td>
<td>1.563</td>
<td>31</td>
<td>19</td>
</tr>
<tr>
<td>LRE-4</td>
<td>4.167</td>
<td>4.167</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>LRE-3</td>
<td>3.125</td>
<td>3.125</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>LRE-2</td>
<td>2.083</td>
<td>2.083</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>LRE-4-1</td>
<td>4.167</td>
<td>1.563</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>LRE-4-1LL</td>
<td>4.167</td>
<td>1.563</td>
<td>19</td>
<td>13</td>
</tr>
</tbody>
</table>
• Use the LL profiles (LRE-5LL, LRE-10LL, and LRE-15LL) with care. These profiles have the low-latency (LL) feature enabled and the interleaver feature disabled. The LL feature does not delay data transmission, but it makes data more susceptible to interruptions on the LRE link.

All other profiles, port and global, have the interleaver feature enabled and the LL feature disabled. The interleaver feature provides maximum protection against small interruptions on the LRE link but delays data transmission.

• The symmetric profiles (LRE-5, LRE-10, LRE-15, LRE-8, LRE-7, LRE-4, LRE-3, and LRE-2) provide full-duplex throughput on the link between the LRE switch and CPE device. Under ideal conditions, this can mean up to 30 Mbps of bandwidth on the LRE link if you are using the LRE-15 profile.

### LRE Sequences

The LRE switches are shipped with predefined sequences. Sequences are sets of profiles and are used in conjunction with the rate selection feature. The rate selection feature enables the switch to automatically select profiles. You can also define your own sets of sequences using IOS commands or CMS. See the “Using Rate Selection to Automatically Assign Profiles” section on page 10-10 for further information.

Table 10-2 outlines the predefined sequences for rate selection contained in Cisco IOS. When executing rate selection, the switch uses a sequences to choose an appropriate profile for a given LRE interface.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LRE-8</td>
<td>LRE-10</td>
<td>LRE-5</td>
<td>LRE-4-1</td>
<td>LRE-15-5</td>
<td>LRE-10</td>
<td>LRE-15</td>
<td>LRE-15-3</td>
</tr>
<tr>
<td>LRE-7</td>
<td>LRE-10-5</td>
<td>LRE-4</td>
<td>LRE-10-5</td>
<td>LRE-10-5</td>
<td>LRE-10-5</td>
<td>LRE-10-3</td>
<td>LRE-10-3</td>
</tr>
<tr>
<td>LRE-15-3</td>
<td>LRE-10-3</td>
<td>LRE-3</td>
<td>LRE-15-10</td>
<td>LRE-10-3</td>
<td>LRE-10-3</td>
<td>LRE-15-1</td>
<td>LRE-10-3</td>
</tr>
<tr>
<td>LRE-10-3</td>
<td>LRE-10-1</td>
<td>LRE-2</td>
<td>LRE-4</td>
<td>LRE-10-1</td>
<td>LRE-4</td>
<td>LRE-10-1</td>
<td>LRE-10-1</td>
</tr>
<tr>
<td>LRE-5</td>
<td>LRE-8</td>
<td>LRE-15-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRE-15-1</td>
<td>LRE-7</td>
<td>LRE-10-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRE-10-1</td>
<td>LRE-5</td>
<td>LRE-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRE-4</td>
<td>LRE-4</td>
<td>LRE-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRE-3</td>
<td>LRE-4-1</td>
<td>LRE-4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRE-2</td>
<td>LRE-3</td>
<td>LRE-4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LRE-4-1</td>
<td>LRE-2</td>
<td>LRE-4-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Beginning with the first profile in a sequence, the switch attempts to apply each profile within that sequence to the LRE interface. The switch continues these attempts until it converges (convergence time refers to the time required for the switch to settle on an appropriate profile for the LRE interface). The link is DOWN until a link is established by one of the profiles in the sequence, after which, it is UP.

For additional information on rate selection, see the “Using Rate Selection to Automatically Assign Profiles” section on page 10-10.

CPE Ethernet Links

The CPE Ethernet link settings define the connection between the CPE Ethernet port and a remote Ethernet device, such as a PC.

Note

From CMS and the CLI, you can configure and monitor the Ethernet link on a Cisco 575 LRE CPE and Cisco 585 LRE CPE. For information about the switch LEDs, see the Catalyst 2950 Series Hardware Installation Guide.

Keep these considerations in mind when you have CPE devices connected to the LRE ports:

- Use the shutdown interface configuration command to disable the LRE interface transmitter on any LRE ports that are not connected to a CPE device. This prevents access to the LRE port and prevents the power emitted from the port from affecting other ports.
- You cannot configure the flow-control setting on the LRE ports. The flow-control setting on the CPE Ethernet port is automatically disabled in half-duplex mode and is automatically enabled in full-duplex mode.
- You can connect Cisco 575 LRE CPEs and Cisco 585 LRE CPEs to the same LRE switch.
- You can hot-swap the CPE devices without powering down the switch or disrupting the other switch ports.

Use the show controllers ethernet-controller privileged EXEC command to display the internal switch statistics, the statistics collected by the LRE switch interface, and the statistics collected by the CPE LRE interface. For information about this command, refer to the switch command reference.

Configuring LRE Ports

These sections describe configuration guidelines and how to assign a profile to all or to individual LRE ports. These sections contain more information about LRE links, ports, and profiles:

- Environmental Guidelines for LRE Links, page 10-6
- Guidelines for Using LRE Profiles, page 10-7
- CPE Ethernet Link Guidelines, page 10-7
- Assigning a Global Profile to All LRE Ports, page 10-8
- Assigning a Profile to a Specific LRE Port, page 10-9
- Using Rate Selection to Automatically Assign Profiles, page 10-10
- LRE Link Persistence, page 10-14
- LRE Link Monitor, page 10-14
Environmental Guidelines for LRE Links

The guidelines for your LRE environment are based on these factors:

- **Maximum distance between the LRE switch and CPE devices**—LRE runs on Category 1, 2, and 3 structured and unstructured cable. The maximum distance supported on the LRE link is from 3500 to 5000 feet, depending on the profile. The higher the rate, the shorter the distance. In buildings where LRE traffic runs over bundled telco cabling, the maximum distance is approximately 30 percent lower.

  Each terminated bridge tap in a room can further reduce LRE link distances by 300 feet. The quality of the cable, the size of the cable bundles, and cross talk within the bundle also can affect overall reach.

- **Site type**—If your site has either a PBX providing telephone service throughout or has direct connections to the PSTN, you must identify the requirements of your local public telephone service provider.

  If your site is a single building (or is a connected set of buildings), consult a qualified electrician to ensure that the wiring conforms to the appropriate regulations for indoor circuits.

  If your site has separate buildings, you must determine how the buildings are cabled to each other. Where the wiring between the LRE switch and CPE device leaves the building (or the armored conduits certified for inside wiring standards), it must be protected against lightning and shorts to high-voltage power. This protection might be provided by fuses or overvoltage protectors that comply with local regulations for outside wiring protection. Consult an expert in local telecommunications regulations for the details of this protection.

- **Age and type of wiring**—You can estimate the type of wiring you have based on your site’s age and type.

  - Newer installations less than 15 years old often use Category 3 cable in bundles of 25 pairs. There is no significant difference between 25-pair bundles and larger bundles.
  
  - Older installations (hotel, school, hospital, commercial—North America) 15 to 30 years old often use 24 AWG wiring with between 1 and 12 twists per foot (similar to Category 1) in bundles of 25 or more.
  
  - Older installations (residential—North America) 15 to 30 years old often use 26 AWG wiring with between 1 and 12 twists per foot (possibly type-2) in bundles of 100 or more.
  
  - Older installations (Europe) 15 to 30 years old often use 0.4 mm (similar to 26 AWG) wiring with between 1 and 12 twists per foot in bundles of 100 or more.
  
  - Older installations (Asia) 15 to 30 years old often use 0.4 mm (similar to 26 AWG) wiring with between 1 and 12 twists per foot in bundles of 100 or more.
  
  - Older installations over 30 years old often use heavy gauge wire (22 or 20 AWG) with no significant twist. In many cases, the cabling is set into the fabric of the building. The cables might be tightly or loosely bundled. For this estimate, assume that they are tightly bundled in groups of 25 or more.

- **Cross talk (noise) and interference**—LRE operates with any number of wires in a cable binder carrying the LRE signal. Anywhere from one wire pair to every wire pair in the cable can carry LRE signals at the same time. LRE operates in full cable binders and adjusts power levels on each LRE link to maximize the performance of all connections.
The greatest impact on LRE performance is from the frequency response of the cable at the higher frequencies. LRE signals are more susceptible to interference at higher frequencies. The LRE upstream signal operates at the high end of the frequency spectrum. Cables have higher attenuation at higher frequencies and also interfere with other pairs in the bundle at higher frequencies. This interference or cross talk can significantly impact the signal quality.

Guidelines for Using LRE Profiles

When assigning a profile to a switch LRE port, keep these considerations in mind:

- Phone lines typically operate at a frequency of up to 3.4 kHz. On the LRE link, the downstream transmission runs in a low-frequency band from approximately 1 to 3.5 MHz. The upstream transmission runs in a high-frequency band from approximately 4 to 8 MHz. Higher frequencies are more susceptible to interference. Consequently, upstream signals are susceptible to cross-talk and disruption on the link.

  To maintain the quality of the LRE connection, use the asymmetric port profiles. These profiles use a low upstream rate but provide a high downstream rate.

  \[ \text{Note} \]
  All POTS telephones not directly connected to the CPE device require microfilters with a 300-ohm termination. Microfilters improve voice call quality when voice and data equipment are using the same telephone line. They also prevent nonfiltered telephone rings and nonfiltered telephone transitions (such as on-hook to off-hook) from interrupting the LRE connection.

- When the link between the LRE switch and the CPE device must co-exist in the same cable bundle as an asymmetric digital subscriber line (ADSL), we recommend that you use either the ANSI profile (LRE-998-15-4) or the ETSI profile (LRE-997-10-4). For details on which profile to use elsewhere, consult the regulations for connecting to the PSTN in your area.

- LRE signaling can coexist with ADSL signaling in one cable bundle. However, LRE signaling is not compatible with T1 signals in the same cable bundle.

  Use the show controllers lre status link privileged EXEC command to display the LRE link statistics and profile information on the LRE ports. For information about these commands, refer to the switch command reference.

CPE Ethernet Link Guidelines

Follow these guidelines when configuring CPE Ethernet links:

- Considerations for Connected Cisco 575 LRE CPEs, page 10-7
- Considerations for Connected Cisco 585 LRE CPEs, page 10-8

Considerations for Connected Cisco 575 LRE CPEs

You can configure the Cisco 575 LRE CPE Ethernet port to operate at 10 or 100 Mbps and at half- or full-duplex mode, depending on the capability of the remote Ethernet device. Autonegotiation for port speed and duplex mode is supported.

The default speed for the CPE Ethernet port is auto. The default duplex mode is half duplex with back pressure.
Configuring LRE Ports

Note

When the default speed is set to 10 or 100 Mbps with half duplex, the values set are the same. If the remote values are 10 Mbps with full duplex, the Cisco 575 LRE CPE Ethernet port is profile independent. All LRE profiles are set to be 10 Mbps with half duplex except for LRE-10 (the default), which is set to 10 Mbps with full duplex. For a setting of 100 Mbps with full duplex, the value is set to 100 Mbps with half duplex.

The speeds on the LRE links and CPE Ethernet links do not need to match. However, to prevent the possible loss of data when the LRE link is slower than the CPE Ethernet link, make sure that the CPE Ethernet port is set to half-duplex mode. Use duplex autonegotiation only if the remote device supports 802.1X full-duplex flow control. The PC user should notice no significant difference in performance between 100-Mbps half duplex and 100-Mbps full duplex. Use the cpe duplex and cpe speed interface configuration commands, respectively, to change the duplex and speed settings on the Cisco 575 LRE CPE Ethernet port.

Considerations for Connected Cisco 585 LRE CPEs

You can configure the Cisco 585 LRE CPE Ethernet port speed and duplexing from the command line, depending on the capability of the remote Ethernet device. Autonegotiation for CPE port speed and duplex mode is supported.

The default speed for the CPE Ethernet ports is auto. The default duplex mode is half duplex at 100 Mbps with back pressure.

You can enable or disable the CPE Ethernet ports on a per-port basis.

The loopback interface configuration command is not supported on the LRE ports. External loopback on the LRE ports is also not supported. Connecting a CPE Ethernet port to another Ethernet port on the same CPE device can create a loop. If this happens, the switch stops sending to the CPE device and blocks Ethernet traffic coming from the CPE device.

Assigning a Global Profile to All LRE Ports

Global profiles are set on a switch-wide basis.

Port sequences, global sequences, and port profiles have priority over global profiles (see the “Precedence” section on page 10-11 for a full discussion of rate selection precedence). If you assign a global profile to the switch, it cannot over-ride any previously or subsequently set sequence port profile.  (For further information on sequence and profile precedence, see Guidelines for Using LRE Profiles, page 10-7.)

Changes to the global profile settings are immediately put in effect, and the global mode automatically becomes the active mode.

Beginning in privileged EXEC mode, follow these steps to assign a global profile to the LRE ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>lre profile profile_name</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show controllers lre profile details</td>
</tr>
</tbody>
</table>

Catalyst 2950 Desktop Switch Software Configuration Guide
Use the `show controllers lre` privileged EXEC commands to display the LRE link statistics and profile information on the LRE ports. For information about these commands, refer to the switch command reference.

### Assigning a Profile to a Specific LRE Port

You can set profiles on a per-port basis. You can assign the same profile or different profiles to the LRE ports on the switch. The default active profile on all LRE ports is LRE-10.

The switch resets the ports with the updated profile settings when changed.

Beginning in privileged EXEC mode, follow these steps to assign a profile to a specific LRE port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface LRE-interface</code> Enter interface configuration mode, and enter the number of the LRE port to be configured.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>profile profile_name</code> Enter the port profile name (select from the list in Table 10-1).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show controllers lre profile details</code> Verify the change.</td>
</tr>
</tbody>
</table>

Use the `show controllers lre` privileged EXEC command to display the LRE link statistics and profile information on the LRE ports. For information about these commands, refer to the switch command reference.

### Assigning a Global Sequence to All LRE Ports

Global sequences are set on a switch-wide basis. If you assign a global sequence to the switch, it over-rides any previously or subsequently set profiles. (For further information on sequence and profile precedence, see Guidelines for Using LRE Profiles, page 10-7.)

Changes to the global sequence settings are immediately put in effect, and the global mode automatically becomes the active mode.

Beginning in privileged EXEC mode, follow these steps to assign a global sequence to the LRE ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>lre rate selection sequence sequence_name</code> Enter the global sequence name. Select from the list in Table 10-2.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show controllers lre status sequence</code> Verify the change.</td>
</tr>
</tbody>
</table>

Use the `show controllers lre status sequence details` privileged EXEC commands to display the LRE link statistics and sequence information on the LRE ports. For information about these commands, refer to the switch command reference.
Assigning a Sequence to a Specific LRE Port

You can set sequences on a per-port basis. You can assign the same sequence or different sequences to the LRE ports on the switch. If you assign a sequence on a port basis, it overrides any previously or subsequently set profiles or global sequence.

The switch resets the ports with the updated sequence settings when changed.

Beginning in privileged EXEC mode, follow these steps to assign a sequence to a specific LRE port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface LRE-interface</td>
<td>Enter interface configuration mode, and enter the number of the LRE port to be configured.</td>
</tr>
<tr>
<td>Step 3 sequence sequence_name</td>
<td>Enter the port sequence name (select from the list in Table 10-2).</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show controllers lre status sequence</td>
<td>Verify the change.</td>
</tr>
</tbody>
</table>

Use the `show controllers lre status sequence details` privileged EXEC command to display the LRE link statistics and sequence information on the LRE ports. For information about these commands, refer to the switch command reference.

Using Rate Selection to Automatically Assign Profiles

An LRE network requires a profile to be configured for each LRE port that is connected to a CPE device (the default is LRE-10). You can use the rate selection feature to automatically choose a profile from a set of profiles that the switch port uses to establish an LRE link (a link between an LRE switch port and an attached CPE device).

Rate selection is enabled by default, but you must choose a sequence for rate selection to start (in other words, there is no default sequence defined). When rate selection is running, the switch chooses the profile for the LRE interface from a `sequence`, or predefined series of profiles, that are configured for that interface. The rate-selection algorithm begins with the first profile in the sequence and successively tries the next profiles (in descending order) until a link is established with the CPE device.

When enabled, the LRE switch executes rate selection in these scenarios:

- When the switch is booted
- When you enable the rate selection feature
- When you connect a new CPE device to the switch
- When a link is lost for 25 seconds before being restored
- When a configured sequence is modified
In any of these cases, rate selection obtains the optimal profile for your line conditions.

**Note**

When an LRE link is lost for fewer than 25 seconds, the switch does not execute rate selection to re-establish the link. The link is re-established at the profile used before link loss.

The switch chooses the appropriate profile for an LRE interface when it executes rate selection. If line conditions of the LRE interface change, rate selection must be executed again.

### Precedence

The rate selection feature can be applied at both the port level and at the switch level. Profiles and sequences have a system-defined priority level that work with rate selection to determine the rate for a port or the entire switch. Port sequences have the highest priority; that is, they take precedence over any other profile or sequence. The priority levels, from highest to lowest, are as shown:

1. *Port sequence*: rate selection is enabled on the given port only with the given sequence.
2. *Global sequence*: rate selection is enabled for the entire switch with the given sequence.
3. *Port profile*: rate selection is enable for the given port only with the given profile.
4. *Global profile*: rate selection is enabled for the entire switch with the given profile.

See Table 10-1 for the list of profiles and Table 10-2 for the list of system-defined sequences. You can also use IOS commands or CMS to define your own sequences.

**Note**

If rate selection is disabled for a port, then profiles are used.

### Profile Locking

You can also use rate selection as an installation tool to lock in a particular profile. In this case, you execute rate selection only once at installation; afterwards, rate selection is never executed, even if one of the four listed events occur. You use the `config` command in privileged EXEC mode to lock the profile chosen by rate selection. (You can enter a special EXEC command to rerun rate selection on the interfaces that have locked the profiles, as needed.)

An advantage to profile locking is that the convergence time during bootup is faster if a profile is locked on an LRE port rather than having to go through a profile sequence.

Beginning in privileged EXEC mode, follow these steps to lock a profile in an LRE port that has rate selection enabled:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>interface LRE-interface</code></td>
<td>Enter interface configuration mode, and enter the number of the LRE port to be configured.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>rate selection profile lock</code></td>
<td>Lock the profile.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show controllers lre profile details</code></td>
<td>Verify the change.</td>
</tr>
</tbody>
</table>
Chapter 10      Configuring LRE

Configuring LRE Ports

Link Qualification and SNR Margins

When rate selection is running, the SNR is used as an indicator of link quality. The switch does not provide any internal mechanism to ensure link quality. There can be different requirements for link quality, depending on the required bit-error rate and the noise level of the environment. A noisier environment would require a higher SNR to be able to provide a stable link. A lower bit-error rate would require a higher SNR. Typically a 6-dB margin provides an error rate of $10^{-21}$ bits.

To provide link stability, you should add a margin to the required SNR. You can configure your margins to an amount that is appropriate for the noise level of your environment. Increasing the margin requirement can cause the system to choose a lower profile, which would in turn translate to a lower rate but with a higher reach.

The switch does not guarantee any margins after a link is activated; margins are only guaranteed only when the link is established. When a link is activated, if the SNR requirements do not match the configured margin level, the link is not established.

Downstream means the remote end of the link, and upstream the local end. The link has to satisfy both the local and remote margin requirements. If either one is not met, the link is advertised as down. This command has no significance if rate selection is disabled on the interface.

Table 10-3 lists the SNR requirements for downstream rates for different profiles.

<table>
<thead>
<tr>
<th>Profile</th>
<th>Gross Data Rate</th>
<th>QAM</th>
<th>Theoretical Minimum SNR</th>
<th>Low Noise SNR</th>
<th>Medium Noise SNR</th>
<th>High Noise SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRE-4-1</td>
<td>4.17</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>LRE-7</td>
<td>8.333</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>LRE-8</td>
<td>9.375</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-5</td>
<td>6.25</td>
<td>8</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>LRE-10</td>
<td>12.5</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-15</td>
<td>16.667</td>
<td>256</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>LRE-10-5</td>
<td>12.5</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-10-3</td>
<td>12.5</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-10-1</td>
<td>12.5</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-15-5</td>
<td>16.667</td>
<td>256</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>LRE-15-3</td>
<td>16.667</td>
<td>256</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>LRE-15-1</td>
<td>16.667</td>
<td>256</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>LRE-998-15-4</td>
<td>16.667</td>
<td>256</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>LRE-997-10-4</td>
<td>12.5</td>
<td>256</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>39</td>
</tr>
<tr>
<td>LRE-2</td>
<td>2.08</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-3</td>
<td>3.13</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-4</td>
<td>4.17</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 10-4 lists the SNR requirements for upstream rates for different profiles.
Chapter 10      Configuring LRE

Table 10-4  SNR Requirements for Upstream Rates

<table>
<thead>
<tr>
<th>Profile</th>
<th>Gross Data Rate</th>
<th>QAM</th>
<th>Theoretical Minimum SNR</th>
<th>Low Noise SNR</th>
<th>Medium Noise SNR</th>
<th>High Noise SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRE-4-1</td>
<td>1.56</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-7</td>
<td>8.333</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>LRE-8</td>
<td>9.375</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>LRE-5</td>
<td>6.25</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-10</td>
<td>12.5</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>LRE-15</td>
<td>18.75</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>30</td>
<td>34</td>
</tr>
<tr>
<td>LRE-10-5</td>
<td>6.25</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-10-3</td>
<td>3.125</td>
<td>16</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>LRE-10-1</td>
<td>1.56</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-10-5</td>
<td>6.25</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-998-15-4</td>
<td>4.688</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-997-10-4</td>
<td>4.688</td>
<td>64</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>32</td>
</tr>
<tr>
<td>LRE-2</td>
<td>2.08</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-3</td>
<td>3.13</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>LRE-4</td>
<td>4.17</td>
<td>4</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>20</td>
</tr>
</tbody>
</table>

The margin range for link qualification is from 1 to 10 dB. The recommended value in a low-noise environment is 2 dB. The recommended value for medium noise environment is 4 dB. The recommended value in a high noise environment is 6 dB.

If a profile has a theoretical minimum of 25 dB and you configure a margin of 3 dB, when the link is established, the SNR should at the least be 28 dB to indicate a successful link. If a link is established and if the SNR value at link time is 27 dB, the link is advertised as down, and the next profile in the sequence is attempted. If you configure a margin of 0 (the default value), IOS does not check for the SNR value when the link is established.

Beginning in privileged EXEC mode, follow these steps to assign a margin to a specific LRE port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface LRE-interface</td>
<td>Enter interface configuration mode, and enter the number of the LRE port to be configured.</td>
</tr>
<tr>
<td>Step 3 margin [downstream value</td>
<td>upstream value]</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show controllers lre profile details</td>
<td>Verify the change.</td>
</tr>
</tbody>
</table>
Chapter 10      Configuring LRE

Configuring LRE Ports

Note

The margin command is effective with any profile, but only in conjunction with rate selection and only when a link is being activated.

LRE Link Persistence

A brief LRE link down and up transition can cause the rest of the IOS modules to react immediately, for example, the Dynamic MAC addresses are removed from that ports table. You can use the link persistence feature to configure a delay duration on the Catalyst 2950 LRE of up to 20 seconds before link failure is reported.

Refer to the lre persistence reference pages in the Catalyst 2950 Desktop Switch Command Reference for further details.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface LRE-interface</td>
<td>Enter interface configuration mode, and enter the number of the LRE port to be configured.</td>
</tr>
<tr>
<td>Step 3 persistence time</td>
<td>Enter the length of time (in seconds) you wish to set for the persistence. (The default is 3 seconds)</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show controllers lre status persistence</td>
<td>Verify the change.</td>
</tr>
</tbody>
</table>

LRE Link Monitor

You can use the link monitor feature to track undesirable or interesting conditions on a link and to take system-defined actions after certain thresholds are reached. The link monitor can track these conditions:

- **SNR**, in decibels (db): The link must have a minimum SNR to function; a higher SNR value means a better noise margin on the link. Links are not establish if the SNR is insufficient. (See the “Link Qualification and SNR Margins” section on page 10-12 for more information.)

- **Reed-Solomon (RS) errors**: The RS Forward Error Correction circuit corrects small bursts of errors so that noise events do not cause Ethernet FCS errors. This is implemented in the octal chip as a 32-bit counter. The count resets on read.

- **Transmit (TX) Power**, in dBm/Hz: This is fixed for the switch and adjusts automatically for the CPE device. The local transmit power is always constant and the same for a given profile. The remote transmit power varies according to distance from the switch to the CPE device, with a minimum transmit power of 91.9 dBm/Hz (corresponding to short distances) and a maximum transmit power of -55 dBm/Hz (corresponding to longer cable lengths or greater cable attenuation). The CPE device’s power can reach its maximum at distances between 1500ft/450m and 3000ft/900m.

- **Software controlled Automatic Gain Control (SW AGC Gain)**, in dBm: This gives an indirect measure of the received power level. Higher values mean that the receive power is lower (and thus in need of more boost).
• **Link Fail Counts**: The number of times the link failed. A link fail interrupts operation of the Ethernet link for a small number of milliseconds. During this interruption, some packets might be dropped (depending on traffic levels).

• **PMD Freeze Event Counter**: Counts the occurrence of micro-interruption or saturation events. Micro-interruptions and ADC saturations are caused by impulse noise for a short duration. This is implemented in the octal chip as a 8-bit counter.

The link parameters need to be monitored both for the upstream and downstream directions.

You can use the information you get from the link monitor to log events, set traps, change to a lower rate profile, and disable the auto power back-off feature.

See the reference pages for the link monitor commands in the Catalyst 2950 Desktop Switch Command Reference for further details.

---

### Upgrading LRE Switch Firmware

The 2950 Long-Reach Ethernet (LRE) switch can store and properly apply LRE binaries in case there are updates required to the firmware on the switches’ local LRE controllers or connected customer premises equipment (CPE) devices.

Other desirable upgrade-related features include:

- Allowing you to use an earlier version of the LRE software if required.
- Simplifying the upgrade process as much as possible, especially in cases where you want the ability to upgrade multiple CPE devices by issuing a single command.

**Note**

Whether upgrading a single CPE device or all CPE devices connected to an LRE switch, the expected duration of an LRE upgrade is 3 to 6 minutes (CPE devices connected to marginal links might take longer than this to upgrade).

You perform an upgrade with this command:

```
hw-module slot x upgrade lre [force][local lo n | remote lo x/y]
```

Automatic upgrading is not supported. You can upgrade in one of these ways:

- Upgrade a single remote CPE device.
- Upgrade a single local LRE controller (local LRE chipset).
- Upgrade all CPE devices and local chipsets that require an upgrade (a system-wide upgrade, which is the default)

### Configuring for an LRE Upgrade

In the absence of any LRE Upgrade configurations, the LRE upgrade attempts to upgrade all local LRE controllers and CPE devices to the most recent compatible versions of the LRE binaries required for each LRE target device. LRE upgrade configurations should rarely be required. The primary purpose of LRE upgrade configuration commands is to provide for downgrades of LRE binaries.
If you wish to override the switch’s automatic selection of LRE binaries, you have these methods available:

- Global LRE Upgrade Configuration Commands
- LRE Controller configuration commands

You can use `config` global commands to specify the LRE binary or binaries for a specified target type. (A target type is the family [and optionally the model or model revision] of a device containing one or more upgradable hardware elements.) A target can be a local LRE controller on the switch or a remote CPE device.

You can perform global LRE upgrade configurations by issuing LRE `upgrade` controller configuration commands from the controller configuration submode. You can use the `upgrade` configuration command in the controller submode to override the system default selection of an LRE binary to be applied on a particular remote CPE device or local LRE controller. Controller configurations take precedence over global upgrade configurations.

The `preserve` keyword causes the LRE upgrade mechanism to not upgrade the local controller on which `preserve` is configured or any of the CPE devices connected to that controller. If you want to preserve (in other words, not upgrade) some of the CPE devices connected to a particular controller but allow upgrades to others, you can enter controller upgrade configuration commands for the links that you want to upgrade.

The `no` form of the `upgrade` command removes the command for applying a particular LRE binary. To resume default upgrade behavior for a given controller, configure the `no` upgrade commands on that controller.

**Note**
You also need to remove global configurations that might also affect the controller and devices connected to it.

**Note**
When a `config` global command and a `config` controller command conflict, the `config` controller command has precedence.

Refer to the reference pages for the `upgrade` commands in the *Catalyst 2950 Desktop Switch Command Reference* for further details.

**Performing an LRE Upgrade**

You can upgrade either on a system-wide basis (in other words, upgrading the software on all connected CPE devices and local LRE chipsets) or on individual CPE device or LRE controllers. By default, a system-wide upgrade applies the most recent versions of LRE binaries that are most compatible with each upgradable hardware module. The system-wide upgrade method is the one that you use in almost all situations.

When executing upgrades, you can elect to upgrade a single CPE device or local controller by using this command `hw-module slot <x> upgrade lre [local lo n | remote lo x/y]`. If no local or remote option is given, a system-wide upgrade is performed.
Global Configuration of LRE Upgrades

Beginning in privileged EXEC mode, follow these steps to perform a system-wide upgrade to configure the LRE binary to apply to a target device and upgradable hardware element combination:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 lre binary default target_device LRE_binary</td>
<td>Enter the device to which the LRE binary should be applied; and the LRE binary to be applied.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show lre upgrade version</td>
<td>Verify the change.</td>
</tr>
</tbody>
</table>

**Note** The lre upgrade default mode command essentially overrides the system default selection of an LRE binary for a specified family of CPE devices (target devices).

Controller Configuration of LRE Upgrades

Beginning in privileged EXEC mode, follow these steps to explicitly direct the LRE binaries to be applied to either the local controller or a specific VDSL link:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 controller lre chipset_number</td>
<td>Enter the particular LRE local chipset on the switch to be applied.</td>
</tr>
<tr>
<td>Step 3 upgrade &lt;[remote lo x/y] LRE_Binary</td>
<td>Enter the LRE binary to be applied, or set preserve, which prevents the upgrade of any CPE devices connected to a controller or local chipset.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show lre upgrade version</td>
<td>Verify the change.</td>
</tr>
</tbody>
</table>

You can use the upgrade configuration command in the controller submode to override the system default selection of an LRE binary that will be applied on either end of a particular LRE link. Controller configurations take precedence over global upgrade configurations.

The preserve keyword causes the LRE upgrade mechanism to not upgrade the local controller on which preserve is configured or any of the CPE devices connected to that controller. If you want to preserve (in other words, not upgrade) some of the CPE devices connected to a particular controller but allow upgrades to others, you can enter controller upgrade configuration commands for the links you want to upgrade.

The no form of the command removes the command for applying a particular LRE binary. To resume default upgrade behavior for a given controller, do not configure the custom upgrade commands on that controller.
LRE Upgrade Behavior Details

You see on the console screen when you start an upgrade:

Switch>en
Switch#hw-module slot 0 upgrade lre
You are about to start an LRE upgrade on all LRE interfaces.
Users on LRE links being upgraded will experience a temporary disruption of Ethernet connectivity.
Start LRE upgrade ? [yes]:

If you answer yes or press the Enter key, the upgrade starts. If you answer no, you get the EXEC prompt.

You can expect this link behavior of the CPE device during an upgrade:

- When the upgrade starts, the link is probably in the link-up state, the state of the link that is useful to you.
- When the upgrade starts, the remote CPE device resets. Ethernet connectivity is temporarily lost.
- The CPE device comes up, with the link slower (about 1 Mbps upstream and 4 Mbps downstream) but more reliable. The increased reliability is required for a successful LRE binary transfer. The LRE link stays at a slower speed for the duration of the upgrade. Ethernet connectivity is available.
- When the upgrade is complete, the CPE device is again reset so that the upgraded LRE binaries are loaded and executed on the target CPE devices and local LRE chipsets. Ethernet connectivity is again disrupted until the CPE finishes resetting.
- The link comes up when the CPE device comes back up, and then progresses to where it resumes full operation at its intended data rate.

LRE Upgrade Example

The following is an example of how an LRE upgrade can proceed:

Switch#hw-module slot 0 upgrade lre force remote lo 0/1
You are about to start an LRE upgrade on CPE Lo0/1.
Users on LRE links being upgraded will experience a temporary disruption of Ethernet connectivity.

Start LRE upgrade ? [yes]:

Starting remote upgrade on CPE Lo0/1

Switch#
00:21:51: %LINEPROTO-5-UPDOWN: Line protocol on Interface LongReachEthernet0/1, changed state to down

The CPE device is reset and the link is down. Ethernet connectivity is unavailable at this point.

00:22:37: %LINK-3-UPDOWN: Interface LongReachEthernet0/1, changed state to up
00:22:39: %LINEPROTO-5-UPDOWN: Line protocol on Interface LongReachEthernet0/1, changed state to up

The CPE device finishes resetting. Ethernet connectivity is available but at low speeds. Upgrade data transfer begins.

00:23:55: %LINEPROTO-5-UPDOWN: Line protocol on Interface LongReachEthernet0/1, changed state to down

Upgrade data transfer is complete. Reset the CPE device.

00:23:56: %LINK-3-UPDOWN: Interface LongReachEthernet0/1, changed state to up
The CPE device has finished resetting. The desired profile is applied.

00:23:58: %LRE_LINK-3-UPDOWN: Interface Lo0/1, changed state to UP
00:23:59: %LINK-3-UPDOWN: Interface LongReachEthernet0/1, changed state to up
00:24:02: %LINEPROTO-5-UPDOWN: Line protocol on Interface LongReachEthernet0/1, changed state to up

Operation resumes in the profile link up state.

Switch#
This chapter describes how to configure the Spanning Tree Protocol (STP) on your switch. For information about the Rapid Spanning Tree Protocol (RSTP) and the Multiple Spanning Tree Protocol (MSTP), see Chapter 12, “Configuring RSTP and MSTP.” For information about optional spanning-tree features, see Chapter 13, “Configuring Optional Spanning-Tree Features.”

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Spanning-Tree Features, page 11-1
- Configuring Spanning-Tree Features, page 11-9
- Displaying the Spanning-Tree Status, page 11-21

Understanding Spanning-Tree Features

These sections describe how spanning-tree features work:

- STP Overview, page 11-2
- Supported Spanning-Tree Instances, page 11-2
- Bridge Protocol Data Units, page 11-2
- Election of the Root Switch, page 11-3
- Bridge ID, Switch Priority, and Extended System ID, page 11-4
- Spanning-Tree Timers, page 11-4
- Creating the Spanning-Tree Topology, page 11-5
- Spanning-Tree Interface States, page 11-5
- Spanning-Tree Address Management, page 11-8
- STP and IEEE 802.1Q Trunks, page 11-8
STP Overview

STP is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

When you create fault-tolerant internetworks, you must have a loop-free path between all nodes in a network. The spanning-tree algorithm calculates the best loop-free path throughout a switched Layer 2 network. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames, but use the frames to construct a loop-free path.

Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network.

Spanning tree defines a tree with a root switch and a loop-free path from the root to all switches in the Layer 2 network. Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path.

When two interfaces on a switch are part of a loop, the spanning-tree port priority and path cost settings determine which interface is put in the forwarding state and which is put in the blocking state. The port priority value represents the location of an interface in the network topology and how well it is located to pass traffic. The path cost value represents media speed.

Supported Spanning-Tree Instances

The switch supports the per-VLAN spanning tree (PVST) and a maximum of 64 spanning-tree instances. For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “STP Configuration Guidelines” section on page 11-10.

Bridge Protocol Data Units

The stable, active spanning-tree topology of a switched network is determined by these elements:

- The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch
- The spanning-tree path cost to the root switch
- The port identifier (port priority and MAC address) associated with each Layer 2 interface

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
- The bridge ID of the sending switch
Understanding Spanning-Tree Features

- Message age
- The identifier of the sending interface
- Values for the hello, forward delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:
- One switch is elected as the root switch.
- A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.
- The shortest distance to the root switch is calculated for each switch based on the path cost.
- A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
- Interfaces included in the spanning-tree instance are selected. Root ports and designated ports are put in the forwarding state.
- All interfaces not included in the spanning tree are blocked.

Election of the Root Switch

All switches in the Layer 2 network participating in spanning tree gather information about other switches in the network through an exchange of BPDU data messages. This exchange of messages results in these actions:
- The election of a unique root switch for each spanning-tree instance
- The election of a designated switch for every switched LAN segment
- The removal of loops in the switched network by blocking Layer 2 interfaces connected to redundant links

For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID.

When you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability.

The root switch is the logical center of the spanning-tree topology in a switched network. All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.
BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.

**Bridge ID, Switch Priority, and Extended System ID**

The IEEE 802.1D standard requires that each switch has an unique bridge identifier (bridge ID), which determines the selection of the root switch. Because each VLAN is considered as a different logical bridge with PVST+, the same switch must have as many different bridge IDs as VLANs configured on it. Each VLAN on the switch has a unique 8-byte bridge ID; the two most-significant bytes are used for the switch priority, and the remaining six bytes are derived from the switch MAC address.

In Release 12.1(9)EA1 and later, Catalyst 2950 switches support the 802.1T spanning-tree extensions, and some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the uniqueness of the bridge ID. As shown in Table 11-1, the two bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID. In earlier releases, the switch priority is a 16-bit value.

<table>
<thead>
<tr>
<th>Switch Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>

Spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN. With earlier releases, spanning tree used one MAC address per VLAN to make the bridge ID unique for each VLAN.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For more information, see the “Configuring the Root Switch” section on page 11-12, “Configuring a Secondary Root Switch” section on page 11-14, and “Configuring the Switch Priority of a VLAN” section on page 11-18.

**Spanning-Tree Timers**

Table 11-2 describes the timers that affect the entire spanning-tree performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Determines how often the switch broadcasts hello messages to other switches.</td>
</tr>
<tr>
<td>Forward-delay timer</td>
<td>Determines how long each of the listening and learning states last before the interface begins forwarding.</td>
</tr>
<tr>
<td>Maximum-age timer</td>
<td>Determines the amount of time the switch stores protocol information received on an interface.</td>
</tr>
</tbody>
</table>
Creating the Spanning-Tree Topology

In Figure 11-1, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet interface to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet interface becomes the new root port.

Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

- **Blocking**—The interface does not participate in frame forwarding.
- **Listening**—The first transitional state after the blocking state when the spanning tree determines that the interface should participate in frame forwarding.
- **Learning**—The interface prepares to participate in frame forwarding.
- **Forwarding**—The interface forwards frames.
- **Disabled**—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.
An interface moves through these states:

- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled

Figure 11-2 illustrates how an interface moves through the states.

**Figure 11-2 Spanning-Tree Interface States**

---

When you power up the switch, STP is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to transition the interface to the blocking state.
2. While spanning tree waits the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.
3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.
4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.
Blocking State

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPDU is sent to each interface in the switch. A switch initially functions as the root until it exchanges BPDPUs with other switches. This exchange establishes which switch in the network is the root or root switch. If there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interfaces move to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDPUs

Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree determines that the interface should participate in frame forwarding.

An interface in the listening state performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDPUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Learns addresses
- Receives BPDPUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs as follows:
- Receives and forwards frames received on the port
- Forwards frames switched from another port
- Learns addresses
- Receives BPDPUs
Disabled State

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs as follows:

- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Does not receive BPDUs

Spanning-Tree Address Management

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180C2000000 to 0x0180C2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed.

Regardless of the spanning-tree state, the switch receives but does not forward packets destined for addresses between 0x0180C2000000 and 0x1080C200000F.

If STP is enabled, the switch CPU receives packets destined for 0x0180C2000000 and 0x0180C2000010. If STP is disabled, the switch forwards those packets as unknown multicast addresses.

STP and IEEE 802.1Q Trunks

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an 802.1Q trunk, the Cisco switch uses per-VLAN spanning tree+ (PVST+) to provide spanning-tree interoperability. It combines the spanning-tree instance of the 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco 802.1Q switch.

However, all PVST+ information is maintained by Cisco switches separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

The external spanning-tree behavior on access ports and trunk ports is not affected by PVST+

For more information on 802.1Q trunks, see Chapter 14, “Configuring VLANs.”

Spanning Tree and Redundant Connectivity

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices. Spanning tree automatically disables one interface but enables it if the other one fails, as shown in Figure 11-3. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds are the same, the port priority and port ID are added together, and spanning tree disables the link with the lowest value.
You can also create redundant links between switches by using EtherChannel groups. For more information, see Chapter 27, “Configuring EtherChannels.”

**Accelerated Aging to Retain Connectivity**

The default for aging dynamic addresses is 5 minutes, the default setting of the `mac-address-table aging-time` global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (`spanning-tree vlan vlan-id forward-time seconds` global configuration command) when the spanning tree reconfigures.

Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.

**Configuring Spanning-Tree Features**

These sections describe how to configure spanning-tree features:

- Default STP Configuration, page 11-10
- STP Configuration Guidelines, page 11-10
- Disabling STP, page 11-12
- Configuring the Root Switch, page 11-12
- Configuring a Secondary Root Switch, page 11-14
- Configuring the Port Priority, page 11-15
- Configuring the Path Cost, page 11-16
- Configuring the Switch Priority of a VLAN, page 11-18

![Figure 11-3 Spanning Tree and Redundant Connectivity](image)
• Configuring the Hello Time, page 11-19
• Configuring the Forwarding-Delay Time for a VLAN, page 11-19
• Configuring the Maximum-Aging Time for a VLAN, page 11-20
• Configuring STP for Use in a Cascaded Stack, page 11-20

Default STP Configuration

Table 11-3 shows the default STP configuration.

Table 11-3 Default STP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable state</td>
<td>Enabled on VLAN 1.</td>
</tr>
<tr>
<td></td>
<td>Up to 64 spanning-tree instances can be enabled.</td>
</tr>
<tr>
<td>Switch priority</td>
<td>32768</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-interface basis—used on interfaces configured as Layer 2 access ports)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost (configurable on a per-interface basis—used on interfaces configured as Layer 2 access ports)</td>
<td>1000 Mbps: 4.</td>
</tr>
<tr>
<td></td>
<td>100 Mbps: 19.</td>
</tr>
<tr>
<td></td>
<td>10 Mbps: 100.</td>
</tr>
<tr>
<td>Spanning-tree VLAN port priority (configurable on a per-VLAN basis—used on interfaces configured as Layer 2 trunk ports)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree VLAN port cost (configurable on a per-VLAN basis—used on interfaces configured as Layer 2 trunk ports)</td>
<td>1000 Mbps: 4.</td>
</tr>
<tr>
<td></td>
<td>100 Mbps: 19.</td>
</tr>
<tr>
<td></td>
<td>10 Mbps: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
</tbody>
</table>

STP Configuration Guidelines

If more VLANs are defined in the VTP than there are spanning-tree instances, you can enable STP on only 64 VLANs. If the number of VLANs exceeds 64, we recommend that you enable the MSTP to map multiple VLANs to a single spanning-tree instance. For more information, see the Chapter 12, “Configuring RSTP and MSTP.”

If 64 instances of spanning tree are already in use, you can disable STP on one of the VLANs and then enable it on the VLAN where you want it to run. Use the no spanning-tree vlan vlan-id global configuration command to disable STP on a specific VLAN, and use the spanning-tree vlan vlan-id global configuration command to enable STP on the desired VLAN.
Switches that are not running spanning tree still forward BPDUs that they receive so that the other switches on the VLAN that have a running spanning-tree instance can break loops. Therefore, spanning tree must be running on enough switches to break all the loops in the network; for example, at least one switch on each loop in the VLAN must be running spanning tree. It is not absolutely necessary to run spanning tree on all switches in the VLAN; however, if you are running spanning tree only on a minimal set of switches, an incautious change to the network that introduces another loop into the VLAN can result in a broadcast storm.

If you have already used all available spanning-tree instances on your switch, adding another VLAN anywhere in the VTP domain creates a VLAN that is not running spanning tree on that switch. If you have the default allowed list on the trunk ports of that switch, the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that will not be broken, particularly if there are several adjacent switches that have all run out of spanning-tree instances. You can prevent this possibility by setting up allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances. Setting up allowed lists is not necessary in many cases and can make it more labor-intensive to add another VLAN to the network.

Spanning-tree commands determine the configuration of VLAN spanning-tree instances. You create a spanning-tree instance when you assign an interface to a VLAN. The spanning-tree instance is removed when the last interface is moved to another VLAN. You can configure switch and port parameters before a spanning-tree instance is created; these parameters are applied when the spanning-tree instance is created.
Disabling STP

STP is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit specified in Table 11-3. Disable STP only if you are sure there are no loops in the network topology.

Caution

When STP is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.

Beginning in privileged EXEC mode, follow these steps to disable STP on a per-VLAN basis:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no spanning-tree vlan vlan-id</td>
<td>Disable STP on a per-VLAN basis. For vlan-id, the range is 1 to 4094 when the enhanced software image (EI) is installed and 1 to 1005 when the standard software image (SI) is installed. Do not enter leading zeros.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show spanning-tree vlan vlan-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable STP, use the spanning-tree vlan vlan-id global configuration command.

Configuring the Root Switch

The switch maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For each VLAN, the switch with the lowest bridge ID becomes the root switch for that VLAN.

To configure a switch to become the root for the specified VLAN, use the spanning-tree vlan vlan-id root global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the switch checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 11-1 on page 11-4.)

Note

The spanning-tree vlan vlan-id root global configuration command fails if the value necessary to be the root switch is less than 1.

Before Release 12.1(9)EA1, entering the spanning-tree vlan vlan-id root global configuration command on a Catalyst 2950 switch (no extended system ID) caused it to set its own switch priority for the specified VLAN to 8192 if this value caused this switch to become the root for the specified VLAN. If any root switch for the specified VLAN has a switch priority lower than 8192, the switch sets its own priority for the specified VLAN to 1 less than the lowest switch priority.
These examples show the effect of the `spanning-tree vlan vlan-id root` command with and without the extended system ID support:

- For Catalyst 2950 switches with the extended system ID (Release 12.1(9)EA1 and later), if all network devices in VLAN 20 have the default priority of 32768, entering the `spanning-tree vlan 20 root primary` command on the switch sets the switch priority to 24576, which causes this switch to become the root switch for VLAN 20.

- For Catalyst 2950 switches without the extended system ID (software earlier than Release 12.1(9)EA1), if all network devices in VLAN 100 have the default priority of 32768, entering the `spanning-tree vlan 100 root primary` command on the switch sets the switch priority for VLAN 100 to 8192, which causes this switch to become the root switch for VLAN 100.

**Note**

If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

**Note**

The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

**Note**

After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time by using the `spanning-tree vlan vlan-id hello-time`, `spanning-tree vlan vlan-id forward-time`, and `spanning-tree vlan vlan-id max-age` global configuration commands.
Beginning in privileged EXEC mode, follow these steps to a switch to become the root for the specified VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree vlan vlan-id root primary [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show spanning-tree detail</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id root` global configuration command.

**Configuring a Secondary Root Switch**

When you configure a Catalyst 2950 switch that supports the extended system ID as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch. For Catalyst 2950 switches without the extended system ID support (software earlier than Release 12.1(9)EA1), the switch priority is changed to 16384.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values as you used when you configured the primary root switch with the `spanning-tree vlan vlan-id root primary` global configuration command.
Beginning in privileged EXEC mode, follow these steps to configure a switch to become the secondary root for the specified VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | `spanning-tree vlan vlan-id root secondary [diameter net-diameter [hello-time seconds]]` | Configure a switch to become the secondary root for the specified VLAN.  
- For `vlan-id`, the range is 1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed. Do not enter leading zeros.  
- (Optional) For `diameter net-diameter`, specify the maximum number of switches between any two end stations. The range is 2 to 7.  
- (Optional) For `hello-time seconds`, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.  
Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section on page 11-12. |
| Step 3 | end | Return to privileged EXEC mode. |
| Step 4 | show spanning-tree detail | Verify your entries. |
| Step 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id root` global configuration command.

### Configuring the Port Priority

If a loop occurs, spanning tree uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Cisco IOS uses the port priority value when the interface is configured as an access port and uses VLAN port priority values when the interface is configured as a trunk port.

Beginning in privileged EXEC mode, follow these steps to configure the port priority of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2 | `interface interface-id` | Enter interface configuration mode, and specify an interface to configure.  
Valid interfaces include physical interfaces and port-channel logical interfaces (`port-channel port-channel-number`). |
Chapter 11  Configuring STP

Configuring Spanning-Tree Features

Configuring Spanning-Tree Features

Note

The show spanning-tree interface interface-id privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the show running-config interface privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree [vlan vlan-id] port-priority interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree port priorities, see the “Load Sharing Using STP” section on page 14-21.

Configuring the Path Cost

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Spanning tree uses the cost value when the interface is configured as an access port and uses VLAN port cost values when the interface is configured as a trunk port.

Beginning in privileged EXEC mode, follow these steps to configure the cost of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning-tree port-priority priority</td>
<td>Configure the port priority for an interface that is an access port. For priority, the range is 0 to 255; the default is 128. The lower the number, the higher the priority.</td>
</tr>
</tbody>
</table>
| spanning-tree vlan vlan-id port-priority priority | Configure the VLAN port priority for an interface that is a trunk port.  
  - For vlan-id, the range is 1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed. Do not enter leading zeros.  
  - For priority, the range is 0 to 255; the default is 128. The lower the number, the higher the priority. |
| end | Return to privileged EXEC mode. |
| show spanning-tree interface interface-id | Verify your entries. |
| or show spanning-tree vlan vlan-id | |
| copy running-config startup-config | (Optional) Save your entries in the configuration file. |
### Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>spanning-tree cost cost</td>
<td>Configure the cost for an interface that is an access port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a loop occurs, spanning tree uses the path cost when selecting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>an interface to place into the forwarding state. A lower path cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For cost, the range is 1 to 200000000; the default value is derived</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from the media speed of the interface.</td>
</tr>
<tr>
<td>4</td>
<td>spanning-tree vlan vlan-id cost cost</td>
<td>Configure the VLAN cost for an interface that is a trunk port.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a loop occurs, spanning tree uses the path cost when selecting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>an interface to place into the forwarding state. A lower path cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For vlan-id, the range is 1 to 4094 when the EI is installed and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 1005 when the SI is installed. Do not enter leading zeros.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For cost, the range is 1 to 200000000; the default value is derived</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from the media speed of the interface.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show spanning-tree interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Note

The `show spanning-tree interface interface-id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the `no spanning-tree [vlan vlan-id] cost` interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree path costs, see the “Load Sharing Using STP” section on page 14-21.
Configuring the Switch Priority of a VLAN

You can configure the switch priority and make it more likely that the switch will be chosen as the root switch.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority of a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>spanning-tree vlan vlan-id priority priority</code></td>
<td>Configure the switch priority of a VLAN.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 <code>show spanning-tree vlan vlan-id</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For `vlan-id`, the range is 1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed. Do not enter leading zeros.

For `priority`, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.

Valid priority values are 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id priority` global configuration command.
Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

**Note**
Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the hello time.

Beginning in privileged EXEC mode, follow these steps to configure the hello time of a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id hello-time seconds Configure the hello time of a VLAN. The hello time is the interval between the generation of configuration messages by the root switch. These messages mean that the switch is alive.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id hello-time` global configuration command.

Configuring the Forwarding-Delay Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id forward-time seconds Configure the forward time of a VLAN. The forward delay is the number of seconds a port waits before changing from its spanning-tree learning and listening states to the forwarding state.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return the switch to its default setting, use the `no spanning-tree vlan vlan-id forward-time` global configuration command.

## Configuring the Maximum-Aging Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for a VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | `spanning-tree vlan vlan-id max-age seconds` | Configure the maximum-aging time of a VLAN. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration.  
  - For `vlan-id`, the range is 1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed. Do not enter leading zeros.  
  - For `seconds`, the range is 6 to 40; the default is 20. |
| Step 3 | `end`                            | Return to privileged EXEC mode.                                         |
| Step 4 | `show spanning-tree vlan vlan-id` | Verify your entries.                                                    |
| Step 5 | `copy running-config startup-config` | (Optional) Save your entries in the configuration file.                 |

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id max-age` global configuration command.

## Configuring STP for Use in a Cascaded Stack

STP uses default values that can be reduced when configuring your switch in cascaded configurations. If a root switch is part of a cluster that is one switch from a cascaded stack, you can customize spanning tree to reconverge more quickly after a switch failure. Figure 11-4 shows switches in three cascaded stacks that use the GigaStack GBIC. Table 11-4 shows the default STP settings and those that are acceptable for these configurations.

| Table 11-4 Default and Acceptable STP Parameter Settings (in seconds) |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| STP Parameter            | STP Default              | Acceptable for Option 1  | Acceptable for Option 2  | Acceptable for Option 3  |
| Hello Time               | 2                        | 1                        | 1                         | 1                         |
| Max Age                  | 20                       | 6                        | 10                        | 6                         |
| Forwarding Delay         | 15                       | 4                        | 7                         | 4                         |
Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 11-5:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface interface-id</td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary [totals]</td>
<td>Displays a summary of port states or displays the total lines of the STP state section.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
Displaying the Spanning-Tree Status
Configuring RSTP and MSTP

This chapter describes how to configure the Cisco implementation of the IEEE 802.1W Rapid Spanning Tree Protocol (RSTP) and the IEEE 802.1S Multiple STP (MSTP) on your switch. To use the features described in this chapter, you must have the enhanced software image (EI) installed on your switch.

RSTP provides rapid convergence of the spanning tree. MSTP, which uses RSTP to provide rapid convergence, enables VLANs to be grouped into a spanning-tree instance, provides for multiple forwarding paths for data traffic, and enables load balancing. It improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths). The most common initial deployment of MSTP and RSTP is in the backbone and distribution layers of a Layer 2 switched network; this deployment provides the highly-available network required in a service-provider environment.

Both RSTP and MSTP improve the operation of the spanning tree while maintaining backward compatibility with equipment that is based on the (original) 802.1D spanning tree, with existing Cisco per-VLAN spanning tree (PVST+), and with the existing Cisco-proprietary Multiple Instance STP (MISTP). For information about STP, see Chapter 11, “Configuring STP.” For information about optional spanning-tree features, see Chapter 13, “Configuring Optional Spanning-Tree Features.”

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:
- Understanding RSTP, page 12-2
- Understanding MSTP, page 12-7
- Interoperability with 802.1D STP, page 12-11
- Configuring RSTP and MSTP Features, page 12-11
- Displaying the MST Configuration and Status, page 12-23
Understanding RSTP

The RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the default settings in the 802.1D spanning tree), which is critical for networks carrying delay-sensitive traffic such as voice and video.

These section describes how the RSTP works:
- Port Roles and the Active Topology, page 12-2
- Rapid Convergence, page 12-3
- Synchronization of Port Roles, page 12-4
- Bridge Protocol Data Unit Format and Processing, page 12-5

For configuration information, see the “Configuring RSTP and MSTP Features” section on page 12-11.

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by determining the active topology. The RSTP builds upon the IEEE 802.1D STP to select the switch with the highest switch priority (lowest numerical priority value) as the root switch as described in “Election of the Root Switch” section on page 11-3. Then the RSTP assigns one of these port roles to individual ports:

- Root port—provides the best path (lowest cost) when the switch forwards packets to the root switch.
- Designated port—connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
- Alternate port—offers an alternate path toward the root switch to that provided by the current root port.
- Backup port—acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected together in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment.
- Disabled port—has no role within the operation of the spanning tree.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology.

In a stable topology with consistent port roles throughout the network, the RSTP ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the discarding state (equivalent to blocking in 802.1D). The port state controls the operation of the forwarding and learning processes. Table 12-1 provides a comparison of 802.1D and RSTP port states.

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Listening</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
</tr>
</tbody>
</table>
To be consistent with Cisco STP implementations, this guide documents the port state as *blocking* instead of *discarding*. Designated ports start in the listening state.

### Rapid Convergence

The RSTP provides for rapid recovery of connectivity following the failure of switch, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- **Edge ports**—If you configure a port as an edge port on an RSTP switch by using the `spanning-tree portfast` interface configuration command, the edge port immediately transitions to the forwarding state. An edge port is the same as a Port Fast-enabled port, and you should enable it only on ports that connect to a single end station.

- **Root ports**—If the RSTP selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- **Point-to-point links**—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

As shown in Figure 12-1, Switch A is connected to Switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of Switch A is a smaller numerical value than the priority of Switch B. Switch A sends a proposal message (a configuration bridge protocol data unit [BPDU] with the proposal flag set) to Switch B, proposing itself as the designated switch.

After receiving the proposal message, Switch B selects as its new root port the port from which the proposal message was received, forces all nonedge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving Switch B’s agreement message, Switch A also immediately transitions its designated port to the forwarding state. No loops in the network are formed because Switch B blocked all of its nonedge ports and because there is a point-to-point link between Switches A and B.

When Switch C is connected to Switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to Switch B as its root port, and both ends immediately transition to the forwarding state. With each iteration of this handshaking process, one more switch joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

The switch determines the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. You can override the default setting that is determined by the duplex setting by using the `spanning-tree link-type` interface configuration command.

---

### Table 12-1 Port State Comparison (continued)

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>Discarding</td>
<td>No</td>
</tr>
</tbody>
</table>

---
Understanding RSTP

Figure 12-1 Proposal and Agreement Handshaking for Rapid Convergence

Synchronization of Port Roles

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, the RSTP forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if

- That port is in the blocking state
- It is an edge port (a port configured to be at the edge of the network)

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the RSTP forces it to synchronize with new root information. In general, when the RSTP forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.

After ensuring all of the ports are synchronized, the switch sends an agreement message to the designated switch corresponding to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, the RSTP immediately transitions the port states to forwarding. The sequence of events is shown in Figure 12-2.
Understanding RSTP

The RSTP BPDU format is the same as the IEEE 802.1D BPDU format except that the protocol version is set to 2. A new one-byte version 1 Length field is set to zero, which means that no version 1 protocol information is present. Table 12-2 shows the RSTP flag fields.

**Table 12-2 RSTP BPDU Flags**

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topology change (TC)</td>
</tr>
<tr>
<td>1</td>
<td>Proposal</td>
</tr>
<tr>
<td>2–3:</td>
<td>Port role:</td>
</tr>
<tr>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Learning</td>
</tr>
<tr>
<td>5</td>
<td>Forwarding</td>
</tr>
<tr>
<td>6</td>
<td>Agreement</td>
</tr>
<tr>
<td>7</td>
<td>Topology change acknowledgement (TCA)</td>
</tr>
</tbody>
</table>

The sending switch sets the proposal flag in the RSTP BPDU to propose itself as the designated switch on that LAN. The port role in the proposal message is always set to the designated port.

The sending switch sets the agreement flag in the RSTP BPDU to accept the previous proposal. The port role in the agreement message is always set to the root port.
The RSTP does not have a separate topology change notification (TCN) BPDU. It uses the topology change (TC) flag to show the topology changes. However, for interoperability with 802.1D switches, the RSTP switch processes and generates TCN BPDUs.

The learning and forwarding flags are set according to the state of the sending port.

Processing Superior BPDU Information

If a port receives superior root information (lower bridge ID, lower path cost, and so forth) than currently stored for the port, the RSTP triggers a reconfiguration. If the port is proposed and is selected as the new root port, RSTP forces all the other ports to synchronize.

If the BPDU received is an RSTP BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an 802.1D BPDU, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

If the superior information received on the port causes the port to become a backup or alternate port, RSTP sets the port to the blocking state but does not send the agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires, at which time the port transitions to the forwarding state.

Processing Inferior BPDU Information

If a designated port receives an inferior BPDU (higher bridge ID, higher path cost, and so forth than currently stored for the port) with a designated port role, it immediately replies with its own information.

Topology Changes

This section describes the differences between the RSTP and the 802.1D in handling spanning-tree topology changes.

- Detection—Unlike 802.1D in which any transition between the blocking and the forwarding state causes a topology change, only transitions from the blocking to the forwarding state cause a topology change with RSTP (only an increase in connectivity is considered a topology change). State changes on an edge port do not cause a topology change. When an RSTP switch detects a topology change, it flushes the learned information on all of its nonedge ports.

- Notification—Unlike 802.1D, which uses TCN BPDUs, the RSTP does not use them. However, for 802.1D interoperability, an RSTP switch processes and generates TCN BPDUs.

- Acknowledgement—When an RSTP switch receives a TCN message on a designated port from an 802.1D switch, it replies with an 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the topology-change timer in 802.1D) is active on a root port connected to an 802.1D switch and a configuration BPDU with the TCA bit set is received, the TC-while timer is reset.

This behavior is only required to support 802.1D switches. The RSTP BPDUs never have the TCA bit set.
Understanding MSTP

MSTP, which uses RSTP for rapid convergence, enables VLANs to be grouped into a spanning-tree instance, with each instance having a spanning-tree topology independent of other spanning-tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of spanning-tree instances required to support a large number of VLANs.

These sections describe how the MSTP works:
- Multiple Spanning-Tree Regions, page 12-7
- IST, CIST, and CST, page 12-8
- Hop Count, page 12-10

For configuration information, see the “Configuring RSTP and MSTP Features” section on page 12-11.

Multiple Spanning-Tree Regions

For switches to participate in multiple spanning-tree (MST) instances, you must consistently configure the switches with the same MST configuration information. A collection of interconnected switches that have the same MST configuration comprises an MST region as shown in Figure 12-3 on page 12-9.

The MST configuration determines to which MST region each switch belongs. The configuration includes the name of the region, the revision number, and the MST instance-to-VLAN assignment map. You configure the switch for a region by using the spanning-tree mst configuration global configuration command, after which the switch enters the MST configuration mode. From this mode, you can map VLANs to an MST instance by using the instance MST configuration command, specify the region name by using the name MST configuration command, and set the revision number by using the revision MST configuration command.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can support up to 16 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.
Chapter 12  Configuring RSTP and MSTP

Understanding MSTP

IST, CIST, and CST

Unlike PVST+ in which all the spanning-tree instances are independent, the MSTP establishes and maintains two types of spanning-trees:

- An internal spanning tree (IST), which is the spanning tree that runs in an MST region.

Within each MST region, the MSTP maintains multiple spanning-tree instances. Instance 0 is a special instance for a region, known as the internal spanning tree (IST). All other MST instances are numbered from 1 to 15.

The IST is the only spanning-tree instance that sends and receives BPDUs; all of the other spanning-tree instance information is contained in M-records, which are encapsulated within MSTP BPDUs. Because the MSTP BPDU carries information for all instances, the number of BPDUs that need to be processed by a switch to support multiple spanning-tree instances is significantly reduced.

All MST instances within the same region share the same protocol timers, but each MST instance has its own topology parameters, such as root switch ID, root path cost, and so forth. By default, all VLANs are assigned to the IST.

An MST instance is local to the region; for example, MST instance 1 in region A is independent of MST instance 1 in region B, even if regions A and B are interconnected.

- A common and internal spanning tree (CIST), which is a collection of the ISTs in each MST region, and the common spanning tree (CST) that interconnects the MST regions and single spanning trees.

The spanning tree computed in a region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed as a result of the spanning-tree algorithm running between switches that support the 802.1W, 802.1S, and 802.1D protocols. The CIST inside an MST region is the same as the CST outside a region.

For more information, see the “Operations Within an MST Region” section on page 12-8 and the “Operations Between MST Regions” section on page 12-9.

Operations Within an MST Region

The IST connects all the MSTP switches in a region. When the IST converges, the root of the IST becomes the IST master (shown in Figure 12-3 on page 12-9), which is the switch within the region with the lowest bridge ID and path cost to the CST root. The IST master also is the CST root if there is only one region within the network. If the CST root is outside the region, one of the MSTP switches at the boundary of the region is selected as the IST master.

When an MSTP switch initializes, it sends BPDUs claiming itself as the root of the CST and the IST master, with both of the path costs to the CST root and to the IST master set to zero. The switch also initializes all of its MST instances and claims to be the root for all of them. If the switch receives superior MST root information (lower bridge ID, lower path cost, and so forth) than currently stored for the port, it relinquishes its claim as the IST master.

During initialization, a region might have many subregions, each with its own IST master. As switches receive superior IST information, they leave their old subregions and join the new subregion that might contain the true IST master. Thus all subregions shrink, except for the one that contains the true IST master.

For correct operation, all switches in the MST region must agree on the same IST master. Therefore, any two switches in the region synchronize their port roles for an MST instance only if they converge to a common IST master.
### Operations Between MST Regions

If there are multiple regions or legacy 802.1D switches within the network, MSTP establishes and maintains the CST, which includes all MST regions and all legacy STP switches in the network. The MST instances combine with the IST at the boundary of the region to become the CST.

The IST connects all the MSTP switches in the region and appears as a subtree in the CST that encompasses the entire switched domain, with the root of the subtree being the IST master. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

**Figure 12-3** shows a network with three MST regions and a legacy 802.1D switch (D). The IST master for region 1 (A) is also the CST root. The IST master for region 2 (B) and the IST master for region 3 (C) are the roots for their respective subtrees within the CST. The RSTP runs in all regions.

**Figure 12-3** MST Regions, IST Masters, and the CST Root

---

Figure 12-3 does not show additional MST instances for each region. Note that the topology of MST instances can be different from that of the IST for the same region.

Only the CST instance sends and receives BPDUs, and MST instances add their spanning-tree information into the BPDUs to interact with neighboring switches and compute the final spanning-tree topology. Because of this, the spanning-tree parameters related to BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MST instances. Parameters related to the spanning-tree topology (for example, switch priority, port VLAN cost, port VLAN priority) can be configured on both the CST instance and the MST instance.

MSTP switches use version 3 RSTP BPDUs or 802.1D STP BPDUs to communicate with legacy 802.1D switches. MSTP switches use MSTP BPDUs to communicate with MSTP switches.
Hop Count

The IST and MST instances do not use the message-age and maximum-age information in the configuration BPDU to compute the spanning-tree topology. Instead, they use the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the `spanning-tree mst max-hops` global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (determines when to trigger a reconfiguration). The root switch of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDU it generates. When the count reaches zero, the switch discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the RSTP portion of the BPDU remain the same throughout the region, and the same values are propagated by the region’s designated ports at the boundary.

Boundary Ports

A boundary port is a port that connects an MST region to a single spanning-tree region running RSTP, or to a single spanning-tree region running 802.1D, or to another MST region with a different MST configuration. A boundary port also connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

At the boundary, the roles of the MST ports do not matter, and their state is forced to be the same as the IST port state (MST ports at the boundary are in the forwarding state only when the IST port is forwarding). An IST port at the boundary can have any port role except a backup port role.

On a shared boundary link, the MST ports wait in the blocking state for the forward-delay time to expire before transitioning to the learning state. The MST ports wait another forward-delay time before transitioning to the forwarding state.

If the boundary port is on a point-to-point link and it is the IST root port, the MST ports transition to the forwarding state as soon as the IST port transitions to the forwarding state.

If the IST port is a designated port on a point-to-point link and if the IST port transitions to the forwarding state because of an agreement received from its peer port, the MST ports also immediately transition to the forwarding state.

If a boundary port transitions to the forwarding state in an IST instance, it is forwarding in all MST instances, and a topology change is triggered. If a boundary port with the IST root or designated port role receives a topology change notice external to the MST cloud, the MSTP switch triggers a topology change in the IST instance and in all the MST instances active on that port.
Interoperability with 802.1D STP

A switch running both MSTP and RSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy 802.1D switches. If this switch receives a legacy 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MST switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (version 3) associated with a different region, or an RST BPDU (version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives 802.1D BPDUs because it cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. Also, a switch might continue to assign a boundary role to a port when the switch to which this switch is connected has joined the region. To restart the protocol migration process (force the renegotiation with neighboring switches), you can use the `clear spanning-tree detected-protocols` privileged EXEC command.

If all the legacy switches on the link are RSTP switches, they can process MSTP BPDUs as if they are RSTP BPDUs. Therefore, MSTP switches send either a version 0 configuration and TCN BPDUs or version 3 MSTP BPDUs on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

Configuring RSTP and MSTP Features

These sections describe how to configure basic RSTP and MSTP features:

- Default RSTP and MSTP Configuration, page 12-12
- RSTP and MSTP Configuration Guidelines, page 12-12
- Specifying the MST Region Configuration and Enabling MSTP, page 12-13 (required)
- Configuring the Root Switch, page 12-14 (optional)
- Configuring a Secondary Root Switch, page 12-16 (optional)
- Configuring the Port Priority, page 12-17 (optional)
- Configuring the Path Cost, page 12-18 (optional)
- Configuring the Switch Priority, page 12-19 (optional)
- Configuring the Hello Time, page 12-19 (optional)
- Configuring the Forwarding-Delay Time, page 12-20 (optional)
- Configuring the Maximum-Aging Time, page 12-21 (optional)
- Configuring the Maximum-Hop Count, page 12-21 (optional)
- Specifying the Link Type to Ensure Rapid Transitions, page 12-22 (optional)
- Restarting the Protocol Migration Process, page 12-22 (optional)
Default RSTP and MSTP Configuration

Table 12-3 shows the default RSTP and MSTP configuration.

Table 12-3  Default RSTP and MSTP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree mode</td>
<td>PVST (MSTP and RSTP are disabled).</td>
</tr>
<tr>
<td>Switch priority (configurable on a per-CIST interface basis)</td>
<td>32768.</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-CIST interface basis)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost (configurable on a per-CIST interface basis)</td>
<td>1000 Mbps: 4.</td>
</tr>
<tr>
<td></td>
<td>100 Mbps: 19.</td>
</tr>
<tr>
<td></td>
<td>10 Mbps: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
<tr>
<td>Maximum hop count</td>
<td>20 hops.</td>
</tr>
</tbody>
</table>

RSTP and MSTP Configuration Guidelines

These are the configuration guidelines for RSTP and MSTP:

- The UplinkFast, BackboneFast, and cross-stack UplinkFast features are not supported with the RSTP and MSTP.
- Per-VLAN RSTP is not supported. When you enable MST by using the `spanning-tree mode mst` global configuration command, RSTP is enabled.
- PVST, PVST+ and MSTP are supported, but only one version can be active at any time; all VLANs run PVST, or all VLANs run MSTP.
- VTP propagation of the MST configuration is not supported. However, you can manually configure the MST configuration (region name, revision number, and VLAN-to-instance mapping) on each switch within the MST region by using the command-line interface (CLI) or through the SNMP support.
- For load balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link.
- All MST boundary ports must be forwarding for load balancing between a PVST+ and an MST cloud. For this to happen, the IST master of the MST cloud should also be the root of the CST. If the MST cloud consists of multiple MST regions, one of the MST regions must contain the CST root, and all of the other MST regions must have a better path to the root contained with the MST cloud than a path through the PVST+ cloud. You might have to manually configure the switches in the clouds.
- Partitioning the network into a large number of regions is not recommended. However, if this situation is unavoidable, we recommend that you partition the switched LAN into smaller LANs interconnected by routers or non-Layer 2 devices.
Specifying the MST Region Configuration and Enabling MSTP

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can support up to 16 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.

Beginning in privileged EXEC mode, follow these steps to specify the MST region configuration and enable MSTP. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst configuration</td>
</tr>
<tr>
<td>Step 3</td>
<td>instance instance-id vlan vlan-range</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>name name</td>
</tr>
<tr>
<td>Step 5</td>
<td>revision version</td>
</tr>
<tr>
<td>Step 6</td>
<td>show pending</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
</tr>
<tr>
<td>Step 8</td>
<td>spanning-tree mode mst</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Step 10</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default MST region configuration, use the no spanning-tree mst configuration global configuration command. To return to the default VLAN-to-instance map, use the no instance instance-id [vlan vlan-range] MST configuration command. To return to the default name, use the no name MST
configuration command. To return to the default revision number, use the `no revision` MST configuration command. To re-enable PVST, use the `no spanning-tree mode` or the `spanning-tree mode pvst` global configuration command.

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region `region1`, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```plaintext
Switch(config)# spanning-tree mst configuration
Switch(config-mst)# instance 1 vlan 10-20
Switch(config-mst)# name region1
Switch(config-mst)# revision 1
Switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
Instance Vlans Mapped
---------- ---------------------
0 1-9,21-4094
1 10-20

```

```
Switch(config-mst)# exit
Switch(config)#
```

## Configuring the Root Switch

The switch maintains a spanning-tree instance for the group of VLANs mapped to it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. The switch with the lowest bridge ID becomes the root switch for the group of VLANs.

To configure a switch to become the root, use the `spanning-tree mst instance-id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value so that the switch becomes the root switch for the specified spanning-tree instance. When you enter this command, the switch checks the switch priorities of the root switches. Because of the extended system ID support, the switch sets its own priority for the specified instance to 24576 if this value will cause this switch to become the root for the specified spanning-tree instance.

If any root switch for the specified instance has a switch priority lower than 24576, the switch sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 11-1 on page 11-4.)

---

**Note**

Catalyst 2950 switches running software earlier than Release 12.1(9)EA1 do not support the extended system ID. Catalyst 2950 switches running software earlier than Release 12.1(9)EA1 do not support the MSTP.

**Note**

If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.
The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the **diameter** keyword, which is available only for MST instance 0, to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the **hello** keyword to override the automatically calculated hello time.

We recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time by using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and the `spanning-tree mst max-age` global configuration commands after configuring the switch as the root switch.

Beginning in privileged EXEC mode, follow these steps to configure a switch as the root switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree mst instance-id root primary</code> Configure a switch as the root switch.</td>
</tr>
<tr>
<td></td>
<td>[diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td>• For <code>instance-id</code>, the range is 0 to 15.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>hello-time seconds</code>, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show spanning-tree mst instance-id</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the **no spanning-tree mst instance-id root** global configuration command.
Configuring a Secondary Root Switch

When you configure a Catalyst 2950 switch that supports the extended system ID as the secondary root, the spanning-tree switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified instance if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch. For Catalyst 2950 switches without the extended system ID support (software earlier than Release 12.1(9)EA1), the switch priority is changed to 16384.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the `spanning-tree mst instance-id root primary` global configuration command.

Beginning in privileged EXEC mode, follow these steps to configure a switch as the secondary root switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree mst instance-id root secondary [diameter net-diameter [hello-time seconds]]</code></td>
</tr>
<tr>
<td></td>
<td>• For <code>instance-id</code>, the range is 0 to 15.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>hello-time seconds</code>, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td></td>
<td>Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section on page 12-14.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show spanning-tree mst instance-id</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst instance-id root` global configuration command.
Configuring the Port Priority

If a loop occurs, the MSTP uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the MSTP port priority of an interface:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical ports and port channels. Valid port-channel numbers are 1 to 6.</td>
</tr>
</tbody>
</table>
| Step 3 | spanning-tree mst instance-id port-priority priority | Configure the port priority for an MST instance.  
For instance-id, the range is 0 to 15.  
For priority, the range is 0 to 255; the default is 128.  
The lower the number, the higher the priority. |
| Step 4 | end | Return to privileged EXEC mode. |
| Step 5 | show spanning-tree mst interface interface-id | Verify your entries. |
| or | show spanning-tree mst instance-id |
| Step 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

The show spanning-tree mst interface interface-id privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the show running-config interface privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree mst instance-id port-priority interface configuration command.
Configuring the Path Cost

The MSTP path cost default value is derived from the media speed of an interface. If a loop occurs, the MSTP uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the MSTP cost of an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical ports and port channels. Valid port-channel numbers are 1 to 6.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>spanning-tree mst instance-id cost cost</td>
</tr>
<tr>
<td></td>
<td>Configure the cost for an MST instance.</td>
</tr>
<tr>
<td></td>
<td>If a loop occurs, the MSTP uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.</td>
</tr>
<tr>
<td></td>
<td>• For instance-id, the range is 0 to 15.</td>
</tr>
<tr>
<td></td>
<td>• For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show spanning-tree mst interface interface-id</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>show spanning-tree mst instance-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

The show spanning-tree mst interface interface-id privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the show running-config privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree mst instance-id cost interface configuration command.
Configuring the Switch Priority

You can configure the switch priority and make it more likely that the switch will be chosen as the root switch.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>spanning-tree mst instance-id priority priority</code></td>
<td>Configure the switch priority for an MST instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>instance-id</code>, the range is 0 to 15.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>priority</code>, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valid priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show spanning-tree mst instance-id</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst instance-id priority` global configuration command.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` global configuration commands to modify the hello time.
Beginning in privileged EXEC mode, follow these steps to configure the hello time for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  spanning-tree mst hello-time seconds</td>
<td>Configure the hello time for all MST instances. The hello time is the interval between the generation of configuration messages by the root switch. These messages mean that the switch is alive. For seconds, the range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 3  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4  show spanning-tree mst</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5  copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the **no spanning-tree mst hello-time** global configuration command.

### Configuring the Forwarding-Delay Time

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  spanning-tree mst forward-time seconds</td>
<td>Configure the forward time for all MST instances. The forward delay is the number of seconds a port waits before changing from its spanning-tree learning and listening states to the forwarding state. For seconds, the range is 4 to 30; the default is 15.</td>
</tr>
<tr>
<td>Step 3  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4  show spanning-tree mst</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5  copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the **no spanning-tree mst forward-time** global configuration command.
Configuring the Maximum-Aging Time

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst max-age seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst max-age global configuration command.

Configuring the Maximum-Hop Count

Beginning in privileged EXEC mode, follow these steps to configure the maximum-hop count for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst max-hops hop-count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree mst max-hops global configuration command.
Specifying the Link Type to Ensure Rapid Transitions

If you connect a port to another port through a point-to-point link and the local port becomes a designated port, the RSTP negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology as described in the “Rapid Convergence” section on page 12-3.

By default, the link type is determined from the duplex mode of the interface: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. If you have a half-duplex link physically connected point-to-point to a single port on a remote switch running RSTP, you can override the default setting of the link type and enable rapid transitions to the forwarding state.

Beginning in privileged EXEC mode, follow these steps to override the default link-type setting:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure. Valid interfaces include physical ports, VLANs, and port channels. Valid VLAN IDs are 1 to 4094; valid port-channel numbers are 1 to 6.</td>
</tr>
<tr>
<td>spanning-tree link-type point-to-point</td>
<td>Specify that the link type of a port is point-to-point.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree link-type interface configuration command.

Restarting the Protocol Migration Process

A switch running both MSTP and RSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy 802.1D switches. If this switch receives a legacy 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MSTP switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (version 3) associated with a different region, or an RST BPDU (version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives 802.1D BPDUs because it cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch also might continue to assign a boundary role to a port when the switch to which it is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches) on the entire switch, you can use the clear spanning-tree detected-protocols privileged EXEC command. Use the clear spanning-tree detected-protocols interface interface-id privileged EXEC command to restart the protocol migration process on a specific interface.
# Displaying the MST Configuration and Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 12-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree mst configuration</td>
<td>Displays the MST region configuration.</td>
</tr>
<tr>
<td>show spanning-tree mst instance-id</td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Displays MST information for the specified interface. Valid interfaces include physical ports, VLANs, and port channels. The valid VLAN range is 1 to 4094; the valid port-channel range is 1 to 6.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
Configuring Optional Spanning-Tree Features

This chapter describes how to configure optional spanning-tree features. You can configure all of these features when your switch is running the per-VLAN spanning-tree (PVST). You can only configure the noted features when your switch is running the Multiple Spanning Tree Protocol (MSTP). To use these features with MSTP, you must have the enhanced software image (EI) installed on your switch.

For information on configuring the Spanning Tree Protocol (STP), see Chapter 11, “Configuring STP.” For information on configuring the Rapid Spanning Tree Protocol (RSTP) and the Multiple Spanning Tree Protocol (MSTP), see Chapter 12, “Configuring RSTP and MSTP.”

This chapter consists of these sections:

- Understanding Optional Spanning-Tree Features, page 13-1
- Configuring Optional Spanning-Tree Features, page 13-13
- Displaying the Spanning-Tree Status, page 13-21

Understanding Optional Spanning-Tree Features

These sections describe how the optional spanning-tree features work:

- Understanding Port Fast, page 13-2
- Understanding BPDU Guard, page 13-3
- Understanding BPDU Filtering, page 13-3
- Understanding UplinkFast, page 13-4
- Understanding Cross-Stack UplinkFast, page 13-5
- Understanding BackboneFast, page 13-10
- Understanding Root Guard, page 13-12
- Understanding Loop Guard, page 13-13
Understanding Optional Spanning-Tree Features

Chapter 13      Configuring Optional Spanning-Tree Features

Understanding Port Fast

Port Fast immediately brings an interface configured as an access or trunk port to the forwarding state from a blocking state, bypassing the listening and learning states. You can use Port Fast on ports connected to a single workstation or server, as shown in Figure 13-1, to allow those devices to immediately connect to the network, rather than waiting for the spanning tree to converge.

Ports connected to a single workstation or server should not receive bridge protocol data units (BPDUs). A port with Port Fast enabled goes through the normal cycle of spanning-tree status changes when the switch is restarted.

---

**Note**
Because the purpose of Port Fast is to minimize the time ports must wait for spanning-tree to converge, it is effective only when used on ports connected to end stations. If you enable Port Fast on a port connecting to another switch, you risk creating a spanning-tree loop.

---

If your switch is running PVST or MSTP, you can enable this feature by using the `spanning-tree portfast` interface configuration or the `spanning-tree portfast default` global configuration command. The MSTP is available only if you have the EI installed on your switch.

---

**Figure 13-1  Port Fast-Enabled Ports**

![Diagram of Port Fast-Enabled Ports](image-url)
Understanding BPDU Guard

The BPDU guard feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU guard on Port Fast-enabled ports by using the `spanning-tree portfast bpduguard default` global configuration command. Spanning tree shuts down ports that are in a Port Fast-operational state. In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state.

At the interface level, you can enable BPDU guard on any port by using the `spanning-tree bpduguard enable` interface configuration command without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

If your switch is running PVST or MSTP, you can enable the BPDU guard feature for the entire switch or for an interface. The MSTP is available only if you have the EI installed on your switch.

Understanding BPDU Filtering

The BPDU filtering feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU filtering on Port Fast-enabled ports by using the `spanning-tree portfast bpdufilter default` global configuration command. This command prevents ports that are in a Port Fast-operational state from sending or receiving BPDUs. The ports still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these ports do not receive BPDUs. If a BPDU is received on a Port Fast-enabled port, the port loses its Port Fast-operational status, and BPDU filtering is disabled.

At the interface level, you can enable BPDU filtering on any port without also enabling the Port Fast feature by using the `spanning-tree bpdufilter enable` interface configuration command. This command prevents the port from sending or receiving BPDUs.

Caution

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

If your switch is running PVST or MSTP, you can enable the BPDU filtering feature for the entire switch or for an interface. The MSTP is available only if you have the EI installed on your switch.
Understanding UplinkFast

Switches in hierarchical networks can be grouped into backbone switches, distribution switches, and access switches. Figure 13-2 shows a complex network where distribution switches and access switches each have at least one redundant link that spanning tree blocks to prevent loops.

![Figure 13-2 Switches in a Hierarchical Network](image)

If a switch loses connectivity, it begins using the alternate paths as soon as the spanning tree selects a new root port. By enabling UplinkFast with the `spanning-tree uplinkfast` global configuration command, you can accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would with the normal spanning-tree procedures. The UplinkFast feature is supported only when the switch is running PVST.

When the spanning tree reconfigures the new root port, other interfaces flood the network with multicast packets, one for each address that was learned on the interface. You can limit these bursts of multicast traffic by reducing the max-update-rate parameter (the default for this parameter is 150 packets per second). However, if you enter zero, station-learning frames are not generated, so the spanning-tree topology converges more slowly after a loss of connectivity.

**Note**

UplinkFast is most useful in wiring-closet switches at the access or edge of the network. It is not appropriate for backbone devices. This feature might not be useful for other types of applications.

UplinkFast provides fast convergence after a direct link failure and achieves load balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 interfaces (per VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.

Figure 13-3 shows an example topology with no link failures. Switch A, the root switch, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that is connected directly to Switch B is in a blocking state.
Understanding Optional Spanning-Tree Features

If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked port on Switch C and transitions it to the forwarding state without going through the listening and learning states, as shown in Figure 13-4. This change takes approximately 1 to 5 seconds.

Understanding Cross-Stack UplinkFast

Cross-stack UplinkFast (CSUF) provides a fast spanning-tree transition (fast convergence in less than 1 second under normal network conditions) across a stack of switches that use the GigaStack GBICs connected in a shared cascaded configuration (multidrop backbone). During the fast transition, an alternate redundant link on the stack of switches is placed in the forwarding state without causing temporary spanning-tree loops or loss of connectivity to the backbone. With this feature, you can have a redundant and resilient network in some configurations. You enable CSUF by using the `spanning-tree stack-port` interface configuration command. The CSUF feature is supported only when the switch is running PVST.

CSUF might not provide a fast transition all the time; in these cases, the normal spanning-tree transition occurs, completing in 30 to 40 seconds. For more information, see the “Events That Cause Fast Convergence” section on page 13-7.
How CSUF Works

CSUF ensures that one link in the stack is elected as the path to the root. As shown in Figure 13-5, Switches A, B, and C are cascaded through the GigaStack GBIC to form a multidrop backbone, which communicates control and data traffic across the switches at the access layer. The switches in the stack use their stack ports to communicate with each other and to connect to the stack backbone; stack ports are always in the spanning-tree forwarding state. The stack-root port on Switch A provides the path to the root of the spanning tree; the alternate stack-root ports on Switches B and C can provide an alternate path to the spanning-tree root if the current stack-root switch fails or if its link to the spanning-tree root fails.

Link A, the root link, is in the spanning-tree forwarding state; Links B and C are alternate redundant links that are in the spanning-tree blocking state. If Switch A fails, if its stack-root port fails, or if Link A fails, CSUF selects either the Switch B or Switch C alternate stack-root port and puts it into the forwarding state in less than 1 second.

Figure 13-5 Cross-Stack UplinkFast Topology

CSUF uses the Stack Membership Discovery Protocol to build a neighbor list of stack members through the receipt of discovery hello packets. When certain link loss or spanning-tree events occur (described in “Events That Cause Fast Convergence” section on page 13-7), the Fast Uplink Transition Protocol uses the neighbor list to send fast-transition requests on the stack port to stack members.
The switch sending the fast-transition request needs to do a fast transition to the forwarding state of a port that it has chosen as the root port, and it must obtain an acknowledgement from each stack switch before performing the fast transition.

Each switch in the stack determines if the sending switch is a better choice than itself to be the stack root of this spanning-tree instance by comparing the root, cost, and bridge ID. If the sending switch is the best choice as the stack root, each switch in the stack returns an acknowledgement; otherwise, it does not respond to the sending switch (drops the packet). The sending switch then has not received acknowledgements from all stack switches.

When acknowledgements are received from all stack switches, the Fast Uplink Transition Protocol on the sending switch immediately transitions its alternate stack-root port to the forwarding state. If acknowledgements from all stack switches are not obtained by the sending switch, the normal spanning-tree transitions (blocking, listening, learning, and forwarding) take place, and the spanning-tree topology converges at its normal rate (2 * forward-delay time + max-age time).

The Fast Uplink Transition Protocol is implemented on a per-VLAN basis and affects only one spanning-tree instance at a time.

**Events That Cause Fast Convergence**

Depending on the network event or failure, the CSUF fast convergence might or might not occur.

Fast convergence (less than 1 second under normal network conditions) occurs under these circumstances:

- The stack-root port link fails.
  - If two switches in the stack have alternate paths to the root, only one of the switches performs the fast transition.
- The failed link, which connects the stack root to the spanning-tree root, recovers.
- A network reconfiguration causes a new stack-root switch to be selected.
- A network reconfiguration causes a new port on the current stack-root switch to be chosen as the stack-root port.

*Note*

The fast transition might not occur if multiple events occur simultaneously. For example, if a stack member switch is powered off, and at the same time, the link connecting the stack root to the spanning-tree root comes back up, the normal spanning-tree convergence occurs.

Normal spanning-tree convergence (30 to 40 seconds) occurs under these conditions:

- The stack-root switch is powered off, or the software failed.
- The stack-root switch, which was powered off or failed, is powered on.
- A new switch, which might become the stack root, is added to the stack.
- A switch other than the stack root is powered off or failed.
- A link fails between stack ports on the multidrop backbone.
Limitations

These limitations apply to CSUF:

- CSUF uses the GigaStack GBIC and runs on all Catalyst 3550 switches, all Catalyst 3500 XL switches, Catalyst 2950 switches with GBIC module slots, and only on modular Catalyst 2900 XL switches that have the 1000BASE-X module installed.
- Up to nine stack switches can be connected through their stack ports to the multidrop backbone. Only one stack port per switch is supported.
- Each stack switch can be connected to the spanning-tree backbone through one uplink.
- If the stack consists of a mixture of Catalyst 3550, Catalyst 3500 XL, Catalyst 2950, and Catalyst 2900 XL switches, up to 64 VLANs with spanning tree enabled are supported. If the stack consists of only Catalyst 3550 switches, up to 128 VLANs with spanning tree enabled are supported.

Connecting the Stack Ports

A fast transition occurs across the stack of switches if the multidrop backbone connections are a continuous link from one GigaStack GBIC to another as shown in the top half of Figure 13-6. The bottom half of Figure 13-6 shows how to connect the GigaStack GBIC to achieve a normal convergence time.

You should follow these guidelines:

- A switch supports only one stack port.
- Do not connect alternate stack-root ports to stack ports.
- Connect all stack ports on the switch stack to the multidrop backbone.
- You can connect the open ports on the top and bottom GigaStack GBICs within the same stack to form a redundant link.
Figure 13-6 GigaStack GBIC Connections and Spanning-Tree Convergence

GigaStack GBIC connection for fast convergence

Catalyst 3550-12T
Catalyst 3508G XL
Catalyst 2950G-24
Catalyst 2950G-12

GigaStack GBIC connection for normal convergence

Catalyst 2950G-12
Catalyst 2950G-24
Catalyst 2950G-48
Understanding BackboneFast

BackboneFast detects indirect failures in the core of the backbone. BackboneFast is a complementary technology to the UplinkFast feature, which responds to failures on links directly connected to access switches. BackboneFast optimizes the maximum-age timer, which determines the amount of time the switch stores protocol information received on an interface. When a switch receives an inferior BPDU from the designated port of another switch, the BPDU is a signal that the other switch might have lost its path to the root, and BackboneFast tries to find an alternate path to the root.

BackboneFast, which is enabled by using the \texttt{spanning-tree backbonefast} global configuration command, starts when a root port or blocked port on a switch receives inferior BPDUs from its designated bridge. An inferior BPDU identifies one switch as both the root bridge and the designated bridge. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an \textit{indirect} link) has failed (that is, the designated bridge has lost its connection to the root switch). Under spanning-tree rules, the switch ignores inferior BPDUs for the configured maximum aging time specified by the \texttt{spanning-tree max-age} global configuration command. The BackboneFast feature is supported only when the switch is running PVST.

The switch tries to determine if it has an alternate path to the root switch. If the inferior BPDU arrives on a blocked port, the root port and other blocked ports on the switch become alternate paths to the root switch. (Self-looped ports are not considered alternate paths to the root switch.) If the inferior BPDU arrives on the root port, all blocked ports become alternate paths to the root switch. If the inferior BPDU arrives on the root port and there are no blocked ports, the switch assumes that it has lost connectivity to the root switch, causes the maximum aging time on the root port to expire, and becomes the root switch according to normal spanning-tree rules.

If the switch has alternate paths to the root switch, it uses these alternate paths to send a root link query (RLQ) request. The switch sends the RLQ request on all alternate paths to the root switch and waits for an RLQ reply from other switches in the network. If the switch determines that it still has an alternate path to the root, it expires the maximum aging time on the port that received the inferior BPDU. If all the alternate paths to the root switch indicate that the switch has lost connectivity to the root switch, the switch expires the maximum aging time on the port that received the RLQ reply. If one or more alternate paths can still connect to the root switch, the switch makes all ports on which it received an inferior BPDU its designated ports and moves them from the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.

\textbf{Figure 13-7} shows an example topology with no link failures. Switch A, the root switch, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that connects directly to Switch B is in the blocking state.
If link L1 fails as shown in Figure 13-8, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root switch over L1, it detects the failure, elects itself the root, and begins sending BPDUs to Switch C, identifying itself as the root. When Switch C receives the inferior BPDUs from Switch B, Switch C assumes that an indirect failure has occurred. At that point, BackboneFast allows the blocked port on Switch C to move immediately to the listening state without waiting for the maximum aging time for the port to expire. BackboneFast then transitions the Layer 2 interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. This switchover takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. Figure 13-8 shows how BackboneFast reconfigures the topology to account for the failure of link L1.

Figure 13-8  BackboneFast Example After Indirect Link Failure

![Diagram](Image)

If a new switch is introduced into a shared-medium topology as shown in Figure 13-9, BackboneFast is not activated because the inferior BPDUs did not come from the recognized designated bridge (Switch B). The new switch begins sending inferior BPDUs that indicate it is the root switch. However, the other switches ignore these inferior BPDUs, and the new switch learns that Switch B is the designated bridge to Switch A, the root switch.

Figure 13-9  Adding a Switch in a Shared-Medium Topology

![Diagram](Image)
Understanding Optional Spanning-Tree Features

Understanding Root Guard

The Layer 2 network of a service provider (SP) can include many connections to switches that are not owned by the SP. In such a topology, the spanning tree can reconfigure itself and select a customer switch as the root switch, as shown in Figure 13-10. You can avoid this situation by configuring root guard on SP switch interfaces that connect to switches in your customer’s network. If spanning-tree calculations cause an interface in the customer network to be selected as the root port, root guard then places the interface in the root-inconsistent (blocked) state to prevent the customer’s switch from becoming the root switch or being in the path to the root.

If a switch outside the SP network becomes the root switch, the interface is blocked (root-inconsistent state), and spanning tree selects a new root switch. The customer’s switch does not become the root switch and is not in the path to the root.

If the switch is operating in multiple spanning-tree (MST) mode, root guard forces the port to be a designated port. If a boundary port is blocked in an internal spanning-tree (IST) instance because of root guard, the port also is blocked in all MST instances. A boundary port is a port that connects to a LAN, the designated switch of which is either an 802.1D switch or a switch with a different MST region configuration.

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. VLANs can be grouped and mapped to an MST instance.

If your switch is running PVST or MSTP, you can enable this feature by using the **spanning-tree guard root** interface configuration command. The MSTP is available only if you have the EI installed on your switch.

⚠️ **Caution**

Misuse of the root-guard feature can cause a loss of connectivity.

---

**Figure 13-10 Root Guard in a Service-Provider Network**

Customer network

Service-provider network

Potential spanning-tree root without root guard enabled

Enable the root-guard feature on these interfaces to prevent switches in the customer network from becoming the root switch or being in the path to the root.
You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network.

If your switch is running PVST or MSTP, you can enable this feature by using the `spanning-tree loopguard default` global configuration command. The MSTP is available only if you have the EI installed on your switch.

When the switch is operating in PVST mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

When the switch is operating in MST mode, BPDUs are not sent on nonboundary ports only if the port is blocked by loop guard in all MST instances. On a boundary port, loop guard blocks the port in all MST instances.

### Configuring Optional Spanning-Tree Features

These sections describe how to configure optional spanning-tree features:

- Default Optional Spanning-Tree Configuration, page 13-14
- Enabling Port Fast, page 13-14
- Enabling BPDU Guard, page 13-15
- Enabling BPDU Filtering, page 13-16
- Enabling UplinkFast for Use with Redundant Links, page 13-17
- Enabling Cross-Stack UplinkFast, page 13-18
- Enabling BackboneFast, page 13-19
- Enabling Root Guard, page 13-19
- Enabling Loop Guard, page 13-20
Default Optional Spanning-Tree Configuration

Table 13-1 shows the default optional spanning-tree configuration.

### Table 13-1 Default Optional Spanning-Tree Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Fast, BPDU filtering, BPDU guard</td>
<td>Globally disabled (unless they are individually configured per interface).</td>
</tr>
<tr>
<td>UplinkFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>CSUF</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>BackboneFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>Root guard</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>Loop guard</td>
<td>Disabled on all interfaces.</td>
</tr>
</tbody>
</table>

**Enabling Port Fast**

A port with the Port Fast feature enabled is moved directly to the spanning-tree forwarding state without waiting for the standard forward-time delay.

**Caution**

Use Port Fast only when connecting a single end station to an access or trunk port. Enabling this feature on a port connected to a switch or hub could prevent spanning tree from detecting and disabling loops in your network, which could cause broadcast storms and address-learning problems.

If you enable the voice VLAN feature, the Port Fast feature is automatically enabled. When you disable voice VLAN, the Port Fast feature is not automatically disabled. For more information, see Chapter 16, “Configuring Voice VLAN.”

You can enable this feature if your switch is running PVST or MSTP. The MSTP is available only if you have the EI installed on your switch.

Beginning in privileged EXEC mode, follow these steps to enable Port Fast:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure.</td>
</tr>
<tr>
<td>Step 3 spanning-tree portfast [trunk]</td>
<td>Enable Port Fast on an access port connected to a single workstation or server. By specifying the trunk keyword, you can enable Port Fast on a trunk port.</td>
</tr>
</tbody>
</table>

**Caution**

Make sure that there are no loops in the network between the trunk port and the workstation or server before you enable Port Fast on a trunk port.

By default, Port Fast is disabled on all ports.
Chapter 13      Configuring Optional Spanning-Tree Features

Configuring Optional Spanning-Tree Features

Note

You can use the `spanning-tree portfast default` global configuration command to globally enable the Port Fast feature on all nontrunking ports.

To disable the Port Fast feature, use the `spanning-tree portfast disable` interface configuration command.

Enabling BPDU Guard

When you globally enable BPDU guard on ports that are Port Fast-enabled (the ports are in a Port Fast-operational state), spanning tree shuts down Port Fast-enabled ports that receive BPDUs.

In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

Caution

Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You can also use the `spanning-tree bpduguard enable` interface configuration command to enable BPDU guard on any port without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

You can enable the BPDU guard feature if your switch is running PVST or MSTP. The MSTP is available only if you have the EI installed on your switch.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU guard feature:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree portfast bpduguard default</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree portfast</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
</tbody>
</table>
### Configuring Optional Spanning-Tree Features

**Step 6**
- **Command**: `show running-config`  
  **Purpose**: Verify your entries.

**Step 7**
- **Command**: `copy running-config startup-config`  
  **Purpose**: (Optional) Save your entries in the configuration file.

To disable BPDU guard, use the `no spanning-tree portfast bpduguard default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpduguard default` global configuration command by using the `spanning-tree bpduguard enable` interface configuration command.

---

### Enabling BPDU Filtering

When you globally enable BPDU filtering on Port Fast-enabled ports, it prevents ports that are in a Port Fast-operational state from sending or receiving BPDUs. The ports still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these ports do not receive BPDUs. If a BPDU is received on a Port Fast-enabled port, the port loses its Port Fast-operational status, and BPDU filtering is disabled.

**Caution**  
Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You can also use the `spanning-tree bpdufilter enable` interface configuration command to enable BPDU filtering on any port without also enabling the Port Fast feature. This command prevents the port from sending or receiving BPDUs.

**Caution**  
Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature if your switch is running PVST or MSTP. The MSTP is available only if you have the EI installed on your switch.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU filtering feature:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree portfast bpdufilter default</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>interface interface-id</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>spanning-tree portfast</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>
To disable BPDU filtering, use the `no spanning-tree portfast bpdufilter default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpdufilter default` global configuration command by using the `spanning-tree bpdufilter enable` interface configuration command.

### Enabling UplinkFast for Use with Redundant Links

UplinkFast cannot be enabled on VLANs that have been configured for switch priority. To enable UplinkFast on a VLAN with switch priority configured, first restore the switch priority on the VLAN to the default value by using the `no spanning-tree vlan vlan-id priority` global configuration command.

**Note**

When you enable UplinkFast, it affects all VLANs on the switch. You cannot configure UplinkFast on an individual VLAN.

The UplinkFast feature is supported only when the switch is running PVST.

Beginning in privileged EXEC mode, follow these steps to enable UplinkFast:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree uplinkfast [max-update-rate pkts-per-second]</td>
<td>Enable UplinkFast. (Optional) For pkts-per-second, the range is 0 to 65535 packets per second; the default is 150. If you set the rate to 0, station-learning frames are not generated, and the spanning-tree topology converges more slowly after a loss of connectivity.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduces the chance that the switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

To return the update packet rate to the default setting, use the `no spanning-tree uplinkfast max-update-rate` global configuration command. To disable UplinkFast, use the `no spanning-tree uplinkfast` command.
### Enabling Cross-Stack UplinkFast

Before enabling CSUF, make sure your stack switches are properly connected. For more information, see the “Connecting the Stack Ports” section on page 13-8.

The CSUF feature is supported only when the switch is running PVST.

Beginning in privileged EXEC mode, follow these steps to enable CSUF:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree uplinkfast [max-update-rate pkts-per-second]</td>
</tr>
<tr>
<td><strong>Step 1</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree stack-port</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable CSUF on an interface, use the no spanning-tree stack-port interface configuration command. To disable UplinkFast on the switch and all its VLANs, use the no spanning-tree uplinkfast global configuration command.
Enabling BackboneFast

You can enable BackboneFast to detect indirect link failures and to start the spanning-tree reconfiguration sooner.

**Note**

If you use BackboneFast, you must enable it on all switches in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party switches.

The BackboneFast feature is supported only when the switch is running PVST.

Beginning in privileged EXEC mode, follow these steps to enable BackboneFast:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: spanning-tree backbonefast</td>
<td>Enable BackboneFast.</td>
</tr>
<tr>
<td>Step 3: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4: show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the BackboneFast feature, use the `no spanning-tree backbonefast` global configuration command.

Enabling Root Guard

Root guard enabled on an interface applies to all the VLANs to which the interface belongs.

Do not enable the root guard on interfaces to be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and are prevented from reaching the forwarding state.

**Note**

You cannot enable both root guard and loop guard at the same time.

You can enable this feature if your switch is running PVST or MSTP. The MSTP is available only if you have the EI installed on your switch.

Beginning in privileged EXEC mode, follow these steps to enable root guard on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure.</td>
</tr>
<tr>
<td>Step 3: spanning-tree guard root</td>
<td>Enable root guard on the interface.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring Optional Spanning-Tree Features

Chapter 13      Configuring Optional Spanning-Tree Features

Configuring Optional Spanning-Tree Features

To disable root guard, use the `no spanning-tree guard` interface configuration command.

Enabling Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network. Loop guard operates only on ports that are considered point-to-point by the spanning tree.

**Note**

You cannot enable both loop guard and root guard at the same time.

You can enable this feature if your switch is running PVST or MSTP. The MSTP is available only if you have the EI installed on your switch.

Beginning in privileged EXEC mode, follow these steps to enable loop guard:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: show spanning-tree active</td>
<td>Determine which ports are alternate or root ports.</td>
</tr>
<tr>
<td>or show spanning-tree mst</td>
<td></td>
</tr>
<tr>
<td>Step 2: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3: spanning-tree loopguard default</td>
<td>Enable loop guard.</td>
</tr>
<tr>
<td></td>
<td>By default, loop guard is disabled.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally disable loop guard, use the `no spanning-tree loopguard default` global configuration command. You can override the setting of the `no spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.
Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 13-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface</td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>show spanning-tree mst interface</td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td>interface-id</td>
<td></td>
</tr>
<tr>
<td>show spanning-tree summary</td>
<td>Displays a summary of port states or displays the total lines of the spanning-tree state section.</td>
</tr>
<tr>
<td>[totals]</td>
<td></td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
CHAPTER 14

Configuring VLANs

This chapter describes how to configure normal-range VLANs (VLAN IDs 1 to 1005) and extended-range VLANs (VLAN IDs 1006 to 4094). It includes information about VLAN modes and the VLAN Membership Policy Server (VMPS).

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

The chapter includes these sections:

- Understanding VLANs, page 14-1
- Configuring Normal-Range VLANs, page 14-4
- Configuring Extended-Range VLANs, page 14-12
- Displaying VLANs, page 14-14
- Configuring VLAN Trunks, page 14-15
- Configuring VMPS, page 14-24

Understanding VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or bridge as shown in Figure 14-1. Because a VLAN is considered a separate logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree. See Chapter 11, “Configuring STP” and Chapter 12, “Configuring RSTP and MSTP.”

Note

Before you create VLANs, you must decide whether to use VLAN Trunking Protocol (VTP) to maintain global VLAN configuration for your network. For more information on VTP, see Chapter 15, “Configuring VTP.”
For a Catalyst 2950 LRE Switch, the maximum supported number of VLANs is 250, the maximum number of STP instances is 64, and trunking is supported. The Catalyst 2950 LRE also supports 4094 VLAN IDs. The 2950 LRE software image is based on the EI software and supports the same number of VLANs, VLAN IDs, and STP instances as the EI software image.

Figure 14-1 shows an example of VLANs segmented into logically defined networks.

**Figure 14-1  VLANs as Logically Defined Networks**

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the switch is assigned manually on an interface-by-interface basis. When you assign switch interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership.

**Supported VLANs**

Catalyst 2950 switches that run the standard software image (SI) support 64 VLANs; switches that run the enhanced software image (EI) support 250 VLANs. Refer to the release notes for the list of switches that support each image. VLANs are identified with a number from 1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed. VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs. VTP only learns normal-range VLANs, with VLAN IDs 1 to 1005; VLAN IDs greater than 1005 are extended-range VLANs and are not stored in the VLAN database. The switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094.

The switch supports per-VLAN spanning tree (PVST) with a maximum of 64 spanning-tree instances. One spanning-tree instance is allowed per VLAN. See the “Normal-Range VLAN Configuration Guidelines” section on page 14-5 for more information about the number of spanning-tree instances and the number of VLANs. The switch supports IEEE 802.1Q trunking for sending VLAN traffic over Ethernet ports.
**VLAN Port Membership Modes**

You configure a port to belong to a VLAN by assigning a membership mode that determines the kind of traffic the port carries and the number of VLANs to which it can belong. Table 14-1 lists the membership modes and membership and VTP characteristics.

**Table 14-1 Port Membership Modes**

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static-access</td>
<td>A static-access port can belong to one VLAN and is manually assigned to that VLAN. For more information, see the “Assigning Static-Access Ports to a VLAN&quot; section on page 14-11.</td>
<td>VTP is not required. If you do not want VTP to globally propagate information, set the VTP mode to transparent to disable VTP. To participate in VTP, there must be at least one trunk port on the switch connected to a trunk port of a second switch.</td>
</tr>
<tr>
<td>802.1Q trunk</td>
<td>A trunk port is a member of all VLANs by default, including extended-range VLANs, but membership can be limited by configuring the allowed-VLAN list. You can also modify the pruning-eligible list to block flooded traffic to VLANs on trunk ports that are included in the list. For information about configuring trunk ports, see the “Configuring an Ethernet Interface as a Trunk Port” section on page 14-17.</td>
<td>VTP is recommended but not required. VTP maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP exchanges VLAN configuration messages with other switches over trunk links.</td>
</tr>
<tr>
<td>Dynamic access</td>
<td>A dynamic-access port can belong to one normal-range VLAN (VLAN ID 1 to 1005) and is dynamically assigned by a VMPS. The VMPS can be a Catalyst 5000 or Catalyst 6000 series switch, for example, but never a Catalyst 2950 switch. You can have dynamic-access ports and trunk ports on the same switch, but you must connect the dynamic-access port to an end station and not to another switch. For configuration information, see the “Configuring Dynamic Access Ports on VMPS Clients” section on page 14-29.</td>
<td>VTP is required. Configure the VMPS and the client with the same VTP domain name. You can change the reconfirmation interval and retry count on the VMPS client switch.</td>
</tr>
</tbody>
</table>

For more detailed definitions of the modes and their functions, see Table 14-4 on page 14-16.

When a port belongs to a VLAN, the switch learns and manages the addresses associated with the port on a per-VLAN basis. For more information, see the “Managing the MAC Address Table” section on page 7-54.
Configuring Normal-Range VLANs

Normal-range VLANs are VLANs with VLAN IDs 1 to 1005. If the switch is in VTP server or transparent mode, you can add, modify or remove configurations for VLANs 2 to 1001 in the VLAN database. (VLAN IDs 1 and 1002 to 1005 are automatically created and cannot be removed.)

When the switch is in VTP transparent mode and the EI is installed, you can also create extended-range VLANs (VLANs with IDs from 1006 to 4094), but these VLANs are not saved in the VLAN database. See the “Configuring Extended-Range VLANs” section on page 14-12.

Configurations for VLAN IDs 1 to 1005 are written to the file `vlan.dat` (VLAN database), and you can display them by entering the `show vlan` privileged EXEC command. The `vlan.dat` file is stored in nonvolatile RAM (NVRAM).

You can cause inconsistency in the VLAN database if you attempt to manually delete the `vlan.dat` file. If you want to modify the VLAN configuration, use the commands described in these sections and in the command reference for this release. To change the VTP configuration, see Chapter 15, “Configuring VTP.”

You use the interface configuration mode to define the port membership mode and to add and remove ports from VLANs. The results of these commands are written to the running-configuration file, and you can display the file by entering the `show running-configuration` privileged EXEC command.

You can set these parameters when you create a new normal-range VLAN or modify an existing VLAN in the VLAN database:

- VLAN ID
- VLAN name
- VLAN type (Ethernet, Fiber Distributed Data Interface [FDDI], FDDI network entity title [NET], TrBRF, or TrCRF, Token Ring, Token Ring-Net)
- VLAN state (active or suspended)
- Maximum transmission unit (MTU) for the VLAN
- Security Association Identifier (SAID)
- Bridge identification number for TrBRF VLANs
- Ring number for FDDI and TrCRF VLANs
- Parent VLAN number for TrCRF VLANs
- Spanning Tree Protocol (STP) type for TrCRF VLANs
- VLAN number to use when translating from one VLAN type to another

This section does not provide configuration details for most of these parameters. For complete information on the commands and parameters that control VLAN configuration, refer to the command reference for this release.
This section includes information about these topics about normal-range VLANs:

- **Token Ring VLANs**, page 14-5
- **Normal-Range VLAN Configuration Guidelines**, page 14-5
- **VLAN Configuration Mode Options**, page 14-6
- **Saving VLAN Configuration**, page 14-7
- **Default Ethernet VLAN Configuration**, page 14-8
- **Creating or Modifying an Ethernet VLAN**, page 14-8
- **Deleting a VLAN**, page 14-10
- **Assigning Static-Access Ports to a VLAN**, page 14-11

## Token Ring VLANs

Although the switch does not support Token Ring connections, a remote device such as a Catalyst 5000 series switch with Token Ring connections could be managed from one of the supported switches. Switches running VTP version 2 advertise information about these Token Ring VLANs:

- Token Ring TrBRF VLANs
- Token Ring TrCRF VLANs

For more information on configuring Token Ring VLANs, refer to the *Catalyst 5000 Series Software Configuration Guide*.

## Normal-Range VLAN Configuration Guidelines

Follow these guidelines when creating and modifying normal-range VLANs in your network:

- See **Table 14-1** for the maximum number of supported VLANs per switch model. On a switch supporting 250 VLANs, if VTP reports that there are 254 active VLANs, four of the active VLANs (1002 to 1005) are reserved for Token Ring and FDDI.
- Normal-range VLANs are identified with a number between 1 and 1001. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs.
- VLAN configuration for VLANs 1 to 1005 are always saved in the VLAN database. If VTP mode is transparent, VTP and VLAN configuration is also saved in the switch running configuration file.
- The switch also supports VLAN IDs 1006 through 4094 in VTP transparent mode (VTP disabled) when the EI is installed. These are extended-range VLANs and configuration options are limited. Extended-range VLANs are not saved in the VLAN database. See the “**Configuring Extended-Range VLANs**” section on page 14-12.
- Before you can create a VLAN, the switch must be in VTP server mode or VTP transparent mode. If the switch is a VTP server, you must define a VTP domain or VTP will not function.
- The switch does not support Token Ring or FDDI media. The switch does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it does propagate the VLAN configuration through VTP.
The switch supports 64 spanning-tree instances. If a switch has more active VLANs than supported spanning-tree instances, spanning tree can be enabled on 64 VLANs and is disabled on the remaining VLANs. If you have already used all available spanning-tree instances on a switch, adding another VLAN anywhere in the VTP domain creates a VLAN on that switch that is not running spanning-tree. If you have the default allowed list on the trunk ports of that switch (which is to allow all VLANs), the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that would not be broken, particularly if there are several adjacent switches that all have run out of spanning-tree instances. You can prevent this possibility by setting allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances.

If the number of VLANs on the switch exceeds the number of supported spanning tree instances, we recommend that you configure the IEEE 802.1S Multiple STP (MSTP) on your switch to map multiple VLANs to a single STP instance. For more information about MSTP, see Chapter 12, “Configuring RSTP and MSTP.”

### VLAN Configuration Mode Options

You can configure normal-range VLANs (with VLAN IDs 1 to 1005) by using these two configuration modes:

- **VLAN Configuration in config-vlan Mode, page 14-6**
  You access config-vlan mode by entering the `vlan vlan-id` global configuration command.

- **VLAN Configuration in VLAN Configuration Mode, page 14-6**
  You access VLAN configuration mode by entering the `vlan database` privileged EXEC command.

### VLAN Configuration in config-vlan Mode

To access config-vlan mode, enter the `vlan` global configuration command with a VLAN ID. Enter a new VLAN ID to create a VLAN or with an existing VLAN ID to modify the VLAN. You can use the default VLAN configuration (Table 14-2) or enter multiple commands to configure the VLAN. For more information about commands available in this mode, refer to the `vlan` global configuration command description in the command reference for this release. When you have finished the configuration, you must exit config-vlan mode for the configuration to take effect. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

You must use this config-vlan mode when creating extended-range VLANs (VLAN IDs greater than 1005). See the “Configuring Extended-Range VLANs” section on page 14-12.

### VLAN Configuration in VLAN Configuration Mode

To access VLAN configuration mode, enter the `vlan database` privileged EXEC command. Then enter the `vlan` command with a new VLAN ID to create a VLAN or with an existing VLAN ID to modify the VLAN. You can use the default VLAN configuration (Table 14-2) or enter multiple commands to configure the VLAN. For more information about keywords available in this mode, refer to the `vlan` VLAN configuration command description in the command reference for this release. When you have finished the configuration, you must enter `apply` or `exit` for the configuration to take effect. When you enter the `exit` command, it applies all commands and updates the VLAN database. VTP messages are sent to other switches in the VTP domain, and the privileged EXEC mode prompt appears.
Saving VLAN Configuration

The configurations of VLAN IDs 1 to 1005 are always saved in the VLAN database (vlan.dat file). If VTP mode is transparent, they are also saved in the switch running configuration file and you can enter the `copy running-config startup-config` privileged EXEC command to save the configuration in the startup configuration file. You can use the `show running-config vlan` privileged EXEC command to display the switch running configuration file. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

When you save VLAN and VTP information (including extended-range VLAN configuration information) in the startup configuration file and reboot the switch, the switch configuration is determined as follows:

- If the VTP mode is transparent in the startup configuration, and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration does not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.
- If VTP mode is server, the domain name and VLAN configuration for the first 1005 VLANs use the VLAN database information.
- If the switch is running IOS Release 12.1(9)EA1 or later and you use an older startup configuration file to boot up the switch, the configuration file does not contain VTP or VLAN information, and the switch uses the VLAN database configurations.
- If the switch is running an IOS release earlier than 12.1(9)EA1 and you use a startup configuration file from IOS Release 12.1(9)EA1 or later to boot up the switch, the image on the switch does not recognize the VLAN and VTP configurations in the startup configuration file, so the switch uses the VLAN database configuration.

⚠️ Caution

If the VLAN database configuration is used at startup and the startup configuration file contains extended-range VLAN configuration, this information is lost when the system boots up.
Default Ethernet VLAN Configuration

Table 14-2 shows the default configuration for Ethernet VLANs.

Note

The switch supports Ethernet interfaces exclusively. Because FDDI and Token Ring VLANs are not locally supported, you only configure FDDI and Token Ring media-specific characteristics for VTP global advertisements to other switches.

Table 14-2 Ethernet VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td>Extended-range VLANs (VLAN IDs 1006 to 4094) are not saved in the VLAN database.</td>
</tr>
<tr>
<td>VLAN name</td>
<td>VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number</td>
<td>No range</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>100001 (100000 plus the VLAN ID)</td>
<td>1–4294967294</td>
</tr>
<tr>
<td>MTU size</td>
<td>1500</td>
<td>1500–18190</td>
</tr>
<tr>
<td>Translational bridge 1</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>Translational bridge 2</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
</tbody>
</table>

Creating or Modifying an Ethernet VLAN

Each Ethernet VLAN in the VLAN database has a unique, 4-digit ID that can be a number from 1 to 1001. VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs. To create a normal-range VLAN to be added to the VLAN database, assign a number and name to the VLAN.

Note

When the switch is in VTP transparent mode and the EI is installed, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database. See the “Configuring Extended-Range VLANs” section on page 14-12.

For the list of default parameters that are assigned when you add a VLAN, see the “Configuring Normal-Range VLANs” section on page 14-4.
Beginning in privileged EXEC mode, follow these steps to use config-vlan mode to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>vlan vlan-id</td>
<td>Enter a VLAN ID, and enter config-vlan mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify a VLAN. <strong>Note</strong> The available VLAN ID range for this command is 1 to 1005 when the SI is installed and 1 to 4094 when the EI is installed; do not enter leading zeros. For information about adding VLAN IDs greater than 1005 (extended-range VLANs), see the “Configuring Extended-Range VLANs” section on page 14-12.</td>
</tr>
<tr>
<td>3</td>
<td>name vlan-name</td>
<td>(Optional) Enter a name for the VLAN. If no name is entered for the VLAN, the default is to append the <code>vlan-id</code> with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4.</td>
</tr>
<tr>
<td>4</td>
<td>mtu mtu-size</td>
<td>(Optional) Change the MTU size (or other VLAN characteristic).</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show vlan {name vlan-name</td>
<td>id vlan-id}</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup config</td>
<td>(Optional) If the switch is in VTP transparent mode, the VLAN configuration is saved in the running configuration file as well as in the VLAN database. This saves the configuration in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

To return the VLAN name to the default settings, use the **no vlan name** or **no vlan mtu** config-vlan commands.

This example shows how to use config-vlan mode to create Ethernet VLAN 20, name it *test20*, and add it to the VLAN database:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# name test20
Switch(config-vlan)# end
```

Beginning in privileged EXEC mode, follow these steps to use VLAN configuration mode to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>vlan database</td>
<td>Enter VLAN configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>vlan vlan-id name vlan-name</td>
<td>Add an Ethernet VLAN by assigning a number to it. The range is 1 to 1001; do not enter leading zeros. If no name is entered for the VLAN, the default is to append the <code>vlan-id</code> with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4.</td>
</tr>
<tr>
<td>3</td>
<td>vlan vlan-id mtu mtu-size</td>
<td>(Optional) To modify a VLAN, identify the VLAN and change a characteristic, such as the MTU size.</td>
</tr>
</tbody>
</table>
Chapter 14      Configuring VLANs

Configuring Normal-Range VLANs

To return the VLAN name to the default settings, use the `no vlan vlan-id name` or `no vlan vlan-id mtu` VLAN configuration command.

This example shows how to use VLAN configuration mode to create Ethernet VLAN 20, name it `test20`, and add it to the VLAN database:

```
Switch# vlan database
Switch(vlan)# vlan 20 name test20
Switch(vlan)# exit
APPLY completed.
Exiting....
Switch#
```

Deleting a VLAN

When you delete a VLAN from a switch that is in VTP server mode, the VLAN is removed from the VLAN database for all switches in the VTP domain. When you delete a VLAN from a switch that is in VTP transparent mode, the VLAN is deleted only on that specific switch.

You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.

⚠️ **Caution**

When you delete a VLAN, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN.

Beginning in privileged EXEC mode, follow these steps to delete a VLAN on the switch by using global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>no vlan vlan-id</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show vlan brief</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup config</code></td>
</tr>
</tbody>
</table>

To delete a VLAN by using VLAN configuration mode, use the `vlan database` privileged EXEC command to enter VLAN configuration mode and the `no vlan vlan-id` VLAN configuration command.
Assigning Static-Access Ports to a VLAN

You can assign a static-access port to a VLAN without having VTP globally propagate VLAN configuration information (VTP is disabled). If you are assigning a port on a cluster member switch to a VLAN, first use the `rcommand` privileged EXEC command to log in to the member switch.

**Note**

If you assign an interface to a VLAN that does not exist, the new VLAN is created. (See the “Creating or Modifying an Ethernet VLAN” section on page 14-8.)

Beginning in privileged EXEC mode, follow these steps to assign a port to a VLAN in the VLAN database:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switchport mode access</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show running-config interface interface-id</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command.

This example shows how to configure Fast Ethernet interface 0/1 as an access port in VLAN 2:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# end
Switch#
```
Configuring Extended-Range VLANs

When the switch is in VTP transparent mode (VTP disabled) and the EI is installed, you can create extended-range VLANs (in the range 1006 to 4094). Extended-range VLANs enable service providers to extend their infrastructure to a greater number of customers. The extended-range VLAN IDs are allowed for any switchport commands that allow VLAN IDs. You always use config-vlan mode (accessed by entering the `vlan vlan-id` global configuration command) to configure extended-range VLANs. The extended range is not supported in VLAN configuration mode (accessed by entering the `vlan database` privileged EXEC command).

Extended-range VLAN configurations are not stored in the VLAN database, but because VTP mode is transparent, they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

**Note**

Although the switch supports 4094 VLAN IDs when the EI is installed, see the “Supported VLANs” section on page 14-2 for the actual number of VLANs supported.

This section includes this information about extended-range VLANs:
- Default VLAN Configuration, page 14-12
- Extended-Range VLAN Configuration Guidelines, page 14-12
- Creating an Extended-Range VLAN, page 14-13
- Displaying VLANs, page 14-14

Default VLAN Configuration

See Table 14-2 on page 14-8 for the default configuration for Ethernet VLANs. You can change only the MTU size on extended-range VLANs; all other characteristics must remain at the default state.

Extended-Range VLAN Configuration Guidelines

Follow these guidelines when creating extended-range VLANs:
- To add an extended-range VLAN, you must use the `vlan vlan-id` global configuration command and access config-vlan mode. You cannot add extended-range VLANs in VLAN configuration mode (accessed by entering the `vlan database` privileged EXEC command).
- VLAN IDs in the extended range are not saved in the VLAN database and are not recognized by VTP.
- You cannot include extended-range VLANs in the pruning eligible range.
- The switch must be in VTP transparent mode when you create extended-range VLANs. If VTP mode is server or client, an error message is generated, and the extended-range VLAN is rejected.
- You can set the VTP mode to transparent in global configuration mode or in VLAN configuration mode. See the “Disabling VTP (VTP Transparent Mode)” section on page 15-12. You should save this configuration to the startup configuration so that the switch will boot up in VTP transparent mode. Otherwise, you will lose extended-range VLAN configuration if the switch resets.
- VLANs in the extended range are not supported by VQP. They cannot be configured by VMPS.
Configuring Extended-Range VLANs

- STP is enabled by default on extended-range VLANs, but you can disable it by using the `no spanning-tree vlan vlan-id` global configuration command. When the maximum number of spanning-tree instances (64) are on the switch, spanning tree is disabled on any newly created VLANs. If the number of VLANs on the switch exceeds the maximum number of spanning tree instances, we recommend that you configure the IEEE 802.1S Multiple STP (MSTP) on your switch to map multiple VLANs to a single STP instance. For more information about MSTP, see Chapter 12, “Configuring RSTP and MSTP.”

Creating an Extended-Range VLAN

You create an extended-range VLAN in global configuration mode by entering the `vlan` global configuration command with a VLAN ID from 1006 to 4094. This command accesses the config-vlan mode. The extended-range VLAN has the default Ethernet VLAN characteristics (see Table 14-2) and the MTU size is the only parameter you can change. Refer to the description of the `vlan` global configuration command in the command reference for defaults of all parameters. If you enter an extended-range VLAN ID when the switch is not in VTP transparent mode, an error message is generated when you exit from config-vlan mode, and the extended-range VLAN is not created.

Extended-range VLANs are not saved in the VLAN database; they are saved in the switch running configuration file. You can save the extended-range VLAN configuration in the switch startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

**Note**

Before you create an extended-range VLAN, you can verify that the VLAN ID is not used internally by entering the `show vlan internal usage` privileged EXEC command. If the VLAN ID is used internally and you want to free it up, go to the “Displaying VLANs” section on page 14-14 before creating the extended-range VLAN.

Beginning in privileged EXEC mode, follow these steps to create an extended-range VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>vtp mode transparent</strong></td>
</tr>
<tr>
<td></td>
<td>Configure the switch for VTP transparent mode, disabling VTP.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>vlan vlan-id</strong></td>
</tr>
<tr>
<td></td>
<td>Enter an extended-range VLAN ID and enter config-vlan mode. The range is 1006 to 4094.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>mtu mtu-size</strong></td>
</tr>
<tr>
<td>(Optional)</td>
<td>Modify the VLAN by changing the MTU size.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Although all commands appear in the CLI help in config-vlan mode, only the <code>mtu mtu-size</code> command is supported for extended-range VLANs.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>show vlan id vlan-id</strong></td>
</tr>
<tr>
<td></td>
<td>Verify that the VLAN has been created.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>copy running-config startup config</strong></td>
</tr>
<tr>
<td></td>
<td>Save your entries in the switch startup configuration file. To save extended-range VLAN configurations, you need to save the VTP transparent mode configuration and the extended-range VLAN configuration in the switch startup configuration file. Otherwise, if the switch resets, it will default to VTP server mode, and the extended-range VLAN IDs will not be saved.</td>
</tr>
</tbody>
</table>
To delete an extended-range VLAN, use the `no vlan vlan-id` global configuration command.

The procedure for assigning static-access ports to an extended-range VLAN is the same as for normal-range VLANs. See the “Assigning Static-Access Ports to a VLAN” section on page 14-11.

This example shows how to create a new extended-range VLAN (when the EI is installed) with all default characteristics, enter config-vlan mode, and save the new VLAN in the switch startup configuration file:

```
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

### Displaying VLANs

Use the `show vlan` privileged EXEC command to display a list of all VLANs on the switch, including extended-range VLANs. The display includes VLAN status, ports, and configuration information. To view normal-range VLANs in the VLAN database (1 to 1005,) use the `show VLAN configuration` command (accessed by entering the `vlan database` privileged EXEC command). For a list of the VLAN IDs on the switch, use the `show running-config vlan` privileged EXEC command, optionally entering a VLAN ID range.

Table 14-3 lists the commands for monitoring VLANs.

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Mode</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show</td>
<td>VLAN configuration</td>
<td>Display status of VLANs in the VLAN database.</td>
</tr>
<tr>
<td>show current [vlan-id]</td>
<td>VLAN configuration</td>
<td>Display status of all or the specified VLAN in the VLAN database.</td>
</tr>
<tr>
<td>show interfaces [vlan vlan-id]</td>
<td>Privileged EXEC</td>
<td>Display characteristics for all interfaces or for the specified VLAN configured on the switch.</td>
</tr>
<tr>
<td>show running-config vlan</td>
<td>Privileged EXEC</td>
<td>Display all or a range of VLANs on the switch.</td>
</tr>
<tr>
<td>show vlan [id vlan-id]</td>
<td>Privileged EXEC</td>
<td>Display parameters for all VLANs or the specified VLAN on the switch.</td>
</tr>
</tbody>
</table>

For more details about the show command options and explanations of output fields, refer to the command reference for this release.
Configuring VLAN Trunks

These sections describe how VLAN trunks function on the switch:

- Trunking Overview, page 14-15
- 802.1Q Configuration Considerations, page 14-16
- Default Layer 2 Ethernet Interface VLAN Configuration, page 14-17

Trunking Overview

A trunk is a point-to-point link between one or more Ethernet switch interfaces and another networking device such as a router or a switch. Fast Ethernet and Gigabit Ethernet trunks carry the traffic of multiple VLANs over a single link, and you can extend the VLANs across an entire network.

Figure 14-2 shows a network of switches that are connected by 802.1Q trunks.

Figure 14-2  Catalyst 2950, 2900 XL, and 3500 XL Switches in a 802.1Q Trunking Environment

You can configure a trunk on a single Ethernet interface or on an EtherChannel bundle. For more information about EtherChannel, see Chapter 27, “Configuring EtherChannels.”

Ethernet trunk interfaces support different trunking modes (see Table 14-4). You can set an interface as trunking or nontrunking or to negotiate trunking with the neighboring interface. To autonegotiate trunking, the interfaces must be in the same VTP domain.

Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a Point-to-Point Protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations.
To avoid this, you should configure interfaces connected to devices that do not support DTP to not forward DTP frames, that is, to turn off DTP.

- If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.

- To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but to not generate DTP frames.

**Note** On GigaStack GBICs, dynamic trunking is only supported when only one port of a GigaStack GBIC is being used. If trunking is required on a GigaStack GBIC where both ports are in use, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands on both GBIC interfaces to cause the interfaces to become trunks.

### Table 14-4 Layer 2 Interface Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport mode access</code></td>
<td>Puts the interface (access port) into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The interface becomes a nontrunk interface even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td><code>switchport mode desirable</code></td>
<td>Makes the interface actively attempt to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk</code>, <code>desirable</code>, or <code>auto</code> mode. The default switch-port mode for all Ethernet interfaces is <code>dynamic desirable</code>.</td>
</tr>
<tr>
<td><code>switchport mode dynamic auto</code></td>
<td>Makes the interface able to convert the link to a trunk link. The interface becomes a trunk interface if the neighboring interface is set to <code>trunk</code> or <code>desirable</code> mode.</td>
</tr>
<tr>
<td><code>switchport mode trunk</code></td>
<td>Puts the interface into permanent trunking mode and negotiates to convert the link into a trunk link. The interface becomes a trunk interface even if the neighboring interface is not a trunk interface.</td>
</tr>
<tr>
<td><code>switchport nonegotiate</code></td>
<td>Prevents the interface from generating DTP frames. You can use this command only when the interface switchport mode is <code>access</code> or <code>trunk</code>. You must manually configure the neighboring interface as a trunk interface to establish a trunk link.</td>
</tr>
</tbody>
</table>

### 802.1Q Configuration Considerations

802.1Q trunks impose these limitations on the trunking strategy for a network:

- In a network of Cisco switches connected through 802.1Q trunks, the switches maintain one instance of spanning tree for each VLAN allowed on the trunks. Non-Cisco devices might support one spanning-tree instance for all VLANs.

  When you connect a Cisco switch to a non-Cisco device through an 802.1Q trunk, the Cisco switch combines the spanning-tree instance of the VLAN of the trunk with the spanning-tree instance of the non-Cisco 802.1Q switch. However, spanning-tree information for each VLAN is maintained by Cisco switches separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

- Make sure the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.
Disabling spanning tree on the native VLAN of an 802.1Q trunk without disabling spanning tree on every VLAN in the network can potentially cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an 802.1Q trunk or disable spanning tree on every VLAN in the network. Make sure your network is loop-free before disabling spanning tree.

**Default Layer 2 Ethernet Interface VLAN Configuration**

Table 14-5 shows the default Layer 2 Ethernet interface VLAN configuration.

**Table 14-5  Default Layer 2 Ethernet Interface VLAN Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode</td>
<td>switchport mode dynamic desirable</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094 when the EI is installed and 1 to 1005 when the SI is installed</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
</tbody>
</table>

**Configuring an Ethernet Interface as a Trunk Port**

Because trunk ports send and receive VTP advertisements, to use VTP you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements.

This section includes these procedures for configuring an Ethernet interface as a trunk port on the switch:

- Interaction with Other Features, page 14-17
- Defining the Allowed VLANs on a Trunk, page 14-19
- Changing the Pruning-Eligible List, page 14-20
- Configuring the Native VLAN for Untagged Traffic, page 14-20

**Note**

The default mode for Layer 2 interfaces is switchport mode dynamic desirable. If the neighboring interface supports trunking and is configured to allow trunking, the link is a Layer 2 trunk.

**Interaction with Other Features**

Trunking interacts with other features in these ways:

- A trunk port cannot be a secure port.
- Trunk ports can be grouped into EtherChannel port groups, but all trunks in the group must have the same configuration. When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, the switch propagates the setting you entered to all ports in the group:
  - allowed-VLAN list
  - STP port priority for each VLAN
- STP Port Fast setting
- trunk status: if one port in a port group ceases to be a trunk, all ports cease to be trunks.

- If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, the port mode is not changed.
- A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1X on a dynamic port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, the port mode is not changed.

**Configuring a Trunk Port**

Beginning in privileged EXEC mode, follow these steps to configure a port as 802.1Q trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode {dynamic {auto</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport trunk native vlan vlan-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 8</td>
<td>show interfaces interface-id trunk</td>
</tr>
<tr>
<td>Step 9</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the default interface interface-id interface configuration command. To reset all trunking characteristics of a trunking interface to the defaults, use the no switchport trunk interface configuration command. To disable trunking, use the switchport mode access interface configuration command to configure the port as a static-access port.
This example shows how to configure the Fast Ethernet interface 0/4 as an 802.1Q trunk. The example assumes that the neighbor interface is configured to support 802.1Q trunking.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/4
Switch(config-if)# switchport mode dynamic desirable
Switch(config-if)# end
```

### Defining the Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094 when the EI is installed, and 1 to 1005 when the SI is installed, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk. To restrict the traffic a trunk carries, use the `switchport trunk allowed vlan remove vlan-list` interface configuration command to remove specific VLANs from the allowed list.

### Note

You cannot remove VLAN 1 or VLANs 1002 to 1005 from the allowed VLAN list.

A trunk port can become a member of a VLAN if the VLAN is enabled, if VTP knows of the VLAN, and if the VLAN is in the allowed list for the port. When VTP detects a newly enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of the enabled VLAN. When VTP detects a new VLAN and the VLAN is not in the allowed list for a trunk port, the trunk port does not become a member of the new VLAN.

Beginning in privileged EXEC mode, follow these steps to modify the allowed list of an 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode and the port to be configured.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td></td>
<td>Configure the interface as a VLAN trunk port.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switchport trunk allowed vlan {add</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configure the list of VLANs allowed on the trunk.</td>
</tr>
<tr>
<td></td>
<td>For explanations about using the add, all, except, and remove keywords, refer to the command reference for this release.</td>
</tr>
<tr>
<td></td>
<td>The vlan-list parameter is either a single VLAN number from 1 to 4094 or a range of VLANs described by two VLAN numbers, the lower one first, separated by a hyphen. Do not enter any spaces between comma-separated VLAN parameters or in hyphen-specified ranges.</td>
</tr>
<tr>
<td></td>
<td>All VLANs are allowed by default. You cannot remove any of the default VLANs (1 or 1002 to 1005) from a trunk.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td></td>
<td>Verify your entries in the Trunking VLANs Enabled field of the display.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default allowed VLAN list of all VLANs, use the `no switchport trunk allowed vlan` interface configuration command.
This example shows how to remove VLAN 2 from the allowed VLAN list:

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport trunk allowed vlan remove 2
Switch(config-if)# end
Switch#
```

### Changing the Pruning-Eligible List

The pruning-eligible list applies only to trunk ports. Each trunk port has its own eligibility list. VTP pruning must be enabled for this procedure to take effect. The “Enabling VTP Pruning” section on page 15-14 describes how to enable VTP pruning.

Beginning in privileged EXEC mode, follow these steps to remove VLANs from the pruning-eligible list on a trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switchport trunk pruning vlan {add</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default pruning-eligible list of all VLANs, use the `no switchport trunk pruning vlan` interface configuration command.

### Configuring the Native VLAN for Untagged Traffic

A trunk port configured with 802.1Q tagging can receive both tagged and untagged traffic. By default, the switch forwards untagged traffic in the native VLAN configured for the port. The native VLAN is VLAN 1 by default.

**Note** The native VLAN can be assigned any VLAN ID; it is not dependent on the management VLAN.

For information about 802.1Q configuration issues, see the “802.1Q Configuration Considerations” section on page 14-16.
Beginning in privileged EXEC mode, follow these steps to configure the native VLAN on an 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and define the interface that is</td>
</tr>
<tr>
<td></td>
<td>configured as the 802.1Q trunk.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>switchport trunk native vlan vlan-id</strong></td>
</tr>
<tr>
<td></td>
<td>Configure the VLAN that is sending and receiving untagged traffic on</td>
</tr>
<tr>
<td></td>
<td>the trunk port.</td>
</tr>
<tr>
<td></td>
<td>For <strong>vlan-id</strong>, the range is 1 to 4094 when the EI is installed, and 1</td>
</tr>
<tr>
<td></td>
<td>to 1005 when the SI is installed. Do not enter leading zeros.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>show interfaces interface-id switchport</strong></td>
</tr>
<tr>
<td></td>
<td>Verify your entries in the Trunking Native Mode VLAN field.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default native VLAN, VLAN 1, use the **no switchport trunk native vlan** interface configuration command.

If a packet has a VLAN ID that is the same as the outgoing port native VLAN ID, the packet is sent untagged; otherwise, the switch sends the packet with a tag.

**Load Sharing Using STP**

Load sharing divides the bandwidth supplied by parallel trunks connecting switches. To avoid loops, STP normally blocks all but one parallel link between switches. Using load sharing, you divide the traffic between the links according to which VLAN the traffic belongs.

You configure load sharing on trunk ports by using STP port priorities or STP path costs. For load sharing using STP port priorities, both load-sharing links must be connected to the same switch. For load sharing using STP path costs, each load-sharing link can be connected to the same switch or to two different switches. For more information about STP, see Chapter 11, “Configuring STP.”

**Load Sharing Using STP Port Priorities**

When two ports on the same switch form a loop, the STP port priority setting determines which port is enabled and which port is in a blocking state. You can set the priorities on a parallel trunk port so that the port carries all the traffic for a given VLAN. The trunk port with the higher priority (lower values) for a VLAN is forwarding traffic for that VLAN. The trunk port with the lower priority (higher values) for the same VLAN remains in a blocking state for that VLAN. One trunk port sends or receives all traffic for the VLAN.

Figure 14-3 shows two trunks connecting supported switches. In this example, the switches are configured as follows:

- VLANs 8 through 10 are assigned a port priority of 10 on Trunk 1.
- VLANs 3 through 6 retain the default port priority of 128 on Trunk 1.
- VLANs 3 through 6 are assigned a port priority of 10 on Trunk 2.
- VLANs 8 through 10 retain the default port priority of 128 on Trunk 2.
In this way, Trunk 1 carries traffic for VLANs 8 through 10, and Trunk 2 carries traffic for VLANs 3 through 6. If the active trunk fails, the trunk with the lower priority takes over and carries the traffic for all of the VLANs. No duplication of traffic occurs over any trunk port.

**Figure 14-3 Load Sharing by Using STP Port Priorities**

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 14-3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp domain <em>domain-name</em></td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp mode server</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Step 6</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 7</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 8</td>
<td>interface fastethernet 0/1</td>
</tr>
<tr>
<td>Step 9</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td>Step 11</td>
<td>show interfaces fastethernet0/1 switchport</td>
</tr>
<tr>
<td>Step 12</td>
<td>Repeat Steps 7 through 11 on Switch 1 for Fast Ethernet port 0/2.</td>
</tr>
<tr>
<td>Step 13</td>
<td>Repeat Steps 7 through 11 on Switch 2 to configure the trunk ports on Fast Ethernet ports 0/1 and 0/2.</td>
</tr>
<tr>
<td>Step 14</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 15</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 16</td>
<td>interface fastethernet0/1</td>
</tr>
</tbody>
</table>
You can configure parallel trunks to share VLAN traffic by setting different path costs on a trunk and associating the path costs with different sets of VLANs. The VLANs keep the traffic separate. Because no loops exist, STP does not disable the ports, and redundancy is maintained in the event of a lost link.

In Figure 14-4, Trunk ports 1 and 2 are 100BASE-T ports. The path costs for the VLANs are assigned as follows:

- VLANs 2 through 4 are assigned a path cost of 30 on Trunk port 1.
- VLANs 8 through 10 retain the default 100BASE-T path cost on Trunk port 1 of 19.
- VLANs 8 through 10 are assigned a path cost of 30 on Trunk port 2.
- VLANs 2 through 4 retain the default 100BASE-T path cost on Trunk port 2 of 19.

### Load Sharing Using STP Path Cost

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 17</strong></td>
<td><code>spanning-tree vlan 8 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 18</strong></td>
<td><code>spanning-tree vlan 9 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 19</strong></td>
<td><code>spanning-tree vlan 10 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 20</strong></td>
<td><code>exit</code></td>
</tr>
<tr>
<td><strong>Step 21</strong></td>
<td><code>interface fastethernet0/2</code></td>
</tr>
<tr>
<td><strong>Step 22</strong></td>
<td><code>spanning-tree vlan 3 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 23</strong></td>
<td><code>spanning-tree vlan 4 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 24</strong></td>
<td><code>spanning-tree vlan 5 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 25</strong></td>
<td><code>spanning-tree vlan 6 port-priority 10</code></td>
</tr>
<tr>
<td><strong>Step 26</strong></td>
<td><code>exit</code></td>
</tr>
<tr>
<td><strong>Step 27</strong></td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td><strong>Step 28</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

*Figure 14-4 Load-Sharing Trunks with Traffic Distributed by Path Cost*
Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 14-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode on Switch 1.</td>
</tr>
<tr>
<td>Step 2: interface fastethernet 0/1</td>
<td>Enter interface configuration mode, and define Fast Ethernet port 0/1 as the interface to be configured as a trunk.</td>
</tr>
<tr>
<td>Step 3: switchport mode trunk</td>
<td>Configure the port as a trunk port.</td>
</tr>
<tr>
<td>Step 4: exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8: show vlan</td>
<td>When the trunk links come up, Switch 1 receives the VTP information from the other switches. Verify that Switch 1 has learned the VLAN configuration.</td>
</tr>
<tr>
<td>Step 9: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 10: interface fastethernet 0/1</td>
<td>Enter interface configuration mode, and define Fast Ethernet port 0/1 as the interface to set the STP cost.</td>
</tr>
<tr>
<td>Step 11: spanning-tree vlan 2 cost 30</td>
<td>Set the spanning-tree path cost to 30 for VLAN 2.</td>
</tr>
<tr>
<td>Step 12: spanning-tree vlan 3 cost 30</td>
<td>Set the spanning-tree path cost to 30 for VLAN 3.</td>
</tr>
<tr>
<td>Step 13: spanning-tree vlan 4 cost 30</td>
<td>Set the spanning-tree path cost to 30 for VLAN 4.</td>
</tr>
<tr>
<td>Step 14: end</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 15: repeat steps 9 through 11 on Switch 1 interface Fast Ethernet 0/2, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.</td>
<td></td>
</tr>
<tr>
<td>Step 16: exit</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 17: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 18: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

**Configuring VMPS**

The switch cannot be a VMPS server but can act as a client to the VMPS and communicate with it through the VLAN Query Protocol (VQP). VMPS dynamically assigns dynamic access port VLAN membership.

This section includes this information about configuring VMPS:

- “Understanding VMPS” section on page 14-25
- “Default VMPS Configuration” section on page 14-27
- “VMPS Configuration Guidelines” section on page 14-28
- “Configuring the VMPS Client” section on page 14-28
• “Monitoring the VMPS” section on page 14-31
• “Troubleshooting Dynamic Port VLAN Membership” section on page 14-31
• “VMPS Configuration Example” section on page 14-32

Understanding VMPS

When the VMPS receives a VQP request from a client switch, it searches its database for a MAC-address-to-VLAN mapping. The server response is based on this mapping and whether or not the server is in secure mode. Secure mode determines whether the server shuts down the port when a VLAN is not allowed on it or just denies the port access to the VLAN.

In response to a request, the VMPS takes one of these actions:

• If the assigned VLAN is restricted to a group of ports, the VMPS verifies the requesting port against this group and responds as follows:
  - If the VLAN is allowed on the port, the VMPS sends the VLAN name to the client in response.
  - If the VLAN is not allowed on the port and the VMPS is not in secure mode, the VMPS sends an access-denied response.
  - If the VLAN is not allowed on the port and the VMPS is in secure mode, the VMPS sends a port-shutdown response.

• If the VLAN in the database does not match the current VLAN on the port and active hosts exist on the port, the VMPS sends an access-denied or a port-shutdown response, depending on the secure mode of the VMPS.

If the switch receives an access-denied response from the VMPS, it continues to block traffic from the MAC address to or from the port. The switch continues to monitor the packets directed to the port and sends a query to the VMPS when it identifies a new address. If the switch receives a port-shutdown response from the VMPS, it disables the port. The port must be manually re-enabled by using the CLI, CMS, or SNMP.

You can also use an explicit entry in the configuration table to deny access to specific MAC addresses for security reasons. If you enter the none keyword for the VLAN name, the VMPS sends an access-denied or port-shutdown response, depending on the VMPS secure mode setting.

Dynamic Port VLAN Membership

A dynamic (nontrunking) port on the switch can belong to only one VLAN, with a VLAN ID from 1 to 1005. When the link comes up, the switch does not forward traffic to or from this port until the VMPS provides the VLAN assignment. The VMPS receives the source MAC address from the first packet of a new host connected to the dynamic port and attempts to match the MAC address to a VLAN in the VMPS database.

If there is a match, the VMPS sends the VLAN number for that port. If the client switch was not previously configured, it uses the domain name from the first VTP packet it receives on its trunk port from the VMPS. If the client switch was previously configured, it includes its domain name in the query packet to the VMPS to obtain its VLAN number. The VMPS verifies that the domain name in the packet matches its own domain name before accepting the request and responds to the client with the assigned VLAN number for the client. If there is no match, the VMPS either denies the request or shuts down the port (depending on the VMPS secure mode setting).

Multiple hosts (MAC addresses) can be active on a dynamic port if they are all in the same VLAN; however, the VMPS shuts down a dynamic port if more than 20 hosts are active on the port.
If the link goes down on a dynamic port, the port returns to an isolated state and does not belong to a VLAN. Any hosts that come online through the port are checked again through the VQP with the VMPS before the port is assigned to a VLAN.

**VMPS Database Configuration File**

The VMPS contains a database configuration file that you create. This ASCII text file is stored on a switch-accessible TFTP server that functions as a VMPS server. The file contains VMPS information, such as the domain name, the fallback VLAN name, and the MAC-address-to-VLAN mapping. The switch cannot act as the VMPS, but you can use a Catalyst 5000 or Catalyst 6000 series switch as the VMPS.

You can configure a fallback VLAN name. If you connect a device with a MAC address that is not in the database, the VMPS sends the fallback VLAN name to the client. If you do not configure a fallback VLAN and the MAC address does not exist in the database, the VMPS sends an access-denied response. If the VMPS is in secure mode, it sends a port-shutdown response.

Whenever port names are used in the VMPS database configuration file, the server must use the switch convention for naming ports. For example, Fa0/4 is fixed Fast Ethernet port number 4. If the switch is a cluster member, the command switch adds the name of the switch before the type. For example, es3%Fa0/4 refers to fixed Fast Ethernet port 4 on member switch 3. When port names are required, these naming conventions must be followed in the VMPS database configuration file when it is configured to support a cluster.

This example shows a example of a VMPS database configuration file as it appears on a Catalyst 6000 series switch. The file has these characteristics:

- The security mode is open.
- The default is used for the fallback VLAN.
- MAC address-to-VLAN name mappings—The MAC address of each host and the VLAN to which each host belongs is defined.
- Port groups are defined.
- VLAN groups are defined.
- VLAN port policies are defined for the ports associated with restricted VLANs.

```plaintext
!VMPS File Format, version 1.1
! Always begin the configuration file with
! the word "VMPS"
!
!vmps domain <domain-name>
! The VMPS domain must be defined.
!vmps mode {open | secure}
! The default mode is open.
!vmps fallback <vlan-name>
!vmps no-domain-req { allow | deny }
!
! The default value is allow.
vmps domain DSBU
vmps mode open
vmps fallback default
vmps no-domain-req deny
!
!MAC Addresses
!
vmps-mac-addrs
```


! address <addr> vlan-name <vlan_name>
!
address 0012.2233.4455 vlan-name hardware
address 0000.6509.a080 vlan-name hardware
address aabb.cddd.eeff vlan-name Green
address 1223.5678.9abc vlan-name ExecStaff
address fedc.ba98.7654 vlan-name --NONE--
address fedc.ba23.1245 vlan-name Purple
!
!Port Groups
!
!vmps-port-group <group-name>
! device <device-id> | port <port-name> | all-ports }
!
vmps-port-group WiringCloset1
 device 198.92.30.32 port 0/2
 device 172.20.26.141 port 0/8
vmps-port-group "Executive Row"
 device 198.4.254.222 port 0/2
 device 198.4.254.222 port 0/3
 device 198.4.254.223 all-ports
!
!
!VLAN groups
!
!vmps-vlan-group <group-name>
! vlan-name <vlan-name>
!
vmps-vlan-group Engineering
 vlan-name hardware
 vlan-name software
!
!
!VLAN port Policies
!
!vmps-port-policies {vlan-name <vlan_name> | vlan-group <group-name> }
!
! { port-group <group-name> | device <device-id> port <port-name> }
!
vmps-port-policies vlan-group Engineering
 port-group WiringCloset1
vmps-port-policies vlan-name Green
 device 198.92.30.32 port 0/8
vmps-port-policies vlan-name Purple
 device 198.4.254.22 port 0/2
 port-group "Executive Row"

Default VMPS Configuration

Table 14-6 shows the default VMPS and dynamic port configuration on client switches.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMPS domain server</td>
<td>None</td>
</tr>
<tr>
<td>VMPS reconfirm interval</td>
<td>60 minutes</td>
</tr>
<tr>
<td>VMPS server retry count</td>
<td>3</td>
</tr>
<tr>
<td>Dynamic ports</td>
<td>None configured</td>
</tr>
</tbody>
</table>
VMPS Configuration Guidelines

These guidelines and restrictions apply to dynamic port VLAN membership:

- You must configure the VMPS before you configure ports as dynamic.
- The communication between a cluster of switches and VMPS is managed by the command switch and includes port-naming conventions that are different from standard port names. For the cluster-based port-naming conventions, see the “VMPS Database Configuration File” section on page 14-26.
- When you configure a port as dynamic, the spanning-tree Port Fast feature is automatically enabled for that port. The Port Fast mode accelerates the process of bringing the port into the forwarding state. You can disable Port Fast mode on a dynamic port.
- 802.1X ports cannot be configured as dynamic ports. If you try to enable 802.1X on a dynamic-access (VQP) port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
- Trunk ports cannot be dynamic ports, but you can enter the switchport access vlan dynamic interface configuration command for a trunk port. In this case, the switch retains the setting and applies it if the port is later configured as an access port.
  
  You must turn off trunking on the port before the dynamic access setting takes effect.
- Dynamic ports cannot be network ports or monitor ports.
- Secure ports cannot be dynamic ports. You must disable port security on a port before it becomes dynamic.
- Dynamic ports cannot be members of an EtherChannel group.
- Port channels cannot be configured as dynamic ports.
- The VTP management domain of the VMPS client and the VMPS server must be the same.
- VQP does not support extended-range VLANs (VLAN IDs higher than 1006). Extended-range VLANs cannot be configured by VMPS.
- The VLAN configured on the VMPS server should not be a voice VLAN.

Configuring the VMPS Client

You configure dynamic VLANs by using the VMPS (server). The switch can be a VMPS client; it cannot be a VMPS server.

Entering the IP Address of the VMPS

You must first enter the IP address of the server to configure the switch as a client.

Note

If the VMPS is being defined for a cluster of switches, enter the address on the command switch.
Beginning in privileged EXEC mode, follow these steps to enter the IP address of the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>vmps server ipaddress primary</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>vmps server ipaddress</strong></td>
</tr>
<tr>
<td></td>
<td>You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>show vmps</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
</tbody>
</table>

**Note** The switch port that is connected to the VMPS server cannot be a dynamic access port. It can be either a static access port or a trunk port. See the “Configuring an Ethernet Interface as a Trunk Port” section on page 14-17.

**Configuring Dynamic Access Ports on VMPS Clients**

If you are configuring a port on a cluster member switch as a dynamic port, first use the `rcommand` privileged EXEC command to log into the member switch.

**Caution** Dynamic port VLAN membership is for end stations or hubs connected to end stations. Connecting dynamic access ports to other switches can cause a loss of connectivity.

Beginning in privileged EXEC mode, follow these steps to configure a dynamic access port on a VMPS client switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td></td>
<td>connected to the end station.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>switchport mode access</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>switchport access vlan dynamic</strong></td>
</tr>
<tr>
<td></td>
<td>The dynamic access port must be connected to an end station.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>show interfaces interface-id switchport</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command. To return an interface to its default switchport mode (dynamic desirable), use the `no switchport mode` interface configuration command. To reset the access mode to the default VLAN for the switch, use the `no switchport access` interface configuration command.
Reconfirming VLAN Memberships

Beginning in privileged EXEC mode, follow these steps to confirm the dynamic port VLAN membership assignments that the switch has received from the VMPS:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|            | vmps reconfirm   | Reconfirm dynamic port VLAN membership.
| Step 2     | show vmps        | Verify the dynamic VLAN reconfirmation status.

Changing the Reconfirmation Interval

VMPS clients periodically reconfirm the VLAN membership information received from the VMPS. You can set the number of minutes after which reconfirmation occurs.

If you are configuring a member switch in a cluster, this parameter must be equal to or greater than the reconfirmation setting on the command switch. You must also first use the `rcommand` privileged EXEC command to log into the member switch.

Beginning in privileged EXEC mode, follow these steps to change the reconfirmation interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>vmps reconfirm <code>minutes</code></td>
<td>Enter the number of minutes between reconfirmations of the dynamic VLAN membership. Enter a number from 1 to 120. The default is 60 minutes.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show vmps</td>
<td>Verify the dynamic VLAN reconfirmation status in the <code>Reconfirm Interval</code> field of the display.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no vmps reconfirm` global configuration command.

Changing the Retry Count

Beginning in privileged EXEC mode, follow these steps to change the number of times that the switch attempts to contact the VMPS before querying the next server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>vmps retry <code>count</code></td>
<td>Change the retry count. The retry range is from 1 to 10; the default is 3.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show vmps</td>
<td>Verify your entry in the <code>Server Retry Count</code> field of the display.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To return the switch to its default setting, use the `no vmps retry` global configuration command.

**Monitoring the VMPS**

You can display information about the VMPS by using the `show vmps` privileged EXEC command. The switch displays this information about the VMPS:

- **VMPS VQP Version**: The version of VQP used to communicate with the VMPS. The switch queries the VMPS that is using VQP version 1.
- **Reconfirm Interval**: The number of minutes the switch waits before reconfirming the VLAN-to-MAC-address assignments.
- **Server Retry Count**: The number of times VQP resends a query to the VMPS. If no response is received after this many tries, the switch starts to query the secondary VMPS.
- **VMPS domain server**: The IP address of the configured VLAN membership policy servers. The switch sends queries to the one marked `current`. The one marked `primary` is the primary server.
- **VMPS Action**: The result of the most recent reconfirmation attempt. A reconfirmation attempt can occur automatically when the reconfirmation interval expired, or you can force it by entering the `vmps reconfirm` privileged EXEC command or its CMS or SNMP equivalent.

This is an example of output for the `show vmps` privileged EXEC command:

```
Switch# show vmps

VQP Client Status:

VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.128.86 (primary, current)
 172.20.128.87

Reconfirmation status

VMPS Action: No Dynamic Port
```

**Troubleshooting Dynamic Port VLAN Membership**

The VMPS shuts down a dynamic port under these conditions:

- The VMPS is in secure mode, and it does not allow the host to connect to the port. The VMPS shuts down the port to prevent the host from connecting to the network.
- More than 20 active hosts reside on a dynamic port.

To re-enable a disabled dynamic port, enter the `no shutdown` interface configuration command.
VMPS Configuration Example

Figure 14-5 shows a network with a VMPS server switch and VMPS client switches with dynamic ports. In this example, these assumptions apply:

- The VMPS server and the VMPS client are separate switches.
- The Catalyst 5000 series Switch 1 is the primary VMPS server.
- The Catalyst 5000 series Switch 3 and Switch 10 are secondary VMPS servers.
- The end stations are connected to these clients:
  - Catalyst 2950 Switch 2
  - Catalyst 3500 XL Switch 9
- The database configuration file is stored on the TFTP server with the IP address 172.20.22.7.
Configuring VTP

This chapter describes how to use the VLAN Trunking Protocol (VTP) and the VLAN database for managing VLANs.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

The chapter includes these sections:
- Understanding VTP, page 15-1
- Configuring VTP, page 15-6
- Monitoring VTP, page 15-16

Understanding VTP

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP minimizes misconfigurations and configuration inconsistencies that can cause several problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations.

Before you create VLANs, you must decide whether to use VTP in your network. Using VTP, you can make configuration changes centrally on one or more switches and have those changes automatically communicated to all the other switches in the network. Without VTP, you cannot send information about VLANs to other switches. VTP configuration information is saved in the VTP VLAN database.

VTP only learns about normal-range VLANs (VLAN IDs 1 to 1005). Extended-range VLANs (VLAN IDs greater than 1005) are not supported by VTP or stored in the VTP VLAN database. Extended-range VLANs are only supported when the enhanced software image (EI) is installed.

This section contains information about these VTP parameters:
- The VTP Domain, page 15-2
- VTP Modes, page 15-3
- VTP Advertisements, page 15-3
- VTP Version 2, page 15-4
- VTP Pruning, page 15-4
The VTP Domain

A VTP domain (also called a VLAN management domain) consists of one switch or several interconnected switches under the same administrative responsibility sharing the same VTP domain name. A switch can be in only one VTP domain. You make global VLAN configuration changes for the domain by using the command-line interface (CLI), Cluster Management Suite (CMS) software, or Simple Network Management Protocol (SNMP).

By default, the switch is in VTP no-management-domain state until it receives an advertisement for a domain over a trunk link (a link that carries the traffic of multiple VLANs) or until you configure a domain name. Until the management domain name is specified or learned, you cannot create or modify VLANs on a VTP server, and VLAN information is not propagated over the network.

If the switch receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The switch then ignores advertisements with a different domain name or an earlier configuration revision number.

Caution

Before adding a VTP client switch to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain. See the “Adding a VTP Client Switch to a VTP Domain” section on page 15-15 for the procedure for verifying and resetting the VTP configuration revision number.

When you make a change to the VLAN configuration on a VTP server, the change is propagated to all switches in the VTP domain. VTP advertisements are sent over all IEEE 802.1Q trunk connections. VTP maps VLANs dynamically across multiple LAN types with unique names and internal index associates. Mapping eliminates excessive device administration required from network administrators.

If you configure a switch for VTP transparent mode, you can create and modify VLANs, but the changes are not sent to other switches in the domain, and they affect only the individual switch. However, configuration changes made when the switch is in this mode are saved in the switch running configuration and can be saved to the switch startup configuration file.

For domain name and password configuration guidelines, see the “VTP Configuration Guidelines” section on page 15-8.
VTP Modes

You can configure a supported switch to be in one of the VTP modes listed in Table 15-1.

Table 15-1 VTP Modes

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP server</td>
<td>In VTP server mode, you can create, modify, and delete VLANs and specify other configuration parameters (such as the VTP version) for the entire VTP domain. VTP servers advertise their VLAN configurations to other switches in the same VTP domain and synchronize their VLAN configurations with other switches based on advertisements received over trunk links. In VTP server mode, VLAN configurations are saved in nonvolatile RAM (NVRAM). VTP server is the default mode.</td>
</tr>
<tr>
<td>VTP client</td>
<td>A VTP client behaves like a VTP server, but you cannot create, change, or delete VLANs on a VTP client. In VTP client mode, VLAN configurations are not saved in NVRAM.</td>
</tr>
<tr>
<td>VTP transparent</td>
<td>VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2, transparent switches do forward VTP advertisements that they receive from other switches from their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode. The switch must be in VTP transparent mode when you create extended-range VLANs. See the “Configuring Extended-Range VLANs” section on page 14-12. When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration and you can save this information in the switch startup configuration file by entering the <code>copy running-config startup-config</code> privileged EXEC command.</td>
</tr>
</tbody>
</table>

When the network is configured with more than the maximum 250 VLANs, the switch automatically changes from VTP server or client mode to VTP transparent mode. The switch then operates with the VLAN configuration that preceded the one that sent it into transparent mode.

VTP Advertisements

Each switch in the VTP domain sends periodic global configuration advertisements from each trunk port to a reserved multicast address. Neighboring switches receive these advertisements and update their VTP and VLAN configurations as necessary.

Note: Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements. For more information on trunk ports, see the “Configuring VLAN Trunks” section on page 14-15.

VTP advertisements distribute this global domain information:

- VTP domain name
- VTP configuration revision number
- Update identity and update timestamp
Understanding VTP

MD5 digest VLAN configuration, including maximum transmission unit (MTU) size for each VLAN.

Frame format

VTP advertisements distribute this VLAN information for each configured VLAN:

- VLAN IDs
- VLAN name
- VLAN type
- VLAN state
- Additional VLAN configuration information specific to the VLAN type

VTP Version 2

If you use VTP in your network, you must decide whether to use version 1 or version 2. By default, VTP operates in version 1.

VTP version 2 supports these features not supported in version 1:

- Token Ring support—VTP version 2 supports Token Ring Bridge Relay Function (TrBRF) and Token Ring Concentrator Relay Function (TrCRF) VLANs. For more information about Token Ring VLANs, see the “Configuring Normal-Range VLANs” section on page 14-4.

- Unrecognized Type-Length-Value (TLV) support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM when the switch is operating in VTP server mode.

- Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent switch inspects VTP messages for the domain name and version and forwards a message only if the version and domain name match. Because VTP version 2 supports only one domain, it forwards VTP messages in transparent mode without inspecting the version and domain name.

- Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI, the Cluster Management Software (CMS), or SNMP. Consistency checks are not performed when new information is obtained from a VTP message or when information is read from NVRAM. If the MD5 digest on a received VTP message is correct, its information is accepted.

VTP Pruning

VTP pruning increases network available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to reach the destination devices. Without VTP pruning, a switch floods broadcast, multicast, and unknown unicast traffic across all trunk links within a VTP domain even though receiving switches might discard them. VTP pruning is disabled by default.

VTP pruning blocks unneeded flooded traffic to VLANs on trunk ports that are included in the pruning-eligible list. Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible switch trunk ports. If the VLANs are configured as pruning-ineligible, the flooding continues. VTP pruning is supported with VTP version 1 and version 2.

Figure 15-1 shows a switched network without VTP pruning enabled. Port 1 on Switch 1 and Port 2 on Switch 4 are assigned to the Red VLAN. If a broadcast is sent from the host connected to Switch 1, Switch 1 floods the broadcast and every switch in the network receives it, even though Switches 3, 5, and 6 have no ports in the Red VLAN.
Figure 15-1 Flooding Traffic without VTP Pruning

Figure 15-2 shows a switched network with VTP pruning enabled. The broadcast traffic from Switch 1 is not forwarded to Switches 3, 5, and 6 because traffic for the Red VLAN has been pruned on the links shown (Port 5 on Switch 2 and Port 4 on Switch 4).

Figure 15-2 Optimized Flooded Traffic with VTP Pruning

Enabling VTP pruning on a VTP server enables pruning for the entire management domain. Making VLANs pruning-eligible or pruning-ineligible affects pruning eligibility for those VLANs on that device only (not on all switches in the VTP domain). See the “Enabling VTP Pruning” section on page 15-14. VTP pruning takes effect several seconds after you enable it. VTP pruning does not prune traffic from VLANs that are pruning-ineligible. VLAN 1 and VLANs 1002 to 1005 are always pruning-ineligible; traffic from these VLANs cannot be pruned. Extended-range VLANs (VLAN IDs higher than 1005) are also pruning-ineligible.
VTP pruning is not designed to function in VTP transparent mode. If one or more switches in the network are in VTP transparent mode, you should do one of these:

- Turn off VTP pruning in the entire network.
- Turn off VTP pruning by making all VLANs on the trunk of the switch upstream to the VTP transparent switch pruning ineligible.

To configure VTP pruning on an interface, use the `switchport trunk pruning vlan` interface configuration command (see the “Changing the Pruning-Eligible List” section on page 14-20). VTP pruning operates when an interface is trunking. You can set VLAN pruning-eligibility, whether or not VTP pruning is enabled for the VTP domain, whether or not any given VLAN exists, and whether or not the interface is currently trunking.

## Configuring VTP

This section includes guidelines and procedures for configuring VTP. These sections are included:

- Default VTP Configuration, page 15-6
- VTP Configuration Options, page 15-7
- VTP Configuration Guidelines, page 15-8
- Configuring a VTP Server, page 15-9
- Configuring a VTP Client, page 15-11
- Disabling VTP (VTP Transparent Mode), page 15-12
- Enabling VTP Version 2, page 15-13
- Enabling VTP Pruning, page 15-14
- Adding a VTP Client Switch to a VTP Domain, page 15-15

### Default VTP Configuration

Table 15-2 shows the default VTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null.</td>
</tr>
<tr>
<td>VTP mode</td>
<td>Server.</td>
</tr>
<tr>
<td>VTP version 2 enable state</td>
<td>Version 2 is disabled.</td>
</tr>
<tr>
<td>VTP password</td>
<td>None.</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
VTP Configuration Options

You can configure VTP by using these configuration modes.

- VTP Configuration in Global Configuration Modes, page 15-7
- VTP Configuration in VLAN Configuration Mode, page 15-7

You access VLAN configuration mode by entering the `vlan database` privileged EXEC command. For detailed information about `vtp` commands, refer to the command reference for this release.

VTP Configuration in Global Configuration Modes

You can use the `vtp` global configuration command to set the VTP password, the version, the VTP file name, the interface providing updated VTP information, the domain name, and the mode, and to disable or enable pruning. For more information about available keywords, refer to the command descriptions in the command reference for this release. The VTP information is saved in the VTP VLAN database. When VTP mode is transparent, the VTP domain name and mode are also saved in the switch running configuration file, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. You must use this command if you want to save VTP mode as transparent, even if the switch resets.

When you save VTP information in the switch startup configuration file and reboot the switch, the switch configuration is determined as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.
- If the switch is running IOS Release 12.1(9)EA1 or later and you use an older configuration file to boot up the switch, the configuration file does not contain VTP or VLAN information, and the switch uses the VLAN database configurations.
- If the switch is running an IOS release earlier than 12.1(9)EA1 on the switch and you use a configuration file from IOS Release 12.1(9)EA1 or later to boot up the switch, the image on the switch does not recognize VLAN and VTP configurations in the configuration file, so the switch uses the VLAN database configuration.

VTP Configuration in VLAN Configuration Mode

You can configure all VTP parameters in VLAN configuration mode, which you access by entering the `vlan database` privileged EXEC command. For more information about available keywords, refer to the `vtp` VLAN configuration command description in the command reference for this release. When you enter the `exit` command in VLAN configuration mode, it applies all the commands that you entered and updates the VLAN database. VTP messages are sent to other switches in the VTP domain, and the privileged EXEC mode prompt appears.

If VTP mode is transparent, the domain name and the mode (transparent) are saved in the switch running configuration, and you can save this information in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command.
VTP Configuration Guidelines

These sections describe guidelines you should follow when implementing VTP in your network.

Domain Names

When configuring VTP for the first time, you must always assign a domain name. You must configure all switches in the VTP domain with the same domain name. Switches in VTP transparent mode do not exchange VTP messages with other switches, and you do not need to configure a VTP domain name for them.

Note
If NVRAM and DRAM storage is sufficient, all switches in a VTP domain should be in VTP server mode.

Caution
Do not configure a VTP domain if all switches are operating in VTP client mode. If you configure the domain, it is impossible to make changes to the VLAN configuration of that domain. Make sure that you configure at least one switch in the VTP domain for VTP server mode.

Passwords

You can configure a password for the VTP domain, but it is not required. If you do configure a domain password, all domain switches must share the same password and you must configure the password on each switch in the management domain. Switches without a password or with the wrong password reject VTP advertisements.

If you configure a VTP password for a domain, a switch that is booted without a VTP configuration does not accept VTP advertisements until you configure it with the correct password. After the configuration, the switch accepts the next VTP advertisement that uses the same password and domain name in the advertisement.

If you are adding a new switch to an existing network with VTP capability, the new switch learns the domain name only after the applicable password has been configured on it.

Caution
When you configure a VTP domain password, the management domain does not function properly if you do not assign a management domain password to each switch in the domain.

Upgrading from Previous Software Releases

When you upgrade from an IOS software version that supports VLANs but does not support VTP, such as Release 12.0(5.1)WC, to a version that does support VTP, ports that belong to a VLAN retain their VLAN membership, and VTP enters transparent mode. The domain name becomes UPGRADE, and VTP does not propagate the VLAN configuration to other switches.

If you want the switch to propagate VLAN configuration information to other switches and to learn the VLANs enabled on the network, you must configure the switch with the correct domain name and domain password and change the VTP mode to VTP server.
VTP Version

Follow these guidelines when deciding which VTP version to implement:

- All switches in a VTP domain must run the same VTP version.
- A VTP version 2-capable switch can operate in the same VTP domain as a switch running VTP version 1 if version 2 is disabled on the version 2-capable switch (version 2 is disabled by default).
- Do not enable VTP version 2 on a switch unless all of the switches in the same VTP domain are version-2-capable. When you enable version 2 on a switch, all of the version-2-capable switches in the domain enable version 2. If there is a version 1-only switch, it does not exchange VTP information with switches with version 2 enabled.
- If there are TrBRF and TrCRF Token Ring networks in your environment, you must enable VTP version 2 for Token Ring VLAN switching to function properly. To run Token Ring and Token Ring-Net, disable VTP version 2.

Configuration Requirements

When you configure VTP, you must configure a trunk port so that the switch can send and receive VTP advertisements. For more information, see the “Configuring VLAN Trunks” section on page 14-15.

If you are configuring VTP on a cluster member switch to a VLAN, use the `rcommand` privileged EXEC command to log into the member switch. For more information about the command, refer to the command reference for this release.

If you are configuring extended-range VLANs on the switch, the switch must be in VTP transparent mode.

Configuring a VTP Server

When a switch is in VTP server mode, you can change the VLAN configuration and have it propagated throughout the network.

**Note**

If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

Beginning in privileged EXEC mode, follow these steps to configure the switch as a VTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>vtp mode server</code></td>
<td>Configure the switch for VTP server mode (the default).</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>vtp domain domain-name</code></td>
<td>Configure the VTP administrative-domain name. The name can be from 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
</tbody>
</table>
When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return the switch to a no-password state, use the `no vtp password` global configuration command.

This example shows how to use global configuration mode to configure the switch as a VTP server with the domain name `eng_group` and the password `mypassword`:

```
Switch# config terminal
Switch(config)# vtp mode server
Switch(config)# vtp domain eng_group
Switch(config)# vtp password mypassword
Switch(config)# end
```

You can also use VLAN configuration mode to configure VTP parameters. Beginning in privileged EXEC mode, follow these steps to use VLAN configuration mode to configure the switch as a VTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>vlan database</code> Enter VLAN configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>vtp server</code> Configure the switch for VTP server mode (the default).</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>vtp domain domain-name</code> Configure a VTP administrative-domain name. The name can be from 1 to 32 characters. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>vtp password password</code> (Optional) Set a password for the VTP domain. The password can be from 8 to 64 characters. If you configure a VTP password, the VTP domain does not function properly if you do not assign the same password to each switch in the domain.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code> Update the VLAN database, propagate it throughout the administrative domain, and return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show vtp status</code> Verify your entries in the <em>VTP Operating Mode</em> and the <em>VTP Domain Name</em> fields of the display.</td>
</tr>
</tbody>
</table>

When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return the switch to a no-password state, use the `no vtp password` VLAN configuration command.
This example shows how to use VLAN configuration mode to configure the switch as a VTP server with the domain name *eng_group* and the password *mypassword*:

```
Switch# vlan database
Switch(vlan)# vtp server
Switch(vlan)# vtp domain eng_group
Switch(vlan)# vtp password mypassword
Switch(vlan)# exit
APPLY completed.
Exiting....
```

### Configuring a VTP Client

When a switch is in VTP client mode, you cannot change its VLAN configuration. The client switch receives VTP updates from a VTP server in the VTP domain and then modifies its configuration accordingly.

**Note**

If extended-range VLANs are configured on the switch, you cannot change VTP mode to client. You receive an error message, and the configuration is not allowed.

**Caution**

If all switches are operating in VTP client mode, do not configure a VTP domain name. If you do, it is impossible to make changes to the VLAN configuration of that domain. Therefore, make sure you configure at least one switch as a VTP server.

Beginning in privileged EXEC mode, follow these steps to configure the switch as a VTP client:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>vtp mode client</td>
<td>Configure the switch for VTP client mode. The default setting is VTP server.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>vtp domain domain-name</td>
<td>(Optional) Enter the VTP administrative-domain name. The name can be from 1 to 32 characters. This should be the same domain name as the VTP server. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>vtp password password</td>
<td>(Optional) Enter the password for the VTP domain.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>show vtp status</td>
<td>Verify your entries in the <em>VTP Operating Mode</em> and the <em>VTP Domain Name</em> fields of the display.</td>
</tr>
</tbody>
</table>

Use the `no vtp mode` global configuration command to return the switch to VTP server mode. To return the switch to a no-password state, use the `no vtp password` global configuration command. When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.
You can also configure a VTP client by using the `vlan database` privileged EXEC command to enter VLAN configuration mode and entering the `vtp client` command, similar to the second procedure under “Configuring a VTP Server” section on page 15-9. Use the `no vtp client` VLAN configuration command to return the switch to VTP server mode or the `no vtp password` VLAN configuration command to return the switch to a no-password state. When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

### Disabling VTP (VTP Transparent Mode)

When you configure the switch for VTP transparent mode, you disable VTP on the switch. The switch does not send VTP updates and does not act on VTP updates received from other switches. However, a VTP transparent switch running VTP version 2 does forward received VTP advertisements on all of its trunk links.

**Note** Before you create extended-range VLANs (VLAN IDs 1006 to 4094), you must set VTP mode to transparent by using the `vtp mode transparent` global configuration command. Save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets and boots up in VTP server mode (the default).

Beginning in privileged EXEC mode, follow these steps to configure VTP transparent mode and save the VTP configuration in the switch startup configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>vtp mode transparent</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show vtp status</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

**Note** Only VTP mode and domain name are saved in the switch running configuration and can be copied to the startup configuration file.

To return the switch to VTP server mode, use the `no vtp mode` global configuration command.

**Note** If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.
You can also configure VTP transparent mode by using the `vlan database` privileged EXEC command to enter VLAN configuration mode and by entering the `vtp transparent` command, similar to the second procedure under the “Configuring a VTP Server” section on page 15-9. Use the `no vtp transparent` VLAN configuration command to return the switch to VTP server mode. If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

### Enabling VTP Version 2

VTP version 2 is disabled by default on VTP version 2-capable switches. When you enable VTP version 2 on a switch, every VTP version 2-capable switch in the VTP domain enables version 2. You can only configure the version on switches in VTP server or transparent mode.

**Caution**

VTP version 1 and VTP version 2 are not interoperable on switches in the same VTP domain. Every switch in the VTP domain must use the same VTP version. Do not enable VTP version 2 unless every switch in the VTP domain supports version 2.

**Note**

In TrCRF and TrBRF Token ring environments, you must enable VTP version 2 for Token Ring VLAN switching to function properly. For Token Ring and Token Ring-Net media, VTP version 2 must be disabled.

For more information on VTP version configuration guidelines, see the “VTP Version” section on page 15-9.

Beginning in privileged EXEC mode, follow these steps to enable VTP version 2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>vtp version 2</code></td>
<td>Enable VTP version 2 on the switch. VTP version 2 is disabled by default on VTP version 2-capable switches.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show vtp status</code></td>
<td>Verify that VTP version 2 is enabled in the VTP V2 Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP version 2, use the `no vtp version` global configuration command.

**Note**

You can also enable VTP version 2 by using the `vlan database` privileged EXEC command to enter VLAN configuration mode and entering the `vtp v2-mode` VLAN configuration command. To disable VTP version 2, use the `no vtp v2-mode` VLAN configuration command.
Enabling VTP Pruning

Pruning increases available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to access the destination devices. You can only enable VTP pruning on a switch in VTP server mode.

Beginning in privileged EXEC mode, follow these steps to enable VTP pruning in the VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>vtp pruning</td>
<td>Enable pruning in the VTP administrative domain.</td>
</tr>
<tr>
<td></td>
<td>By default, pruning is disabled. You need to enable pruning on only one switch in VTP server mode.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show vtp status</td>
<td>Verify your entries in the VTP Pruning Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP pruning, use the no vtp pruning global configuration command.

Note

You can also enable VTP pruning by using the vlan database privileged EXEC command to enter VLAN configuration mode and entering the vtp pruning VLAN configuration command. To disable VTP pruning, use the no vtp pruning VLAN configuration command.

Pruning is supported with VTP version 1 and version 2. If you enable pruning on the VTP server, it is enabled for the entire VTP domain.

Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible on trunk ports. Reserved VLANs and extended-range VLANs cannot be pruned. To change the pruning-eligible VLANs, see the “Changing the Pruning-Eligible List” section on page 14-20.
Adding a VTP Client Switch to a VTP Domain

Before adding a VTP client to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain.

Beginning in privileged EXEC mode, follow these steps to verify and reset the VTP configuration revision number on a switch before adding it to a VTP domain:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|        | show vtp status | Check the VTP configuration revision number.  
|        |         | If the number is 0, add the switch to the VTP domain.  
|        |         | If the number is greater than 0, follow these steps:  
|        |         | a. Write down the domain name.  
|        |         | b. Write down the configuration revision number.  
|        |         | c. Continue with the next steps to reset the configuration revision number on the switch. |

Step 2	configure terminal	Enter global configuration mode.
Step 3	vtp domain domain-name	Change the domain name from the original one displayed in Step 1 to a new name.
Step 4	end	The VLAN information on the switch is updated and the configuration revision number is reset to 0. You return to privileged EXEC mode.
Step 5	show vtp status	Verify that the configuration revision number has been reset to 0.
Step 6	configure terminal	Enter global configuration mode.
Step 7	vtp domain domain-name	Enter the original domain name on the switch.
Step 8	end	The VLAN information on the switch is updated, and you return to privileged EXEC mode.
Step 9	show vtp status	(Optional) Verify that the domain name is the same as in Step 1 and that the configuration revision number is 0.

You can also change the VTP domain name by entering the `vlan database` privileged EXEC command to enter VLAN configuration mode and by entering the `vtp domain domain-name` command. In this mode, you must enter the `exit` command to update VLAN information and return to privileged EXEC mode.

After resetting the configuration revision number, add the switch to the VTP domain.

---

Note: You can use the `vtp mode transparent` global configuration command or the `vtp transparent` VLAN configuration command to disable VTP on the switch, and then change its VLAN information without affecting the other switches in the VTP domain.
Monitoring VTP

You monitor VTP by displaying VTP configuration information: the domain name, the current VTP revision, and the number of VLANs. You can also display statistics about the advertisements sent and received by the switch.

Table 15-3 shows the privileged EXEC commands for monitoring VTP activity.

**Table 15-3  VTP Monitoring Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show vtp status</td>
<td>Display the VTP switch configuration information.</td>
</tr>
<tr>
<td>show vtp counters</td>
<td>Display counters about VTP messages that have been sent and received.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show vtp status` privileged EXEC command:

```
Switch# show vtp status
VTP Version : 2
Configuration Revision : 25
Maximum VLANs supported locally : 250
Number of existing VLANs : 69
VTP Operating Mode : Server
VTP Domain Name : test
VTP Pruning Mode : Disabled
VTP V2 Mode : Disabled
VTP Traps Generation : Disabled
MD5 digest : 0x59 0xBA 0x92 0xA4 0x74 0xD5 0x42 0x29
Configuration last modified by 0.0.0.0 at 3-1-93 00:18:42
Local updater ID is 10.1.1.59 on interface Vl1 (lowest numbered VLAN interface found)
```

This is an example of output from the `show vtp counters` privileged EXEC command:

```
Switch# show vtp counters
VTP statistics:
 Summary advertisements received : 20
 Subset advertisements received : 0
 Request advertisements received : 0
 Summary advertisements transmitted: 11
 Subset advertisements transmitted: 0
 Request advertisements transmitted: 0
 Number of config revision errors: 0
 Number of config digest errors : 0
 Number of V1 summary errors : 0

VTP pruning statistics:

<table>
<thead>
<tr>
<th>Trunk</th>
<th>Join Transmitted</th>
<th>Join Received</th>
<th>Summary advts received from non-pruning-capable device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

---

**Note:** The output shown is an example and may vary depending on the specific configuration and settings of the switch.
Configuring Voice VLAN

This chapter describes how to configure the voice VLAN feature on your switch. Voice VLAN is referred to as an auxiliary VLAN in the Catalyst 6000 family switch documentation.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Voice VLAN, page 16-1
- Configuring Voice VLAN, page 16-2
- Displaying Voice VLAN, page 16-6

Understanding Voice VLAN

The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone. The switch can connect to a Cisco 7960 IP Phone and carry IP voice traffic. Because the sound quality of an IP phone call can deteriorate if the data is unevenly sent, the switch supports quality of service (QoS) based on IEEE 802.1P class of service (CoS). QoS uses classification and scheduling to send network traffic from the switch in a predictable manner. For more information on QoS, see Chapter 26, “Configuring QoS.” The Cisco 7960 IP Phone is a configurable device, and you can configure it to forward traffic with an 802.1P priority. You can configure the switch to trust or override the traffic priority assigned by an IP phone.

The Cisco 7960 IP Phone contains an integrated three-port 10/100 switch as shown in Figure 16-1. The ports provide dedicated connections to these devices:

- Port 1 connects to the switch or other voice-over-IP (VoIP) device.
- Port 2 is an internal 10/100 interface that carries the IP phone traffic.
- Port 3 (access port) connects to a PC or other device.
Chapter 16      Configuring Voice VLAN

Figure 16-1 shows one way to connect a Cisco 7960 IP Phone.

**Figure 16-1  Cisco 7960 IP Phone Connected to a Switch**

When the IP phone connects to the switch, the access port (PC-to-telephone jack) of the IP phone can connect to a PC. Packets to and from the PC and to or from the IP phone share the same physical link to the switch and the same switch port. For deployment examples that use voice VLANs, refer to the “Network Configuration Examples” section on page 1-8.

**Configuring Voice VLAN**

This section describes how to configure voice VLAN on access ports. It contains this configuration information:

- Default Voice VLAN Configuration, page 16-2
- Voice VLAN Configuration Guidelines, page 16-3
- Configuring a Port to Connect to a Cisco 7960 IP Phone, page 16-3

**Default Voice VLAN Configuration**

The voice VLAN feature is disabled by default.

When the voice VLAN feature is enabled, all untagged traffic is sent according to the default CoS priority of the port.

The CoS value is trusted for all 802.1P or 802.1Q tagged traffic.
Voice VLAN Configuration Guidelines

These are the voice VLAN configuration guidelines:

- You should configure voice VLAN on switch access ports.
- The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.
- If you enable port security on a voice VLAN port and if there is a PC connected to the IP phone, you should set the maximum allowed secure addresses on the port to more than 1.
- You cannot configure static secure MAC addresses in the voice VLAN.
- Voice VLAN ports can also be these port types:
  - Dynamic access port. See the “Configuring Dynamic Access Ports on VMPS Clients” section on page 14-29 for more information.
  - Secure port. See the “Configuring Port Security” section on page 18-4 for more information.
  - 802.1X authenticated port. See the “Enabling 802.1X Authentication” section on page 8-8 for more information.
  - Protected port. See the “Configuring Protected Ports” section on page 18-3 for more information.

Configuring a Port to Connect to a Cisco 7960 IP Phone

Because a Cisco 7960 IP Phone also supports a connection to a PC or other device, a port connecting the switch to a Cisco 7960 IP Phone can carry mixed traffic.

You can configure the port to carry voice traffic in one of these ways:

- Configuring Ports to Carry Voice Traffic in 802.1Q Frames, page 16-4
- Configuring Ports to Carry Voice Traffic in 802.1P Priority Tagged Frames, page 16-4

You can configure the IP phone to carry data traffic in one of these ways:

- Overriding the CoS Priority of Incoming Data Frames, page 16-5
- Configuring the IP Phone to Trust the CoS Priority of Incoming Data Frames, page 16-6
Configuring Voice VLAN

Configuring Ports to Carry Voice Traffic in 802.1Q Frames

Beginning in privileged EXEC mode, follow these steps to configure a port to carry voice traffic in 802.1Q frames for a specific VLAN:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify the interface connected to the IP phone, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport voice vlan vlan-id</td>
<td>Instruct the Cisco IP phone to forward all voice traffic through the specified VLAN. By default, the Cisco IP phone forwards the voice traffic with an 802.1Q priority of 5. Valid VLAN IDs are from 1 to 4094 when the enhanced software image (EI) is installed and 1 to 1001 when the standard software image is installed. Do not enter leading zeros.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id switchport</td>
<td>Verify your voice VLAN entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove voice VLAN, use the no switchport voice vlan interface configuration command or the switchport voice vlan none interface configuration command.

Configuring Ports to Carry Voice Traffic in 802.1P Priority Tagged Frames

Beginning in privileged EXEC mode, follow these steps to configure a port to instruct the IP phone to give voice traffic a higher priority and to forward all traffic through the native VLAN:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Specify the interface connected to the IP phone, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport voice vlan dot1p</td>
<td>Instruct the switch port to use 802.1P priority tagging for voice traffic and to use the default native VLAN (VLAN 0) to carry all traffic. By default, the Cisco IP phone forwards the voice traffic with an 802.1P priority of 5.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id switchport</td>
<td>Verify your voice VLAN entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the no switchport voice vlan interface configuration command.
Overriding the CoS Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco 7960 IP Phone port. The PC can generate packets with an assigned CoS value. You can configure the switch to override the priority of frames arriving on the IP phone port from connected devices.

Beginning in privileged EXEC mode, follow these steps to override the CoS priority received from the nonvoice port on the Cisco 7960 IP Phone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone.</td>
</tr>
<tr>
<td>Step 3 switchport priority extend</td>
<td>Set the IP phone access port to override the priority received from the PC or the attached device.</td>
</tr>
<tr>
<td>cos value</td>
<td>The CoS value is a number from 0 to 7. Seven is the highest priority. The default is 0.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no switchport voice vlan interface configuration command or the switchport priority extend none interface configuration command to return the port to its default setting.
Configuring the IP Phone to Trust the CoS Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco 7960 IP Phone port. The PC can generate packets with an assigned CoS value. You can configure the switch to trust the priority of frames arriving on the IP phone port from connected devices.

Beginning in privileged EXEC mode, follow these steps to trust the CoS priority received from the nonvoice port on the Cisco 7960 IP Phone:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport priority extend trust</td>
<td>Set the IP phone access port to trust the priority received from the PC or the attached device.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the `no switchport voice vlan` interface configuration command or the `switchport priority extend none` interface configuration command.

Displaying Voice VLAN

To display voice VLAN for an interface, use the `show interfaces interface-id switchport` privileged EXEC command.

For detailed information about the fields in the display, refer to the command reference for this release.
Configuring IGMP Snooping and MVR

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on your switch, including an application of local IGMP snooping, Multicast VLAN Registration (MVR). It also includes procedures for controlling multicast group membership by using IGMP filtering.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the Cisco IOS Release Network Protocols Command Reference, Part 1, for Release 12.1.

This chapter consists of these sections:

- Understanding IGMP Snooping, page 17-1
- Configuring IGMP Snooping, page 17-5
- Displaying IGMP Snooping Information, page 17-11
- Understanding Multicast VLAN Registration, page 17-13
- Configuring MVR, page 17-15
- Displaying MVR Information, page 17-19
- Configuring IGMP Filtering, page 17-20
- Displaying IGMP Filtering Configuration, page 17-24

Note
For MAC addresses that map to IP multicast groups, you can either manage them through features such as IGMP snooping and MVR, or you can use static MAC addresses. However, you cannot use both methods simultaneously. Therefore, before using IGMP snooping or MVR, you should remove all statically configured MAC addresses that map to IP multicast groups.

Understanding IGMP Snooping

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group,
the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients.

For more information on IP multicast and IGMP, refer to RFC 1112 and RFC 2236.

The multicast router sends out periodic IGMP general queries to all VLANs. When IGMP snooping is enabled, the switch responds to the router queries with only one join request per MAC multicast group, and the switch creates one entry per VLAN in the Layer 2 forwarding table for each MAC group from which it receives an IGMP join request. All hosts interested in this multicast traffic send join requests and are added to the forwarding table entry.

Layer 2 multicast groups learned through IGMP snooping are dynamic. However, you can statically configure MAC multicast groups by using the `ip igmp snooping vlan static` global configuration command. If you specify group membership for a multicast group address statically, your setting supersedes any automatic manipulation by IGMP snooping. Multicast group membership lists can consist of both user-defined and IGMP snooping-learned settings.

If a port spanning-tree, a port group, or a VLAN ID change occurs, the IGMP snooping-learned multicast groups from this port on the VLAN are deleted.

The switches support a maximum of 255 IP multicast groups and support both IGMP version 1 and IGMP version 2.

In the IP multicast-source-only environment, the switch learns the IP multicast group from the IP multicast data stream and only forwards traffic to the multicast router ports. The default learning method is IP multicast-source-only learning.

### Joining a Multicast Group

When a host connected to the switch wants to join an IP multicast group, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from the router, it forwards the query to all ports in the VLAN. Hosts wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding-table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding-table entry. The host associated with that interface receives multicast traffic for that multicast group. See Figure 17-1.
Figure 17-1 Initial IGMP Join Message

Router A sends a general query to the switch, which forwards the query to ports 2 through 5, all members of the same VLAN. Host 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP membership report (IGMP join message) to the group with the equivalent MAC destination address of 0x0100.5E01.0203. When the CPU receives the IGMP report multicast by Host 1, the CPU uses the information in the IGMP report to set up a forwarding-table entry, as shown in Table 17-1, that includes the port numbers of Host 1, the router, and the switch internal CPU.

Table 17-1 IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100.5e01.0203</td>
<td>IGMP</td>
<td></td>
</tr>
<tr>
<td>0100.5e01.0203</td>
<td>!IGMP</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Note that the switch hardware can distinguish IGMP information packets from other packets for the multicast group.

- The first entry in the table tells the switching engine to send IGMP packets to only the switch CPU. This prevents the CPU from becoming overloaded with multicast frames.
- The second entry tells the switching engine to send frames addressed to the 0x0100.5E01.0203 multicast MAC address that are not IGMP packets (!IGMP) to the router and to the host that has joined the group.

If another host (for example, Host 4) sends an unsolicited IGMP join message for the same group (see Figure 17-2), the CPU receives that message and adds the port number of Host 4 to the forwarding table as shown in Table 17-2. Note that because the forwarding table directs IGMP messages to only the CPU, the message is not flooded to other ports on the switch. Any known multicast traffic is forwarded to the group and not to the CPU. Any unknown multicast traffic is flooded to the VLAN and sent to the CPU until it becomes known.
Understanding IGMP Snooping

Figure 17-2 Second Host Joining a Multicast Group

Leaving a Multicast Group

The router sends periodic multicast general queries and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wishes to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic to only those hosts listed in the forwarding table for that Layer 2 multicast group.

When hosts want to leave a multicast group, they can either silently leave, or they can send a leave message. When the switch receives a leave message from a host, it sends out a MAC-based general query to determine if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.

Immediate-Leave Processing

The switch uses IGMP snooping Immediate-Leave processing to remove from the forwarding table an interface that sends a leave message without the switch sending MAC-based general queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Immediate-Leave processing ensures optimal bandwidth management for all hosts on a switched network, even when multiple multicast groups are simultaneously in use.
Note

You should only use the Immediate-Leave processing feature on VLANs where a single host is connected to each port. If Immediate Leave is enabled in VLANs where more than one host is connected to a port, some hosts might be inadvertently dropped. Immediate Leave is supported with only IGMP version 2 hosts.

## Configuring IGMP Snooping

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on their content.

These sections describe how to configure IGMP snooping:
- Default IGMP Snooping Configuration, page 17-5
- Enabling or Disabling IGMP Snooping, page 17-5
- Setting the Snooping Method, page 17-6
- Configuring a Multicast Router Port, page 17-7
- Configuring a Host Statically to Join a Group, page 17-8
- Enabling IGMP Immediate-Leave Processing, page 17-9
- Disabling IP Multicast-Source-Only Learning, page 17-9

### Default IGMP Snooping Configuration

Table 17-3 shows the default IGMP snooping configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enabled globally and per VLAN</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>Multicast router learning (snooping) method</td>
<td>PIM-DVMRP</td>
</tr>
<tr>
<td>IGMP snooping Immediate Leave</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static groups</td>
<td>None configured</td>
</tr>
<tr>
<td>IP multicast-source-only learning</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

### Enabling or Disabling IGMP Snooping

By default, IGMP snooping is globally enabled on the switch. When globally enabled or disabled, it is also enabled or disabled in all existing VLAN interfaces. IGMP snooping is by default enabled on all VLANs, but can be enabled and disabled on a per-VLAN basis.

Global IGMP snooping overrides the VLAN IGMP snooping. If global snooping is disabled, you cannot enable VLAN snooping. If global snooping is enabled, you can enable or disable VLAN snooping.
Beginning in privileged EXEC mode, follow these steps to globally enable IGMP snooping on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip igmp snooping</td>
<td>Globally enable IGMP snooping in all existing VLAN interfaces.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally disable IGMP snooping on all VLAN interfaces, use the `no ip igmp snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable IGMP snooping on a VLAN interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip igmp snooping vlan vlan-id</td>
<td>Enable IGMP snooping on the VLAN interface.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable IGMP snooping on a VLAN interface, use the `no ip igmp snooping vlan vlan-id` global configuration command for the specified VLAN number.

### Setting the Snooping Method

Multicast-capable router ports are added to the forwarding table for every Layer 2 multicast entry. The switch learns of such ports through one of these methods:

- Snooping on IGMP queries, Protocol Independent Multicast (PIM) packets, and Distance Vector Multicast Routing Protocol (DVMRP) packets
- Listening to Cisco Group Management Protocol (CGMP) packets from other routers
- Statically connecting to a multicast router port with the `ip igmp snooping mrouter` global configuration command

You can configure the switch either to snoop on IGMP queries and PIM/DVMRP packets or to listen to CGMP self-join or proxy-join packets. By default, the switch snoops on PIM/DVMRP packets on all VLANs. To learn of multicast router ports through only CGMP packets, use the `ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command. When this command is entered, the router listens to only CGMP self-join and CGMP proxy-join packets and no other CGMP packets. To learn of multicast router ports through only PIM-DVMRP packets, use the `ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp` global configuration command.
Beginning in privileged EXEC mode, follow these steps to alter the method in which a VLAN interface dynamically accesses a multicast router:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2    | ip igmp snooping vlan vlan-id mrouter learn {cgmp | pim-dvmrp}                              | Enable IGMP snooping on a VLAN. The VLAN ID range is 1 to 1005 when the standard software image (SI) is installed and 1 to 4094 when the enhanced software image (EI) is installed (or when running on a Catalyst 2950 LRE switch); do not enter leading zeros. Specify the multicast router learning method:  
  * cgmp—Listen for CGMP packets. This method is useful for reducing control traffic.  
  * pim-dvmrp—Snoop on IGMP queries and PIM-DVMRP packets. This is the default. |
| 3    | end                                     | Return to privileged EXEC mode.                                                             |
| 4    | show ip igmp snooping                   | Verify the configuration.                                                                   |
| 5    | copy running-config startup-config      | (Optional) Save your entries in the configuration file.                                      |

This example shows how to configure IGMP snooping to use CGMP packets as the learning method:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
Switch(config)# end
Switch(config)# show ip igmp snooping vlan 1
vlan 1

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is cgmp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
```

To return to the default learning method, use the **no igmp snooping vlan vlan-id mrouter learn cgmp** command.

### Configuring a Multicast Router Port

To add a multicast router port (add a static connection to a multicast router), use the **ip igmp snooping vlan mrouter** global configuration command on the switch.

Beginning in privileged EXEC mode, follow these steps to enable a static connection to a multicast router:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip igmp snooping vlan vlan-id mrouter interface interface-id</td>
<td>Specify the multicast router VLAN ID and specify the interface to the multicast router. For the VLAN ID, the range is 1 to 1005 when the SI is installed and 1 to 4094 when the EI is installed; do not enter leading zeros.</td>
</tr>
</tbody>
</table>
Configuring IGMP Snooping and MVR

Chapter 17

Configuring IGMP Snooping

Configuring IGMP Snooping

To remove a multicast router port from the VLAN, use the `no ip igmp snooping vlan vlan-id mrouter interface interface-id` global configuration command.

This example shows how to enable a static connection to a multicast router and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 200 mrouter interface gigabitethernet0/2
Switch(config)# end
```

```
Switch# show ip igmp snooping mrouter vlan 200

vlan ports
-----+--
200 Gi0/2(static)
```

Configuring a Host Statically to Join a Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure a host on an interface.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan vlan-id static mac-address interface interface-id</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping mrouter vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>or show mac address-table multicast vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the Layer 2 port from the multicast group, use the `no ip igmp snooping vlan vlan-id static mac-address interface interface-id` global configuration command.
This example shows how to statically configure a host on an interface and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 static 0100.5e00.0203 interface gigabitethernet0/1
Switch(config)# end
Switch# show mac address-table multicast vlan 1
Vlan Mac Address Type Ports
---- ----------- ---- -----
1 0100.5e00.0203 USER G1/0
```

**Enabling IGMP Immediate-Leave Processing**

When you enable IGMP Immediate-Leave processing, the switch immediately removes a port when it detects an IGMP version 2 leave message on that port. You should use the Immediate-Leave feature only when there is a single receiver present on every port in the VLAN.

Immediate Leave is supported with only IGMP version 2 hosts.

Beginning in privileged EXEC mode, follow these steps to enable IGMP Immediate-Leave processing:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>2</td>
<td>ip igmp snooping vlan vlan-id immediate-leave</td>
<td>Enable IGMP Immediate-Leave processing on the VLAN interface.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show ip igmp snooping vlan vlan-id</td>
<td>Verify that Immediate Leave is enabled on the VLAN.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable IGMP Immediate-Leave on a VLAN, use the `no ip igmp snooping vlan vlan-id immediate-leave` global configuration command.

This example shows how to enable IGMP immediate-leave processing on VLAN 130 and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 130 immediate-leave
Switch(config)# end
Switch# show ip igmp snooping vlan 130

IGMP snooping is globally enabled
IGMP snooping is enabled on this VLAN
IGMP snooping immediate-leave is enabled on this VLAN
IGMP snooping mrouter learn mode is pim-dvmrp on this VLAN
IGMP snooping is running in IGMP_ONLY mode on this VLAN
```

**Disabling IP Multicast-Source-Only Learning**

The IP multicast-source-only learning method is enabled by default. The switch learns the IP multicast group from the IP multicast data stream and only forwards traffic to the multicast router ports.
If you disable IP multicast-source-only learning with the **ip igmp snooping source-only-learning** global configuration command, the switch floods unknown multicast traffic to the VLAN and sends the traffic to the CPU until the traffic becomes known. When the switch receives an IGMP report from a host for a particular multicast group, the switch forwards traffic from this multicast group only to the multicast router ports.

**Note**
We strongly recommend that you do not disable IP multicast-source-only learning. You should disable IP multicast-source-only learning only if your network is not composed of IP multicast-source-only networks and if disabling this learning method improves the network performance.

Beginning in privileged EXEC mode, follow these steps to disable IP multicast-source-only learning:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>no ip igmp snooping source-only-learning Disable IP multicast-source-only learning.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To enable IP multicast-source-only learning, use the **ip igmp snooping source-only-learning** global configuration command.

This example shows how to disable IP multicast-source-only learning and to verify the configuration:
```
Switch# configure terminal
Switch(config)# no ip igmp snooping source-only-learning
Switch(config)# end
Switch# show running-config | include source-only-learning
Current configuration : 1972 bytes
!
version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Switch
!
enable password my_password
!
ip subnet-zero
no ip igmp snooping source-only-learning
!
spanning-tree extend system-id
no spanning-tree vlan 1
!
interface FastEthernet0/1
no ip address
!
<output truncated>
```
Displaying IGMP Snooping Information

You can display IGMP snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for IGMP snooping.

To display IGMP snooping information, use one or more of the privileged EXEC commands in Table 17-4.

Table 17-4 Commands for Displaying IGMP Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping [vlan vlan-id]</td>
<td>Display the snooping configuration information for all VLANs on the switch or for a specified VLAN.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN.</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter [vlan vlan-id]</td>
<td>Display information on dynamically learned and manually configured multicast router interfaces.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> When you enable IGMP snooping, the switch automatically learns the interface to which a multicast router is connected. These are dynamically learned interfaces.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN.</td>
</tr>
<tr>
<td>show mac address-table multicast [vlan vlan-id] [user</td>
<td>igmp-snooping] [count]</td>
</tr>
<tr>
<td></td>
<td>• <code>vlan vlan-id</code>—Displays only the specified multicast group VLAN.</td>
</tr>
<tr>
<td></td>
<td>• <code>user</code>—Displays only the user-configured multicast entries.</td>
</tr>
<tr>
<td></td>
<td>• <code>igmp-snooping</code>—Displays only entries learned through IGMP snooping.</td>
</tr>
<tr>
<td></td>
<td>• <code>count</code>—Displays only the total number of entries for the selected criteria, not the actual entries.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show ip igmp snooping` privileged EXEC command for all VLAN interfaces on the switch:

```
Switch# show ip igmp snooping
vlan 1

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
vlan 2

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
vlan 10

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
```

---

This is an example of output from the `show ip igmp snooping` privileged EXEC command for all VLAN interfaces on the switch:
Chapter 17      Configuring IGMP Snooping and MVR

Displaying IGMP Snooping Information

IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan

This is an example of output from the show ip igmp snooping privileged EXEC command for a specific VLAN interface:

Switch# show ip igmp snooping vlan 1
vlan 1
---------
IGMP snooping is globally enabled
IGMP snooping is disabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan

This is an example of output from the show ip igmp snooping mrouter privileged EXEC command for VLAN 1:

Switch# show ip igmp snooping mrouter vlan 1
Vlan     ports
-----     ----
1         Gi0/1(dynamic)
1         Gi0/2(dynamic)

This example shows how to display the Layer 2 multicast entries for VLAN 1:

Switch# show mac address-table multicast vlan 1
vlan   mac address     type     ports
-----+---------------+--------+---------+---+--------------------------------
1    0100.5e02.0203 userGi0/1,Gi0/2
1    0100.5e00.0127 igmpGi0/1,Gi0/2
1    0100.5e00.0128 userGi0/1,Gi0/2
1    0100.5e00.0001 igmpGi0/1,Gi0/2

This is an example of output from the show mac address-table multicast count privileged EXEC command for the switch:

Switch# show mac address-table multicast count
Multicast MAC Entries for all vlans:    10

This is an example of output from the show mac address-table multicast count privileged EXEC command for a VLAN:

Switch# show mac address-table multicast vlan 1 count
Multicast MAC Entries for vlan 1:

This example shows how to display only the user-configured multicast entries for VLAN 1:

Switch# show mac address-table multicast vlan 1 user
vlan   mac address     type     ports
-----+---------------+--------+---------+---+--------------------------------
1    0100.5e02.0203 userGi0/1,Gi0/2
1    0100.5e00.0128 userGi0/1,Gi0/2

This example shows how to display the total number of entries learned by IGMP snooping for VLAN 1:

Switch# show mac address-table multicast vlan 1 igmp-snooping count
Number of user programmed entries:    2
Understanding Multicast VLAN Registration

Multicast VLAN Registration (MVR) is designed for applications using wide-scale deployment of multicast traffic across an Ethernet ring-based service provider network (for example, the broadcast of multiple television channels over a service-provider network). MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the network-wide multicast VLAN. It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs. MVR provides the ability to continuously send multicast streams in the multicast VLAN, but to isolate the streams from the subscriber VLANs for bandwidth and security reasons.

MVR assumes that subscriber ports subscribe and unsubscribe (join and leave) these multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP version-2-compatible host with an Ethernet connection. Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One can be enabled or disabled without affecting the behavior of the other feature. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.

The switch CPU identifies the MVR IP multicast streams and their associated MAC addresses in the switch forwarding table, intercepts the IGMP messages, and modifies the forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

The switch has these modes of MVR operation: dynamic and compatible.

- When operating in MVR dynamic mode, the switch performs standard IGMP snooping. IGMP information packets are sent to the switch CPU, but multicast data packets are not sent to the CPU. Dynamic mode allows the multicast router to run normally because the switch sends the IGMP join messages to the router, and the router forwards multicast streams for a particular group to an interface only if it has received a join message from the interface for the group. Receiver ports are treated as members of the multicast VLAN for MVR multicast control and data traffic. IGMP reports for MVR groups are sent out source ports in the multicast VLAN.

- When in MVR compatible mode, MVR on the Catalyst 3550 switch interoperates with MVR on Catalyst 3500 XL and Catalyst 2900 XL switches. It works the same as dynamic mode for all multicast data packets and IGMP query and leave packets. However, received IGMP report packets for MVR groups are not sent out on the multicast VLAN source ports. In contrast to dynamic mode, the switch does not send join messages to the router. The router must be statically configured for the interface to receive the multicast stream. Therefore, in this mode, MVR does not support dynamic membership joins on source ports.

Using MVR in a Multicast Television Application

In a multicast television application, a PC or a television with a set-top box can receive the multicast stream. Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. See Figure 17-3. DHCP assigns an IP address to the set-top box or the PC. When a subscriber selects a channel, the set-top box or PC sends an IGMP report to the S1 switch to join the appropriate multicast. If the IGMP report matches one of the configured multicast MAC addresses, the switch CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.
When a subscriber changes channels or turns off the television, the set-top box sends an IGMP leave message for the multicast stream. The switch CPU sends an IGMP group-specific query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

If the Immediate-Leave feature is enabled on a receiver port, the port leaves a multicast group more quickly. Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate Leave feature only on receiver ports to which a single receiver device is connected.

Figure 17-3 Multicast VLAN Registration Example
MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. Although the IGMP leave and join message in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the Layer 3 device. The access layer switch (S1 switch) modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same MAC addresses as the multicast data. The S1 CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port.

Configuring MVR

These sections include basic MVR configuration information:

- Default MVR Configuration, page 17-15
- MVR Configuration Guidelines and Limitations, page 17-16
- Configuring MVR Global Parameters, page 17-16
- Configuring MVR Interfaces, page 17-17

Default MVR Configuration

Table 17-5 shows the default MVR configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>0.5 second</td>
</tr>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Compatible</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>
### MVR Configuration Guidelines and Limitations

Follow these guidelines when configuring MVR:

- Receiver ports cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.
- The maximum number of multicast entries that can be configured on a switch (that is, the maximum number of television channels that can be received) is 256.
- Each channel is one multicast stream destined for a unique IP multicast address. These IP addresses cannot alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).

**Note**

For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

### Configuring MVR Global Parameters

You do not need to set the optional MVR parameters if you choose to use the default settings. If you do want to change the default parameters (except for the MVR VLAN), you must first enable MVR.

Beginning in privileged EXEC mode, follow these steps to configure MVR parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mvr</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>mvr group ip-address [count]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>mvr querytime value</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>mvr vlan vlan-id</td>
</tr>
</tbody>
</table>
Chapter 17 Configuring IGMP Snooping and MVR

### Configuring MVR

To return the switch to its default settings, use the `no mvr [mode | group ip-address | querytime | vlan]` global configuration commands.

This example shows how to enable MVR, configure the MVR group address, set the query time to 1 second (10 tenths), specify the MVR multicast VLAN as VLAN 22, set the MVR mode as dynamic, and verify the results:

```
Switch(config)# mvr
Switch(config)# mvr group 228.1.23.4
Switch(config)# mvr querytime 10
Switch(config)# mvr vlan 22
Switch(config)# mvr mode dynamic
Switch(config)# end
```

```
Switch# show mvr
MVR Running: TRUE
MVR multicast vlan: 22
MVR Max Multicast Groups: 256
MVR Current multicast groups: 1
MVR Global query response time: 10 (tenths of sec)
MVR Mode: dynamic
```

You can use the `show mvr members` privileged EXEC command to verify the MVR multicast group addresses on the switch.

### Configuring MVR Interfaces

Beginning in privileged EXEC mode, follow these steps to configure MVR interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>mvr</code></td>
<td>Enable MVR on the switch.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and enter the type and number of the port to configure, for example, <code>gi0/1</code> or <code>gigabitethernet 0/1</code> for Gigabit Ethernet port 1.</td>
</tr>
</tbody>
</table>
Configuring MVR

Chapter 17  Configuring IGMP Snooping and MVR

Step 4  
**Command:** mvr type {source | receiver}  
**Purpose:** Configure an MVR port as one of these:  
- **source**—Configure uplink ports that receive and send multicast data as source ports. Subscribers cannot be directly connected to source ports. All source ports on a switch belong to the single multicast VLAN.  
- **receiver**—Configure a port as a receiver port if it is a subscriber port and should only receive multicast data. It does not receive data unless it becomes a member of the multicast group, either statically or by using IGMP leave and join messages. Receiver ports cannot belong to the multicast VLAN.  
The default configuration is as a non-MVR port. If you attempt to configure a non-MVR port with MVR characteristics, the operation fails.

Step 5  
**Command:** mvr vlan vlan-id group ip-address  
**Purpose:** (Optional) Statically configure a port to receive multicast traffic sent to the multicast VLAN and the IP multicast address. A port statically configured as a member of a group remains a member of the group until statically removed.  
**Note:** In compatible mode, this command applies to only receiver ports. In dynamic mode, it applies to receiver ports and source ports.  
Receiver ports can also dynamically join multicast groups by using IGMP join and leave messages.

Step 6  
**Command:** mvr immediate  
**Purpose:** (Optional) Enable the Immediate Leave feature of MVR on the port.  
**Note:** This command applies to only receiver ports and should only be enabled on receiver ports to which a single receiver device is connected.

Step 7  
**Command:** end  
**Purpose:** Return to privileged EXEC mode.

Step 8  
**Command:** show mvr  
**Command:** show mvr interface  
**Command:** show mvr members  
**Purpose:** Verify the configuration.

Step 9  
**Command:** copy running-config startup-config  
**Purpose:** (Optional) Save your entries in the configuration file.

To return the interface to its default settings, use the `no mvr [type | immediate | vlan vlan-id | group]` interface configuration commands.

This example shows how to configure Gigabit Ethernet port 0/2 as a receiver port, statically configure the port to receive multicast traffic sent to the multicast group address, configure Immediate Leave on the interface, and verify the results.

```
Switch(config)# mvr
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# mvr type receiver
Switch(config-if)# mvr vlan 22 group 228.1.23.4
Switch(config-if)# mvr immediate
Switch(config)# end
Switch# show mvr interface gigabitethernet0/2
Type: RECEIVER Status: ACTIVE Immediate Leave: ENABLED
```
This is an example of output from the `show mvr interface` privileged EXEC command when the `members` keyword is included:

```
Switch# show mvr interface fastethernet0/2 members
224.0.1.1 DYNAMIC ACTIVE
```

## Displaying MVR Information

You can display MVR information for the switch or for a specified interface. Beginning in privileged EXEC mode, use the commands in Table 17-6 to display MVR configuration:

### Table 17-6 Commands for Displaying MVR Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mvr</code></td>
<td>Displays MVR status and values for the switch—whether MVR is enabled or disabled, the multicast VLAN, the maximum (256) and current (0 through 256) number of multicast groups, the query response time, and the MVR mode.</td>
</tr>
</tbody>
</table>
| `show mvr interface [interface-id] [members [vlan vlan-id]]` | Displays all MVR interfaces and their MVR configurations. When a specific interface is entered, displays this information:  
  - Type—Receiver or Source 
  - Status—One of these: 
    - Active means the port is part of a VLAN. 
    - Up/Down means that the port is forwarding or nonforwarding. 
    - Inactive means that the port is not part of any VLAN. 
  - Immediate Leave—Enabled or Disabled 
  If the `members` keyword is entered, displays all multicast group members on this port or, if a VLAN identification is entered, all multicast group members on the VLAN. The VLAN ID range is 1 to 1005 when the SI is installed and 1 to 4094 when the EI is installed; do not enter leading zeros. |
| `show mvr members [ip-address]` | Displays all receiver ports that are members of any IP multicast group or the specified IP multicast group IP address. |

This is an example of output from the `show mvr` privileged EXEC command:

```
Switch# show mvr
MVR Running: TRUE
MVR multicast vlan: 1
MVR Max Multicast Groups: 256
MVR Current multicast groups: 256
MVR Global query response time: 5 (tenths of sec)
MVR Mode: compatible
```

This is an example of output from the `show mvr interface` privileged EXEC command:

```
Switch# show mvr interface
Port Type Status Immediate Leave
---- ------ ------- ---------------
Fa0/1 SOURCE ACTIVE/UP DISABLED
Fa0/2 SOURCE ACTIVE/UP DISABLED
Fa0/3 SOURCE ACTIVE/DOWN DISABLED
Fa0/5 SOURCE ACTIVE/DOWN DISABLED
```
This is an example of output from the `show mvr interface` privileged EXEC command for a specified interface:

```
Switch# show mvr interface fastethernet0/2
 224.0.1.1 DYNAMIC ACTIVE
```

This is an example of output from the `show mvr interface` privileged EXEC command when the `members` keyword is included:

```
Switch# show mvr interface fastethernet0/2 members
 224.0.1.1 DYNAMIC ACTIVE
```

This is an example of output from the `show mvr members` privileged EXEC command:

```
Switch# show mvr members
 MVR Group IP Status Members
 224.0.1.1 ACTIVE Fa0/1(s), Fa0/2(d)
 224.0.1.2 ACTIVE Fa0/1(s)
 224.0.1.3 ACTIVE Fa0/1(s)
 224.0.1.4 ACTIVE Fa0/1(s)
 224.0.1.5 ACTIVE Fa0/1(s)
```

Configuring IGMP Filtering

In some environments, for example metropolitan or multiple-dwelling unit (MDU) installations, an administrator might want to control the set of multicast groups to which a user on a switch port can belong. This allows the administrator to control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing.

IGMP filtering controls only group specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.

You can also set the maximum number of IGMP groups that a Layer 2 interface can join.
Default IGMP Filtering Configuration

Table 17-7 shows the default IGMP filtering configuration.

Table 17-7 Default IGMP Filtering Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP filters</td>
<td>None applied</td>
</tr>
<tr>
<td>IGMP Maximum number of IGMP groups</td>
<td>No maximum set</td>
</tr>
<tr>
<td>IGMP profiles</td>
<td>None defined</td>
</tr>
<tr>
<td>IGMP profile action</td>
<td>Deny the range addresses</td>
</tr>
</tbody>
</table>

Configuring IGMP Profiles

To configure an IGMP profile, use the `ip igmp profile` global configuration command with a profile number to create an IGMP profile and to enter IGMP profile configuration mode. From this mode, you can specify the parameters of the IGMP profile to be used for filtering IGMP join requests from a port. When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- **deny**: Specifies that matching addresses are denied; this is the default condition.
- **exit**: Exits from igmp-profile configuration mode.
- **no**: Negates a command or sets its defaults.
- **permit**: Specifies that matching addresses are permitted.
- **range**: Specifies a range of IP addresses for the profile. You can enter a single IP address or a range with a start and an end address.

The default is for the switch to have no IGMP profiles configured. When a profile is configured, if neither the **permit** nor **deny** keyword is included, the default is to deny access to the range of IP addresses.

Beginning in privileged EXEC mode, follow these steps to create an IGMP profile:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip igmp profile profile number</code></td>
</tr>
<tr>
<td></td>
<td>Enter IGMP profile configuration mode, and assign a number to the profile you are configuring. The range is from 1 to 4294967295.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`permit</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>range ip multicast address</code></td>
</tr>
<tr>
<td></td>
<td>Enter the IP multicast address or range of IP multicast addresses to which access is being controlled. If entering a range, enter the low IP multicast address, a space, and the high IP multicast address. You can use the range command multiple times to enter multiple addresses or ranges of addresses.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 17 Configuring IGMP Snooping and MVR

Configuring IGMP Filtering

To delete a profile, use the `no ip igmp profile profile number` global configuration command.

To delete an IP multicast address or range of IP multicast addresses, use the `no range ip multicast address` IGMP profile configuration command.

This example shows how to create IGMP profile 4 allowing access to the single IP multicast address and how to verify the configuration. If the action was to deny (the default), it would not appear in the `show ip igmp profile` output display.

```
Switch(config)# ip igmp profile 4
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 229.9.9.0
Switch(config-igmp-profile)# end
Switch# show ip igmp profile 4
IGMP Profile 4
 permit
 range 229.9.9.0 229.9.9.0
```

Applying IGMP Profiles

To control access as defined in an IGMP profile, use the `ip igmp filter profile number` interface configuration command to apply the profile to the appropriate interfaces. You can apply IGMP profiles to Layer 2 ports only. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can only have one profile applied to it.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

```
Step 1
configure terminal
Enter global configuration mode.

Step 2
interface interface-id
Enter interface configuration mode, and enter the physical interface to configure, for example `fastethernet0/3`. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.

Step 3
ip igmp filter profile number
Apply the specified IGMP profile to the interface. The profile number can be from 1 to 4294967295.

Step 4
end
Return to privileged EXEC mode.

Step 5
show running configuration interface interface-id
Verify the configuration.

Step 6
copy running-config startup-config
(Optional) Save your entries in the configuration file.
```

To remove a profile from an interface, use the `no ip igmp filter profile number` interface configuration command.

This example shows how to apply IGMP profile 4 to an interface and verify the configuration.

```
Switch(config)# interface fastethernet0/12
Switch(config-if)# ip igmp filter 4
Switch(config-if)# end
Switch# show running-config interface fastethernet0/12
Building configuration...
```
Chapter 17  Configuring IGMP Snooping and MVR

Configuring IGMP Filtering

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the `ip igmp max-groups` interface configuration command. Use the `no` form of this command to set the maximum back to the default, which is no limit.

You cannot use this command on ports that belong to an EtherChannel port group.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and enter the physical interface to configure, for example <code>gigabitethernet0/1</code>. The interface must be a Layer 2 port that does not belong to an EtherChannel group.</td>
</tr>
<tr>
<td>3</td>
<td><code>ip igmp max-groups number</code></td>
<td>Set the maximum number of IGMP groups that the interface can join. The range is from 0 to 4294967294. The default is to have no maximum set.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>show running-configuration interface interface-id</code></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the maximum group limitation and return to the default of no maximum, use the `no ip igmp max-groups` interface configuration command.

This example shows how to limit the number of IGMP groups that an interface can join to 25.

```
Switch(config)# interface fastethernet0/12
Switch(config-if)# ip igmp max-groups 25
Switch(config-if)# end
Switch# show running-config interface fastethernet0/12
Building configuration...

Current configuration : 123 bytes
!
interface FastEthernet0/12
 no ip address
 shutdown
 snmp trap link-status
 ip igmp max-groups 25
 ip igmp filter 4
end
```
Displaying IGMP Filtering Configuration

You can display IGMP profile characteristics, and you can display the IGMP profile and maximum group configuration for all interfaces on the switch or for a specified interface.

Use the privileged EXEC commands in Table 17-8 to display IGMP filtering configuration:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp profile [profile number]</td>
<td>Displays the specified IGMP profile or all IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td>show running-configuration [interface interface-id]</td>
<td>Displays the configuration of the specified interface or all interfaces on the switch, including (if configured) the maximum number of IGMP groups to which an interface can belong and the IGMP profile applied to the interface.</td>
</tr>
</tbody>
</table>

This is an example of the `show ip igmp profile` privileged EXEC command when no profile number is entered. All profiles defined on the switch are displayed.

```
Switch# show ip igmp profile
IGMP Profile 3
 range 230.9.9.0 230.9.9.0
IGMP Profile 4
 permit
 range 229.9.9.0 229.255.255.255
```

This is an example of the output from the `show running-config` privileged EXEC command when an interface is specified with IGMP maximum groups configured and IGMP profile 4 has been applied to the interface.

```
Switch# show running-config interface fastethernet0/12
Building configuration...
Current configuration : 123 bytes
!
interface FastEthernet0/12
 no ip address
 shutdown
 snmp trap link-status
 ip igmp max-groups 25
 ip igmp filter 4
end
```
Configuring Port-Based Traffic Control

This chapter describes how to configure the port-based traffic control features on your switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Configuring Storm Control, page 18-1
- Configuring Protected Ports, page 18-3
- Configuring Port Security, page 18-4
- Displaying Port-Based Traffic Control Settings, page 18-12

Configuring Storm Control

These sections include storm control configuration information and procedures:

- Understanding Storm Control, page 18-1
- Default Storm Control Configuration, page 18-2
- Enabling Storm Control, page 18-2
- Disabling Storm Control, page 18-3

Understanding Storm Control

A packet storm occurs when a large number of broadcast, unicast, or multicast packets are received on a port. Forwarding these packets can cause the network to slow down or to time out. Storm control is configured for the switch as a whole but operates on a per-port basis. By default, storm control is disabled.

Storm control uses rising and falling thresholds to block and then restore the forwarding of broadcast, unicast, or multicast packets. You can also set the switch to shut down the port when the rising threshold is reached.

Storm control uses a bandwidth-based method to measure traffic activity. The thresholds are expressed as a percentage of the total available bandwidth that can be used by the broadcast, multicast, or unicast traffic.
Chapter 18 Configuring Port-Based Traffic Control

Configuring Storm Control

The rising threshold is the percentage of total available bandwidth associated with multicast, broadcast, or unicast traffic before forwarding is blocked. The falling threshold is the percentage of total available bandwidth below which the switch resumes normal forwarding. In general, the higher the level, the less effective the protection against broadcast storms.

Default Storm Control Configuration

By default, broadcast, multicast, and unicast storm control is disabled on the switch. The default action is to filter traffic and to not send an SNMP trap.

Enabling Storm Control

Beginning in privileged EXEC mode, follow these steps to enable storm control:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>storm-control {broadcast</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>storm-control action {shutdown</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show storm-control [interface] [ [broadcast</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Disabling Storm Control

Beginning in privileged EXEC mode, follow these steps to disable storm control:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the port to configure, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 no storm-control {broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td>Step 4 no storm-control action {shutdown</td>
<td>trap}</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show storm-control {broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Configuring Protected Ports

Some applications require that no traffic be forwarded between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Traffic cannot be forwarded between protected ports at Layer 2; all traffic passing between protected ports must be forwarded through a Layer 3 device.
- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

The default is to have no protected ports defined.

You can configure protected ports on a physical interface (for example, Gigabit Ethernet 0/1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

Both LRE interface ports and CPE device ports can be configured as protected ports. When you use a CPE 575, the `cpe protected` command is not available.

When you use a CPE 585 (which has multiple Ethernet interfaces), the `switchport protected` command allows devices on different ports of the same CPE 585 to exchange data locally.

In some cases, you might want to protect individual CPE device ports. You can do this with the `cpe protected` command. Devices connected to different ports on the same CPE cannot exchange data directly between each other without being forwarded by an Layer 3 device.
Beginning in privileged EXEC mode, follow these steps to define a port as a protected port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Specify the type and number of the physical interface to configure, for example gigabitethernet0/1, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> switchport protected</td>
<td>Configure the interface to be a protected port.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable protected port, use the `no switchport protected` interface configuration command.

This example shows how to configure Gigabit Ethernet interface 0/1 as a protected port and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport protected
Switch(config-if)# end
Switch# show interfaces gigabitethernet0/1 switchport
Name: Gi0/1
Switchport: Enabled
<output truncated>
Protected: True
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
```

**Configuring Port Security**

You can use the port security feature to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port. When you assign secure MAC addresses to a secure port, the port does not forward packets with source addresses outside the group of defined addresses. If you limit the number of secure MAC addresses to one and assign a single secure MAC address, the workstation attached to that port is assured the full bandwidth of the port.

If a port is configured as a secure port and the maximum number of secure MAC addresses is reached, when the MAC address of a station attempting to access the port is different from any of the identified secure MAC addresses, a security violation occurs. Also, if a station with a secure MAC address configured or learned on one secure port attempts to access another secure port, a violation is flagged.

These sections include port security configuration information and procedures:

- Understanding Port Security, page 18-5
- Default Port Security Configuration, page 18-7
- Port Security Configuration Guidelines, page 18-7
- Enabling and Configuring Port Security, page 18-7
- Enabling and Configuring Port Security Aging, page 18-10
Understanding Port Security

This section contains information about these topics:

- Secure MAC Addresses, page 18-5
- Security Violations, page 18-6

Secure MAC Addresses

A secure port can have from 1 to 132 associated secure addresses. After you have set the maximum number of secure MAC addresses on a port, the secure addresses are included in an address table in one of these ways:

- You can configure all secure MAC addresses by using the `switchport port-security mac-address mac-address` interface configuration command.
- You can allow the port to dynamically configure secure MAC addresses with the MAC addresses of connected devices.
- You can configure a number of addresses and allow the rest to be dynamically configured.

Once the maximum number of secure MAC addresses is configured, they are stored in an address table. Setting a maximum number of addresses to one and configuring the MAC address of an attached device ensures that the device has the full bandwidth of the port.

The switch supports these types of secure MAC addresses:

- Static secure MAC addresses—These are manually configured by using the `switchport port-security mac-address mac-address` interface configuration command, stored in the address table, and added to the switch running configuration.
- Dynamic secure MAC addresses—These are dynamically configured, stored only in the address table, and removed when the switch restarts.
- Sticky secure MAC addresses—These are dynamically configured, stored in the address table, and added to the running configuration. If these addresses are saved in the configuration file, when the switch restarts, the interface does not need to dynamically reconfigure them.

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling `sticky learning`. To enable sticky learning, enter the `switchport port-security mac-address sticky` interface configuration command. When you enter this command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses. The interface adds all the sticky secure MAC addresses to the running configuration.

The sticky secure MAC addresses do not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you save the sticky secure MAC addresses in the configuration file, when the switch restarts, the interface does not need to relearn these addresses. If you do not save the sticky secure addresses, they are lost.
This is an example of text from the running configuration when sticky learning is enabled on an interface:

<output truncated>
!
interface FastEthernet0/2
  switchport mode access
  switchport port-security
  switchport port-security maximum 6
  switchport port-security aging time 5
  switchport port-security aging static
  switchport port-security mac-address sticky
  switchport port-security mac-address 0000.0000.000b
  switchport port-security mac-address sticky 0000.0000.4141
  switchport port-security mac-address sticky 0000.0000.5050
  no ip address
<output truncated>

If port security is disabled, the sticky secure MAC addresses remain in the running configuration.

To disable sticky learning, enter the `no switchport port-security mac-address sticky` interface configuration command. If sticky learning is disabled or the running configuration is removed, the sticky secure MAC addresses remain part of the running configuration but are removed from the address table. The addresses that were removed can be dynamically reconfigured and added to the address table as dynamic addresses.

**Note**

If sticky learning is disabled, when the switch restarts or the interface shuts down, all the addresses that were dynamically learned are removed.

### Security Violations

It is a security violation when one of these situations occurs:

- The maximum number of secure MAC addresses have been added to the address table, and a station whose MAC address is not in the address table attempts to access the interface.
- An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.

You can configure the interface for one of three violation modes, based on the action to be taken if a violation occurs:

- **protect**—when the number of secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value.
- **restrict**—a port security violation restricts data and causes the SecurityViolation counter to increment. It also sends an SNMP trap when an address-security violation occurs.
- **shutdown**—the interface is error-disabled when a security violation occurs. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands. This is the default mode.
Default Port Security Configuration

Table 18-1 shows the default port security configuration for an interface.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses</td>
<td>1</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown. The interface is error-disabled when a security violation occurs. When a secure port is in the error-disabled state, you can bring it out of this state by entering the <code>errdisable recovery cause psecure-violation</code> global configuration command, or you can manually re-enable it by entering the <code>shutdown</code> and <code>no shutdown</code> interface configuration commands.</td>
</tr>
</tbody>
</table>

Port Security Configuration Guidelines

Follow these guidelines when configuring port security:

- Port security can only be configured on static access ports.
- A secure port cannot be a dynamic access port or a trunk port.
- A secure port cannot be a destination port for Switch Port Analyzer (SPAN).
- A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel port group.
- A secure port cannot be an 802.1X port.
- You cannot configure static secure MAC addresses in the voice VLAN.
- When you enable port security on a voice VLAN port, you must set the maximum allowed secure addresses on the port to at least two. When the port is connected to a Cisco IP phone, the IP phone requires two MAC addresses: one for the access VLAN and the other for the voice VLAN. Connecting a PC to the IP phone requires additional MAC addresses.

Enabling and Configuring Port Security

Beginning in privileged EXEC mode, follow these steps to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the type and number of the physical interface to configure, for example <code>gigabitethernet0/1</code>, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport mode access</td>
<td>Set the interface mode as access; an interface in the default mode (dynamic desirable) cannot be configured as a secure port.</td>
</tr>
<tr>
<td>Step 4 switchport port-security</td>
<td>Enable port security on the interface.</td>
</tr>
</tbody>
</table>
### Chapter 18 Configuring Port-Based Traffic Control

#### Configuring Port Security

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>switchport port-security maximum value</td>
<td>(Optional) Set the maximum number of secure MAC addresses for the interface. The range is 1 to 132; the default is 1.</td>
</tr>
</tbody>
</table>
| 6    | switchport port-security violation {protect | restrict | shutdown} | (Optional) Set the violation mode, the action to be taken when a security violation is detected, as one of these:  
- **protect**—When the number of port secure MAC addresses reaches the maximum limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses to drop below the maximum value.  
- **restrict**—A port security violation restricts data and causes the SecurityViolation counter to increment and sends an SNMP trap.  
- **shutdown**—The interface is error-disabled when a security violation occurs.  
**Note** When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands. |
| 7    | switchport port-security mac-address mac-address | (Optional) Enter a static secure MAC address for the interface, repeating the command as many times as necessary. You can use this command to enter the maximum number of secure MAC addresses. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned.  
**Note** If you enable sticky learning after you enter this command, the secure addresses that were dynamically learned are converted to sticky secure MAC addresses and are added to the running configuration. |
| 8    | switchport port-security mac-address sticky | (Optional) Enable stick learning on the interface. |
| 9    | switchport port-security mac-address sticky mac-address | (Optional) Enter a sticky secure MAC address, repeating the command as many times as necessary. If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are dynamically learned, are converted to sticky secure MAC addresses, and are added to the running configuration.  
**Note** If you do not enable sticky learning before this command is entered, an error message appears, and you cannot enter a sticky secure MAC address. |
| 10   | end | Return to privileged EXEC mode. |
| 11   | show port-security  
show port-security address  
show port-security interface interface-id | Verify your entries. |
| 12   | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
To return the interface to the default condition as not a secure port, use the `no switchport port-security` interface configuration command. If you enter this command when sticky learning is enabled, the sticky secure addresses remain part of the running configuration but are removed from the address table. The addresses that were removed can be dynamically reconfigured and added to the address table as dynamic addresses.

To return the interface to the default number of secure MAC addresses, use the `no switchport port-security maximum value` interface configuration command.

To return the violation mode to the default condition (shutdown mode), use the `no switchport port-security violation {protocol | restrict}` interface configuration command.

To disable sticky learning on an interface, use the `no switchport port-security mac-address sticky` interface configuration command. The interface converts the sticky secure MAC addresses to dynamic secure addresses.

To delete a static secure MAC address from the address table, use the `no switchport port-security mac-address mac-address` interface configuration command.

To delete a dynamic secure MAC address from the address table, use the `clear port-security dynamic address mac-addr` privileged EXEC command. To delete all the dynamic addresses on an interface, use the `clear port-security dynamic interface interface-id` privileged EXEC command.

To delete sticky secure MAC addresses from the address table, disable sticky learning, which converts the sticky secure MAC addresses to dynamic secure addresses. Use the `no switchport port-security mac-address sticky` interface configuration command. Delete dynamic secure addresses on an interface by using the `clear port-security dynamic interface interface-id` privileged EXEC command. To delete a dynamic secure MAC address, use the `clear port-security dynamic address mac-addr` privileged EXEC command.

This example shows how to enable port security on Fast Ethernet port 1 and to set the maximum number of secure addresses to 50. The violation mode is the default, no static secure MAC addresses are configured, and sticky learning is enabled.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 50
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# end
Switch# show port-security interface fastethernet0/1
Port Security: Enabled
Port status: SecureUp
Violation mode: Shutdown
Maximum MAC Addresses :50
Total MAC Addresses: 11
Configured MAC Addresses: 0
Sticky MAC Addresses :11
Aging time: 20 mins
Aging type: Inactivity
SecureStatic address aging: Enabled
Security Violation count: 0
This example shows how to configure a static secure MAC address and a sticky secure MAC address on Fast Ethernet port 12 and verify the configuration:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/12
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 0000.02000.0004
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# switchport port-security mac-address sticky 0008.a343.b581
Switch(config-if)# end
Switch# show port-security address
--- Secure Mac Address Table

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Ports</th>
<th>Remaining Age (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000.0000.000a</td>
<td>SecureDynamic</td>
<td>Fa0/1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0000.0002.0300</td>
<td>SecureDynamic</td>
<td>Fa0/1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0000.0200.0003</td>
<td>SecureConfigured</td>
<td>Fa0/1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0000.0200.0004</td>
<td>SecureConfigured</td>
<td>Fa0/12</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0003.fd62.1d40</td>
<td>SecureConfigured</td>
<td>Fa0/5</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0003.fd62.1d45</td>
<td>SecureConfigured</td>
<td>Fa0/5</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0003.fd62.21d3</td>
<td>SecureSticky</td>
<td>Fa0/5</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0005.7428.1a45</td>
<td>SecureSticky</td>
<td>Fa0/8</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0005.7428.1a46</td>
<td>SecureSticky</td>
<td>Fa0/8</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0006.1218.2436</td>
<td>SecureSticky</td>
<td>Fa0/8</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0008.a343.b581</td>
<td>SecureSticky</td>
<td>Fa0/12</td>
<td>-</td>
</tr>
</tbody>
</table>
```

Total Addresses in System: 11
Max Addresses limit in System: 1024

**Enabling and Configuring Port Security Aging**

You can use port security aging to set the aging time for all secure addresses on a port. Two types of aging are supported per port:

- **Absolute**—The secure addresses on the port are deleted after the specified aging time.
- **Inactivity**—The secure addresses on the port are deleted only if the secure addresses are inactive for the specified aging time.

Use this feature to remove and add PCs on a secure port without manually deleting the existing secure MAC addresses and to still limit the number of secure addresses on a port. You can enable or disable the aging of statically-configured secure addresses on a per-port basis.
Beginning in privileged EXEC mode, follow these steps to configure port security aging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport port-security aging {static</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show port-security [interface interface-id] [address]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable port security aging for all secure addresses on a port, use the **no switchport port-security aging time** interface configuration command. To disable aging for only statically configured secure addresses, use the **no switchport port-security aging static** interface configuration command.

This example shows how to set the aging time as 2 hours for the secure addresses on the Fast Ethernet interface 0/1:

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport port-security aging time 120
```

This example shows how to set the aging time as 2 minutes for the inactivity aging type with aging enabled for the configured secure addresses on the interface:

```
Switch(config-if)# switchport port-security aging time 2
Switch(config-if)# switchport port-security aging type inactivity
Switch(config-if)# switchport port-security aging static
```

You can verify the previous commands by entering the **show port-security interface interface-id** privileged EXEC command.
Displaying Port-Based Traffic Control Settings

The `show interfaces interface-id switchport` privileged EXEC command displays (among other characteristics) the interface traffic suppression and control configuration. The `show interfaces counters` privileged EXEC commands display the count of discarded packets. The `show storm-control` and `show port-security` privileged EXEC commands display those features.

To display traffic control information, use one or more of the privileged EXEC commands in Table 18-2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port protection settings.</td>
</tr>
<tr>
<td>`show storm-control [interface-id] [broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters broadcast</code></td>
<td>Displays the storm-control broadcast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters multicast</code></td>
<td>Displays the storm-control multicast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters unicast</code></td>
<td>Displays the storm-control unicast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id]</code></td>
<td>Displays port security settings for the switch or for the specified interface, including the maximum allowed number of secure MAC addresses for each interface, the number of secure MAC addresses on the interface, the number of security violations that have occurred, and the violation mode.</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id] address</code></td>
<td>Displays all secure MAC addresses configured on all switch interfaces or on a specified interface with aging information for each address.</td>
</tr>
</tbody>
</table>
Configuring UDLD

This chapter describes how to configure the UniDirectional Link Detection (UDLD) protocol on your switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding UDLD, page 19-1
- Configuring UDLD, page 19-3
- Displaying UDLD Status, page 19-6

Understanding UDLD

UDLD is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it administratively shuts down the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

UDLD works with the Layer 1 mechanisms to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected interfaces. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic sent by the local device is received by the neighbor but traffic from the neighbor is not received by the local device. If one of the fiber-optic strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fiber-optic strands are working normally from a Layer 1 perspective, UDLD at Layer 2 determines whether those fiber-optic strands are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.
UDLD operates by using two mechanisms:

- Neighbor database maintenance

  UDLD learns about other UDLD-capable neighbors by periodically sending a hello packet (also called an advertisement or probe) on every active interface to keep each device informed about its neighbors.

  When the switch receives a hello message, it caches the information until the age time (hold time or time-to-live) expires. If the switch receives a new hello message before an older cache entry ages, the switch replaces the older entry with the new one.

  Whenever an interface is disabled and UDLD is running, whenever UDLD is disabled on an interface, or whenever the switch is reset, UDLD clears all existing cache entries for the interfaces affected by the configuration change. UDLD sends at least one message to inform the neighbors to flush the part of their caches affected by the status change. The message is intended to keep the caches synchronized.

- Event-driven detection and echoing

  UDLD relies on echoing as its detection mechanism. Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-sync neighbor, it restarts the detection window on its side of the connection and sends echo messages in reply. Because this behavior is the same on all UDLD neighbors, the sender of the echoes expects to receive an echo in reply. If the detection window ends and no valid reply message is received, the link is considered unidirectional, and the interface is shut down.

  Figure 19-1 shows an example of a unidirectional link condition.
Configuring UDLD

This section describes how to configure UDLD on your switch. It contains this configuration information:

- Default UDLD Configuration, page 19-3
- Enabling UDLD Globally, page 19-4
- Enabling UDLD on an Interface, page 19-4
- Resetting an Interface Shut Down by UDLD, page 19-5

Default UDLD Configuration

Table 19-1 shows the default UDLD configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD per-interface enable state for fiber-optic media</td>
<td>Disabled on all Ethernet fiber-optic interfaces</td>
</tr>
<tr>
<td>UDLD per-interface enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX interfaces</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

A UDLD-capable interface also cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.
Enabling UDLD Globally

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or the normal mode and to set the configurable message timer on all fiber-optic interfaces on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>udld {aggressive</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• aggressive—Enables UDLD in aggressive mode on all fiber-optic</td>
</tr>
<tr>
<td></td>
<td>interfaces. For details on the usage guidelines for the aggressive</td>
</tr>
<tr>
<td></td>
<td>mode, refer to the command reference guide.</td>
</tr>
<tr>
<td></td>
<td>• enable—Enables UDLD in normal mode on all fiber-optic</td>
</tr>
<tr>
<td></td>
<td>interfaces on the switch. UDLD is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>An individual interface configuration overrides the setting of the</td>
</tr>
<tr>
<td></td>
<td>udld enable global configuration command.</td>
</tr>
<tr>
<td></td>
<td>• message time message-timer-interval—Configures the period of time</td>
</tr>
<tr>
<td></td>
<td>between UDLD probe messages on ports that are in the advertisement</td>
</tr>
<tr>
<td></td>
<td>phase and are determined to be bidirectional. The range is from 7 to</td>
</tr>
<tr>
<td></td>
<td>90 seconds.</td>
</tr>
<tr>
<td>Note</td>
<td>This command only affects fiber-optic interfaces. Use the udld</td>
</tr>
<tr>
<td></td>
<td>interface configuration command to enable UDLD on other interface types</td>
</tr>
<tr>
<td></td>
<td>For more information, see the “Enabling UDLD on an Interface” section</td>
</tr>
<tr>
<td></td>
<td>on page 19-4.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable UDLD globally, use the no udld enable global configuration command to disable normal-mode UDLD on all fiber-optic ports. Use the no udld aggressive global configuration command to disable aggressive-mode UDLD on all fiber-optic ports.

Enabling UDLD on an Interface

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or normal mode on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be</td>
</tr>
<tr>
<td></td>
<td>enabled for UDLD.</td>
</tr>
</tbody>
</table>
Chapter 19      Configuring UDLD

Configuring UDLD

To disable UDLD on a non-fiber-optic interface, use the `no udld enable` command.

**Note**
On fiber-optic interfaces, the `no udld enable` command reverts the interface configuration to the `udld enable` global configuration command setting.

To disable UDLD on a fiber-optic interface, use the `udld disable` command to revert to the `udld enable` global configuration command setting. This command is not supported on non-fiber-optic interfaces.

**Resetting an Interface Shut Down by UDLD**

Beginning in privileged EXEC mode, follow these steps to reset all interfaces shut down by UDLD:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>udld reset</code></td>
<td>Reset all interfaces shut down by UDLD.</td>
</tr>
<tr>
<td><code>show udld</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

You can also bring up the interface by using these commands:

- The `shutdown` interface configuration command followed by the `no shutdown` interface configuration command restarts the disabled interface.
- The `no udld enable` global configuration command re-enables UDLD globally.
- The `udld disable` interface configuration command re-enables UDLD on the specified interface.
Displaying UDLD Status

To display the UDLD status for the specified interface or for all interfaces, use the `show udld [interface-id]` privileged EXEC command.

For detailed information about the fields in the display, refer to the command reference for this release.
Configuring CDP

This chapter describes how to configure Cisco Discovery Protocol (CDP) on your switch.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding CDP, page 20-1
- Configuring CDP, page 20-2
- Monitoring and Maintaining CDP, page 20-5

Understanding CDP

CDP is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

On the switch, CDP enables the Cluster Management Suite to display a graphical view of the network. The switch uses CDP to find cluster candidates and maintain information about cluster members and other devices up to three cluster-enabled devices away from the command switch by default.

The switch supports CDP version 2.
Chapter 20 Configuring CDP

Configuring CDP

These sections include CDP configuration information and procedures:

- Default CDP Configuration, page 20-2
- Configuring the CDP Characteristics, page 20-2
- Disabling and Enabling CDP, page 20-3
- Disabling and Enabling CDP on an Interface, page 20-4

Default CDP Configuration

Table 20-1 shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Configuring the CDP Characteristics

You can configure the frequency of CDP updates, the amount of time to hold the information before discarding it, and whether or not to send version-2 advertisements.

Beginning in privileged EXEC mode, follow these steps to configure the CDP timer, holdtime, and advertisement type.

Note

Steps 2 through 4 are all optional and can be performed in any order.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 cdp timer seconds</td>
<td>(Optional) Set the transmission frequency of CDP updates in seconds. The range is from 5 to 254; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 3 cdp holdtime seconds</td>
<td>(Optional) Specify the amount of time a receiving device should hold the information sent by your device before discarding it. The range is from 10 to 255 seconds; the default is 180 seconds.</td>
</tr>
<tr>
<td>Step 4 cdp advertise-v2</td>
<td>(Optional) Configure CDP to send version-2 advertisements. This is the default state.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 20      Configuring CDP

Configuring CDP

Use the no form of the CDP commands to return to the default settings.

This example shows how to configure and verify CDP characteristics.

Switch# configure terminal
Switch(config)# cdp timer 50
Switch(config)# cdp holdtime 120
Switch(config)# cdp advertise-v2
Switch(config)# end

Switch# show cdp
Global CDP information:
Sending CDP packets every 50 seconds
Sending a holdtime value of 120 seconds
Sending CDPv2 advertisements is enabled

For additional CDP show commands, see the “Monitoring and Maintaining CDP” section on page 20-5.

Disabling and Enabling CDP

CDP is enabled by default.

Creating and maintaining switch clusters is based on the regular exchange of CDP messages. Disabling CDP can interrupt cluster discovery. For more information, see Chapter 6, “Clustering Switches.”

Beginning in privileged EXEC mode, follow these steps to disable the CDP device discovery capability:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no cdp run</td>
<td>Disable CDP.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 cdp run</td>
<td>Enable CDP after disabling it.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
This example shows how to enable CDP if it has been disabled.

Switch# configure terminal
Switch(config)# cdp run
Switch(config)# end

### Disabling and Enabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and receive CDP information.

Beginning in privileged EXEC mode, follow these steps to disable CDP on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface on which you are disabling CDP.</td>
</tr>
<tr>
<td>Step 3: no cdp enable</td>
<td>Disable CDP on an interface.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP on an interface when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface on which you are enabling CDP.</td>
</tr>
<tr>
<td>Step 3: cdp enable</td>
<td>Enable CDP on an interface after disabling it.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP on an interface when it has been disabled.

Switch# configure terminal
Switch(config)# interface fastethernet0/5
Switch(config-if)# cdp enable
Switch(config-if)# end
Monitoring and Maintaining CDP

To monitor and maintain CDP on your device, perform one or more of these tasks, beginning in privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cdp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear cdp table</td>
<td>Delete the CDP table of information about neighbors.</td>
</tr>
<tr>
<td>show cdp</td>
<td>Display global information, such as frequency of transmissions and the holdtime for packets being sent.</td>
</tr>
<tr>
<td>show cdp entry entry-name [protocol</td>
<td>version]</td>
</tr>
<tr>
<td></td>
<td>You can enter an asterisk (*) to display all CDP neighbors, or you can enter the name of the neighbor about which you want information.</td>
</tr>
<tr>
<td></td>
<td>You can also limit the display to information about the protocols enabled on the specified neighbor or information about the version of software running on the device.</td>
</tr>
<tr>
<td>show cdp interface [type number]</td>
<td>Display information about interfaces where CDP is enabled.</td>
</tr>
<tr>
<td></td>
<td>You can limit the display to the type of interface or the number of the interface about which you want information (for example, entering gigabitethernet 0/1 displays information only about Gigabit Ethernet port 1).</td>
</tr>
<tr>
<td>show cdp neighbors [type number] [detail]</td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, platform, and port ID.</td>
</tr>
<tr>
<td></td>
<td>You can limit the display to neighbors on a specific type or number of interface or expand the display to provide more detailed information.</td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Display CDP counters, including the number of packets sent and received and checksum errors.</td>
</tr>
</tbody>
</table>

This is an example of the output from the show cdp privileged EXEC commands:

Switch# show cdp
Global CDP information:
   Sending CDP packets every 50 seconds
   Sending a holdtime value of 120 seconds
   Sending CDPv2 advertisements is enabled
Configuring SPAN and RSPAN

This chapter describes how to configure Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) on your switch.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:
- Understanding SPAN and RSPAN, page 21-1
- Configuring SPAN, page 21-8
- Configuring RSPAN, page 21-14
- Displaying SPAN and RSPAN Status, page 21-20

Understanding SPAN and RSPAN

You can analyze network traffic passing through ports or VLANs by using SPAN to send a copy of the traffic to another port on the switch that has been connected to a SwitchProbe device or other Remote Monitoring (RMON) probe. SPAN mirrors received or sent (or both) traffic on a source port and received traffic on one or more source ports or source VLANs, to a destination port for analysis.

For example, in Figure 21-1, all traffic on port 5 (the source port) is mirrored to port 10 (the destination port). A network analyzer on port 10 receives all network traffic from port 5 without being physically attached to port 5.
Understanding SPAN and RSPAN

Only traffic that enters or leaves source ports or traffic that enters source VLANs can be monitored by using SPAN; traffic that gets routed to ingress source ports or source VLANs cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN is not monitored; however, traffic that is received on the source VLAN and routed to another VLAN is monitored.

RSPAN extends SPAN by enabling remote monitoring of multiple switches across your network. The traffic for each RSPAN session is carried over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating switches. The SPAN traffic from the sources is copied onto the RSPAN VLAN through a reflector port and then forwarded over trunk ports that are carrying the RSPAN VLAN to any RSPAN destination sessions monitoring the RSPAN VLAN, as shown in Figure 21-2.

Span and RSPAN do not affect the switching of network traffic on source ports or source VLANs; a copy of the packets received or sent by the source interfaces are sent to the destination interface. Except for traffic that is required for the SPAN or RSPAN session, reflector ports and destination ports do not receive or forward traffic.
SPAN and RSPAN Concepts and Terminology

This section describes concepts and terminology associated with SPAN and RSPAN configuration.

SPAN Session

A local SPAN session is an association of a destination port with source ports and source VLANs. An RSPAN session is an association of source ports and source VLANs across your network with an RSPAN VLAN. The destination source is the RSPAN VLAN.

You configure SPAN sessions by using parameters that specify the source of network traffic to monitor. Traffic monitoring in a SPAN session has these restrictions:

- You can monitor incoming traffic on a series or range of ports and VLANs.
- You can monitor outgoing traffic on a single port; you cannot monitor outgoing traffic on multiple ports.
- You cannot monitor outgoing traffic on VLANs.

You can configure two separate SPAN or RSPAN sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.

SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mbps port monitoring a 100-Mbps port, results in dropped or lost packets.

You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session. The `show monitor session session_number` privileged EXEC command displays the operational status of a SPAN session.

A SPAN session remains inactive after system power-on until the destination port is operational.

Traffic Types

SPAN sessions include these traffic types:

- **Receive (Rx) SPAN**—The goal of receive (or ingress) SPAN is to monitor as much as possible all the packets received by the source interface or VLAN before any modification or processing is performed by the switch. A copy of each packet received by the source is sent to the destination port for that SPAN session. You can monitor a series or range of ingress ports or VLANs in a SPAN session.

On tagged packets (Inter-Switch Link [ISL] or IEEE 802.1Q), the tagging is removed at the ingress port. At the destination port, if tagging is enabled, the packets appear with the ISL or 802.1Q headers. If no tagging is specified, packets appear in the native format.

Packets that are modified because of routing are copied without modification for Rx SPAN; that is, the original packet is copied. Packets that are modified because of quality of service (QoS)—for example, modified Differentiated Services Code Point (DSCP)—are copied with modification for Rx SPAN.

Some features that can cause a packet to be dropped during receive processing have no effect on SPAN; the destination port receives a copy of the packet even if the actual incoming packet is dropped. These features include IP standard and extended input access control lists (ACLs), IP
standard and extended output ACLs for unicast and ingress QoS policing. VLAN maps, ingress QoS policing, and policy-based routing. Switch congestion that causes packets to be dropped also has no effect on SPAN.

- **Transmit (Tx) SPAN**—The goal of transmit (or egress) SPAN is to monitor as much as possible all the packets sent by the source interface after all modification and processing is performed by the switch. A copy of each packet sent by the source is sent to the destination port for that SPAN session. The copy is provided after the packet is modified.

  Only one egress source port is allowed per SPAN session. VLAN monitoring is not supported in the egress direction.

  Packets that are modified because of routing—for example, with a time-to-live (TTL) or MAC-address modification—are duplicated at the destination port. On packets that are modified because of QoS, the modified packet might not have the same DSCP (IP packet) or CoS (non-IP packet) as the SPAN source.

  Some features that can cause a packet to be dropped during transmit processing might also affect the duplicated copy for SPAN. These features include VLAN maps, IP standard and extended output ACLs on multicast packets, and egress QoS policing. In the case of output ACLs, if the SPAN source drops the packet, the SPAN destination would also drop the packet. In the case of egress QoS policing, if the SPAN source drops the packet, the SPAN destination might not drop it. If the source port is oversubscribed, the destination ports will have different dropping behavior.

- **Both**—In a SPAN session, you can monitor a single port for both received and sent packets.

### Source Port

A source port (also called a *monitored port*) is a switched or routed port that you monitor for network traffic analysis. In a single local SPAN session or RSPAN source session, you can monitor source port traffic such as received (Rx), transmitted (Tx), or bidirectional (both); however, on a VLAN, you can monitor only received traffic. The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source ingress VLANs (up to the maximum number of VLANs supported).

A source port has these characteristics:

- It can be any port type (for example, EtherChannel, Fast Ethernet, Gigabit Ethernet, and so forth).
- It can be monitored in multiple SPAN sessions.
- It cannot be a destination port.
- Each source port can be configured with a direction (ingress, egress, or both) to monitor. For EtherChannel sources, the monitored direction would apply to all the physical ports in the group.
- Source ports can be in the same or different VLANs.
- For VLAN SPAN sources, all active ports in the source VLAN are included as source ports.

You can configure a trunk port as a source port. By default, all VLANs active on the trunk are monitored. You can limit SPAN traffic monitoring on trunk source ports to specific VLANs by using VLAN filtering. Only switched traffic in the selected VLANs is sent to the destination port. This feature affects only traffic forwarded to the destination SPAN port and does not affect the switching of normal traffic. This feature is not allowed in sessions with VLAN sources.
**Destination Port**

Each local SPAN session or RSPAN destination session must have a destination port (also called a *monitoring port*) that receives a copy of traffic from the source ports and VLANs.

The destination port has these characteristics:

- It must reside on the same switch as the source port (for a local SPAN session).
- It can be any Ethernet physical port.
- It can participate in only one SPAN session at a time (a destination port in one SPAN session cannot be a destination port for a second SPAN session).
- It cannot be a source port or a reflector port.
- It cannot be an EtherChannel group or a VLAN.
- It can be a physical port that is assigned to an EtherChannel group, even if the EtherChannel group has been specified as a SPAN source. The port is removed from the group while it is configured as a SPAN destination port.
- When it is active, incoming traffic is disabled. The port does not transmit any traffic except that required for the SPAN session.
- It does not participate in spanning tree while the SPAN session is active.
- When it is a destination port, it does not participate in any of the Layer 2 protocols (STP, VTP, CDP, DTP, PagP).
- A destination port that belongs to a source VLAN of any SPAN session is excluded from the source list and is not monitored.
- No address learning occurs on the destination port.
- A destination port receives copies of sent and received traffic for all monitored source ports. If a destination port is oversubscribed, it could become congested. This could affect traffic forwarding on one or more of the source ports.

**Reflector Port**

The reflector port is the mechanism that copies packets onto an RSPAN VLAN. The reflector port forwards only the traffic from the RSPAN source session with which it is affiliated. Any device connected to a port set as a reflector port loses connectivity until the RSPAN source session is disabled.

The reflector port has these characteristics:

- It is a port set to loopback.
- It cannot be an EtherChannel group, it does not trunk, and it cannot do protocol filtering.
- It can be a physical port that is assigned to an EtherChannel group, even if the EtherChannel group is specified as a SPAN source. The port is removed from the group while it is configured as a reflector port.
- A port used as a reflector port cannot be a SPAN source or destination port, nor can a port be a reflector port for more than one session at a time.
- It is invisible to all VLANs.
- The native VLAN for looped-back traffic on a reflector port is the RSPAN VLAN.
- The reflector port loops back untagged traffic to the switch. The traffic is then placed on the RSPAN VLAN and flooded to any trunk ports that carry the RSPAN VLAN.
• Spanning tree is automatically disabled on a reflector port.
• A reflector port receives copies of sent and received traffic for all monitored source ports. If a reflector port is oversubscribed, it could become congested. This could affect traffic forwarding on one or more of the source ports.

If the bandwidth of the reflector port is not sufficient to handle the traffic from the corresponding source ports and VLANs, the excess packets are dropped. A 10/100 port reflects at 100 Mbps. A Gigabit port reflects at 1 Gbps.

VLAN-Based SPAN

VLAN-based SPAN (VSPAN) is the monitoring of the network traffic in one or more VLANs. You can configure VSPAN to monitor only received (Rx) traffic, which applies to all the ports for that VLAN.

Use these guidelines for VSPAN sessions:
• Only traffic on the monitored VLAN is sent to the destination port.
• If a destination port belongs to a source VLAN, it is excluded from the source list and is not monitored.
• If ports are added to or removed from the source VLANs, the traffic on the source VLAN received by those ports is added to or removed from the sources being monitored.
• VLAN pruning and the VLAN allowed list have no effect on SPAN monitoring.
• VSPAN only monitors traffic that enters the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the multilayer switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and is not received on the SPAN destination port.
• You cannot use filter VLANs in the same session with VLAN sources.
• You can monitor only Ethernet VLANs.

SPAN Traffic

You can use local SPAN to monitor all network traffic, including multicast and bridge protocol data unit (BPDU) packets, and Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), and Port Aggregation Protocol (PagP) packets. You cannot use RSPAN to monitor Layer 2 protocols. See the “RSPAN Configuration Guidelines” section on page 21-14 for more information.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the sources a1 Rx monitor and the a2 Rx and Tx monitor to destination port d1. If a packet enters the switch through a1 and is switched to a2, both incoming and outgoing packets are sent to destination port d1. Both packets are the same (unless a Layer-3 rewrite occurs, in which case the packets are different because of the added Layer 3 information).
SPAN and RSPAN Interaction with Other Features

SPAN interacts with these features:

- **Routing**—Ingress SPAN does not monitor routed traffic. VSPAN only monitors traffic that enters the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the multilayer switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and not received on the SPAN destination port.

- **Spanning Tree Protocol (STP)**—A destination port or a reflector port does not participate in STP while its SPAN or RSPAN session is active. The destination or reflector port can participate in STP after the SPAN or RSPAN session is disabled. On a source port, SPAN does not affect the STP status. STP can be active on trunk ports carrying an RSPAN VLAN.

- **Cisco Discovery Protocol (CDP)**—A SPAN destination port does not participate in CDP while the SPAN session is active. After the SPAN session is disabled, the port again participates in CDP.

- **VLAN Trunking Protocol (VTP)**—You can use VTP to prune an RSPAN VLAN between switches.

- **VLAN and trunking**—You can modify VLAN membership or trunk settings for source, destination, or reflector ports at any time. However, changes in VLAN membership or trunk settings for a destination or reflector port do not take effect until you disable the SPAN or RSPAN session. Changes in VLAN membership or trunk settings for a source port immediately take effect, and the respective SPAN sessions automatically adjust accordingly.

- **EtherChannel**—You can configure an EtherChannel group as a source port but not as a SPAN destination port. When a group is configured as a SPAN source, the entire group is monitored.

  If a port is added to a monitored EtherChannel group, the new port is added to the SPAN source port list. If a port is removed from a monitored EtherChannel group, it is automatically removed from the source port list. If the port is the only port in the EtherChannel group, the EtherChannel group is removed from SPAN.

  If a physical port that belongs to an EtherChannel group is configured as a SPAN source, destination, or reflector port, it is removed from the group. After the port is removed from the SPAN session, it rejoins the EtherChannel group. Ports removed from an EtherChannel group remain members of the group, but they are in the down or standalone state.

  If a physical port that belongs to an EtherChannel group is a destination or reflector port and the EtherChannel group is a source, the port is removed from the EtherChannel group and from the list of monitored ports.

- **QoS**—For ingress monitoring, the packets sent to the SPAN destination port might be different from the packets actually received at the SPAN source port because the packets are forwarded after ingress QoS classification and policing. The packet DSCP might not be the same as the received packet.

  For egress monitoring, the packets sent out the SPAN destination port might not be the same as the packets sent out of SPAN source ports because the egress QoS policing at the SPAN source port might change the packet classification. QoS policing is not applied at SPAN destination ports.

- **Multicast traffic** can be monitored. For egress and ingress port monitoring, only a single unedited packet is sent to the SPAN destination port. It does not reflect the number of times the multicast packet is sent.

- A secure port cannot be a SPAN destination port.

- You can enable 802.1X on a port that is a SPAN destination or reflector port; however, 802.1X is disabled until the port is removed as a SPAN destination or reflector port. You can enable 802.1X on a SPAN source port.
SPAN and RSPAN Session Limits

You can configure (and store in NVRAM) a maximum of two SPAN or RSPAN sessions on each switch. You can divide the two sessions between SPAN, RSPAN source, and RSPAN destination sessions. You can configure multiple source ports or source VLANs for each session.

Default SPAN and RSPAN Configuration

Table 21-1 shows the default SPAN and RSPAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN state</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Source port traffic to monitor</td>
<td>Both received and sent traffic (both); for additional source ports or VLANs, only received (rx) traffic can be monitored.</td>
</tr>
<tr>
<td>Encapsulation type (destination port)</td>
<td>Native form (no encapsulation type header).</td>
</tr>
</tbody>
</table>

Configuring SPAN

This section describes how to configure SPAN on your switch. It contains this configuration information:

- SPAN Configuration Guidelines, page 21-8
- Creating a SPAN Session and Specifying Ports to Monitor, page 21-9
- Removing Ports from a SPAN Session, page 21-11
- Specifying VLANs to Monitor, page 21-12
- Specifying VLANs to Filter, page 21-13

SPAN Configuration Guidelines

Follow these guidelines when configuring SPAN:

- SPAN sessions can coexist with RSPAN sessions within the limits described in the “SPAN and RSPAN Session Limits” section on page 21-8.
- The destination port cannot be a source port; a source port cannot be a destination port.
- You can have only one destination port per SPAN session. You cannot have two SPAN sessions using the same destination port.
- An EtherChannel port can be a SPAN source port; it cannot be a SPAN destination port.
- An 802.1X port can be a SPAN source port. You can enable 802.1X on a port that is a SPAN destination or reflector port; however, 802.1X is disabled until the port is removed as a SPAN destination or reflector port.
- For SPAN source ports, you can monitor transmitted traffic for a single port and received traffic for a series or range of ports or VLANs.
When you configure a switch port as a SPAN destination port, it is no longer a normal switch port; only monitored traffic passes through the SPAN destination port.

A trunk port can be a source port or a destination port. Outgoing packets through the SPAN destination port carry the configured encapsulation headers—either Inter-Switch Link (ISL) or IEEE 802.1Q. If no encapsulation type is defined, the packets are sent in native form.

You can configure a disabled port to be a source or destination port, but the SPAN function does not start until the destination port and at least one source port or source VLAN are enabled.

For received traffic, you can mix multiple source port and source VLANs within a single SPAN session. You cannot mix source VLANs and filter VLANs within a SPAN session; you can have source VLANs or filter VLANs, but not both at the same time.

You can limit SPAN traffic to specific VLANs by using the `filter vlan` keyword. If a trunk port is being monitored, only traffic on the VLANs specified with this keyword is monitored. By default, all VLANs are monitored on a trunk port.

A SPAN destination port never participates in any VLAN spanning tree. SPAN does include BPDUs in the monitored traffic, so any spanning-tree BPDUs received on the SPAN destination port for a SPAN session were copied from the SPAN source ports.

When SPAN is enabled, configuration changes have these results:
- If you change the VLAN configuration of a destination port, the change is not effective until SPAN is disabled.
- If you disable all source ports or the destination port, the SPAN function stops until both a source and the destination port are enabled.
- If the source is a VLAN, the number of ports being monitored changes when you move a port in or out of the monitored VLAN.

### Creating a SPAN Session and Specifying Ports to Monitor

Beginning in privileged EXEC mode, follow these steps to create a SPAN session and specify the source (monitored) and destination (monitoring) ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt; configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt; no monitor session {session_number</td>
<td>all</td>
</tr>
</tbody>
</table>
### Configuring SPAN

**Step 3**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `monitor session session_number source interface interface-id [+, -] [both | rx | tx]` | Specify the SPAN session and the source port (monitored port). For `session_number`, specify 1 or 2. For `interface-id`, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces. (Optional) `[+, -]` Specify a series or range of interfaces. Enter a space after the comma; enter a space before and after the hyphen. (Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.  
  - `both`—Monitor both received and sent traffic.
  - `rx`—Monitor received traffic.
  - `tx`—Monitor sent traffic. |

**Step 4**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `monitor session session_number destination interface interface-id [encapsulation {dot1q | isl}]` | Specify the SPAN session and the destination port (monitoring port). For `session_number`, specify 1 or 2. For `interface-id`, specify the destination port. Valid interfaces include physical interfaces. (Optional) Specify the encapsulation header for outgoing packets. If not specified, packets are sent in native form.  
  - `isl`—Use ISL encapsulation.
  - `dot1q`—Use 802.1Q encapsulation. |

**Step 5**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Step 6**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show monitor [session session_number]</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

**Step 7**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to set up a SPAN session, session 1, for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is cleared, and then bidirectional traffic is mirrored from source port 1 to destination port 10.

```bash
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface fastEthernet0/1
Switch(config)# monitor session 1 destination interface fastEthernet0/10
 encapsulation dot1q
Switch(config)# end
```
Removing Ports from a SPAN Session

Beginning in privileged EXEC mode, follow these steps to remove a port as a SPAN source for a session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session session_number source interface interface-id [*,</td>
</tr>
<tr>
<td></td>
<td>Specify the characteristics of the source port (monitored port) and SPAN session to remove. For session, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the source port to no longer monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use [*,</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the direction of traffic (both, rx, or tx) to no longer monitor. If you do not specify a traffic direction, both transmit and receive are disabled.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a source or destination port from the SPAN session, use the no monitor session session_number source interface interface-id global configuration command or the no monitor session session_number destination interface interface-id global configuration command. To change the encapsulation type back to the default (native), use the monitor session session_number destination interface interface-id without the encapsulation keyword.

This example shows how to remove port 1 as a SPAN source for SPAN session 1:

```
Switch(config)# no monitor session 1 source interface fastEthernet0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface fastEthernet0/1 rx
```

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.
Specifying VLANs to Monitor

VLAN monitoring is similar to port monitoring. Beginning in privileged EXEC mode, follow these steps to specify VLANs to monitor:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>monitor session session_number source vlan vlan-id [,</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>monitor session session_number destination interface interface-id [encapsulation {dot1q</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove one or more source VLANs or destination ports from the SPAN session, use the no monitor session session_number source vlan vlan-id rx global configuration command or the no monitor session session_number destination interface interface-id global configuration command.

This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination port 7. The configuration is then modified to also monitor received traffic on all ports belonging to VLAN 10.

Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet0/7
Switch(config)# monitor session 2 source vlan 10 rx
Switch(config)# end
## Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit SPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> no monitor session {session_number</td>
<td>Clear any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> monitor session session_number source</td>
<td>Specify the characteristics of the source port (monitored port) and</td>
</tr>
<tr>
<td></td>
<td>interface interface-id rx</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> monitor session session_number filter vlan vlan-id [,</td>
<td>Limit the SPAN source traffic to specific VLANs.</td>
</tr>
<tr>
<td></td>
<td>]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> monitor session session_number destination interface interface-id</td>
<td>Specify the characteristics of the destination port (monitoring port)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> show monitor [session session_number]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 8</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the **no monitor session session_number filter** global configuration command.

This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor traffic received on trunk port 4, and send traffic for only VLANs 1 through 5 and 9 to destination port 8.

```bash
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet0/4 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination interface gigabitethernet0/8
Switch(config)# end
```
Chapter 21 Configuring SPAN and RSPAN

21-14

Configuring RSPAN

This section describes how to configure RSPAN on your switch. It contains this configuration information:

- RSPAN Configuration Guidelines, page 21-14
- Creating an RSPAN Session, page 21-15
- Creating an RSPAN Destination Session, page 21-16
- Removing Ports from an RSPAN Session, page 21-17
- Specifying VLANs to Monitor, page 21-18
- Specifying VLANs to Filter, page 21-19

RSPAN Configuration Guidelines

Follow these guidelines when configuring RSPAN:

- All the items in the “SPAN Configuration Guidelines” section on page 21-8 apply to RSPAN.

Note

As RSPAN VLANs have special properties, you should reserve a few VLANs across your network for use as RSPAN VLANs; do not assign access ports to these VLANs.

Note

You can apply an output access control list (ACL) to RSPAN traffic to selectively filter or monitor specific packets. Specify these ACLs on the RSPAN VLAN in the RSPAN source switches.

- RSPAN sessions can coexist with SPAN sessions within the limits described in the “SPAN and RSPAN Session Limits” section on page 21-8.
- For RSPAN configuration, you can distribute the source ports and the destination ports across multiple switches in your network.
- A port cannot serve as an RSPAN source port or RSPAN destination port while designated as an RSPAN reflector port.
- When you configure a switch port as a reflector port, it is no longer a normal switch port; only looped-back traffic passes through the reflector port.
- RSPAN does not support BPDU packet monitoring or other Layer 2 switch protocols.
- The RSPAN VLAN is configured only on trunk ports and not on access ports. To avoid unwanted traffic in RSPAN VLANs, make sure that the VLAN remote-span feature is supported in all the participating switches. Access ports on the RSPAN VLAN are silently disabled.
- RSPAN VLANs are included as sources for port-based RSPAN sessions when source trunk ports have active RSPAN VLANs. RSPAN VLANs can also be sources in SPAN sessions.
- You can configure any VLAN as an RSPAN VLAN as long as these conditions are met:
  - No access port is configured in the RSPAN VLAN.
  - The same RSPAN VLAN is used for an RSPAN session in all the switches.
  - All participating switches support RSPAN.
You should create an RSPAN VLAN before configuring an RSPAN source or destination session.

If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network for VLAN-IDs that are lower than 1005.

Creating an RSPAN Session

First create an RSPAN VLAN that does not exist for the RSPAN session in any of the switches that will participate in RSPAN. With VTP enabled in the network, you can create the RSPAN VLAN in one switch, and VTP propagates it to the other switches in the VTP domain for VLAN-IDs that are lower than 1005.

Use VTP pruning to get efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.

After creating the RSPAN VLAN, begin in privileged EXEC mode, and follow these steps to start an RSPAN source session and to specify the source (monitored) ports and the destination RSPAN VLAN.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 no monitor session {session_number | all | local | remote} | Clear any existing RSPAN configuration for the session.  
  For session_number, specify 1 or 2.  
  Specify all to remove all RSPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions. |
| Step 3 monitor session session_number source interface interface-id [, | -] [both | rx | tx] | Specify the RSPAN session and the source port (monitored port).  
  For session_number, specify 1 or 2.  
  For interface-id, specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).  
  (Optional) [, | -] Specify a series or range of interfaces. Enter a space after the comma; enter a space before and after the hyphen.  
  (Optional) Specify the direction of traffic to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.  
  • both—Monitor both received and sent traffic.  
  • rx—Monitor received traffic.  
  • tx—Monitor sent traffic. |
| Step 4 monitor session session_number destination remote vlan vlan-id reflector-port interface | Specify the RSPAN session, the destination remote VLAN, and the reflector port.  
  For session_number, enter 1 or 2.  
  For vlan-id, specify the RSPAN VLAN to carry the monitored traffic to the destination port.  
  For interface, specify the interface that will flood the RSPAN traffic onto the RSPAN VLAN. |
| Step 5 end | Return to privileged EXEC mode. |
Configuring RSPAN

This example shows how to clear any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination RSPAN VLAN and the reflector-port.

```
Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface fastEthernet0/10 tx
Switch(config)# monitor session 1 source interface fastEthernet0/2 rx
Switch(config)# monitor session 1 source interface fastEthernet0/3 rx
Switch(config)# monitor session 1 source interface port-channel 102 rx
Switch(config)# monitor session 1 destination remote vlan 901 reflector-port fastEthernet0/1
Switch(config)# end
```

Creating an RSPAN Destination Session

Beginning in privileged EXEC mode, follow these steps to create an RSPAN destination session and to specify the source RSPAN VLAN and the destination port:

```
Step 1 configure terminal
Step 2 monitor session session_number source remote vlan vlan-id
Step 3 monitor session session_number destination interface interface-id [encapsulation {dot1q | isl}]
Step 4 end
Step 5 show monitor [session session_number]
Step 6 copy running-config startup-config
```

This example shows how to configure VLAN 901 as the source remote VLAN and port 5 as the destination interface:

```
Switch(config)# monitor session 1 source remote vlan 901
Switch(config)# monitor session 1 destination interface fastEthernet0/5
Switch(config)# end
```
Removing Ports from an RSPAN Session

Beginning in privileged EXEC mode, follow these steps to remove a port as an RSPAN source for a session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>no monitor session session_number source interface interface-id [ ,</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to remove port 1 as an RSPAN source for RSPAN session 1:

```
Switch(config)# no monitor session 1 source interface fastEthernet0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface fastEthernet0/1 rx
```

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.
### Specifying VLANs to Monitor

VLAN monitoring is similar to port monitoring. Beginning in privileged EXEC mode, follow these steps to specify VLANs to monitor:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>monitor session session_number source vlan vlan-id [,</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>monitor session session_number destination remote vlan vlan-id reflector port interface Specify the RSPAN session, the destination remote VLAN, and the reflector port. For session_number, enter 1 or 2. For vlan-id, specify the RSPAN VLAN to carry the monitored traffic to the destination port. For interface, specify the interface that will flood the RSPAN traffic to the RSPAN VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show monitor [session session_number] Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove one or more source VLANs from the RSPAN session, use the no monitor session session_number source vlan vlan-id rx global configuration command.

This example shows how to clear any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination remote VLAN 902 using reflector port 7. The configuration is then modified to also monitor received traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination remote vlan 902 reflector-port gigabitethernet0/7
Switch(config)# end
```
Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit RSPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> no monitor session {session_number</td>
<td>Clear any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td>local</td>
<td>remote}</td>
</tr>
<tr>
<td></td>
<td>Specify all to remove all SPAN sessions, local to remove all local</td>
</tr>
<tr>
<td></td>
<td>sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 3</strong> monitor session session_number source interface interface-id rx</td>
<td>Specify the characteristics of the source port (monitored port) and</td>
</tr>
<tr>
<td></td>
<td>RSPAN session.</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the source port to monitor. The interface</td>
</tr>
<tr>
<td></td>
<td>specified must already be configured as a trunk port.</td>
</tr>
<tr>
<td><strong>Step 4</strong> monitor session session_number filter vlan vlan-id [,</td>
<td>-]</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, the range is 1 to 4094; do not enter leading zeros.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use a comma (,) to specify a series of VLANs or use a</td>
</tr>
<tr>
<td></td>
<td>hyphen (-) to specify a range of VLANs. Enter a space after the</td>
</tr>
<tr>
<td></td>
<td>comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td><strong>Step 5</strong> monitor session session_number destination remote vlan vlan-id reflector port interface</td>
<td>Specify the RSPAN session, the destination remote VLAN, and the</td>
</tr>
<tr>
<td></td>
<td>reflector port.</td>
</tr>
<tr>
<td></td>
<td>For session_number, enter 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, specify the RSPAN VLAN to carry the monitored traffic</td>
</tr>
<tr>
<td></td>
<td>to the destination port.</td>
</tr>
<tr>
<td></td>
<td>For interface, specify the interface that will flood the RSPAN traffic</td>
</tr>
<tr>
<td></td>
<td>to the RSPAN VLAN.</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> show monitor [session session_number]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 8</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the `no monitor session session_number filter vlan` global configuration command.

This example shows how to clear any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 4, and send traffic for only VLANs 1 through 5 and 9 to destination remote VLAN 902 with port 8 as the reflector port.

Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet0/4 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination remote vlan 902 reflector-port gigabitethernet0/8
Switch(config)# end
Displaying SPAN and RSPAN Status

To display the status of the current SPAN or RSPAN configuration, use the `show monitor` privileged EXEC command.

This is an example of output for the `show monitor` privileged EXEC command for RSPAN source session 1:

```
Switch# show monitor session 1
Session 1

Type: Remote Source Session
Source Ports:
 RX Only: Fa0/3
 TX Only: None
 Both: None
Source VLANs:
 RX Only: None
 TX Only: None
 Both: None
Source RSPAN VLAN: None
Destination Ports: None
 Encapsulation: Native
Reflector Port: Fa0/4
Filter VLANs: None
Dest RSPAN VLAN: 901
```
Configuring RMON

This chapter describes how to configure Remote Network Monitoring (RMON) on your switch. RMON is a standard monitoring specification that defines a set of statistics and functions that can be exchanged between RMON-compliant console systems and network probes. RMON provides you with comprehensive network-fault diagnosis, planning, and performance-tuning information.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding RMON, page 22-1
- Configuring RMON, page 22-2
- Displaying RMON Status, page 22-6

Understanding RMON

RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. You can use the RMON feature with the Simple Network Management Protocol (SNMP) agent in the switch to monitor all the traffic flowing among switches on all connected LAN segments.
The switch supports these RMON groups (defined in RFC 1757):

- **Statistics (RMON group 1)**—Collects Ethernet, Fast Ethernet, and Gigabit Ethernet statistics on an interface.
- **History (RMON group 2)**—Collects a history group of statistics on Ethernet, Fast Ethernet, and Gigabit Ethernet interfaces for a specified polling interval.
- **Alarm (RMON group 3)**—Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold), and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap.
- **Event (RMON group 9)**—Determines the action to take when an event is triggered by an alarm. The action can be to generate a log entry or an SNMP trap.

Because switches supported by this IOS release use hardware counters for RMON data processing, the monitoring is more efficient, and little processing power is required.

### Configuring RMON

This section describes how to configure RMON on your switch. It contains this configuration information:

- **Default RMON Configuration**, page 22-3
- **Configuring RMON Alarms and Events**, page 22-3
- **Configuring RMON Collection on an Interface**, page 22-5
Note

RMON configuration, status, and display for remote CPE FE interfaces is supported through SNMP only by using the RMON-MIB.

Default RMON Configuration

RMON is disabled by default; no alarms or events are configured.

Only RMON 1 is supported on the switch.

Configuring RMON Alarms and Events

You can configure your switch for RMON by using the command-line interface (CLI) or an SNMP-compatible network management station. We recommend that you use a generic RMON console application on the network management station (NMS) to take advantage of RMON’s network management capabilities. You must also configure SNMP on the switch to access RMON MIB objects. For more information, see Chapter 24, “Configuring SNMP.”

Beginning in privileged EXEC mode, follow these steps to enable RMON alarms and events:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>rmon alarm number variable interval { absolute</td>
<td>delta } rising-threshold value [event-number] falling-threshold value [event-number] [owner string]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For number, specify the alarm number. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For variable, specify the MIB object to monitor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For interval, specify the time in seconds the alarm monitors the MIB variable. The range is 1 to 4294967295 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specify the absolute keyword to test each MIB variable directly; specify the delta keyword to test the change between samples of a MIB variable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For value, specify a number at which the alarm is triggered and one for when the alarm is reset. The range for the rising threshold and falling threshold values is -2147483648 to 2147483647.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For event-number, specify the event number to trigger when the rising or falling threshold exceeds its limit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For owner string, specify the owner of the alarm.</td>
</tr>
</tbody>
</table>
## Configuring RMON

**Chapter 22** Configuring RMON

### Configuring RMON

To disable an alarm, use the `no rmon alarm number` global configuration command on each alarm you configured. You cannot disable at once all the alarms that you configured. To disable an event, use the `no rmon event number` global configuration command. To learn more about alarms and events and how they interact with each other, refer to RFC 1757.

You can set an alarm on any MIB object. The following example configures RMON alarm number 10 by using the `rmon alarm` command. The alarm monitors the MIB variable `ifEntry.20.1` once every 20 seconds until the alarm is disabled and checks the change in the variable’s rise or fall. If the `ifEntry.20.1` value shows a MIB counter increase of 15 or more, such as from 100000 to 100015, the alarm is triggered. The alarm in turn triggers event number 1, which is configured with the `rmon event` command. Possible events can include a log entry or an SNMP trap. If the `ifEntry.20.1` value changes by 0, the alarm is reset and can be triggered again.

```
Switch(config)# rmon alarm 10 ifEntry.20.1 20 delta rising-threshold 15 1 falling-threshold 0 owner jjohnson
```

The following example creates RMON event number 1 by using the `rmon event` command. The event is defined as `High ifOutErrors` and generates a log entry when the event is triggered by the alarm. The user `jjones` owns the row that is created in the event table by this command. This example also generates an SNMP trap when the event is triggered.

```
Switch(config)# rmon event 1 log trap eventtrap description "High ifOutErrors" owner jjones
```

### Command and Purpose

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>rmon event number [description string] [log] [owner string] [trap community]</code></td>
<td>Add an event in the RMON event table that is associated with an RMON event number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>number</code>, assign an event number. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>description string</code>, specify a description of the event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) Use the <code>log</code> keyword to generate an RMON log entry when the event is triggered.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>owner string</code>, specify the owner of this event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For <code>community</code>, enter the SNMP community string used for this trap.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
<th>Return to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
## Configuring RMON Collection on an Interface

You must first configure RMON alarms and events to display collection information.

Beginning in privileged EXEC mode, follow these steps to collect group history statistics on an interface:

### Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface on which to collect history.</td>
</tr>
</tbody>
</table>
|        | `rmon collection history index [buckets bucket-number] [interval seconds] [owner ownername]` | Enable history collection for the specified number of buckets and time period.  
  - For `index`, identify the RMON group of statistics. The range is 1 to 65535.  
  - (Optional) For `buckets bucket-number`, specify the maximum number of buckets desired for the RMON collection history group of statistics. The range is 1 to 65535. The default is 50 buckets.  
  - (Optional) For `interval seconds`, specify the number of seconds in each polling cycle.  
  - (Optional) For `owner ownername`, enter the name of the owner of the RMON group of statistics. |

Step 4	end	Return to privileged EXEC mode.
	show running-config	Verify your entries.
	show rmon history	Display the contents of the switch history table.
	copy running-config startup-config	(Optional) Save your entries in the configuration file.

To disable history collection, use the `no rmon collection history index` interface configuration command.

Beginning in privileged EXEC mode, follow these steps to collect group Ethernet statistics on an interface:

### Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface on which to collect statistics.</td>
</tr>
</tbody>
</table>
|        | `rmon collection stats index [owner ownername]` | Enable RMON statistic collection on the interface.  
  - For `index`, specify the RMON group of statistics. The range is from 1 to 65535.  
  - (Optional) For `owner ownername`, enter the name of the owner of the RMON group of statistics. |

| Step 4 | end                       | Return to privileged EXEC mode.             |
|        | show running-config       | Verify your entries.                       |
To disable the collection of group Ethernet statistics, use the `no rmon collection stats index` interface configuration command.

**Displaying RMON Status**

To display the RMON status, use one or more of the privileged EXEC commands in Table 22-1:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show rmon statistics</code></td>
<td>Displays the contents of the switch statistics table.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Table 22-1  Commands for Displaying RMON Status

For information about the fields in these displays, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*. 

Catalyst 2950 Desktop Switch Software Configuration Guide
Configuring System Message Logging

This chapter describes how to configure system message logging on your switch.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding System Message Logging, page 23-1
- Configuring System Message Logging, page 23-2
- Displaying the Logging Configuration, page 23-12

Understanding System Message Logging

By default, a switch sends the output from system messages and debug privileged EXEC commands to a logging process. The logging process controls the distribution of logging messages to various destinations, such as the logging buffer, terminal lines, or a UNIX syslog server, depending on your configuration. The process also sends messages to the console.

Note
The syslog format is compatible with 4.3 BSD UNIX.

When the logging process is disabled, messages are sent only to the console. The messages are sent as they are generated, so message and debug output are interspersed with prompts or output from other commands. Messages are displayed on the console after the process that generated them has finished.

You can set the severity level of the messages to control the type of messages displayed on the console and each of the destinations. You can timestamp log messages or set the syslog source address to enhance real-time debugging and management. For information on possible messages, refer to the system message guide for this release.

You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. The switch software saves syslog messages in an internal buffer. You can remotely monitor system messages by accessing the switch through Telnet, through the console port, or by viewing the logs on a syslog server.
Configuring System Message Logging

These sections describe how to configure system message logging:

- System Log Message Format, page 23-2
- Default System Message Logging Configuration, page 23-3
- Disabling and Enabling Message Logging, page 23-4
- Setting the Message Display Destination Device, page 23-4
- Synchronizing Log Messages, page 23-6
- Enabling and Disabling Timestamps on Log Messages, page 23-7
- Enabling and Disabling Sequence Numbers in Log Messages, page 23-8
- Defining the Message Severity Level, page 23-8
- Limiting Syslog Messages Sent to the History Table and to SNMP, page 23-10
- Configuring UNIX Syslog Servers, page 23-10

System Log Message Format

System log messages can contain up to 80 characters and a percent sign (%), which follows the optional sequence number or timestamp information, if configured. Messages are displayed in this format:

seq no:timestamp: %facility-severity-MNEMONIC:description

The part of the message preceding the percent sign depends on the setting of the service sequence-numbers, service timestamps log datetime, service timestamps log datetime [localtime] [msec] [show-timezone], or service timestamps log uptime global configuration command.

Table 23-1 describes the elements of syslog messages.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq no:</td>
<td>Stamps log messages with a sequence number only if the service sequence-numbers global configuration command is configured. For more information, see the “Enabling and Disabling Sequence Numbers in Log Messages” section on page 23-8.</td>
</tr>
<tr>
<td>timestamp formats:</td>
<td>Date and time of the message or event. This information appears only if the service timestamps log [datetime] [log] global configuration command is configured. For more information, see the “Enabling and Disabling Timestamps on Log Messages” section on page 23-7.</td>
</tr>
<tr>
<td>mm/dd hh:mm:ss or hh:mm:ss (short uptime) or d h (long uptime)</td>
<td>facility The facility to which the message refers (for example, SNMP, SYS, and so forth). For a list of supported facilities, see Table 23-4 on page 23-12.</td>
</tr>
<tr>
<td>severity</td>
<td>Single-digit code from 0 to 7 that is the severity of the message. For a description of the severity levels, see Table 23-3 on page 23-9.</td>
</tr>
</tbody>
</table>
Chapter 23 Configuring System Message Logging

This example shows a partial switch system message:

00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up
00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/2, changed state to up
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down
00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to down
*Mar  1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
*Mar  1 18:48:50.483 UTC: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)

Default System Message Logging Configuration

Table 23-1 System Log Message Elements (continued)

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEMONIC</td>
<td>Text string that uniquely describes the message.</td>
</tr>
<tr>
<td>description</td>
<td>Text string containing detailed information about the event being reported.</td>
</tr>
</tbody>
</table>

Table 23-2 shows the default system message logging configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message logging to the console</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Console severity</td>
<td>Debugging (and numerically lower levels; see Table 23-3 on page 23-9).</td>
</tr>
<tr>
<td>Logging buffer size</td>
<td>4096 bytes.</td>
</tr>
<tr>
<td>Logging history size</td>
<td>1 message.</td>
</tr>
<tr>
<td>Timestamps</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Synchronous logging</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Logging server</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Syslog server IP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>Server facility</td>
<td>Local7 (see Table 23-4 on page 23-12).</td>
</tr>
<tr>
<td>Server severity</td>
<td>Informational (and numerically lower levels; see Table 23-3 on page 23-9).</td>
</tr>
</tbody>
</table>
Disabling and Enabling Message Logging

Message logging is enabled by default. It must be enabled to send messages to any destination other than the console. When enabled, log messages are sent to a logging process, which logs messages to designated locations asynchronously to the processes that generated the messages.

Beginning in privileged EXEC mode, follow these steps to disable message logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no logging on</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>show logging</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Disabling the logging process can slow down the switch because a process must wait until the messages are written to the console before continuing. When the logging process is disabled, messages are displayed on the console as soon as they are produced, often appearing in the middle of command output.

The logging synchronous global configuration command also affects the display of messages to the console. When this command is enabled, messages appear only after you press Return. For more information, see the “Synchronizing Log Messages” section on page 23-6.

To re-enable message logging after it has been disabled, use the logging on global configuration command.

Setting the Message Display Destination Device

If message logging is enabled, you can send messages to specific locations in addition to the console. Beginning in privileged EXEC mode, use one or more of the following commands to specify the locations that receive messages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>logging buffered [size]</td>
</tr>
</tbody>
</table>

**Note** Do not make the buffer size too large because the switch could run out of memory for other tasks. Use the show memory privileged EXEC command to view the free processor memory on the switch; however, this value is the maximum available, and the buffer size should not be set to this amount.
Chapter 23 Configuring System Message Logging

Configuring System Message Logging

The logging buffered global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the show logging privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the clear logging privileged EXEC command.

To disable logging to the console, use the no logging console global configuration command. To disable logging to a file, use the no logging file [severity-level-number | type] global configuration command.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>logging host</td>
<td>Log messages to a UNIX syslog server host. For host, specify the name or IP address of the host to be used as the syslog server. To build a list of syslog servers that receive logging messages, enter this command more than once. For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 23-10.</td>
</tr>
<tr>
<td>4</td>
<td>logging file flash:filename [max-file-size] [min-file-size] [severity-level-number</td>
<td>type]</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>terminal monitor</td>
<td>Log messages to a nonconsole terminal during the current session. Terminal parameter-setting commands are set locally and do not remain in effect after the session has ended. You must perform this step for each session to see the debugging messages.</td>
</tr>
<tr>
<td>7</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Synchronizing Log Messages

You can configure the system to synchronize unsolicited messages and `debug` privileged EXEC command output with solicited device output and prompts for a specific console port line or virtual terminal line. You can identify the types of messages to be output asynchronously based on the level of severity. You can also determine the maximum number of buffers for storing asynchronous messages for the terminal after which messages are dropped.

When synchronous logging of unsolicited messages and `debug` command output is enabled, unsolicited device output is displayed on the console or printed after solicited device output is displayed or printed. Unsolicited messages and `debug` command output is displayed on the console after the prompt for user input is returned. Therefore, unsolicited messages and `debug` command output are not interspersed with solicited device output and prompts. After the unsolicited messages are displayed, the console again displays the user prompt.

Beginning in privileged EXEC mode, follow these steps to configure synchronous logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> line [console</td>
<td>vty] line-number [ending-line-number]</td>
</tr>
<tr>
<td></td>
<td>- Use the <code>console</code> keyword for configurations that occur through the switch console port.</td>
</tr>
<tr>
<td></td>
<td>- Use the <code>line vty line-number</code> command to specify which vty lines are to have synchronous logging enabled. You use a vty connection for configurations that occur through a Telnet session. The range of line numbers is from 0 to 15.</td>
</tr>
<tr>
<td></td>
<td>You can change the setting of all 16 vty lines at once by entering:</td>
</tr>
<tr>
<td></td>
<td><code>line vty 0 15</code></td>
</tr>
<tr>
<td></td>
<td>Or you can change the setting of the single vty line being used for your current connection. For example, to change the setting for vty line 2, enter:</td>
</tr>
<tr>
<td></td>
<td><code>line vty 2</code></td>
</tr>
<tr>
<td></td>
<td>When you enter this command, the mode changes to line configuration.</td>
</tr>
<tr>
<td><strong>Step 3</strong> logging synchronous [level severity-level</td>
<td>all] [limit number-of-buffers]</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For <code>level severity-level</code>, specify the message severity level. Messages with a severity level equal to or higher than this value are printed asynchronously. Low numbers mean greater severity and high numbers mean lesser severity. The default is 2.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) Specifying <code>level all</code> means that all messages are printed asynchronously regardless of the severity level.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For <code>limit number-of-buffers</code>, specify the number of buffers to be queued for the terminal after which new messages are dropped. The default is 20.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To disable synchronization of unsolicited messages and debug output, use the `no logging synchronous [level severity-level | all] [limit number-of-buffers]` line configuration command.

### Enabling and Disabling Timestamps on Log Messages

By default, log messages are not timestamped.

Beginning in privileged EXEC mode, follow these steps to enable timestamping of log messages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** service timestamps log uptime  
or  
service timestamps log datetime [msec] [ localtime] [show-timezone] | Enable log timestamps.  
The first command enables timestamps on log messages, showing the time since the system was rebooted.  
The second command enables timestamps on log messages. Depending on the options selected, the timestamp can include the date, time in milliseconds relative to the local time zone, and the time zone name. |
| **Step 3** end                   | Return to privileged EXEC mode.               |
| **Step 4** show running-config  | Verify your entries.                         |
| **Step 5** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable timestamps for both debug and log messages, use the `no service timestamps` global configuration command.

This example shows part of a logging display with the `service timestamps log datetime` global configuration command enabled:

```
*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
```

This example shows part of a logging display with the `service timestamps log uptime` global configuration command enabled:

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
```
Enabling and Disabling Sequence Numbers in Log Messages

Because there is a chance that more than one log message can have the same timestamp, you can display messages with sequence numbers so that you can unambiguously refer to a single message. By default, sequence numbers in log messages are not displayed.

Beginning in privileged EXEC mode, follow these steps to enable sequence numbers in log messages:

To disable sequence numbers, use the `no service sequence-numbers` global configuration command.

This example shows part of a logging display with sequence numbers enabled:

```
000019: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
```

Defining the Message Severity Level

You can limit messages displayed to the selected device by specifying the severity level of the message, which are described in Table 23-3.

Beginning in privileged EXEC mode, follow these steps to define the message severity level:

```
Step 1: configure terminal
Step 2: logging console level
Step 3: logging monitor level
Step 4: logging trap level
Step 5: end
```
Chapter 23  Configuring System Message Logging

Configuring System Message Logging

Note
Specifying a level causes messages at that level and numerically lower levels to be displayed at the destination.

To disable logging to the console, use the no logging console global configuration command. To disable logging to a terminal other than the console, use the no logging monitor global configuration command. To disable logging to syslog servers, use the no logging trap global configuration command.

Table 23-3 describes the level keywords. It also lists the corresponding UNIX syslog definitions from the most severe level to the least severe level.

<table>
<thead>
<tr>
<th>Level Keyword</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>System unstable</td>
<td>LOG_EMERG</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Immediate action needed</td>
<td>LOG_ALERT</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical conditions</td>
<td>LOG_CRIT</td>
</tr>
<tr>
<td>errors</td>
<td>3</td>
<td>Error conditions</td>
<td>LOG_ERR</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning conditions</td>
<td>LOG_WARNING</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Normal but significant condition</td>
<td>LOG_NOTICE</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Informational messages only</td>
<td>LOG_INFO</td>
</tr>
<tr>
<td>debugging</td>
<td>7</td>
<td>Debugging messages</td>
<td>LOG_DEBUG</td>
</tr>
</tbody>
</table>

The software generates four other categories of messages:

- Error messages about software or hardware malfunctions, displayed at levels warnings through emergencies. These types of messages mean that the functionality of the switch is affected. For information on how to recover from these malfunctions, refer to the system message guide for this release.
- Output from the debug commands, displayed at the debugging level. Debug commands are typically used only by the Technical Assistance Center.
- Interface up or down transitions and system restart messages, displayed at the notifications level. This message is only for information; switch functionality is not affected.
- Reload requests and low-process stack messages, displayed at the informational level. This message is only for information; switch functionality is not affected.

Step 6
show running-config
or
show logging

Step 7
copy running-config startup-config

(Optional) Save your entries in the configuration file.

Table 23-3 Message Logging Level Keywords

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>show logging</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Limiting Syslog Messages Sent to the History Table and to SNMP

If you enabled syslog message traps to be sent to an SNMP network management station by using the `snmp-server enable trap` global configuration command, you can change the level of messages sent and stored in the switch history table. You also can change the number of messages that are stored in the history table.

Messages are stored in the history table because SNMP traps are not guaranteed to reach their destination. By default, one message of the level `warning` and numerically lower levels (see Table 23-3 on page 23-9) are stored in the history table even if syslog traps are not enabled.

Beginning in privileged EXEC mode, follow these steps to change the level and history table size defaults:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>logging history level</code></td>
<td>Change the default level of syslog messages stored in the history file and sent to the SNMP server. See Table 23-3 on page 23-9 for a list of <code>level</code> keywords. By default, <code>warnings</code>, <code>errors</code>, <code>critical</code>, <code>alerts</code>, and <code>emergencies</code> messages are sent.</td>
</tr>
<tr>
<td>3</td>
<td><code>logging history size number</code></td>
<td>Specify the number of syslog messages that can be stored in the history table. The default is to store one message. The range is 1 to 500 messages.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When the history table is full (it contains the maximum number of message entries specified with the `logging history size` global configuration command), the oldest message entry is deleted from the table to allow the new message entry to be stored.

To return the logging of syslog messages to the default level, use the `no logging history` global configuration command. To return the number of messages in the history table to the default value, use the `no logging history size` global configuration command.

Configuring UNIX Syslog Servers

The next sections describe how to configure the UNIX server syslog daemon and how to define the UNIX system logging facility.
Logging Messages to a UNIX Syslog Daemon

Before you can send system log messages to a UNIX syslog server, you must configure the syslog daemon on a UNIX server. Log in as root, and perform these steps:

**Note**

Some recent versions of UNIX syslog daemons no longer accept by default syslog packets from the network. If this is the case with your system, use the UNIX `man syslogd` command to determine what options must be added to or removed from the syslog command line to enable logging of remote syslog messages.

**Step 1**

Add a line such as the following to the file `/etc/syslog.conf`:

```
local7.debug /usr/adm/logs/cisco.log
```

The `local7` keyword specifies the logging facility to be used; see Table 23-4 on page 23-12 for information on the facilities. The `debug` keyword specifies the syslog level; see Table 23-3 on page 23-9 for information on the severity levels. The syslog daemon sends messages at this level or at a more severe level to the file specified in the next field. The file must already exist, and the syslog daemon must have permission to write to it.

**Step 2**

Create the log file by entering these commands at the UNIX shell prompt:

```
$ touch /var/log/cisco.log
$ chmod 666 /var/log/cisco.log
```

**Step 3**

Make sure the syslog daemon reads the new changes:

```
$ kill -HUP `cat /etc/syslog.pid`
```

For more information, see the `man syslog.conf` and `man syslogd` commands on your UNIX system.

Configuring the UNIX System Logging Facility

When sending system log messages to an external device, you can cause the switch to identify its messages as originating from any of the UNIX syslog facilities.

Beginning in privileged EXEC mode, follow these steps to configure UNIX system facility message logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>logging host</code></td>
</tr>
<tr>
<td></td>
<td>Log messages to a UNIX syslog server host by entering its IP address.</td>
</tr>
<tr>
<td></td>
<td>To build a list of syslog servers that receive logging messages, enter</td>
</tr>
<tr>
<td></td>
<td>this command more than once.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>logging trap level</code></td>
</tr>
<tr>
<td></td>
<td>Limit messages logged to the syslog servers.</td>
</tr>
<tr>
<td></td>
<td>Be default, syslog servers receive informational messages and lower.</td>
</tr>
<tr>
<td></td>
<td>See Table 23-3 on page 23-9 for <code>level</code> keywords.</td>
</tr>
</tbody>
</table>
To remove a syslog server, use the `no logging host` global configuration command, and specify the syslog server IP address. To disable logging to syslog servers, enter the `no logging trap` global configuration command.

Table 23-4 lists the UNIX system facilities supported by the Cisco IOS software. For more information about these facilities, consult the operator’s manual for your UNIX operating system.

<table>
<thead>
<tr>
<th>Facility Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>cron</td>
<td>Cron facility</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemon</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0-7</td>
<td>Locally defined messages</td>
</tr>
<tr>
<td>lpr</td>
<td>Line printer system</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>sys9</td>
<td>System use</td>
</tr>
<tr>
<td>sys10</td>
<td>System use</td>
</tr>
<tr>
<td>sys11</td>
<td>System use</td>
</tr>
<tr>
<td>sys12</td>
<td>System use</td>
</tr>
<tr>
<td>sys13</td>
<td>System use</td>
</tr>
<tr>
<td>sys14</td>
<td>System use</td>
</tr>
<tr>
<td>syslog</td>
<td>System log</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UNIX-to-UNIX copy system</td>
</tr>
</tbody>
</table>

Displaying the Logging Configuration

To display the logging configuration and the contents of the log buffer, use the `show logging` privileged EXEC command. For information about the fields in this display, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.
Configuring SNMP

This chapter describes how to configure the Simple Network Management Protocol (SNMP) on your switch.

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding SNMP, page 24-1
- Configuring SNMP, page 24-5
- Displaying SNMP Status, page 24-15

Understanding SNMP

SNMP is an application-layer protocol that provides a message format for communication between managers and agents. The SNMP system consists of an SNMP manager, an SNMP agent, and a management information base (MIB). The SNMP manager can be part of a network management system (NMS) such as CiscoWorks. The agent and MIB reside on the switch. To configure SNMP on the switch, you define the relationship between the manager and the agent.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change. A manager can get a value from an agent or store a value into the agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to a manager’s requests to get or set data.

An agent can send unsolicited traps to the manager. Traps are messages alerting the SNMP manager to a condition on the network. Traps can mean improper user authentication, restarts, link status (up or down), MAC address tracking, closing of a TCP connection, loss of connection to a neighbor, or other significant events.

This section includes information about these topics:

- SNMP Versions, page 24-2
- SNMP Manager Functions, page 24-3
- SNMP Agent Functions, page 24-3
- SNMP Community Strings, page 24-4
SNMP Versions

This software release supports these SNMP versions:

- **SNMPv1**—The Simple Network Management Protocol, a Full Internet Standard, defined in RFC 1157.

- **SNMPv2C** replaces the Party-based Administrative and Security Framework of SNMPv2Classic with the community-string-based Administrative Framework of SNMPv2C while retaining the bulk retrieval and improved error handling of SNMPv2Classic. It has these features:
  - **SNMPv2**—Version 2 of the Simple Network Management Protocol, a Draft Internet Standard, defined in RFCs 1902 through 1907.
  - **SNMPv2C**—The community-string-based Administrative Framework for SNMPv2, an Experimental Internet Protocol defined in RFC 1901.

- **SNMPv3**—Version 3 of the SNMP is an interoperable standards-based protocol defined in RFCs 2273 to 2275. SNMPv3 provides secure access to devices by authenticating and encrypting packets over the network and includes these security features:
  - **Message integrity**—ensuring that a packet was not tampered with in transit
  - **Authentication**—determining that the message is from a valid source
  - **Encryption**—mixing the contents of a package to prevent it from being read by an unauthorized source.

**Note**

To select encryption, enter the `priv` keyword. This keyword is available only when the `crypto (encrypted)` software image is installed.

Both SNMPv1 and SNMPv2C use a community-based form of security. The community of managers able to access the agent’s MIB is defined by an IP address access control list and password.

SNMPv2C includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism retrieves tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2C improved error-handling includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes in SNMPv2C report the error type.

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy set up for a user and the group within which the user resides. A security level is the permitted level of security within a security model. A combination of the security level and the security model determine which security mechanism is used when handling an SNMP packet. Available security models are SNMPv1, SNMPv2C, and SNMPv3.

Table 24-1 identifies the characteristics of the different combinations of security models and levels.
Chapter 24 Configuring SNMP

Understanding SNMP

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications with one management station using the SNMPv1 protocol, one using the SNMPv2C protocol and another using SNMPv3.

SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in Table 24-2.

Table 24-2 SNMP Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves a value from a variable within a table.¹</td>
</tr>
<tr>
<td>get-bulk-request²</td>
<td>Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data.</td>
</tr>
<tr>
<td>get-response</td>
<td>Replies to a get-request, get-next-request, and set-request sent by an NMS.</td>
</tr>
<tr>
<td>set-request</td>
<td>Stores a value in a specific variable.</td>
</tr>
<tr>
<td>trap</td>
<td>An unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.</td>
</tr>
</tbody>
</table>

¹. With this operation, an SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable from within a table.
². The get-bulk command only works with SNMPv2 or later.

SNMP Agent Functions

The SNMP agent responds to SNMP manager requests as follows:

- Get a MIB variable—The SNMP agent begins this function in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.
- Set a MIB variable—The SNMP agent begins this function in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

The SNMP agent also sends unsolicited trap messages to notify an NMS that a significant event has occurred on the agent. Examples of trap conditions include, but are not limited to, when a port or module goes up or down, when spanning-tree topology changes occur, and when authentication failures occur.
SNMP Community Strings

SNMP community strings authenticate access to MIB objects and function as embedded passwords. In order for the NMS to access the switch, the community string definitions on the NMS must match at least one of the three community string definitions on the switch.

A community string can have one of these attributes:

- **Read-only (RO)**—Gives read access to authorized management stations to all objects in the MIB except the community strings, but does not allow write access
- **Read-write (RW)**—Gives read and write access to authorized management stations to all objects in the MIB, but does not allow access to the community strings
- **Read-write-all**—Gives read and write access to authorized management stations to all objects in the MIB, including the community strings

**Note**

When a cluster is created, the command switch manages the exchange of messages among member switches and the SNMP application. The Cluster Management software appends the member switch number (@$esN$, where $N$ is the switch number) to the first configured RW and RO community strings on the command switch and propagates them to the member switches. For more information, see Chapter 6, “Clustering Switches.”

Using SNMP to Access MIB Variables

An example of an NMS is the CiscoWorks network management software. CiscoWorks 2000 software uses the switch MIB variables to set device variables and to poll devices on the network for specific information. The results of a poll can be displayed as a graph and analyzed to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, monitor traffic loads, and more.

As shown in Figure 24-1, the SNMP agent gathers data from the MIB. The agent can send traps, or notification of certain events, to the SNMP manager, which receives and processes the traps. Traps alert the SNMP manager to a condition on the network such as improper user authentication, restarts, link status (up or down), MAC address tracking, and so forth. The SNMP agent also responds to MIB-related queries sent by the SNMP manager in get-request, get-next-request, and set-request format.

**Figure 24-1  SNMP Network**

For information on supported MIBs and how to access them, see Appendix A, “Supported MIBs.”
SNMP Notifications

SNMP allows the switch to send notifications to SNMP managers when particular events occur. SNMP notifications can be sent as traps or inform requests. In command syntax, unless there is an option in the command to select either traps or informs, the keyword \texttt{traps} refers to either traps or informs, or both. Use the \texttt{snmp-server host} command to specify whether to send SNMP notifications as traps or informs.

Traps are unreliable because the receiver does not send an acknowledgment when it receives a trap, and the sender cannot determine if the trap was received. When an SNMP manager receives an inform request, it acknowledges the message with an SNMP response protocol data unit (PDU). If the sender does not receive a response, the inform request can be sent again. Because they can be re-sent, informs are more likely than traps to reach their intended destination.

The characteristics that make informs more reliable than traps also consume more resources in the switch and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request is held in memory until a response is received or the request times out. Traps are sent only once, but an inform might be re-sent or retried several times. The retries increase traffic and contribute to a higher overhead on the network. Therefore, traps and informs require a trade-off between reliability and resources. If it is important that the SNMP manager receive every notification, use inform requests. If traffic on the network or memory in the switch is a concern and notification is not required, use traps.

\textbf{Note} \hfill SNMPv1 does not support informs.

Configuring SNMP

This section describes how to configure SNMP on your switch. It contains this configuration information:

- Default SNMP Configuration, page 24-6
- SNMP Configuration Guidelines, page 24-6
- Disabling the SNMP Agent, page 24-7
- Configuring Community Strings, page 24-7
- Configuring SNMP Groups and Users, page 24-8
- Configuring SNMP Notifications, page 24-10
- Setting the Agent Contact and Location Information, page 24-13
- Limiting TFTP Servers Used Through SNMP, page 24-13
- SNMP Examples, page 24-14
Default SNMP Configuration

Table 24-3 shows the default SNMP configuration.

Table 24-3  Default SNMP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP agent</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
| SNMP community strings   | Read-Only: Public  
|                          | Read-Write: Private  
|                          | Read-Write-all: Secret                                                       |
| SNMP trap receiver       | None configured                                                                |
| SNMP traps               | None enabled                                                                   |
| SNMP version             | If no version keyword is present, the default is version 1.                   |
| SNMPv3 authentication    | If no keyword is entered, the default is the noauth (noAuthNoPriv) security level. |
| SNMP notification type   | If no type is specified, all notifications are sent.                          |

SNMP Configuration Guidelines

An SNMP group is a table that maps SNMP users to SNMP views. An SNMP user is a member of an SNMP group. An SNMP host is the recipient of an SNMP trap operation. An SNMP engine ID is a name for the local or remote SNMP engine.

When configuring SNMP, follow these guidelines:

- When configuring an SNMP group, do not specify a notify view. The `snmp-server host` global configuration command autogenerates a notify view for the user and then adds it to the group associated with that user. Modifying the group's notify view affects all users associated with that group. Refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1* for information about when you should configure notify views.

- To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides.

- Before you configure remote users for a particular agent, configure the SNMP engine ID, using the `snmp-server engineID` global configuration with the `remote` option. The remote agent's SNMP engine ID and user password are used to compute the authentication and privacy digests. If you do not configure the remote engine ID first, the configuration command fails.

- When configuring SNMP informs, you need to configure the SNMP engine ID for the remote agent in the SNMP database before you can send proxy requests or informs to it.

- Changing the value of the SNMP engine ID has important side effects. A user's password (entered on the command line) is converted to an MD5 or SHA security digest based on the password and the local engine ID. The command-line password is then destroyed, as required by RFC 2274. Because of this deletion, if the value of engineID changes, the security digests of SNMPv3 users become invalid, and you need to reconfigure SNMP users by using the `snmp-server user username` global configuration command. Similar restrictions require the reconfiguration of community strings when the engine ID changes.
Disabling the SNMP Agent

Beginning in privileged EXEC mode, follow these steps to disable the SNMP agent:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no snmp-server</td>
<td>Disable the SNMP agent operation.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The `no snmp-server` global configuration command disables all running versions (version 1, version 2C, and version 3) on the device. No specific IOS command exists to enable SNMP. The first `snmp-server` global configuration command that you enter enables all versions of SNMP.

Configuring Community Strings

You use the SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to permit access to the agent on the switch. Optionally, you can specify one or more of these characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent
- A MIB view, which defines the subset of all MIB objects accessible to the given community
- Read and write or read-only permission for the MIB objects accessible to the community

Beginning in privileged EXEC mode, follow these steps to configure a community string on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 snmp-server community string</td>
<td>Configure the community string.</td>
</tr>
<tr>
<td>view [view-name] [ro</td>
<td>rw] [access-list-number]</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>view</code>, specify the view record accessible to the community.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Specify either read-only (<code>ro</code>) if you want authorized management stations to retrieve MIB objects, or specify read-write (<code>rw</code>) if you want authorized management stations to retrieve and modify MIB objects. By default, the community string permits read-only access to all objects.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>access-list-number</code>, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.</td>
</tr>
</tbody>
</table>
Chapter 24  Configuring SNMP

Configuring SNMP

Note
To disable access for an SNMP community, set the community string for that community to the null string (do not enter a value for the community string).

To remove a specific community string, use the no snmp-server community string global configuration command.

This example shows how to assign the string comaccess to SNMP, to allow read-only access, and to specify that IP access list 4 can use the community string to gain access to the switch SNMP agent:

```
Switch(config)# snmp-server community comaccess ro 4
```

Configuring SNMP Groups and Users

You can specify an identification name (engineID) for the local or remote SNMP server engine on the switch. You can configure an SNMP server group that maps SNMP users to SNMP views, and you can add new users to the SNMP group.
Beginning in privileged EXEC mode, follow these steps to configure SNMP on the switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>snmp-server engineID {local engineid-string</td>
<td>Configure a name for either the local or remote copy of SNMP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The engineid-string is a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it contains trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value. For example, to configure an engine ID of 123400000000000000000000, you can enter this: snmp-server engineID local 1234</td>
</tr>
<tr>
<td></td>
<td>remote ip-address [udp-port port-number] engineid-string</td>
<td>• If you select remote, specify the ip-address of the device that contains the remote copy of SNMP and the optional UDP port on the remote device. The default is 162.</td>
</tr>
<tr>
<td>3</td>
<td>snmp-server group groupname {v1</td>
<td>v2c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For groupname, specify the name of the group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specify a security model:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• v1 is the least secure of the possible security models.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• v2c is the second least secure model. It allows transmission of informs and integers twice the normal width.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• v3, the most secure, requires you to select an authentication level:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• auth—Enables the Message Digest 5 (MD5) and the Secure Hash Algorithm (SHA) packet authentication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• noauth—The noAuthNoPriv security level. This is the default if no keyword is specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• priv—Enables Data Encryption Standard (DES) packet encryption (also called privacy).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The priv keyword is available only when the crypto software image is installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter read readview with a string (not to exceed 64 characters) that is the name of the view in which you can only view the contents of the agent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter write writeview with a string (not to exceed 64 characters) that is the name of the view in which you enter data and configure the contents of the agent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter notify notifyview with a string (not to exceed 64 characters) that is the name of the view in which you specify a notify, inform, or trap.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) Enter access access-list with a string (not to exceed 64 characters) that is the name of the access list.</td>
</tr>
</tbody>
</table>
Chapter 24 Configuring SNMP

Configuring SNMP

Configuring SNMP Notifications

A trap manager is a management station that receives and processes traps. Traps are system alerts that the switch generates when certain events occur. By default, no trap manager is defined, and no traps are sent. Switches running this IOS release can have an unlimited number of trap managers.

Many commands use the word traps in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword traps refers to either traps, informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Table 24-4 describes the supported switch traps (notification types). You can enable any or all of these traps and configure a trap manager to receive them.

<table>
<thead>
<tr>
<th><strong>Table 24-4</strong> Switch Notification Types</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Notification Type</strong></td>
</tr>
<tr>
<td>c2900</td>
</tr>
<tr>
<td>cluster</td>
</tr>
<tr>
<td>config</td>
</tr>
<tr>
<td>entity</td>
</tr>
</tbody>
</table>
Configuring SNMP

Some notification types cannot be controlled with the `snmp-server enable` global configuration command, for example, `tty` and `udp-port`. These notification types are always enabled. You can use the `snmp-server host` global configuration command to a specific host to receive the notification types listed in Table 24-4.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send traps or informs to a host:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>snmp-server engineID remote ip-address engineid-string</td>
<td>Specify the engine ID for the remote host.</td>
</tr>
<tr>
<td>3</td>
<td>snmp-server user username groupname remote host [udp-port port] {v1</td>
<td>v2c</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>You cannot configure a remote user for an address without first configuring the engine ID for the remote host. If you try to configure the user before configuring the remote engine ID, you receive an error message, and the command is not executed.</td>
</tr>
<tr>
<td>4</td>
<td>snmp-server group [groupname {v1</td>
<td>v2c</td>
</tr>
</tbody>
</table>
Chapter 24 Configuring SNMP

The \texttt{snmp-server host} command specifies which hosts receive the notifications. The \texttt{snmp-server enable traps} command globally enables the mechanism for the specified notification (for traps and informs). To enable a host to receive an inform, you must configure an \texttt{snmp-server host informs} command for the host and globally enable informs by using the \texttt{snmp-server enable traps} command.

To remove the specified host from receiving traps, use the \texttt{no snmp-server host} global configuration command. The \texttt{no snmp-server host} command with no keywords disables traps, but not informs, to the host. To disable informs, use the \texttt{no snmp-server host informs} global configuration command. To disable a specific trap type, use the \texttt{no snmp-server enable traps notification-types} global configuration command.
### Setting the Agent Contact and Location Information

Beginning in privileged EXEC mode, follow these steps to set the system contact and location of the SNMP agent so that these descriptions can be accessed through the configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2**<br>snmp-server contact *text* | Set the system contact string.  
For example:  
*snmp-server contact Dial System Operator at beeper 21555.* |
| **Step 3**<br>snmp-server location *text* | Set the system location string.  
For example:  
*snmp-server location Building 3/Room 222* |
| **Step 4**<br>end | Return to privileged EXEC mode. |
| **Step 5**<br>show running-config | Verify your entries. |
| **Step 6**<br>copy running-config startup-config | (Optional) Save your entries in the configuration file. |

### Limiting TFTP Servers Used Through SNMP

Beginning in privileged EXEC mode, follow these steps to limit the TFTP servers used for saving and loading configuration files through SNMP to the servers specified in an access list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2**<br>snmp-server tftp-server-list *access-list-number* | Limit TFTP servers used for configuration file copies through SNMP to the servers in the access list.  
For *access-list-number*, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999. |
| **Step 3**<br>*access-list access-list-number [deny | permit] source [source-wildcard]* | Create a standard access list, repeating the command as many times as necessary.  
• For *access-list-number*, enter the access list number specified in Step 2.  
• The *deny* keyword denies access if the conditions are matched.  
  The *permit* keyword permits access if the conditions are matched.  
• For *source*, enter the IP address of the TFTP servers that can access the switch.  
• (Optional) For *source-wildcard*, enter the wildcard bits, in dotted decimal notation, to be applied to the source. Place ones in the bit positions that you want to ignore.  
Recall that the access list is always terminated by an implicit deny statement for everything. |
Chapter 24  Configuring SNMP

SNMP Examples

This example shows how to enable all versions of SNMP. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string `public`. This configuration does not cause the switch to send any traps.

```
Switch(config)# snmp-server community public
```

This example shows how to permit any SNMP manager to access all objects with read-only permission using the community string `public`. The switch also sends VTP traps to the hosts 192.180.1.111 and 192.180.1.33 using SNMPv1 and to the host 192.180.1.27 using SNMPv2C. The community string `public` is sent with the traps.

```
Switch(config)# snmp-server community public
Switch(config)# snmp-server enable traps vtp
Switch(config)# snmp-server host 192.180.1.27 version 1 public
Switch(config)# snmp-server host 192.180.1.111 version 1 public
Switch(config)# snmp-server host 192.180.1.33 public
```

This example shows how to allow read-only access for all objects to members of access list 4 that use the `comaccess` community string. No other SNMP managers have access to any objects. SNMP Authentication Failure traps are sent by SNMPv2C to the host `cisco.com` using the community string `public`.

```
Switch(config)# snmp-server community comaccess ro 4
Switch(config)# snmp-server enable traps snmp authentication
Switch(config)# snmp-server host cisco.com version 2c public
```

This example shows how to send Entity MIB traps to the host `cisco.com`. The community string is restricted. The first line enables the switch to send Entity MIB traps in addition to any traps previously enabled. The second line specifies the destination of these traps and overwrites any previous `snmp-server host` commands for the host `cisco.com`.

```
Switch(config)# snmp-server enable traps entity
Switch(config)# snmp-server host cisco.com restricted entity
```

This example shows how to enable the switch to send all traps to the host `myhost.cisco.com` using the community string `public`:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```
Displaying SNMP Status

To display SNMP input and output statistics, including the number of illegal community string entries, errors, and requested variables, use the `show snmp` privileged EXEC command. You can also use the other privileged EXEC commands in Table 24-5 to display SNMP information. For information about the fields in the output displays, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*.

**Table 24-5  Commands for Displaying SNMP Information**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>show snmp</td>
<td>Displays SNMP statistics.</td>
</tr>
<tr>
<td>show snmp engineID</td>
<td>Displays information on the local SNMP engine and all remote engines that have been configured on the device.</td>
</tr>
<tr>
<td>show snmp group</td>
<td>Displays information on each SNMP group on the network.</td>
</tr>
<tr>
<td>show snmp user</td>
<td>Displays information on each SNMP user name in the SNMP users table.</td>
</tr>
</tbody>
</table>
Configuring Network Security with ACLs

This chapter describes how to configure network security on your switch by using access control lists (ACLs), which are also referred to in commands and tables as access lists.

You can create ACLs for physical interfaces or management interfaces. A management interface is defined as a management VLAN or any traffic that is going directly to the CPU, such as SNMP, Telnet, or web traffic. You can create ACLs for management interfaces with the standard software image (SI) or the enhanced software image (EI) installed on your switch. However, you must have the EI installed on your switch to apply ACLs to physical interfaces.

Note

An ACLs that applied is to a physical interface has a limitation of one mask, and certain keywords are not supported. For more information, see the “Guidelines for Applying ACLs to Physical Interfaces” section on page 25-6.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the “Configuring IP Services” section of the Cisco IOS IP and IP Routing Configuration Guide and the Command Reference for IOS Release 12.1.

This chapter consists of these sections:

- Understanding ACLs, page 25-2
- Configuring ACLs, page 25-6
- Displaying ACL Information, page 25-21
- Examples for Compiling ACLs, page 25-23

You can configure ACLs by using the Cluster Management Suite (CMS) or through the command-line interface (CLI). Refer to the CMS online help for step-by-step configuration procedures through CMS. For information about accessing and using CMS, see Chapter 3, “Getting Started with CMS.”

You can also use the security wizard to filter inbound traffic on the switches. Filtering can be based on network addresses, Transmission Control Protocol (TCP) applications, or User Datagram Protocol (UDP) applications. You can choose whether to drop or to forward packets that meet the filtering criteria. To use this wizard, you must know how the network is designed and how interfaces are used on the filtering device. Refer to the security wizard online help for step-by-step configuration procedures about using this wizard.
Understanding ACLs

Packet filtering can limit network traffic and restrict network use by certain users or devices. ACLs can filter traffic as it passes through a switch and permit or deny packets at specified interfaces. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the required permissions to be forwarded, based on the criteria specified in the access lists. The switch tests the packet against the conditions in an access list one by one. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing conditions after the first match, the order of conditions in the list is critical. If no conditions match, the switch rejects the packet. If there are no restrictions, the switch forwards the packet; otherwise, the switch drops the packet.

You configure access lists on a Layer 2 switch to provide basic security for your network. If you do not configure ACLs, all packets passing through the switch could be allowed onto all parts of the network. You can use ACLs to control which hosts can access different parts of a network or to decide which types of traffic are forwarded or blocked at switch interfaces. For example, you can allow e-mail traffic to be forwarded but not Telnet traffic. ACLs can be configured to block inbound traffic.

An ACL contains an ordered list of access control entries (ACEs). Each ACE specifies permit or deny and a set of conditions the packet must satisfy in order to match the ACE. The meaning of permit or deny depends on the context in which the ACL is used.

The switch supports these types of ACLs on physical interfaces in the inbound direction:

- IP ACLs filter IP, TCP, and UDP traffic.
- Ethernet or MAC ACLs filter Layer 2 traffic.
- MAC extended access lists use source and destination MAC addresses and optional protocol type information for matching operations.
- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses and optional protocol type information for matching operations.

The switch examines access lists associated with features configured on a given interface. As packets enter the switch on an interface, ACLs associated with all inbound features configured on that interface are examined.

ACLs permit or deny packet forwarding based on how the packet matches the entries in the ACL. For example, you can use ACLs to allow one host to access a part of a network, but to prevent another host from accessing the same part. In Figure 25-1, ACLs applied at the switch input allow Host A to access the Human Resources network, but prevent Host B from accessing the same network.
Handling Fragmented and Unfragmented Traffic

IP packets can be fragmented as they cross the network. When this happens, only the fragment containing the beginning of the packet contains the Layer 4 information, such as TCP or UDP port numbers, Internet Control Message Protocol (ICMP) type and code, and so on. All other fragments are missing this information.

Some ACEs do not check Layer 4 information and therefore can be applied to all packet fragments. ACEs that do test Layer 4 information cannot be applied in the standard manner to most of the fragments in a fragmented IP packet. When the fragment contains no Layer 4 information and the ACE tests some Layer 4 information, the matching rules are modified:

- Permit ACEs that check the Layer 3 information in the fragment (including protocol type, such as TCP, UDP, and so on) are considered to match the fragment regardless of what the missing Layer 4 information might have been.
- Deny ACEs that check Layer 4 information never match a fragment unless the fragment contains Layer 4 information.

Consider access list 102, configured with these commands, applied to three fragmented packets:

```plaintext
Switch (config)# access-list 102 permit tcp any host 10.1.1.1 eq smtp
Switch (config)# access-list 102 deny tcp any host 10.1.1.2 eq telnet
Switch (config)# access-list 102 deny tcp any any
```

In the first and second ACEs in the examples, the `eq` keyword after the destination address means to test for the TCP-destination-port well-known numbers equaling Simple Mail Transfer Protocol (SMTP) and Telnet, respectively.
• Packet A is a TCP packet from host 10.2.2.2, port 65000, going to host 10.1.1.1 on the SMTP port. If this packet is fragmented, the first fragment matches the first ACE (a permit), as if it were a complete packet because all Layer 4 information is present. The remaining fragments also match the first ACE, even though they do not contain the SMTP port information because the first ACE only checks Layer 3 information when applied to fragments. (The information in this example is that the packet is TCP and that the destination is 10.1.1.1.)

• Packet B is from host 10.2.2.2, port 65001, going to host 10.1.1.2 on the Telnet port. If this packet is fragmented, the first fragment matches the second ACE (a deny) because all Layer 3 and Layer 4 information is present. The remaining fragments in the packet do not match the second ACE because they are missing Layer 4 information.

• Because the first fragment was denied, host 10.1.1.2 cannot reassemble a complete packet, so packet B is effectively denied. However, the later fragments that are permitted will consume bandwidth on the network and the resources of host 10.1.1.2 as it tries to reassemble the packet.

• Fragmented packet C is from host 10.2.2.2, port 65001, going to host 10.1.1.3, port ftp. If this packet is fragmented, the first fragment matches the third ACE (a deny). All other fragments also match the third ACE because that ACE does not check any Layer 4 information and because Layer 3 information in all fragments shows that they are being sent to host 10.1.1.3, and the earlier permit ACEs were checking different hosts.

### Understanding Access Control Parameters

Before configuring ACLs on the switches, you must have a thorough understanding of the access control parameters (ACPs). ACPs are referred to as *masks* in the switch CLI commands, output, and CMS.

Each ACE has a mask and a rule. The Classification Field or mask is the field of interest on which you want to perform an action. The specific values associated with a given mask are called *rules*.

Packets can be classified on these Layer 2, Layer 3, and Layer 4 fields:

- **Layer 2 fields:**
  - Source MAC address (Specify all 48 bits.)
  - Destination MAC address (Specify all 48 bits.)
  - Ethertype (16-bit ethertype field)

You can use any combination or all of these fields simultaneously to define a flow.

- **Layer 3 fields:**
  - IP source address (Specify all 32 IP source address bits to define the flow, or specify an user-defined subnet. There are no restrictions on the IP subnet to be specified.)
  - IP destination address (Specify all 32 IP destination address bits to define the flow, or specify an user-defined subnet. There are no restrictions on the IP subnet to be specified.)

You can use any combination or all of these fields simultaneously to define a flow.
• Layer 4 fields:
  - TCP (You can specify a TCP source, destination port number, or both at the same time.)
  - UDP (You can specify a UDP source, destination port number, or both at the same time.)

**Note**
A mask can be a combination of either multiple Layer 3 and Layer 4 fields or of multiple Layer 2 fields. Layer 2 fields cannot be combined with Layer 3 or Layer 4 fields.

There are two types of masks:
• User-defined mask—masks that are defined by the user.
• System-defined mask—these masks can be configured on any interface:

```
Switch (config-ext-nacl)# permit tcp any any
Switch (config-ext-nacl)# deny tcp any any
Switch (config-ext-nacl)# permit udp any any
Switch (config-ext-nacl)# deny udp any any
Switch (config-ext-nacl)# permit ip any any
Switch (config-ext-nacl)# deny ip any any
Switch (config-ext-nacl)# deny any any
Switch (config-ext-nacl)# permit any any
```

**Note**
In an IP extended ACL (both named and numbered), a Layer 4 system-defined mask cannot precede a Layer 3 user-defined mask. For example, a Layer 4 system-defined mask such as `permit tcp any any` or `deny udp any any` cannot precede a Layer 3 user-defined mask such as `permit ip 10.1.1.1 any`. If you configure this combination, the ACL is not allowed on a Layer 2 interface. All other combinations of system-defined and user-defined masks are allowed in security ACLs.

The switch ACL configuration is consistent with other Cisco Catalyst switches. However, there are significant restrictions for configuring ACLs on the switches.

Only four user-defined masks can be defined for the entire system. These can be used for either security or quality of service (QoS) but cannot be shared by QoS and security. You can configure as many ACLs as you require. However, a system error message appears if ACLs with more than four different masks are applied to interfaces. For more information about error messages, see the system message guide for this release.

**Table 25-1** lists a summary of the ACL restrictions on the switches.

**Table 25-1  Summary of ACL Restrictions**

<table>
<thead>
<tr>
<th>Restriction</th>
<th>Number Permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of user-defined masks allowed in an ACL</td>
<td>1</td>
</tr>
<tr>
<td>Number of ACLs allowed on an interface</td>
<td>1</td>
</tr>
<tr>
<td>Total number of user-defined masks for security and QoS allowed on a switch</td>
<td>4</td>
</tr>
</tbody>
</table>
Guidelines for Applying ACLs to Physical Interfaces

When applying ACLs to physical interfaces, follow these configuration guidelines:

- Only one ACL can be attached to an interface. For more information, refer to the `ip access-group` interface command in the command reference for this release.

- All ACEs in an ACL must have the same user-defined mask. However, ACEs can have different rules that use the same mask. On a given interface, only one type of user-defined mask is allowed, but you can apply any number of system-defined masks. For more information on system-defined masks, see the “Understanding Access Control Parameters” section on page 25-4.

This example shows the same mask in an ACL:

```
Switch (config)#ip access-list extended acl2
Switch (config-ext-nacl)# permit tcp 10.1.1.1 0.0.0.0 any eq 80
Switch (config-ext-nacl)# permit tcp 20.1.1.1 0.0.0.0 any eq 23
```

In this example, the first ACE permits all the TCP packets coming from host 10.1.1.1 with a destination TCP port number of 80. The second ACE permits all TCP packets coming from host 20.1.1.1 with a destination TCP port number of 23. Both the ACEs use the same mask; therefore, a switch supports this ACL.

- When you apply an ACL to a physical interface, some keywords are not supported and certain mask restrictions apply to the ACLs. See the “Creating a Numbered Standard ACL” section on page 25-9 and the “Creating a Numbered Extended ACL” section on page 25-10 for creating these ACLs.

Note

You can also apply ACLs to a management interface without the above limitations. For information, refer to the “Configuring IP Services” section of the Cisco IOS IP and IP Routing Configuration Guide and the Command Reference for IOS Release 12.1.

Configuring ACLs

This section includes these topics:

- “Unsupported Features” section on page 25-7
- “Creating Standard and Extended IP ACLs” section on page 25-7
- “Creating Named MAC Extended ACLs” section on page 25-18
- “Creating MAC Access Groups” section on page 25-19

Configuring ACLs on a Layer 2 interface is the same as configuring ACLs on Cisco routers. The process is briefly described here. For more detailed information about configuring router ACLs, refer to the “Configuring IP Services” chapter in the Cisco IP and IP Routing Configuration Guide for IOS Release 12.1. For detailed information about the commands, refer to the Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1. For a list of IOS features not supported on the switch, see the “Unsupported Features” section on page 25-7.
Unsupported Features

The switch does not support these IOS router ACL-related features:

- Non-IP protocol ACLs (see Table 25-2 on page 25-8)
- Bridge-group ACLs
- IP accounting
- ACL support on the outbound direction
- Inbound and outbound rate limiting (except with QoS ACLs)
- IP packets that have a header length of less than 5 bytes
- Reflexive ACLs
- Dynamic ACLs (except for certain specialized dynamic ACLs used by the switch clustering feature)
- ICMP-based filtering
- Interior Gateway Routing Protocol (IGMP)-based filtering

Creating Standard and Extended IP ACLs

This section describes how to create switch IP ACLs. The switch tests packets against the conditions in an access list one by one. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing conditions after the first match, the order of the conditions is critical. If no conditions match, the switch denies the packet.

Follow these steps to use ACLs:

**Step 1** Create an ACL by specifying an access list number or name and access conditions.

**Step 2** Apply the ACL to interfaces or terminal lines.

The software supports these kinds of IP access lists:

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses for matching operations and optional protocol-type information for finer granularity of control.

**Note**

MAC extended access list use source and destination MAC addresses and optional protocol type information for matching operations. For more information, see the “Creating Named MAC Extended ACLs” section on page 25-18.

The next sections describe access lists and the steps for using them.
ACL Numbers

The number you use to denote your ACL shows the type of access list that you are creating. Table 25-2 lists the access list number and corresponding type and shows whether or not they are supported by the switch. The switch supports IP standard and IP extended access lists, numbers 1 to 199 and 1300 to 2699.

<table>
<thead>
<tr>
<th>ACL Number</th>
<th>Type</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–99</td>
<td>IP standard access list</td>
<td>Yes</td>
</tr>
<tr>
<td>100–199</td>
<td>IP extended access list</td>
<td>Yes</td>
</tr>
<tr>
<td>200–299</td>
<td>Protocol type-code access list</td>
<td>No</td>
</tr>
<tr>
<td>300–399</td>
<td>DECnet access list</td>
<td>No</td>
</tr>
<tr>
<td>400–499</td>
<td>XNS standard access list</td>
<td>No</td>
</tr>
<tr>
<td>500–599</td>
<td>XNS extended access list</td>
<td>No</td>
</tr>
<tr>
<td>600–699</td>
<td>AppleTalk access list</td>
<td>No</td>
</tr>
<tr>
<td>700–799</td>
<td>48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>800–899</td>
<td>IPX standard access list</td>
<td>No</td>
</tr>
<tr>
<td>900–999</td>
<td>IPX extended access list</td>
<td>No</td>
</tr>
<tr>
<td>1000–1099</td>
<td>IPX SAP access list</td>
<td>No</td>
</tr>
<tr>
<td>1100–1199</td>
<td>Extended 48-bit MAC address access list</td>
<td>No</td>
</tr>
<tr>
<td>1200–1299</td>
<td>IPX summary address access list</td>
<td>No</td>
</tr>
<tr>
<td>1300–1999</td>
<td>IP standard access list (expanded range)</td>
<td>Yes</td>
</tr>
<tr>
<td>2000–2699</td>
<td>IP extended access list (expanded range)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: In addition to numbered standard and extended ACLs, you can also create named standard and extended IP ACLs by using the supported numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.
Creating a Numbered Standard ACL

Note  For information about creating ACLs to apply to a management interface, refer to the “Configuring IP Services” section of the Cisco IOS IP and IP Routing Configuration Guide and the Command Reference for IOS Release 12.1. You can then apply these ACLs only to a management interface.

Beginning in privileged EXEC mode, follow these steps to create a numbered standard IP ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show access-lists [number</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no access-list access-list-number global configuration command to delete the entire ACL. You cannot delete individual ACEs from numbered access lists.

Note  When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny statement for all packets that it did not find a match for before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.
This example shows how to create a standard ACL to deny access to IP host 171.69.198.102, permit access to any others, and display the results.

```
Switch (config)# access-list 2 deny host 171.69.198.102
Switch (config)# access-list 2 permit any
Switch (config)# end
Switch# show access-lists
Standard IP access list 2
 deny 171.69.198.102
 permit any
```

---

### Creating a Numbered Extended ACL

Although standard ACLs use only source addresses for matching, you can use an extended ACL source and destination addresses for matching operations and optional protocol type information for finer granularity of control. Some protocols also have specific parameters and keywords that apply to that protocol.

These IP protocols are supported on physical interfaces (protocol keywords are in parentheses in bold): Internet Protocol (ip), Transmission Control Protocol (tcp), or User Datagram Protocol (udp).

Supported parameters can be grouped into these categories:
- TCP
- UDP

**Table 25-3 lists the possible filtering parameters for ACEs for each protocol type.**

<table>
<thead>
<tr>
<th>Filtering Parameter</th>
<th>TCP</th>
<th>UDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 3 Parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP type of service (ToS) byte</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Differentiated Services Code Point (DSCP)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IP source address</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IP destination address</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fragments</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TCP or UDP</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Layer 4 Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source port operator</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Source port</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Destination port operator</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Destination port</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TCP flag</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. X in a protocol column means support for the filtering parameter.
2. No support for type of service (ToS) minimize monetary cost bit.

For more details about the specific keywords relative to each protocol, refer to the *Cisco IP and IP Routing Command Reference for IOS Release 12.1*. 

---
The switch does not support dynamic or reflexive access lists. It also does not support filtering based on the minimize-monetary-cost type of service (ToS) bit.

When creating ACEs in numbered extended access lists, remember that after you create the list, any additions are placed at the end of the list. You cannot reorder the list or selectively add or remove ACEs from a numbered list.

For information about creating ACLs to apply to management interfaces, refer to the “Configuring IP Services” section of Cisco IOS IP and IP Routing Configuration Guide and the Command Reference for IOS Release 12.1. You can apply ACLs only to a management interface or the CPU, such as SNMP, Telnet, or web traffic.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Define an extended IP access list and the access conditions.</td>
</tr>
<tr>
<td>access-list access-list-number</td>
<td>Define a destination or source port.</td>
</tr>
<tr>
<td>deny</td>
<td>permit</td>
</tr>
<tr>
<td>source source-wildcard</td>
<td>host source</td>
</tr>
<tr>
<td>destination destination-wildcard</td>
<td>host destination</td>
</tr>
<tr>
<td>[dscp dscp-value]</td>
<td>The port is a decimal number or name of a TCP or UDP port. The number can be from 0 to 65535.</td>
</tr>
<tr>
<td>[time-range time-range-name]</td>
<td>Use TCP port names only for TCP traffic.</td>
</tr>
<tr>
<td>Step 3 show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>Step 4 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the **no access-list access-list-number** global configuration command to delete the entire access list. You cannot delete individual ACEs from numbered access lists.

This example shows how to create and display an extended access list to deny Telnet access from any host in network 171.69.198.0 to any host in network 172.20.52.0 and permit any others. (The **eq** keyword after the destination address means to test for the TCP destination port number equaling Telnet.)

```
Switch(config)# access-list 102 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
Switch(config)# access-list 102 permit tcp any any
Switch(config)# end
Switch# show access-lists
Extended IP access list 102
 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
 permit tcp any any
```

After an ACL is created, any additions (possibly entered from the terminal) are placed at the end of the list. You can add ACEs to an ACL, but deleting any ACE deletes the entire ACL.

---

**Note**

When creating an ACL, remember that, by default, the end of the access list contains an implicit deny statement for all packets if the access list does not find a match before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.

After creating an ACL, you must apply it to a line or interface, as described in the “Applying ACLs to Terminal Lines or Physical Interfaces” section on page 25-20.

### Creating Named Standard and Extended ACLs

You can identify IP ACLs with an alphanumeric string (a name) rather than a number. You can use named ACLs to configure more IP access lists on a switch than if you use numbered access lists. If you identify your access list with a name rather than a number, the mode and command syntax are slightly different. However, not all commands that use IP access lists accept a named ACL.

---

**Note**

The name you give to a standard ACL or extended ACL can also be a number in the supported range of access list numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

Consider these guidelines and limitations before configuring named ACLs:

- A standard ACL and an extended ACL cannot have the same name.
- Numbered ACLs are also available, as described in the “Creating Standard and Extended IP ACLs” section on page 25-7.
Beginning in privileged EXEC mode, follow these steps to create a standard named access list using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip access-list standard {name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>deny {source source-wildcard</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show access-lists [number</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to create an extended named ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip access-list extended {name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 25 Configuring Network Security with ACLs

Configuring ACLs

When making the standard and extended ACL, remember that, by default, the end of the ACL contains an implicit deny statement for everything if it did not find a match before reaching the end. For standard ACLs, if you omit the mask from an associated IP host address access list specification, 0.0.0.0 is assumed to be the mask.

After you create an ACL, any additions are placed at the end of the list. You cannot selectively add ACEs to a specific ACL. However, you can use no permit and no deny commands to remove ACEs from a named ACL. This example shows how you can delete individual ACEs from a named ACL:

```
Switch(config)# ip access-list extended border-list
Switch(config-ext-nacl)# no permit ip host 10.1.1.3 any
```

Being able to selectively remove lines from a named ACL is one reason you might use named ACLs instead of numbered ACLs.

After creating an ACL, you must apply it to a line or interface, as described in the “Applying ACLs to Terminal Lines or Physical Interfaces” section on page 25-20.

Applying Time Ranges to ACLs

You can implement extended ACLs based on the time of day and week by using the time-range global configuration command. First, define the name and times of the day and week of the time range, and then reference the time range by name in an ACL to apply restrictions to the access list. You can use the time range to define when the permit or deny statements in the ACL are in effect. The time-range keyword and argument are referenced in the named and numbered extended ACL task tables in the “Creating Standard and Extended IP ACLs” section on page 25-7, and the “Creating Named Standard and Extended ACLs” section on page 25-13.

These are some of the many benefits of using time ranges:

- You have more control over permitting or denying a user access to resources, such as an application (identified by an IP address mask pair and a port number).
- You can control logging messages. ACL entries can log traffic at certain times of the day, but not constantly. Therefore, you can simply deny access without having to analyze many logs generated during peak hours.

Note

The time range relies on the switch system clock. Therefore, you need a reliable clock source. We recommend that you use Network Time Protocol (NTP) to synchronize the switch clock. For more information, see the “Managing the System Time and Date” section on page 7-34.

Beginning in privileged EXEC mode, follow these steps to configure a time-range parameter for an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td>time-range time-range-name</td>
<td>Identify the time-range by a meaningful name (for example, workhours), and enter time-range configuration mode. The name cannot contain a space or quotation mark and must begin with a letter.</td>
</tr>
</tbody>
</table>
To remove a configured time-range, use the `no time-range time-range-name` global configuration command.

Repeat the steps if you have multiple items that you want operational at different times.

This example shows how to configure time ranges for `workhours` and for company holidays and how to verify your configuration.

```
Switch(config)# time-range workhours
Switch(config-time-range)# periodic weekdays 8:00 to 12:00
Switch(config-time-range)# periodic weekdays 13:00 to 17:00
Switch(config-time-range)# exit
Switch(config)# time-range new_year_day_2000
Switch(config-time-range)# absolute start 00:00 1 Jan 2000 end 23:59 1 Jan 2000
Switch(config-time-range)# exit
Switch(config)# time-range thanksgiving_2000
Switch(config-time-range)# absolute start 00:00 22 Nov 2000 end 23:59 23 Nov 2000
Switch(config-time-range)# exit
Switch(config)# time-range christmas_2000
Switch(config-time-range)# absolute start 00:00 24 Dec 2000 end 23:50 25 Dec 2000
Switch(config-time-range)# end
Switch(config)# show time-range
```

To apply a time range, you must reference it by name (for example, `workhours`) in an extended ACL that can implement time ranges. This example shows how to create and verify extended access list 188 that denies TCP traffic from any source to any destination during the defined holiday time ranges and permits all TCP traffic during work hours.

```
Switch(config)# access-list 188 deny tcp any any time-range new_year_day_2000
Switch(config)# access-list 188 deny tcp any any time-range thanksgiving_2000
Switch(config)# access-list 188 deny tcp any any time-range christmas_2000
Switch(config)# access-list 188 permit tcp any any time-range workhours
Switch(config)# end
Switch(config)# show access-lists
Extended IP access list 188
```
This example uses named ACLs to permit and deny the same traffic.

```
Switch(config)# ip access-list extended deny_access
Switch(config-ext-nacl)# deny tcp any any time-range new_year_day_2000
Switch(config-ext-nacl)# deny tcp any any time-range thanksgiving_2000
Switch(config-ext-nacl)# deny tcp any any time-range christmas_2000
Switch(config-ext-nacl)# exit
Switch(config)# ip access-list extended may_access
Switch(config-ext-nacl)# permit tcp any any time-range workhours
Switch(config-ext-nacl)# end
Switch# show ip access-lists
Extended IP access list deny_access
 deny tcp any any time-range new_year_day_2000 (inactive)
 deny tcp any any time-range thanksgiving_2000 (inactive)
 deny tcp any any time-range christmas_2000 (inactive)
Extended IP access list may_access
 permit tcp any any time-range workhours (inactive)
```

Including Comments About Entries in ACLs

You can use the `remark` command to include comments (remarks) about entries in any IP standard or extended ACL. The remarks make the ACL easier for you to understand and scan. Each remark line is limited to 100 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put the remark so that it is clear which remark describes which permit or deny statement. For example, it would be confusing to have some remarks before the associated permit or deny statements and some remarks after the associated statements.

For IP numbered standard or extended ACLs, use the `access-list access-list number remark` global configuration command to include a comment about an access list. To remove the remark, use the `no` form of this command.

In this example, the workstation belonging to Jones is allowed access, and the workstation belonging to Smith is not allowed access:

```
Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13
```

For an entry in a named IP ACL, use the `remark` access-list global configuration command. To remove the remark, use the `no` form of this command.
In this example, the Jones subnet is not allowed to use outbound Telnet:

```markdown
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp host 171.69.2.88 any eq telnet
```

## Creating Named MAC Extended ACLs

You can filter Layer 2 traffic on a physical Layer 2 interface by using MAC addresses and named MAC extended ACLs. The procedure is similar to that of configuring other extended named access lists.

### Note

Named MAC extended ACLs are used as a part of the `mac access-group` privileged EXEC command.

For more information about the supported non-IP protocols in the `mac access-list extended` command, refer to the command reference for this release.

### Note

Matching on any SNAP-encapsulated packet with a nonzero Organizational Unique Identifier (OUI) is not supported.

Beginning in privileged EXEC mode, follow these steps to create a named MAC extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>mac access-list extended name</code></td>
<td>Define an extended MAC access list by using a name.</td>
</tr>
<tr>
<td>Step 3 `{ deny</td>
<td>permit } { any</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 `show access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td>Step 6 <code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no mac access-list extended name` global configuration command to delete the entire ACL. You can also delete individual ACEs from named MAC extended ACLs.
This example shows how to create and display an access list named `mac1`, denying only EtherType DECnet Phase IV traffic, but permitting all other types of traffic.

```plaintext
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)# deny any any decnet-iv
Switch(config-ext-macl)# permit any any
Switch(config-ext-macl)# end
Switch # show access-list
Extended MAC access list mac1
 deny any any decnet-iv
 permit any any
```

### Configuring ACLs

This example shows how to create and display an access list named `mac1`, denying only EtherType DECnet Phase IV traffic, but permitting all other types of traffic.

```plaintext
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)# deny any any decnet-iv
Switch(config-ext-macl)# permit any any
Switch(config-ext-macl)# end
Switch # show access-list
Extended MAC access list mac1
 deny any any decnet-iv
 permit any any
```

### Creating MAC Access Groups

Beginning in privileged EXEC mode, follow these steps to create MAC access groups and to apply a MAC access list to an interface:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Identify a specific interface for configuration, and enter interface configuration mode. The interface must be a Layer 2 interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>mac access-group {name} {in}</td>
<td>Control access to the specified interface by using the MAC access list name.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show mac-access group</td>
<td>Display the MAC ACLs applied on the switch.</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to apply ACL 2 on Gigabit Ethernet interface 0/1 to filter packets entering the interface:

```plaintext
Switch(config)# interface gigabitethernet0/1
Router(config-if)# mac access-group 2 in
```

**Note** The `mac access-group` interface configuration command is only valid when applied to a Layer 2 interface.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet. The MAC ACL applies to both IP and non-IP packets.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs as a means of network security.
Applying ACLs to Terminal Lines or Physical Interfaces

You can apply ACLs to any management interface. For information on creating ACLs on management interfaces, refer to the “Configuring IP Services” section of the Cisco IOS IP and IP Routing Configuration Guide and the Command Reference for IOS Release 12.1.

The limitations that apply to ACLs on physical interfaces do not apply to ACLs on management interfaces.

After you create an ACL, you can apply it to one or more management interfaces or terminal lines. ACLs can be applied on inbound interfaces. This section describes how to accomplish this task for both terminal lines and network interfaces. Note these guidelines:

- When controlling access to a line, you must use numbered IP ACLs or MAC extended ACLs.
- When controlling access to an interface, you can use named or numbered ACLs.
- Set identical restrictions on all the virtual terminal lines because a user can attempt to connect to any of them.
- If you apply ACLs to a management interface, the ACL only filters packets that are intended for the CPU, such as SNMP, Telnet, or web traffic.
- If you apply ACLs to a management VLAN, see the “Management VLAN” section on page 6-18.

Applying ACLs to a Terminal Line

Beginning in privileged EXEC mode, follow these steps to restrict incoming connections between a virtual terminal line and the addresses in an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>line [console</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-class access-list-number {in}</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Applying ACLs to a Physical Interface

Beginning in privileged EXEC mode, follow these steps to control access to a Layer 2 interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Identify a specific interface for configuration and enter interface configuration mode. The interface must be a Layer 2 or management interface or a management interface VLAN ID.</td>
</tr>
<tr>
<td>3</td>
<td>ip access-group {access-list-number</td>
<td>name} {in}</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to apply access list 2 on Gigabit Ethernet interface 0/2 to filter packets entering the interface:

```
Switch(config)# interface gigabitethernet0/2
Router(config-if)# ip access-group 2 in
```

**Note**

The `ip access-group` interface configuration command is only valid when applied to a management interface or a Layer 2 physical interface. ACLs cannot be applied to interface port-channels.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.

Displaying ACL Information

You can display the ACLs that are configured on the switch, and you can display the ACLs that have been applied to physical and management interfaces. This section consists of these topics:

- Displaying ACLs, page 25-22
- Displaying Access Groups, page 25-23
Displaying ACLs

You can display existing ACLs by using `show` commands.

Beginning in privileged EXEC mode, follow these steps to display access lists:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`show access-lists [number</td>
</tr>
<tr>
<td>Step 2</td>
<td>`show ip access-list [number</td>
</tr>
</tbody>
</table>

This example shows all standard and extended ACLs:

```
Switch# show access-lists
Standard IP access list 1
 permit 172.20.10.10
Standard IP ACL 10
 permit 12.12.12.12
Standard IP access list 12
 deny 1.3.3.2
Standard IP access list 32
 permit 172.20.20.20
Standard IP access list 34
 permit 10.24.35.56
 permit 23.45.56.34
Extended IP access list 120
Extended MAC access list mac1
```

This example shows only IP standard and extended ACLs.

```
Switch# show ip access-lists
Standard IP access list 1
 permit 172.20.10.10
Standard IP access list 10
 permit 12.12.12.12
Standard IP access list 12
 deny 1.3.3.2
Standard IP access list 32
 permit 172.20.20.20
Standard IP access list 34
 permit 10.24.35.56
 permit 23.45.56.34
Extended IP access list 120
```
Displaying Access Groups

This feature is available only if your switch is running the EI.

You use the `ip access-group` interface configuration command to apply ACLs to a Layer 3 interface. When IP is enabled on an interface, you can use the `show ip interface interface-id` privileged EXEC command to view the input and output access lists on the interface, as well as other interface characteristics. If IP is not enabled on the interface, the access lists are not shown.

This example shows how to view all access groups configured for VLAN 1 and for Gigabit Ethernet interface 0/2:

```
Switch# show ip interface vlan 1
GigabitEthernet0/2 is up, line protocol is down
 Internet address is 10.20.30.1/16
 Broadcast address is 255.255.255.255
 Address determined by setup command
 MTU is 1500 bytes
 Helper address is not set
 Directed broadcast forwarding is disabled
 Outgoing access list is permit Any
 Inbound access list is 13

<information truncated>
```

```
Switch# show ip interface fastethernet0/9
FastEthernet0/9 is down, line protocol is down
 Inbound access list is ip1
```

The only way to ensure that you can view all configured access groups under all circumstances is to use the `show running-config` privileged EXEC command. To display the ACL configuration of a single interface, use the `show running-config interface interface-id` command.

This example shows how to display the ACL configuration of Gigabit Ethernet interface 0/1:

```
Switch# show running-config interface gigabitethernet0/1
Building configuration...

Current configuration :112 bytes
!
interface GigabitEthernet0/1
 ip access-group 11 in
 snmp trap link-status
 no cdp enable
end!
```

Examples for Compiling ACLs


Figure 25-2 shows a small networked office with a stack of switches that are connected to a Cisco router. A host is connected to the network through the Internet using a WAN link.
Use switch ACLs to do these:

- Create a standard ACL, and filter traffic from a specific Internet host with an address 172.20.128.64.
- Create an extended ACL, and filter traffic to deny HTTP access to all Internet hosts but allow all other types of access.

**Figure 25-2 Using Switch ACLs to Control Traffic**

![Diagram showing network traffic control with switch ACLs](image)

This example uses a standard ACL to allow access to a specific Internet host with the address 172.20.128.64.

```
Switch(config)# access-list 6 permit 172.20.128.64 0.0.0.0
Switch(config)# end
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 6 in
```

This example uses an extended ACL to deny traffic from port 80 (HTTP). It permits all other types of traffic.

```
Switch(config)# access-list 106 deny tcp any any eq 80
Switch(config)# access-list 106 permit ip any any
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# ip access-group 106 in
```
Numbered ACL Examples

This example shows that the switch accepts addresses on network 36.0.0.0 subnets and denies all packets coming from 56.0.0.0 subnets. The ACL is then applied to packets entering Gigabit Ethernet interface 0/1.

Switch(config)# access-list 2 permit 36.0.0.0 0.255.255.255
Switch(config)# access-list 2 deny 56.0.0.0 0.255.255.255
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 2 in

Extended ACL Examples

In this example of using an extended ACL, you have a network connected to the Internet, and you want any host on the network to be able to form TCP Telnet and SMTP connections to any host on the Internet.

Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 eq 23
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 eq 25
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 102 in

SMTP uses TCP port 25 on one end of the connection and a random port number on the other end. The same port numbers are used throughout the life of the connection. Mail packets coming in from the Internet have a destination port of 25. Because the secure system behind the switch always accepts mail connections on port 25, the incoming services are controlled.

Named ACL Example

The Marketing_group ACL allows any TCP Telnet traffic to the destination address and wildcard 171.69.0.0 0.0.255.255 and denies any other TCP traffic. It permits any other IP traffic.

Switch(config)# ip access-list extended marketing_group
Switch(config-ext-nacl)# permit tcp any 171.69.0.0 0.0.255.255 eq telnet
Switch(config-ext-nacl)# deny tcp any any
Switch(config-ext-nacl)# permit ip any any

The ACLs are applied to permit Gigabit Ethernet port 0/1, which is configured as a Layer 2 port, with the Marketing_group ACL applied to incoming traffic.

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group marketing_group in

Commented IP ACL Entry Examples

In this example of a numbered ACL, the workstation belonging to Jones is allowed access, and the workstation belonging to Smith is not allowed access:

Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13
In this example of a numbered ACL, the Winter and Smith workstations are not allowed to browse the web:

```
Switch(config)# access-list 100 remark Do not allow Winter to browse the web
Switch(config)# access-list 100 deny host 171.69.3.85 any eq www
Switch(config)# access-list 100 remark Do not allow Smith to browse the web
Switch(config)# access-list 100 deny host 171.69.3.13 any eq www
```

In this example of a named ACL, the Jones subnet is not allowed access:

```
Switch(config)# ip access-list standard prevention
Switch(config-std-nacl)# remark Do not allow Jones subnet through
Switch(config-std-nacl)# deny 171.69.0.0 0.0.255.255
```

In this example of a named ACL, the Jones subnet is not allowed to use outbound Telnet:

```
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp 171.69.0.0 0.0.255.255 any eq telnet
```
Configuring QoS

This chapter describes how to configure quality of service (QoS) by using QoS commands. With QoS, you can provide preferential treatment to certain types of traffic at the expense of others. Without QoS, the switch offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput.

To use the features described in this chapter, you must have the enhanced software image (EI) installed on your switch.

If you have the standard software image (SI) installed on your switch, you cannot configure some of the features. Table 26-1 lists the sections that describe the features that you can configure.

Table 26-1  Sections Describing Standard Software Features

<table>
<thead>
<tr>
<th>Topic</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queueing and scheduling at the egress ports</td>
<td>“Queueing and Scheduling” section on page 26-7</td>
</tr>
<tr>
<td>Configuring QoS</td>
<td>“Configuring QoS” section on page 26-9</td>
</tr>
<tr>
<td></td>
<td>“Default QoS Configuration” section on page 26-9</td>
</tr>
<tr>
<td></td>
<td>“Configuring Classification Using Port Trust States” section on page 26-10</td>
</tr>
<tr>
<td></td>
<td>“Configuring CoS and WRR” section on page 26-27</td>
</tr>
</tbody>
</table>

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

QoS can be configured either by using the Cluster Management Suite (CMS) or through the command-line interface (CLI). Refer to the CMS online help for configuration procedures through CMS. For information about accessing and using CMS, see Chapter 3, “Getting Started with CMS.”

You can also use these wizards to configure QoS only if your switch is running the EI:

- Priority data wizard—Lets you assign priority levels to data applications based on their TCP or UDP ports. It provides a standard list of applications, and you select the ones that you want to prioritize, the priority levels, and the interfaces where the prioritization occurs. Refer to the priority data wizard online help for procedures about using this wizard.
This chapter consists of these sections:

- Understanding QoS, page 26-2
- Configuring QoS, page 26-9
- Displaying QoS Information, page 26-28
- QoS Configuration Examples, page 26-29

Understanding QoS

This section describes how QoS is implemented on the switch. If you have the SI installed on your switch, some concepts and features in this section might not apply. For a list of available features, see Table 26-1 on page 26-1.

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure the QoS feature, you can select specific network traffic, prioritize it according to its relative importance, and use congestion-management and congestion-avoidance techniques to provide preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation is based on the DiffServ architecture, an emerging standard from the Internet Engineering Task Force (IETF). This architecture specifies that each packet is classified upon entry into the network. The classification is carried in the IP packet header, using 6 bits from the deprecated IP type-of-service (ToS) field to carry the classification (class) information.

Classification can also be carried in the Layer 2 frame. These special bits in the Layer 2 frame or a Layer 3 packet are described here and shown in Figure 26-1:

- Prioritization values in Layer 2 frames
  Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the class of service (CoS) value in the three most-significant bits, which are called the User Priority bits. On interfaces configured as Layer 2 802.1Q trunks, all traffic is in 802.1Q frames except for traffic in the native VLAN.
  Other frame types cannot carry Layer 2 CoS values.
  Layer 2 CoS values range from 0 for low priority to 7 for high priority.
- Prioritization bits in Layer 3 packets
  Layer 3 IP packets can carry a Differentiated Services Code Point (DSCP) value. The supported DSCP values are 0, 8, 10, 16, 18, 24, 26, 32, 34, 40, 46, 48, and 56.
Understanding QoS

All switches and routers that access the Internet rely on the class information to provide the same forwarding treatment to packets with the same class information and different treatment to packets with different class information. The class information in the packet can be assigned by end hosts or by switches or routers along the way, based on a configured policy, detailed examination of the packet, or both. Detailed examination of the packet is expected to happen closer to the edge of the network so that the core switches and routers are not overloaded.

Switches and routers along the path can use the class information to limit the amount of resources allocated per traffic class. The behavior of an individual device when handling traffic in the DiffServ architecture is called per-hop behavior. If all devices along a path provide a consistent per-hop behavior, you can construct an end-to-end QoS solution.

Implementing QoS in your network can be a simple or complex task and depends on the QoS features offered by your internetworking devices, the traffic types and patterns in your network, and the granularity of control that you need over incoming and outgoing traffic.

Basic QoS Model

Figure 26-2 shows the basic QoS model. Actions at the ingress interface include classifying traffic, policing, and marking:

- Classifying distinguishes one kind of traffic from another. For more information, see the “Classification” section on page 26-4.
- Policing determines whether a packet is in or out of profile according to the configured policer, and the policer limits the bandwidth consumed by a flow of traffic. The result of this determination is passed to the marker. For more information, see the “Policing and Marking” section on page 26-6.

---

**Figure 26-1 QoS Classification Layers in Frames and Packets**

Encapsulated Packet

<table>
<thead>
<tr>
<th>Layer 2 header</th>
<th>IP header</th>
<th>Data</th>
</tr>
</thead>
</table>

Layer 2 802.1Q/P Frame

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start frame delimiter</th>
<th>DA</th>
<th>SA</th>
<th>Tag</th>
<th>PT</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

Layer 3 IPv4 Packet

<table>
<thead>
<tr>
<th>Version length</th>
<th>ToS (1 byte)</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP-SA</th>
<th>IP-DA</th>
<th>Data</th>
</tr>
</thead>
</table>

3 bits used for CoS (user priority)
Chapter 26  Configuring QoS

Understanding QoS

Marking evaluates the policer and configuration information for the action to be taken when a packet is out of profile and decides what to do with the packet (pass through a packet without modification, mark down the DSCP value in the packet, or drop the packet). For more information, see the “Policing and Marking” section on page 26-6.

Actions at the egress interface include queuing and scheduling:

- Queueing evaluates the CoS value and determines which of the four egress queues in which to place the packet.
- Scheduling services the four egress queues based on their configured weighted round robin (WRR) weights.

Figure 26-2  Basic QoS Model

Classification
Classify the packet based on the ACL.

Policing
Determine if the packet is in profile or out of profile based on the policer associated with the filter.

Mark
Based on whether the packet is in or out of profile and the configured parameters, determine whether to pass through, mark down, or drop the packet. The DSCP and CoS are marked or changed accordingly.

Queueing and scheduling
Based on the CoS, determine into which of the egress queues to place the packet. Then service the queues according to the configured weights.

Classification

Note
This feature is available only if your switch is running the EI.

Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet.

Classification occurs only on a physical interface basis. No support exists for classifying packets at the VLAN level.

You specify which fields in the frame or packet that you want to use to classify incoming traffic.

For non-IP traffic, you have these classification options:

- Use the port default. If the frame does not contain a CoS value, the switch assigns the default port CoS value to the incoming frame.
- Trust the CoS value in the incoming frame (configure the port to trust CoS). Layer 2 802.1Q frame headers carry the CoS value in the three most-significant bits of the Tag Control Information field. CoS values range from 0 for low priority to 7 for high priority.
The trust DSCP configuration is meaningless for non-IP traffic. If you configure a port with this option and non-IP traffic is received, the switch assigns the default port CoS value and classifies traffic based on the CoS value.

For IP traffic, you have these classification options:

- Trust the IP DSCP in the incoming packet (configure the port to trust DSCP). The switch assigns the same DSCP to the packet for internal use. The IETF defines the 6 most-significant bits of the 1-byte ToS field as the DSCP. The priority represented by a particular DSCP value is configurable. The supported DSCP values are 0, 8, 10, 16, 18, 24, 26, 32, 34, 40, 46, 48, and 56.
- Trust the CoS value (if present) in the incoming packet. The switch generates the DSCP by using the CoS-to-DSCP map.

Note

An interface can be configured to trust either CoS or DSCP, but not both at the same time.

Classification Based on QoS ACLs

You can use IP standard, IP extended, and Layer 2 MAC access control lists (ACLs) to define a group of packets with the same characteristics (class). In the QoS context, the permit and deny actions in the access control entries (ACEs) have different meanings than with security ACLs:

- If a match with a permit action is encountered (first-match principle), the specified QoS-related action is taken.
- If no match with a permit action is encountered and all the ACEs have been examined, no QoS processing occurs on the packet.
- If multiple ACLs are configured on an interface, the packet matches the first ACL with a permit action, and QoS processing begins.
- Configuration of a deny action is not supported in QoS ACLs on the switch.
- System-defined masks are allowed in class maps with these restrictions:
  - A combination of system-defined and user-defined masks cannot be used in the multiple class maps that are a part of a policy map.
  - System-defined masks that are a part of a policy map must all use the same type of system mask. For example, a policy map cannot have a class map that uses the `permit tcp any any` ACE and another that uses the `permit ip any any` ACE.
  - A policy map can contain multiple class maps that all use the same user-defined mask or the same system-defined mask.

Note

For more information about system-defined masks, see the “Understanding Access Control Parameters” section on page 25-4.

For more information about ACL restrictions, see the “Configuring ACLs” section on page 25-6.

After a traffic class has been defined with the ACL, you can attach a policy to it. A policy might contain multiple classes with actions specified for each one of them. A policy might include commands to classify the class as a particular aggregate (for example, assign a DSCP) or rate-limit the class. This policy is then attached to a particular port on which it becomes effective.

You implement IP ACLs to classify IP traffic by using the `access-list` global configuration command; you implement Layer 2 MAC ACLs to classify Layer 2 traffic by using the `mac access-list extended` global configuration command.
Classification Based on Class Maps and Policy Maps

A class map is a mechanism that you use to isolate and name a specific traffic flow (or class) from all other traffic. The class map defines the criteria used to match against a specific traffic flow to further classify it; the criteria can include matching the access group defined by the ACL. If you have more than one type of traffic that you want to classify, you can create another class map and use a different name. After a packet is matched against the class-map criteria, you further classify it through the use of a policy map.

A policy map specifies which traffic class to act on. Actions can include setting a specific DSCP value in the traffic class or specifying the traffic bandwidth limitations and the action to take when the traffic is out of profile. Before a policy map can be effective, you must attach it to an interface.

You create a class map by using the `class-map` global configuration command or the `class-policy-map` configuration command. You should use the `class-map` global configuration command when the map is shared among many ports. When you enter the `class-map` global configuration command, the switch enters the class-map configuration mode. In this mode, you define the match criterion for the traffic by using the `match` class-map configuration command.

You create and name a policy map by using the `policy-map` global configuration command. When you enter this command, the switch enters the policy-map configuration mode. In this mode, you specify the actions to take on a specific traffic class by using the `class-policy-map` configuration command or `set policy-map` class configuration command. To make the policy map effective, you attach it to an interface by using the `service-policy` interface configuration command.

The policy map can also contain commands that define the policer, the bandwidth limitations of the traffic, and the action to take if the limits are exceeded. For more information, see the “Policing and Marking” section on page 26-6.

A policy map also has these characteristics:

- A policy map can contain multiple class statements.
- A separate policy-map class can exist for each type of traffic received through an interface.
- A policy-map configuration state supersedes any actions due to an interface trust state.

For configuration information, see the “Configuring a QoS Policy” section on page 26-16.

Policing and Marking

Note

This feature is available only if your switch is running the EI.

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Packets that exceed the limits are out of profile or nonconforming. Each policer specifies the action to take for packets that are in or out of profile. These actions, carried out by the marker, include dropping the packet or marking down the packet with a new user-defined value.

You can create an individual policer. QoS applies the bandwidth limits specified in the policer separately to each matched traffic class. You configure this type of policer within a policy map by using the `policy-map` configuration command.

When configuring policing and policers, keep these items in mind:

- By default, no policers are configured.
- Policers can only be configured on a physical port. There is no support for policing at a VLAN level.
• Only one policer can be applied to a packet in the input direction.
• Only the average rate and committed burst parameters are configurable.
• Policing occurs on the ingress interfaces:
  – 60 policers are supported on ingress Gigabit-capable Ethernet ports.
  – 6 policers are supported on ingress 10/100 Ethernet ports.
  – Granularity for the average burst rate is 1 Mbps for 10/100 ports and 8 Mbps for Gigabit Ethernet ports.
• On an interface configured for QoS, all traffic received through the interface is classified, policed, and marked according to the policy map attached to the interface. On a trunk interface configured for QoS, traffic in all VLANs received through the interface is classified, policed, and marked according to the policy map attached to the interface.

  **Note** You cannot configure policers on the egress interfaces.

### Mapping Tables

  **Note** This feature is available only if your switch is running the EI.

During classification, QoS uses a configurable CoS-to-DSCP map to derive an internal DSCP value from the received CoS value. This DSCP value represents the priority of the traffic.

Before the traffic reaches the scheduling stage, QoS uses the configurable DSCP-to-CoS map to derive a CoS value from the internal DSCP value. The CoS value is used to select one of the four egress queues.

The CoS-to-DSCP and DSCP-to-CoS maps have default values that might or might not be appropriate for your network.

For configuration information, see the “Configuring CoS Maps” section on page 26-24.

### Queueing and Scheduling

  **Note** Both the EI and SI support this feature.

The switch provides QoS-based 802.1P CoS values. QoS uses classification and scheduling to send network traffic from the switch in a predictable manner. QoS classifies frames by assigning priority-indexed CoS values to them and gives preference to higher-priority traffic such as telephone calls.

### How Class of Service Works

Before you set up 802.1P CoS on a Catalyst 2950 switch that operates with the Catalyst 6000 family of switches, refer to the Catalyst 6000 documentation. There are differences in the 802.1P implementation that you should understand to ensure compatibility.
Understanding QoS

Port Priority

Frames received from users in the administratively-defined VLANs are classified or tagged for transmission to other devices. Based on rules that you define, a unique identifier (the tag) is inserted in each frame header before it is forwarded. The tag is examined and understood by each device before any broadcasts or transmissions to other switches, routers, or end stations. When the frame reaches the last switch or router, the tag is removed before the frame is sent to the target end station. VLANs that are assigned on trunk or access ports without identification or a tag are called native or untagged frames.

For IEEE 802.1Q frames with tag information, the priority value from the header frame is used. For native frames, the default priority of the input port is used.

Port Scheduling

Each port on the switch has a single receive queue buffer (the ingress port) for incoming traffic. When an untagged frame arrives, it is assigned the value of the port as its port default priority. You assign this value by using the CLI or CMS. A tagged frame continues to use its assigned CoS value when it passes through the ingress port.

CoS configures each transmit port (the egress port) with a normal-priority transmit queue and a high-priority transmit queue, depending on the frame tag or the port information. Frames in the normal-priority queue are forwarded only after frames in the high-priority queue are forwarded.

The switch (802.1P user priority) has four priority queues. The frames are forwarded to appropriate queues based on the priority-to-queue mapping that you defined.

CoS and WRR

The switch supports four CoS queues for each egress port. For each queue, you can specify these types of scheduling:

- Strict priority scheduling

  Strict priority scheduling is based on the priority of queues. Queues can have priorities from 0 to 7, 7 being the highest. Packets in the high-priority queue always transmit first, and packets in the low-priority queue do not transmit until all the high-priority queues become empty.

- Weighted round-robin (WRR) scheduling

  WRR scheduling requires you to specify a number that indicates the importance (weight) of the queue relative to the other CoS queues. WRR scheduling prevents the low-priority queues from being completely neglected during periods of high-priority traffic. The WRR scheduler transmits some packets from each queue in turn. The number of packets it sends corresponds to the relative importance of the queue. For example, if one queue has a weight of 3 and another has a weight of 4, three packets are sent from the first queue for every four that are sent from the second queue. By using this scheduling, low-priority queues have the opportunity to send packets even though the high-priority queues are not empty.
Configuring QoS

Before configuring QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. Is the traffic bursty? Do you need to reserve bandwidth for voice and video streams?
- Bandwidth requirements and speed of the network.
- Location of congestion points in the network.

This section describes how to configure QoS on your switch:

Note
If your switch is running the SI, you can configure only the features described in the “Configuring Classification Using Port Trust States” and the “Configuring CoS and WRR” sections. You can also display the QoS information as described in the “Displaying QoS Information” section.

- Default QoS Configuration, page 26-9
- Configuration Guidelines, page 26-10
- Configuring Classification Using Port Trust States, page 26-10
- Configuring a QoS Policy, page 26-16
- Configuring CoS Maps, page 26-24
- Configuring CoS and WRR, page 26-27

Default QoS Configuration

This is the default QoS configuration:

Note
You can configure policy maps, policers, the CoS-to-DSCP map, and the DSCP-to-CoS map only if your switch is running the EI.

- The default port CoS value is 0.
- The CoS value of 0 is assigned to all incoming packets.
- The default port trust state is untrusted.
- No policy maps are configured.
- No policers are configured.
- The default CoS-to-DSCP map is shown in Table 26-3.
- The default DSCP-to-CoS map is shown in Table 26-4.
- For default QoS and WRR values, see the “Configuring CoS and WRR” section on page 26-27.

Note
In software releases earlier than Release 12.1(11)EA1, the switch uses the CoS value of incoming packets without modifying the DSCP value. You can configure this by enabling pass-through mode on the port. For more information, see the “Enabling Pass-Through Mode” section on page 26-15.
Configuration Guidelines

Note

These guidelines are applicable only if your switch is running the EI.

Before beginning the QoS configuration, you should be aware of this information:

- If you have EtherChannel ports configured on your switch, you must configure QoS classification, policing, mapping, and queueing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all ports in the EtherChannel.
- It is not possible to match IP fragments against configured IP extended ACLs to enforce QoS. IP fragments are sent as best-effort traffic. IP fragments are denoted by fields in the IP header.
- All ingress QoS processing actions apply to control traffic (such as spanning-tree bridge protocol data units [BPDUs] and routing update packets) that the switch receives.
- Only an ACL that is created for physical interfaces can be attached to a class map.
- Only one ACL per class map and only one `match` command per class map are supported. The ACL can have multiple access control entries, which are commands that match fields against the contents of the packet.
- Policy maps with ACL classification in the egress direction are not supported and cannot be attached to an interface by using the `service-policy input policy-map-name` interface configuration command.
- In a policy map, the class named `class-default` is not supported. The switch does not filter traffic based on the policy map defined by the `class class-default` policy-map configuration command.
- For more information about guidelines for configuring ACLs, see the “Classification Based on QoS ACLs” section on page 26-5.
- For information about applying ACLs to physical interfaces, see the “Guidelines for Applying ACLs to Physical Interfaces” section on page 25-6.

Note

Do not configure QoS when IEEE 802.3X flowcontrol is configured on the switch. Before configuring QoS on an interface, make sure to disable flowcontrol on the switch.

Configuring Classification Using Port Trust States

This section describes how to classify incoming traffic by using port trust states:

- Configuring the Trust State on Ports within the QoS Domain, page 26-11
- Configuring the CoS Value for an Interface, page 26-13
- Configuring Trusted Boundary, page 26-13
- Enabling Pass-Through Mode, page 26-15
Configuring the Trust State on Ports within the QoS Domain

Packets entering a QoS domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the QoS domain. Figure 26-3 shows a sample network topology.

**Figure 26-3 Port Trusted States within the QoS Domain**

Note

Both the EI and SI support this feature.
Beginning in privileged EXEC mode, follow these steps to configure the port to trust the classification of the traffic that it receives:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify the interface to be trusted.</td>
</tr>
<tr>
<td></td>
<td>Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>**mls qos trust [cos</td>
</tr>
<tr>
<td></td>
<td>Configure the port trust state.</td>
</tr>
<tr>
<td></td>
<td>By default, the port is not trusted.</td>
</tr>
<tr>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td><strong>cos</strong>—Classifies ingress packets with the packet CoS values. For tagged IP packets, the DSCP value of the packet is modified based on the CoS-to-DSCP map. The egress queue assigned to the packet is based on the packet CoS value.</td>
</tr>
<tr>
<td></td>
<td><strong>dscp</strong>—Classifies ingress packets with packet DSCP values. For non-IP packets, the packet CoS value is set to 0 for tagged packets; the default port CoS value is used for untagged packets. Internally, the switch modifies the CoS value by using the DSCP-to-CoS map. This keyword is available only if your switch is running the EI.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> In software releases earlier than Release 12.1(11)EA1, the <strong>mls qos trust</strong> command is available only when the switch is running the EI.</td>
</tr>
<tr>
<td></td>
<td>Use the <strong>cos</strong> keyword if your network is composed of Ethernet LANs.</td>
</tr>
<tr>
<td></td>
<td>Use the <strong>dscp</strong> keyword if your network is not composed of only Ethernet LANs and if you are familiar with sophisticated QoS features and implementations.</td>
</tr>
<tr>
<td></td>
<td>For more information about this command, refer to the command reference for this release.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>show mls qos interface [interface-id]</strong></td>
</tr>
<tr>
<td></td>
<td>[policers]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return a port to its untrusted state, use the **no mls qos trust** interface configuration command.

For information on how to change the default CoS value, see the “Configuring the CoS Value for an Interface” section on page 26-13. For information on how to configure the CoS-to-DSCP map, see the “Configuring the CoS-to-DSCP Map” section on page 26-25.
**Configuring the CoS Value for an Interface**

QoS assigns the CoS value specified with the `mls qos cos` interface configuration command to untagged frames received on trusted and untrusted ports.

Beginning in privileged EXEC mode, follow these steps to define the default CoS value of a port or to assign the default CoS to all incoming packets on the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>mls qos cos {default-cos</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show mls qos interface</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no mls qos cos {default-cos | override}` interface configuration command.

**Configuring Trusted Boundary**

In a typical network, you connect a Cisco IP phone to a switch port as shown in Figure 26-3 on page 26-11. Traffic sent from the telephone to the switch is typically marked with a tag that uses the 802.1Q header. The header contains the VLAN information and the CoS 3-bit field, which determines the priority of the packet. For most Cisco IP phone configurations, the traffic sent from the telephone to the switch is trusted to ensure that voice traffic is properly prioritized over other types of traffic in the network. By using the `mls qos trust cos` interface configuration command, you can configure the switch port to which the telephone is connected to trust the CoS labels of all traffic received on that port.

In some situations, you also might connect a PC or workstation to the IP phone. In these cases, you can use the `switchport priority extend cos` interface configuration command to configure the telephone through the switch CLI to override the priority of the traffic received from the PC. With this command, you can prevent a PC from taking advantage of a high-priority data queue.
However, if a user bypasses the telephone and connects the PC directly to the switch, the CoS labels generated by the PC are trusted by the switch (because of the trusted CoS setting) and can allow misuse of high-priority queues. The trusted boundary feature solves this problem by using the Cisco Discovery Protocol (CDP) to detect the presence of a Cisco IP phone (such as the Cisco IP Phone 7910, 7935, 7940, and 7960) on a switch port. If the telephone is not detected, the trusted boundary feature disables the trusted setting on the switch port and prevents misuse of a high-priority queue.

Beginning in privileged EXEC mode, follow these steps to configure trusted boundary on a switch port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: cdp enable</td>
<td>Enable CDP globally. By default, it is enabled.</td>
</tr>
<tr>
<td>Step 3: interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be trusted. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>Step 4: cdp enable</td>
<td>Enable CDP on the interface. By default, CDP is enabled.</td>
</tr>
<tr>
<td>Step 5: mls qos trust device cisco-phone</td>
<td>Configure the Cisco IP phone as a trusted device on the interface.</td>
</tr>
<tr>
<td>Step 6: mls qos trust cos</td>
<td>Configure the port trust state to trust the CoS value of the ingress packet. By default, the port is not trusted. Note: In software releases earlier than Release 12.1(11)EA1, the mls qos trust cos command is available only when the switch is running the EI. For more information on this command, refer to the command reference for this release.</td>
</tr>
<tr>
<td>Step 7: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8: show mls qos interface [interface-id] [policers]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 9: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you enter the no mls qos trust interface configuration command, trusted boundary is not disabled. If this command is entered and the port is connected to a Cisco IP phone, the port does not trust the classification of traffic that it receives. To disable trusted boundary, use the no mls qos trust device interface configuration command.

If you enter the mls qos cos override interface configuration command, the port does not trust the classification of the traffic that it receives, even when it is connected to a Cisco IP phone.

Table 26-2 lists the port configuration when an IP phone is present or absent.
Enabling Pass-Through Mode

In software releases earlier than Release 12.1(11)EA1, the switch is in pass-through mode. It uses the CoS value of incoming packets without modifying the DSCP value and sends the packets from one of the four egress queues. You cannot enable or disable pass-through mode if your switch is running a software release earlier than Release 12.1(11)EA1.

In Release 12.1(11)EA1 or later, the switch assigns a CoS value of 0 to all incoming packets without modifying the packets. The switch offers best-effort service to each packet regardless of the packet contents or size and sends it from a single egress queue.

Beginning in privileged EXEC mode, follow these steps to enable pass-through mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface on which pass-through mode is enabled. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>Step 3 mls qos trust cos pass-through dscp</td>
<td>Enable pass-through mode. The interface is configured to trust the CoS value of the incoming packets and to send them without modifying the DSCP value.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show mls qos interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable pass-through mode, use the no mls qos trust pass-through dscp interface configuration command.

If you enter the mls qos cos override and the mls qos trust [cos | dscp] interface commands when pass-through mode is enabled, pass-through mode is disabled.

If you enter the mls qos trust cos pass-through dscp interface configuration command when the mls qos cos override and the mls qos trust [cos | dscp] interface commands are already configured, pass-through mode is disabled.
### Configuring a QoS Policy

**Note**  
This feature is available only if your switch is running the EI.

Configuring a QoS policy typically requires classifying traffic into classes, configuring policies applied to those traffic classes, and attaching policies to interfaces.

For background information, see the “Classification” section on page 26-4 and the “Policing and Marking” section on page 26-6.

This section contains this configuration information:

- Classifying Traffic by Using ACLs, page 26-16
- Classifying Traffic by Using Class Maps, page 26-20
- Classifying, Policing, and Marking Traffic by Using Policy Maps, page 26-21

### Classifying Traffic by Using ACLs

You can classify IP traffic by using IP standard or IP extended ACLs; you can classify Layer 2 traffic by using Layer 2 MAC ACLs.

Beginning in privileged EXEC mode, follow these steps to create an IP standard ACL for IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2  | access-list access-list-number { permit | remark} { source source-wildcard | host source | any} | Create an IP standard ACL, repeating the command as many times as necessary.  
For access-list-number, enter the ACL number. The range is 1 to 99 and 1300 to 1999.  
Enter permit to specify whether to permit access if conditions are matched.  
Enter remark to specify an ACL entry comment up to 100 characters.  
**Note** Deny statements are not supported for QoS ACLs. See the “Classification Based on QoS ACLs” section on page 26-5 for more details. |

The source is the source address of the network or host from which the packet is being sent, specified in one of three ways:

- The 32-bit quantity in dotted decimal format.
- The keyword any as an abbreviation for source and source-wildcard of 0.0.0.0 255.255.255.255. You do not need to enter a source wildcard.
- The keyword host as an abbreviation for source and source-wildcard of source 0.0.0.0.  
(Optional) The source-wildcard variable applies wildcard bits to the source (see first bullet item).
For more information about creating IP standard ACLs, see the “Guidelines for Applying ACLs to Physical Interfaces” section on page 25-6.

To delete an ACL, use the `no access-list access-list-number` global configuration command.

This example shows how to allow access for only those hosts on the two specified networks. The wildcard bits apply to the host portions of the network addresses. Any host with a source address that does not match the ACL statements is rejected.

```
Switch(config)# access-list 1 permit 192.5.255.0 0.0.0.255
Switch(config)# access-list 1 permit 36.0.0.0 0.0.0.255
```
Beginning in privileged EXEC mode, follow these steps to create an IP extended ACL for IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list access-list-number (permit</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 26      Configuring QoS

Configuring QoS

For more information about creating IP extended ACLs, see the “Guidelines for Applying ACLs to Physical Interfaces” section on page 25-6.

To delete an ACL, use the no access-list access-list-number global configuration command.

This example shows how to create an ACL that permits only TCP traffic from the destination IP address 128.88.1.2 with TCP port number 25:

Switch(config)# access-list 102 permit tcp 0.0.0.0 255.255.255.255 128.88.1.2 0.0.0.0 eq 25

Beginning in privileged EXEC mode, follow these steps to create a Layer 2 MAC ACL for Layer 2 traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mac access-list extended name</td>
<td>Create a Layer 2 MAC ACL by specifying the name of the list. After entering this command, the mode changes to extended MAC ACL configuration.</td>
</tr>
<tr>
<td>Step 3 permit { any</td>
<td>host destination MAC address}</td>
</tr>
<tr>
<td></td>
<td>For source MAC address, enter the MAC address of the host from which the packet is being sent. You specify this by using the any keyword to deny any source MAC address or by using the host keyword and the source in the hexadecimal format (H.H.H).</td>
</tr>
<tr>
<td></td>
<td>For destination MAC address, enter the MAC address of the host to which the packet is being sent. You specify this by using the any keyword to deny any destination MAC address or by using the host keyword and the destination in the hexadecimal format (H.H.H).</td>
</tr>
<tr>
<td>(Optional) You can also enter these options:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aarp</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For more information about creating MAC extended ACLs, see the “Creating Named MAC Extended ACLs” section on page 25-18.

To delete an ACL, use the no mac access-list extended name global configuration command.
This example shows how to create a Layer 2 MAC ACL with a permit statement. The statement allows traffic from the host with MAC address 0001.0000.0001 to the host with MAC address 0002.0000.0001.

Switch(config)# mac access-list extended maclist1
Switch(config-ext-macl)# permit host 0001.0000.0001 host 0002.0000.0001

Classifying Traffic by Using Class Maps

You use the class-map global configuration command to isolate a specific traffic flow (or class) from all other traffic and to name it. The class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can only include ACLs. The match criterion is defined with one match statement entered within the class-map configuration mode.

Note: You can also create class maps during policy map creation by using the class policy-map configuration command. For more information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 26-21.

Beginning in privileged EXEC mode, follow these steps to create a class map and to define the match criterion to classify traffic:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number permit {source source-wildcard</td>
<td>host source</td>
<td>any}</td>
</tr>
<tr>
<td>or access-list access-list-number {permit</td>
<td>remark} protocol {source source-wildcard</td>
<td>host source</td>
</tr>
<tr>
<td>or mac access-list extended name permit {any</td>
<td>host source MAC address} {any</td>
<td>host destination MAC address} [aarp</td>
</tr>
</tbody>
</table>

Note: Deny statements are not supported for QoS ACLs. See the “Classification Based on QoS ACLs” section on page 26-5 for more details.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-map class-map-name</td>
<td>Create a class map, and enter class-map configuration mode. By default, no class maps are defined. For class-map-name, specify the name of the class map.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 26  Configuring QoS

Configuring QoS

To delete an existing class map, use the `no class-map class-map-name` global configuration command.

To remove a match criterion, use the `no match {access-group acl-index | access-group name acl-name | ip dscp dscp-list}` class-map configuration command.

This example shows how to configure the class map called `class1`. The `class1` has one match criterion, which is an ACL called `103`.

```
Switch(config)# access-list 103 permit any any tcp eq 80
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# end
Switch#
```

### Classifying, Policing, and Marking Traffic by Using Policy Maps

A policy map specifies which traffic class to act on. Actions can include trusting the CoS or DSCP values in the traffic class; setting a specific DSCP value in the traffic class; and specifying the traffic bandwidth limitations for each matched traffic class (policer) and the action to take when the traffic is out of profile (marking).

A policy map also has these characteristics:

- A policy map can contain multiple class statements, each with different match criteria and policers.
- A separate policy-map class can exist for each type of traffic received through an interface.

You can attach only one policy map per interface in the input direction.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>`match {access-group acl-index</td>
<td>access-group name acl-name</td>
</tr>
<tr>
<td>5</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td><code>show class-map [class-map-name]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to create a policy map:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure terminal</th>
<th>Enter global configuration mode.</th>
</tr>
</thead>
</table>
| Step 2 | **access-list** access-list-number **permit**
  *(source source-wildcard | host source | any)*
  or
  **access-list** access-list-number
  *(permit | remark) protocol
  *(source source-wildcard | host source | any) [operator port] destination
  destination-wildcard | host destination | any) [operator port] [dscp dscp-value]
  *(time-range time-range-name)*
  or
  **mac** access-list extended **name**
  *permit (any | host source MAC address)*
  *(any | host destination MAC address)*
  *[aarp | amber | appletalk | dec-spanning |
  decnet-iv | diagnostic | dsm | etype-6000 |
  etype-8042 | lat | lavc-sca | mop-console |
  mop-dump | msdos | mumps | netbios |
  vines-echo | vines-ip | xns-idp]*
| Purpose | Create an IP standard or extended ACL for IP traffic or a Layer 2 MAC ACL for non-IP traffic, repeating the command as many times as necessary. For more information, see the “Classifying Traffic by Using ACLs” section on page 26-16. Note Deny statements are not supported for QoS ACLs. See the “Classification Based on QoS ACLs” section on page 26-5 for more details. For more information on the **mac access-list extended name** command, see the “Creating Named MAC Extended ACLs” section on page 25-18. |
| Step 3 | **policy-map** policy-map-name |
| Purpose | Create a policy map by entering the policy map name, and enter policy-map configuration mode. By default, no policy maps are defined. The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed. |
| Step 4 | **class** class-map-name [access-group name acl-index-or-name] |
| Purpose | Define a traffic classification, and enter policy-map class configuration mode. By default, no policy map class maps are defined. If a traffic class has already been defined by using the **class-map** global configuration command, specify its name for **class-map-name** in this command. For **access-group name acl-index-or-name**, specify the number or name of the ACL created in Step 2. Note In a policy map, the class named **class-default** is not supported. The switch does not filter traffic based on the policy map defined by the **class class-default** policy-map configuration command. |
### Chapter 26  Configuring QoS

#### Configuring QoS

To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command. To remove an assigned DSCP value, use the `no set ip dscp new-dscp` policy-map configuration command. To remove an existing policer, use the `no police rate-bps burst-byte [exceed-action {drop | dscp dscp-value}]` policy-map configuration command. To remove the policy map and interface association, use the `no service-policy input policy-map-name` interface configuration command.

This example shows how to create a policy map and attach it to an ingress interface. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 5000000 bps and a normal burst size of 8192 bytes, its DSCP is marked down to a value of 10 and sent.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>set {ip dscp new-dscp}</td>
<td>Classify IP traffic by setting a new value in the packet. For <code>ip dscp new-dscp</code>, enter a new DSCP value to be assigned to the classified traffic. The supported DSCP values are 0, 8, 10, 16, 18, 24, 26, 32, 34, 40, 46, 48, and 56.</td>
</tr>
<tr>
<td>6</td>
<td>police rate-bps burst-byte [exceed-action {drop</td>
<td>dscp dscp-value}]</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Return to policy-map configuration mode.</td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to attach to the policy map. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>10</td>
<td>service-policy input policy-map-name</td>
<td>Apply specified policy map to the input of a particular interface. Only one policy map per interface per direction is supported.</td>
</tr>
<tr>
<td>11</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>12</td>
<td>show policy-map [policy-map-name class class-name]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>13</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name` policy-map configuration command. To remove an assigned DSCP value, use the `no set ip dscp new-dscp` policy-map configuration command. To remove an existing policer, use the `no police rate-bps burst-byte [exceed-action {drop | dscp dscp-value}]` policy-map configuration command. To remove the policy map and interface association, use the `no service-policy input policy-map-name` interface configuration command.

This example shows how to create a policy map and attach it to an ingress interface. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 5000000 bps and a normal burst size of 8192 bytes, its DSCP is marked down to a value of 10 and sent.
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# policy-map flow1t
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# police 5000000 8192 exceed-action dscp 10
Switch(config-pmap-c)# exit
Switch(config)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# service-policy input flow1t

This example shows how to create a Layer 2 MAC ACL with two permit statements and attach it to an ingress interface. The first permit statement allows traffic from the host with MAC address 0001.0000.0001 destined for the host with MAC address 0002.0000.0001.

Switch(config)# mac access-list extended maclist1
Switch(config-ext-mac)# permit host 0001.0000.0001 host 0002.0000.0001
Switch(config-ext-mac)# exit
Switch(config)# mac access-list extended maclist2
Switch(config-ext-mac)# permit host 0001.0000.0003 host 0002.0000.0003
Switch(config-ext-mac)# exit
Switch(config)# class-map macclass1
Switch(config-cmap)# match access-group name maclist1
Switch(config-cmap)# exit
Switch(config)# policy-map macpolicy1
Switch(config-pmap)# class macclass1
Switch(config-pmap-c)# set ip dscp 56
Switch(config-pmap-c)# exit
Switch(config)# class-map macclass2 maclist2
Switch(config-pmap-c)# set ip dscp 48
Switch(config-pmap-c)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport mode trunk
Switch(config-if)# mls qos trust cos
Switch(config-if)# service-policy input macpolicy1

Configuring CoS Maps

Note

This feature is available only if your switch is running the EI.

This section describes how to configure the CoS maps:

- Configuring the CoS-to-DSCP Map, page 26-25
- Configuring the DSCP-to-CoS Map, page 26-26

All the maps are globally defined.
Configuring the CoS-to-DSCP Map

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 26-3 shows the default CoS-to-DSCP map.

<table>
<thead>
<tr>
<th>Table 26-3 Default CoS-to-DSCP Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS value</td>
</tr>
<tr>
<td>DSCP value</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the CoS-to-DSCP map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map cos-dscp dscp1...dscp8</td>
</tr>
<tr>
<td></td>
<td>Modify the CoS-to-DSCP map.</td>
</tr>
<tr>
<td></td>
<td>For dscp1...dscp8, enter 8 DSCP values that correspond to CoS values 0 to 7. Separate each DSCP value with a space.</td>
</tr>
<tr>
<td></td>
<td>The supported DSCP values are 0, 8, 10, 16, 18, 24, 26, 32, 34, 40, 46, 48, and 56.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps cos-dscp</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos map cos-dscp global configuration command.

This example shows how to modify and display the CoS-to-DSCP map:

```
Switch# configure terminal
Switch(config)# mls qos map cos-dscp 8 8 8 24 32 56 56
Switch(config)# end
Switch# show mls qos maps cos-dscp

CoS-dscp map:
 cos: 0 1 2 3 4 5 6 7

 dscp: 8 8 8 8 24 32 56 56
```
Configuring the DSCP-to-CoS Map

You use the DSCP-to-CoS map to map DSCP values in incoming packets to a CoS value, which is used to select one of the four egress queues.

The switch supports these DSCP values: 0, 8, 10, 16, 18, 24, 26, 32, 34, 40, 46, 48, and 56. Table 26-4 shows the default DSCP-to-CoS map.

<table>
<thead>
<tr>
<th>DSCP values</th>
<th>0</th>
<th>8, 10</th>
<th>16, 18</th>
<th>24, 26</th>
<th>32, 34</th>
<th>40, 46</th>
<th>48</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS values</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 26-4  Default DSCP-to-CoS Map

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-CoS map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos map dscp-cos</td>
<td>Modify the DSCP-to-CoS map.</td>
</tr>
<tr>
<td></td>
<td>For dscp-list, enter up to 13 DSCP values separated by spaces. Then enter</td>
</tr>
<tr>
<td></td>
<td>the to keyword.</td>
</tr>
<tr>
<td></td>
<td>For cos, enter the CoS value to which the DSCP values correspond.</td>
</tr>
<tr>
<td></td>
<td>The supported DSCP values are 0, 8, 10, 16, 18, 24, 26, 32, 34, 40, 46,</td>
</tr>
<tr>
<td></td>
<td>48, and 56. The CoS range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show mls qos maps dscp-cos</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default map, use the no mls qos map dscp-cos global configuration command.

This example shows how the DSCP values 26 and 48 are mapped to CoS value 7. For the remaining DSCP values, the DSCP-to-CoS mapping is the default.

Switch(config)# mls qos map dscp-cos 26 48 to 7
Switch(config)# exit

Switch# show mls qos maps dscp-cos

Dscp-cos map:
  dscp: 0 8 10 16 18 24 26 32 34 40 46 48 56
  ------------------------------------------
  cos: 0 1 1 2 2 3 7 4 4 5 5 7 7
Configuring CoS and WRR

Note
This feature is supported by both the EI and SI.

This section describes how to configure CoS priorities and weighted round-robin (WRR):
- Configuring CoS Priority Queues, page 26-27
- Configuring WRR, page 26-27

Configuring CoS Priority Queues

Beginning in privileged EXEC mode, follow these steps to configure the CoS priority queues:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>wrr-queue cos-map qid cos1..cosn</code> Specify the queue ID of the CoS priority queue. (Ranges are 1 to 4 where 1 is the lowest CoS priority queue.) Specify the CoS values that are mapped to the queue id. Default values are as follows:</td>
</tr>
<tr>
<td></td>
<td>CoS Value</td>
</tr>
<tr>
<td></td>
<td>0, 1</td>
</tr>
<tr>
<td></td>
<td>2, 3</td>
</tr>
<tr>
<td></td>
<td>4, 5</td>
</tr>
<tr>
<td></td>
<td>6, 7</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show wrr-queue cos-map</code> Display the mapping of the CoS priority queues.</td>
</tr>
</tbody>
</table>

To disable the new CoS settings and return to default settings, use the `no wrr-queue cos-map` global configuration command.

Configuring WRR

Beginning in privileged EXEC mode, follow these steps to configure the WRR priority:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>wrr-queue bandwidth weight1...weight4</code> Assign WRR weights to the four CoS queues. (Ranges for the WRR values are 1 to 255.)</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show wrr-queue bandwidth</code> Display the WRR bandwidth allocation for the CoS priority queues.</td>
</tr>
</tbody>
</table>
To disable the WRR scheduler and enable the strict priority scheduler, use the `no wrr-queue bandwidth` global configuration command.

## Displaying QoS Information

To display QoS information, use one or more of the privileged EXEC commands in Table 26-5:

### Table 26-5 Commands for Displaying QoS Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show class-map [class-map-name]</code>¹</td>
<td>Display QoS class maps, which define the match criteria to classify traffic.</td>
</tr>
<tr>
<td><code>show policy-map [policy-map-name [class class-name]]</code>¹</td>
<td>Display QoS policy maps, which define classification criteria for incoming traffic.</td>
</tr>
<tr>
<td>`show mls qos maps [cos-dscp</td>
<td>dscp-cos]`¹</td>
</tr>
<tr>
<td><code>show mls qos interface [interface-id] [policers]</code>¹</td>
<td>Display QoS information at the interface level, including the configuration of the egress queues and the CoS-to-egress-queue map, which interfaces have configured policers, and ingress and egress statistics (including the number of bytes dropped).²</td>
</tr>
<tr>
<td>`show mls masks [qos</td>
<td>security]`¹</td>
</tr>
<tr>
<td><code>show wrq-queue cos-map</code></td>
<td>Display the mapping of the CoS priority queues.</td>
</tr>
<tr>
<td><code>show wrq-queue bandwidth</code></td>
<td>Display the WRR bandwidth allocation for the CoS priority queues.</td>
</tr>
</tbody>
</table>

1. Available only on a switch running the EI.
2. You can define up to 13 DSCP values for which byte or packet statistics are gathered by hardware by using the `show mls qos interface statistics` privileged EXEC command.
3. Access control parameters are called masks in the switch CLI commands and output.
QoS Configuration Examples

These examples are applicable only if your switch is running the EI.

This section provides a QoS migration path to help you quickly implement QoS features based on your existing network and planned changes to your network, as shown in Figure 26-4. It contains this information:

- QoS Configuration for the Existing Wiring Closet, page 26-30
- QoS Configuration for the Intelligent Wiring Closet, page 26-30

Figure 26-4 QoS Configuration Example Network
QoS Configuration for the Existing Wiring Closet

The existing wiring closet in Figure 26-4 consists of existing Catalyst 2900 XL and 3500 XL switches. These switches are running IOS release 12.0(5)XP or later, which supports the QoS-based IEEE 802.1P CoS values. QoS classifies frames by assigning priority-indexed CoS values to them and gives preference to higher-priority traffic.

Recall that on the Catalyst 2900 and 3500 XL switches, you can classify untagged (native) Ethernet frames at the ingress ports by setting a default CoS priority (switchport priority default default-priority-id interface configuration command) for each port. For IEEE 802.1Q frames with tag information, the priority value from the header frame is used. On the Catalyst 3524-PWR XL and 3548 XL switches, you can override this priority with the default value by using the switchport priority default override interface configuration command. For Catalyst 2950 and Catalyst 2900 XL switches and other 3500 XL models that do not have the override feature, the Catalyst 3550-12T switch at the distribution layer can override the 802.1P CoS value by using the mls qos cos override interface configuration command.

For the Catalyst 2900 and 3500 XL switches, CoS configures each transmit port (the egress port) with a normal-priority transmit queue and a high-priority transmit queue, depending on the frame tag or the port information. Frames in the normal-priority queue are forwarded only after frames in the high-priority queue are forwarded. Frames that have 802.1P CoS values of 0 to 3 are placed in the normal-priority transmit queue while frames with CoS values of 4 to 7 are placed in the expedite (high-priority) queue.

QoS Configuration for the Intelligent Wiring Closet

The intelligent wiring closet in Figure 26-4 is composed of Catalyst 2950 switches. One of the switches is connected to a video server, which has an IP address of 172.20.10.16.

The object of this example is to prioritize the video traffic over all other traffic. To do so, a DSCP of 46 is assigned to the video traffic. This traffic is stored in queue 4, which is serviced more frequently than the other queues.

Beginning in privileged EXEC mode, follow these steps to configure the switch to prioritize video packets over all other traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>access-list 1 permit 172.20.10.16</td>
<td>Define an IP standard ACL, and permit traffic from the video server at 172.20.10.16.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>class-map videoclass</td>
<td>Create a class map called videoclass, and enter class-map configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>match access-group 1</td>
<td>Define the match criterion by matching the traffic specified by ACL 1.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>policy-map videopolicy</td>
<td>Create a policy map called videopolicy, and enter policy-map configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>class videoclass</td>
<td>Specify the class on which to act, and enter policy-map class configuration mode.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td>set ip dscp 46</td>
<td>For traffic matching ACL 1, set the DSCP of incoming packets to 46.</td>
</tr>
</tbody>
</table>
### QoS Configuration Examples

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td><code>police 5000000 8192 exceed-action drop</code></td>
<td>Define a policer for the classified video traffic to drop traffic that exceeds 5-Mbps average traffic rate with an 8192-byte burst size.</td>
</tr>
<tr>
<td>10</td>
<td><code>exit</code></td>
<td>Return to policy-map configuration mode.</td>
</tr>
<tr>
<td>11</td>
<td><code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>12</td>
<td><code>interface gigabitethernet0/1</code></td>
<td>Enter interface configuration mode, and specify the ingress interface.</td>
</tr>
<tr>
<td>13</td>
<td><code>service-policy input videopolicy</code></td>
<td>Apply the policy to the ingress interface.</td>
</tr>
<tr>
<td>14</td>
<td><code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>15</td>
<td><code>wrr-queue bandwidth 1 2 3 4</code></td>
<td>Assign a higher WRR weight to queue 4.</td>
</tr>
<tr>
<td>16</td>
<td><code>wrr-queue cos-map 4 6 7</code></td>
<td>Configure the CoS-to-egress-queue map so that CoS values 6 and 7 select queue 4.</td>
</tr>
<tr>
<td>17</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>18</td>
<td><code>show class-map videoclass</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td><code>show policy-map videopolicy</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>`show mls qos maps [cos-dscp</td>
<td>dscp-cos]`</td>
</tr>
<tr>
<td>19</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring EtherChannels

This chapter describes how to configure EtherChannel on Layer 2 interfaces. EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use it to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding EtherChannels, page 27-1
- Configuring EtherChannels, page 27-7
- Displaying EtherChannel and PAgP Status, page 27-11

Understanding EtherChannels

An EtherChannel consists of individual Fast Ethernet or Gigabit Ethernet links bundled into a single logical link as shown in Figure 27-1. The EtherChannel provides full-duplex bandwidth up to 800 Mbps (Fast EtherChannel) or 2 Gbps (Gigabit EtherChannel) between your switch and another switch or host.
Each EtherChannel can consist of up to eight compatibly configured Ethernet interfaces. All interfaces in each EtherChannel must be the same speed, and all must be configured as Layer 2 interfaces.

The network device to which your switch is connected can impose its own limits on the number of interfaces in the EtherChannel. For Catalyst 2950 switches, the number of EtherChannels is limited to six with eight ports per EtherChannel.

If a link within an EtherChannel fails, traffic previously carried over that failed link changes to the remaining links within the EtherChannel. A trap is sent for a failure, identifying the switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.

Understanding Port-Channel Interfaces

When you create an EtherChannel for Layer 2 interfaces, a logical interface is dynamically created. You then manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command as shown in Figure 27-2.

Each EtherChannel has a logical port-channel interface numbered from 1 to 6.
After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical interfaces assigned to the port-channel interface. Configuration changes applied to the physical interface affect only the interface where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.

**Understanding the Port Aggregation Protocol**

The Port Aggregation Protocol (PAgP) facilitates the automatic creation of EtherChannels by exchanging packets between Ethernet interfaces. By using PAgP, the switch learns the identity of partners capable of supporting PAgP and learns the capabilities of each interface. It then dynamically groups similarly configured interfaces into a single logical link (channel or aggregate port); these interfaces are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the interfaces with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.
PAgP Modes

Table 27-1 shows the user-configurable EtherChannel modes for the channel-group interface configuration command: on, auto, and desirable. Switch interfaces exchange PAgP packets only with partner interfaces configured in the auto or desirable modes; interfaces configured in the on mode do not exchange PAgP packets.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>Places an interface into a passive negotiating state, in which the interface responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets.</td>
</tr>
<tr>
<td>desirable</td>
<td>Places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending PAgP packets.</td>
</tr>
<tr>
<td>on</td>
<td>Forces the interface to channel without PAgP. With the on mode, a usable EtherChannel exists only when an interface group in the on mode is connected to another interface group in the on mode.</td>
</tr>
</tbody>
</table>

Both the auto and desirable modes allow interfaces to negotiate with partner interfaces to determine if they can form an EtherChannel based on criteria such as interface speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.

Interfaces can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:

- An interface in the desirable mode can form an EtherChannel with another interface that is in the desirable or auto mode.
- An interface in the auto mode can form an EtherChannel with another interface in the desirable mode.

An interface in the auto mode cannot form an EtherChannel with another interface that is also in the auto mode because neither interface starts PAgP negotiation.

An interface in the on mode that is added to a port channel is forced to have the same characteristics as the already existing on mode interfaces in the channel.

⚠️ Caution

You should exercise care when setting the mode to on (manual configuration). All ports configured in the on mode are bundled in the same group and are forced to have similar characteristics. If the group is misconfigured, packet loss or spanning-tree loops might occur.

If your switch is connected to a partner that is PAgP-capable, you can configure the switch interface for nonsilent operation by using the non-silent keyword. If you do not specify non-silent with the auto or desirable mode, silent mode is assumed.

The silent mode is used when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational; however, the silent setting allows PAgP to operate, to attach the interface to a channel group, and to use the interface for transmission.
Physical Learners and Aggregate-Port Learners

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the interfaces in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

The switch uses source-MAC address distribution for a channel if it is connected to a physical learner even if the user configures destination-MAC address distribution.

These frame distribution mechanisms are possible for frame transmission:
- Port selection based on the source-MAC address of the packet
- Port selection based on the destination MAC address of the packet

The switch supports up to eight ports in a PAgP group.

PAgP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and Cisco Discovery Protocol (CDP) send and receive packets over the physical interfaces in the EtherChannel. Trunk ports send and receive PAgP protocol data units (PDUs) on the lowest numbered VLAN.

Spanning tree sends packets over a single physical interface in the EtherChannel. Spanning tree regards the EtherChannel as one port.

PAgP sends and receives PAgP PDUs only from interfaces that are up and have PAgP enabled for the auto or desirable mode.

Understanding Load Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel. EtherChannel load balancing can use either source-MAC or destination-MAC address forwarding.

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide load balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel (and the MAC address learned by the switch does not change).

With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel. You configure the load balancing and forwarding method by using the `port-channel load-balance` global configuration command.

In Figure 27-3, an EtherChannel of four workstations communicates with a router. Because the router is a single-MAC-address device, source-based forwarding on the switch EtherChannel ensures that the switch uses all available bandwidth to the router. The router is configured for destination-based forwarding because the large number of workstations ensures that the traffic is evenly distributed from the router EtherChannel.
Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel; using source addresses or IP addresses might result in better load balancing.

**Figure 27-3  Load Distribution and Forwarding Methods**
Configuring EtherChannels

These sections describe how to configure EtherChannel interfaces:

- Default EtherChannel Configuration, page 27-7
- EtherChannel Configuration Guidelines, page 27-8
- Configuring Layer 2 EtherChannels, page 27-8
- Configuring EtherChannel Load Balancing, page 27-10
- Configuring the PAgP Learn Method and Priority, page 27-11

**Note**

Make sure that the interfaces are correctly configured (see the “EtherChannel Configuration Guidelines” section on page 27-8).

**Note**

After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical interfaces assigned to the port-channel interface, and configuration changes applied to the physical interface affect only the interface where you apply the configuration.

Default EtherChannel Configuration

Table 27-2 shows the default EtherChannel configuration.

**Table 27-2  Default EtherChannel Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all interfaces.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all interfaces. (Changing this value has no effect.)</td>
</tr>
<tr>
<td>Load balancing</td>
<td>Load distribution on the switch is based on the source-MAC address of the incoming packet.</td>
</tr>
</tbody>
</table>

**Note**

The basic version of Etherchannel, which has to be manually configured, is not supported on the Catalyst 2950 LRE ports; the PAgP-enabled version is supported.
EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel interfaces are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

- Configure an EtherChannel with up to eight Ethernet interfaces of the same type.

  **Note** Do not configure a GigaStack GBIC port as part of an EtherChannel.

- Configure all interfaces in an EtherChannel to operate at the same speeds and duplex modes.
- Enable all interfaces in an EtherChannel. An interface in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining interfaces in the EtherChannel.
- When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
  - Allowed-VLAN list
  - Spanning-tree path cost for each VLAN
  - Spanning-tree port priority for each VLAN
  - Spanning-tree Port Fast setting
- If you configure Switch Port Analyzer (SPAN) on a port that is a member of the EtherChannel, it leaves the EtherChannel.
- Do not configure a port that belongs to an EtherChannel port group as a secure port.
- Before enabling 802.1X on the port, you must first remove it from the EtherChannel. If you try to enable 802.1X on an EtherChannel or on an active port in an EtherChannel, an error message appears, and 802.1X is not enabled. If you enable 802.1X on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
- Assign all interfaces in the EtherChannel to the same VLAN, or configure them as trunks.
- If you configure an EtherChannel from trunk interfaces, verify that the trunking mode (802.1Q) is the same on all the trunks. Inconsistent trunk modes on EtherChannel interfaces can have unexpected results.
- An EtherChannel supports the same allowed range of VLANs on all the interfaces in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the interfaces do not form an EtherChannel even when PAgP is set to the `auto` or `desirable` mode.
- Interfaces with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make interfaces incompatible for the formation of an EtherChannel.

Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by configuring the Ethernet interfaces with the `channel-group` interface configuration command, which creates the port-channel logical interface.

**Note** Layer 2 interfaces must be connected and functioning for IOS to create port-channel interfaces.
Beginning in privileged EXEC mode, follow these steps to assign a Layer 2 Ethernet interface to a Layer 2 EtherChannel:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
| **Step 3** | channel-group channel-group-number mode { auto [non-silent] | desirable [non-silent] | on } | Assign the interface to a channel group, and specify the PAgP mode. The default mode is **auto silent**. For channel-group-number, the range is 1 to 6. Each EtherChannel can have of up to eight compatibly configured Ethernet interfaces. For mode, select one of these keywords:  
  - **auto**—Enables PAgP only if a PAgP device is detected. It places an interface into a passive negotiating state, in which the interface responds to PAgP packets it receives but does not start PAgP packet negotiation.  
  - **desirable**—Unconditionally enables PAgP. It places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending PAgP packets.  
  - **on**—Forces the interface to channel without PAgP. With the on mode, a usable EtherChannel exists only when an interface group in the on mode is connected to another interface group in the on mode.  
  - **non-silent**—If your switch is connected to a partner that is PAgP-capable, you can configure the switch interface for nonsilent operation. You can configure an interface with the non-silent keyword for use with the auto or desirable mode. If you do not specify non-silent with the auto or desirable mode, silent is assumed. The silent setting is for connections to file servers or packet analyzers; this setting allows PAgP to operate, to attach the interface to a channel group, and to use the interface for transmission. For information on compatible PAgP modes for the switch and its partner, see the “PAgP Modes” section on page 27-4. |
| **Step 4** | end | Return to privileged EXEC mode. |
| **Step 5** | show running-config | Verify your entries. |
| **Step 6** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
To remove an interface from the EtherChannel group, use the `no channel-group` interface configuration command. If you delete the EtherChannel by using the `no interface port-channel` global configuration command without removing the physical interfaces, the physical interfaces are shutdown. If you do not want the member physical interfaces to shut down, remove the physical interfaces before deleting the EtherChannel.

This example shows how to assign Gigabit Ethernet interfaces 0/1 and 0/2 with the PAgP mode desirable:

```plaintext
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/1 -2
Switch(config-if)# channel-group 5 mode desirable
Switch(config-if)# end
```

### Configuring EtherChannel Load Balancing

This section describes how to configure EtherChannel load balancing by using source-based or destination-based forwarding methods. For more information, see the “Understanding Load Balancing and Forwarding Methods” section on page 27-5.

Beginning in privileged EXEC mode, follow these steps to configure EtherChannel load balancing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`port-channel load-balance {dst-mac</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code></td>
</tr>
</tbody>
</table>

If the link partner to the switch is a physical learner, set the load-distribution method to one of these ways:

- If the `channel-group` interface configuration command is set to `auto` or `desirable`, the switch automatically uses the load distribution method based on the source-MAC address, regardless of the configured load-distribution method.
- If the `channel-group` interface configuration command is set to `on`, set the load-distribution method based on the source-MAC address by using the `port-channel load-balance src-mac` global configuration command.
To return EtherChannel load balancing to the default configuration, use the `no port-channel load-balance` global configuration command.

### Configuring the PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate ports.

For compatibility with Catalyst 1900 series switches, configure the Catalyst 2950 switches for source-MAC load distribution.

The Catalyst 2950 switch supports address learning only on aggregate ports even though the `physical-port` keyword is provided in the command-line interface (CLI). The `pagp learn-method` and the `pagp port-priority` interface configuration command have no effect on the switch hardware.

**Note**
You should not set the learn method to `physical-port` because the switch is an aggregate-learning device.

If the link partner to the switch is a physical learner that has the `channel-group` interface configuration command set to `auto` or `desirable`, the switch automatically uses the load-distribution method based on the source MAC address, regardless of the configured load distribution method.

If the link partner to the Catalyst 2950 switch is a physical learner that has the `channel-group` interface configuration command set to `on`, set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command.

### Displaying EtherChannel and PAgP Status

You can use the privileged EXEC commands described in Table 27-3 to display EtherChannel and PAgP status information:

#### Table 27-3 Commands for Displaying EtherChannel and PAgP Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show etherchannel [channel-group-number] {brief</td>
<td>detail</td>
</tr>
<tr>
<td>`show pagp [channel-group-number] {counters</td>
<td>internal</td>
</tr>
</tbody>
</table>

¹. You can clear PAgP channel-group information and traffic filters by using the `clear pagp {channel-group-number [counters] | counters}` privileged EXEC command.

For detailed information about the fields in the displays, refer to the command reference for this release.
Troubleshooting

This chapter describes how to identify and resolve software problems related to the IOS software. Depending on the nature of the problem, you can use the command-line interface (CLI) or the Cluster Management Suite (CMS) to identify and solve problems. To identify and resolve Cisco-approved Course Wave Division Multiplexer (CWDM) Gigabit Interface Converter (GBIC) problems, you must have the enhanced software image (EI) installed on your switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Command Summary for Release 12.1.

This chapter consists of these sections:

- LRE Statistics, page 28-1
- Using Recovery Procedures, page 28-6
- Preventing Autonegotiation Mismatches, page 28-12
- Troubleshooting LRE Port Configuration, page 28-12
- GBIC and SFP Module Security and Identification, page 28-13
- Using Debug Commands, page 28-14
- Using the crashinfo File, page 28-15

LRE Statistics

This section describes the statistics you can retrieve from the switch and from connected LRE CPE devices. Use the show controllers ethernet-controller, show controllers ethernet-controller <LRE interface> cpe [port <port-num>] and show controllers lre status privileged EXEC commands to display these statistics:

- Table 28-1 shows Ethernet port statistics
- Table 28-2 shows LRE link statistics
- Table 28-3 shows CPE Ethernet link statistics
### Table 28-1 Ethernet Port Statistics

<table>
<thead>
<tr>
<th>Statistic Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transmit</strong></td>
<td></td>
</tr>
<tr>
<td>Unicast Frames</td>
<td>The total number of well-formed unicast frames sent by a port. It excludes frames sent with errors or with multicast or broadcast destination addresses.</td>
</tr>
<tr>
<td>Multicast Frames</td>
<td>The total number of well-formed multicast frames sent by a port. It excludes frames sent with errors or with unicast or broadcast destination addresses.</td>
</tr>
<tr>
<td>Broadcast Frames</td>
<td>The total number of well-formed broadcast frames sent by a port. It excludes frames sent with errors or with unicast or multicast destination addresses.</td>
</tr>
<tr>
<td>Too old</td>
<td>The total number of transmit frames discarded because they have exceeded their age limit.</td>
</tr>
<tr>
<td>Deferred</td>
<td>A count of frames for which the first transmission attempt on a particular interface is delayed because the medium is busy. The count represented by an instance of this object does not include frames involved in collisions.</td>
</tr>
<tr>
<td>Total Collision Frames</td>
<td>The total number of frames sent without error after having 1 to 15 collisions. It includes frames of all destination address types and excludes frames discarded because of insufficient resources or late collisions.</td>
</tr>
<tr>
<td>Excessive Collision Frames</td>
<td>The total number of frames that failed to be sent after 16 collisions. It includes frames of all destination address types.</td>
</tr>
<tr>
<td>Late Collision Frames</td>
<td>The total number of frames discarded because of late collisions detected during transmission. It includes all transmit frames that had a collision after the transmission of the frame's 64th byte. The preamble and SFD are not included in the frame's byte count.</td>
</tr>
<tr>
<td>VLAN discard frames</td>
<td>Counts the number of transmit frames that were tagged with an 802.1q tag and discarded during transmission.</td>
</tr>
<tr>
<td>Control frames</td>
<td>Incremented each time a pause control frame is transmitted.</td>
</tr>
<tr>
<td>Tagged frames</td>
<td>Counts the number of transmit frames that were tagged with an 802.1q tag.</td>
</tr>
<tr>
<td>Aborted frames</td>
<td>Incremented for each packet for which transmission was started but aborted due to various transmission errors such as excessive collisions.</td>
</tr>
<tr>
<td>Pause frames</td>
<td>Incremented for each MAC pause control frame transmitted.</td>
</tr>
<tr>
<td>Single deferred frames</td>
<td>Incremented for each frame which was deferred on its first transmission attempt but did experience any subsequent collisions during transmission.</td>
</tr>
<tr>
<td>Multiple deferred frames</td>
<td>Incremented for each frame that was deferred multiple times during its transmission attempt due to collisions.</td>
</tr>
<tr>
<td>Single collisions</td>
<td>Incremented for each frame that experienced exactly one collision during its transmission attempt.</td>
</tr>
<tr>
<td>2-15 collisions</td>
<td>Incremented for each frame that experienced between 2 and 15 inclusive collisions during its transmission attempt.</td>
</tr>
<tr>
<td><strong>Receive</strong></td>
<td></td>
</tr>
<tr>
<td>Unicast Frames</td>
<td>The total number of well-formed unicast frames received by a port. It excludes frames received with errors, with multicast or broadcast destination addresses, or with oversized or undersized frames. Also excluded are frames discarded or without a destination.</td>
</tr>
<tr>
<td>Statistic Type</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Multicast Frames</td>
<td>The total number of well-formed multicast frames received by a port. It excludes frames received with errors, with unicast or broadcast destination addresses, or with oversized or undersized frames. Also excluded are frames discarded or without a destination.</td>
</tr>
<tr>
<td>Broadcast Frames</td>
<td>The total number of well-formed broadcast frames received by a port. It excludes frames received with errors, with unicast or multicast destination addresses, or with oversized or undersized frames. Also excluded are frames discarded or without a destination.</td>
</tr>
<tr>
<td>Discarded Frames</td>
<td>The total number of frames discarded because of insufficient receive bandwidth or receive buffer space or because the forwarding rules stipulate that they not be forwarded.</td>
</tr>
<tr>
<td>Alignment Errors</td>
<td>The total number of frames received with alignment errors. It includes all the frames received with both an FCS error and a nonintegral number of bytes.</td>
</tr>
<tr>
<td>FCS Errors</td>
<td>The total number of frames received with FCS errors. It excludes undersized frames with FCS errors.</td>
</tr>
<tr>
<td>Undersize frames</td>
<td>The total number of frames received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Minimum size frames</td>
<td>The total number of frames received that were 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Frames</td>
<td>The total number of frames received of more than 1518 bytes that have good FCS values.</td>
</tr>
<tr>
<td>Control frames</td>
<td>Incremented for each MAC control frame (pause and unsupported) received.</td>
</tr>
<tr>
<td>Pause frames</td>
<td>Incremented for each MAC pause control frame received.</td>
</tr>
<tr>
<td>Unknown opcode</td>
<td>Incremented for every non-pause MAC control frame received.</td>
</tr>
<tr>
<td>Length out of range</td>
<td>Incremented for each frame received where the 802.3 length field in the packet did not match the number of bytes actually received. This counter is not incremented if the length field is not a valid 802.3 length but is an ethernet packet type.</td>
</tr>
<tr>
<td>Symbol errors</td>
<td>Incremented each time a valid carrier was present and at least one invalid data symbol was received.</td>
</tr>
<tr>
<td>False carrier</td>
<td>Incremented each time a false carrier is detected during idle. The event is reported along with the statistics generated on the next received frame. Only one false carrier condition can be generated and reported between frames.</td>
</tr>
<tr>
<td>valid, too small</td>
<td>Incremented for each received frame that was valid but had a size that was smaller than the minimum sized frame (of length 64 bytes).</td>
</tr>
<tr>
<td>valid, too large</td>
<td>Incremented for each received frame that was valid but had a size that was larger than the maximum sized frame (of length 1518 bytes).</td>
</tr>
<tr>
<td>invalid, too small</td>
<td>Incremented for each received frame that was invalid and had a size that was smaller than the minimum sized frame (of length 64 bytes).</td>
</tr>
<tr>
<td>invalid, too large</td>
<td>Incremented for each received frame that was invalid and had a size that was larger than the maximum sized frame (of length 1518 bytes).</td>
</tr>
</tbody>
</table>
## Table 28-2  LRE Link Statistics

<table>
<thead>
<tr>
<th>Statistic Type</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream Bandwidth Usage</td>
<td>The percentage of the bandwidth used for upstream traffic, based on the current upstream rate and actual upstream speed of LRE link.</td>
</tr>
<tr>
<td>Downstream Bandwidth Usage</td>
<td>The percentage of the bandwidth used for downstream traffic, based on the current downstream rate and actual downstream speed of the LRE link.</td>
</tr>
<tr>
<td>Signal to Noise Ratio</td>
<td>The amount of increased received signal noise (in decibels) relative to the ambient, environment, and electromagnetic noise power level that the switch is designed to tolerate without disconnecting from the remote LRE CPE device. The higher the ratio, the more resilient the link.</td>
</tr>
<tr>
<td>Upstream Reed-Solomon Errors</td>
<td>The number of detected and corrected data errors being received on the switch LRE port. Reed-Solomon errors result from noise exceeding the noise margin. For short bursts of noise (such as motor startup or power surges), the Reed-Solomon error correction prevents the loss of Ethernet data frames. The LRE interface corrects the data bytes that are incorrectly received on the switch LRE port (up to a designed 8-byte limit). The residual error rate is better than the detection capability of the Ethernet cyclic redundancy check (CRC). If the error burst is larger than the correction capability of the LRE interface, the Ethernet CRC is used to determine the corrupted frames and to discard them.</td>
</tr>
<tr>
<td>Downstream Reed-Solomon Errors</td>
<td>The number of detected and corrected data errors being received on the CPE RJ-11 wall port.</td>
</tr>
</tbody>
</table>

## Table 28-3  CPE Ethernet Link Statistics

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transmit</strong></td>
<td></td>
</tr>
<tr>
<td>Bytes</td>
<td>Total number of bytes transmitted out of this port.</td>
</tr>
<tr>
<td>Unicast Frames</td>
<td>The total number of well-formed unicast frames sent by a port. It excludes frames sent with errors or with multicast or broadcast destination addresses.</td>
</tr>
<tr>
<td>Multicast Frames</td>
<td>The total number of well-formed multicast frames sent by a port. It excludes frames sent with errors or with unicast or broadcast destination addresses.</td>
</tr>
<tr>
<td>Broadcast Frames</td>
<td>The total number of well-formed broadcast frames sent by a port. It excludes frames sent with errors or with unicast or multicast destination addresses.</td>
</tr>
<tr>
<td>Dropped Frames</td>
<td>The count of frames that were dropped before transmission.</td>
</tr>
<tr>
<td>Pause Frames</td>
<td>Incremented for each MAC pause control frame transmitted.</td>
</tr>
<tr>
<td>Collision Frames</td>
<td>The total number of frames sent without error after having 1 to 15 collisions. It includes frames of all destination address types and excludes frames discarded because of insufficient resources or late collisions.</td>
</tr>
<tr>
<td>One Collision Frames</td>
<td>Incremented for each frame that experienced exactly one collision during its transmission attempt.</td>
</tr>
<tr>
<td>Multiple Collisions</td>
<td>Incremented for each frame that experienced more than one collision during its transmission attempt.</td>
</tr>
</tbody>
</table>
### Table 28-3  CPE Ethernet Link Statistics (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Transmit</strong></td>
<td></td>
</tr>
<tr>
<td>Late Collisions</td>
<td>The total number of frames discarded because of late collisions detected during transmission. It includes all transmit frames that had a collision after the transmission of the frame's 64th byte. The preamble and SFD are not included in the frame's byte count.</td>
</tr>
<tr>
<td>Excess Collisions</td>
<td>The total number of frames that failed to be sent after 16 collisions. It includes frames of all destination address types.</td>
</tr>
<tr>
<td>Frame Discard</td>
<td>Counts the number of transmit frames that were tagged with an 802.1q tag and discarded during transmission.</td>
</tr>
<tr>
<td><strong>Receive</strong></td>
<td></td>
</tr>
<tr>
<td>Bytes</td>
<td>Total number of bytes received by this port.</td>
</tr>
<tr>
<td>Unicast Frames</td>
<td>The total number of well-formed unicast frames received by a port. It excludes frames received with errors, with multicast or broadcast destination addresses, or with oversized or undersized frames. Also excluded are frames discarded or without a destination.</td>
</tr>
<tr>
<td>Multicast Frames</td>
<td>The total number of well-formed multicast frames received by a port. It excludes frames received with errors, with unicast or broadcast destination addresses, or with oversized or undersized frames. Also excluded are frames discarded or without a destination.</td>
</tr>
<tr>
<td>Broadcast Frames</td>
<td>The total number of well-formed broadcast frames received by a port. It excludes frames received with errors, with unicast or multicast destination addresses, or with oversized or undersized frames. Also excluded are frames discarded or without a destination.</td>
</tr>
<tr>
<td>Dropped Frames</td>
<td>The count of received frames that were dropped.</td>
</tr>
<tr>
<td>Pause Frames</td>
<td>Incremented for each MAC pause control frame received.</td>
</tr>
<tr>
<td>Alignment Errors</td>
<td>The total number of frames received with alignment errors. It includes all the frames received with both an FCS error and a nonintegral number of bytes.</td>
</tr>
<tr>
<td>Fragments</td>
<td>The total number of frames of less than 64 bytes that have an integral number of bytes and bad FCS values.</td>
</tr>
<tr>
<td>Undersize Frames</td>
<td>The total number of frames received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed.</td>
</tr>
<tr>
<td>Oversize Frames</td>
<td>The total number of frames received of more than 1518 bytes that have good FCS values.</td>
</tr>
<tr>
<td>FCS errors</td>
<td>The total number of frames received with FCS errors. It excludes undersized frames with FCS errors.</td>
</tr>
<tr>
<td>Excess Size Discards</td>
<td>The total number of received frames discarded because their size exceeded the maximum allowed Ethernet frame size.</td>
</tr>
<tr>
<td>Jabbers</td>
<td>The number of frames received that are longer than 1522 bytes and have either an FCS error or an alignment error.</td>
</tr>
<tr>
<td>Source Address Change</td>
<td>The number of times the source address of good received packets has changed from the previous value.</td>
</tr>
<tr>
<td>Symbol Errors</td>
<td>Incremented each time a valid carrier was present and at least one invalid data symbol was received.</td>
</tr>
</tbody>
</table>
Using Recovery Procedures

These recovery procedures require that you have physical access to the switch:

- Recovering from Corrupted Software, page 28-6
- Recovering from a Lost or Forgotten Password, page 28-6
- Recovering from a Command Switch Failure, page 28-8
- Recovering from Lost Member Connectivity, page 28-11

Recovering from Corrupted Software

Switch software can be corrupted during an upgrade, by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses the XMODEM Protocol to recover from a corrupt or wrong image file. There are many software packages that support the XMODEM protocol, and this procedure is largely dependent on the emulation software you are using.

---

**Step 1** Connect a PC with terminal-emulation software supporting the XMODEM Protocol to the switch console port.

**Step 2** Set the line speed on the emulation software to 9600 baud.

**Step 3** Disconnect the switch power cord.

**Step 4** Reconnect the power cord to the switch.

The software image does not load. The switch starts in boot loader mode, which is indicated by the `switch#` prompt.

**Step 5** Use the boot loader to enter commands, and start the transfer.

```
switch# copy xmodem: flash:image_filename.bin
```

**Step 6** When the XMODEM request appears, use the appropriate command on the terminal-emulation software to start the transfer and to copy the software image to Flash memory.

---

Recovering from a Lost or Forgotten Password

Follow these steps if you have forgotten or lost the switch password.

---

**Step 1** Connect a terminal or PC with terminal emulation software to the console port. For more information, refer to the switch hardware installation guide.

**Note** You can configure your switch for Telnet by following the procedure in the “Accessing the CLI” section on page 2-10.

**Step 2** Set the line speed on the emulation software to 9600 baud.
Step 3  Unplug the switch power cord.

Step 4  Press the Mode button, and at the same time, reconnect the power cord to the switch.

You can release the Mode button a second or two after the LED above port 1X goes off. Several lines of information about the software appear, as do instructions:

The system has been interrupted prior to initializing the flash file system. These commands will initialize the flash file system, and finish loading the operating system software:

```
flash_init
load_helper
boot
```

Step 5  Initialize the Flash file system:

```
switch# flash_init
```

Step 6  If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

Step 7  Load any helper files:

```
switch# load_helper
```

Step 8  Display the contents of Flash memory as in this example:

```
switch# dir flash:
The switch file system is displayed:
Directory of flash:/
 3 drwx 10176 Mar 01 2001 00:04:34 html
 6 -rwX 2343 Mar 01 2001 03:18:16 config.text
 171 -rwX 1667997 Mar 01 2001 00:02:39 c2950-16q412-mz.121-9.EA1.bin
 7 -rwX 3060 Mar 01 2001 00:14:20 vlan.dat
 172 -rwX 100 Mar 01 2001 00:02:54 env_vars

7741440 bytes total (3884509 bytes free)
```

Step 9  Rename the configuration file to config.text.old.

This file contains the password definition.

```
switch# rename flash:config.text flash:config.text.old
```

Step 10 Boot the system:

```
switch# boot
```

You are prompted to start the setup program. Enter N at the prompt:

```
Continue with the configuration dialog? [yes/no]: N
```

Step 11 At the switch prompt, change to privileged EXEC mode:

```
switch> enable
```

Step 12 Rename the configuration file to its original name:

```
switch# rename flash:config.text.old flash:config.text
```
Step 13 Copy the configuration file into memory:

```
switch# copy flash:config.text system:running-config
Source filename [config.text]?
Destination filename [running-config]?
```

Press Return in response to the confirmation prompts.

The configuration file is now reloaded, and you can use the following normal commands to change the password.

Step 14 Enter global configuration mode:
```
switch# config terminal
```

Step 15 Change the password:
```
switch(config)# enable secret <password>
```

or
```
switch(config)# enable password <password>
```

Step 16 Return to privileged EXEC mode:
```
switch(config)# exit
switch#
```

Step 17 Write the running configuration to the startup configuration file:
```
switch# copy running-config startup-config
```

The new password is now included in the startup configuration.

---

**Recovering from a Command Switch Failure**

This section describes how to recover from a failed command switch. You can configure a redundant command switch group by using the Hot Standby Router Protocol (HSRP). For more information, see Chapter 6, “Clustering Switches.”

**Note**

HSRP is the preferred method for supplying redundancy to a cluster.

If you have not configured a standby command switch, and your command switch loses power or fails in some other way, management contact with the member switches is lost, and you must install a new command switch. However, connectivity between switches that are still connected is not affected, and the member switches forward packets as usual. You can manage the members as standalone switches through the console port or, if they have IP addresses, through the other management interfaces.

You can prepare for a command switch failure by assigning an IP address to a member switch or another switch that is command-capable; making a note of the command-switch password; and cabling your cluster to provide redundant connectivity between the member switches and the replacement command switch. This section describes two solutions for replacing a failed command switch:

- Replacing a failed command switch with a cluster member
- Replacing a failed command switch with another switch

For information on command-capable switches, refer to the release notes.
Replacing a Failed Command Switch with a Cluster Member

To replace a failed command switch with a command-capable member in the same cluster, follow these steps:

**Step 1** Disconnect the command switch from the member switches, and physically remove it from the cluster.

**Step 2** Insert the member switch in place of the failed command switch, and duplicate its connections to the cluster members.

**Step 3** Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, refer to the switch hardware installation guide.

**Step 4** At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

**Step 5** Enter the password of the failed command switch.

**Step 6** Enter global configuration mode.

```
Switch# configure terminal
```

**Step 7** Remove the member switch from the cluster.

```
Switch(config)# no cluster commander-address
```

**Step 8** Return to privileged EXEC mode.

```
Switch(config)# end
Switch#
```

**Step 9** Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter `setup`, and press `Return`.

```
Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
```

At any point you may enter a question mark '?' for help. Use `ctrl-c` to abort configuration dialog at any prompt. Default settings are in square brackets '[]'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.

```
Would you like to enter basic management setup? [yes/no]:
```

**Step 10** Enter `Y` at the first prompt.

The prompts in the setup program vary depending on the member switch you selected to be the command switch:

```
Continue with configuration dialog? [yes/no]: y
```

or

```
Configuring global parameters:
```

If this prompt does not appear, enter `enable`, and press `Return`. Enter `setup`, and press `Return` to start the setup program.
**Chapter 28  Troubleshooting**

**Using Recovery Procedures**

**Step 11** Respond to the questions in the setup program.

When prompted for the host name, recall that on a command switch, the host name is limited to 28 characters; on a member switch to 31 characters. Do not use `-n`, where `n` is a number, as the last characters in a host name for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

**Step 12** When prompted for the `enable secret` and `enable` passwords, enter the passwords of the `failed command switch` again.

**Step 13** When prompted, make sure to enable the switch as the cluster command switch, and press Return.

**Step 14** When prompted, assign a name to the cluster, and press Return.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

**Step 15** After the initial configuration displays, verify that the addresses are correct.

**Step 16** If the displayed information is correct, enter Y, and press Return.

If this information is not correct, enter N, press Return, and begin again at Step 9.

**Step 17** Start your browser, and enter the IP address of the new command switch.

**Step 18** From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.

---

**Replacing a Failed Command Switch with Another Switch**

To replace a failed command switch with a switch that is command-capable but not part of the cluster, follow these steps:

**Step 1** Insert the new switch in place of the failed command switch, and duplicate its connections to the cluster members.

**Step 2** Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, refer to the switch hardware installation guide.

**Step 3** At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

**Step 4** Enter the password of the `failed command switch`.

**Step 5** Use the setup program to configure the switch IP information.

This program prompts you for IP address information and passwords. From privileged EXEC mode, enter `setup`, and press Return.

```
Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
```

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '{}'.

---
Chapter 28  Troubleshooting

Using Recovery Procedures

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.

Would you like to enter basic management setup? [yes/no]:

**Step 6**
Enter Y at the first prompt.

The prompts in the setup program vary depending on the switch you selected to be the command switch:

Continue with configuration dialog? [yes/no]: y

or

Configuring global parameters:

If this prompt does not appear, enter enable, and press Return. Enter setup, and press Return to start the setup program.

**Step 7**
Respond to the questions in the setup program.

When prompted for the host name, recall that on a command switch, the host name is limited to 28 characters. Do not use -n, where n is a number, as the last characters in a host name for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

**Step 8**
When prompted for the enable secret and enable passwords, enter the passwords of the failed command switch again.

**Step 9**
When prompted, make sure to enable the switch as the cluster command switch, and press Return.

**Step 10**
When prompted, assign a name to the cluster, and press Return.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

**Step 11**
When the initial configuration displays, verify that the addresses are correct.

**Step 12**
If the displayed information is correct, enter Y, and press Return.

If this information is not correct, enter N, press Return, and begin again at Step 9.

**Step 13**
Start your browser, and enter the IP address of the new command switch.

**Step 14**
From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.

---

**Recovering from Lost Member Connectivity**

Some configurations can prevent the command switch from maintaining contact with member switches. If you are unable to maintain management contact with a member, and the member switch is forwarding packets normally, check for these conflicts:

- A member switch (Catalyst 3550, Catalyst 3500 XL, Catalyst 2950, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) cannot connect to the command switch through a port that is defined as a network port.
- Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 member switches must connect to the command switch through a port that belongs to the same management VLAN.
- A member switch (Catalyst 3550, Catalyst 2950, Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) connected to the command switch through a secured port can lose connectivity if the port is disabled because of a security violation.
Preventing Autonegotiation Mismatches

The IEEE 802.3AB autonegotiation protocol manages the switch settings for speed (10 Mbps, 100 Mbps, and 1000 Mbps excluding GBIC ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually-set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

Note

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

Troubleshooting LRE Port Configuration

Table 28-4 lists problems that you might encounter when configuring and monitoring the Long-Reach Ethernet (LRE) ports on the Catalyst 2950 LRE switches. For additional information about what can affect LRE connections, see the “Environmental Considerations for LRE Links” section on page 7-18.

LRE command descriptions provide additional troubleshooting information. Refer to the switch command reference.

See the Release Notes for the Catalyst 2950 Desktop Switch, Release 12.1(11)YJ for switch upgrade and CPE device upgrade troubleshooting information.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Suspected Cause and Suggested Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber LRE port LED</td>
<td>The switch and CPE device are unable to establish an LRE link using the selected profile.</td>
</tr>
<tr>
<td></td>
<td>- Change to a profile with a lower data rate (for example, use LRE-5 instead of LRE-15).</td>
</tr>
<tr>
<td></td>
<td>- Reduce the effect of stubs or bridge taps by terminating them with 300-ohm microfilters.</td>
</tr>
<tr>
<td>Excessive CRC errors on an LRE</td>
<td>- A noisy environment (such as motors and power surges) is causing interference with the LRE link.</td>
</tr>
<tr>
<td>link</td>
<td>- Change to a profile that has the interleaver feature enabled, such as the LRE-5, LRE-10,</td>
</tr>
<tr>
<td></td>
<td>LRE-15, LRE-10-1, LRE-10-3, or LRE-10-5 profile.</td>
</tr>
<tr>
<td></td>
<td>- Change to a profile with a lower data rate (for example, use LRE-5 instead of LRE-15) to</td>
</tr>
<tr>
<td></td>
<td>increase the noise margin.</td>
</tr>
<tr>
<td></td>
<td>- The LRE link length and quality are close to the limit of operation.</td>
</tr>
<tr>
<td></td>
<td>- Change to a lower profile (for example, LRE-5 instead of LRE-15).</td>
</tr>
<tr>
<td></td>
<td>- Reduce the effect of stubs or bridge taps by terminating them with 300-ohm microfilters.</td>
</tr>
</tbody>
</table>
Table 28-4 LRE Port Problems (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Suspected Cause and Suggested Solution</th>
</tr>
</thead>
</table>
| High Reed-Solomon error count without CRC errors | • Interleaver is helping Reed-Solomon error correction to function correctly in a noisy environment. This situation means that the system is on the verge of generating CRC errors.  
  - Change to a profile that has the interleaver feature enabled, such as the LRE-5, LRE-10, LRE-15, LRE-10-1, LRE-10-3, or LRE-10-5 profile.  
  - Change to a profile with a lower data rate (for example, use LRE-5 instead of LRE-15) to increase the noise margin.  
  • The LRE link length and quality are close to the limit of operation.  
  - Change to a profile with a lower data rate (for example, use LRE-5 instead of LRE-15).  
  - Reduce the effect of stubs or bridge taps by terminating them with 300-ohm microfilters. |
| Ethernet performance degradation due to excessive network latency | Interleaver introduces extra latency to increase noise margin.  
  • Adjust upper-layer network protocols to allow for high latency.  
  • Change to a profile with a higher data rate to increase link bandwidth. This decreases the noise margin.  
  • Select a low-latency (LL) LRE profile, such as LRE-5LL, LRE-10LL, or LRE-15LL.  
  \*Note: Use the LL private profiles with care. The LL profiles have the LL feature enabled and the interleaver feature turned off. The LL feature does not delay data transmission, but it makes data more susceptible to interruptions on the LRE link.  
  \*Note: All other profiles, public and private, have the interleaver feature enabled and the LL feature disabled. The interleaver feature provides maximum protection against small interruptions on the LRE link but delays data transmission. For more information about the LRE profiles, see the “Types of LRE Profiles” section on page 7-17. |
| LRE link quality reduced in installations with bundled cables | Cross-talk between the LRE links is causing all links to degrade. Disable unused LRE ports by using the \texttt{lre shutdown} interface configuration command. |

GBIC and SFP Module Security and Identification

Cisco-approved Gigabit Interface Converter (GBIC) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When a GBIC module is inserted in the switch, the switch software reads the EEPROM to check the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the switch places the interface in an error-disabled state.

\*Note: If you are using a non-Cisco approved GBIC module, remove the GBIC from the switch, and replace it with a Cisco-approved module.

After inserting a Cisco-approved GBIC or SFP module, use the \texttt{errdisable recovery cause gbic-invalid} global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the \texttt{errdisable recovery} command, refer to the command reference for this release.

---

**High Reed-Solomon error count without CRC errors**

- Interleaver is helping Reed-Solomon error correction to function correctly in a noisy environment. This situation means that the system is on the verge of generating CRC errors.
  - Change to a profile that has the interleaver feature enabled, such as the LRE-5, LRE-10, LRE-15, LRE-10-1, LRE-10-3, or LRE-10-5 profile.
  - Change to a profile with a lower data rate (for example, use LRE-5 instead of LRE-15) to increase the noise margin.
- The LRE link length and quality are close to the limit of operation.
  - Change to a profile with a lower data rate (for example, use LRE-5 instead of LRE-15).
  - Reduce the effect of stubs or bridge taps by terminating them with 300-ohm microfilters.

**Ethernet performance degradation due to excessive network latency**

- Interleaver introduces extra latency to increase noise margin.
  - Adjust upper-layer network protocols to allow for high latency.
  - Change to a profile with a higher data rate to increase link bandwidth. This decreases the noise margin.
  - Select a low-latency (LL) LRE profile, such as LRE-5LL, LRE-10LL, or LRE-15LL.

**LRE link quality reduced in installations with bundled cables**

- Cross-talk between the LRE links is causing all links to degrade. Disable unused LRE ports by using the `lre shutdown` interface configuration command.
Using Debug Commands

This section explains how you use `debug` commands to diagnose and resolve internetworking problems. It contains this information:

- **Enabling Debugging on a Specific Feature**, page 28-14
- **Enabling All-System Diagnostics**, page 28-15
- **Redirecting Debug and Error Message Output**, page 28-15

⚠ **Caution**

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.

⚠ **Note**

For complete syntax and usage information for specific `debug` commands, refer to the command reference for this release.

Enabling Debugging on a Specific Feature

All `debug` commands are entered in privileged EXEC mode, and most `debug` commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for EtherChannel:

```
Switch# debug etherchannel
```

The switch continues to generate output until you enter the `no` form of the command.

If you enable a `debug` command and no output is displayed, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic you want to monitor. Use the `show running-config` command to check its configuration.
- Even if the switch is properly configured, it might not generate the type of traffic you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP `ping` command to generate network traffic.

To disable debugging of EtherChannel, enter this command in privileged EXEC mode:

```
Switch# no debug etherchannel
```

Alternately, in privileged EXEC mode, you can enter the `undebug` form of the command:

```
Switch# undebug etherchannel
```

To display the state of each debugging option, enter this command in privileged EXEC mode:

```
Switch# show debugging
```
Enabling All-System Diagnostics

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

```
Switch# debug all
```

Caution

Because debugging output takes priority over other network traffic, and because the `debug all` privileged EXEC command generates more output than any other `debug` command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific `debug` commands.

The `no debug all` privileged EXEC command disables all diagnostic output. Using the `no debug all` command is a convenient way to ensure that you have not accidentally left any `debug` commands enabled.

Redirecting Debug and Error Message Output

By default, the network server sends the output from `debug` commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

Note

Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

Using the crashinfo File

The crashinfo file saves information that helps Cisco technical support representatives to debug problems that caused the IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure, and the file is created the next time you boot the IOS image after the failure (instead of while the system is failing).

The information in the file includes the IOS image name and version that failed, a dump of the processor registers, and a stack trace. You can provide this information to the Cisco technical support representative by using the `show tech-support` privileged EXEC command.

All crashinfo files are kept in this directory on the Flash file system:

```
flash:/crashinfo/crashinfo_n
```

where `n` is a sequence number.
Each new crashinfo file that is created uses a sequence number that is larger than any previously-existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the `rename` privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the `show stacks` or the `show tech-support` privileged EXEC command. You can delete crashinfo files using the `delete` privileged EXEC command.

You can display the most recent crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the `show stacks` or the `show tech-support` privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the `more` or the `copy` privileged EXEC command.
Supported MIBs

This appendix lists the supported management information base (MIBs) for this release. It contains these sections:

- MIB List, page A-1
- Using FTP to Access the MIB Files, page A-2

MIB List

- BRIDGE-MIB (RFC1493)
- CISCO-CDP-MIB
- CISCO-2900-MIB
- CISCO-CLUSTER-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-ENTITY-VENDORTYPE-OID-MIB
- CISCO-FLASH-MIB
- CISCO-IETF-VDSL-LINE-MIB
- CISCO-IGMP-FILTER-MIB
- CISCO-IMAGE-MIB
- CISCO-MAC-NOTIFICATION-MIB
- CISCO-MEMORY-POOL-MIB
- CISCO-PAGP-MIB
- CISCO-PING-MIB
- CISCO-PROCESS-MIB
- CISCO-PRODUCTS-MIB
- CISCO-SMI
- CISCO-STACKMAKER-MIB
- CISCO-SP-EXTENSIONS-MIB
- CISCO-SYSLOG-MIB
- CISCO-TC
Using FTP to Access the MIB Files

Follow these steps to obtain each MIB file:

Step 1 Use FTP to access the server ftp.cisco.com.
Step 2 Log in with the username anonymous.
Step 3 Enter your e-mail username when prompted for the password.
Step 4 At the ftp> prompt, change directories to /pub/mibs/supportlists.

Note
The IF-MIB and the CISCO-IETF-VDSL-LINE-MIB are supported as read-only MIBs for the FE interfaces for the CPE devices.
Step 5  Change directories to `wsc2900xl` for a list of Catalyst 2900 XL MIBs.
Step 6  Use the `get MIB_filename` command to obtain a copy of the MIB file.

---

Note  You can also access information about MIBs on the Cisco web site:
Working with the IOS File System, Configuration Files, and Software Images

This appendix describes how to manipulate the Flash file system, how to copy configuration files, and how to archive (upload and download) software images.

For complete syntax and usage information for the commands used in this chapter, refer to the Catalyst 2950 LRE Command Reference for this release and the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This appendix consists of these sections:

- Working with the Flash File System, page B-1
- Working with Configuration Files, page B-8
- Working with Software Images, page B-20

Working with the Flash File System

The Flash file system on your switch provides several commands to help you manage software image and configuration files.

The Flash file system is a single Flash device on which you can store files. This Flash device is called flash:

This section contains this information:

- Displaying Available File Systems, page B-2
- Setting the Default File System, page B-3
- Displaying Information about Files on a File System, page B-3
- Creating and Removing Directories, page B-4
- Copying Files, page B-5
- Deleting Files, page B-5
- Creating, Displaying, and Extracting tar Files, page B-6
- Displaying the Contents of a File, page B-8
Displaying Available File Systems

To display the available file systems on your switch, use the `show file systems` privileged EXEC command as shown in this example:

```
Switch# show file systems
File Systems:

<table>
<thead>
<tr>
<th>Size(b)</th>
<th>Free(b)</th>
<th>Type</th>
<th>Flags</th>
<th>Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 16128000</td>
<td>11118592</td>
<td>flash</td>
<td>rw</td>
<td>flash:</td>
</tr>
<tr>
<td>16128000</td>
<td>11118592</td>
<td>unknown</td>
<td>rw</td>
<td>zflash:</td>
</tr>
<tr>
<td>32768</td>
<td>26363</td>
<td>nvram</td>
<td>rw</td>
<td>nvram:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network</td>
<td>rw</td>
<td>tftp:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>rw</td>
<td>null:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>rw</td>
<td>system:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>ro</td>
<td>xmodem:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>ro</td>
<td>ymodem:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network</td>
<td>rw</td>
<td>rcp:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network</td>
<td>rw</td>
<td>ftp:</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size(b)</td>
<td>Amount of memory in the file system in bytes.</td>
</tr>
<tr>
<td>Free(b)</td>
<td>Amount of free memory in the file system in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of file system.</td>
</tr>
<tr>
<td>flash</td>
<td>The file system is for a Flash memory device.</td>
</tr>
<tr>
<td>nvram</td>
<td>The file system is for a nonvolatile RAM (NVRAM) device.</td>
</tr>
<tr>
<td>opaque</td>
<td>The file system is a locally generated <em>pseudo</em> file system (for example, the <code>system</code>) or a download interface, such as brimux.</td>
</tr>
<tr>
<td>unknown</td>
<td>The file system is an unknown type.</td>
</tr>
</tbody>
</table>
Working with the Flash File System

Table B-1  show file systems Field Descriptions (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Permission for file system.</td>
</tr>
<tr>
<td></td>
<td><strong>ro</strong>—read-only.</td>
</tr>
<tr>
<td></td>
<td><strong>rw</strong>—read/write.</td>
</tr>
<tr>
<td></td>
<td><strong>wo</strong>—write-only.</td>
</tr>
<tr>
<td>Prefixes</td>
<td>Alias for file system.</td>
</tr>
<tr>
<td></td>
<td><strong>bs</strong>—Read-only file system; stores the boot loader image.</td>
</tr>
<tr>
<td></td>
<td><strong>vb</strong>—Stores the boot environment variables.</td>
</tr>
<tr>
<td></td>
<td><strong>flash</strong>—Flash file system.</td>
</tr>
<tr>
<td></td>
<td><strong>nvr</strong>—NVRAM.</td>
</tr>
<tr>
<td></td>
<td><strong>null</strong>—Null destination for copies. You can copy a remote file to null to determine its size.</td>
</tr>
<tr>
<td></td>
<td><strong>rcp</strong>—Remote Copy Protocol (RCP) network server.</td>
</tr>
<tr>
<td></td>
<td><strong>system</strong>—Contains the system memory, including the running configuration.</td>
</tr>
<tr>
<td></td>
<td><strong>tftp</strong>—Trivial File Transfer Protocol (TFTP) network server.</td>
</tr>
<tr>
<td></td>
<td><strong>xmodem</strong>—Obtain the file from a network machine by using the XMODEM protocol.</td>
</tr>
<tr>
<td></td>
<td><strong>ymodem</strong>—Obtain the file from a network machine by using the YMODEM protocol.</td>
</tr>
<tr>
<td></td>
<td><strong>zflash</strong>—Read-only file decompression file system, which mirrors the contents of the Flash file system.</td>
</tr>
</tbody>
</table>

Setting the Default File System

You can specify the file system or directory that the system uses as the default file system by using the `cd filesystem:` privileged EXEC command. You can set the default file system to omit the `filesystem:` argument from related commands. For example, for all privileged EXEC commands that have the optional `filesystem:` argument, the system uses the file system specified by the `cd` command.

By default, the default file system is `flash:`.

You can display the current default file system as specified by the `cd` command by using the `pwd` privileged EXEC command.

Displaying Information about Files on a File System

You can view a list of the contents of a file system before manipulating its contents. For example, before copying a new configuration file to Flash memory, you might want to verify that the file system does not already contain a configuration file with the same name. Similarly, before copying a Flash configuration file to another location, you might want to verify its filename for use in another command.
To display information about files on a file system, use one of the privileged EXEC commands in Table B-2:

### Table B-2  Commands for Displaying Information About Files

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir [all] [filesystem:]filename</code></td>
<td>Display a list of files on a file system.</td>
</tr>
<tr>
<td><code>show file systems</code></td>
<td>Display more information about each of the files on a file system.</td>
</tr>
<tr>
<td><code>show file information file-url</code></td>
<td>Display information about a specific file.</td>
</tr>
<tr>
<td><code>show file descriptors</code></td>
<td>Display a list of open file descriptors. File descriptors are the internal representations of open files. You can use this command to see if another user has a file open.</td>
</tr>
</tbody>
</table>

## Changing Directories and Displaying the Working Directory

Beginning in privileged EXEC mode, follow these steps to change directories and display the working directory.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>dir filesystem:</strong> Display the directories on the specified file system. For <code>filesystem:</code> use <code>flash:</code> for the system board Flash device.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>cd new_configs</code> Change to the directory of interest. The command example shows how to change to the directory named <code>new_configs</code>.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>pwd</code> Display the working directory.</td>
</tr>
</tbody>
</table>

## Creating and Removing Directories

Beginning in privileged EXEC mode, follow these steps to create and remove a directory:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>dir filesystem:</code> Display the directories on the specified file system. For <code>filesystem:</code> use <code>flash:</code> for the system board Flash device.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>mkdir old_configs</code> Create a new directory. The command example shows how to create the directory named <code>old_configs</code>. Directory names are case sensitive. Directory names are limited to 45 characters between the slashes (<code>/</code>); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>dir filesystem:</code> Verify your entry.</td>
</tr>
</tbody>
</table>
To delete a directory with all its files and subdirectories, use the `delete /force /recursive filesystem:/file-url` privileged EXEC command.

Use the `/recursive` keyword to delete the named directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

For `filesystem`, use `flash:` for the system board Flash device. For `file-url`, enter the name of the directory to be deleted. All the files in the directory and the directory are removed.

⚠️ Caution ⚠️
When files and directories are deleted, their contents cannot be recovered.

## Copying Files

To copy a file from a source to a destination, use the `copy [ /erase ] source-url destination-url` privileged EXEC command. For the source and destination URLs, you can use `running-config` and `startup-config` keyword shortcuts. For example, the `copy running-config startup-config` command saves the currently running configuration file to the NVRAM section of Flash memory to be used as the configuration during system initialization.

You can also copy to and from special file systems (`xmodem:`, `ymodem:`) as the source or destination for the file from a network machine that uses the XMODEM or YMODEM protocol.

Network file system URLs include `ftp:`, `rcp:`, and `tftp:` and have these syntaxes:

- **File Transfer Protocol (FTP)** — `ftp://username [ :password ]@location /directory /filename`
- **Remote Copy Protocol (RCP)** — `rcp://username@location /directory /filename`
- **Trivial File Transfer Protocol (TFTP)** — `tftp://location /directory /filename`

Local writable file systems include `flash:`.

Some invalid combinations of source and destination exist. Specifically, you cannot copy these combinations:

- From a running configuration to a running configuration
- From a startup configuration to a startup configuration
- From a device to the same device (for example, the `copy flash: flash:` command is invalid)

For specific examples of using the `copy` command with configuration files, see the “Working with Configuration Files” section on page B-8.

To copy software images either by downloading a new version or uploading the existing one, use the `archive download-sw` or the `archive upload-sw` privileged EXEC command. For more information, see the “Working with Software Images” section on page B-20.

## Deleting Files

When you no longer need a file on a Flash memory device, you can permanently delete it. To delete a file or directory from a specified Flash device, use the `delete [ /force ] [ /recursive ] [ filesystem:/ ]file-url` privileged EXEC command.
Appendix B: Working with the IOS File System, Configuration Files, and Software Images

### Appendix B: Working with the IOS File System, Configuration Files, and Software Images

#### Working with the Flash File System

Use the `/recursive` keyword for deleting a directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

If you omit the `filesystem` option, the switch uses the default device specified by the `cd` command. For `file-url`, you specify the path (directory) and the name of the file to be deleted.

If you attempt to delete the file specified by the `CONFIG_FILE` or `BOOT` environment variable, the system prompts you to confirm the deletion. If you attempt to delete the last valid system image specified in the `BOOT` environment variable, the system prompts you to confirm the deletion.

---

**Caution**

When files are deleted, their contents cannot be recovered.

This example shows how to delete the file `myconfig` from the default Flash memory device:

```
Switch# delete myconfig
```

---

#### Creating, Displaying, and Extracting tar Files

You can create a tar file and write files into it, list the files in a tar file, and extract the files from a tar file as described in the next sections.

### Creating a tar File

To create a tar file and write files into it, use this privileged EXEC command:

```
archive tar /create destination-url flash:/file-url
```

For `destination-url`, specify the destination URL alias for the local or network file system and the name of the tar file to create. These options are supported:

- For the local Flash file system, the syntax is
  ```
 flash:
  ```
- For the File Transfer Protocol (FTP), the syntax is
  ```
 ftp://[username[:password]@location]/directory]/tar-filename.tar
  ```
- For the Remote Copy Protocol (RCP), the syntax is
  ```
 rcp://[username@location]/directory]/tar-filename.tar
  ```
- For the Trivial File Transfer Protocol (TFTP), the syntax is
  ```
 tftp://[location]/directory]/tar-filename.tar
  ```

The `tar-filename.tar` is the tar file to be created.

For `flash:/file-url`, specify the location on the local Flash file system from which the new tar file is created. You can also specify an optional list of files or directories within the source directory to write to the new tar file. If none are specified, all files and directories at this level are written to the newly created tar file.

This example shows how to create a tar file. This command writes the contents of the `new-configs` directory on the local Flash device to a file named `saved.tar` on the TFTP server at 172.20.10.30:

```
Switch# archive tar /create tftp:172.20.10.30/saved.tar flash:/new-configs
```
Displaying the Contents of a tar File

To display the contents of a tar file on the screen, use this privileged EXEC command:

```
archive tar /table source-url
```

For `source-url`, specify the source URL alias for the local or network file system. These options are supported:

- For the local Flash file system, the syntax is `flash:
- For the File Transfer Protocol (FTP), the syntax is `ftp://[Username[:password]@location]/directory]/tar-file.tar`
- For the Remote Copy Protocol (RCP), the syntax is `rcp://[Username@location]/directory]/tar-file.tar`
- For the Trivial File Transfer Protocol (TFTP), the syntax is `tftp://[location]/directory]/tar-file.tar`

The `tar-file.tar` is the tar file to display.

You can also limit the display of the files by specifying an optional list of files or directories after the tar file; then only these files are displayed. If none are specified, all files and directories are displayed.

This example shows how to display the contents of the `c2950lre-i6l2q4-mz.121-21.EA1.tar` file that is in Flash memory:

```
Switch# archive tar /table flash:c2950lre-i6l2q4-mz.121-21.EA1.tar
info (219 bytes)
c2950lre-i6l2q4-mz.121-21.EA1/ (directory)
c2950lre-i6l2q4-mz.121-21.EA1/html/ (directory)
c2950lre-i6l2q4-mz.121-21.EA1/html/foo.html (0 bytes)
c2950lre-i6l2q4-mz.121-21.EA1/info (219 bytes)
info.ver (219 bytes)
```

This example shows how to display only the `c2950lre-i6l2q4-mz.121-21.EA1/html` directory and its contents:

```
Switch# archive tar /table flash:c3550-tv0-m.tar c2950lre-i6l2q4-mz.121-21.EA1/html
c2950lre-i6l2q4-mz.121-21.EA1/html/ (directory)
c2950lre-i6l2q4-mz.121-21.EA1/html/foo.html (0 bytes)
```

Extracting a tar File

To extract a tar file into a directory on the Flash file system, use this privileged EXEC command:

```
archive tar /xtract source-url flash:/file-url
```

For `source-url`, specify the source URL alias for the local or network file system. These options are supported:

- For the local Flash file system, the syntax is `flash:
- For the File Transfer Protocol (FTP), the syntax is `ftp://[Username[:password]@location]/directory]/tar-file.tar`
- For the Remote Copy Protocol (RCP), the syntax is `rcp://[Username@location]/directory]/tar-file.tar`
For the Trivial File Transfer Protocol (TFTP), the syntax is:
`tftp://location/directory/tar-filename.tar`

The `tar-filename.tar` is the tar file from which to extract files.

For `flash:/file-url`, specify the location on the local Flash file system into which the tar file is extracted. You can also specify an optional list of files or directories within the tar file for extraction. If none are specified, all files and directories are extracted.

This example shows how to extract the contents of a tar file located on the TFTP server at 172.20.10.30. This command extracts just the `new-configs` directory into the root directory on the local Flash file system. The remaining files in the `saved.tar` file are ignored.

```
Switch# archive tar /xtract tftp:/172.20.10.30/saved.tar flash:/new-configs
```

### Displaying the Contents of a File

To display the contents of any readable file, including a file on a remote file system, use the `more [ascii | binary | ebcdic] file-url` privileged EXEC command:

This example shows how to display the contents of a configuration file on a TFTP server:

```
Switch# more tftp://serverA/hampton/savedconfig

! Saved configuration on server
!
version 11.3
service timestamps log datetime localtime
service linenumber
service udp-small-servers
service pt-vty-logging
!
<output truncated>
```

### Working with Configuration Files

This section describes how to create, load, and maintain configuration files. Configuration files contain commands entered to customize the function of the Cisco IOS software. To better benefit from these instructions, your switch must contain a minimal configuration for interacting with the system software. You can create a basic configuration file by using the `setup` program or by entering the `setup` privileged EXEC command. For more information, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

You can copy (download) configuration files from a TFTP, FTP, or RCP server to the running configuration or startup configuration of the switch. You might want to perform this for one of these reasons:

- To restore a backed-up configuration file.
- To use the configuration file for another switch. For example, you might add another switch to your network and want it to have a configuration similar to the original switch. By copying the file to the new switch, you can change the relevant parts rather than recreating the whole file.
- To load the same configuration commands on all the switches in your network so that all the switches have similar configurations.
You can copy (upload) configuration files from the switch to a file server by using TFTP, FTP, or RCP. You might perform this task to back up a current configuration file to a server before changing its contents so that you can later restore the original configuration file from the server.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the Transmission Control Protocol/Internet Protocol (TCP/IP) stack, which is connection-oriented.

This section includes this information:

- Guidelines for Creating and Using Configuration Files, page B-9
- Configuration File Types and Location, page B-10
- Creating a Configuration File By Using a Text Editor, page B-10
- Copying Configuration Files By Using TFTP, page B-11
- Copying Configuration Files By Using FTP, page B-13
- Copying Configuration Files By Using RCP, page B-16
- Clearing Configuration Information, page B-19

Guidelines for Creating and Using Configuration Files

Creating configuration files can aid in your switch configuration. Configuration files can contain some or all of the commands needed to configure one or more switches. For example, you might want to download the same configuration file to several switches that have the same hardware configuration.

Use these guidelines when creating a configuration file:

- We recommend that you connect through the console port when using configuration files to configure the switch. If you configure the switch from a Telnet session, IP addresses are not changed, and ports and modules are not disabled.
- If no passwords have been set on the switch, you must set them on each switch by entering the `enable secret secret-password` global configuration command. Enter a blank line for this command. The password is saved in the configuration file as clear text.
- If passwords already exist, you cannot enter the `enable secret secret-password` global configuration command in the file because the password verification will fail. If you enter a password in the configuration file, the switch mistakenly attempts to execute the passwords as commands as it executes the file.
Working with Configuration Files

Note

The copy {ftp: | rcp: | tftp:} system:running-config privileged EXEC command loads the configuration files on the switch as if you were entering the commands at the command line. The switch does not erase the existing running configuration before adding the commands. If a command in the copied configuration file replaces a command in the existing configuration file, the existing command is erased. For example, if the copied configuration file contains a different IP address in a particular command than the existing configuration, the IP address in the copied configuration is used. However, some commands in the existing configuration might not be replaced or negated. In this case, the resulting configuration file is a mixture of the existing configuration file and the copied configuration file, with the copied configuration file having precedence.

To restore a configuration file to an exact copy of a file stored on a server, copy the configuration file directly to the startup configuration (by using the copy {ftp: | rcp: | tftp:} nvram:startup-config privileged EXEC command), and reload the switch.

Configuration File Types and Location

Startup configuration files are used during system startup to configure the software. Running configuration files contain the current configuration of the software. The two configuration files can be different. For example, you might want to change the configuration for a short time period rather than permanently. In this case, you would change the running configuration but not save the configuration by using the copy running-config startup-config privileged EXEC command.

The running configuration is saved in DRAM; the startup configuration is stored in the NVRAM section of Flash memory.

Creating a Configuration File By Using a Text Editor

When creating a configuration file, you must list commands logically so that the system can respond appropriately. This is one method of creating a configuration file:

Step 1 Copy an existing configuration from a switch to a server.
For more information, see the “Downloading the Configuration File By Using TFTP” section on page B-12, the “Downloading a Configuration File By Using FTP” section on page B-14, or the “Downloading a Configuration File By Using RCP” section on page B-17.

Step 2 Open the configuration file in a text editor, such as vi or emacs on UNIX or Notepad on a PC.

Step 3 Extract the portion of the configuration file with the desired commands, and save it in a new file.

Step 4 Copy the configuration file to the appropriate server location. For example, copy the file to the TFTP directory on the workstation (usually /tftpboot on a UNIX workstation).

Step 5 Make sure the permissions on the file are set to world-read.
Appendix B      Working with the IOS File System, Configuration Files, and Software Images

Copying Configuration Files By Using TFTP

You can configure the switch by using configuration files you create, download from another switch, or
download from a TFTP server. You can copy (upload) configuration files to a TFTP server for storage.

This section includes this information:

• Preparing to Download or Upload a Configuration File By Using TFTP, page B-11
• Downloading the Configuration File By Using TFTP, page B-12
• Uploading the Configuration File By Using TFTP, page B-12

Preparing to Download or Upload a Configuration File By Using TFTP

Before you begin downloading or uploading a configuration file by using TFTP, do these tasks:

• Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation,
  make sure that the /etc/inetd.conf file contains this line:

  `tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot`

  Make sure that the /etc/services file contains this line:

  `tftp 69/udp`

  **Note**   You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files.
  To restart the daemon, either stop the inetd process and restart it, or enter a `fastboot`
  command (on the SunOS 4.x) or a `reboot` command (on Solaris 2.x or SunOS 5.x). For more
  information on the TFTP daemon, refer to the documentation for your workstation.

• Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in
  the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity
  to the TFTP server by using the `ping` command.

• Ensure that the configuration file to be downloaded is in the correct directory on the TFTP server
  (usually /tftpboot on a UNIX workstation).

• For download operations, ensure that the permissions on the file are set correctly. The permission
  on the file should be world-read.

• Before uploading the configuration file, you might need to create an empty file on the TFTP server.
  To create an empty file, enter the `touch filename` command, where `filename` is the name of the file
  you will use when uploading it to the server.

• During upload operations, if you are overwriting an existing file (including an empty file, if you had
  to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on
  the file should be world-write.
## Downloading the Configuration File By Using TFTP

To configure the switch by using a configuration file downloaded from a TFTP server, follow these steps:

**Step 1** Copy the configuration file to the appropriate TFTP directory on the workstation.

**Step 2** Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-11.

**Step 3** Log into the switch through the console port or a Telnet session.

**Step 4** Download the configuration file from the TFTP server to configure the switch.

Specify the IP address or host name of the TFTP server and the name of the file to download.

Use one of these privileged EXEC commands:

- `copy tftp://[location]/directory[/]filename system:running-config`
- `copy tftp://[location]/directory[/]filename nvram:startup-config`

The configuration file downloads, and the commands are executed as the file is parsed line-by-line.

This example shows how to configure the software from the file `tokyo-confg` at IP address 172.16.2.155:

```
Switch# copy tftp://172.16.2.155/tokyo-confg system:running-config
```

```
Configure using tokyo-confg from 172.16.2.155? [confirm] y
Booting tokyo-confg from 172.16.2.155:!!! [OK - 874/16000 bytes]
```

## Uploading the Configuration File By Using TFTP

To upload a configuration file from a switch to a TFTP server for storage, follow these steps:

**Step 1** Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-11.

**Step 2** Log into the switch through the console port or a Telnet session.

**Step 3** Upload the switch configuration to the TFTP server. Specify the IP address or host name of the TFTP server and the destination filename.

Use one of these privileged EXEC commands:

- `copy system:running-config tftp://[location]/directory[/]filename`
- `copy nvram:startup-config tftp://[location]/directory[/]filename`

The file is uploaded to the TFTP server.

This example shows how to upload a configuration file from a switch to a TFTP server:

```
Switch# copy system:running-config tftp://172.16.2.155/tokyo-confg
```

```
Write file tokyo-confg on host 172.16.2.155? [confirm] y
Writing tokyo-confg!!! [OK]
```
Appendix B      Working with the IOS File System, Configuration Files, and Software Images

Working with Configuration Files

Copying Configuration Files By Using FTP

You can copy configuration files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy a configuration file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip ftp username username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `copy` command if a password is specified.
- The password set by the `ip ftp password password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured host name, and `domain` is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept your FTP write request.

Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `copy` command if you want to specify only a username for that copy operation.

If the server has a directory structure, the configuration file is written to or copied from the directory associated with the username on the server. For example, if the configuration file resides in the home directory of a user on the server, specify that user's name as the remote username.

For more information, refer to the documentation for your FTP server.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using FTP, page B-13
- Downloading a Configuration File By Using FTP, page B-14
- Uploading a Configuration File By Using FTP, page B-15

Preparing to Download or Upload a Configuration File By Using FTP

Before you begin downloading or uploading a configuration file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command during all copy operations. The new username is stored in
NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.

- When you upload a configuration file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, refer to the documentation for your FTP server.

**Downloading a Configuration File By Using FTP**

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-13.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong> configure terminal</td>
<td>Enter global configuration mode on the switch.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip ftp username username</td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong> ip ftp password password</td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> copy ftp://[[//username[:password]@][location]/directory]/filename system:running-config</td>
<td>Using FTP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>copy ftp://[[//username[:password]@][location]/directory]/filename nvram:startup-config</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to copy a configuration file named `host1-config` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and to load and run those commands on the switch:

```
Switch# copy ftp://netadmin1:mypass@172.16.101.101/host1-config system:running-config
Configure using host1-config from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-config:!![OK]
Switch#
%SYS-5-CONFIG: Configured from host1-config by ftp from 172.16.101.101
```

This example shows how to specify a remote username of `netadmin1`. The software copies the configuration file `host2-config` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 to the switch startup configuration.

```
Switch# configure terminal
Switch(config)# ip ftp username netadmin1
Switch(config)# ip ftp password mypass
Switch(config)# end
```
Switch# `copy ftp: nvram:startup-config`
Address of remote host [255.255.255.255]?
172.16.101.101
Name of configuration file[rtr2-config]? host2-config
Configure using host2-config from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-config:!![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by ftp from
172.16.101.101

**Uploading a Configuration File By Using FTP**

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-13.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>ip ftp username <em>username</em></td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td>ip ftp password <em>password</em></td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Using FTP, store the switch running or startup configuration file to the specified location.</td>
</tr>
<tr>
<td>copy system:running-config ftp://[[//username:[password]@[location)/directory)/filename]</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>copy nvram:startup-config ftp://[[//username:[password]@[location)/directory)/filename]</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named `switch2-config` to the `netadmin1` directory on the remote host with an IP address of 172.16.101.101:

Switch# `copy system:running-config ftp://netadmin1:mypass@172.16.101.101/switch2-config`
Write file switch2-config on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#
This example shows how to store a startup configuration file on a server by using FTP to copy the file:

Switch# configure terminal
Switch(config)# ip ftp username netadmin2
Switch(config)# ip ftp password mypass
Switch(config)# end
Switch# copy nvram:startup-config ftp:
Remote host[]? 172.16.101.101
Name of configuration file to write [switch2-confg]? switch2-confg
Write file switch2-confg on host 172.16.101.101?[confirm] ![OK]

Copying Configuration Files By Using RCP

The Remote Copy Protocol (RCP) provides another method of downloading, uploading, and copying configuration files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

The RCP requires a client to send a remote username with each RCP request to a server. When you copy a configuration file from the switch to a server, the Cisco IOS software sends the first valid username in this list:

- The username specified in the copy command if a username is specified.
- The username set by the ip rcmd remote-username username global configuration command if the command is configured.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the username command, the switch software sends the Telnet username as the remote username.
- The switch host name.

For a successful RCP copy request, you must define an account on the network server for the remote username. If the server has a directory structure, the configuration file is written to or copied from the directory associated with the remote username on the server. For example, if the configuration file is in the home directory of a user on the server, specify that user’s name as the remote username.

This section includes this information:
- Preparing to Download or Upload a Configuration File By Using RCP, page B-17
- Downloading a Configuration File By Using RCP, page B-17
- Uploading a Configuration File By Using RCP, page B-18
Preparing to Download or Upload a Configuration File By Using RCP

Before you begin downloading or uploading a configuration file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the RCP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.
- When you upload a file to the RCP server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose that the switch contains these configuration lines:

  ```
 hostname Switch1
 ip rcmd remote-username User0
  ```

  If the switch IP address translates to `Switch1.company.com`, the .rhosts file for User0 on the RCP server should contain this line:

  ```
 Switch1.company.com Switch1
  ```

  For more information, refer to the documentation for your RCP server.

**Downloading a Configuration File By Using RCP**

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-17.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3 <code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>Step 4 <code>ip rcmd remote-username username</code></td>
<td>(Optional) Specify the remote username.</td>
</tr>
</tbody>
</table>
Appendix B  Working with the IOS File System, Configuration Files, and Software Images

Working with Configuration Files

This example shows how to copy a configuration file named `host1-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and load and run those commands on the switch:

Switch# `copy rcp://netadmin1@172.16.101.101/host1-confg system:running-config`
Configure using host1-confg from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-confg:!![OK]

Switch#
%SYS-5-CONFIG: Configured from host1-config by rcp from 172.16.101.101

This example shows how to specify a remote username of `netadmin1`. Then it copies the configuration file `host2-confg` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 to the startup configuration:

Switch# `configure terminal`
Switch(config)# `ip rcmd remote-username netadmin1`
Switch(config)# `end`
Switch# `copy rcp://netadmin1@172.16.101.101/host2-confg nvram:startup-config`
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rtr2-confg]? `host2-confg`
Configure using host2-confg from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-confg:!![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by rcp from 172.16.101.101

Uploading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-17.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
</tbody>
</table>
### Working with Configuration Files

This example shows how to copy the running configuration file named `switch2-confg` to the `netadmin1` directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config rcp://netadmin1@172.16.101.101/switch2-confg
Write file switch-confg on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#
```

This example shows how to store a startup configuration file on a server:

```
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin2
Switch(config)# end
Switch# copy nvram:startup-config rcp://netadmin2@172.16.101.101/switch2-confg
Remote host[?] 172.16.101.101
Name of configuration file to write [switch2-confg]? Write file switch2-confg on host 172.16.101.101?[confirm]
! [OK]
```

### Clearing Configuration Information

You can clear the configuration information from the startup configuration. If you reboot the switch with no startup configuration, the switch enters the setup program so that you can reconfigure the switch with all new settings.

### Clearing the Startup Configuration File

To clear the contents of your startup configuration, use the `erase nvram` or the `erase startup-config` privileged EXEC command.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ip rcmd remote-username <em>username</em></td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>copy system:running-config rcp://[username@]location/directory/filename</td>
<td>Using RCP, copy the configuration file from a switch running or startup configuration file to a network server.</td>
</tr>
<tr>
<td></td>
<td>or copy nvram:startup-config rcp://[username@]location/directory/filename</td>
<td></td>
</tr>
</tbody>
</table>

**Caution**

You cannot restore the startup configuration file after it has been deleted.
Deleting a Stored Configuration File

To delete a saved configuration from Flash memory, use the `delete flash:filename` privileged EXEC command. Depending on the setting of the `file prompt` global configuration command, you might be prompted for confirmation before you delete a file. By default, the switch prompts for confirmation on destructive file operations. For more information about the `file prompt` command, refer to the Cisco IOS Command Reference for Release 12.1.

⚠️ Caution
You cannot restore a file after it has been deleted.

Working with Software Images

This section describes how to archive (download and upload) software image files, which contain the system software, IOS code, and the web management HTML files.

You download a switch image file from a TFTP, FTP, or RCP server to upgrade the switch software. You can replace the current image with the new one or keep the current image in Flash memory after a download.

You upload a switch image file to a TFTP, FTP, or RCP server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the Transmission Control Protocol/Internet Protocol (TCP/IP) stack, which is connection-oriented.

This section includes this information:
- Image Location on the Switch, page B-20
- tar File Format of Images on a Server or Cisco.com, page B-21
- Copying Image Files By Using TFTP, page B-22
- Copying Image Files By Using FTP, page B-25
- Copying Image Files By Using RCP, page B-29

>Note
For a list of software images and the supported upgrade paths, refer to the release notes that shipped with your switch.

Image Location on the Switch

The IOS image is stored as a `.bin` file in a directory that shows the version number. The same subdirectory contains the HTML files needed for web management. The image is stored on the system board Flash memory (flash:).

You can use the `show version` privileged EXEC command to see the software version that is currently running on your switch. In the display, check the line that begins with `System image file is...`. It shows the directory name in Flash memory where the image is stored.

You can also use the `dir filesystem:` privileged EXEC command to see the directory names of other software images you might have stored in Flash memory.
tar File Format of Images on a Server or Cisco.com

Software images located on a server or downloaded from Cisco.com are provided in a tar file format, which contains these files:

- **info file**
  The info file is always at the beginning of the tar file and contains information about the files within it.

- **IOS image**
- **Web management files** needed by the HTTP server on the switch
- **LRE binary files** needed for the proper functioning of LRE interfaces and LRE CPE devices

- **info.ver file**
  The info.ver file is always at the end of the tar file and contains the same information as the info file. Because it is the last file in the tar file, its existence means that all files in the image have been downloaded.

This example shows the information contained in the info and info.ver files:

```plaintext
version_suffix: i6k212q4-121-0.0.16.EA1
version_directory: c2950lre-i6k212q4-mz.121-0.0.16.EA1
image_name: c2950lre-i6k212q4-mz.121-0.0.16.EA1.bin
ios_image_file_size: 3214848
total_image_file_size: 4719616
image_feature: LAYER_2|MIN_DRAM_MEG=32
image_family: C2950lre
info_end:
```

Table B-3 describes the contents of the info and info.ver files.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version_suffix</td>
<td>Specifies the IOS image version string suffix</td>
</tr>
<tr>
<td>version_directory</td>
<td>Specifies the directory where the IOS image and the HTML subdirectory are installed</td>
</tr>
<tr>
<td>image_name</td>
<td>Specifies the name of the IOS image within the tar file</td>
</tr>
<tr>
<td>ios_image_file_size</td>
<td>Specifies the IOS image size in the tar file, which is an approximate measure of how much Flash space is required to hold just the IOS image</td>
</tr>
<tr>
<td>total_image_file_size</td>
<td>Specifies the size of all the images (the IOS image and the HTML files) in the tar file, which is an approximate measure of how much Flash space is required to hold them</td>
</tr>
<tr>
<td>image_feature</td>
<td>Describes the core functionality of the image</td>
</tr>
<tr>
<td>image_family</td>
<td>Describes the family of products on which the software can be installed</td>
</tr>
<tr>
<td>image_min_dram</td>
<td>Specifies the minimum amount of DRAM needed to run this image</td>
</tr>
</tbody>
</table>
Copying Image Files By Using TFTP

You can download a switch image from a TFTP server or upload the image from the switch to a TFTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes; this uploaded image can be used for future downloads to the same or another switch of the same type.

This section includes this information:

- Preparing to Download or Upload an Image File By Using TFTP, page B-22
- Downloading an Image File By Using TFTP, page B-23
- Uploading an Image File By Using TFTP, page B-24

Preparing to Download or Upload an Image File By Using TFTP

Before you begin downloading or uploading an image file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:
  
  tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot

  Make sure that the /etc/services file contains this line:
  
  tftp 69/udp

  Note You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a fastboot command (on the SunOS 4.x) or a reboot command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, refer to the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the ping command.

- Ensure that the image to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).

- For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.

- Before uploading the image file, you might need to create an empty file on the TFTP server. To create an empty file, enter the touch filename command, where filename is the name of the file you will use when uploading the image to the server.

- During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.
Downloading an Image File By Using TFTP

You can download a new image file and replace the current image or keep the current image. Beginning in privileged EXEC mode, follow Steps 1 through 3 to download a new image from a TFTP server and overwrite the existing image. To keep the current image, skip Step 3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Copy the image to the appropriate TFTP directory on the workstation. Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-22.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
</tbody>
</table>
| **Step 3** | Download the image file from the TFTP server to the switch, and overwrite the current image.  
- The /overwrite option overwrites the software image in Flash with the downloaded image only if the image version of the image being downloaded is the same as an existing copy in Flash memory.  
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
- For /location, specify the IP address of the TFTP server.  
- For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive. |
| **Step 4** | Download the image file from the TFTP server to the switch, and keep the current image.  
- The /leave-old-sw option keeps the old software version after a download.  
- The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.  
- For /location, specify the IP address of the TFTP server.  
- For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive. |

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.
Note
If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option. However, the 2950 LRE only supports one complete set of IOS, HTML, and LRE binary files, and one IOS binary on the flash. You cannot have two complete sets of images with the 2950 LRE.

If you specify the /leave-old-sw option, the existing files are not removed. If there is not enough space to install the new image and keep the current running image, the download process stops, and an error message appears.

The algorithm installs the downloaded image on the system board Flash device—The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:/file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old image. All the files in the directory and the directory are removed.

Caution
For the download and upload algorithms to operate properly, do not rename image names.

Uploading an Image File By Using TFTP

You can upload an image from the switch to a TFTP server. You can later download this image to the switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to a TFTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>verify</td>
<td>Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-22.</td>
</tr>
<tr>
<td>login</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
</tbody>
</table>
| archive upload-sw tftp://[//location[/directory[/image-name.tar | Upload the currently running switch image to the TFTP server.  
  • For /location, specify the IP address of the TFTP server.  
  • For /directory/image-name.tar, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. The image-name.tar is the name of the software image to be stored on the server. |

The archive upload-sw privileged EXEC command builds an image file on the server by uploading these files in order: info, the IOS image, the HTML files, LRE binary files, and info.ver. After these files are uploaded, the upload algorithm creates the tar file format.
Caution

For the download and upload algorithms to operate properly, do not rename image names.

Copying Image Files By Using FTP

You can download a switch image from an FTP server or upload the image from the switch to an FTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the switch or another switch of the same type.

This section includes this information:
- Preparing to Download or Upload an Image File By Using FTP, page B-25
- Downloading an Image File By Using FTP, page B-26
- Uploading an Image File By Using FTP, page B-28

Preparing to Download or Upload an Image File By Using FTP

You can copy images files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy an image file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a username is specified.
- The username set by the `ip ftp username username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a password is specified.
- The password set by the `ip ftp password password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured host name, and `domain` is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept the FTP write request from you.

Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.

If the server has a directory structure, the image file is written to or copied from the directory associated with the username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.
Before you begin downloading or uploading an image file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.

- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command. This new name will be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username for that operation only.

- When you upload an image file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, refer to the documentation for your FTP server.

**Downloading an Image File By Using FTP**

You can download a new image file and overwrite the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 7 to download a new image from an FTP server and overwrite the existing image. To keep the current image, skip Step 7.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>end</code></td>
</tr>
</tbody>
</table>
The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the Flash device, whether or not it is the same as the new one, downloads the new image, and then reloads the software.

### Note

If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `/overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough space to install the new image and keep the running image, the download process stops, and an error message is displayed.
The algorithm installs the downloaded image onto the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old software image. All the files in the directory and the directory are removed.

⚠️ **Caution**

For the download and upload algorithms to operate properly, do not rename image names.

### Uploading an Image File By Using FTP

You can upload an image from the switch to an FTP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an FTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-13.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>(Optional) Change the default remote username.</td>
</tr>
<tr>
<td><code>ip ftp username username</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>(Optional) Change the default password.</td>
</tr>
<tr>
<td><code>ip ftp password password</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Upload the currently running switch image to the FTP server.</td>
</tr>
</tbody>
</table>
| `archive upload-sw ftp://[username]:[password]@[type]/location/directory/image-name.tar` | - For `username:password`, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.  
  - For `@location`, specify the IP address of the FTP server.  
  - For `directory/image-name.tar`, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. The `image-name.tar` is the name of the software image to be stored on the server. |
The `archive upload-sw` command builds an image file on the server by uploading these files in order: info, the IOS image, the HTML files, and info.ver. After these files are uploaded, the upload algorithm creates the tar file format.

**Caution**

For the download and upload algorithms to operate properly, do not rename image names.

## Copying Image Files By Using RCP

You can download a switch image from an RCP server or upload the image from the switch to an RCP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

This section includes this information:

- Preparing to Download or Upload an Image File By Using RCP, page B-29
- Downloading an Image File By Using RCP, page B-30
- Uploading an Image File By Using RCP, page B-32

### Preparing to Download or Upload an Image File By Using RCP

RCP provides another method of downloading and uploading image files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

RCP requires a client to send a remote username on each RCP request to a server. When you copy an image from the switch to a server by using RCP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is entered.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch host name.
For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. If the server has a directory structure, the image file is written to or copied from the directory associated with the remote username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.

Before you begin downloading or uploading an image file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the ping command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the show users privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the ip rcmd remote-username global configuration command to be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and there is no need to set the RCP username. Include the username in the archive download-sw or archive upload-sw privileged EXEC command if you want to specify a username only for that operation.
- When you upload an image to the RCP to the server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose the switch contains these configuration lines:

  hostname Switch1
  ip rcmd remote-username User0

  If the switch IP address translates to Switch1.company.com, the .rhosts file for User0 on the RCP server should contain this line:

  Switch1.company.com Switch1

  For more information, refer to the documentation for your RCP server.

### Downloading an Image File By Using RCP

You can download a new image file and replace or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 6 to download a new image from an RCP server and overwrite the existing image. To keep the current image, skip Step 6.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>configure terminal Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip rcmd remote-username <em>username</em> (Optional) Specify the remote username.</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 6	archive download-sw /overwrite /reload rcp:[][//[username@]location]/directory/image-name.tar	Download the image file from the RCP server to the switch, and overwrite the current image.
		• The /overwrite option overwrites the software image in Flash with the downloaded image.
		• The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.
		• For /username, specify the username. For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.
		• For @location, specify the IP address of the RCP server.
		• For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive.

Step 7	archive download-sw /leave-old-sw /reload rcp:[][//[username@]location]/directory/image-name.tar	Download the image file from the RCP server to the switch, and keep the current image.
		• The /leave-old-sw option keeps the old software version after a download.
		• The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.
		• For /username, specify the username. For the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.
		• For @location, specify the IP address of the RCP server.
		• For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive.

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

**Note**

If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.
If you specify the /leave-old-sw, the existing files are not removed. If there is not enough room to install the new image and keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old software during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old software image. All the files in the directory and the directory are removed.

Caution
For the download and upload algorithms to operate properly, do not rename image names.

**Upload an Image File By Using RCP**

You can upload an image from the switch to an RCP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an RCP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip rcmd remote-username username (Optional) Specify the remote username.</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
</tbody>
</table>
Appendix B  Working with the IOS File System, Configuration Files, and Software Images

Working with Software Images

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>archive upload-sw</td>
<td>Upload the currently running switch image to the RCP server.</td>
</tr>
<tr>
<td>rcp://[username@location]/directory/image-name.tar</td>
<td>• For /username, specify the username; for the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.</td>
</tr>
<tr>
<td></td>
<td>• For @location, specify the IP address of the RCP server.</td>
</tr>
<tr>
<td></td>
<td>• For /directory/image-name.tar, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive.</td>
</tr>
<tr>
<td></td>
<td>• The image-name.tar is the name of software image to be stored on the server.</td>
</tr>
</tbody>
</table>

The `archive upload-sw` privileged EXEC command builds an image file on the server by uploading these files in order: info, the IOS image, the HTML files, and info.ver. After these files are uploaded, the upload algorithm creates the tar file format.

⚠️ **Caution**

For the download and upload algorithms to operate properly, do not rename image names.
Numerics

802.1D
   See STP
802.1Q
   and trunk ports 9-2
   configuration limitations 14-16
   native VLAN for untagged traffic 14-20
   trunk mode 3-10
802.1S
   See MSTP
802.1W
   See RSTP
802.1X
   See port-based authentication
802.3Z flow control 9-14

A

abbreviating commands 2-5
AC (command switch) 6-12, 6-23
access-class command 25-20
access control entries
   See ACES
access-denied response, VMPS 14-25
access groups, viewing 25-23
accessing
   clusters, switch 6-15
CMS 3-30
   modes 3-31
command switches 6-13
HTTP port 3-32
member switches 6-15

switch clusters 6-15
access levels, CMS 3-31
access lists
   See ACES
access ports
   defined 9-2
   in switch clusters 6-10
accounting
   with RADIUS 7-28
   with TACACS+ 7-11, 7-17
ACES
   defined 25-2
   Ethernet 25-2
   IP 25-2
Layer 3 parameters 25-10
Layer 4 parameters 25-10
ACLs
   ACES 25-2
   any keyword 25-9
   applying
      time ranges to 25-15
      to management interfaces 25-20
      to management VLANs 25-20
      to physical interfaces 25-21
      to QoS 26-5
      to terminal lines 25-20
   classifying traffic for QoS 26-16
   comments in 25-17
   compiling 25-23
   configuration guidelines
      management interfaces, applying to 25-6
      physical interfaces, applying to 25-6
   defined 25-2
displaying interface 25-23
examples of 25-23
extended IP
  configuring for QoS classification 26-18
  creating 25-10
  matching criteria 25-7
host keyword 25-9
IP
  creating 25-7
  implicit deny 25-9, 25-13, 25-15
  implicit masks 25-9
  management interfaces, applying to 25-20
  matching criteria 25-2, 25-7
  named 25-13
  physical interfaces, applying to 25-21
  undefined 25-19, 25-21
  virtual terminal lines, setting on 25-20
MAC extended 25-18
  matching 25-7
  monitoring 25-22
  named 25-13
  numbers 25-8
  protocol parameters 25-10
  standard IP
    configuring for QoS classification 26-16
    creating 25-9
    matching criteria 25-7
    time ranges 25-15
  unsupported features 25-7
ACP
  system-defined mask 25-4
  understanding 25-4
  user-defined mask 25-4
adding secure addresses 7-59
addresses
  displaying the MAC address table 7-60
  dynamic
    accelerated aging 11-9
    changing the aging time 7-55
  default aging 11-9
  defined 7-54
  learning 7-54
  removing 7-56
MAC
  adding secure 7-59
  discovering 7-61
  multicast STP address management 11-8
  secure
    adding 7-59
    described 7-59
  static
    adding and removing 7-58
    defined 7-54
  address resolution 7-61
  Address Resolution Protocol
    See ARP table
  address table, adding secure addresses 7-59
  ADSL 1-2
  advertisements
    CDP 20-1
    VTP 14-17, 15-3
  aggregated ports
    See EtherChannel
  aging, accelerating 11-9
  aging time
    accelerated
      for MSTP 12-20
      for STP 11-9, 11-19
  MAC address table 7-55
    maximum
      for MSTP 12-21
      for STP 11-20
  alarms, RMON 22-3
  allowed-VLAN list 14-19
  American National Standards Institute
    See ANSI
  ANSI 1-2
  Apply button 3-30
ARP table
  address resolution 7-61
  managing 7-61
asymmetric digital subscriber line
  See ADSL
attributes, RADIUS
  vendor-proprietary 7-30
  vendor-specific 7-29
authentication
  local mode with AAA 7-32
  NTP associations 7-37
  RADIUS
    key 7-21
    login 7-23
  TACACS+
    defined 7-11
    key 7-13
    login 7-14
  See also port-based authentication
authoritative time source, described 7-34
authorization
  with RADIUS 7-27
  with TACACS+ 7-11, 7-16
authorized ports with 802.1X 8-4
autoconfiguration 4-3
automatic discovery
  adding member switches 6-20
  considerations
    beyond a non-candidate device 6-8, 6-9
    brand new switches 6-10
    connectivity 6-5
    management VLANs 6-8, 6-9
    non-CDP-capable devices 6-7
    non-cluster-capable devices 6-7
  creating a cluster standby group 6-22
  in switch clusters 6-5
  See also CDP
  automatic recovery, clusters 6-12
  See also HSRP
autonegotiation
  interface configuration guidelines 9-12
  mismatches 28-12
auxiliary VLAN
  See voice VLAN

B

BackboneFast
  described 13-10
  enabling 13-19
  support for 1-4
bandwidth graphs 3-8
banners
  configuring
    login 7-53
    message-of-the-day login 7-52
  default configuration 7-51
  when displayed 7-51
booting
  boot loader, function of 4-1
  boot process 4-1
boot loader
  described 4-1
  trap-door mechanism 4-2
BPDU
  error-disabled state 13-3
  filtering 13-3
  RSTP format 12-5
BPDU filtering
  described 13-3
  enabling 13-16
  support for 1-4
BPDU guard
  described 13-3
  enabling 13-15
  support for 1-4
  broadcast storm control
    configuring 18-1
Index

disabling 18-3
browser configuration 3-1, 6-1
buttons, CMS 3-30

C

cables, monitoring for unidirectional links 19-1
Cancel button 3-30
candidate switch
  adding 6-20
  automatic discovery 6-5
defined 6-4
HC 6-23
passwords 6-20
requirements 6-4
standby group 6-22
See also command switch, cluster standby group, and member switch
cautions xxviii
CC (command switch) 6-23
CDP
  and trusted boundary 26-14
  automatic discovery in switch clusters 6-5
configuring 20-2
default configuration 20-2
described 20-1
disabling for routing device 20-3, 20-4
enabling and disabling
  on an interface 20-4
  on a switch 20-3
monitoring 20-5
overview 20-1
transmission timer and holdtime, setting 20-2
updates 20-2
CGMP, joining multicast group 17-2
change notification, CMS 3-32
Cisco 575-LRE CPE 1-2
Cisco Access Analog Trunk Gateway 1-14
Cisco CallManager software 1-13, 1-14
Cisco Discovery Protocol
  See CDP
Cisco Intelligence Engine 2100 Series Configuration Registrar
  See IE2100
Cisco IP Phones 1-13
Cisco LRE 48 POTS Splitter (PS-1M-LRE-48) 1-2, 1-16
Cisco Networking Services
  See IE2100
Cisco SoftPhone software 1-13
CiscoWorks 2000 1-7, 24-4
class maps for QoS
  configuring 26-20
described 26-6
displaying 26-28
class of service
  See CoS
clearing interfaces 9-19
CLI
  abbreviating commands 2-5
  command modes 2-1
described 1-7
  editing features
    enabling and disabling 2-7
    keystroke editing 2-8
    wrapped lines 2-9
  error messages 2-5
  getting help 2-3
  history
    changing the buffer size 2-6
described 2-6
  disabling 2-7
  recalling commands 2-6
  managing clusters 6-25
  no and default forms of commands 2-5
client mode, VTP 15-3
clock
  See system clock
Cluster Management Suite 1-7
See CMS
clusters, switch
  accessing 6-15
  adding member switches 6-20
  automatic discovery 6-5
  automatic recovery 6-12
  command switch configuration 6-19
  compatibility 6-5
  creating 6-19
  creating a cluster standby group 6-22
  described 6-1
  LRE profile considerations 6-18
  managing
    through CLI 6-25
    through SNMP 6-26
  planning 6-5
  planning considerations
    automatic discovery 6-5
    automatic recovery 6-12
  CLI 6-25
  host names 6-16
  IP addresses 6-15
  LRE profiles 6-18
  management VLAN 6-18
  passwords 6-16
  RADIUS 6-17
  SNMP 6-16, 6-26
  switch-specific features 6-19
  TACACS+ 6-17
  redundancy 6-22
  troubleshooting 6-24
  verifying 6-24
See also candidate switch, command switch, cluster standby group, member switch, and standby command switch
cluster standby group
  automatic recovery 6-15
  considerations 6-13
  creating 6-22
defined 6-2
  requirements 6-3
  virtual IP address 6-13
See also HSRP
cluster tree
described 3-6
CMS
accessing 3-30
access levels 3-31
advantages 1-7
change notification 3-32
cluster tree 3-6
described 3-1
different versions of 3-34
displaying system messages 3-19
error checking 3-32
features 3-2
Front Panel images 3-7
Front Panel view 3-4
interaction modes 3-25
menu bar 3-15
online help 3-26
privilege level 3-31
requirements 3-30
saving configuration changes 3-33
toolbar 3-20
tool tips 3-26
Topology view 3-10
verifying configuration changes 3-32
window components 3-28
wizards 3-26
Coarse Wave Division Multiplexer
  See CWDM GBIC modules
Collapse Cluster view 3-11
command-line interface
  See CLI
command modes 2-1
commands
  abbreviating 2-5
no and default 2-5
setting privilege levels 7-8
command switch
accessing 6-13
active (AC) 6-12, 6-23
command switch with HSRP disabled (CC) 6-23
configuration conflicts 28-11
defined 6-2
enabling 6-19
passive (PC) 6-12, 6-23
password privilege levels 6-25
priority 6-12
recovery
from command-switch failure 6-12
from failure 28-8
from lost member connectivity 28-11
redundant 6-12, 6-22
replacing
with another switch 28-10
with cluster member 28-9
requirements 6-3
standby (SC) 6-12, 6-23
See also candidate switch, cluster standby group,
member switch, and standby command switch
community strings
configuring 6-16, 24-7
for cluster switches 24-4
in clusters 6-16
overview 24-4
SNMP 6-16
configuration
controller for LRE upgrade 10-17
global LRE 10-17
configuration, switch
saving changes 3-33
configuration, switch, saving changes 3-33
configuration conflicts, recovering from lost member
connectivity 28-11
configuration examples, network
collapsed backbone and switch cluster 1-13
design concepts
cost-effective wiring closet 1-9
high-performance workgroup 1-10
network performance 1-8
network services 1-9
redundant Gigabit backbone 1-10
hotel network 1-16
large campus 1-14
long-distance, high-bandwidth transport
configuration 1-20
small to medium-sized network 1-11
clearing the startup configuration B-19
creating using a text editor B-10
deleting a stored configuration B-20
described B-8
downloading
preparing B-11, B-13, B-17
reasons for B-8
using FTP B-14
using RCP B-17
using TFTP B-12
guidelines for creating and using B-9
invalid combinations when copying B-5
limiting TFTP server access 24-13
obtaining with DHCP 4-7
password recovery disable considerations 7-5
system contact and location information 24-13
types and location B-10
uploading
preparing B-11, B-13, B-17
reasons for B-9
using FTP B-15
using RCP B-18
using TFTP B-12
VMPS database 14-26
configuration settings, saving 4-10
configure terminal command 9-4
configuring

duplex mode  10-7
for an LRE upgrade  10-15
LRE ports  10-5
speed
  on Cisco 575 LRE CPE  10-8
config-vlan mode  2-2, 14-6
conflicts, configuration  28-11
connections, secure remote  7-33
consistency checks in VTP version 2  15-4
console port, connecting to  2-10
conventions
  command  xxviii
  for examples  xxviii
  text  xxviii
CoS
  configuring  26-7
  configuring priority queues  26-27
defining  26-8
described  1-6
override priority  16-5
trust priority  16-6
CoS-to-DSCP map for QoS  26-25
counters, clearing interface  9-19
CPE  1-2
  Ethernet link guidelines  10-7
  Ethernet links  10-1, 10-5
    considerations for Cisco 575 LRE CPE  10-7
    considerations for Cisco 585 LRE CPE  10-8
    statistics  28-4
  hotel network configuration example  1-16
  LRE links  10-1
  statistics  28-4
  crashinfo file  28-15
cross-stack UplinkFast, STP
  connecting stack ports  13-8
described  13-5
enabling  13-18
fast-convergence events  13-7

Fast Uplink Transition Protocol  13-6
limitations  13-8
normal-convergence events  13-7
Stack Membership Discovery Protocol  13-6
support for  1-4
cross talk  10-6
crypto software image  7-33
customer premises equipment
  See CPE
CWDM GBIC modules
  network example  1-20
  wavelength colors on CMS  3-7

D
daylight saving time  7-46
debugging
  enabling all system diagnostics  28-15
  enabling for a specific feature  28-14
  redirecting error message output  28-15
  using commands  28-14
default commands  2-5
default configuration
  802.1X  8-6
  banners  7-51
  CDP  20-2
  DNS  7-50
  EtherChannel  27-7
  IGMP filtering  17-21
  IGMP snooping  17-5
  initial switch information  4-3
  Layer 2 interfaces  9-10
  MAC address table  7-55
  MVR  17-15
  NTP  7-37
  optional spanning-tree features  13-14
  password and privilege level  7-2
  QoS  26-9
  RADIUS  7-20
Index

RMON 22-3
RSPAN 21-8
RSTP and MSTP 12-12
SNMP 24-6
SPAN 21-8
STP 11-10
system message logging 23-3
system name and prompt 7-48
TACACS+ 7-13
UDLD 19-3
VLAN, Layer 2 Ethernet interfaces 14-17
VLANs 14-8
VMPS 14-27
voice VLAN 16-2
VTP 15-6
default gateway 4-10
deleting VLANs 14-10
description command 9-16
destination addresses, in ACLs 25-12
detecting indirect link failures, STP 13-10
device discovery protocol 20-1
device icons
  Topology view 3-12
device labels 3-13
Device Manager 3-2
  See also Switch Manager
device pop-up menu
  Front Panel view 3-21
  Topology view 3-23
DHCP 1-3
DHCP-based autoconfiguration
  client request message exchange 4-4
  configuring
    client side 4-3
    DNS 4-6
    relay device 4-6
    server-side 4-5
    TFTP server 4-5
  example 4-8
  lease options
    for IP address information 4-5
    for receiving the configuration file 4-5
  overview 4-3
  relationship to BOOTP 4-3
Differentiated Services architecture, QoS 26-2
Differentiated Services Code Point 26-2
digital telephone networks 1-2
directories
  changing B-4
  creating and removing B-4
  displaying the working B-4
discovery, clusters
  See automatic discovery
display options, Topology view 3-15
Disqualification Code option 3-25
DNS
  and DHCP-based autoconfiguration 4-6
  default configuration 7-50
  displaying the configuration 7-51
  overview 7-49
  setting up 7-50
documentation, related xxix
domain names
  DNS 7-49
  VTP 15-8
Domain Name System
  See DNS
downloading
  configuration files
    preparing B-11, B-13, B-17
    reasons for B-8
    using FTP B-14
    using RCP B-17
    using TFTP B-12
  image files
    deleting old image B-24
    preparing B-22, B-25, B-29
    reasons for B-20
using FTP  B-26
using RCP  B-30
using TFTP  B-23
DSCP  1-6, 26-2
DSCP-to-CoS map for QoS  26-26
DTP  1-5, 14-15
duplex mode
    configuring  10-7
    CPE Ethernet link  10-7
duplex mode, configuring  9-11
dynamic access mode  3-10
dynamic access ports
    characteristics  14-3
    configuring  14-29
    defined  9-2
dynamic addresses
    See addresses
dynamic desirable trunking mode  14-16
dynamic port VLAN membership
    described  14-25
    reconfirming  14-30
troubleshooting  14-31
types of connections  14-29
VMPS database configuration file  14-26
Dynamic Trunking Protocol
    See DTP

error checking, CMS  3-32
error messages
    during command entry  2-5
    setting the display destination device  23-4
    severity levels  23-8
    system message format  23-2
EtherChannel
    automatic creation of  27-3
    configuration guidelines  27-8
    default configuration  27-7
    destination MAC address forwarding  27-5
    displaying status  27-11
    forwarding methods  27-5, 27-10
    interaction
        with STP  27-8
        with VLANs  27-8
    Layer 2 interfaces, configuring  27-8
    load balancing  27-5, 27-10
    number of interfaces per  27-2
    overview  27-1
PAgP
    aggregate-port learners  27-5
    compatibility with Catalyst 1900  27-11
    displaying status  27-11
    interaction with other features  27-5
    learn method and priority configuration  27-11
    modes  27-4
    overview  27-3
    silent mode  27-4
    support for  1-3
port-channel interfaces
    described  27-2
    numbering of  27-2
port groups  9-3
source MAC address forwarding  27-5
Ethernet VLANs
    adding  14-8
    defaults and ranges  14-8
    modifying  14-8
ETSI  1-2
European Telecommunication Standards Institute
   See ETSI
events, RMON  22-3
examples
   conventions for  xxviii
   network configuration  1-8
Expand Cluster view  3-11
expert mode  3-25
extended-range VLANs
   configuration guidelines  14-12
   configuring  14-12
   creating  14-12, 14-13
   defined  14-1
extended system ID
   MSTP  12-14
   STP  11-4, 11-12
Extensible Authentication Protocol over LAN  8-1

F
fallback VLAN name  14-26
fan fault indication  3-6
Fast Uplink Transition Protocol  13-6
features, IOS  1-1
fiber-optic, detecting unidirectional links  19-1
files
   copying  B-5
   deleting  B-5
   displaying the contents of  B-8
   tar
      creating  B-6
      displaying the contents of  B-7
      extracting  B-7
   image file format  B-21
files, crashinfo
   description  28-15
   displaying the contents of  28-16
   location  28-15
file system
   displaying available file systems  B-2
   displaying file information  B-3
   local file system names  B-1
   network file system names  B-5
   setting the default  B-3
   filtering show and more command output  2-10
   filters, IP
      See ACLs, IP
Flash device, number of  B-1
flow-based packet classification  1-6
flow control  9-14
forward-delay time
   MSTP  12-20
   STP  11-6, 11-19
forwarding
   See broadcast storm control
Front Panel images, CMS  3-7
Front Panel view  3-2
   cluster tree  3-6
   command switch  3-4, 3-5
   described  3-4
   pop-up menus  3-21
   port icons  3-7
   port LEDs  3-8
   RPS LED  3-8
   switch images  3-7
FTP
   configuration files
      downloading  B-14
      overview  B-13
      preparing the server  B-13
      uploading  B-15
   image files
      deleting old image  B-28
      downloading  B-26
      preparing the server  B-25
      uploading  B-28
   FTP, accessing MIB files  A-2
GBICs

1000BASE-LX/LH module  1-10
1000BASE-SX module  1-10
1000BASE-ZX module  1-10
CWDM module  1-20
GigaStack module  1-9
security and identification  28-13
get-bulk-request operation  24-3
get-next-request operation  24-3, 24-4
get-request operation  24-3, 24-4
get-response operation  24-3
Gigabit Interface Converters

See GBICs

GigaStack GBIC
fast transition of redundant link  13-5
See also GBICs
global configuration mode  2-2
graphs, bandwidth  3-8
guide
    audience  xxv
    organization of  xxvi
    purpose  xxv
guidelines, CPE Ethernet links  10-7
guide mode  3-25

disabling  2-7
recalling commands  2-6
history table, level and number of syslog messages  23-10
host name list, CMS  3-28
host names
    abbreviations appended to  6-23
    in clusters  6-16
hosts, limit on dynamic ports  14-31
HP OpenView  1-7
HSRP
    automatic cluster recovery  6-15
    cluster standby group considerations  6-13
    See also clusters, cluster standby group, and standby command switch
HTTP access  3-31, 3-32
Hypertext Transfer Protocol
    See HTTP access

icons
    colors
        cluster tree  3-6
        Topology view  3-14
    editable table cell
    Front Panel view  3-7
    multilink  3-23
    sorting  3-29
    toolbar  3-20
    Topology view  3-12
    web link  3-29

IE2100
CNS embedded agents
    described  5-5
    enabling automated configuration  5-6
    enabling configuration agent  5-9
    enabling event agent  5-8
Configuration Registrar
    configID, deviceID, hostname  5-3
configuration service 5-2
  described 5-1
  event service 5-3
  described 1-7
  support for 1-3

IEEE 802.1P 16-1

IGMP
  joining multicast group 17-2
  join messages 17-2
  leave processing, enabling 17-9
  leaving multicast group 17-4
  queries 17-3

IGMP filtering
  configuring 17-21
  default configuration 17-21
  described 17-20
  monitoring 17-24

IGMP groups, setting the maximum number 17-23

IGMP profile
  applying 17-22
  configuration mode 17-21
  configuring 17-21

IGMP snooping
  configuring 17-5
  default configuration 17-5
  definition 17-1
  enabling and disabling 17-5
  global configuration 17-5
  Immediate Leave 17-4
  method 17-6
  monitoring 17-11
  VLAN configuration 17-6

Immediate-Leave, IGMP 17-4

ingress port scheduling 26-8

Integrated Services Digital Network
  See ISDN

Intelligence Engine 2100 Series CNS Agents
  See IE2100

interaction modes, CMS 3-25

interface
  number 9-4
  range macros 9-8

interface command 9-4, 9-5

interface configuration mode 2-3

interfaces
  configuration guidelines 9-12
  configuring 9-4
  configuring duplex mode 9-11
  configuring speed 9-11
  counters, clearing 9-19
  described 9-16

  descriptive name, adding 9-16
  displaying information about 9-16
  flow control 9-14
  IOS supported 1-7
  monitoring 9-16
  naming 9-16
  physical, identifying 9-4
  range of 9-6
  restarting 9-19
  shutting down 9-19
  supported 9-9

  types of 9-1

  interfaces range macro command 9-8

Inter-Switch Link
  See ISL

inventory, cluster 6-24

IOS command-line interface
  See CLI

IP
  named extended ACL 25-14
  named standard ACL 25-14
  numbered extended ACL 25-10
  numbered standard ACL 25-9

IP ACLs
  applying to
    management interfaces 25-20
    physical interfaces 25-21
extended, creating 25-10
for QoS classification 26-16
implicit deny 25-9, 25-13, 25-15
implicit masks 25-9
management interfaces, applying to 25-20
named 25-13
physical interfaces, applying to standard, creating 25-9
undefined 25-19, 25-21
virtual terminal lines, setting on 25-20
IP addresses
candidate or member 6-4, 6-15
cluster access 6-2
command switch 6-3, 6-13, 6-15
discovering 7-61
management VLAN 6-18
redundant clusters 6-13
standby command switch 6-13, 6-15
See also IP information
ip igmp profile command 17-21
IP information
assigned
manually 4-10
through DHCP-based autoconfiguration 4-3
default configuration 4-3
IP multicast routing and IGMP snooping 17-1, 17-5
IP phones
and QoS 16-1
configuring 16-3
trusted boundary for QoS 26-13
IP protocols in ACLs 25-12
ISDN 1-2

J
Java plug-in configuration 3-1, 6-1
join messages, IGMP 17-2

L
Layer 2 frames, classification with CoS 26-2
Layer 2 interfaces, default configuration 9-10
Layer 2 trunks 14-15
Layer 3 packets, classification methods 26-2
Layer 3 parameters of ACEs 25-10
Layer 4 parameters of ACEs 25-10
LDAP 5-2
leave processing, IGMP 17-9
LEDs
port 3-8, 3-9
port modes 3-9
RPS 3-8
legend, CMS icons and labels 3-20
lightweight directory access protocol
See LDAP
line configuration mode 2-3
link
qualification of 10-12
SNR 10-12
link guidelines, CPE Ethernet 10-7
link icons, Topology view 3-13
link labels 3-13
link monitor, LRE 10-14
link pop-up menu, Topology view 3-22
links, unidirectional 19-1
lists, CMS 3-29
login authentication
with RADIUS 7-23
with TACACS+ 7-14
login banners 7-51
log messages
See system message logging
loop guard
described 13-13
enabling 13-20
support for 1-5
LRE environment 10-6
troubleshooting 28-12

LRE link
  monitor 10-14
  persistence 10-14

LRE links
  See LRE ports

LRE ports
  configuring 10-1, 10-5
    assigning a global sequence 10-9
    assigning a port sequence 10-10
    assigning a private profile 10-9
    assigning a public profile 10-8
    assigning the default profile 10-9

CPE Ethernet links
  Cisco 575 LRE CPE considerations 10-7
  Cisco 585 LRE CPE considerations 10-8
  described 10-1, 10-5
    duplex mode 10-7
    flow control 10-8
    speed 10-7
    statistics 10-5, 28-4

link qualification 10-12

LRE links
  considerations 10-6
  described 10-1, 10-2
  statistics 10-7, 28-4
  preventing loss of data 10-8
  rate selection 10-10
  sequences 10-4
  troubleshooting 28-12

LRE profiles
  assigning
    global profiles 10-9
    port sequences 10-10
    private profiles 10-9
    public profiles 10-8
  considerations 10-7
  described 10-2
  rate selection 10-10

table of 10-3
  See also LRE ports and CPE

LRE profiles, considerations in switch clusters 6-18

lre shutdown command 10-5

LRE switch
  upgrading firmware 10-15

LRE switch firmware upgrade 10-15

LRE technology 10-1
  See also LRE ports and CPE

M

MAC addresses
  adding secure 7-59
  aging time 7-55
  and VLAN association 7-55
  building the address table 7-54
  default configuration 7-55
  discovering 7-61
  displaying 7-60
  dynamic
    learning 7-54
    removing 7-56
  in ACLs 25-18
  static
    adding 7-59
    characteristics of 7-58
    removing 7-59
  MAC address multicast entries, monitoring 17-11
  MAC address-to-VLAN mapping 14-25
  MAC extended access lists 25-18
  management options
    benefits
      clustering 1-7
    CMS 1-7
    CLI 2-1
    CMS 3-1
    CNS 5-1
    overview 1-7
management VLAN
  changing 6-18
  considerations in switch clusters 6-8, 6-9, 6-18
  discovery through different management VLANs 6-9
  discovery through same management VLAN 6-8
  IP address 6-18
MANs
  CWDM configuration example 1-20
  long-distance, high-bandwidth transport configuration example 1-20
mapping tables for QoS
  configuring
    DSCP 26-24
    DSCP-to-CoS 26-26
  described 26-5
matching, ACLs 25-7
maximum aging time
  MSTP 12-21
  STP 11-20
maximum hop count, MSTP 12-21
membership mode, VLAN port 3-9, 14-3
member switch
  adding 6-20
  automatic discovery 6-5
  defined 6-2
  managing 6-25
  passwords 6-15
  recovering from lost connectivity 28-11
  requirements 6-4
  See also candidate switch, cluster standby group, and standby command switch
menu bar
  described 3-15
  variations 3-15
messages
  system 3-19
  to users through banners 7-51
metropolitan-area networks
  See MANs
MIBs
  accessing files with FTP A-2
  location of files A-2
  overview 24-1
  SNMP interaction with 24-4
  supported A-1
microfilters, phone 1-16, 10-7
mini-point-of-presence
  See POP
mirroring traffic for analysis 21-1
mismatches, autonegotiation 28-12
Mode button 3-9
modes
  access to CMS 3-31
  port 3-8
  VLAN port membership 3-9
Modify button 3-30
monitoring
  access groups 25-23
  ACLs 25-22
  cables for unidirectional links 19-1
  CDP 20-5
  IGMP
    filters 17-24
    snooping 17-11
    interfaces 9-16
    multicast router interfaces 17-11
    MVR 17-19
    network traffic for analysis with probe 21-1
    port protection 18-12
    speed and duplex mode 9-13
    traffic flowing among switches 22-1
    traffic suppression 18-12
    VLANs 14-14
  VMPS 14-31
  VTP 15-16
MSTP
  boundary ports
  configuration guidelines 12-12
described 12-10

BPDU filtering
  described 13-3
  enabling 13-16

BPDU guard
  described 13-3
  enabling 13-15

CIST, described 12-8

configuration guidelines 12-12

configuring
  forward-delay time 12-20
  hello time 12-19
  link type for rapid convergence 12-22
  maximum aging time 12-21
  maximum hop count 12-21

MST region 12-13
  path cost 12-18
  port priority 12-17
  root switch 12-14
  secondary root switch 12-16
  switch priority 12-19

CST
  defined 12-8
  operations between regions 12-9

default configuration 12-12

default optional feature configuration 13-14

displaying status 12-23

enabling the mode 12-13

extended system ID
  affects on root switch 12-14
  affects on secondary root switch 12-16
  unexpected behavior 12-14

interface state, blocking to forwarding 13-2

interoperability with 802.1D
  described 12-11

restarting migration process 12-22

IST
  defined 12-8
  master 12-8

operations within a region 12-8

loop guard
  described 13-13
  enabling 13-20

mapping VLANs to MST instance 12-13

MST region
  CIST 12-8
  configuring 12-13
  described 12-7
  hop-count mechanism 12-10
  IST 12-8
  supported spanning-tree instances 12-7

overview 12-7

Port Fast
  described 13-2
  enabling 13-14

preventing root switch selection 13-12

root guard
  described 13-12
  enabling 13-19

root switch
  affects of extended system ID 12-14
  configuring 12-14
  unexpected behavior 12-14

shutdown Port Fast-enabled port 13-3

multicast groups
  and IGMP snooping 17-5

Immediate Leave 17-4

joining 17-2

leaving 17-4

static joins 17-8

multicast router interfaces, monitoring 17-11

multicast router ports, adding 17-7

Multicast VLAN Registration
  See MVR

Multilink Decomposer window 3-22

multilink icon 3-23

Multiple Spanning Tree Protocol
  See MSTP
MVR
  configuring interfaces  17-17
  default configuration  17-15
  described  17-13
  modes  17-17
  monitoring  17-19
  setting global parameters  17-16

N
  named IP ACLs  25-13
  NameSpace Mapper
    See NSM
  native VLAN
    configuring  14-20
    default  14-20
    negotiate trunk mode  3-10
  neighboring devices, types of  3-12
  network examples
    collapsed backbone and switch cluster  1-13
    design concepts
      cost-effective wiring closet  1-9
      high-performance workgroup  1-10
    network performance  1-8
    network services  1-9
    redundant Gigabit backbone  1-10
  hotel network  1-16
  large campus  1-14
  long-distance, high-bandwidth transport
    configuration  1-20
  small to medium-sized network  1-11
  network management
    CDP  20-1
    RMON  22-1
    SNMP  24-1
  Network Time Protocol
    See NTP
    no commands  2-5
    nonhomologated POTS splitter
    See Cisco LRE POTS Splitter (PS-1M-LRE-48)

  nontrunking mode  14-16
  normal-range VLANs
    configuration modes  14-6
    defined  14-1
  NSM  5-3
  NTP
    associations
      authenticating  7-37
      defined  7-35
      enabling broadcast messages  7-39
      peer  7-38
      server  7-38
    default configuration  7-37
    displaying the configuration  7-43
    overview  7-34
    restricting access
      creating an access group  7-41
      disabling NTP services per interface  7-42
      source IP address, configuring  7-42
      stratum  7-35
    synchronizing devices  7-38
    time
      services  7-35
      synchronizing  7-34

O
  OK button  3-30
  online help  3-26
  out-of-profile markdown  1-6
  overheating indication, switch  3-6

P
  PAgP
    See EtherChannel
  pass-through mode  26-15
passwords
  default configuration 7-2
  disabling recovery of 7-5
  encrypting 7-4
  in clusters 6-16, 6-20
  in CMS 3-30
  overview 7-1
  recovery of 28-6
  setting
    enable 7-3
    enable secret 7-4
    Telnet 7-6
    with usernames 7-7
  VTP domain 15-8
patch panel 1-16
path cost
  MSTP 12-18
  STP 11-16
PBX 1-16
PC (passive command switch) 6-12, 6-23
performing an LRE upgrade 10-15, 10-16
persistence, LRE link 10-14
per-VLAN Spanning Tree (PVST) 11-2
per-VLAN Spanning Tree+ (PVST+) 11-8
physical ports 9-1
PIM-DVMRP, as snooping method 17-6
plain old telephone service
  See POTS splitters and POTS telephones
policers
  configuring for each matched traffic class 26-21
  described 26-3
  number of 1-6, 26-7
  types of 26-6
policing 1-6, 26-3
policy maps for QoS
  characteristics of 26-21
  configuring 26-21
  described 26-6
  displaying 26-28
POP 1-18
Port Aggregation Protocol
  See EtherChannel
  See PAgP
port-based authentication
  authentication server
    defined 8-2
    RADIUS server 8-2
  client, defined 8-2
  configuration guidelines 8-7
  configuring
    manual re-authentication of a client 8-11
    quiet period 8-11
    RADIUS server 8-10
    RADIUS server parameters on the switch 8-9
    switch-to-client frame-retransmission number 8-13
    switch-to-client retransmission time 8-12
default configuration 8-6
  described 8-1
  device roles 8-2
  displaying statistics 8-14
  EAPOL-start frame 8-3
  EAP-request/identity frame 8-3
  EAP-response/identity frame 8-3
  enabling
    802.1X authentication 8-8
    periodic re-authentication 8-10
    encapsulation 8-2
    initiation and message exchange 8-3
    method lists 8-8
    ports
      authorization state and dot1x port-control command 8-4
      authorized and unauthorized 8-4
    resetting to default values 8-14
    switch
      as proxy 8-2
      RADIUS client 8-2
topologies, supported 8-5
port-channel
See EtherChannel
Port Fast
  described 13-2
  enabling 13-14
  mode, spanning tree 14-28
  support for 1-4
port icons, Front Panel view 3-7
port LEDs
  described 3-9
  DUPLX 3-9
  port modes 3-8
  SPEED 3-9
  STAT 3-9
port membership modes, VLAN 3-9, 14-3
port modes
  described 3-8
  LEDs 3-9
port pop-up menu, Front Panel view 3-21
port priority
  MSTP 12-17
  STP 11-15
port profile, locking 10-11
ports
  802.1Q trunk 3-10
  access 9-2
  duplex mode 10-7
  dynamic access 3-10, 14-3
  LRE 10-1
  negotiate trunk 3-10
  priority 26-8
  protected 18-3
  secure 18-4
  speed, setting and checking 10-7
  static-access 3-10, 14-3, 14-11
  statistics 28-2
  switch 9-1
  trunks 14-15
  VLAN assignments 14-11

See also CPE
See also LRE ports
port scheduling 26-8
port security
  aging 18-10
  configuring 18-7
  default configuration 18-7
  described 18-4
  displaying 18-12
  sticky learning 18-5
  violations 18-6
  with other features 18-7
port-shutdown response, VMPS 14-25
POTS splitters 1-2
  homologated 1-16
  nonhomologated 1-16
See also Cisco LRE 48 POTS Splitter (PS-1M-LRE-48)
POTS telephones 1-16, 10-7
precedence 10-11
preferential treatment of traffic
  See QoS
preventing unauthorized access 7-1
priority
  overriding CoS 16-5
  port
    described 26-8
    trusting CoS 16-6
private branch exchange
  See PBX
private LRE profiles
  assigning 10-9
private VLAN edge ports
  see protected ports
privileged EXEC mode 2-2
privilege levels
  access modes
    read-only 3-31
    read-write 3-31
  changing the default for lines 7-9
CMS 3-31
command switch 6-25
exiting 7-10
logging into 7-10
mapping on member switches 6-25
overview 7-2, 7-8
setting a command with 7-8
profile acquisition, automatic 10-10
profile locking 10-11
profiles, LRE
considerations 10-7
default
assigning 10-9
described 10-2
private
assigning 10-9
public
assigning a public profile 10-8
rate selection 10-10
See also LRE ports and CPE
protected ports 1-3, 18-3
pruning, VTP
enabling 15-14
enabling on a port 14-20
examples 15-5
overview 15-4
pruning-eligible list
changing 14-20
for VTP pruning 15-4
VLANs 15-14
PSTN 1-2, 1-14, 1-16
publications, related xxix
public LRE profiles
assigning 10-8
Public Switched Telephone Network
See PSTN
PVST 14-2

Q

QoS
basic model 26-3
classification
class maps, described 26-6
defined 26-3
in frames and packets 26-3
IP ACLs, described 26-5
MAC ACLs, described 26-5
pass-through mode, described 26-15
policy maps, described 26-6
port default, described 26-4
trust DSCP, described 26-5
trusted boundary, described 26-13
trusted CoS, described 26-4
types for IP traffic 26-4
types for non-IP traffic 26-4
class maps
configuring 26-20
displaying 26-28
configuration examples
common wiring closet 26-30
intelligent wiring closet 26-30
configuration guidelines 26-10
configuring
class maps 26-20
CoS and WRR 26-27
default port CoS value 26-13
IP extended ACLs 26-18
IP standard ACLs 26-16
MAC ACLs 26-19
policy maps 26-21
port trust states within the domain 26-11
QoS policy 26-16
trusted boundary 26-14
default configuration 26-9
displaying statistics 26-28
egress port scheduling 26-8
ingress port scheduling 26-8
IP phones, detection and trusted settings 26-13
mapping tables
  CoS-to-DSCP 26-25
  displaying 26-28
  DSCP-to-CoS 26-26
  types of 26-5
marked-down actions 26-23
marking, described 26-4, 26-6
overview 26-2
pass-through mode 26-15
policers
  configuring 26-23
  described 26-6
  number of 26-7
  types of 26-6
policing, described 26-3, 26-6
policy maps
  characteristics of 26-21
  configuring 26-21
  displaying 26-28
queueing, defined 26-4
scheduling, defined 26-4
support for 1-6
trusted boundary 26-13
trust states 26-4
understanding 26-2
qualification, link 10-12
quality of service
  See QoS
queries, IGMP 17-3

accounting 7-28
authentication 7-23
authorization 7-27
communication, global 7-21, 7-29
communication, per-server 7-20, 7-21
multiple UDP ports 7-21
default configuration 7-20
defining AAA server groups 7-25
displaying the configuration 7-31
identifying the server 7-20
in clusters 6-17
limiting the services to the user 7-27
method list, defined 7-20
operation of 7-19
overview 7-18
suggested network environments 7-18
tracking services accessed by user 7-28
range
  macro 9-8
  of interfaces 9-6
Rapid Spanning Tree Protocol
  See RSTP
rate selection
  definition of 10-10
  sequences 10-4
rate selections
  list of sequences 10-4
rcommand command 6-25
RCP
  configuration files
    downloading B-17
    overview B-16
    preparing the server B-17
    uploading B-18
  image files
    deleting old image B-32
    downloading B-30
    preparing the server B-29
    uploading B-32

RADIUS
  attributes
    vendor-proprietary 7-30
    vendor-specific 7-29
  configuring
Index

read-only access mode 3-31
read-write access mode 3-31
reconfirmation interval, VMPS, changing 14-30
recovery procedures 28-6
redundancy
  EtherChannel 27-2
  STP
    backbone 11-8
    multidrop backbone 13-5
    path cost 14-23
    port priority 14-21
redundant clusters
  See cluster standby group
redundant links and UplinkFast 13-17
redundant power system
  See RPS
Refresh button 3-30
releases, switch software 7-61
Remote Authentication Dial-In User Service
  See RADIUS
Remote Copy Protocol
  See RCP
remote monitoring
  see RMON
Remote Network Monitoring
  See RMON
removing secure addresses 7-59
resetting a UDLD-shutdown interface 19-5
restricting access
  NTP services 7-40
  overview 7-1
  passwords and privilege levels 7-2
  RADIUS 7-18
  TACACS+ 7-10
retry count, VMPS, changing 14-30
RFC
  1112, IP multicast and IGMP 17-2
  1157, SNMPv1 24-2
  1305, NTP 7-34
  1757, RMON 22-2
  1901, SNMPv2C 24-2
  1902 to 1907, SNMPv2 24-2
  2236, IP multicast and IGMP 17-2
  2273-2275, SNMPv3 24-2
RMON
  default configuration 22-3
  displaying status 22-6
  enabling alarms and events 22-3
  groups supported 22-2
  overview 22-1
  statistics
    collecting group Ethernet 22-5
    collecting group history 22-5
root guard
  described 13-12
  enabling 13-19
  support for 1-4
root switch
  MSTP 12-14
  STP 11-12
RPS LED 3-8
RSPAN
  configuration guidelines 21-14
  default configuration 21-8
  destination ports 21-5
  displaying status 21-20
  interaction with other features 21-7
  monitored ports 21-4
  monitoring ports 21-5
  overview 1-6, 21-1
  received traffic 21-3
  reflector port 21-5
  session limits 21-8
  sessions
    creating 21-15
    defined 21-3
    limiting source traffic to specific VLANs 21-19
    monitoring VLANs 21-18
removing source (monitored) ports 21-17
specifying monitored ports 21-15
source ports 21-4
transmitted traffic 21-4
VLAN-based 21-6

RSTP
active topology, determining 12-2
BPDU
format 12-5
processing 12-6
configuration guidelines 12-12
designated port, defined 12-2
designated switch, defined 12-2
interoperability with 802.1D described 12-11
restarting migration process 12-22
topology changes 12-6
overview 12-2
port roles
described 12-2
synchronized 12-4
proposal-agreement handshake process 12-3
rapid convergence
described 12-11
edge ports and Port Fast 12-3
point-to-point links 12-3, 12-22
root ports 12-3
root port, defined 12-2
See also MSTP
running configuration, saving 4-10

S
saving changes in CMS 3-33
SC (standby command switch) 6-12, 6-23
secure addresses
adding 7-59
described 7-59
secure ports, configuring 18-4
secure remote connections 7-33
Secure Shell
See SSH
security, port 18-4
sequence numbers in log messages 23-8
sequences 10-4
table of 10-4
sequences, LRE
global
assigning 10-9
specific port
assigning 10-10
server mode, VTP 15-3
servers, BOOTP 1-3
service-provider network, MSTP and RSTP 12-1
set-request operation 24-4
settings
duplex mode 10-7
speed 10-7
set-top box, television 1-16
setup program, failed command switch replacement 28-9, 28-10
severity levels, defining in system messages 23-8
show and more command output, filtering 2-10
show cdp traffic command 20-5
show cluster members command 6-25
show configuration command 9-16
show controllers ethernet-controller command 10-5
show controllers lre commands 10-7, 10-9, 10-10
show controllers lre profile mapping 10-7, 10-9, 10-10, 10-11, 10-13, 10-14
show controllers lre profile mapping command 10-8, 10-9
show interfaces command 9-13, 9-16
show running-config command
displaying ACLs 25-19, 25-20, 25-21
interface description in 9-16
shutdown command on interfaces 9-19
signal to noise command 10-12
Simple Network Management Protocol
See SNMP
SNAP  20-1

SNMP
   accessing MIB variables with  24-4
   agent
      described  24-3
      disabling  24-7
   community strings
      configuring  24-7
      for cluster switches  24-4
      overview  24-4
   configuration examples  24-14
   default configuration  24-6
   groups  24-8
   in clusters  6-16
   informs
      and trap keyword  24-10
      described  24-5
      differences from traps  24-5
      enabling  24-12
   limiting access by TFTP servers  24-13
   limiting system log messages to NMS  23-10
   manager functions  24-3
   managing clusters with  6-26
   MIBs
      location of  A-2
      supported  A-1
      notifications  24-5
      overview  24-1, 24-4
      status, displaying  24-15
      system contact and location  24-13
   trap manager, configuring  24-11
   traps
      described  24-3, 24-5
      differences from informs  24-5
      enabling  24-10
      enabling MAC address notification  7-56
      overview  24-1, 24-4
      types of  24-10
   users  24-8

   versions supported  24-2
   snooping, IGMP  17-1
   SNR
      definition of  10-12
      downstream rate requirements  10-12
      margins  10-12
      upstream rate requirements  10-13
   software
      releases
         LRE  7-61
         non-LRE  7-61
      upgrading  7-61
      See also release notes
   software, VLAN considerations  15-8
   software images
      location in Flash  8-20
      recovery procedures  28-6
      tar file format, described  8-21
      See also downloading and uploading
   source addresses, in ACLs  25-12
   SPAN
      configuration guidelines  21-8
      default configuration  21-8
      destination ports  21-5
      displaying status  21-20
      interaction with other features  21-7
      monitored ports  21-4
      monitoring ports  21-5
      overview  1-6, 21-1
      received traffic  21-3
      session limits  21-8
      sessions
         creating  21-9
         defined  21-3
      limiting source traffic to specific VLANs  21-13
      monitoring VLANs  21-12
      removing destination (monitoring) ports  21-11
      removing source (monitored) ports  21-11
      specifying monitored ports  21-9
source ports 21-4
transmitted traffic 21-4
VLAN-based 21-6
spanning tree and native VLANs 14-17
Spanning Tree Protocol
  See STP
speed, configuring on interfaces 9-11
speed, setting 10-7
SSH
  configuring 7-33
  crypto software image 7-33
  described 7-33
  displaying settings 7-33
Stack Membership Discovery Protocol 13-6
Standby Command Configuration window 6-23
standby command switch
  configuring 6-22
  considerations 6-13
  defined 6-2
  priority 6-12
  requirements 6-3
  virtual IP address 6-13
  See also cluster standby group and HSRP
standby group, cluster
  See cluster standby group and HSRP
startup configuration
  clearing B-19
static access mode 3-10
static access ports
  assigning to VLAN 14-11
  defined 9-2, 14-3
static addresses
  See addresses
static VLAN membership 14-2
statistics
  802.1X 8-14
  CDP 20-5
  CPE Ethernet link 28-4
  interface 9-17
  LRE link 28-4
  port 28-2
  QoS ingress and egress 26-28
  RMON group Ethernet 22-5
  RMON group history 22-5
  SNMP input and output 24-15
  VTP 15-16
status bar
  change notification 3-32
  error notification 3-32
sticky learning 18-5
storm control
  described 18-1
  displaying 18-12
STP
  accelerating root port selection 13-4
  BackboneFast
    described 13-10
    enabling 13-19
  BPDU filtering
    described 13-3
    enabling 13-16
  BPDU guard
    described 13-3
    enabling 13-15
  BPDU message exchange 11-2
  configuration guidelines 11-10
  configuring
    forward-delay time 11-19
    hello time 11-19
    in cascaded stack 11-20
    maximum aging time 11-20
    path cost 11-16
    port priority 11-15, 12-17
    root switch 11-12
    secondary root switch 11-14
    switch priority 11-18
    cross-stack UplinkFast
      described 13-5
enabling 13-18

default configuration 11-10

default optional feature configuration 13-14

designated port, defined 11-3

designated switch, defined 11-3

detecting indirect link failures 13-10

disabling 11-12

displaying status 11-21

extended system ID

affects on root switch 11-12

affects on the secondary root switch 11-14

overview 11-4

unexpected behavior 11-13

features supported 1-4

inferior BPDU 11-3

interface state, blocking to forwarding 13-2

interface states

blocking 11-7

disabled 11-8

forwarding 11-6, 11-7

learning 11-7

listening 11-7

overview 11-5

limitations with 802.1Q trunks 11-8

load sharing

overview 14-21

using path costs 14-23

using port priorities 14-21

loop guard

described 13-13

enabling 13-20

multicast addresses, affect of 11-8

overview 11-2

path costs 14-23, 14-24

Port Fast

described 13-2

enabling 13-14

port priorities 14-22

preventing root switch selection 13-12

redundant connectivity 11-8

root guard

described 13-12

enabling 13-19

root port, defined 11-3

root switch

affects of extended system ID 11-4, 11-12

configuring 11-12

election 11-3

unexpected behavior 11-13

settings in a cascaded stack 11-20

shutdown Port Fast-enabled port 13-3

superior BPDU 11-3

supported number of spanning-tree instances 11-2

timers, described 11-4

UplinkFast

described 13-4

enabling 13-17

stratum, NTP 7-35

summer time 7-46

SunNet Manager 1-7

switch clustering technology 6-1

See clusters, switch

switched ports 9-1

Switch Manager 3-2, 3-34

See also Device Manager

switchport protected command 18-4

switch priority

MSTP 12-19

STP 11-18

switch software releases 7-61

syslog

See system message logging

system clock

configuring

daylight saving time 7-46

manually 7-44

summer time 7-46

time zones 7-45
displaying the time and date  7-44
overview  7-34
See also NTP

system message logging
default configuration  23-3
defining error message severity levels  23-8
disabling  23-4
displaying the configuration  23-12
enabling  23-4
facility keywords, described  23-12
level keywords, described  23-9
limiting messages  23-10
message format  23-2
overview  23-1
sequence numbers, enabling and disabling  23-8
setting the display destination device  23-4
synchronizing log messages  23-6
timestamps, enabling and disabling  23-7
UNIX syslog servers
configuring the daemon  23-11
configuring the logging facility  23-11
facilities supported  23-12

system messages on CMS  3-19

system name
default configuration  7-48
default setting  7-48
manual configuration  7-48
See also DNS

system prompt
default setting  7-48
manual configuration  7-49

T

tables, CMS  3-29
tabs, CMS  3-29

TACACS+
accounting, defined  7-11
authentication, defined  7-11

authorization, defined  7-11

configuring
accounting  7-17
authentication key  7-13
authorization  7-16
login authentication  7-14
default configuration  7-13
displaying the configuration  7-17
identifying the server  7-13
in clusters  6-17
limiting the services to the user  7-16
operation of  7-12
overview  7-10
tracking services accessed by user  7-17

tar files
creating  B-6
displaying the contents of  B-7
extracting  B-7
image file format  B-21

Telnet
accessing management interfaces  2-10
accessing the CLI  1-7
from a browser  2-11
setting a password  7-6

Terminal Access Controller Access Control System Plus
See TACACS+

terminal lines, setting a password  7-6

TFTP
configuration files
downloading  B-12
preparing the server  B-11
uploading  B-12
configuration files in base directory  4-6
configuring for autoconfiguration  4-5
image files
deleting  B-24
downloading  B-23
preparing the server  B-22
uploading  B-24

TACACS+
accounting, defined  7-11
authentication, defined  7-11

authorization, defined  7-11

configuring
accounting  7-17
authentication key  7-13
authorization  7-16
login authentication  7-14
default configuration  7-13
displaying the configuration  7-17
identifying the server  7-13
in clusters  6-17
limiting the services to the user  7-16
operation of  7-12
overview  7-10
tracking services accessed by user  7-17

tar files
creating  B-6
displaying the contents of  B-7
extracting  B-7
image file format  B-21

Telnet
accessing management interfaces  2-10
accessing the CLI  1-7
from a browser  2-11
setting a password  7-6

Terminal Access Controller Access Control System Plus
See TACACS+

terminal lines, setting a password  7-6

TFTP
configuration files
downloading  B-12
preparing the server  B-11
uploading  B-12
configuration files in base directory  4-6
configuring for autoconfiguration  4-5
image files
deleting  B-24
downloading  B-23
preparing the server  B-22
uploading  B-24
limiting access by servers 24-13
time
  See NTP and system clock
time-range command 25-15
time ranges in ACLs 25-15
timestamps in log messages 23-7
time zones 7-45
Token Ring VLANs
  support for 14-5
  VTP support 15-4
toolbar 3-20
tool tips 3-26
Topology view
  Collapse Cluster view 3-11
  described 3-2, 3-10
  device icons 3-12, 3-14
  device labels 3-13
  display options 3-15
  Expand Cluster view 3-11
  icons 3-12
  link icons 3-13
  link labels 3-13
  multilink icon 3-23
  neighboring devices 3-12
  pop-up menus 3-22
TOS 1-6
traffic
  fragmented 25-3
  unfragmented 25-3
traffic policing 1-6
transparent mode, VTP 15-3, 15-12
trap-door mechanism 4-2
traps
  configuring MAC address notification 7-56
  configuring managers 24-10
  defined 24-3
  enabling 7-56, 24-10
  notification types 24-10
  overview 24-1, 24-4
troubleshooting
  detecting unidirectional links 19-1
  displaying crash information 28-15
  GBIC security and identification 28-13
  LRE ports 28-12
  statistics 28-1
    CPE Ethernet links 28-4
    LRE links 28-4
    ports 28-2
    with CiscoWorks 24-4
    with debug commands 28-14
    with system message logging 23-1
trunk ports
  configuring 14-18
  defined 9-2
trunks
  allowed-VLAN list 14-19
  load sharing
    setting STP path costs 14-23
    using STP port priorities 14-21, 14-22
  native VLAN for untagged traffic 14-20
  parallel 14-23
  pruning-eligible list 14-20
  to non-DTP device 14-15
  understanding 14-15
trusted boundary 26-13
 twisted-pair Ethernet, detecting unidirectional links 19-1
type-of-service
  See TOS

U

UDLD
  default configuration 19-3
  echoing detection mechanism 19-2
  enabling
    globally 19-4
    per interface 19-4
  link-detection mechanism 19-1
neighbor database 19-2
overview 19-1
resetting an interface 19-5
status, displaying 19-6
unauthorized ports with 802.1X 8-4
UniDirectional Link Detection protocol
See UDLD
UNIX syslog servers
daemon configuration 23-11
facilities supported 23-12
message logging configuration 23-11
unrecognized Type-Length-Value (TLV) support 15-4
upgrade 10-15
behavior details 10-18
configuring for 10-15
controller configuration 10-17
example 10-18
global configuration 10-17
performing 10-15, 10-16
upgrading software, VLAN considerations 15-8
upgrading software images
See downloading
UplinkFast
described 13-4
enabling 13-17
support for 1-4
uploading
configuration files
preparing B-11, B-13, B-17
reasons for B-9
using FTP B-15
using RCP B-18
using TFTP B-12
image files
preparing B-22, B-25, B-29
reasons for B-20
using FTP B-28
using RCP B-32
using TFTP B-24
user EXEC mode 2-2
username-based authentication 7-7

V
verifying changes in CMS 3-32
version-dependent transparent mode 15-4
virtual IP address
cluster standby group 6-13, 6-23
command switch 6-13, 6-23
See also IP addresses
vlan.dat file 14-4
VLAN configuration
at bootup 14-7
saving 14-7
VLAN configuration mode 2-3, 14-6
VLAN database
and startup configuration file 14-7
and VTP 15-1
VLAN configuration saved in 14-7
VLANs saved in 14-4
vlan database command 14-6
vlan global configuration command 14-6
VLAN ID, discovering 7-61
VLAN management domain 15-2
VLAN Management Policy Server
See VMPS
VLAN membership
confirming 14-30
modes 3-9, 14-3
VLAN Query Protocol
See VQP
VLANs
adding 14-8
adding to VLAN database 14-8
aging dynamic addresses 11-9
allowed on trunk 14-19
and spanning-tree instances 14-2, 14-6, 14-13
configuration guidelines, normal-range VLANs 14-5
configuration options 14-6
configuring 14-1
configuring IDs 1006 to 4094 14-12
creating in config-vlan mode 14-9
creating in VLAN configuration mode 14-9
default configuration 14-8
deleting 14-10
described 9-3, 14-1
displaying 14-14
extended-range 14-1, 14-12
illustrated 14-2
limiting source traffic with RSPAN 21-19
limiting source traffic with SPAN 21-13
modifying 14-8
monitoring with RSPAN 21-18
monitoring with SPAN 21-12
native, configuring 14-20
normal-range 14-1, 14-4
parameters 14-4
port membership modes 3-9, 14-3
static-access ports 14-11
STP and 802.1Q trunks 11-8
supported 14-2
Token Ring 14-5
VTP modes 15-3
VLAN Trunking Protocol
See VTP
VLAN trunks 14-15
VMPS
administering 14-31
configuration example 14-32
configuration guidelines 14-28
default configuration 14-27
description 14-24
dynamic port membership
described 14-25
reconfirming 14-30
troubleshooting 14-31
entering server address 14-28
mapping MAC addresses to VLANs 14-25
monitoring 14-31
reconfirmation interval, changing 14-30
reconfirming membership 14-30
retry count, changing 14-30
voice VLAN
Cisco 7960 phone, port connections 16-1
configuration guidelines 16-3
configuring IP phones for data traffic
override CoS of incoming frame 16-5
trust CoS priority of incoming frame 16-6
configuring ports for voice traffic in
802.1P priority tagged frames 16-4
802.1Q frames 16-4
connecting to an IP phone 16-3
default configuration 16-2
described 16-1
displaying 16-6
VQP 14-24
VTP
adding a client to a domain 15-15
advertisements 14-17, 15-3
and extended-range VLANs 15-1
and normal-range VLANs 15-1
client mode, configuring 15-11
configuration
global configuration mode 15-7
guidelines 15-8
privileged EXEC mode 15-7
requirements 15-9
saving 15-7
VLAN configuration mode 15-7
configuration mode options 15-7
configuration requirements 15-9
configuration revision number
guideline 15-15
resetting 15-15
configuring
client mode 15-11
server mode 15-9
transparent mode 15-12
consistency checks 15-4
default configuration 15-6
described 15-1
disabling 15-12
domain names 15-8
domains 15-2
modes
  client 15-3, 15-11
  server 15-3, 15-9
  transitions 15-3
  transparent 15-3, 15-12
monitoring 15-16
passwords 15-8
pruning
  disabling 15-14
  enabling 15-14
  examples 15-5
  overview 15-4
pruning-eligible list, changing 14-20
server mode, configuring 15-9
statistics 15-16
Token Ring support 15-4
transparent mode, configuring 15-12
using 15-1
version, guidelines 15-9
version 1 15-4
version 2
  configuration guidelines 15-9
  disabling 15-13
  enabling 15-13
  overview 15-4

W

warnings xxviii
web-based management software
  See CMS

Weighted Round Robin
  See WRR
window components, CMS 3-28
wizards 3-26
WRR
  configuring 26-27
  defining 26-8
  description 26-8

X

XMODEM protocol 28-6