CONTENTS

Preface xv

Changes to This Document xv

Obtaining Documentation and Submitting a Service Request xvi

CHAPTER 1 New and Changed Feature Information in Cisco IOS XR Release 4.3.x 1

New and Changed IP Addresses and Services Features 1

CHAPTER 2 Implementing Access Lists and Prefix Lists 5

Prerequisites for Implementing Access Lists and Prefix Lists 6

Restrictions for Implementing Access Lists and Prefix Lists 6

Restrictions for Implementing ACL-based Forwarding 7

Information About Implementing Access Lists and Prefix Lists 7

Access Lists and Prefix Lists Feature Highlights 7

Purpose of IP Access Lists 8

How an IP Access List Works 8

IP Access List Process and Rules 8

Helpful Hints for Creating IP Access Lists 9

Source and Destination Addresses 10

Wildcard Mask and Implicit Wildcard Mask 10

Transport Layer Information 10

IP Access List Entry Sequence Numbering 10

Sequence Numbering Behavior 10

IP Access List Logging Messages 11

Extended Access Lists with Fragment Control 12

Policy Routing 14

Comments About Entries in Access Lists 14

Access Control List Counters 14
Contents

- BGP Filtering Using Prefix Lists 15
- How the System Filters Traffic by Prefix List 15
- Information About Implementing ACL-based Forwarding 16
 - ACL-based Forwarding Overview 16
 - ACL-based Forwarding Functions 16
- How to Implement Access Lists and Prefix Lists 17
 - Configuring Extended Access Lists 17
 - Applying Access Lists 19
 - Controlling Access to an Interface 19
 - Controlling Access to a Line 21
 - Configuring Prefix Lists 22
 - Configuring Standard Access Lists 23
 - Copying Access Lists 25
 - Sequencing Access-List Entries and Revising the Access List 26
 - Copying Prefix Lists 28
 - Sequencing Prefix List Entries and Revising the Prefix List 29
- How to Implement ACL-based Forwarding 30
 - Configuring ACL-based Forwarding with Security ACL 31
 - Configuring Pure ACL-Based Forwarding for IPv6 ACL 32
 - Configuring Pure ACL-based Forwarding for ACL 33
- ACL-Chaining 34
 - ACL-Chaining Overview 34
 - Restrictions for Common ACL 35
 - Configuring an Interface to accept Common ACL 35
- Configuration Examples for Implementing Access Lists and Prefix Lists 36
 - Resequencing Entries in an Access List: Example 36
 - Adding Entries with Sequence Numbers: Example 37
 - Adding Entries Without Sequence Numbers: Example 37
- Configuration Examples for Implementing ACL-based Forwarding 37
 - ACL with Security and ACL-based Forwarding Access Control Entry: Example 38
 - Pure ACL-based Forwarding for ACL Example 38
 - IPv6 ACL-based Forwarding Example 38
- IPv6 ACL in Class Map 39
 - Configuring IPv6 ACL QoS - An Example 40
 - Configuring an Interface to accept Common ACL - Examples 42
Chapter 3: Configuring ARP

- Prerequisites for Configuring ARP
- Restrictions for Configuring ARP
- Information About Configuring ARP
 - IP Addressing Overview
 - Address Resolution on a Single LAN
 - Address Resolution When Interconnected by a Router
 - ARP and Proxy ARP
 - ARP Cache Entries
- How to Configure ARP
 - Defining a Static ARP Cache Entry
 - Enabling Proxy ARP
 - Enabling Local Proxy ARP

Chapter 4: Implementing Cisco Express Forwarding

- Prerequisites for Implementing Cisco Express Forwarding
- Information About Implementing Cisco Express Forwarding Software
 - Key Features Supported in the Cisco Express Forwarding Implementation
 - Benefits of CEF
 - CEF Components
 - Border Gateway Protocol Policy Accounting
 - Reverse Path Forwarding (Strict and Loose)
 - Route Processor Management Ethernet Forwarding
 - Per-Flow Load Balancing
 - BGP Attributes Download
 - GTP Tunnel Load Balancing
- How to Implement CEF
 - Verifying CEF
 - Configuring BGP Policy Accounting
 - Verifying BGP Policy Accounting
 - Configuring a Route Purge Delay
 - Configuring Unicast RPF Checking
CHAPTER 5

Implementing the Dynamic Host Configuration Protocol 89

Prerequisites for Configuring DHCP Relay Agent 89
Information About DHCP Relay Agent 90
How to Configure and Enable DHCP Relay Agent 90
Configuring and Enabling the DHCP Relay Agent 91
Configuring a DHCP Relay Profile 91
Configuring the DHCPv6 (Stateless) Relay Agent 92
Enabling DHCP Relay Agent on an Interface 93
Disabling DHCP Relay on an Interface 93
Enabling DHCP Relay on a VRF 94
Configuring the Relay Agent Information Feature 95
Configuring Relay Agent Giaddr Policy 97
Configuring the Broadcast Flag Policy 97
Configuring a DHCP Proxy Profile 98
DHCPv4 Client 99
 Enabling DHCP Client on an Interface 100
Information About Configuring DHCP IPv6 Information Pools 101
How to Configure DHCP IPv6 Information Pools 101

Configuring Cisco IOS XR DHCP IPv6 Information Pool Option 101

Configuration Examples for the DHCP Relay Agent 102

DHCP Relay Profile: Example 102

DHCP Relay on an Interface: Example 103

DHCP Relay on a VRF: Example 103

Relay Agent Information Option Support: Example 103

Relay Agent Giaddr Policy: Example 103

Cisco IOS XR Broadcast Flag Policy: Example 103

Additional References 104

CHAPTER 6

Implementing Host Services and Applications 107

Prerequisites for Implementing Host Services and Applications 107

Information About Implementing Host Services and Applications 108

Key Features Supported in the Cisco IOS XR software Host Services and Applications Implementation 108

Network Connectivity Tools 108

Ping 108

Traceroute 109

Domain Services 109

TFTP Server 110

File Transfer Services 110

RCP 110

FTP 111

TFTP 111

Cisco inetd 111

Telnet 111

How to Implement Host Services and Applications 111

Checking Network Connectivity 111

Checking Network Connectivity for Multiple Destinations 112

Checking Packet Routes 113

Configuring Domain Services 113

Configuring a Router as a TFTP Server 115

Configuring a Router to Use rcp Connections 116

Configuring a Router to Use FTP Connections 117
Configuring a Router to Use TFTP Connections 119
Configuring Telnet Services 120
Configuring syslog source-interface 121
IPv6 Support for IP SLA ICMP Echo Operation 121
Configuring an IPSLA ICMP echo operation 122
Configuration Examples for Implementing Host Services and Applications 123
Checking Network Connectivity: Example 123
Configuring Domain Services: Example 124
Configuring a Router to Use rcp, FTP, or TFTP Connections: Example 125
Additional References 125

CHAPTER 7
Implementing HSRP 127
Prerequisites for Implementing HSRP 128
Restrictions for Implementing HSRP 128
Information About Implementing HSRP 128
 HSRP Overview 128
 HSRP Groups 128
 HSRP and ARP 131
 Preemption 131
 ICMP Redirect Messages 131
How to Implement HSRP 131
 Enabling HSRP 131
 Enabling HSRP for IPv6 133
 Configuring HSRP Group Attributes 134
 Configuring the HSRP Activation Delay 138
 Enabling HSRP Support for ICMP Redirect Messages 140
Multiple Group Optimization (MGO) for HSRP 141
 Customizing HSRP 141
 Configuring a Primary Virtual IPv4 Address 144
 Configuring a Secondary Virtual IPv4 Address 145
 Configuring a slave follow 146
 Configuring a slave primary virtual IPv4 address 148
 Configuring a Secondary Virtual IPv4 address for the Slave Group 149
 Configuring a slave virtual mac address 150
 Configuring an HSRP Session Name 151
CHAPTER 8

Implementing LPTS 161

Prerequisites for Implementing LPTS 161
Information About Implementing LPTS 161
LPTS Overview 162
LPTS Policers 162
Configuring LPTS Policer with IP TOS Precedence 162
Configuring LPTS Policers 163
Configuration Examples for Implementing LPTS Policers 164
Configuring LPTS Policers: Example 165
Additional References 169

CHAPTER 9

Implementing Network Stack IPv4 and IPv6 171

Prerequisites for Implementing Network Stack IPv4 and IPv6 172
Restrictions for Implementing Network Stack IPv4 and IPv6 172
Information About Implementing Network Stack IPv4 and IPv6 172
Network Stack IPv4 and IPv6 Exceptions 172
IPv4 and IPv6 Functionality 172
IPv6 for Cisco IOS XR Software 173
Larger IPv6 Address Space 173
IPv6 Address Formats 173
CHAPTER 12

Implementing Video Monitoring 241
 Prerequisites for Implementing Video Monitoring 241
 Information About Implementing Video Monitoring 241
 Video Monitoring 241
 Introduction to Video Monitoring 242
 Key Features Supported on Video Monitoring 242
 Video Monitoring Terminology 245
 Implementing Video Monitoring 246
 Creating IPv4 Access Lists 246
 Configuring class-map 247
 Configuring policy-map 248
 Configuring policy-map with metric parameters 248
 Media bit-rate 250
 Configuring policy-map with flow parameters 251
 Configuring policy-map with react parameters 253
 Configuring service policy on an interface 255

Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
Preface

The *Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router* preface contains these sections:

- Changes to This Document, page xv
- Obtaining Documentation and Submitting a Service Request, page xvi

Changes to This Document

This table lists the technical changes made to this document since it was first printed.

Table 1: Changes to This Document

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL-28404-05</td>
<td>May 2014</td>
<td>Implementing HSRP chapter was updated.</td>
</tr>
<tr>
<td>OL-28404-04</td>
<td>April 2014</td>
<td>Configuring ARP chapter was updated.</td>
</tr>
<tr>
<td>OL-28404-03</td>
<td>September 2013</td>
<td>Republished with documentation updates for Cisco IOS XR Release 4.3.2 features.</td>
</tr>
<tr>
<td>OL-28404-02</td>
<td>May 2013</td>
<td>Republished with documentation updates for Cisco IOS XR Release 4.3.1 features.</td>
</tr>
<tr>
<td>OL-28404-01</td>
<td>December 2012</td>
<td>Initial release of this document.</td>
</tr>
</tbody>
</table>
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What's New in Cisco Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's New in Cisco Product Documentation RSS feed. RSS feeds are a free service.
New and Changed Feature Information in Cisco IOS XR Release 4.3.x

This table summarizes the new and changed feature information for the *Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router*, and tells you where they are documented.

- New and Changed IP Addresses and Services Features, page 1

New and Changed IP Addresses and Services Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Introduced/Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
</table>
| HSRP for IPv6 | This feature was introduced. | Release 4.3.0 | Implementing HSRP chapter
 - Enabling HSRP, on page 131
 - Configuring the HSRP Activation Delay, on page 138
 - Enabling HSRP Support for ICMP Redirect Messages, on page 140
 - Enabling HSRP for IPv6, on page 133 |
| Local Proxy ARP | This feature was introduced. | Release 4.0.0 | Configuring ARP chapter
 - ARP and Proxy ARP, on page 49
 - Enabling Local Proxy ARP, on page 52 |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Introduced/Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
</table>
| 7-Tuple Hash for L2VPN | This feature was introduced. | Release 4.3.2 | Implementing Cisco Express Forwarding chapter
• Per-Flow Load Balancing, on page 57
Refer Cisco Express Forwarding Commands chapter in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router for information on the commands used for configuring 7-Tuple Hash for L2VPN. |
| ACL Chaining | This feature was introduced. | Release 4.3.1 | Implementing Access Lists and Prefix Lists chapter
• Configuring an Interface to accept Common ACL, on page 35
Refer Access List Commands chapter in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router for information on the commands used for configuring ACL Chaining. |
| IPv6 SLA ICMP Echo Op EOT for HSR Pv6 & IP Static | This feature was introduced. | Release 4.3.0 | Implementing Host Services and Applications chapter
• Configuring an IPSLA ICMP echo operation, on page 122
Refer Host Services and Applications Commands chapter in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router for information on the commands used for configuring IPv6 SLA ICMP Echo Op EOT for HSR Pv6 & IP Static. |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Introduced/Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRPv6, MGO for VRRP,</td>
<td>This feature was introduced.</td>
<td>Release 4.3.0</td>
<td>Implementing HSRP chapter</td>
</tr>
<tr>
<td>HSRPv6 IPv6 BFD, HSRPv6 EOT</td>
<td></td>
<td></td>
<td>• Customizing HSRP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring a Primary Virtual IPv4 Address, on page 225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring a Secondary Virtual IPv4 Address, on page 227</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring an HSRP Session Name, on page 151</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Implementing VRRP chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring a VRRP Session Name, on page 231</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring a Slave Follow(VRRP), on page 232</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer HSRP Commands chapter in Cisco IOS XR IP Addresses and Services Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference for the Cisco CRS Router for information on the commands used for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>configuring HSRPv6, MGO for VRRP, HSRPv6 IPv6 BFD, HSRPv6 EOT.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer VRRP Commands chapter in Cisco IOS XR IP Addresses and Services Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reference for the Cisco CRS Router for information on the commands used for</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>configuring HSRPv6, MGO for VRRP, HSRPv6 IPv6 BFD, HSRPv6 EOT.</td>
</tr>
</tbody>
</table>
Implementing Access Lists and Prefix Lists

An access control list (ACL) consists of one or more access control entries (ACE) that collectively define the network traffic profile. This profile can then be referenced by Cisco IOS XR software features such as traffic filtering, route filtering, QoS classification, and access control. Each ACL includes an action element (permit or deny) and a filter element based on criteria such as source address, destination address, protocol, and protocol-specific parameters.

Prefix lists are used in route maps and route filtering operations and can be used as an alternative to access lists in many Border Gateway Protocol (BGP) route filtering commands. A prefix is a portion of an IP address, starting from the far left bit of the far left octet. By specifying exactly how many bits of an address belong to a prefix, you can then use prefixes to aggregate addresses and perform some function on them, such as redistribution (filter routing updates).

This module describes the new and revised tasks required to implement access lists and prefix lists on the Cisco CRS Router.

For a complete description of the access list and prefix list commands listed in this module, refer to the Access List Commands on Cisco IOS XR software and Prefix List Commands on Cisco IOS XR software modules in the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router. To locate documentation of other commands that appear in this chapter, use the command reference master index, or search online.

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.4.1</td>
<td>The ACL-based forwarding feature was added.</td>
</tr>
<tr>
<td>Release 3.5.0</td>
<td>The per-interface ACL statistics feature was added.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>CIDR format (/x) support for address filtering was added.</td>
</tr>
</tbody>
</table>
Prerequisites for Implementing Access Lists and Prefix Lists

The following prerequisite applies to implementing access lists and prefix lists:

All command task IDs are listed in individual command references and in the Cisco IOS XR Task ID Reference Guide. If you need assistance with your task group assignment, contact your system administrator.

Restrictions for Implementing Access Lists and Prefix Lists

The following restrictions apply to implementing access lists and prefix lists:

- IPv4 ACLs are not supported for loopback and interflex interfaces.
- IPv6 ACLs are not supported for loopback, interflex, and L2 Ethernet Flow Point (EFP) main or subinterfaces.
- IPv6 ACL configuration on bundle interfaces (Ethernet LAG bundles only) is not supported.
If the TCAM utilization is high and large ACLs are modified, then an error may occur. During such instances, do the following to edit an ACL:

1. Remove the ACL from the interface.
2. Reconfigure the ACL.
3. Reapply the ACL to the interface.

Note: Use the `show prm server tcam summary all acl all location` and `show pfilter-ea feature summary location` commands to view the TCAM utilization.

- Filtering of MPLS packets through common ACL and interface ACL is not supported.

The following restrictions apply for implementing ACL-based forwarding (ABF):

- No support for IPv4 multicast traffic.
- No support for ACL-based forwarding from a software switching path (for example, IPv4 option packets).
- Support is only on physical interfaces, subinterfaces, and bundles.
- ACL-based forwarding is an ingress-only feature.

Restrictions for Implementing ACL-based Forwarding

The following restrictions apply to implementing ACL-based forwarding (ABF):

- No support for IPv4 multicast traffic.
- No support for ACL-based forwarding from a software switching path (for example, IPv4 option packets).
- Support is only on physical interfaces, subinterfaces, and bundles.
- ACL-based forwarding is an ingress-only feature.

Information About Implementing Access Lists and Prefix Lists

To implement access lists and prefix lists, you must understand the following concepts:

Access Lists and Prefix Lists Feature Highlights

This section lists the feature highlights for access lists and prefix lists.

- Cisco IOS XR software provides the ability to clear counters for an access list or prefix list using a specific sequence number.
- Cisco IOS XR software provides the ability to copy the contents of an existing access list or prefix list to another access list or prefix list.
Purpose of IP Access Lists

Access lists perform packet filtering to control which packets move through the network and where. Such controls help to limit network traffic and restrict the access of users and devices to the network. Access lists have many uses, and therefore many commands accept a reference to an access list in their command syntax. Access lists can be used to do the following:

- Filter incoming packets on an interface.
- Filter outgoing packets on an interface.
- Restrict the contents of routing updates.
- Limit debug output based on an address or protocol.
- Control vty access.
- Identify or classify traffic for advanced features, such as congestion avoidance, congestion management, and priority and custom queueing.

How an IP Access List Works

An access list is a sequential list consisting of permit and deny statements that apply to IP addresses and possibly upper-layer IP protocols. The access list has a name by which it is referenced. Many software commands accept an access list as part of their syntax.

An access list can be configured and named, but it is not in effect until the access list is referenced by a command that accepts an access list. Multiple commands can reference the same access list. An access list can control traffic arriving at the router or leaving the router, but not traffic originating at the router.

IP Access List Process and Rules

Use the following process and rules when configuring an IP access list:

- The software tests the source or destination address or the protocol of each packet being filtered against the conditions in the access list, one condition (permit or deny statement) at a time.
• If a packet does not match an access list statement, the packet is then tested against the next statement in the list.

• If a packet and an access list statement match, the remaining statements in the list are skipped and the packet is permitted or denied as specified in the matched statement. The first entry that the packet matches determines whether the software permits or denies the packet. That is, after the first match, no subsequent entries are considered.

• If the access list denies the address or protocol, the software discards the packet and returns an Internet Control Message Protocol (ICMP) Host Unreachable message. ICMP is configurable in the Cisco IOS XR software.

• If no conditions match, the software drops the packet because each access list ends with an unwritten or implicit deny statement. That is, if the packet has not been permitted or denied by the time it was tested against each statement, it is denied.

• The access list should contain at least one permit statement or else all packets are denied.

• Because the software stops testing conditions after the first match, the order of the conditions is critical. The same permit or deny statements specified in a different order could result in a packet being passed under one circumstance and denied in another circumstance.

• Only one access list per interface, per protocol, per direction is allowed.

• Inbound access lists process packets arriving at the router. Incoming packets are processed before being routed to an outbound interface. An inbound access list is efficient because it saves the overhead of routing lookups if the packet is to be discarded because it is denied by the filtering tests. If the packet is permitted by the tests, it is then processed for routing. For inbound lists, permit means continue to process the packet after receiving it on an inbound interface; deny means discard the packet.

• Outbound access lists process packets before they leave the router. Incoming packets are routed to the outbound interface and then processed through the outbound access list. For outbound lists, permit means send it to the output buffer; deny means discard the packet.

• An access list can not be removed if that access list is being applied by an access group in use. To remove an access list, remove the access group that is referencing the access list and then remove the access list.

• An access list must exist before you can use the `ipv4 access group` command.

Helpful Hints for Creating IP Access Lists

Consider the following when creating an IP access list:

• Create the access list before applying it to an interface. An interface to which an empty access list is applied permits all traffic.

• If you applied a nonexistent access list to an interface and then proceed to configure the access list, the first statement is placed into effect, and the the implicit deny statement that follows could cause all other traffic that needs to be permitted on the interface to be dropped, until you configure statements allowing the dropped traffic to be permitted.

• Organize your access list so that more specific references in a network or subnet appear before more general ones.

• To make the purpose of individual statements more easily understood at a glance, you can write a helpful remark before or after any statement.
Source and Destination Addresses

Source address and destination addresses are two of the most typical fields in an IP packet on which to base an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify destination addresses to control packets being sent to certain networking devices or hosts.

Wildcard Mask and Implicit Wildcard Mask

Address filtering uses wildcard masking to indicate whether the software checks or ignores corresponding IP address bits when comparing the address bits in an access-list entry to a packet being submitted to the access list. By carefully setting wildcard masks, an administrator can select a single or several IP addresses for permit or deny tests.

Wildcard masking for IP address bits uses the number 1 and the number 0 to specify how the software treats the corresponding IP address bits. A wildcard mask is sometimes referred to as an inverted mask, because a 1 and 0 mean the opposite of what they mean in a subnet (network) mask.

- A wildcard mask bit 0 means check the corresponding bit value.
- A wildcard mask bit 1 means ignore that corresponding bit value.

You do not have to supply a wildcard mask with a source or destination address in an access list statement. If you use the host keyword, the software assumes a wildcard mask of 0.0.0.0.

Unlike subnet masks, which require contiguous bits indicating network and subnet to be ones, wildcard masks allow noncontiguous bits in the mask. For IPv6 access lists, only contiguous bits are supported.

You can also use CIDR format (/x) in place of wildcard bits. For example, the IPv4 address 1.2.3.4 0.255.255.255 corresponds to 1.2.3.4/8

Transport Layer Information

You can filter packets on the basis of transport layer information, such as whether the packet is a TCP, UDP, SCTP, ICMP, or IGMP packet.

IP Access List Entry Sequence Numbering

The ability to apply sequence numbers to IP access-list entries simplifies access list changes. Prior to this feature, there was no way to specify the position of an entry within an access list. If a user wanted to insert an entry (statement) in the middle of an existing list, all the entries after the desired position had to be removed, then the new entry was added, and then all the removed entries had to be reentered. This method was cumbersome and error prone.

The IP Access List Entry Sequence Numbering feature allows users to add sequence numbers to access-list entries and resequence them. When you add a new entry, you choose the sequence number so that it is in a desired position in the access list. If necessary, entries currently in the access list can be resequenced to create room to insert the new entry.

Sequence Numbering Behavior

The following details the sequence numbering behavior:
• If entries with no sequence numbers are applied, the first entry is assigned a sequence number of 10, and successive entries are incremented by 10. The maximum sequence number is 2147483646. If the generated sequence number exceeds this maximum number, the following message displays:

Exceeded maximum sequence number.

• If you provide an entry without a sequence number, it is assigned a sequence number that is 10 greater than the last sequence number in that access list and is placed at the end of the list.

• ACL entries can be added without affecting traffic flow and hardware performance.

• If a new access list is entered from global configuration mode, then sequence numbers for that access list are generated automatically.

• Distributed support is provided so that the sequence numbers of entries in the route processor (RP) and line card (LC) are synchronized at all times.

• This feature works with named standard and extended IP access lists. Because the name of an access list can be designated as a number, numbers are acceptable.

IP Access List Logging Messages

Cisco IOS XR software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the access list causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the `logging console` command in global configuration mode.

The first packet that triggers the access list causes an immediate logging message, and subsequent packets are collected over 5-minute intervals before they are displayed or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

However, you can use the `{ipv4 | ipv6} access-list log-update threshold` command to set the number of packets that, when they match an access list (and are permitted or denied), cause the system to generate a log message. You might do this to receive log messages more frequently than at 5-minute intervals.

Caution

If you set the `update-number` argument to 1, a log message is sent right away, rather than caching it; every packet that matches an access list causes a log message. A setting of 1 is not recommended because the volume of log messages could overwhelm the system.

Even if you use the `{ipv4 | ipv6} access-list log-update threshold` command, the 5-minute timer remains in effect, so each cache is emptied at the end of 5 minutes, regardless of the number of messages in each cache. Regardless of when the log message is sent, the cache is flushed and the count reset to 0 for that message the same way it is when a threshold is not specified.

Note

The logging facility might drop some logging message packets if there are too many to be handled or if more than one logging message is handled in 1 second. This behavior prevents the router from using excessive CPU cycles because of too many logging packets. Therefore, the logging facility should not be used as a billing tool or as an accurate source of the number of matches to an access list.
Extended Access Lists with Fragment Control

In earlier releases, the non-fragmented packets and the initial fragments of a packet were processed by IP extended access lists (if you apply this access list), but non-initial fragments were permitted, by default. However, now, the IP Extended Access Lists with Fragment Control feature allows more granularity of control over non-initial fragments of a packet. Using this feature, you can specify whether the system examines non-initial IP fragments of packets when applying an IP extended access list.

As non-initial fragments contain only Layer 3 information, these access-list entries containing only Layer 3 information, can now be applied to non-initial fragments also. The fragment has all the information the system requires to filter, so the access-list entry is applied to the fragments of a packet.

This feature adds the optional `fragments` keyword to the following IP access list commands: `deny (IPv4)`, `permit (IPv4)`, `deny (IPv6)`, `permit (IPv6)`. By specifying the `fragments` keyword in an access-list entry, that particular access-list entry applies only to non-initial fragments of packets; the fragment is either permitted or denied accordingly.

The behavior of access-list entries regarding the presence or absence of the `fragments` keyword can be summarized as follows:
<table>
<thead>
<tr>
<th>If the Access-List Entry has...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| ...no **fragments** keyword and all of the access-list entry information matches, | For an access-list entry containing only Layer 3 information:
 - The entry is applied to non-fragmented packets, initial fragments, and non-initial fragments.
For an access-list entry containing Layer 3 and Layer 4 information:
 - The entry is applied to non-fragmented packets and initial fragments.
 - If the entry matches and is a permit statement, the packet or fragment is permitted.
 - If the entry matches and is a deny statement, the packet or fragment is denied.
 - The entry is also applied to non-initial fragments in the following manner. Because non-initial fragments contain only Layer 3 information, only the Layer 3 portion of an access-list entry can be applied. If the Layer 3 portion of the access-list entry matches, and
 - If the entry is a **permit** statement, the non-initial fragment is permitted.
 - If the entry is a deny statement, the next access-list entry is processed.
 Note Note that the deny statements are handled differently for non-initial fragments versus non-fragmented or initial fragments. |
| ...the **fragments** keyword and all of the access-list entry information matches, | The access-list entry is applied only to non-initial fragments.
 Note The **fragments** keyword cannot be configured for an access-list entry that contains any Layer 4 information. |

You should not add the **fragments** keyword to every access-list entry, because the first fragment of the IP packet is considered a non-fragment and is treated independently of the subsequent fragments. Because an initial fragment will not match an access list permit or deny entry that contains the **fragments** keyword, the packet is compared to the next access list entry until it is either permitted or denied by an access list entry that does not contain the **fragments** keyword. Therefore, you may need two access list entries for every deny entry. The first deny entry of the pair will not include the **fragments** keyword, and applies to the initial
fragment. The second deny entry of the pair will include the **fragments** keyword and applies to the subsequent fragments. In the cases where there are multiple **deny** access list entries for the same host but with different Layer 4 ports, a single deny access-list entry with the **fragments** keyword for that host is all that has to be added. Thus all the fragments of a packet are handled in the same manner by the access list.

Packet fragments of IP datagrams are considered individual packets and each fragment counts individually as a packet in access-list accounting and access-list violation counts.

Note
The **fragments** keyword cannot solve all cases involving access lists and IP fragments.

Note
Within the scope of ACL processing, Layer 3 information refers to fields located within the IPv4 header; for example, source, destination, protocol. Layer 4 information refers to other data contained beyond the IPv4 header; for example, source and destination ports for TCP or UDP, flags for TCP, type and code for ICMP.

Policy Routing

Fragmentation and the fragment control feature affect policy routing if the policy routing is based on the **match ip address** command and the access list had entries that match on Layer 4 through Layer 7 information. It is possible that noninitial fragments pass the access list and are policy routed, even if the first fragment was not policy routed or the reverse.

By using the **fragments** keyword in access-list entries as described earlier, a better match between the action taken for initial and noninitial fragments can be made and it is more likely policy routing will occur as intended.

Comments About Entries in Access Lists

You can include comments (remarks) about entries in any named IP access list using the **remark** access list configuration command. The remarks make the access list easier for the network administrator to understand and scan. Each remark line is limited to 255 characters.

The remark can go before or after a **permit** or **deny** statement. You should be consistent about where you put the remark so it is clear which remark describes which **permit** or **deny** statement. For example, it would be confusing to have some remarks before the associated **permit** or **deny** statements and some remarks after the associated statements. Remarks can be sequenced.

Remember to apply the access list to an interface or terminal line after the access list is created. See the "Applying Access Lists, on page 19" section for more information.

Access Control List Counters

In Cisco IOS XR software, ACL counters are maintained both in hardware and software. Hardware counters are used for packet filtering applications such as when an access group is applied on an interface. Software counters are used by all the applications mainly involving software packet processing.
Packet filtering makes use of 64-bit hardware counters per ACE. If the same access group is applied on interfaces that are on the same line card in a given direction, the hardware counters for the ACL are shared between two interfaces.

To display the hardware counters for a given access group, use the `show access-lists ipv4 [access-list-name hardware {ingress | egress} [interface type interface-path-id] [location node-id]]` command in EXEC mode.

To clear the hardware counters, use the `clear access-list ipv4 access-list-name [hardware {ingress | egress} [interface type interface-path-id] [location node-id]]` command in EXEC mode.

Hardware counting is not enabled by default for IPv4 ACLs because of a small performance penalty. To enable hardware counting, use the `ipv4 access-group access-list-name {ingress | egress} [hardware-count]` command in interface configuration mode. This command can be used as desired, and counting is enabled only on the specified interface.

Software counters are updated for the packets processed in software, for example, exception packets punted to the LC CPU for processing, or ACL used by routing protocols, and so on. The counters that are maintained are an aggregate of all the software applications using that ACL. To display software-only ACL counters, use the `show access-lists ipv4 access-list-name [sequence number]` command in EXEC mode.

All the above information is true for IPv6, except that hardware counting is always enabled; there is no `hardware-count` option in the IPv6 access-group command-line interface (CLI).

BGP Filtering Using Prefix Lists

Prefix lists can be used as an alternative to access lists in many BGP route filtering commands. The advantages of using prefix lists are as follows:

- Significant performance improvement in loading and route lookup of large lists.
- Incremental updates are supported.
- More user friendly CLI. The CLI for using access lists to filter BGP updates is difficult to understand and use because it uses the packet filtering format.
- Greater flexibility.

Before using a prefix list in a command, you must set up a prefix list, and you may want to assign sequence numbers to the entries in the prefix list.

How the System Filters Traffic by Prefix List

Filtering by prefix list involves matching the prefixes of routes with those listed in the prefix list. When there is a match, the route is used. More specifically, whether a prefix is permitted or denied is based upon the following rules:

- An empty prefix list permits all prefixes.
- An implicit deny is assumed if a given prefix does not match any entries of a prefix list.
- When multiple entries of a prefix list match a given prefix, the longest, most specific match is chosen.

Sequence numbers are generated automatically unless you disable this automatic generation. If you disable the automatic generation of sequence numbers, you must specify the sequence number for each entry using the `sequence-number` argument of the `permit` and `deny` commands in either IPv4 or IPv6 prefix list.
configuration command. Use the no form of the permit or deny command with the sequence-number argument to remove a prefix-list entry.

The show commands include the sequence numbers in their output.

Information About Implementing ACL-based Forwarding

To implement access lists and prefix lists, you must understand the following concepts:

ACL-based Forwarding Overview

Converged networks carry voice, video and data. Users may need to route certain traffic through specific paths instead of using the paths computed by routing protocols. This is achieved by specifying the next-hop address in ACL configurations, so that the configured next-hop address from ACL is used for forwarding packet towards its destination instead of routing packet-based destination address lookup. This feature of using next-hop in ACL configurations for forwarding is called ACL Based Forwarding (ABF).

Traffic engineering over an IP or MPLS backbone can be done without MPLS-TE. The ability to divert certain kinds of traffic on top of routing allows you to let only voice traffic travel over certain links, while allowing data traffic to be sent using regular routing.

ACL-based forwarding enables you to choose service from multiple providers for broadcast TV over IP, IP telephony, data, and so on, which provides a cafeteria-like access to the Internet. Service providers can divert user traffic to various content providers.

ACL-based Forwarding Functions

ACL-based forwarding (ABF) enables you to configure filters for IPv4 packets. Each packet is based on the information from an IP source or destination address, TCP ports, precedence, DSCP, and so on. If a match occurs, ABF forwards the packet to one of the multiple next hops (up to three). ABF provides an alternative to regular routing by giving the ability to forward a next hop, based on packet content that extends beyond the destination IP address.

The ABF rule does not apply to "For Us" packets.

By implementing ABF, you can perform the following functions:

- Specify up to three next hops in the ACL rules.
- Forward IPv4 packets that are being forwarded on default routes to the next hop, as specified by the ACL rule.
- Use the existing ACL matching functionality to pick up the next-hop IP address that is based on the ACE configuration. The highest preferred, active, next-hop IP address—which is based on the ACE configuration—is chosen.
- Use the traditional destination IP address forwarding if the ABF next hops are not reachable.
- Use ABF as an ingress-only feature; it is not available for packets switched or originated by the software.
- Specify no rejection when both VRF and ABF configurations are applied on an interface. The ABF configuration is silently ignored by the forwarding software.
How to Implement Access Lists and Prefix Lists

This section contains the following procedures:

Configuring Extended Access Lists

This task configures an extended IPv4 or IPv6 access list.

SUMMARY STEPS

1. configure
2. \{ipv4 | ipv6\} access-list name
3. \[sequence-number \] remark remark
4. Do one of the following:
 • \[sequence-number \] \{ permit | deny \} source source-wildcard destination destination-wildcard
 [precedence precedence] [dscp dscp] [fragments] [log | log-input]
 • \[sequence-number \] \{ permit | deny \} protocol \{ source-ipv6-prefix/prefix-length | any | host \\source-ipv6-address \} \{ operator \{port | protocol-port\} \} \{ destination-ipv6-prefix/prefix-length | any \\ destination-ipv6-address \} \{ operator \{port | protocol-port\} \} [dscp value] [routing] [authen] [destopts] [fragments] [log | log-input]

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.

6. commit

7. show access-lists \{ipv4 | ipv6\} \[access-list-name hardware \{ingress | egress\} \{interface type interface-path-id\} \{sequence number | location node-id\} | summary \[access-list-name | access-list-name \{sequence-number\} \| maximum \{detail \{usage \{pfilter location node-id\}\}\]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 {ipv4</td>
<td>ipv6} access-list name</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# ipv4 access-list acl_1
or
RP/0/RP0/CPU0:router(config)# ipv6 access-list acl_2
```
Implementing Access Lists and Prefix Lists

Configuring Extended Access Lists

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>(Optional) Allows you to comment about a permit or deny statement in a named access list.</td>
</tr>
<tr>
<td>[sequence-number] remark remark</td>
<td>- The remark can be up to 255 characters; anything longer is truncated.</td>
</tr>
<tr>
<td>-Remarks can be configured before or after permit or deny statements, but their location should be consistent.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 remark
Do not allow user1 to telnet out
```

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Do one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- [sequence-number] {permit</td>
<td>deny} source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log</td>
</tr>
<tr>
<td>- [sequence-number] {permit</td>
<td>deny} protocol [source-ipv6-prefix/prefix-length</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit
172.16.0.0 0.0.255.255
RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 deny
192.168.34.0 0.0.0.255
or
RP/0/RP0/CPU0:router(config-ipv6-acl)# 20 permit
icmp any any
RP/0/RP0/CPU0:router(config-ipv6-acl)# 30 deny
tcp any any gt 5000
```

| **Step 5** | Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the **no** sequence-number command to delete an entry. |

| **Step 6** | Allows you to revise an access list. |
| **Step 7** | (Optional) Displays the contents of current IPv4 or IPv6 access lists. |

Note

Every IPv6 access list has an implicit **deny ipv6 any any** statement as its last match condition. An IPv6 access list must contain at least one entry for the implicit **deny ipv6 any any** statement to take effect.
Implementing Access Lists and Prefix Lists

Applying Access Lists

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RP/0/RP0/CPU0:router# show access-lists ipv4 acl_1</code></td>
<td>contents and counters for all interfaces that use the specified access list in a given direction (ingress or egress). The access group for an interface must be configured using the <code>ipv4 access-group</code> command for access-list hardware counters to be enabled.</td>
</tr>
<tr>
<td>• Use the <code>summary</code> keyword to display a summary of all current IPv4 or IPv6 access-lists.</td>
<td></td>
</tr>
<tr>
<td>• Use the <code>interface</code> keyword to display interface statistics.</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

After creating an access list, you must apply it to a line or interface. See the Applying Access Lists, on page 19 section for information about how to apply an access list.

ACL commit fails while adding and removing unique Access List Entries (ACE). This happens due to the absence of an assigned manager process. The user has to exit the config-ipv4-acl mode to configuration mode and re-enter the config-ipv4-acl mode before adding the first ACE.

Applying Access Lists

After you create an access list, you must reference the access list to make it work. Access lists can be applied on either outbound or inbound interfaces. This section describes guidelines on how to accomplish this task for both terminal lines and network interfaces.

Set identical restrictions on all the virtual terminal lines, because a user can attempt to connect to any of them.

For inbound access lists, after receiving a packet, Cisco IOS XR software checks the source address of the packet against the access list. If the access list permits the address, the software continues to process the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host unreachable message. The ICMP message is configurable.

For outbound access lists, after receiving and routing a packet to a controlled interface, the software checks the source address of the packet against the access list. If the access list permits the address, the software sends the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host unreachable message.

When you apply an access list that has not yet been defined to an interface, the software acts as if the access list has not been applied to the interface and accepts all packets. Note this behavior if you use undefined access lists as a means of security in your network.

Controlling Access to an Interface

This task applies an access list to an interface to restrict access to that interface.

Access lists can be applied on either outbound or inbound interfaces.
SUMMARY STEPS
1. configure
2. interface type interface-path-id
3. Do one of the following:
 • ipv4 access-group access-list-name {ingress | egress} [hardware-count] [interface-statistics]
 • ipv6 access-group access-list-name {ingress | egress} [interface-statistics]
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 0/2/0/2</td>
</tr>
<tr>
<td></td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The type argument specifies an interface type. For more information on interface types, use the question mark (?) online help function.</td>
</tr>
<tr>
<td></td>
<td>• The instance argument specifies either a physical interface instance or a virtual instance.</td>
</tr>
<tr>
<td></td>
<td>• The naming notation for a physical interface instance is rack/slot/module/port. The slash (/) between values is required as part of the notation.</td>
</tr>
<tr>
<td></td>
<td>• The number range for a virtual interface instance varies depending on the interface type.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Use the access-list-name argument to specify a particular IPv4 or IPv6 access list.</td>
</tr>
<tr>
<td></td>
<td>• Use the in keyword to filter on inbound packets or the out keyword to filter on outbound packets.</td>
</tr>
<tr>
<td></td>
<td>• Use the hardware-count keyword to enable hardware counters for the IPv4 access group.</td>
</tr>
<tr>
<td></td>
<td>• Hardware counters are automatically enabled for IPv6 access groups.</td>
</tr>
<tr>
<td></td>
<td>• Use the interface-statistics keyword to specify per-interface statistics in the hardware.</td>
</tr>
<tr>
<td></td>
<td>This example applies filters on packets inbound and outbound from GigabitEthernet interface 0/2/0/2.</td>
</tr>
</tbody>
</table>
Controlling Access to a Line

This task applies an access list to a line to control access to that line.

SUMMARY STEPS

1. configure
2. line \{aux | console | default | template template-name\}
3. access-class list-name{ingress | egress}
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>line {aux</td>
<td>console</td>
</tr>
</tbody>
</table>

- Line templates are a collection of attributes used to configure and manage physical terminal line connections (the console and auxiliary ports) and vty connections. The following templates are available in Cisco IOS XR software:
 - Aux line template—The line template that applies to the auxiliary line.
 - Console line template— The line template that applies to the console line.
 - Default line template—The default line template that applies to a physical and virtual terminal lines.
 - User-defined line templates—User-defined line templates that can be applied to a range of virtual terminal lines.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>access-class list-name{ingress</td>
<td>egress}</td>
</tr>
</tbody>
</table>

- In the example, outgoing connections for the default line template are filtered using the IPv6 access list acl_2.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Prefix Lists

This task configures an IPv4 or IPv6 prefix list.

SUMMARY STEPS

1. configure
2. {ipv4 | ipv6} prefix-list name
3. [sequence-number] remark remark
4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary. Use the no sequence-number command to delete an entry.
6. commit
7. Do one of the following:
 • show prefix-list ipv4 [name] [sequence-number]
 • show prefix-list ipv6 [name] [sequence-number] [summary]
8. clear {ipv4 | ipv6} prefix-list name [sequence-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters either IPv4 or IPv6 prefix list configuration mode and configures the named prefix list.</td>
</tr>
<tr>
<td>Step 2 {ipv4</td>
<td>ipv6} prefix-list name</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv4 prefix-list pfx_1 or RP/0/RP0/CPU0:router(config)# ipv6 prefix-list pfx_2</td>
<td>• The remark can be up to 255 characters; anything longer is truncated.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ip4_pfx)# 10 remark Deny all routes with a prefix of 10/8 RP/0/RP0/CPU0:router(config-ip4_pfx)# 20 deny 10.0.0.0/8 le 32</td>
<td>• Remarks can be configured before or after permit or deny statements, but their location should be consistent.</td>
</tr>
<tr>
<td>Step 3 [sequence-number] remark remark</td>
<td>Specifies one or more conditions allowed or denied in the named prefix list.</td>
</tr>
</tbody>
</table>
Command or Action

Example:

RP/0/RP0/CPU0:router(config-ipv6_pfx)# 20 deny 128.0.0.0/8 eq 24

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• This example denies all prefixes matching /24 in 128.0.0.0/8 in prefix list pfx_2.</td>
</tr>
</tbody>
</table>

Step 5
Repeat Step 4 as necessary. Use the `no` `sequence-number` command to delete an entry.
Allows you to revise a prefix list.

Step 6
`commit`
(Optional) Displays the contents of current IPv4 or IPv6 prefix lists.

Step 7
Do one of the following:

- `show prefix-list ipv4 [name] [sequence-number]`
- `show prefix-list ipv6 [name] [sequence-number] [summary]`

Example:

RP/0/RP0/CPU0:router# show prefix-list ipv4 pfx_1
or
RP/0/RP0/CPU0:router# show prefix-list ipv6 pfx_2 summary

Step 8
`clear {ipv4 | ipv6} prefix-list name [sequence-number]`

Example:

RP/0/RP0/CPU0:router# clear prefix-list ipv4 pfx_1 30

(Optional) Clears the hit count on an IPv4 or IPv6 prefix list.

Note
The `hit count` is a value indicating the number of matches to a specific prefix-list entry.

Configuring Standard Access Lists

This task configures a standard IPv4 access list.

Standard access lists use source addresses for matching operations.
SUMMARY STEPS

1. `configure`
2. `ipv4 access-list name`
3. `[sequence-number] remark remark`
4. `[sequence-number] {permit | deny} source [source-wildcard] [log | log-input]`
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the `no sequence-number` command to delete an entry.
6. `commit`
7. `show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} [interface type interface-path-id] [sequence number] [location node-id] | summary [access-list-name] [access-list-name [sequence-number] | maximum [detail] [usage [pfilter location node-id]]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2

`ipv4 access-list name`

Example:

```
RP/0/RP0/CPU0:router# ipv4 access-list acl_1
```

Step 3

```
[sequence-number] remark remark
```

Example:

```
RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 remark Do not allow user1 to telnet out
```

(Optional) Allows you to comment about the following `permit` or `deny` statement in a named access list.

- The remark can be up to 255 characters; anything longer is truncated.
- Remarks can be configured before or after `permit` or `deny` statements, but their location should be consistent.

Step 4

```
[sequence-number] {permit | deny} source [source-wildcard] [log | log-input]
```

Example:

```
RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 permit 172.16.0.0 0.0.255.255 or
```

```
RP/0/RP0/CPU0:router(config-ipv4-acl)# 30 deny 192.168.34.0 0.0.0.255
```

Specifies one or more conditions allowed or denied, which determines whether the packet is passed or dropped.

- Use the `source` argument to specify the number of network or host from which the packet is being sent.
- Use the optional `source-wildcard` argument to specify the wildcard bits to be applied to the source.
- The optional `log` keyword causes an information logging message about the packet that matches the entry to be sent to the console.
- The optional `log-input` keyword provides the same function as the `log` keyword, except that the logging message also includes the input interface.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the <code>no sequence-number</code> command to delete an entry.</td>
<td>Allows you to revise an access list.</td>
</tr>
</tbody>
</table>

Step 6

commit

Step 7

show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} [interface type interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

Example:

```bash
RP/0/RP0/CPU0:router# show access-lists ipv4 acl_1
```

What to Do Next

After creating a standard access list, you must apply it to a line or interface. See the “Applying Access Lists, on page 19” section for information about how to apply an access list.

Copying Access Lists

This task copies an IPv4 or IPv6 access list.

SUMMARY STEPS

1. `copy access-list {ipv4 | ipv6}source-acl destination-acl`
2. `show access-lists {ipv4 | ipv6}[access-list-name hardware {ingress | egress} [interface type interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] [usage {pfilter location node-id}]]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 `copy access-list {ipv4</td>
<td>ipv6}source-acl destination-acl`</td>
</tr>
</tbody>
</table>

Example:

```bash
RP/0/RP0/CPU0:router# copy ipv6 access-list list-1 list-2
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 show access-lists {ipv4</td>
<td>ipv6}[access-list-name hardware {ingress</td>
</tr>
</tbody>
</table>

Sequencing Access-List Entries and Revising the Access List

This task shows how to assign sequence numbers to entries in a named access list and how to add or delete an entry to or from an access list. It is assumed that a user wants to revise an access list. Resequencing an access list is optional.

SUMMARY STEPS

1. resequence access-list {ipv4 | ipv6} name [base [increment]]
2. configure
3. {ipv4 | ipv6} access-list name
4. Do one of the following:
 - [sequence-number] \{permit | deny\} source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log | log-input]
 - [sequence-number] \{permit | deny\} protocol \{source-ipv6-prefix/prefix-length | any | host source-ipv6-address\} [operator {port | protocol-port}] \{destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address\} [operator {port | protocol-port}] [dscp value] [routing] [authen] [destopts] [fragments] [log | log-input]
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.
6. commit
7. show access-lists {ipv4 | ipv6} \[access-list-name hardware \{ingress | egress\} [interface type interface-path-id] \{sequence number | location node-id\} | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] [usage {pfilter location node-id}]]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>(Optional) Resequence the specified IPv4 or IPv6 access list using the starting sequence number and the increment of sequence numbers.</td>
</tr>
<tr>
<td>`resequence access-list {ipv4</td>
<td>ipv6} name [base [increment]]`</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router# resequence access-list ipv4 acl_3 20 15
```

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Configure either IPv4 or IPv6 access list configuration mode and configures the named access list.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Specifies one or more conditions allowed or denied in IPv4 access list acl_1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>`{ipv4</td>
<td>ipv6} access-list name`</td>
</tr>
<tr>
<td><code>configure</code></td>
<td>- The optional <code>log-input</code> keyword provides the same function as the <code>log</code> keyword, except that the logging message also includes the input interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# ipv4 access-list acl_1
or
RP/0/RP0/CPU0:router(config)# ipv6 access-list acl_2
```

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Specifies one or more conditions allowed or denied in IPv6 access list acl_2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do one of the following:</td>
<td>- Refer to the <code>permit</code> (IPv6) and <code>deny</code> (IPv6) commands for more information on filtering IPv6 traffic based on IPv6 option headers and upper-layer protocols such as ICMP, TCP, and UDP.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit 172.16.0.0 0.0.255.255
RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 deny 192.168.34.0 0.0.0.255
```

Note Every IPv6 access list has an implicit `deny ipv6 any any` statement as its last match condition. An IPv6 access list must contain at least one entry for the implicit `deny ipv6 any any` statement to take effect.
Copying Prefix Lists

This task copies an IPv4 or IPv6 prefix list.

SUMMARY STEPS

1. `copy prefix-list {ipv4 | ipv6} source-name destination-name`
2. Do one of the following:
 - `show prefix-list ipv4 [name] [sequence-number] [summary]`
 - `show prefix-list ipv6 [name] [sequence-number] [summary]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `copy prefix-list {ipv4 | ipv6} source-name destination-name` | Creates a copy of an existing IPv4 or IPv6 prefix list.
 - Use the `source-name` argument to specify the name of the prefix list to be copied and the `destination-name` argument to specify where to copy the contents of the source prefix list. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# copy prefix-list ipv6 list_1 list_2</td>
</tr>
<tr>
<td>Step 2</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• show prefix-list ipv4 [name] [sequence-number] [summary]</td>
</tr>
<tr>
<td></td>
<td>• show prefix-list ipv6 [name] [sequence-number] [summary]</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show prefix-list ipv6 list_2</td>
</tr>
</tbody>
</table>

Sequencing Prefix List Entries and Revising the Prefix List

This task shows how to assign sequence numbers to entries in a named prefix list and how to add or delete an entry to or from a prefix list. It is assumed a user wants to revise a prefix list. Resequencing a prefix list is optional.

Before You Begin

- **Note**
 - Resequencing IPv6 prefix lists is not supported.

SUMMARY STEPS

1. resequence prefix-list ipv4 name [base [increment]]
2. configure
3. {ipv4 | ipv6} prefix-list name
4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.
6. commit
7. Do one of the following:
 - show prefix-list ipv4 [name] [sequence-number]
 - show prefix-list ipv6 [name] [sequence-number] [summary]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `resequence prefix-list ipv4` *name* [*base* [*increment*]] | (Optional) Resequences the named IPv4 prefix list using the starting sequence number and the increment of sequence numbers.
 - This example resequences a prefix list named `pfx_1`. The starting sequence number is 10 and the increment is 15. |
| | Example: | | |
| | RP/0/RP0/CPU0:router# resequence prefix-list ipv4 pfx_1 10 15 | |
| Step 2 | `configure` | Enters either IPv4 or IPv6 prefix list configuration mode and configures the named prefix list. |
| Step 3 | `{ipv4 | ipv6} prefix-list *name*` | Enters either IPv4 or IPv6 prefix list configuration mode and configures the named prefix list. |
| | Example: | |
| | RP/0/RP0/CPU0:router(config)# ipv6 prefix-list pfx_2 | |
| Step 4 | `{sequence-number} {permit | deny} network/length [ge value] [le value] [eq value]` | Specifies one or more conditions allowed or denied in the named prefix list. |
| | Example: | |
| | RP/0/RP0/CPU0:router(config-ipv6_pfx)# 15 deny 128.0.0.0/8 eq 24 | |
| Step 5 | Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the `no sequence-number` command to delete an entry. | Allows you to revise the prefix list. |
| Step 6 | `commit` | |
| Step 7 | Do one of the following:
 - `show prefix-list ipv4` [*name* [*sequence-number*]]
 - `show prefix-list ipv6` [*name* [*sequence-number*]] [summary] | (Optional) Displays the contents of current IPv4 or IPv6 prefix lists.
 - Review the output to see that prefix list `pfx_2` includes all new information. |
| | Example: | |
| | RP/0/RP0/CPU0:router# show prefix-list ipv6 pfx_2 | |

How to Implement ACL-based Forwarding

This section contains the following procedures:
Configuring ACL-based Forwarding with Security ACL

Perform this task to configure ACL-based forwarding with security ACL.

SUMMARY STEPS

1. configure
2. ipv4 access-list name
3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [([default] nexthop1 [vrf vrf-name][ipv4 ipv4-address1] nexthop2[vrf vrf-name][ipv4 ipv4-address2] nexthop3[vrf vrf-name][ipv4 ipv4-address3]) [dscp dscp] [fragments] [log | log-input] [[ttl ttl [value1 ... value2]]]
4. commit
5. show access-list ipv4 [access-list-name hardware {ingress | egress} [interface type interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters IPv4 access list configuration mode and configures the specified access list.</td>
</tr>
<tr>
<td>Step 2 ipv4 access-list name</td>
<td>Sets the conditions for an IPv4 access list. The configuration example shows how to configure ACL-based forwarding with security ACL.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv4 access-list security-abf-acl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The nexthop1, nexthop2, and nexthop3 keywords forward the specified next hop for this entry.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show access-lists ipv4 v4_acl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• If the default keyword is configured, ACL-based forwarding action is taken only if the results of the PLU lookup for the destination of the packets determine a default route; that is, no specified route is determined to the destination of the packet.</td>
</tr>
<tr>
<td>Step 3 [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [([default] nexthop1 [vrf vrf-name][ipv4 ipv4-address1] nexthop2[vrf vrf-name][ipv4 ipv4-address2] nexthop3[vrf vrf-name][ipv4 ipv4-address3]) [dscp dscp] [fragments] [log</td>
<td>log-input] [[ttl ttl [value1 ... value2]]]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
Configuring Pure ACL-Based Forwarding for IPv6 ACL

SUMMARY STEPS

1. `configure`
2. `{ipv6 } access-list name`
3. `[sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log | log-input] [ttl ttl value [value1 ... value2]] [default] next-hop1 [vrf vrf-name1] [ipv6 ipv6-address1] [next-hop2 [vrf vrf-name2] [ipv6 ipv6-address2] [next-hop3 [vrf vrf-name3] [ipv6 ipv6-address3]]]
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>{ipv6 } access-list name</code></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# ipv6 access-list security-abf-acl</td>
</tr>
<tr>
<td>Step 3</td>
<td>`[sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log</td>
</tr>
<tr>
<td>Purpose</td>
<td>Sets the conditions for an IPv6 access list. The configuration example shows how to configure pure ACL-based forwarding for ACL.</td>
</tr>
</tbody>
</table>
Configuring Pure ACL-based Forwarding for ACL

Perform this task to configure pure ACL-based forwarding for ACL.

SUMMARY STEPS

1. `configure`
2. `{ipv4 } access-list name`
3. `[sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [default nexthop [ipv4-address1] [ipv4-address2] [ipv4-address3]] [dscp dscp] [fragments] [log | log-input] [nexthop [ipv4-address1] [ipv4-address2] [ipv4-address3] [ttl ttl value [value1 ... value2]]] [vrf vrf-name [ipv4-address1] [ipv4-address2] [ipv4-address3]]
4. `commit`
5. `show access-list ipv4 {access-list-name hardware {ingress | egress} | [interface type interface-path-id] {sequence number | location node-id} | summary {access-list-name} | access-list-name [sequence-number] | maximum {detail} | usage {pfilter location node-id}}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure</code></td>
<td>Enters IPv4 access list configuration mode and configures the specified access list.</td>
</tr>
<tr>
<td><code>{ipv4 } access-list name</code></td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv4 access-list security-abf-acl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>[sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [default nexthop [ipv4-address1] [ipv4-address2] [ipv4-address3]] [dscp dscp] [fragments]</code></td>
<td>Sets the conditions for an IPv4 or an IPv6 access list. The configuration example shows how to configure pure ACL-based forwarding for ACL.</td>
</tr>
</tbody>
</table>
ACL-Chaining

ACL-Chaining also known as Multi-ACL enables customers to apply two IPv4 or IPv6 (common and interface) ACLs on an interface for packet filtering at the router. One ACL is common across multiple interfaces on the line card. This provides Ternary Content Addressable Memory (TCAM)/HW scalability.

ACL-Chaining Overview

Currently, the packet filter process (pfilter_ea) supports only one ACL to be applied per direction and per protocol on an interface. This leads to manageability issues if there are common ACL entries needed on most interfaces. Duplicate ACEs are configured for all those interfaces, and any modification to the common ACEs needs to be performed for all ACLs.

A typical ACL on the edge box for an ISP has two sets of ACEs:

- common ISP specific ACEs (ISP protected address block)
- customer/interface specific ACEs (Customer source address block)

The purpose of these address blocks is to deny access to ISP’s protected infrastructure networks and anti-spoofing protection by allowing only customer source address blocks. This results in configuring unique ACL per interface and most of the ACEs being common across all the ACLs on a box. ACL provisioning and modification is very cumbersome. Any changes to the ACE impacts every customer interface. (This also wastes the HW/TCAM resources as the common ACEs are being replicated in all ACLs).

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>[log</td>
<td>log-input] [nexthop [ipv4-address1] [ipv4-address2] [ipv4-address3]] [ttl ttl value</td>
</tr>
<tr>
<td>] [vrf vrf-name [ipv4-address1] [ipv4-address2] [ipv4-address3]]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CP0:router(config-ipv4-acl)# 10 permit ipv4 10.0.0.0 255.255.255.0 any nexthop 50.1.1.2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CP0:router(config-ipv4-acl)# 15 permit ipv4 30.2.1.0 255.255.255.0 any nexthop 40.1.1.2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CP0:router(config-ipv4-acl)# 20 permit ipv4 30.2.0.0 255.255.255.0 any nexthop 40.1.1.2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CP0:router(config-ipv4-acl)# 25 permit ipv4 any any</td>
<td></td>
</tr>
</tbody>
</table>

Step 4 commit

Step 5 show access-list ipv4 [access-list-name hardware {ingress | egress}] [interface type interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RP0/CP0:router# show access-lists ipv4 security-abf-acl
The ACL chaining feature also known as Multi-ACL allows you to configure more than one ACL that can be applied to a single interface. The goal is to separate various types of ACLs for management, and also allow you to apply both of them on the same interface, in a defined order.

Restrictions for Common ACL

The following restrictions apply while implementing Common ACL:

- Common ACL is supported in only ingress direction and for L3 interfaces only.
- The `interface-statistics` option is not available for common ACLs.
- The `hardware-count` option is available for only IPv4 ACLs.
- Only one common IPv4 and IPv6 ACL is supported on each line card.
- The common ACL option is not available for Ethernet Service (ES) ACLs.
- You can specify only common ACL or only interface ACL or both common and interface ACL in this command.
- The `compress` option is not supported for common ACLs.

Configuring an Interface to accept Common ACL

Perform this task to configure the interface to accept a common ACL along with the interface specific ACL:

SUMMARY STEPS

1. `configure`
2. `interface type interface-path-id`
3. `{ ipv4 | ipv6 } access-group { common access-list-name { [access-list-name ingress [interface-statistics] | ingress] | access-list-name { ingress | egress } [interface-statistics] ; [hardware-count] }`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>This command configures an interface (in this case a TenGigabitEthernet interface) and enters the interface configuration mode.</td>
</tr>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>interface type interface-path-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the interface to accept a common ACL along with the interface specific ACL.</td>
</tr>
<tr>
<td>`{ ipv4</td>
<td>ipv6 } access-group { common access-list-name { [access-list-name ingress [interface-statistics]</td>
</tr>
</tbody>
</table>
Configuration Examples for Implementing Access Lists and Prefix Lists

This section provides the following configuration examples:

Resequencing Entries in an Access List: Example

The following example shows access-list resequencing. The starting value in the resequenced access list is 1, and increment value is 2. The subsequent entries are ordered based on the increment values that users provide, and the range is from 1 to 2147483646.

When an entry with no sequence number is entered, by default it has a sequence number of 10 more than the last entry in the access list.

```plaintext
ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.4.4.4 any
40 permit ip host 172.16.2.2 host 10.3.3.12
50 permit ip host 10.3.3.3 any log
60 permit tcp host 10.3.3.3 host 10.1.2.2
70 permit ip any any

configure
ipv6 access-list acl_1
end
resequence ipv6 access-list acl_1 10 20
```

```plaintext
ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3
40 permit ip host 10.4.4.4 any
50 permit ip host 172.16.2.2 host 10.3.3.12
60 permit ip host 10.3.3.3 any log
70 permit tcp host 10.3.3.3 host 10.1.2.2
80 permit ip any any
90 Dynamic test permit ip any any
100 permit ip host 172.16.2.2 host 10.3.3.12
110 permit ip host 10.3.3.3 any log
120 permit ip host 10.3.3.3 any
130 permit ip host 10.3.3.3 any
140 permit ip any any
150 permit tcp host 10.3.3.3 host 10.1.2.2
160 permit ip host 10.3.3.3 any
170 permit ip any any
```
Adding Entries with Sequence Numbers: Example

In the following example, a new entry is added to IPv4 access list acl_5.

```plaintext
ipv4 access-list acl_5
  2 permit ipv4 host 10.4.4.2 any
  5 permit ipv4 host 10.0.0.44 any
  10 permit ipv4 host 10.0.0.1 any
  20 permit ipv4 host 10.0.0.2 any
configure
ipv4 access-list acl_5
  15 permit 10.5.5.5 0.0.0.255
end
```

Adding Entries Without Sequence Numbers: Example

The following example shows how an entry with no specified sequence number is added to the end of an access list. When an entry is added without a sequence number, it is automatically given a sequence number that puts it at the end of the access list. Because the default increment is 10, the entry will have a sequence number 10 higher than the last entry in the existing access list.

```plaintext
configure
ipv4 access-list acl_10
  permit 1.1.1.1 0.0.0.255
  permit 2.2.2.2 0.0.0.255
  permit 3.3.3.3 0.0.0.255
end
```

Configuration Examples for Implementing ACL-based Forwarding

This section provides the following configuration examples:

All configuration examples include a forwarded action `nexthop` keyword. If the `default nexthop` keyword is configured, ABF action is taken only if the pointer lookup (PLU) of the destination of the packets results in hitting a default route; for example, no specific route is specified to the packet destination.
ACL with Security and ACL-based Forwarding Access Control Entry: Example

The following example shows how to configure ACL with security and an ACL-based forwarding access control entry (ACE):

```
configure
ipv4 access-list security-abf-acl
10 permit ipv4 10.0.0.0 0.255.255.255 any
15 permit ipv4 10.2.0.0 0.0.255.255 any next-hop 10.1.1.2
20 deny ipv4 10.1.0.0 0.0.255.255 any
25 permit ipv4 10.0.0.0 0.255.255.255 any
end
```

For ACL-based forwarding, the following command is programmed in the hardware after access list entry (ACE) 25:

```
deny ipv4 any any
```

The following methods are used to attach the ACL for both security and ACL-based forwarding ACE to an interface in ingress direction:

- Packets entering an interface with source address 10.x.x.x are forwarded using a traditional forwarding lookup.
- Packets entering an interface with source address 30.2.x.x are forwarded to next hop 40.1.1.2 (if reachable through FIB).
- Packets entering an interface with source address 30.1.x.x are dropped by security ACE 20.
- All other packets that are entering an interface are dropped by security ACL.

Pure ACL-based Forwarding for ACL Example

The following example shows how to configure pure ABF for ACL:

```
configure
ipv4 access-list security-abf-acl
10 permit ipv4 10.0.0.0 0.255.255.255 any next-hop 10.1.1.2
15 permit ipv4 10.2.1.0 0.0.0.255 any
20 permit ipv4 10.2.0.0 0.0.255.255 any next-hop 10.1.1.2
25 permit ipv4 any any
end
```

IPv6 ACL-based Forwarding Example

The following example shows how to configure IPv6 supported ABF:

```
configure
ipv6 access-list v6_abf
10 permit ipv6 host 100:1:1:2::1 host 10:11:12::2 nexthop1 ipv6 195:1:1:1:200:5ff:fe00:0
20 permit ipv6 host 100:1:1:2::1 host 10:11:12::2 nexthop1 ipv6 195:1:1:1:200:5ff:fe00:0 nexthop2 ipv6 192:3:2:2:200:3ff:fe00:0 nexthop3 ipv6 192:4:2:2:200:3ff:fe00:0
30 permit ipv6 host 100:1:1:2::1 host 10:11:12::2 nexthop1 vrf VRF1
40 permit ipv6 host 100:1:1:2::1 host 10:11:12::3 nexthop1 vrf VRF1 ipv6
```
For ACL-based forwarding, the following command is programmed in hardware of the ACL:

```plaintext
deny ipv4 any any
```

Therefore, the following ACE command must be issued to let other traffic through:

```plaintext
25 permit ipv4 any any
```

The following methods are used to attach the ACL, which is used only for an ACL-based forwarding ACE, to an interface in the ingress direction:

- Packets entering an interface with source address 10.x.x.x are forwarded to next hop 10.1.1.2 (if reachable through FIB).
- Packets entering an interface with source address 10.2.1.x are forwarded using traditional forwarding lookup.
- Packets entering an interface with source address 19.2.x.x, but not in 30.2.1.x, are forwarded to next hop 10.1.1.2 (if reachable through FIB).
- All other packets entering an interface are permitted by ACE 25 and are forwarded by using a traditional forwarding lookup.
- ACE 25 ensures that all packets not matching this ACL-based forwarding ACE are forwarded and are not dropped due to an implicit deny ACE that is installed after ACE 25 by the software.

IPv6 ACL in Class Map

In Release 4.2.1, Quality of Service (Qos) features on ASR 9000 Ethernet line card and ASR 9000 Enhanced Ethernet line card are enhanced to support these:

- **ASR 9000 Enhanced Ethernet LC:**
 - Support on L2 and L3 interface and sub-interface
 - Support on bundle L2 and L3 interface and sub-interface
 - Support for both ingress and egress directions
 - ICMP code and type for IPv4/IPv6

- **ASR 9000 Ethernet LC:**
 - Support on only L3 interface and sub-interface
 - Support on L3 bundle interface and sub-interface
 - Support for both ingress and egress directions
 - ICMP code and type for IPv4/IPv6
- IPv6-supported match fields:
 - IPv6 Source Address
 - IPv6 Destination Address
 - IPv6 Protocol
 - Time to live (TTL) or hop limit
 - Source Port
 - Destination Port
 - TCP Flags
 - IPv6 Flags (Routing Header(RH), Authentication Header(AH) and Destination Option Header(DH))

- Class map with IPv6 ACL that also supports:
 - IPv4 ACL
 - Discard class
 - QoS Group
 - Outer CoS
 - Inner CoS
 - Outer VLAN (ASR 9000 Enhanced Ethernet LC only)
 - Inner VLAN (ASR 9000 Enhanced Ethernet LC only)
 - match-not option
 - type of service (TOS) support

- Policy-map with IPv6 ACL supports:
 - hierarchical class-map

Configuring IPv6 ACL QoS - An Example

This example shows how to configure IPv6 ACL QoS with IPv4 ACL and other fields:

```plaintext
ipv6 access-list aclv6
10 permit ipv6 1111:6666::2/64 1111:7777::2/64 authen
30 permit tcp host 1111:4444::2 eq 100 host 1111:5555::2 ttl eq 10
!
ipv4 access-list aclv4
10 permit ipv4 host 10.6.10.2 host 10.7.10.2
!
class-map match-any c.aclv6
match access-group ipv6 aclv6
match access-group ipv4 aclv4
match cos 1
end-class-map
```
policy-map p.aclv6
class c.aclv6
 set precedence 3
!
class class-default
!
end-policy-map
!
show qos-ea km policy p.aclv6 vmr interface tenGigE 0/1/0/6.10 hw

This example shows how to configure hierarchical policy map:

ipv6 access-list aclv6.p
 10 permit ipv6 1111:1111::/8 2222:2222::/8

ipv6 access-list aclv6.c
 10 permit ipv6 host 1111:1111::2 host 2222:2222::3

class-map match-any c.aclv6.c
 match not access-group ipv6 aclv6.c
 end-class-map
!
class-map match-any c.aclv6.p
 match access-group ipv6 aclv6.p
 end-class-map
!
policy-map child
Configuring an Interface to accept Common ACL - Examples

This section provides configuration examples of common ACL.

This example shows how to replace an ACL configured on the interface without explicitly deleting the ACL:

Interface Pos0/2/0/0
ipv4 access-group common _acl ACL1 ingress
commit
replace Interface acl ACL1 by ACL2
Interface Pos0/2/0/0
ipv4 access-group common _acl ACL2 ingress
commit

This example shows how common ACL cannot be replaced on interfaces without deleting it explicitly from the interface:

Interface Pos0/2/0/0
ipv4 access-group common _acl1 ACL1 ingress
commit
change the common acl to _acl2
Interface Pos0/2/0/0
no ipv4 access-group common _acl1
ipv4 access-group common _acl ACL1 ingress
commit
When reconfiguring common ACL, you must ensure that no other interface on the line card is attached to the common ACL. In other words, atomic replacement of common ACL is not possible.

If both common ACL and interface ACL are attached to an interface and only one of the above is reconfigured on the interface, then the other will be removed automatically.

This example shows how the interface ACL is removed:

```
Interface Pos0/2/0/0
ipv4 access-group common C_acl1 acl ACL1 ingress
commit

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ingress
commit
This removes the common acl.

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ingress
commit

no ipv4 access-group common acl acl ingress
Commit
```

Additional References

The following sections provide references related to implementing access lists and prefix lists.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access list commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Access List Commands module in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Prefix List Commands module in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix list commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Terminal services commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>
Configuring ARP

Address resolution is the process of mapping network addresses to Media Access Control (MAC) addresses. This process is accomplished using the Address Resolution Protocol (ARP).

For a complete description of the ARP commands listed in this module, refer to the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router. To locate documentation of other commands that appear in this module, use the command reference master index, or search online.

Feature History for Configuring ARP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.3.0</td>
<td>The vrf keyword and vrf-name argument were added to arp commands. Merged the Setting ARP Encapsulation section with the Defining a Static ARP Cache Entry.</td>
</tr>
</tbody>
</table>

Prerequisites for Configuring ARP

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
Restrictions for Configuring ARP

The following restrictions apply to configuring ARP:

- Reverse Address Resolution Protocol (RARP) is not supported.
- Due to a hardware limitation in the Ethernet SPA interfaces installed on all routers, when a packet contains a wrong destination address, the corresponding SPA drops the packet even if the ingress packet count is already incremented in the output of the `show interfaces` command.
- ARP throttling is not supported.

Note: ARP throttling is the rate limiting of ARP packets in Forwarding Information Base (FIB).

Information About Configuring ARP

To configure ARP, you must understand the following concepts:

IP Addressing Overview

A device in the IP can have both a local address (which uniquely identifies the device on its local segment or LAN) and a network address (which identifies the network to which the device belongs). The local address is more properly known as a data link address, because it is contained in the data link layer (Layer 2 of the OSI model) part of the packet header and is read by data-link devices (bridges and all device interfaces, for example). The more technically inclined person will refer to local addresses as MAC addresses, because the MAC sublayer within the data link layer processes addresses for the layer.

To communicate with a device on Ethernet, for example, Cisco IOS XR software first must determine the 48-bit MAC or local data-link address of that device. The process of determining the local data-link address from an IP address is called address resolution.

Address Resolution on a Single LAN

The following process describes address resolution when the source and destination devices are attached to the same LAN:

1. End System A broadcasts an ARP request onto the LAN, attempting to learn the MAC address of End System B.
2. The broadcast is received and processed by all devices on the LAN, including End System B.
3. Only End System B replies to the ARP request. It sends an ARP reply containing its MAC address to End System A.
4. End System A receives the reply and saves the MAC address of End System B in its ARP cache. (The ARP cache is where network addresses are associated with MAC addresses.)
5 Whenever End System A needs to communicate with End System B, it checks the ARP cache, finds the MAC address of System B, and sends the frame directly, without needing to first use an ARP request.

Address Resolution When Interconnected by a Router

The following process describes address resolution when the source and destination devices are attached to different LANs that are interconnected by a router (only if proxy-arp is turned on):

1. End System Y broadcasts an ARP request onto the LAN, attempting to learn the MAC address of End System Z.
2. The broadcast is received and processed by all devices on the LAN, including Router X.
3. Router X checks its routing table and finds that End System Z is located on a different LAN.
4. Router X therefore acts as a proxy for End System Z. It replies to the ARP request from End System Y, sending an ARP reply containing its own MAC address as if it belonged to End System Z.
5. End System Y receives the ARP reply and saves the MAC address of Router X in its ARP cache, in the entry for End System Z.
6. When End System Y needs to communicate with End System Z, it checks the ARP cache, finds the MAC address of Router X, and sends the frame directly, without using ARP requests.
7. Router X receives the traffic from End System Y and forwards it to End System Z on the other LAN.

ARP and Proxy ARP

Two forms of address resolution are supported by Cisco IOS XR software: Address Resolution Protocol (ARP) and proxy ARP, as defined in RFC 826 and RFC 1027, respectively. Cisco IOS XR software also supports a form of ARP called local proxy ARP.

ARP is used to associate IP addresses with media or MAC addresses. Taking an IP address as input, ARP determines the associated media address. After a media or MAC address is determined, the IP address or media address association is stored in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network.

When proxy ARP is disabled, the networking device responds to ARP requests received on an interface only if one of the following conditions is met:

- The target IP address in the ARP request is the same as the interface IP address on which the request is received.
- The target IP address in the ARP request has a statically configured ARP alias.

When proxy ARP is enabled, the networking device also responds to ARP requests that meet all the following conditions:

- The target IP address is not on the same physical network (LAN) on which the request is received.
- The networking device has one or more routes to the target IP address.
- All of the routes to the target IP address go through interfaces other than the one on which the request is received.
When local proxy ARP is enabled, the networking device responds to ARP requests that meet all the following conditions:

- The target IP address in the ARP request, the IP address of the ARP source, and the IP address of the interface on which the ARP request is received are on the same Layer 3 network.
- The next hop for the target IP address is through the same interface as the request is received.

Typically, local proxy ARP is used to resolve MAC addresses to IP addresses in the same Layer 3 network such as, private VLANs that are Layer 2-separated. Local proxy ARP supports all types of interfaces supported by ARP and unnumbered interfaces.

ARP Cache Entries

ARP establishes correspondences between network addresses (an IP address, for example) and Ethernet hardware addresses. A record of each correspondence is kept in a cache for a predetermined amount of time and then discarded.

You can also add a static (permanent) entry to the ARP cache that persists until expressly removed.

How to Configure ARP

This section contains instructions for the following tasks:

Defining a Static ARP Cache Entry

ARP and other address resolution protocols provide a dynamic mapping between IP addresses and media addresses. Because most hosts support dynamic address resolution, generally you need not to specify static ARP cache entries. If you must define them, you can do so globally. Performing this task installs a permanent entry in the ARP cache. Cisco IOS XR software uses this entry to translate 32-bit IP addresses into 48-bit hardware addresses.

Optionally, you can specify that the software responds to ARP requests as if it were the owner of the specified IP address by making an alias entry in the ARP cache.

SUMMARY STEPS

1. `configure`
2. Do one of the following:
 - `arp [vrf vrf-name] ip-address hardware-address encapsulation-type`
 - `arp [vrf vrf-name] ip-address hardware-address encapsulation-type alias`
3. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 Do one of the following:</td>
<td>Creates a static ARP cache entry associating the specified 32-bit IP address with the specified 48-bit hardware address. Note If an <code>alias</code> entry is created, then any interface to which the entry is attached will act as if it is the owner of the specified addresses, that is, it will respond to ARP request packets for this network layer address with the data link layer address in the entry.</td>
</tr>
<tr>
<td>- <code>arp [vrf vrf-name] ip-address hardware-address encapsulation-type</code></td>
<td></td>
</tr>
<tr>
<td>- <code>arp [vrf vrf-name] ip-address hardware-address encapsulation-type alias</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# arp 192.168.7.19 0800.0900.1834 arpa</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# arp 192.168.7.19 0800.0900.1834 arpa alias</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Enabling Proxy ARP

Cisco IOS XR software uses proxy ARP (as defined in RFC 1027) to help hosts with no knowledge of routing determine the media addresses of hosts on other networks or subnets. For example, if the router receives an ARP request for a host that is not on the same interface as the ARP request sender, and if the router has all of its routes to that host through other interfaces, then it generates a proxy ARP reply packet giving its own local data-link address. The host that sent the ARP request then sends its packets to the router, which forwards them to the intended host. Proxy ARP is disabled by default; this task describes how to enable proxy ARP if it has been disabled.

SUMMARY STEPS

1. `configure`
2. `interface type number`
3. `proxy-arp`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Local Proxy ARP

Local proxy ARP is disabled by default; this task describes how to enable local proxy ARP.

SUMMARY STEPS

1. configure
2. interface type number
3. local-proxy-arp
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface TenGigE 0/0/0</td>
</tr>
<tr>
<td>Step 3</td>
<td>local-proxy-arp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-if)# local-proxy-arp</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>
Implementing Cisco Express Forwarding

Cisco Express Forwarding (CEF) is advanced, Layer 3 IP switching technology. CEF optimizes network performance and scalability for networks with large and dynamic traffic patterns, such as the Internet, on networks characterized by intensive web-based applications, or interactive sessions.

Note

For complete descriptions of the CEF commands listed in this module, you can refer to the Related Documents, on page 86 section of this module. To locate documentation for other commands that might appear in the course of executing a configuration task, search online in the master command index.

Feature History for Implementing CEF

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.3.0</td>
<td>Loose and Strict support for uRPF was added. The CEF Nonrecursive Accounting feature was removed.</td>
</tr>
<tr>
<td>Release 3.6.0</td>
<td>Per-flow load balancing feature was added.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>The OSPFv2 SPF Prefix Prioritization feature was added. The <code>show cef bgp-attribute</code> command was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Cisco Express Forwarding, page 54
- Information About Implementing Cisco Express Forwarding Software, page 54
- How to Implement CEF, page 59
- Configuration Examples for Implementing CEF on Routers Software, page 68
- Additional References, page 86

OL-28404-05
Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
Prerequisites for Implementing Cisco Express Forwarding

The following prerequisites are required to implement Cisco Express Forwarding:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing Cisco Express Forwarding Software

To implement Cisco Express Forwarding features in this document you must understand the following concepts:

Key Features Supported in the Cisco Express Forwarding Implementation

The following features are supported for CEF on Cisco IOS XR software:

- Border Gateway Protocol (BGP) policy accounting
- Reverse path forwarding (RPF)
- Virtual interface support
- Multipath support
- Route consistency
- High availability features such as packaging, restartability, and Out of Resource (OOR) handling
- OSPFv2 SPF prefix prioritization
- BGP attributes download

Benefits of CEF

CEF offers the following benefits:

- Improved performance—CEF is less CPU-intensive than fast-switching route caching. More CPU processing power can be dedicated to Layer 3 services such as quality of service (QoS) and encryption.
- Scalability—CEF offers full switching capacity at each line card.
- Resilience—CEF offers an unprecedented level of switching consistency and stability in large dynamic networks. In dynamic networks, fast-switched cache entries are frequently invalidated due to routing changes. These changes can cause traffic to be process switched using the routing table, rather than fast switched using the route cache. Because the Forwarding Information Base (FIB) lookup table contains all known routes that exist in the routing table, it eliminates route cache maintenance and the fast-switch or process-switch forwarding scenario. CEF can switch traffic more efficiently than typical demand caching schemes.
CEF Components

Cisco IOS XR software CEF always operates in CEF mode with two distinct components: a Forwarding Information Base (FIB) database and adjacency table—a protocol-independent adjacency information base (AIB).

CEF is a primary IP packet-forwarding database for Cisco IOS XR software. CEF is responsible for the following functions:

- Software switching path
- Maintaining forwarding table and adjacency tables (which are maintained by the AIB) for software and hardware forwarding engines

The following CEF forwarding tables are maintained in Cisco IOS XR software:

- IPv4 CEF database
- IPv6 CEF database
- MPLS LFD database
- Multicast Forwarding Table (MFD)

The protocol-dependent FIB process maintains the forwarding tables for IPv4 and IPv6 unicast in the route processor (RP) and each MSC.

The FIB on each node processes Routing Information Base (RIB) updates, performing route resolution and maintaining FIB tables independently in the RP and each MSC. FIB tables on each node can be slightly different. Adjacency FIB entries are maintained only on a local node, and adjacency entries linked to FIB entries could be different.

Border Gateway Protocol Policy Accounting

Border Gateway Protocol (BGP) policy accounting measures and classifies IP traffic that is sent to, or received from, different peers. Policy accounting is enabled on an individual input or output interface basis, and counters based on parameters such as community list, autonomous system number, or autonomous system path are assigned to identify the IP traffic.

There are two types of route policies. The first type (regular BGP route policies) is used to filter the BGP routes advertised into or out from the BGP links. This type of route policy is applied to the specific BGP neighbor. The second type (specific route policy) is used to set up a traffic index for the BGP prefixes. This route policy is applied to the global BGP IPv4 address family to set up the traffic index when the BGP routes are inserted into the RIB table. BGP policy accounting uses the second type of route policy.

Using BGP policy accounting, you can account for traffic according to the route it traverses. Service providers can identify and account for all traffic by customer and bill accordingly. In Figure 1: Sample Topology for BGP Policy Accounting, on page 56, BGP policy accounting can be implemented in Router A to measure packet and byte volumes in autonomous system buckets. Customers are billed appropriately for traffic that is routed from a domestic, international, or satellite source.
BGP policy accounting measures and classifies IP traffic for BGP prefixes only.

Figure 1: Sample Topology for BGP Policy Accounting

Based on the specified routing policy, BGP policy accounting assigns each prefix a traffic index (bucket) associated with an interface. BGP prefixes are downloaded from the Routing Information Base (RIB) to the FIB along with the traffic index.

There are a total of 63 (1 to 63) traffic indexes (bucket numbers) that can be assigned for BGP prefixes.

Internally, there is an accounting table associated with the traffic indexes to be created for each input (ingress) and output (egress) interface. The traffic indexes allow you to account for the IP traffic, where the source IP address, the destination IP address, or both are BGP prefixes.

Traffic index 0 contains the packet count using Interior Gateway Protocol (IGP) routes.

Reverse Path Forwarding (Strict and Loose)

Unicast IPv4 and IPv6 Reverse Path Forwarding (uRPF), both strict and loose modes, help mitigate problems caused by the introduction of malformed or spoofed IP source addresses into a network by discarding IP packets that lack a verifiable IP source address. Unicast RPF does this by doing a reverse lookup in the CEF table. Therefore, Unicast Reverse Path Forwarding is possible only if CEF is enabled on the router.

IPv6 uRPF is supported with ASR 9000-SIP-700 LC, ASR 9000 Ethernet LC and ASR 9000 Enhanced Ethernet LC.
Unicast RPF allows packets with 0.0.0.0 source addresses and 255.255.255.255 destination addresses to pass so that Bootstrap Protocol and Dynamic Host Configuration Protocol (DHCP) will function properly.

When strict uRPF is enabled, the source address of the packet is checked in the FIB. If the packet is received on the same interface that would be used to forward the traffic to the source of the packet, the packet passes the check and is further processed; otherwise, it is dropped. Strict uRPF should only be applied where there is natural or configured symmetry. Because internal interfaces are likely to have routing asymmetry, that is, multiple routes to the source of a packet, strict uRPF should not be implemented on interfaces that are internal to the network.

The behavior of strict RPF varies slightly by platform, number of recursion levels, and number of paths in Equal-Cost Multipath (ECMP) scenarios. A platform may switch to loose RPF check for some or all prefixes, even though strict RPF is configured.

When loose uRPF is enabled, the source address of the packet is checked in the FIB. If it exists and matches a valid forwarding entry, the packet passes the check and is further processed; otherwise, it is dropped.

Loose and strict uRPF supports two options: allow self-ping and allow default. The self-ping option allows the source of the packet to ping itself. The allow default option allows the lookup result to match a default routing entry. When the allow default option is enabled with the strict mode of the uRPF, the packet is processed further only if it arrived through the default interface.

Route Processor Management Ethernet Forwarding

Forwarding from the MSC interface to the RP Management Ethernet is disabled by default. The `rp mgmtethernet forwarding` command is used to enable forwarding from the MSC interface to RP Management Ethernet.

Forwarding from the RP Management Ethernet to the MSC interface, and from the RP Management Ethernet to RP Management Ethernet, is enabled by default.

Per-Flow Load Balancing

Load balancing describes the functionality in a router that distributes packets across multiple links based on Layer 3 (network layer) and Layer 4 (transport layer) routing information. If the router discovers multiple paths to a destination, the routing table is updated with multiple entries for that destination.

Per-flow load balancing performs these functions:

- Incoming data traffic is evenly distributed over multiple equal-cost connections within a bundle interface.

- Layer 2 bundle and Layer 3 (network layer) load balancing decisions are taken on IPv4, IPv6, and MPLS flows, which are supported for the 7-tuple hash algorithm.

- A 7-tuple hash algorithm provides more granular load balancing than the existing 3-tuple hash algorithm.

- The same hash algorithm (3-tuple or 7-tuple) is used for load balancing over multiple equal-cost Layer 3 (network layer) paths. The Layer 3 (network layer) path is on a physical interface or on a bundle interface. In addition, load balancing over member links can occur within a Layer 2 bundle interface.
• The **cef load-balancing fields** command allows you to select either the 3-tuple hash algorithm (default) or the 7-tuple hash algorithm.

Layer 3 (Network Layer) Routing Information

The 3-tuple load-balance hash calculation contains these Layer 3 (Network Layer) inputs:

- Source IP address
- Destination IP address
- Router ID

The 7-tuple load-balance hash calculation contains 3-tuple inputs and these additional following Layer 4 (Transport Layer) inputs:

Layer 4 (Transport Layer) Routing Information

The 5-tuple load-balance hash calculation contains 3-tuple inputs and these additional following Layer 4 (Transport Layer) inputs:

- Source port
- Destination port
- Protocol
- Ingress interface handle

Note

For MPLS packets with non-IPv4/non-IPv6 payload, when CRS is used as a core router, these fields are considered for load balancing:

- 3 tuple hashing - MPLS Label, Router ID
- 7 tuple hashing - MPLS Label, Router ID, Ingress interface handle

For more information about configuring the hashing algorithm (**cef load-balancing fields** command) that is used for load balancing during forwarding, see the *Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router*.

Note

In load-balancing scenarios, a line card may not use all output paths downloaded from routing protocols. This behavior varies with platform, number of recursion levels, and the fact whether MPLS is involved, or not.

BGP Attributes Download

The BGP Attributes Download feature enables you to display the installed BGP attributes in CEF. Configure the **show cef bgp-attribute** command to display the installed BGP attributes in CEF. You can use the **show cef bgp-attribute attribute-id** command and the **show cef bgp-attribute local-attribute-id** command to look at specific BGP attributes by attribute ID and local attribute ID.
GTP Tunnel Load Balancing

GPRS Tunneling Protocol (GTP) is used mainly to deliver mobile data on wireless networks via Cisco CRS Router as core router. When two routers carrying GTP traffic are connected with link bundling, the traffic is required to be distributed evenly between all bundle members. You can use the `bundle-hash` command in EXEC mode to verify that the interface selected within the bundle for load balancing matches with the output from the `bundle-hash` command.

When two routers carrying GTP traffic are connected with equal-cost multi-path (ECMP) between them, you can use the `sh cef exact-route` command in EXEC mode to verify the interface selected for load balancing.

To achieve load balancing, Cisco CRS router uses 7-tuple load balancing mechanism which takes account of source IP, destination IP, router-id, ingress interface, protocol, L4 source and destination port (if traffic is TCP or UDP) fields from the packet. But for GTP traffic, limited number of unique values for these fields restrict the equal distribution of traffic load on tunnel.

In order to avoid the polarization for GTP traffic in load balancing, a tunnel endpoint identifier (TEID) in GTP header is used instead of UDP port number. Since TEID is unique per tunnel, traffic can be evenly load balanced across multiple links in the bundle.

GTP tunnel load balancing feature adds support for:

- GTP with IPv4/IPv6 transport header on physical interface
- GTP traffic over TE tunnel
- GTPv1-U with UDP port 2152

The `CEF load-balancing fields L4` command enables the GTP tunnel load balancing.

To know the egress interface for GTP traffic after load balancing, use `show cef {ipv4 | ipv6} exact-route` command with TEID in place of L4 protocol source and destination port number. Use 16MSBist of TEID in source port and 16LSBits of TEID in destination port.

How to Implement CEF

This section contains instructions for the following tasks:

Verifying CEF

This task allows you to verify CEF.

SUMMARY STEPS

1. `show cef {ipv4 | ipv6}
2. show cef {ipv4 | ipv6} summary
3. show cef {ipv4 | ipv6} detail
4. show adjacency detail
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
| `show cef {ipv4 | ipv6}` | Displays the IPv4 or IPv6 CEF table. The next hop and forwarding interface are displayed for each prefix.
Note The output of the `show cef` command varies by location. |
| **Example:** |
| RP/0/RP0/CPU0:router# show cef ipv4 | |
| **Step 2** |
| `show cef {ipv4 | ipv6} summary` | Displays a summary of the IPv4 or IPv6 CEF table. |
| **Example:** |
| RP/0/RP0/CPU0:router# show cef ipv4 summary | |
| **Step 3** |
| `show cef {ipv4 | ipv6} detail` | Displays detailed IPv4 or IPv6 CEF table information. |
| **Example:** |
| RP/0/RP0/CPU0:router# show cef ipv4 detail | |
| **Step 4** |
| `show adjacency detail` | Displays detailed adjacency information, including Layer 2 information for each interface.
Note The output of the `show adjacency` command varies by location. |
| **Example:** |
| RP/0/RP0/CPU0:router# show adjacency detail | |

Configuring BGP Policy Accounting

This task allows you to configure BGP policy accounting.

Note There are two types of route policies. BGP policy accounting uses the type that is used to set up a traffic index for the BGP prefixes. The route policy is applied to the global BGP IPv4 address family to set up the traffic index when the BGP routes are inserted into the RIB table.

BGP policy accounting enables per interface accounting for ingress and egress IP traffic based on the traffic index assigned to the source IP address (BGP prefix) and destination IP address (BGP prefix). The traffic index of BGP prefixes can be assigned according to the following parameters using Routing Policy Language (RPL):

- prefix-set
- AS-path-set
- community-set
BGP policy accounting is supported on IPv4 prefixes only.

Note

Two configuration tasks provide the ability to classify BGP prefixes that are in the RIB according to the prefix-set, AS-path-set, or the community-set parameters:

1. Use the `route-policy` command to define the policy for traffic index setup based on the prefix-set, AS-path-set, or community-set.

2. Use the BGP `table-policy` command to apply the defined route policy to the global BGP IPv4 unicast address family.

See the Cisco IOS XR Routing Command Reference for the Cisco CRS Router for information on the `route-policy` and `table-policy` commands.

BGP policy accounting can be enabled on each interface with the following options:

- Use the `ipv4 bgp policy accounting` command with one of the following keyword options:
 - `input source-accounting`
 - `input destination-accounting`
 - `input source-accounting destination-accounting`

- Use the `ipv4 bgp policy accounting` command with one of the following keyword options:
 - `output source-accounting`
 - `output destination-accounting`
 - `output source-accounting destination-accounting`

- Use any combination of the keywords provided for the `ipv4 bgp policy accounting` command.

Before You Begin

Before using the BGP policy accounting feature, you must enable BGP on the router (CEF is enabled by default). See the Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router for information on enabling BGP.

Verifying BGP Policy Accounting

This task allows you to verify BGP policy accounting.

Note

BGP policy accounting is supported on IPv4 prefixes.

Before You Begin

BGP policy accounting must be configured. See the Configuring BGP Policy Accounting, on page 60.
SUMMARY STEPS

1. show route bgp
2. show bgp summary
3. show bgp ip-address
4. show route ipv4 ip-address
5. show cef ipv4 prefix
6. show cef ipv4 prefix detail
7. show cef ipv4 interface type interface-path-id bgp-policy-statistics

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show route bgp</td>
<td>Displays all BGP routes with traffic indexes.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show route bgp</td>
<td></td>
</tr>
<tr>
<td>Step 2 show bgp summary</td>
<td>Displays the status of all BGP neighbors.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show bgp summary</td>
<td></td>
</tr>
<tr>
<td>Step 3 show bgp ip-address</td>
<td>Displays BGP prefixes with BGP attributes.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show bgp 40.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 4 show route ipv4 ip-address</td>
<td>Displays the specific BGP route with the traffic index in the RIB.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show route ipv4 40.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 show cef ipv4 prefix</td>
<td>Displays the specific BGP prefix with the traffic index in the RP FIB.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show cef ipv4 40.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 6 show cef ipv4 prefix detail</td>
<td>Displays the specific BGP prefix with detailed information in the RP FIB.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show cef ipv4 40.1.1.1 detail</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Route Purge Delay

This task allows you to configure a route purge delay. A purge delay purges routes when the RIB or other related process experiences a failure.

SUMMARY STEPS

1. configure
2. cef purge-delay seconds
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures a delay in purging routes when the Routing Information Base (RIB) or other related processes experience a failure.</td>
</tr>
<tr>
<td>Step 2 cef purge-delay seconds</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# cef purge-delay 180</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Unicast RPF Checking

This task allows you to configure unicast Reverse Path Forwarding (uRPF) checking. Unicast RPF checking allows you to mitigate problems caused by malformed or forged (spoofed) IP source addresses that pass through a router. Malformed or forged source addresses can indicate denial-of-service (DoS) attacks based on source IP address spoofing.
SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. {ipv4 | ipv6} verify unicast source reachable-via {any | rx} [allow-default] [allow-self-ping]
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface GigabitEthernet 0/1/0/0</td>
</tr>
<tr>
<td>Step 3</td>
<td>{ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-if)# ipv4 verify unicast source reachable-via rx</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Enables IPv4 or IPv6 uRPF checking.

- The **rx** keyword enables strict unicast RPF checking. If strict unicast RPF is enabled, a packet is not forwarded unless its source prefix exists in the routing table and the output interface matches the interface on which the packet was received.

- The **allow-default** keyword enables the matching of default routes. This option applies to both loose and strict RPF.

- The **allow-self-ping** keyword enables the router to ping out an interface. This option applies to both loose and strict RPF.

Note IPv6 uRPF checking is not supported on ASR 9000 Ethernet line cards.

Configuring Modular Services Card-to-Route Processor Management Ethernet Interface Switching

This task allows you to enable MSC-to-RP management Ethernet interface switching.

SUMMARY STEPS

1. configure
2. rp mgmtethernet forwarding
3. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>rp mgmtethernet forwarding</td>
<td>Enables switching from the MSC to the route processor Management Ethernet interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# rp mgmtethernet forwarding</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Per-Flow Load Balancing

This section describes the following tasks to configure per-flow load balancing:

Configuring a 7-Tuple Hash Algorithm

This task allows you to configure per-flow load balancing for a 7-tuple hash algorithm.

SUMMARY STEPS

1. configure
2. cef load-balancing fields {L3 | L4}
3. commit
4. show cef {ipv4 | ipv6} summary [location node-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>cef load-balancing fields {L3</td>
<td>L4}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# cef load-balancing fields L4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use the L3 keyword to specify the Layer 3 load-balancing for the hash algorithm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Since L3 is configured as the default value, you do not need to use the cef load-balancing fields command unless you want to configure Layer 4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use the L4 keyword to specify the Layer 3 and Layer 4 load-balancing for the hash algorithm.</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the CEF Exact Route with 7-Tuple Parameters

The following 7-tuple parameters are specified to obtain the CEF exact route for both IPv4 and IPv6:

- Source address
- Destination address
- Source port and range of destination ports
- Protocol
- Ingress interface
- Router ID

To display the path an MPLS flow would take, use the `show mpls forwarding exact-route` command. The MPLS flow comprises a source address and a destination address.

To display the path a bundle flow would take, use the `bundle-hash` command. The bundle flow comprises a source and a destination address. For more information, see *Cisco IOS XR Interface and Hardware Component Command Reference for the Cisco CRS Router*.

To verify the IPv4 7-tuple parameters, perform the following steps:

SUMMARY STEPS

1. Configure parallel interfaces between back-to-back routers.
2. Create route traffic streams so that there is a stream placed onto each configured interface.
3. Use the `show cef ipv4 exact-route` command in EXEC mode to verify that the interface selected for load balancing matches with the output from this command. The following example shows the exact route for the Layer 4 information:
4. Configure Equal Cost Multipath Protocol (ECMP) interfaces, for example, between back-to-back routers.
5. Create route traffic streams so that there is a stream placed onto each configured interface.
6. Use the `show cef ipv6 exact-route` command in EXEC mode to verify that the interface selected for load balancing matches with the output from this command. The following example shows the exact route for the Layer 4 information:
DETAILED STEPS

Step 1 Configure parallel interfaces between back-to-back routers.
Step 2 Create route traffic streams so that there is a stream placed onto each configured interface.
Step 3 Use the `show cef ipv4 exact-route` command in EXEC mode to verify that the interface selected for load balancing matches with the output from this command. The following example shows the exact route for the Layer 4 information:

Example:

```
RP/0/RP0/CPU0:router# show cef ipv4 exact-route 20.6.1.9 22.6.1.9 protocol udp source-port 1 destination-port 1 ingress-interface GigabitEthernet 0/1/0/4
```

```
22.6.1.9/32 version 0, internal 0x40040001 (0x78439fd0) [3], 0x0 (0x78aaf928), 0x4400 (0x78ed62d0) remote adjacency to GigabitEthernet0/1/4/4 Prefix Len 32, traffic index 0, precedence routine (0) via GigabitEthernet0/1/4/4
```

To verify the IPv6 7-tuple parameters, perform the following steps:

Step 4 Configure Equal Cost Multipath Protocol (ECMP) interfaces, for example, between back-to-back routers.
Step 5 Create route traffic streams so that there is a stream placed onto each configured interface.
Step 6 Use the `show cef ipv6 exact-route` command in EXEC mode to verify that the interface selected for load balancing matches with the output from this command. The following example shows the exact route for the Layer 4 information:

Example:

```
RP/0/RP0/CPU0:router# show cef ipv6 exact-route 20::1::9 22::6::1::9 protocol udp source-port 1 destination-port 1 ingress-interface GigabitEthernet 0/1/0/4
```

```
22::6::1::9/64, version 0, internal 0x40000001 (0x7846c048) [3], 0x0 (0x78aea3d0), 0x0 (0x0) remote adjacency to GigabitEthernet0/1/4/4 Prefix Len 64, traffic index 0, precedence routine (0) via GigabitEthernet0/1/4/4
```

Configuring BGP Attributes Download

This task allows you to configure the BGP Attributes Download feature.

Configuring BGP Attributes Download

SUMMARY STEPS

1. `configure`
2. `cef bgp attribute {attribute-id | local-attribute-id}`
3. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>cef bgp attribute {attribute-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# cef bgp attribute {attribute-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing CEF on Routers Software

This section provides the following configuration examples:

Configuring BGP Policy Accounting: Example

The following example shows how to configure BGP policy accounting.

Configure loopback interfaces for BGP router-id:

```
interface Loopback1
ipv4 address 190.1.1.1 255.255.255.255
```

Configure interfaces with the BGP policy accounting options:

```
interface TenGigE0/2/0/2
 mtu 1514
 ipv4 address
 17.1.0.1 255.255.255.0
 proxy-arp
 ipv4 bgp policy accounting input source-accounting destination-accounting
 ipv4 bgp policy accounting output source-accounting destination-accounting
!
```

```
interface TenGigE0/2/0/2.1
 ipv4 address
 17.1.1.1 255.255.255.0
 ipv4 bgp policy accounting input source-accounting destination-accounting
 ipv4 bgp policy accounting output source-accounting destination-accounting
 encapsulation dot1q 1
!
```

```
interface TenGigE0/2/0/4
 mtu 1514
 ipv4 address
 18.1.0.1 255.255.255.0
 proxy-arp
 ipv4 bgp policy accounting input source-accounting destination-accounting
 ipv4 bgp policy accounting output source-accounting destination-accounting
```
! interface TenGigE0/2/0/4.1
 ipv4 address 18.1.1.1 255.255.255.0
 ipv4 bgp policy accounting input source-accounting destination-accounting
 ipv4 bgp policy accounting output source-accounting destination-accounting
 encapsulation dot1q 1
!
interface GigabitEthernet 0/0/0/4
 mtu 4474
 ipv4 address 4.1.0.1 255.255.0.0
 ipv4 directed-broadcast
 ipv4 bgp policy accounting input source-accounting destination-accounting
 ipv4 bgp policy accounting output source-accounting destination-accounting
 GigabitEthernet
 crc 32
 !
 keepalive disable
!
interface GigabitEthernet 0/0/0/8
 mtu 4474
 ipv4 address 8.1.0.1 255.255.0.0
 ipv4 directed-broadcast
 ipv4 bgp policy accounting input source-accounting destination-accounting
 ipv4 bgp policy accounting output source-accounting destination-accounting
 GigabitEthernet
 crc 32
 !
 keepalive disable
!
Configure controller:

controller GigabitEthernet 0/0/0/4
 ais-shut
 path ais-shut
 !
 threshold sf-ber 5
!
controller SONET0/0/0/8
 ais-shut
 path ais-shut
 !
 threshold sf-ber 5
!
Configure AS-path-set and prefix-set:

as-path-set as107
 ios-regex '107$'
end-set

as-path-set as108
 ios-regex '108$'
end-set

prefix-set RT-65.0
 65.0.0.0/16 ge 16 le 32
end-set

prefix-set RT-66.0
 66.0.0.0/16 ge 16 le 32
end-set
Configure the route-policy (table-policy) to set up the traffic indexes based on each prefix, AS-path-set, and prefix-set:

```plaintext
route-policy bpa1
  if destination in (27.1.1.0/24) then
    set traffic-index 1
  elseif destination in (27.1.2.0/24) then
    set traffic-index 2
  elseif destination in (27.1.3.0/24) then
    set traffic-index 3
  elseif destination in (27.1.4.0/24) then
    set traffic-index 4
  elseif destination in (27.1.5.0/24) then
    set traffic-index 5
  endif
  if destination in (28.1.1.0/24) then
    set traffic-index 6
  elseif destination in (28.1.2.0/24) then
    set traffic-index 7
  elseif destination in (28.1.3.0/24) then
    set traffic-index 8
  elseif destination in (28.1.4.0/24) then
    set traffic-index 9
  elseif destination in (28.1.5.0/24) then
    set traffic-index 10
  endif
  if as-path in as107 then
    set traffic-index 7
  elseif as-path in as108 then
    set traffic-index 8
  endif
  if destination in RT-65.0 then
    set traffic-index 15
  elseif destination in RT-66.0 then
    set traffic-index 16
  endif
end-policy
```

Configure the regular BGP route-policy to pass or drop all the BGP routes:

```plaintext
route-policy drop-all
  drop
end-policy
!
route-policy pass-all
  pass
end-policy
!
```

Configure the BGP router and apply the table-policy to the global ipv4 address family:

```plaintext
router bgp 100
  bgp router-id Loopback1
  bgp graceful-restart
  bgp as-path-loopcheck
  address-family ipv4 unicast
```
table-policy bpal
maximumpaths 8
bgp dampening
!
Configure the BGP neighbor-group:

neighbor-group ebgp-peer-using-int-addr
 address-family ipv4 unicast
 policy pass-all in
 policy drop-all out
 !
neighbor-group ebgp-peer-using-int-addr-121
 remote-as 121
 address-family ipv4 unicast
 policy pass-all in
 policy drop-all out
 !
neighbor-group ebgp-peer-using-int-addr-pass-out
 address-family ipv4 unicast
 policy pass-all in
 policy pass-all out
 !

Configure BGP neighbors:

neighbor
 4.1.0.2
 remote-as 107
 use neighbor-group ebgp-peer-using-int-addr
 !
neighbor
 8.1.0.2
 remote-as 108
 use neighbor-group ebgp-peer-using-int-addr
 !
neighbor
 17.1.0.2
 use neighbor-group ebgp-peer-using-int-addr-121
 !
neighbor
 17.1.1.2
 use neighbor-group ebgp-peer-using-int-addr-121
 !
neighbor
 18.1.0.2
 remote-as 122
 use neighbor-group ebgp-peer-using-int-addr
 !
neighbor
 18.1.1.2
 remote-as 1221
 use neighbor-group ebgp-peer-using-int-addr
 !
end
Verifying BGP Policy Statistics: Example

The following example shows how to verify the traffic index setup for each BGP prefix and BGP Policy Accounting statistics on ingress and egress interfaces. The following traffic stream is configured for this example:

- Traffic comes in from GigabitEthernet 0/2/0/4 and goes out to 5 VLAN subinterfaces under GigabitEthernet 0/2/0/2
- Traffic comes in from GigabitEthernet 0/0/0/8 and goes out to GigabitEthernet 0/0/0/4

```
show cef ipv4 interface GigabitEthernet 0/0/0/8 bgp-policy-statistics
GigabitEthernet0/0/0/8 is up
Input BGP policy accounting on dst IP address enabled
   buckets   packets   bytes
    7       5001160     500116000
   15     10002320     1000232000
Input BGP policy accounting on src IP address enabled
   buckets   packets   bytes
    8       5001160     500116000
   16     10002320     1000232000
Output BGP policy accounting on dst IP address enabled
   buckets   packets   bytes
     0      15       790
Output BGP policy accounting on src IP address enabled
   buckets   packets   bytes
     0      15       790

show cef ipv4 interface GigabitEthernet 0/0/0/4 bgp-policy-statistics
GigabitEthernet0/0/0/4 is up
Input BGP policy accounting on dst IP address enabled
   buckets   packets   bytes
     0      13       653
     7       5001160     500116000
    15     10002320     1000232000
Input BGP policy accounting on src IP address enabled
   buckets   packets   bytes
     6      3297102     329710200
     7      3297102     329710200
     8      3297102     329710200
     9      3297101     329710100
    10      3297101     329710100
Output BGP policy accounting on dst IP address enabled
   buckets   packets   bytes
     0      15       733
Output BGP policy accounting on src IP address enabled
   buckets   packets   bytes
     0      15       733
```
Output BGP policy accounting on src IP address enabled
buckets packets bytes
0 15 733

show cef ipv4 interface GigabitEthernet 0/2/0/2.1 bgp-policy-statistics
GigabitEthernet 0/2/0/2.1 is up
Input BGP policy accounting on dst IP address enabled
buckets packets bytes
Input BGP policy accounting on src IP address enabled
buckets packets bytes
Output BGP policy accounting on dst IP address enabled
buckets packets bytes
0 15 752
1 3297102 329710200
2 3297102 329710200
3 3297102 329710200
4 3297101 329710100
5 3297101 329710100
Output BGP policy accounting on src IP address enabled
buckets packets bytes
0 15 752
6 3297102 329710200
7 3297102 329710200
8 3297102 329710200
9 3297101 329710100
10 3297101 329710100

The following examples show how to verify BGP routes and traffic indexes:

show route bgp
B 27.1.1.0/24 [20/0] via 17.1.1.2, 00:07:09
 Traffic Index 1
B 27.1.2.0/24 [20/0] via 17.1.1.2, 00:07:09
 Traffic Index 2
B 27.1.3.0/24 [20/0] via 17.1.1.2, 00:07:09
 Traffic Index 3
B 27.1.4.0/24 [20/0] via 17.1.1.2, 00:07:09
 Traffic Index 4
B 27.1.5.0/24 [20/0] via 17.1.1.2, 00:07:09
 Traffic Index 5
B 28.1.0.0/24 [20/0] via 18.1.1.2, 00:07:09
 Traffic Index 6
B 28.1.2.0/24 [20/0] via 18.1.1.2, 00:07:09
 Traffic Index 7
B 28.1.3.0/24 [20/0] via 18.
Verifying BGP Policy Statistics: Example

1.1.2, 00:07:09
 Traffic Index 8
B
28.
1.4.0/24 [20/0] via
18.
1.1.2, 00:07:09
 Traffic Index 9
B
28.
1.5.0/24 [20/0] via
18.
1.1.2, 00:07:09
 Traffic Index 10
B
65.
0.1.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.2.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.3.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.4/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.5.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.6.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.7.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.8.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.9.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
B
65.
0.10.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 15
 B
66.
0.1.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.2.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.3.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.4.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.5.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.6.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.7.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.8.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.9.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
66.
0.10.0/24 [20/0] via
8.
1.0.2, 00:07:09
 Traffic Index 16
 B
67.
0.1.0/24 [20/0] via
4.
1.0.2, 00:07:09
 Traffic Index 7
 B
67.
0.2.0/24 [20/0] via
4.
1.0.2, 00:07:09
Verifying BGP Policy Statistics: Example

Traffic Index 7
B 67.
0.3.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.4.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.5.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.6.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.7.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.8.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.9.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 67.
0.10.0/24 [20/0] via 4.
 1.0.2, 00:07:09
 Traffic Index 7
B 68.
0.1.0/24 [20/0] via 8.
 1.0.2, 00:07:09
 Traffic Index 8
B 68.
0.2.0/24 [20/0] via 8.
 1.0.2, 00:07:09
 Traffic Index 8
B 68.
0.3.0/24 [20/0] via 8.
 1.0.2, 00:07:09
 Traffic Index 8
B 68.
0.4.0/24 [20/0] via 8.
 1.0.2, 00:07:09
 Traffic Index 8
show bgp summary

BGP router identifier 190.1.1.1, local AS number 100
BGP generic scan interval 60 secs
BGP main routing table version 151
Dampening enabled
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

<table>
<thead>
<tr>
<th>Process</th>
<th>RecvTblVer</th>
<th>bRIB/RIB</th>
<th>SendTblVer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
<td>151</td>
<td>151</td>
<td>151</td>
</tr>
<tr>
<td>Neighbor</td>
<td>Spk</td>
<td>AS MsgRcvd</td>
<td>MsgSent</td>
</tr>
<tr>
<td>4.1.0.2</td>
<td>0</td>
<td>107</td>
<td>54</td>
</tr>
<tr>
<td>8.1.0.2</td>
<td>0</td>
<td>108</td>
<td>54</td>
</tr>
<tr>
<td>17.1.0.2</td>
<td>0</td>
<td>121</td>
<td>53</td>
</tr>
<tr>
<td>17.1.1.2</td>
<td>0</td>
<td>121</td>
<td>53</td>
</tr>
<tr>
<td>17.1.2.2</td>
<td>0</td>
<td>121</td>
<td>52</td>
</tr>
<tr>
<td>17.1.3.2</td>
<td>0</td>
<td>121</td>
<td>52</td>
</tr>
<tr>
<td>17.1.4.2</td>
<td>0</td>
<td>121</td>
<td>53</td>
</tr>
<tr>
<td>17.1.5.2</td>
<td>0</td>
<td>121</td>
<td>53</td>
</tr>
<tr>
<td>17.1.6.2</td>
<td>0</td>
<td>121</td>
<td>51</td>
</tr>
</tbody>
</table>
Verifying BGP Policy Statistics: Example

17.1.7.2 0 121 51 52 151 0 0 0:24:44 0
17.1.8.2 0 121 51 52 151 0 0 0:24:49 0
18. 1.0.2 0 122 52 54 151 0 0 0:25:21 0
18. 1.1.2 0 1221 54 54 151 0 0 0:25:43 5
18. 1.2.2 0 1222 53 54 151 0 0 0:25:38 0
18. 1.3.2 0 1223 52 53 151 0 0 0:25:17 0
18. 1.4.2 0 1224 51 52 151 0 0 0:24:57 0
18. 1.5.2 0 1225 52 53 151 0 0 0:25:14 0
18. 1.6.2 0 1226 52 54 151 0 0 0:25:04 0
18. 1.7.2 0 1227 52 54 151 0 0 0:25:13 0
18. 1.8.2 0 1228 53 54 151 0 0 0:25:36 0

show bgp 27.1.1.1

BGP routing table entry for 27.1.1.0/24
Versions: Process: bRIB/RIB SendTblVer
 Speaker: 102 102
Paths: (1 available, best #1)
 - Not advertised to any peer
 - Received by speaker 0 121

17.1.1.2 from
17.1.1.2 { 17.1.1.2)
 - Origin incomplete, localpref 100, valid, external, best
 - Community: 27:1 121:1

show bgp
28.1.1.1

BGP routing table entry for
28.1.1.0/24
Versions:
 Process: bRIB/RIB SendTblVer
 Speaker: 107 107
Paths: (1 available, best #1)
 - Not advertised to any peer
 - Received by speaker 0 1221

18. 1.1.2 from
18. 1.1.2 (18.1.1.2)
 - Origin incomplete, localpref 100, valid, external, best
 - Community: 28:1 1221:1

show bgp
65.0.1.1

BGP routing table entry for
65.0.1.0/24
Versions:
Process bRIB/RIB SendTblVer
Speaker 112 112
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
107
4.1.0.2 from
4.1.0.2 (4.1.0.2)
 Origin incomplete, localpref 100, valid, external, best
Community: 107:65

show bgp
66.
0.1.1
BGP routing table entry for
66.
0.1.0.24
Versions:
Process bRIB/RIB SendTblVer
Speaker 122 122
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
108
8.1.0.2 from 8.1.0.2 (8.1.0.2)
 Origin incomplete, localpref 100, valid, external, best
Community: 108:66

show bgp 67.0.1.1
BGP routing table entry for 67.0.1.0/24
Versions:
Process bRIB/RIB SendTblVer
Speaker 132 132
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
107
4.1.0.2 from 4.1.0.2 (4.1.0.2)
 Origin incomplete, localpref 100, valid, external, best
Community: 107:67

show bgp 68.0.1.1
BGP routing table entry for 68.0.1.0/24
Versions:
Process bRIB/RIB SendTblVer
Speaker 142 142
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
108
8.1.0.2 from 8.1.0.2 (8.1.0.2)
 Origin incomplete, localpref 100, valid, external, best
Community: 108:68

show route ipv4 27.1.1.1
Routing entry for 27.1.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 121, type external, Traffic Index 1
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
17.1.1.2, from 17.1.1.2
Route metric is 0
No advertising protos.

show route ipv4 28.1.1.1
Routing entry for 28.1.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 1221, type external, Traffic Index 6
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
18.1.1.2, from 18.1.1.2
Route metric is 0
No advertising protos.

show route ipv4 65.0.1.1
Routing entry for 65.0.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 107, type external, Traffic Index 15
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
4.1.0.2, from 4.1.0.2
Route metric is 0
No advertising protos.

show route ipv4 66.0.1.1
Routing entry for 66.0.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 108, type external, Traffic Index 16
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
8.1.0.2, from 8.1.0.2
Route metric is 0
No advertising protos.

show route ipv4 67.0.1.1
Routing entry for 67.0.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 107, type external, Traffic Index 7
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
4.1.0.2, from 4.1.0.2
Route metric is 0
No advertising protos.

show route ipv4 68.0.1.1
Routing entry for 68.0.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 108, type external, Traffic Index 8
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
8.1.0.2, from 8.1.0.2
Route metric is 0
No advertising protos.

show cef ipv4 27.1.1.1
27.1.1.0/24, version 263, source-destination sharing
Prefix Len 24, Traffic Index 1, precedence routine (0)
via 17.1.1.2, 0 dependencies, recursive
next hop 17.1.1.2/24, GigabitEthernet 0/2/0/2.1 via 17.1.1.0/24
valid remote adjacency
Recursive load sharing using 17.1.1.0/24

show cef ipv4 28.1.1.1
28.1.1.0/24, version 218, source-destination sharing
Prefix Len 24, Traffic Index 6, precedence routine (0)
via 18.1.1.2, 0 dependencies, recursive
next hop 18.1.1.2/24, GigabitEthernet0/2/0/4.1 via 18.1.1.0/24
valid remote adjacency
Recursive load sharing using 18.1.1.0/24

show cef ipv4 65.0.1.1
65.0.1.0/24, version 253, source-destination sharing
Prefix Len 24, Traffic Index 15, precedence routine (0)
via 4.1.0.2, 0 dependencies, recursive
next hop 4.1.0.2/16, GigabitEthernet0/0/0/4 via 4.1.0.0/16
valid remote adjacency
Recursive load sharing using 4.1.0.0/16

show cef ipv4 66.0.1.1

66.0.1.0/24, version 233, source-destination sharing
Prefix Len 24, Traffic Index 16, precedence routine (0)
via 8.1.0.2, 0 dependencies, recursive
next hop 8.1.0.2/16, GigabitEthernet 0/0/0/8 via 8.1.0.0/16
valid remote adjacency
Recursive load sharing using 8.1.0.0/16

show cef ipv4 67.0.1.1

67.0.1.0/24, version 243, source-destination sharing
Prefix Len 24, Traffic Index 7, precedence routine (0)
via 4.1.0.2, 0 dependencies, recursive
next hop 4.1.0.2/16, GigabitEthernet 0/0/0/4 via 4.1.0.0/16
valid remote adjacency
Recursive load sharing using 4.1.0.0/16

show cef ipv4 68.0.1.1

68.0.1.0/24, version 223, source-destination sharing
Prefix Len 24, Traffic Index 8, precedence routine (0)
via 8.1.0.2, 0 dependencies, recursive
next hop 8.1.0.2/16, GigabitEthernet0/0/0/8 via 8.1.0.0/16
valid remote adjacency
Recursive load sharing using 8.1.0.0/16

show cef ipv4 27.1.1.1 detail

27.1.1.0/24, version 263, source-destination sharing
Prefix Len 24, Traffic Index 1, precedence routine (0)
via 17.1.1.2, 0 dependencies, recursive
next hop 17.1.1.2/24, GigabitEthernet 0/2/0/2.1 via 17.1.1.0/24
valid remote adjacency
Recursive load sharing using 17.1.1.0/24
Load distribution: 0 (refcount 6)
Hash OK Interface Address Packets
1 Y GigabitEthernet 0/2/0/2.1 (remote) 0

show cef ipv4 28.1.1.1 detail

28.1.1.0/24, version 218, source-destination sharing
Prefix Len 24, Traffic Index 6, precedence routine (0)
via 18.1.1.2, 0 dependencies, recursive
next hop 18.1.1.2/24, GigabitEthernet 0/2/0/4.1 via 18.1.1.0/24
valid remote adjacency
Recursive load sharing using 18.1.1.0/24
Load distribution: 0 (refcount 6)
Hash OK Interface Address Packets
1 Y GigabitEthernet 0/2/0/4.1 (remote) 0

show cef ipv4 65.0.1.1 detail

65.0.1.0/24, version 253, source-destination sharing
Prefix Len 24, Traffic Index 15, precedence routine (0)
via 4.1.0.2, 0 dependencies, recursive
next hop 4.1.0.2/16, GigabitEthernet0/0/0/4 via 4.1.0.0/16
valid remote adjacency
Recursive load sharing using 4.1.0.0/16
Load distribution: 0 (refcount 21)
Configuring Unicast RPF Checking: Example

The following example shows how to configure unicast RPF checking:

configure
interface GigabitEthernet 0/0/0/1
ipv4 verify unicast source reachable-via rx
end

Configuring the Switching of Modular Services Card to Management Ethernet Interfaces on the Route Processor: Example

The following example shows how to configure the switching of the MSC to Management Ethernet interfaces on the route processor:

configure
Configuring Per-Flow Load Balancing: Example

The following examples show how to configure Layer 3 and Layer 4 load-balancing for the hash algorithm from the `cef load-balancing fields` command, and how to verify summary information for the CEF table from the `show cef summary` command:

Configuring Layer 3 load-balancing

```
configure
cf load-balancing fields L3
end
!
show cef summary
```

Router ID is 10.6.6.6

IP CEF with switching (Table Version 0) for node0_0_CPU0

Load balancing: L3
Tableid 0xe0000000 (0x9cbb51b0), Vrfid 0x60000000, Vrid 0x20000000, Flags 0x2031
Vrfname default, Refcount 577
300 routes, 0 protected, 0 reresolve, 0 unresolved (0 old, 0 new), 21600 bytes
212 load sharing elements, 62576 bytes, 324 references
19 shared load sharing elements, 5388 bytes
193 exclusive load sharing elements, 57188 bytes
622 local route bufs received, 1 remote route bufs received, 0 mix bufs received
176 local routes, 0 remote routes
4096 total local route updates processed
0 total remote route updates processed
0 pkts pre-routed to cust card
0 pkts received from core card
0 CEF route update drops, 96 revisions of existing leaves
0 CEF route update drops due to version mis-match
Resolution Timer: 15s
0 prefixes modified in place
0 deleted stale prefixes
82 prefixes with label imposition, 107 prefixes with label information
95 next hops
0 incomplete next hops
0 PD backwalks on LDIs with backup path

Configuring Layer 4 load-balancing

```
configure
cf load-balancing fields L4
end
!
show cef summary
```

Router ID is 10.1.1.101

IP CEF with switching (Table Version 0) for node0_RP0_CPU0

Load balancing: L4
Tableid 0xe0000000 (0x9cbb51b0), Vrfid 0x60000000, Vrid 0x20000000, Flags 0x301
Vrfname default, Refcount 286242
286122 routes, 0 reresolve, 0 unresolved (0 old, 0 new), 20600784 bytes
11124 load sharing elements, 3014696 bytes, 297064 references
8 shared load sharing elements, 3008 bytes
Configuring BGP Attributes Download: Example

The following example shows how to configure the BGP Attributes Download feature:

```bash
router configure
show cef bgp attribute {attribute-id| local-attribute-id}
```

Configuring GTP Tunnel Load Balancing: Example

The following example shows how to enable GTP tunnel load balancing by configuring Layer 4 load-balancing for the 7-tuple hash algorithm:

```bash
RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# cef load-balancing fields L4
RP/0/RP0/CPU0:router(config)# commit
```

The following example shows how to verify summary information for the IPv4 or IPv6 CEF table:

```bash
RP/0/RP0/CPU0:router# show cef ipv4 summary
```
```bash
Router ID is 10.2.2.2
IP CEF with switching (Table Version 0) for node0_RP0_CPU0
   Load balancing: L4
   Tableid 0xe0000000 (0x9cdbc1dc), Vrfid 0x60000000, Vrid 0x20000000, Flags 0x21
   Vrfname default, Refcount 527
   293 routes, 0 protected, 0 resolve, 0 unresolved (0 old, 0 new), 23440 bytes
   14 shared load sharing elements, 4064 bytes
   208 exclusive load sharing elements, 60312 bytes
   0 route delete cache elements
   2036 local route bufs received, 1264 remote route bufs received, 0 mix bufs d
   117 local routes, 0 remote routes
   8762 total local route updates processed
   0 total remote route updates processed
   0 pkts pre-routed to cust card
   0 pkts pre-routed to rp card
   0 pkts received from core card
   0 CEF route update drops, 2151 revisions of existing leaves
   0 CEF route update drops due to version mis-match
   Resolution Timer: 15s
   0 prefixes modified in place
   0 deleted stale prefixes
   0 prefixes with label imposition, 0 prefixes with label information
   0 LISP EID prefixes, 0 merged, via 0 rlocs
   159 next hops
   0 incomplete next hops
   0 PD backwalks on LDIs with backup path

RP/0/RP0/CPU0:router# show cef ipv6 summary
```
```bash
Router ID is 10.2.2.2
```
```bash
Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
```
IP CEF with switching (Table Version 0) for node0_RP0_CPU0

Load balancing: L4
Tableid 0xe0800000 (0x9cdee368), Vrfid 0x60000000, Vrid 0x20000000, Flags 0x21
Vrfname default, Refcount 39
17 routes, 0 protected, 0 reresolve, 0 unresolved (0 old, 0 new), 1360 bytes
17 load sharing elements, 4876 bytes, 4 references
4 shared load sharing elements, 1072 bytes
13 exclusive load sharing elements, 3804 bytes
0 route delete cache elements
199321 local route bufs received, 49838 remote route bufs received, 0 mix bud
9 local routes, 0 remote routes
1046420 total local route updates processed
0 total remote route updates processed
0 pkts pre-routed to cust card
0 pkts pre-routed to rp card
0 pkts received from core card
0 CEF route update drops, 1 revisions of existing leaves
0 CEF route update drops due to version mis-match
Resolution Timer: 15s
0 prefixes modified in place
0 deleted stale prefixes
0 prefixes with label imposition, 0 prefixes with label information
0 LISP EID prefixes, 0 merged, via 0 rlocs
3 next hops
0 incomplete next hops
0 PD backwalks on LDIs with backup path

Use the `show cef {ipv4 | ipv6} exact-route` command in EXEC mode to verify that the interface selected for load balancing matches with the output from this command. The following examples show the exact route for the Layer 4 information:

```
Use 16MSB of TEID in source port and 16LSBs of TEID in destination port in place of L4 protocol source and destination port number.

For example:
If TEID=241210E1 (in hexadecimal), then source-port=9234 (Decimal equivalent of 16MSBs of TEID 2412) and destination-port=4321 (Decimal equivalent of 16LSBs of TEID 10E1)
If TEID=0069012F (in hexadecimal), then source-port=105 (Decimal equivalent of 16MSBs of TEID 0069) and destination-port=303 (Decimal equivalent of 16LSBs of TEID 012F)
```

```
RP/0/RP0/CP00:router# show cef ipv4 exact-route 20.0.0.2 60.0.0.2 protocol udp source-port 9234 destination-port 4321 ingress-interface GigabitEthernet 0/6/5/0
0.0.0.0/0, version 12, proxy default, internal 0x40000000 (ptr 0x9d760060) [1],
Updated Jul 17 03:12:35.566
local adjacency 172.29.52.1
Prefix Len 0, traffic index 0, precedence routine (0), priority 3
via MgmtEth0/RP0/CPU0/0
via 172.29.52.1, 5 dependencies, recursive [flags 0x0]
next hop 172.29.52.1 via 172.29.52.1/32

RP/0/RP0/CP00:router# show cef ipv6 exact-route 20::6:1::9 22:6:1::9 protocol udp source-port 105 destination-port 303 ingress-interface GigabitEthernet 0/6/5/4
::/0, version 8, proxy default, internal 0x4000000 (ptr 0x9d6ac06c) [1], 0x0 (0)
Updated Jul 17 03:14:49.695
remote adjacency to GigabitEthernet0/6/5/0.22
Prefix Len 0, traffic index 0, precedence routine (0), priority 3
via GigabitEthernet0/6/5/0.22
via 5001:db8::1, GigabitEthernet0/6/5/0.22, 4 dependencies, weight 0, class }
```
Additional References

The following sections provide references related to implementing CEF.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEF commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco Express Forwarding Commands module in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>BGP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>BGP Commands module in the Cisco IOS XR Routing Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Link Bundling Commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Link Bundling Commands module in the Cisco IOS XR Interface and Hardware Component Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MI Bs</th>
<th>MI Bs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
CHAPTER 5

Implementing the Dynamic Host Configuration Protocol

This module describes the concepts and tasks you will use to configure Dynamic Host Configuration Protocol (DHCP).

Feature History for Implementing the Dynamic Host Configuration Protocol

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.4.0</td>
<td>The DHCP IPv6 Information Pool configuration procedure was added and DCHP relay information description was updated.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>The DHCP CLI was modified.</td>
</tr>
</tbody>
</table>

- Prerequisites for Configuring DHCP Relay Agent, page 89
- Information About DHCP Relay Agent, page 90
- How to Configure and Enable DHCP Relay Agent, page 90
- Configuring a DHCP Proxy Profile, page 98
- DHCPv4 Client, page 99
- Information About Configuring DHCP IPv6 Information Pools, page 101
- How to Configure DHCP IPv6 Information Pools, page 101
- Configuration Examples for the DHCP Relay Agent, page 102
- Additional References, page 104

Prerequisites for Configuring DHCP Relay Agent

The following prerequisites are required to configure a DHCP relay agent:
You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- A configured and running DHCP client and DHCP server
- Connectivity between the relay agent and DHCP server

Information About DHCP Relay Agent

A DHCP relay agent is a host that forwards DHCP packets between clients and servers that do not reside on a shared physical subnet. Relay agent forwarding is distinct from the normal forwarding of an IP router where IP datagrams are switched between networks transparently.

DHCP clients use User Datagram Protocol (UDP) broadcasts to send DHCPDISCOVER messages when they lack information about the network to which they belong.

If a client is on a network segment that does not include a server, a relay agent is needed on that network segment to ensure that DHCP packets reach the servers on another network segment. UDP broadcast packets are not forwarded, because most routers are not configured to forward broadcast traffic. You can configure a DHCP relay profile and configure one or more helper addresses in it. You can assign the profile to an interface or a VRF.

Figure 2: Forwarding UDP Broadcasts to a DHCP Server Using a Helper Address, on page 90 demonstrates the process. The DHCP client broadcasts a request for an IP address and additional configuration parameters on its local LAN. Acting as a DHCP relay agent, Router B picks up the broadcast, changes the destination address to the DHCP server's address and sends the message out on another interface. The relay agent inserts the IP address of the interface, on which the relay profile into the gateway address (giaddr) field of the DHCP packet, which enables the DHCP server to determine which subnet should receive the offer and identify the appropriate IP address range. The relay agent unicasts the messages to the server address, in this case 172.16.1.2 (which is specified by the helper address in the relay profile).

How to Configure and Enable DHCP Relay Agent

This section contains the following tasks:
Configuring and Enabling the DHCP Relay Agent

Configuring a DHCP Relay Profile

This task describes how to configure and enable the DHCP relay agent.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name relay
4. helper-address [vrf vrf-name] address
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enters DHCP IPv4 profile relay submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 profile profile-name relay</td>
<td>Forwards UDP broadcasts, including BOOTP and DHCP.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The value of the address argument can be a specific DHCP server address or a network address (if other DHCP servers are on the destination network segment). Using the network address enables other servers to respond to DHCP requests.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4)# profile client relay</td>
<td>• For multiple servers, configure one helper address for each server.</td>
</tr>
<tr>
<td>Step 4 helper-address [vrf vrf-name] address</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# helper-address vrf foo 10.10.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the DHCPv6 (Stateless) Relay Agent

Perform this task to specify a destination address to which client messages are forwarded and to enable Dynamic Host Configuration Protocol (DHCP) for IPv6 relay service on the interface.

SUMMARY STEPS

1. configure
2. dhcp ipv6
3. interface type interface-path-id relay
4. destination ipv6-address
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>dhcp ipv6</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables DHCP for IPv6 and enters the DHCP IPv6 configuration mode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config) # dhcp ipv6</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv6)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id relay</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies an interface type and interface-path-id, places the router in interface configuration mode, and enables DHCPv6 relay service on the interface.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv6) # interface tenGigE 0/5/0/0 relay</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>destination ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies a destination address to which client packets are forwarded.</td>
</tr>
<tr>
<td>When relay service is enabled on an interface, a DHCP for IPv6 message received on that interface is forwarded to all configured relay destinations. The incoming DHCP for IPv6 message may have come from a client on that interface, or it may have been relayed by another relay agent.</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv6-if) # destination 10:10::10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enabling DHCP Relay Agent on an Interface

This task describes how to enable the Cisco IOS XR DHCP relay agent on an interface.

Note
On Cisco IOS XR software, the DHCP relay agent is disabled by default.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. interface type name relay profile profile-name
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enters DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-if)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type name relay profile profile-name</td>
<td>Attaches a relay profile to an interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-dhcpv4)# interface FastEthernet0/0 relay profile client</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Disabling DHCP Relay on an Interface

This task describes how to disable the DHCP relay on an interface by assigning the none profile to the interface.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. interface type name none
4. commit
Enabling DHCP Relay on a VRF

This task describes how to enable DHCP relay on a VRF.

SUMMARY STEPS

1. `configure`
2. `dhcp ipv4`
3. `vrf vrf-name relay profile profile-name`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>dhcp ipv4</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>vrf vrf-name relay profile profile-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Enables DHCP relay on a VRF.</td>
</tr>
</tbody>
</table>
Configuring the Relay Agent Information Feature

This task describes how to configure the DHCP relay agent information option processing capabilities. A DHCP relay agent may receive a message from another DHCP relay agent that already contains relay information. By default, the relay information from the previous relay agent is replaced (using the replace option).

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name relay
4. relay information option
5. relay information check
6. relay information policy {drop | keep}
7. relay information option allow-untrusted
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enters DHCP IPv4 profile relay mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# dhcp ipv4</td>
</tr>
<tr>
<td>Step 3 profile profile-name relay</td>
<td>Enters DHCP IPv4 profile relay mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-dhcpv4)# profile client relay</td>
</tr>
<tr>
<td>Step 4 relay information option</td>
<td>Enables the system to insert the DHCP relay agent information option (option-82 field) in forwarded BOOTREQUEST messages to a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# relay information option</td>
</tr>
<tr>
<td></td>
<td>• This option is injected by the relay agent while forwarding client-originated DHCP packets to</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>the server. Servers recognizing this option can use the information to implement IP address or other parameter assignment policies. When replying, the DHCP server echoes the option back to the relay agent. The relay agent removes the option before forwarding the reply to the client.</td>
</tr>
<tr>
<td></td>
<td>• The relay agent information is organized as a single DHCP option that contains one or more suboptions. These options contain the information known by the relay agent. The supported suboptions are:</td>
</tr>
<tr>
<td></td>
<td>• Remote ID</td>
</tr>
<tr>
<td></td>
<td>• Circuit ID</td>
</tr>
<tr>
<td>Note</td>
<td>This function is disabled by default.</td>
</tr>
<tr>
<td>Step 5 relay information check</td>
<td>(Optional) Configures DHCP to check that the relay agent information option in forwarded BOOTREPLY messages is valid.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# relay information check</td>
</tr>
<tr>
<td></td>
<td>• By default, DHCP checks that the option-82 field in DHCP reply packets, received from the DHCP server, is valid. If an invalid message is received, the relay agent drops the message. If a valid message is received, the relay agent removes the option-82 field and forwards the packet.</td>
</tr>
<tr>
<td>Note</td>
<td>Use the <code>relay information check</code> command to re-enable this functionality if the functionality has been disabled.</td>
</tr>
<tr>
<td>Step 6 relay information policy {drop</td>
<td>keep}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# dhcp relay information policy drop</td>
</tr>
<tr>
<td>Step 7 relay information option allow-untrusted</td>
<td>(Optional) Configures the DHCP IPv4 Relay not to discard BOOTREQUEST packets that have an existing relay information option and the giaddr set to zero.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# relay information check</td>
</tr>
<tr>
<td>Step 8 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Relay Agent Giaddr Policy

This task describes how to configure BOOTREQUEST packets for Dynamic Host Configuration Protocol (DHCP) IPv4 Relay processes, that already contain a nonzero giaddr attribute.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile *profile-name* relay
4. giaddr policy {replace | drop}
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables the DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enables profile relay submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 profile profile-name relay</td>
<td>Specifies the giaddr policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4)# profile client relay</td>
<td>• replace—Replaces the existing giaddr value with a value that it generates.</td>
</tr>
<tr>
<td></td>
<td>• drop—Drops the packet that has an existing nonzero giaddr value.</td>
</tr>
<tr>
<td>Step 4 giaddr policy {replace</td>
<td>drop}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# giaddr policy drop</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Broadcast Flag Policy

This task describes how to configure DHCP IPv4 Relay to broadcast BOOTPREPLY packets only if the DHCP IPv4 broadcast flag is set in the DHCP IPv4 header.
By default, the DHCP IPv4 Relay always broadcasts BOOTPREPLY packets.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name relay
4. broadcast-flag policy check
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Configures DHCP IPv4 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 profile profile-name relay</td>
<td>Enables profile relay mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4)# profile client relay</td>
<td></td>
</tr>
<tr>
<td>Step 4 broadcast-flag policy check</td>
<td>Enables checking of the broadcast flag in packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# broadcast-flag policy check</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a DHCP Proxy Profile

The DHCP proxy performs all the functions of a relay and also provides some additional functions. The DHCP proxy conceals DHCP server details from DHCP clients. The DHCP proxy modifies the DHCP replies such that the client considers the proxy to be the server. In this state, the client interacts with the proxy as if it is the DHCP server.

This task describes how to configure and enable the DHCP proxy profile.
SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name proxy
4. helper-address [vrf vrf- name] address [giaddr gateway-address]
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 profile profile-name proxy</td>
<td>Enters DHCP IPv4 profile proxy submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4)# profile client proxy</td>
<td></td>
</tr>
<tr>
<td>Step 4 helper-address [vrf vrf- name] address [giaddr gateway-address]</td>
<td>Forwards UDP broadcasts, including BOOTP and DHCP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-proxy-profile)# helper-address vrf foo 10.10.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

DHCPv4 Client

The Dynamic Host Configuration Protocol (DHCP) client functionality enables the router interfaces to dynamically acquire the IPv4 address using DHCP.

The DHCP provides configuration parameters to Internet hosts. DHCP consists of two components:
• a protocol to deliver host-specific configuration parameters from a DHCP server to a host.
• a mechanism to allocate network addresses to hosts.

DHCP is built on a client-server model, where designated DHCP server hosts allocate network addresses, and deliver configuration parameters to dynamically configured hosts.

A relay agent is required if the client and server are not on the same Layer 2 network. The relay agent usually runs on the router, and is required because the client device does not know its own IP address initially. The agent sends out a Layer 2 broadcast to find a server that has this information. The router relays these broadcasts to the DHCP server, and forwards the responses back to the correct Layer 2 address so that the correct device gets the correct configuration information.

DHCP has the ability to allocate IP addresses only for a configurable period of time, called the lease period. If the client is required to retain this IP address for a longer period beyond the lease period, the lease period must be renewed before the IP address expires. The client renewes the lease based on configuration that was sent from the server. The client unicasts a REQUEST message using the IP address of the server. When a server receives the REQUEST message and responds with an ACK message. The lease period of the client is extended by the lease time configured in the ACK message.

Restrictions and Limitations
• DHCP client can be enabled only on management interfaces.
• Either DHCP or static IP can be configured on an interface.

Enabling DHCP Client on an Interface

The DHCP client can be enabled at an interface level. The DHCP component receives a notification when DHCP is enabled or disabled on an interface.

SUMMARY STEPS

1. configure
2. interface MgmtEth rack/slot/CPU0/port
3. interface <interface_name> ipv4 address dhcp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure</td>
<td></td>
</tr>
<tr>
<td>Step 2: interface MgmtEth rack/slot/CPU0/port</td>
<td>Enters interface configuration mode.</td>
</tr>
</tbody>
</table>

Example:

RP/0/RP0/CPU0:router(config)#interface mgmtEth 0/0/CPU0/0
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>interface <interface_name> ipv4 address dhcp</code></td>
<td>Configure DHCP on the interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# interface mgmtEth 0/0/CPU0/0
ipv4 address dhcp
```

Example:

```
dhcp Enable IPv4 DHCP client
```

The following example shows a sample of using IPv4 address command:

```
RP/0/0/CPU0:ios(config)#interface mgmtEth 0/0/CPU0/0 ipv4 address ?
A.B.C.D/prefix IPv4 address/prefix or IPv4 address and Mask
dhcp Enable IPv4 DHCP client
```

Information About Configuring DHCP IPv6 Information Pools

A **DHCP IPv6 configuration information pool** is a named entity that includes information about available configuration parameters and policies that control assignment of the parameters to clients from the pool. A pool is configured independently of the DHCP service and is associated with the DHCP service through the command line interface.

Each configuration pool can contain the following configuration parameters and operational information:

- Prefix delegation information, which could include a list of available prefixes for a particular client and associated preferred and valid lifetimes
- Domain name service (DNS) servers—List of IPv6 addresses of DNS servers
- Domain search list—String containing domain names for DNS resolution
- SIP server address—List of IPv6 addresses of SIP server
- SIP server domain list—String containing domain names for SIP server

How to Configure DHCP IPv6 Information Pools

This section contains the following task:

Configuring Cisco IOS XR DHCP IPv6 Information Pool Option

This task describes how to enable support for the DHCP IPv6 information pool option with the name pool1.
SUMMARY STEPS

1. configure
2. dhcp ipv6
3. pool pool-name
4. commit
5. show dhcp ipv6 pool [pool-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>dhcp ipv6</td>
<td>Enables the DHCP IPv6 configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router (config)# dhcp ipv6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pool pool-name</td>
<td>Creates a DHCP pool specified by the pool-name argument for the prefix delegation and the other configurations on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router (config-dhcp ipv6)# pool pool1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>show dhcp ipv6 pool [pool-name]</td>
<td>(Optional) Displays the DHCP IPv6 pool name.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# show dhcp ipv6 pool pool1</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for the DHCP Relay Agent

This section provides the following configuration examples:

DHCP Relay Profile: Example

The following example shows how to configure the Cisco IOS XR relay profile:

dhcp_ipv4
 profile client relay
 helper-address vrf foo 10.10.1.1

...
DHCP Relay on an Interface: Example

The following example shows how to enable the DHCP relay agent on an interface:

```
dhcp ipv4
  interface GigabitEthernet 0/1/1/0 relay profile client
```

DHCP Relay on a VRF: Example

The following example shows how to enable the DHCP relay agent on a VRF:

```
dhcp ipv4
  vrf default relay profile client
```

Relay Agent Information Option Support: Example

The following example shows how to enable the relay agent and the insertion and removal of the DHCP relay information option:

```
dhcp ipv4
  profile client relay
  relay information
  check
```

Relay Agent Giaddr Policy: Example

The following example shows how to configure relay agent giaddr policy:

```
dhcp ipv4
  profile client relay
  giaddr policy drop
```

Cisco IOS XR Broadcast Flag Policy: Example

This task describes how to configure DHCP IPv4 Relay to broadcast BOOTPREPLY packets only if the DHCP IPv4 broadcast flag is set in the DHCP IPv4 header.

Note

By default, the DHCP IPv4 Relay always broadcasts BOOTPREPLY packets.
SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile name relay
4. broadcast-flag policy check
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Configures DHCP IPv4 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# dhcp ipv4</td>
</tr>
<tr>
<td>Step 3 profile profile name relay</td>
<td>Enables profile relay mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-dhcpv4)# profile client relay</td>
</tr>
<tr>
<td>Step 4 broadcast-flag policy check</td>
<td>Enables checking of the broadcast flag in packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-dhcpv4-relay-profile)# broadcast-flag policy check</td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Additional References

The following sections provide references related to implementing the Cisco IOS XR DHCP relay agent.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR DHCP commands</td>
<td>DHCP Commands module in the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
Implementing the Dynamic Host Configuration Protocol

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services module in the Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>RFC 3315</td>
<td>Dynamic Host Configuration Protocol for IPv6 (DHCPv6)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Host Services and Applications

Cisco IOS XR software Host Services and Applications features on the router are used primarily for checking network connectivity and the route a packet follows to reach a destination, mapping a hostname to an IP address or an IP address to a hostname, and transferring files between routers and UNIX workstations.

Note

For detailed conceptual information about Cisco IOS XR software Host Services and Applications and complete descriptions of the commands listed in this module, see the Related Documents, on page 125 section. To locate documentation for other commands that might appear in a configuration task, search online in the Cisco IOS XR software master command index.

Feature History for Implementing Host Services and Applications

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Host Services and Applications, page 107
- Information About Implementing Host Services and Applications, page 108
- How to Implement Host Services and Applications, page 111
- Configuring syslog source-interface, page 121
- IPv6 Support for IP SLA ICMP Echo Operation, page 121
- Configuration Examples for Implementing Host Services and Applications, page 123
- Additional References, page 125

Prerequisites for Implementing Host Services and Applications

The following prerequisites are required to implement Cisco IOS XR software Host Services and applications.
You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing Host Services and Applications

To implement Cisco IOS XR software Host Services and applications features discussed in this document, you should understand the following concepts:

Key Features Supported in the Cisco IOS XR software Host Services and Applications Implementation

The following features are supported for host services and applications on Cisco IOS XR software:

- **Ping and traceroute**—The ping and traceroute commands are convenient, frequently used tools for checking network connectivity and troubleshooting network problems. The ping command determines whether a specific IP address is online by sending out a packet and waiting for a response. The traceroute command provides the path from the source to the remote destination being contacted.

- **Domain services**—The domain services act as a Berkeley Software Distribution (BSD) domain resolver. When an application requires the IP address of a hostname or the hostname of an IP address, the domain services attempt to find the address or hostname by checking the local cache. If there is no address entry in the cache, a Domain Name System (DNS) query is sent to the name server. After the address or hostname is retrieved from the name server, the address or hostname is given to the application.

- **File transfer services (FTP, TFTP, and rcp)**—FTP, TFTP, and rcp clients are implemented as resource managers. The resource managers are mainly used for transferring files to and from a remote host and to place core files on a remote host. See the File System Commands module of the Cisco IOS XR System Management Configuration Guide for the Cisco CRS Router for information on file transfer protocols.

- **Cisco Inetd**—Cisco Internet services daemon (Cinetd) is similar to UNIX inetd, in that it listens on a well-known port on behalf of the server program. When a service request is received on the port, Cinetd notifies the server program associated with the service request. By default, Cinetd is not configured to listen for any services. Cinetd is enabled by default. See the Cisco IOS XR Interface and Hardware Component Command Reference for the Cisco CRS Router for information on supported Cinetd commands.

Network Connectivity Tools

Network connectivity tools enable you to check device connectivity by running traceroutes and pinging devices on the network.

Ping

The ping command is a common method for troubleshooting the accessibility of devices. It uses two Internet Control Message Protocol (ICMP) query messages, ICMP echo requests, and ICMP echo replies to determine
whether a remote host is active. The `ping` command also measures the amount of time it takes to receive the echo reply.

The `ping` command first sends an echo request packet to an address, and then it waits for a reply. The `ping` is successful only if the echo request gets to the destination, and the destination is able to get an echo reply (hostname is alive) back to the source of the ping within a predefined time interval.

The bulk option has been introduced to check reachability to multiple destinations. The destinations are directly input through the CLI. This option is supported for IPv4 destinations only.

Traceroute

Where the `ping` command can be used to verify connectivity between devices, the `traceroute` command can be used to discover the paths packets take to a remote destination and where routing breaks down.

The `traceroute` command records the source of each ICMP "time-exceeded" message to provide a trace of the path that the packet took to reach the destination. You can use the IP `traceroute` command to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

The `traceroute` command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. The `traceroute` command sends a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends back an ICMP time-exceeded message to the sender. The traceroute facility determines the address of the first hop by examining the source address field of the ICMP time-exceeded message.

To identify the next hop, the `traceroute` command sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-exceeded message to the source. This process continues until the TTL increments to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To determine when a datagram reaches its destination, the `traceroute` command sets the UDP destination port in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram with an unrecognized port number, it sends an ICMP port unreachable error to the source. This message indicates to the traceroute facility that it has reached the destination.

Domain Services

Cisco IOS XR software domain services acts as a Berkeley Standard Distribution (BSD) domain resolver. The domain services maintains a local cache of hostname-to-address mappings for use by applications, such as Telnet, and commands, such as `ping` and `traceroute`. The local cache speeds the conversion of hostnames to addresses. Two types of entries exist in the local cache: static and dynamic. Entries configured using the `domain ipv4 host` or `domain ipv6 host` command are added as static entries, while entries received from the name server are added as dynamic entries.

The name server is used by the World Wide Web (WWW) for translating names of network nodes into addresses. The name server maintains a distributed database that maps hostnames to IP addresses through the DNS protocol from a DNS server. One or more name servers can be specified using the `domain name-server` command.

When an application needs the IP address of a host or the hostname of an IP address, a remote-procedure call (RPC) is made to the domain services. The domain service looks up the IP address or hostname in the cache, and if the entry is not found, the domain service sends a DNS query to the name server.
You can specify a default domain name that Cisco IOS XR software uses to complete domain name requests. You can also specify either a single domain or a list of domain names. Any IP hostname that does not contain a domain name has the domain name you specify appended to it before being added to the host table. To specify a domain name or names, use either the `domain name` or `domain list` command.

TFTP Server

It is too costly and inefficient to have a machine that acts only as a server on every network segment. However, when you do not have a server on every segment, your network operations can incur substantial time delays across network segments. You can configure a router to serve as a TFTP server to reduce costs and time delays in your network while allowing you to use your router for its regular functions.

Typically, a router that is configured as a TFTP server provides other routers with system image or router configuration files from its flash memory. You can also configure the router to respond to other types of services requests.

File Transfer Services

File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTP), and remote copy protocol (rcp) clients are implemented as file systems or resource managers. For example, pathnames beginning with tftp:// are handled by the TFTP resource manager.

The file system interface uses URLs to specify the location of a file. URLs commonly specify files or locations on the WWW. However, on Cisco routers, URLs also specify the location of files on the router or remote file servers.

When a router crashes, it can be useful to obtain a copy of the entire memory contents of the router (called a core dump) for your technical support representative to use to identify the cause of the crash. FTP, TFTP, or rcp can be used to save the core dump to a remote server. See the *Cisco IOS XR System Management Configuration Guide for the Cisco CRS Router* for information on executing a core dump.

RCP

The remote copy protocol (RCP) commands rely on the remote shell (rsh) server (or daemon) on the remote system. To copy files using rcp, you do not need to create a server for file distribution, as you do with TFTP. You need only to have access to a server that supports the rsh. Because you are copying a file from one place to another, you must have read permissions for the source file and write permission in the destination directory. If the destination file does not exist, rcp creates it for you.

Although Cisco rcp implementation emulates the functions of the UNIX rcp implementation—copying files among systems on the network—Cisco command syntax differs from the UNIX rcp command syntax. Cisco IOS XR software offers a set of copy commands that use rcp as the transport mechanism. These `rcp copy` commands are similar in style to the Cisco IOS XR software TFTP copy commands, but they offer an alternative that provides faster performance and reliable delivery of data. These improvements are possible because the rcp transport mechanism is built on and uses the TCP/IP stack, which is connection-oriented. You can use rcp commands to copy system images and configuration files from the router to a network server and so forth.
FTP

File Transfer Protocol (FTP) is part of the TCP/IP protocol stack, which is used for transferring files between network nodes. FTP is defined in RFC 959.

TFTP

Trivial File Transfer Protocol (TFTP) is a simplified version of FTP that allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for example, username and password).

Cisco inetd

Cisco Internet services process daemon (Cinetd) is a multithreaded server process that is started by the system manager after the system has booted. Cinetd listens for Internet services such as Telnet service, TFTP service, and so on. Whether Cinetd listens for a specific service depends on the router configuration. For example, when the `tftp server` command is entered, Cinetd starts listening for the TFTP service. When a request arrives, Cinetd runs the server program associated with the service.

Telnet

Enabling Telnet allows inbound Telnet connections into a networking device.

How to Implement Host Services and Applications

This section contains the following procedures:

Checking Network Connectivity

As an aid to diagnosing basic network connectivity, many network protocols support an echo protocol. The protocol involves sending a special datagram to the destination host, then waiting for a reply datagram from that host. Results from this echo protocol can help in evaluating the path-to-host reliability, delays over the path, and whether the host can be reached or is functioning.

SUMMARY STEPS

1. ping [ipv4 | ipv6 | vrf vrf-name] [host-name | ip-address]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 ping [ipv4</td>
<td>ipv6</td>
</tr>
</tbody>
</table>
Checking Network Connectivity for Multiple Destinations

The bulk option enables you to check reachability to multiple destinations. The destinations are directly input through the CLI. This option is supported for ipv4 destinations only.

SUMMARY STEPS

1. `ping bulk ipv4 [input cli { batch | inline }]`
2. `[vrf vrf-name] [host-name | ip-address]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`ping bulk ipv4 [input cli { batch</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router# ping bulk ipv4 input cli</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>`[vrf vrf-name] [host-name</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Starting pings...</code></td>
</tr>
<tr>
<td></td>
<td><code>Type escape sequence to abort. Sending 1, 100-byte ICMP Echos to 1.1.1.1, vrf is myvrf1:</code></td>
</tr>
<tr>
<td></td>
<td><code>Success rate is 100 percent (1/1), round-trip min/avg/max = 1/1/1 ms</code></td>
</tr>
<tr>
<td></td>
<td><code>Sending 2, 100-byte ICMP Echos to 2.2.2.2, vrf is myvrf2:</code></td>
</tr>
<tr>
<td></td>
<td><code>!!</code></td>
</tr>
<tr>
<td></td>
<td><code>Success rate is 100 percent (2/2), round-trip min/avg/max = 1/1/1 ms</code></td>
</tr>
<tr>
<td></td>
<td><code>Sending 1, 100-byte ICMP Echos to 1.1.1.1, vrf is myvrf1:</code></td>
</tr>
<tr>
<td></td>
<td><code>!!</code></td>
</tr>
<tr>
<td></td>
<td><code>Success rate is 100 percent (1/1), round-trip min/avg/max = 1/4/1 ms</code></td>
</tr>
<tr>
<td></td>
<td><code>Sending 2, 100-byte ICMP Echos to 2.2.2.2, vrf is myvrf2:</code></td>
</tr>
</tbody>
</table>
Checking Packet Routes

The `traceroute` command allows you to trace the routes that packets actually take when traveling to their destinations.

SUMMARY STEPS

1. `traceroute [ipv4 | ipv6 | vrf vrf-name] [host-name | ip-address]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traceroute</td>
<td>Traces packet routes through the network.</td>
</tr>
</tbody>
</table>

Step 1

Example:

```
RP/0/RP0/CPU0:router# traceroute
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute</td>
<td>If you do not enter a hostname or an IP address on the same line as the <code>traceroute</code> command, the system prompts you to specify the target IP address and several other command parameters. After specifying the target IP address, you can specify alternate values for the remaining parameters or accept the displayed default for each parameter.</td>
</tr>
</tbody>
</table>

Configuring Domain Services

This task allows you to configure domain services.

Before You Begin

DNS-based hostname-to-address translation is enabled by default. If hostname-to-address translation has been disabled using the `domain lookup disable` command, re-enable the translation using the `no domain lookup disable` command. See the *Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router* for more information on the `domain lookup disable` command.
SUMMARY STEPS

1. configure
2. Do one of the following:
 • domain name domain-name
 • or
 • domain list domain-name
3. domain name-server server-address
4. domain {ipv4 | ipv6} host host-name {ipv4address | ipv6address}
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Specifies the address of a name server to use for name and address resolution (hosts that supply name information).</td>
</tr>
<tr>
<td>Step 2 Do one of the following:</td>
<td>Defines a default domain name used to complete unqualified hostnames.</td>
</tr>
<tr>
<td>• domain name domain-name</td>
<td></td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• domain list domain-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# domain name cisco.com</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# domain list domain1.com</td>
<td></td>
</tr>
<tr>
<td>Step 3 domain name-server server-address</td>
<td>(Optional) Defines a static hostname-to-address mapping in the host cache using IPv4.</td>
</tr>
<tr>
<td>Example:</td>
<td>You can bind up to eight additional associated addresses to a hostname.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# domain name-server 192.168.1.111</td>
<td>Note You can enter up to six addresses, but only one for each command.</td>
</tr>
<tr>
<td>Step 4 domain {ipv4</td>
<td>ipv6} host host-name {ipv4address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# domain ipv4 host1 192.168.7.18</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Router as a TFTP Server

This task allows you to configure the router as a TFTP server so other devices acting as TFTP clients are able to read and write files from and to the router under a specific directory, such as slot0:, /tmp, and so on (TFTP home directory).

Note
For security reasons, the TFTP server requires that a file must already exist for a write request to succeed.

Before You Begin
The server and client router must be able to reach each other before the TFTP function can be implemented. Verify this connection by testing the connection between the server and client router (in either direction) using the `ping` command.

SUMMARY STEPS

1. configure
2. `tftp {ipv4 | ipv6} server {homedir ftp-home-directory} {max-servers number} [access-list name]`
3. commit
4. show cinetd services

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Specifies:</td>
</tr>
</tbody>
</table>
| **Step 2** `tftp {ipv4 | ipv6} server {homedir ftp-home-directory} {max-servers number} [access-list name]` | IPv4 or IPv6 address prefixes (required)
Home directory (required)
Maximum number of concurrent TFTP servers (required)
Name of the associated access list (optional) |
| **Example:**
RP/0/RP0/CPU0:router(config)# tftp ipv4 server access-list listA homedir disk0 | Displays the network service for each process. The service column shows TFTP if the TFTP server is configured. |
| **Step 3** commit | |
| **Step 4** show cinetd services | |
| **Example:**
RP/0/RP0/CPU0:router# show cinetd services | |
Configuring a Router to Use rcp Connections

This task allows you to configure a router to use rcp.

Before You Begin

For the rcp copy request to execute successfully, an account must be defined on the network server for the remote username.

If you are reading or writing to the server, the rcp server must be properly configured to accept the rcp read/write request from the user on the router. For UNIX systems, you must add an entry to the hosts file for the remote user on the rcp server.

SUMMARY STEPS

1. configure
2. rcp client username username
3. rcp client source-interface type interface-path-id
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>rcp client username username
Example: RP/0/RP0/CPU0:router(config)# rcp client username netadmin1</td>
</tr>
<tr>
<td></td>
<td>Specifies the name of the remote user on the rcp server. This name is used when a remote copy using rcp is requested. If the rcp server has a directory structure, all files and images to be copied are searched for or written relative to the directory in the remote user account.</td>
</tr>
<tr>
<td>Step 3</td>
<td>rcp client source-interface type interface-path-id
Example: RP/0/RP0/CPU0:router(config)# rcp client source-interface gigabitethernet 1/0/2/1</td>
</tr>
<tr>
<td></td>
<td>Sets the IP address of an interface as the source for all rcp connections.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Troubleshooting Tips
When using rcp to copy any file from a source to a destination, use the following path format:

copy rcp
://username
@
hostname
When using an IPv6 rcp server, use the following path format:

```
copy rcp
  ://username
  @
  [ipv6-address]/
  directory-path
  /pie-name
```

See the `copy` command in the *Cisco IOS XR System Management Command Reference for the Cisco CRS Router* for detailed information on using rcp protocol with the `copy` command.

Configuring a Router to Use FTP Connections

This task allows you to configure the router to use FTP connections for transferring files between systems on the network. With the the Cisco IOS XR Software implementation of FTP, you can set the following FTP characteristics:

- Passive-mode FTP
- Password
- IP address

SUMMARY STEPS

1. `configure`
2. `ftp client passive`
3. `ftp client anonymous-password password`
4. `ftp client source-interface type interface-path-id`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>ftp client passive</td>
<td>Allows the software to use only passive FTP connections.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# ftp client passive</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ftp client anonymous-password</td>
<td>Specifies the password for anonymous users.</td>
</tr>
<tr>
<td>password</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# ftp client anonymous-password xxxx</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>ftp client source-interface</td>
<td>Specifies the source IP address for FTP connections.</td>
</tr>
<tr>
<td>type interface-path-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# ftp client source-interface GigabitEthernet 0/1/2/1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips

When using FTP to copy any file from a source to a destination, use the following path format:

```
copy ftp://username:password
@
  hostname
  ipaddress
}/
directory-path
/pie-name target-device
```

When using an IPv6 FTP server, use the following path format:

```
copy ftp://username::password
@[
ipv6-address]/
directory-path
/pie-name
```
If unsafe or reserved characters appear in the username, password, hostname, and so on, they have to be encoded (RFC 1738).

The following characters are unsafe:

```
<, >, "", "\", "\", "\", "\", "\", "\", and ""
```

The following characters are reserved:

```
.:, \?", ":, "", and ":
```

The directory-path is a relative path to the home directory of the user. The slash (/) has to be encoded as %2f to specify the absolute path. For example:

```
ftp://user:password@hostname/%2fTFTPboot/directory/pie-name
```

See the copy command in the Cisco IOS XR System Management Command Reference for the Cisco CRS Router for detailed information on using FTP protocol with the copy command.

Configuring a Router to Use TFTP Connections

This task allows you to configure a router to use TFTP connections. You must specify the source IP address for a TFTP connection.

SUMMARY STEPS

1. configure
2. tftp client source-interface type
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 tftp client source-interface type</td>
<td>Specifies the source IP address for TFTP connections.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# tftp client source-interface GigabitEthernet 1/0/2/1</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips

When using TFTP to copy any file from a source to a destination, use the following path format:

```
copy tftp ://
```
When using an IPv6 TFTP server, use the following path format:

```
copy tftp
  //
  [ipv6-address]/
  directory-path
  /
  pie-name
```

See the `copy` command in the *Cisco IOS XR System Management Command Reference for the Cisco CRS Router* for detailed information on using TFTP protocol with the `copy` command.

Configuring Telnet Services

This task allows you to configure Telnet services.

SUMMARY STEPS

1. `configure`
2. `telnet [ipv4 | ipv6 | vrf vrf-name] server max-servers 1`
3. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code> Enables one inbound Telnet IPv4 server on the router.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`telnet [ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# telnet ipv4 server max-servers 1</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>
Configuring syslog source-interface

Perform this task to configure the logging source interface to identify the syslog traffic, originating in a VRF from a particular router, as coming from a single device.

SUMMARY STEPS

1. configure
2. logging source-interface interface vrf vrf-name
3. commit
4. show running-configuration logging

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures the logging source interface to identify the syslog traffic, originating in a VRF from a particular router, as coming from a single device.</td>
</tr>
<tr>
<td>Step 2 logging source-interface interface vrf vrf-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# logging source-interface loopback 0 vrf vrf1</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# logging source-interface loopback 1 vrf default</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td>Verifies that the logging source is correctly configured for the VRF.</td>
</tr>
<tr>
<td>Step 4 show running-configuration logging</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show running-configuration logging</td>
<td></td>
</tr>
<tr>
<td>logging trap debugging</td>
<td></td>
</tr>
<tr>
<td>logging 223.255.254.249 vrf vrf1</td>
<td></td>
</tr>
<tr>
<td>logging 223.255.254.248 vrf default</td>
<td></td>
</tr>
<tr>
<td>logging source-interface Loopback0 vrf vrf1</td>
<td></td>
</tr>
<tr>
<td>logging source-interface Loopback1</td>
<td></td>
</tr>
</tbody>
</table>

IPv6 Support for IP SLA ICMP Echo Operation

IP Service Level Agreements (SLAs) Internet Control Message Protocol (ICMP) Echo operation is used to monitor the end-to-end response time between a Cisco router and devices using IP. ICMP Echo is useful for troubleshooting network connectivity issues.
Configuring an IPSLA ICMP echo operation

To monitor IP connections on a device, use the IP SLA ICMP Echo operation. This operation does not require the IP SLAs Responder to be enabled.

SUMMARY STEPS

1. configure
2. ipsla
3. operation n
4. type icmp echo
5. timeout n
6. source address address
7. destination address address
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters IP SLA monitor configuration mode.</td>
</tr>
<tr>
<td>Step 2 ipsla</td>
<td>Initiates configuration for an IP SLA operation.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipsla</td>
<td></td>
</tr>
<tr>
<td>Step 3 operation n</td>
<td>Enters IP SLA ICMP Echo configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ipsla)# operation 500</td>
<td></td>
</tr>
<tr>
<td>Step 4 type icmp echo</td>
<td>Sets the timeout in ms. The default is 5000 milliseconds.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ipsla-op)# type icmp echo</td>
<td></td>
</tr>
<tr>
<td>Step 5 timeout n</td>
<td>Configures the address of the source device.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ipsla-icmp-echo)# timeout 1000</td>
<td></td>
</tr>
<tr>
<td>Step 6 source address address</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ipsla-icmp-echo)# source</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Implementing Host Services and Applications

This section provides the following configuration examples:

Checking Network Connectivity: Example

The following example shows an extended **ping** command sourced from the Router A Ethernet 0 interface and destined for the Router B Ethernet interface. If this ping succeeds, it is an indication that there is no routing problem. Router A knows how to get to the Ethernet of Router B, and Router B knows how to get to the Ethernet of Router A. Also, both hosts have their default gateways set correctly.

If the extended **ping** command from Router A fails, it means that there is a routing problem. There could be a routing problem on any of the three routers: Router A could be missing a route to the subnet of Router B's Ethernet, or to the subnet between Router C and Router B; Router B could be missing a route to the subnet of Router A's subnet, or to the subnet between Router C and Router A; and Router C could be missing a route to the subnet of Router A's or Router B's Ethernet segments. You should correct any routing problems, and then Host 1 should try to ping Host 2. If Host 1 still cannot ping Host 2, then both hosts’ default gateways should be checked. The connectivity between the Ethernet of Router A and the Ethernet of Router B is checked with the extended **ping** command.

With a normal ping from Router A to Router B's Ethernet interface, the source address of the ping packet would be the address of the outgoing interface; that is, the address of the serial 0 interface (172.31.20.1). When Router B replies to the ping packet, it replies to the source address (that is, 172.31.20.1). This way, only the connectivity between the serial 0 interface of Router A (172.31.20.1) and the Ethernet interface of Router B (192.168.40.1) is tested.

To test the connectivity between Router A's Ethernet 0 (172.16.23.2) and Router B's Ethernet 0 (192.168.40.1), we use the extended **ping** command. With extended **ping**, we get the option to specify the source address of the **ping** packet.

In this example, the extended **ping** command verifies the IP connectivity between the two IP addresses 10.0.0.2 and 10.0.0.1.

```
ping
```
Protocol [ip]:
Target IP address: 10.0.0.1
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands? [no]: yes
Source address or interface: 10.0.0.2
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]: yes
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose [none]:
Sweep range of sizes? [no]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.25.58.21, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/11/49 ms

The `traceroute` command is used to discover the paths packets take to a remote destination and where routing breaks down. The `traceroute` command provides the path between the two IP addresses and does not indicate any problems along the path.

```
traceroute
Protocol [ip]:
Target IP address: ena-view3
Source address: 10.0.58.29
Numeric display? [no]:
Timeout in seconds [3]:
Probe count [3]:
Minimum Time to Live [1]:
Maximum Time to Live [30]:
Port Number [33434]:
Loose, Strict, Record, Timestamp, Verbose [none]:
Type escape sequence to abort.
Tracing the route to 171.71.164.199
```

1 sjc-jpollock-vpn.cisco.com (10.25.0.1) 30 msec 4 msec 4 msec
2 15lab-vlan525-gw1.cisco.com (172.19.72.2) 7 msec 5 msec 5 msec
3 sjc5-la64-gw1.cisco.com (172.24.114.33) 5 msec 6 msec 6 msec
4 sjc5-la64-gw1.cisco.com (172.24.114.89) 5 msec 5 msec 5 msec
5 sjc5-la64-gw1.cisco.com (171.71.241.162) 5 msec 6 msec 6 msec
6 sjc5-dc5-gw1.cisco.com (171.71.241.10) 6 msec 6 msec 5 msec
7 sjc5-dc1-gw1.cisco.com (171.71.243.2) 7 msec 8 msec 8 msec
8 ena-view3.cisco.com (171.71.164.199) 6 msec 8 msec

Configuring Domain Services: Example

The following example shows how to configure domain services on a router.

Defining the Domain Host

```bash
configure
domain ipv4 host host1 192.168.7.18
domain ipv4 host host2 10.2.0.2 192.168.7.33
```

Defining the Domain Name

```bash
configure
```
Specifying the Addresses of the Name Servers

code

```plaintext
domain name cisco.com
```

Configuring a Router to Use rcp, FTP, or TFTP Connections: Example

The following example shows how to configure the router to use rcp, FTP, or TFTP connections.

Using rcp

code

```plaintext
configure
rcp client username netadmin1
rcp client source-interface gigabitethernet 1/0/2/1
```

Using FTP

code

```plaintext
configure
ftp client passive
ftp client anonymous-password xxxx
ftp client source-interface gigabitethernet 0/1/2/1
```

Using TFTP

code

```plaintext
configure
tftp client source-interface gigabitethernet 1/0/2/1
```

Additional References

The following sections provide references related to implementing host services and addresses on the Cisco IOS XR Software.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host services and applications commands</td>
<td>Host Services and Applications Commands module in Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC-959</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>RFC-1738 and RFC-2732</td>
<td>Uniform Resource Locators (URL)</td>
</tr>
<tr>
<td>RFC-783</td>
<td>Trivial File Transfer Protocol</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing HSRP

The Hot Standby Router Protocol (HSRP) is an IP routing redundancy protocol designed to allow for transparent failover at the first-hop IP router. HSRP provides high network availability, because it routes IP traffic from hosts on networks without relying on the availability of any single router. HSRP is used in a group of routers for selecting an active router and a standby router. (An active router is the router of choice for routing packets; a standby router is a router that takes over the routing duties when an active router fails, or when preset conditions are met.)

Feature History for Implementing HSRP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.4.0</td>
<td>This feature was updated to support the minimum and reload delay options.</td>
</tr>
<tr>
<td>Release 3.5.0</td>
<td>HSRP supports Ethernet link bundles.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>• BFD for HSRP feature was added.</td>
</tr>
<tr>
<td></td>
<td>• Hot restartability for HSRP feature was added.</td>
</tr>
<tr>
<td>Release 4.2.0</td>
<td>Multiple Group Optimization (MGO) for HSRP feature was added.</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>Enhanced object tracking for HSRP and IP Static feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing HSRP, page 128
- Restrictions for Implementing HSRP, page 128
- Information About Implementing HSRP, page 128
- How to Implement HSRP, page 131
Prerequisites for Implementing HSRP

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing HSRP

HSRP is supported on Ethernet interfaces, Ethernet sub-interfaces and Ethernet link bundles.

Information About Implementing HSRP

To implement HSRP on Cisco IOS XR software, you need to understand the following concepts:

HSRP Overview

HSRP is useful for hosts that do not support a router discovery protocol (such as Internet Control Message Protocol [ICMP] Router Discovery Protocol [IRDP]) and cannot switch to a new router when their selected router reloads or loses power. Because existing TCP sessions can survive the failover, this protocol also provides a more transparent recovery for hosts that dynamically choose an exthop for routing IP traffic.

When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among a group of routers running HSRP. The address of this HSRP group is referred to as the virtual IP address. One of these devices is selected by the protocol to be the active router. The active router receives and routes packets destined for the MAC address of the group. For \(n \) routers running HSRP, \(n + 1 \) IP and MAC addresses are assigned.

HSRP detects when the designated active router fails, at which point a selected standby router assumes control of the MAC and IP addresses of the HSRP group. A new standby router is also selected at that time.

Devices that are running HSRP send and receive multicast User Datagram Protocol (UDP) based hello packets to detect router failure and to designate active and standby routers.

HSRP Groups

An HSRP group consists of two or more routers running HSRP that are configured to provide hot standby services for one another. HSRP uses a priority scheme to determine which HSRP-configured router is to be the default active router. To configure a router as the active router, you assign it a priority that is higher than
the priority of all the other HSRP-configured routers. The default priority is 100, so if you configure just one router to have a higher priority, that router will be the default active router.

HSRP works by the exchange of multicast messages that advertise priority among the HSRP group. When the active router fails to send a hello message within a configurable period of time, the standby router with the highest priority becomes the active router. The transition of packet-forwarding functions between routers is completely transparent to all hosts on the network.

Figure 3: Routers Configured as an HSRP Group, on page 129 shows routers configured as members of a single HSRP group.

Figure 3: Routers Configured as an HSRP Group

All hosts on the network are configured to use the IP address of the virtual router (in this case, 1.0.0.3) as the default gateway.
A single router interface can also be configured to belong to more than one HSRP group. Figure 4: Routers Configured as Members of Multiple HSRP Groups, on page 130 shows routers configured as members of multiple HSRP groups.

Figure 4: Routers Configured as Members of Multiple HSRP Groups

In Figure 4: Routers Configured as Members of Multiple HSRP Groups, on page 130, the Ethernet interface 0 of Router A belongs to group 1. Ethernet interface 0 of Router B belongs to groups 1, 2, and 3. The Ethernet interface 0 of Router C belongs to group 2, and the Ethernet interface 0 of Router D belongs to group 3. When you establish groups, you might want to align them along departmental organizations. In this case, group 1 might support the Engineering Department, group 2 might support the Manufacturing Department, and group 3 might support the Finance Department.

Router B is configured as the active router for groups 1 and 2 and as the standby router for group 3. Router D is configured as the active router for group 3. If Router D fails for any reason, Router B assumes the packet-transfer functions of Router D and maintains the ability of users in the Finance Department to access data on other subnets.

Note

A different virtual MAC address (VMAC) is required for each subinterface. VMAC is determined from the group ID. Therefore, a unique group ID is required for each subinterface configured, unless the VMAC is configured explicitly.

Note

We recommend that you disable Spanning Tree Protocol (STP) on switch ports to which the virtual routers are connected. Enable RSTP or rapid-PVST on the switch interfaces if the switch supports these protocols.
HSRP and ARP

When a router in an HSRP group goes active, it sends a number of ARP responses containing its virtual IP address and the virtual MAC address. These ARP responses help switches and learning bridges update their port-to-MAC maps. These ARP responses also provide routers configured to use the burned-in address of the interface as its virtual MAC address (instead of the preassigned MAC address or the functional address) with a means to update the ARP entries for the virtual IP address. Unlike the gratuitous ARP responses sent to identify the interface IP address when an interface comes up, the HSRP router ARP response packet carries the virtual MAC address in the packet header. The ARP data fields for IP address and media address contain the virtual IP and virtual MAC addresses.

Preemption

The HSRP preemption feature enables the router with highest priority to immediately become the active router. Priority is determined first by the priority value that you configure, and then by the IP address. In each case, a higher value is of greater priority.

When a higher-priority router preempt a lower-priority router, it sends a coup message. When a lower-priority active router receives a coup message or hello message from a higher-priority active router, it changes to the speak state and sends a resign message.

ICMP Redirect Messages

Internet Control Message Protocol (ICMP) is a network layer Internet protocol that provides message packets to report errors and other information relevant to IP processing. ICMP provides many diagnostic functions and can send and redirect error packets to the host. When running HSRP, it is important to prevent hosts from discovering the interface (or real) MAC addresses of routers in the HSRP group. If a host is redirected by ICMP to the real MAC address of a router, and that router later fails, then packets from the host are lost.

ICMP redirect messages are automatically enabled on interfaces configured with HSRP. This functionality works by filtering outgoing ICMP redirect messages through HSRP, where the next-hop IP address may be changed to an HSRP virtual IP address.

To support ICMP redirects, redirect messages are filtered through HSRP, where the next-hop IP address is changed to an HSRP virtual address. When HSRP redirects are turned on, ICMP interfaces with HSRP do this filtering. HSRP keeps track of all HSRP routers by sending advertisements and maintaining a real IP address to virtual IP address mapping to perform the redirect filtering.

How to Implement HSRP

This section contains instructions for the following tasks:

Enabling HSRP

The hsrp ipv4 command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the virtual address is learned from the active router. For HSRP to elect a designated router, at least one router in the Hot Standby
group must have been configured with, or learned, the designated address. Configuring the designated address on the active router always overrides a designated address that is currently in use.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-number version version-no
6. address { learn | address [secondary] }
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-number version version-no</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 6</td>
<td>address { learn</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>

Note The `version` keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.

- If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the virtual address is learned from the active router.
Enabling HSRP for IPv6

Use the following steps to enable HSRP for IPv6.

SUMMARY STEPS

1. `configure`
2. `router hsrp`
3. `interface type interface-path-id`
4. `address-family ipv6`
5. `hSRP group-number`
6. `address linklocal {autoconfig | ipv6-address}`
7. `address global ipv6-address`
8. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `configure`
Enables HSRP configuration mode. |
| **Step 2** | `router hsrp`
Example:

`RP/0/RP0/CPU0:router(config)# router hsrp`
Enables HSRP configuration mode. |
| **Step 3** | `interface type interface-path-id`
Example:

`RP/0/RP0/CPU0:router(config-hsrp)# interface TenSigE 0/2/0/1`
Enables HSRP interface configuration mode on a specific interface. |
Configuring HSRP Group Attributes

To configure other Hot Standby group attributes that affect how the local router participates in HSRP, use the following procedure in interface configuration mode as needed:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>address-family ipv6</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv6</td>
<td></td>
</tr>
</tbody>
</table>

Step 5	Enables HSRP group submode.
hsrp group-number	
Example:	
RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1	

Note: The `version` keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.

Step 6	Activates HSRP on the configured interface and assigns a linklocal IPv6 address.	
address linklocal {autoconfig	ipv6-address}	
Example:		
RP/0/RP0/CPU0:router(config-hsrp-gp)# address linklocal autoconfig		

- The virtual linklocal address must not match any other virtual linklocal address that is already configured for a different group.
- The virtual linklocal address must not match the interface linklocal IPv6 address.
- If you use the `autoconfig` keyword, the linklocal address is calculated using the EUI-64 format.
- Use the `legacy-compatible` keyword to be compatible with Cisco IOS and other legacy Cisco devices.

Step 7	Activates HSRP on the configured interface and assigns a global IPv6 address.
address global ipv6-address	
Example:	
RP/0/RP0/CPU0:router(config-hsrp-gp)# address global 2001:DB8:A:B::1	

Note: If you configure HSRP for IPv6, you must configure a link local IPv6 address or enable it using the `autoconfig` keyword.
If you do not configure a linklocal IPv6 address, the router does not accept the configuration when you commit your changes using the `commit` keyword.

| **Step 8** | |
| commit | |
SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp use-bia
5. address-family ipv4
6. hsrp group-number version version-no
7. priority priority
8. track type instance [priority-decrement]
9. preempt [delay seconds]
10. authentication string
11. mac-address address
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>(Optional) Configures the HSRP to use the burned-in address of the interface as its virtual MAC address, instead of the preassigned MAC address or the functional address.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-hsrp-lf)# hsrp use-bia</td>
<td></td>
</tr>
</tbody>
</table>

- Enter the **use-bia** command on an interface when there are devices that reject Address Resolution Protocol (ARP) replies with source hardware addresses set to a functional address.
- To restore the default virtual MAC address, use the **no hsrp use-bia** command.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>address-family ipv4
Example:
RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 6</td>
<td>hsrp group-number version version-no
Example:
RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1</td>
</tr>
<tr>
<td>Step 7</td>
<td>priority priority
Example:
RP/0/RP0/CPU0:router(config-hsrp-gp)# priority 100</td>
</tr>
</tbody>
</table>
| **Step 8** | **track type instance [priority-decrement]**
Example:
RP/0/RP0/CPU0:router(config-hsrp-gp)# track TenGigE 0/3/0/1 | (Optional) Configures an interface so that the Hot Standby priority changes on the basis of the availability of other interfaces.

• When a tracked interface goes down, the Hot Standby priority decreases by 10. If an interface is not tracked, its state changes do not affect the Hot Standby priority. For each interface configured for Hot Standby, you can configure a separate list of interfaces to be tracked.

• The optional *priority-decrement* argument specifies by how much to decrement the Hot Standby priority when a tracked interface goes down. When the tracked interface comes back up, the priority is incrementally increased by the same amount.

• When multiple tracked interfaces are down and the *priority-decrement* argument has been configured, these configured priority decrements are cumulative. If tracked interfaces are down, but none of them were configured with priority decrements, the default decrement is 10 and it is cumulative.

• The *preempt* command must be used in conjunction with this command on all routers in the group whenever the best available router
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>should be used to forward packets. If the preempt command is not used, the active router stays active, regardless of the current priorities of the other HSRP routers.</td>
<td></td>
</tr>
<tr>
<td>To remove the tracking, use the no preempt command.</td>
<td></td>
</tr>
</tbody>
</table>

Step 9

preempt [delay seconds]

(Non-optional) Configures HSRP preemption and preemption delay.

- When you configure preemption and preemption delay with the **preempt** command, the local router attempts to assume control as the active router when the local router has a Hot Standby priority higher than the current active router. If the **preempt** command is not configured, the local router assumes control as the active router only if it receives information indicating that no router is currently in the active state (acting as the designated router).

- When a router first comes up, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, yet it is unable to provide adequate routing services. This problem can be solved by configuring a delay before the preempting router actually preempts the currently active router.

- The **preempt delay seconds** value does not apply if there is no router currently in the active state. In this case, the local router becomes active after the appropriate timeouts (see the **timers** command), regardless of the preempt delay seconds value.

- To restore the default HSRP preemption and preemption delay values, use the **no preempt** command.

Step 10

authentication string

- The authentication string is sent unencrypted in all HSRP messages. The same authentication string must be configured on all routers and access servers on a LAN to ensure interoperation.

- Authentication mismatch prevents a device from learning the designated Hot Standby IP address and the Hot Standby timer values from other routers configured with HSRP.

- Authentication mismatch does not prevent protocol events such as one router taking over as the designated router.

- To delete an authentication string, use the **no authentication** command.

Step 11

mac-address address

(Non-optional) Specifies a virtual MAC address for the HSRP.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>• We do not recommend this command, except for IBM networking environments in which first-hop redundancy is based on being able to use a virtual MAC address, and in which you cannot change the first-hop addresses in the PCs that are connected to an Ethernet switch.</td>
</tr>
<tr>
<td>mac-address 4000.1000.1060</td>
<td>• HSRP is used to help end stations locate the first-hop gateway for IP routing. The end stations are configured with a default gateway. However, HSRP can provide first-hop redundancy for other protocols. Some protocols, such as Advanced Peer-to-Peer Networking (APPN), use the MAC address to identify the first-hop for routing purposes. In this case, it is often necessary to specify the virtual MAC address; the virtual IP address is unimportant for these protocols. Use the mac-address command to specify the virtual MAC address.</td>
</tr>
<tr>
<td></td>
<td>• The MAC address specified is used as the virtual MAC address when the router is active.</td>
</tr>
<tr>
<td></td>
<td>• The mac-address command is intended for certain APPN configurations.</td>
</tr>
<tr>
<td></td>
<td>• In an APPN network, an end node is typically configured with the MAC address of the adjacent network node. Use the mac-address command in the routers to set the virtual MAC address to the value used in the end nodes.</td>
</tr>
<tr>
<td></td>
<td>• Enter the no mac-address command to revert to the standard virtual MAC address (0000.0C07.ACn).</td>
</tr>
</tbody>
</table>

Step 12 commit

Configuring the HSRP Activation Delay

The activation delay for HSRP is designed to delay the startup of the state machine when an interface comes up. This gives the network time to settle and avoids unnecessary state changes early after the link comes up.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp delay [minimum seconds] [reload seconds]
5. address-family ipv4
6. hsrp group-number version version-no
7. address { learn | address [secondary] }
8. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp delay [minimum seconds] [reload seconds]</td>
</tr>
<tr>
<td>Example:</td>
<td>Delays the startup of the state machine when an interface comes up, so that the network has time to settle and there are no unnecessary state changes early after the link comes up. The reload delay is the delay applied after the first interface up event. The minimum delay is the delay that is applied after any subsequent interface up event (if the interface flaps).</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)#hsrp delay minimum 2 reload 10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>hsrp group-number version version-no</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables HSRP group submode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
</tr>
<tr>
<td>Step 7</td>
<td>address { learn</td>
</tr>
<tr>
<td>Example:</td>
<td>Activates HSRP on the configured interface.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-gp)# address learn</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the virtual address is learned from the active router.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-gp)# address learn</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If you configure HSRP for IPv6, you must configure a link local IPv6 address or enable it using the autoconfig keyword. If you do not configure a link local IPv6 address, the router does not accept the configuration when you commit your changes using the commit keyword.</td>
</tr>
<tr>
<td>Step 8</td>
<td>commit</td>
</tr>
</tbody>
</table>
Enabling HSRP Support for ICMP Redirect Messages

By default, HSRP filtering of ICMP redirect messages is enabled on routers running HSRP. To configure the enabling of this feature on your router if it is disabled, use the `hsrp redirects` command in interface configuration mode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp redirects disable
5. address-family ipv4
6. hsrp group-number version version-no
7. address { learn | address [secondary] }
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CP00:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CP00:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp redirects disable</td>
<td>Configures Internet Control Message Protocol (ICMP) redirect messages to be sent when the Hot Standby Router Protocol (HSRP) is configured on an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CP00:router(config-hsrp-if)# hsrp redirects</td>
<td></td>
</tr>
</tbody>
</table>

- The `hsrp redirects` command can be configured on a per-interface basis. When HSRP is first configured on an interface, the setting for that interface inherits the global value. If ICMP redirects have been explicitly disabled on an interface, then the global command cannot reenable the functionality.

- With the `hsrp redirects` command enabled, ICMP redirect messages are filtered by replacing the real IP address in the next-hop address of the redirect packet with a virtual IP address, if it is known to HSRP.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• To revert to the default, which is that ICMP messages are enabled, use the <code>no hsrp redirects</code> command.</td>
</tr>
<tr>
<td>Step 5 address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6 hsrp group-number version version-no</td>
<td>Enables HSRP group submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1</td>
<td></td>
</tr>
<tr>
<td>Step 7 address { learn</td>
<td>address [secondary] }</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-hsrp-gp)# address learn</td>
<td></td>
</tr>
<tr>
<td>Step 8 commit</td>
<td></td>
</tr>
</tbody>
</table>

Multiple Group Optimization (MGO) for HSRP

Multiple Group Optimization provides a solution for reducing control traffic in a deployment consisting of many subinterfaces. By running the HSRP control traffic for just one of the sessions, the control traffic is reduced for the subinterfaces with identical redundancy requirements. All other sessions are slaves of this primary session, and inherit their states from it.

Customizing HSRP

Customizing the behavior of HSRP is optional. Be aware that as soon as you enable a HSRP group, that group is in operation.
SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no version version-no
6. name name
7. address {learn | address}
8. address address secondary
9. authentication string
10. bfd fast-detect
11. mac-address address
12. hsrp group-no slave
13. follow mgo-session-name
14. address ip-address
15. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-no version version-no</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
<td>Note The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>name name</td>
<td>Configures an HSRP session name.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-gp)# name s1</td>
<td></td>
</tr>
</tbody>
</table>
| Step 7 | address { learn | address} | Enables hot standby protocol for IP.
• If an IP address is specified, that address is used as the designated address for the Hot Standby group.
If no IP address is specified, the virtual address is learned from the active router. |
<p>| Example: | RP/0/RP0/CPU0:router(config-hsrp-gp)# address learn |
| Step 8 | address address secondary | Configures the secondary virtual IPv4 address for a router. |
| Example: | RP/0/RP0/CPU0:router(config-hsrp-gp)# address 10.20.30.1 secondary |
| Step 9 | authentication string | Configures an authentication string for the Hot Standby Router Protocol (HSRP). |
| Example: | RP/0/RP0/CPU0:router(config-hsrp-gp)# authentication company1 |
| Step 10 | bfd fast-detect | Enables bidirectional forwarding (BFD) fast-detection on a HSRP interface. |
| Example: | RP/0/RP0/CPU0:router(config-hsrp-gp)# bfd fast-detect |
| Step 11 | mac-address address | Specifies a virtual MAC address for the Hot Standby Router Protocol (HSRP). |
| Example: | RP/0/RP0/CPU0:router(config-hsrp-gp)# mac-address 4000.1000.1060 |
| Step 12 | hsrp group-no slave | Enables HSRP slave configuration mode on a specific interface. |
| Example: | RP/0/RP0/CPU0:router(config-hsrp-gp)# hsrp 2 slave |</p>
<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>follow mgo-session-name</td>
<td>Instructs the slave group to inherit its state from a specified group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-slave)# follow s1</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>address ip-address</td>
<td>Configures the primary virtual IPv4 address for the slave group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-slave)# address 10.3.2.2</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Primary Virtual IPv4 Address

To enable hot standby protocol for IP, use the `address (hsrp)` command in the HSRP group submode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-noversion version-no
6. address { learn | address}
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>interface type interface-path-id</code></td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>address-family ipv4</code></td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>hsrp group-noversion version-no</code></td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td>• The <code>version</code> keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HSRP version 2 provides an extended group range of 0-4095.</td>
</tr>
<tr>
<td>Step 6</td>
<td>`address { learn</td>
<td>address}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# address learn</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Secondary Virtual IPv4 Address

To configure the secondary virtual IPv4 address for a router, use the `address secondary` command in the Hot Standby Router Protocol (HSRP) virtual router submode.

SUMMARY STEPS

1. `configure`
2. `router hsrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `hsrp group-noversion version-no`
6. `address address secondary`
7. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-noversion version-no</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>• The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• HSRP version 2 provides an extended group range of 0-4095.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a router.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# address 10.20.30.1 secondary</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a slave follow

To instruct the slave group to inherit its state from a specified group, use the `slave follow` command in HSRP slave submode mode.
SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. follow mgo-session-name
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-no slave</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 2 slave</td>
</tr>
<tr>
<td>Step 6</td>
<td>follow mgo-session-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-slave)# follow m1</td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>
Configuring a slave primary virtual IPv4 address

To configure the primary virtual IPv4 address for the slave group, use the `slave primary virtual IPv4 address` command in the HSRP slave submode.

SUMMARY STEPS

1. `configure`
2. `router hsrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `hsrp group-no slave`
6. `address ip-address`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5 hsrp group-no slave</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 2 slave</td>
</tr>
</tbody>
</table>
Configuring a Secondary Virtual IPv4 address for the Slave Group

Perform this task to configure the secondary virtual IPv4 address for the slave group.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. address address secondary
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# router hsrp
RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1
```
Purpose

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsrp group-no slave</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-hsrp-address-family)# hsrp 2 slave
```

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a router.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-hsrp-slave)# address 10.20.30.1 secondary
```

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a slave virtual mac address

To configure the virtual MAC address for the slave group, use the `slave virtual mac address` command in the HSRP slave submode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. mac-address address
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-no slave</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>mac-address address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring an HSRP Session Name

To configure an HSRP session name, use the \texttt{session name} command in the HSRP group submode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-noversion version-no
6. name name
7. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5 hsrp group-noversion version-no</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
</tr>
<tr>
<td>Note</td>
<td>• The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
</tr>
<tr>
<td></td>
<td>• HSRP version 2 provides an extended group range of 0-4095.</td>
</tr>
<tr>
<td>Step 6 name name</td>
<td>Configures an HSRP session name.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# name s1</td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

BFD for HSRP

Bidirectional Forwarding Detection (BFD) is a network protocol used to detect faults between two forwarding engines. BFD sessions can operate in one of the two modes, namely, asynchronous mode or demand mode. In asynchronous mode, both endpoints periodically send hello packets to each other. If a number of those packets are not received, the session is considered down. In demand mode, it is not mandatory to exchange hello packets; either of the hosts can send hello messages, if needed. Cisco supports the BFD asynchronous mode.
Advantages of BFD

- BFD provides failure detection in less than one second.
- BFD supports all types of encapsulation.
- BFD is not tied to any particular routing protocol, supports almost all routing protocols.

BFD Process

HSRP uses BFD to detect link failure and facilitate fast failover times without excessive control packet overhead.

The HSRP process creates BFD sessions as required. When a BFD session goes down, each Standby group monitoring the session transitions to Active state.

HSRP does not participate in any state elections for 10 seconds after a transition to Active state triggered by a BFD session going down.

Configuring BFD

For HSRP, configuration is applied under the existing HSRP-interface sub-mode, with BFD fast failure configurable per HSRP group and the timers (minimum-interface and multiplier) configurable per interface. BFD fast failure detection is disabled by default.

Enabling BFD

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp [group number] version version-no bfd fast-detect [peer ipv4 ipv4-address interface-type interface-path-id]
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Enables HSRP configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp [group number] version version-no bfd fast-detect [peer ipv4 ipv4-address interface-type interface-path-id]</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2 bfd fast-detect peer ipv4 10.3.5.2 TenGigE 0/3/4/2</td>
</tr>
<tr>
<td>Enables fast detection on a specific interface.</td>
<td></td>
</tr>
</tbody>
</table>
| **Note** | • The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.
• HSRP version 2 provides an extended group range of 0-4095. |
| **Step 6** | commit |

Modifying BFD timers (minimum interval)

Minimum interval determines the frequency of sending BFD packets to BFD peers (in milliseconds). The default minimum interval is 15ms.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp bfd minimum-interval interval
5. address-family ipv4
6. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp bfd minimum-interval interval</td>
<td>Sets the minimum interval to the specified period. The interval is in milliseconds; range is 15 to 30000 milliseconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# hsrp bfd minimum-interval 20</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Modifying BFD timers (multiplier)

Multiplier is the number of consecutive BFD packets which must be missed from a BFD peer before declaring that peer unavailable. The default multiplier is 3.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp bfd multiplier multiplier
5. address-family ipv4
6. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>hsrp bfd multiplier multiplier</td>
<td>Sets the multiplier to the value. Range is 2 to 50.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# hsrp bfd multiplier 30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Enhanced Object Tracking for HSRP and IP Static

A failure between the active router and the core network cannot be detected using standard HSRP failure detection mechanisms. Object tracking is used to detect such failures. When such a failure occurs, the active router applies a priority decrement to its HSRP session. If this causes its priority to fall below that of the standby router, it will detect this from the HSRP control traffic, and then use this as a trigger to preempt and take over the active role.

The enhanced object tracking for HSRP and IP Static feature provides first-hop redundancy as well as default gateway selection based on IP Service Level Agreement (IPSLA).

See the *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*, for more information about enhanced object tracking for static routes.
Configuring object tracking for HSRP

To enable tracking of the named object with the specified decrement, use the following configuration in the HSRP group sub mode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-number version version-no
6. track object name [priority-decrement]
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp)#</td>
<td></td>
</tr>
<tr>
<td>interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)#</td>
<td></td>
</tr>
<tr>
<td>address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 hsrp group-number version version-no</td>
<td>Enables HSRP group submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-ipv4)#</td>
<td></td>
</tr>
<tr>
<td>hsrp 1 version 1</td>
<td></td>
</tr>
</tbody>
</table>

Note The `version` keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 track object name ([\text{priority-decrement}])</td>
<td>Enable tracking of the named object with the specified decrement.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-hsrp-gp)# track object (t1) 2</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

Hot Restartability for HSRP

In the event of failure of a HSRP process in one active group, forced failovers in peer HSRP active router groups should be prevented. Hot restartability supports warm RP failover without incurring forced failovers to peer HSRP routers for active groups.

Configuration Examples for HSRP Implementation on Software

This section provides the following HSRP configuration examples:

Configuring an HSRP Group: Example

The following is an example of enabling HSRP on an interface and configuring HSRP group attributes:

```plaintext
configure
router hsrp
interface TenGigE 0/2/0/1
address-family ipv4
hsrp 1
name s1
address 10.0.0.5
timers 100 200
preempt delay 500
priority 20
track TenGigE 0/2/0/2
authentication company0
use-bia
commit
hsrp 2 slave
follow s1
address 10.3.2.2
commit
```

Configuring a Router for Multiple HSRP Groups: Example

The following is an example of configuring a router for multiple HSRP groups:

```plaintext
configure
router hsrp
```

interface TenGigE 0/2/0/3
displays family ipv4
hsrp 1
address 1.0.0.5
priority 20
preempt
authentication aclara
hsrp 2
address 1.0.0.6
priority 110
preempt
authentication mview
hsrp 3
address 1.0.0.7
preempt
authentication svale
commit

Additional References

The following sections provide references related to HSRP

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Quality of Service Commands on Cisco IOS XR Modular Quality of Service Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Class-based traffic shaping, traffic policing, low-latency queuing, and Modified Deficit Round Robin (MDRR)</td>
<td>Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Modular Quality of Service Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>WRED, RED, and tail drop</td>
<td>Configuring Modular QoS Congestion Avoidance on Cisco IOS XR Modular Quality of Service Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>HSRP commands</td>
<td>HSRP Commands on Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>master command reference</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>getting started material</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Implementing LPTS

Local Packet Transport Services (LPTS) maintains tables describing all packet flows destined for the secure domain router (SDR), making sure that packets are delivered to their intended destinations.

For a complete description of the LPTS commands listed in this module, refer to the LPTS Commands module of Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router.

Feature History for Implementing LPTS

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.6.0</td>
<td>The LPTS policer configuration feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing LPTS, page 161
- Information About Implementing LPTS, page 161
- Configuring LPTS Policer with IP TOS Precedence, page 162
- Configuration Examples for Implementing LPTS Policers, page 164
- Additional References, page 169

Prerequisites for Implementing LPTS

The following prerequisites are required to implement LPTS:

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing LPTS

To implement LPTS features mentioned in this document you must understand the following concepts:
LPTS Overview

LPTS uses two components to accomplish this task: the port arbitrator and flow managers. The port arbitrator and flow managers are processes that maintain the tables that describe packet flows for a logical router, known as the Internal Forwarding Information Base (IFIB). The IFIB is used to route received packets to the correct Route Processor or line card for processing.

LPTS interfaces internally with all applications that receive packets from outside the router. LPTS functions without any need for customer configuration. However, LPTS `show` commands are provided that allow customers to monitor the activity and performance of LPTS flow managers and the port arbitrator.

LPTS Policers

In Cisco IOS XR, the control packets, which are destined to the Route Processor (RP), are policed using a set of ingress policers in the incoming line cards. These policers are programmed statically during bootup by LPTS components. The policers are applied based on the flow type of the incoming control traffic. The flow type is determined by looking at the packet headers. The policer rates for these static ingress policers are defined in a configuration file, which are programmed on the line card during bootup.

You can change the policer values based on the flow types of these set of ingress policers. You are able to configure the rate per policer per node (locally) and globally using the command-line interface (CLI); therefore, overwriting the static policer values.

Configuring LPTS Policer with IP TOS Precedence

This task allows you to configure the LPTS policers with IP table of service (TOS) precedence:

SUMMARY STEPS

1. configure
2. lpts pifib hardware police [location node-id]
3. flow flow_type
4. precedence {number | name}
5. commit
6. show lpts pifib hardware police [location {all | node_id}]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>lpts pifib hardware police [location node-id]</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# lpts pifib hardware</code></td>
</tr>
</tbody>
</table>

Configures the ingress policers. You can configure per node or all locations. The example shows configuration of pifib policer on an individual node and globally for all nodes respectively.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>police location 0/2/CPU0</code></td>
<td>Configures the policer for the LPTS flow type. The example shows how to configure the policer for the telnet flow type per node or global mode (all locations).</td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)# lpts pifib hardware police</code></td>
<td>• Use the <code>flow_type</code> argument to select the applicable flow type. For information about the flow types, see Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Step 4</td>
</tr>
<tr>
<td><code>flow flow_type</code></td>
<td>`precedence {number</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-pifib-policer-per-node)# flow telnet default</code></td>
<td><code>RP/0/RP0/CPU0:router(config-pifib-policer-per-node)# precedence 5 6 7</code></td>
</tr>
<tr>
<td><code>or</code></td>
<td><code>or</code></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-pifib-policer-global)# flow telnet default</code></td>
<td><code>RP/0/RP0/CPU0:router(config-pifib-policer-global)# precedence 5 6 7</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Step 6</td>
</tr>
<tr>
<td><code>commit</code></td>
<td>`show lpts pifib hardware police [location {all</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router# show lpts pifib hardware police location 0/2/cpu0</code></td>
<td>- (Optional) Use the <code>location</code> keyword to display policer value for the designated node. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation.</td>
</tr>
<tr>
<td>- Use the <code>all</code> keyword to specify all locations.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring LPTS Policers

This task allows you to configure the LPTS policers.

SUMMARY STEPS

1. `configure`
2. `lpts pifib hardware police [location node-id]`
3. `flow flow_type {rate rate}
4. `commit`
5. `show lpts pifib hardware police [location {all | node_id}]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>lpts pifib hardware police [location node-id]</code></td>
<td>Configures the ingress policers and enters pifib policer global configuration mode or pifib policer per node configuration mode. The example shows pifib policer per node configuration mode and global.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# lpts pifib hardware police location 0/2/CPU0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pifib-policer-per-node)# lpts pifib hardware police</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# lpts pifib hardware police</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pifib-policer-global)# lpts pifib hardware police</td>
<td></td>
</tr>
</tbody>
</table>
| 3 | `flow flow_type {rate rate}` | Configures the policer for the LPTS flow type. The example shows how to configure the policer for the ospf flow type.

- Use the `flow_type` argument to select the applicable flow type. For information about the flow types, see *Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router*.
- Use the `rate` keyword to specify the rate in packets per seconds (PPS). The range is from 0 to 4294967295. |
| | **Example:** | |
| | RP/0/RP0/CPU0:router(config-pifib-policer-per-node)# flow ospf unicast default rate 20000 | |
| 4 | commit | Displays the policer configuration value set. |
| 5 | `show lpts pifib hardware police [location {all | node_id}]` | Displays the policer configuration value set.

- (Optional) Use the `location` keyword to display pre-Internal Forwarding Information Base (IFIB) information for the designated node. The `node-id` argument is entered in the rack/slot/module notation.
- Use the `all` keyword to specify all locations. |

Configuration Examples for Implementing LPTS Policers

This section provides the following configuration example:
Configuring LPTS Policers: Example

The following example shows how to configure LPTS policers:

```
configure
  lpts pifib hardware police
  flow ospf unicast default rate 200
  flow bgp configured rate 200
  flow bgp default rate 100
  
  lpts pifib hardware police location 0/2/CPU0
  flow ospf unicast default rate 100
  flow bgp configured rate 300
  
  show lpts pifib hardware police location 0/2/CPU0
```

<table>
<thead>
<tr>
<th>FT</th>
<th>Flow type ID</th>
<th>PPS</th>
<th>Accept/Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unconfigured-default</td>
<td>101</td>
<td>0/0</td>
</tr>
<tr>
<td>1</td>
<td>Fragment</td>
<td>1000</td>
<td>0/0</td>
</tr>
<tr>
<td>2</td>
<td>OSPF-mc-known</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OSPF-mc-default</td>
<td>250</td>
<td>0/0</td>
</tr>
<tr>
<td>4</td>
<td>OSPF-uc-known</td>
<td>2000</td>
<td>0/0</td>
</tr>
<tr>
<td>5</td>
<td>OSPF-uc-default</td>
<td>101</td>
<td>1/0</td>
</tr>
<tr>
<td>6</td>
<td>ISIS-known</td>
<td>1500</td>
<td>0/0</td>
</tr>
<tr>
<td>7</td>
<td>ISIS-default</td>
<td>250</td>
<td>0/0</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BGP-cfg-peer</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>BGP-default</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>PIM-mcast</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>PIM-ucast</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>IGMP</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>ICMP-local</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>ICMP-app</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>ICMP-control</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>ICMP-default</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>LDP-TCP-known</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>LDP-TCP-cfg-peer</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>LDP-TCP-default</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>LDP-UDP</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>All-routers</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>LMP-TCP-known</td>
<td></td>
</tr>
</tbody>
</table>
24 LMP-TCP-cfg-peer 1500 0/0
25 LMP-TCP-default 250 0/0
26 LMP-UDP 1000 0/0
27 RSVP-UDP 1000 0/0
28 RSVP 1000 0/0
29 IKE 1000 0/0
30 IPSEC-known 1000 0/0
31 IPSEC-default 250 0/0
32 MSDP-known 1000 0/0
33 MSDP-cfg-peer 1000 0/0
34 MSDP-default 250 0/0
35 SNMP 1000 0/0
36 NTP 500 0/0
37 SSH-known 1000 0/0
38 SSH-default 1000 0/0
39 HTTP-known 1000 0/0
40 HTTP-default 1000 0/0
41 SHTTP-known 1000 0/0
42 SHTTP-default 1000 0/0
43 TELNET-known 1000 0/0
44 TELNET-default 500 0/0
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>CSS-known</td>
<td>1000 0/0</td>
</tr>
<tr>
<td>46</td>
<td>CSS-default</td>
<td>500 0/0</td>
</tr>
<tr>
<td>47</td>
<td>RSH-known</td>
<td>1000 0/0</td>
</tr>
<tr>
<td>48</td>
<td>RSH-default</td>
<td>500 0/0</td>
</tr>
<tr>
<td>49</td>
<td>UDP-known</td>
<td>2000 0/0</td>
</tr>
<tr>
<td>50</td>
<td>UDP-listen</td>
<td>1500 0/0</td>
</tr>
<tr>
<td>51</td>
<td>UDP-cfg-peer</td>
<td>1500 0/0</td>
</tr>
<tr>
<td>52</td>
<td>UDP-default</td>
<td>101 6/0</td>
</tr>
<tr>
<td>53</td>
<td>TCP-known</td>
<td>2000 0/0</td>
</tr>
<tr>
<td>54</td>
<td>TCP-listen</td>
<td>2000 0/0</td>
</tr>
<tr>
<td>55</td>
<td>TCP-cfg-peer</td>
<td>2000 0/0</td>
</tr>
<tr>
<td>56</td>
<td>TCP-default</td>
<td>101 6/0</td>
</tr>
<tr>
<td>57</td>
<td>Mcast-known</td>
<td>2000 0/0</td>
</tr>
<tr>
<td>58</td>
<td>Mcast-default</td>
<td>101 0/0</td>
</tr>
<tr>
<td>59</td>
<td>Raw-</td>
<td></td>
</tr>
</tbody>
</table>
Additional References

The following sections provide references related to implementing LPTS.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR LPTS commands: complete command syntax, command modes,</td>
<td>Cisco LPTS Commands module in the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support</td>
<td>—</td>
</tr>
<tr>
<td>for existing standards has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Network Stack IPv4 and IPv6

The Network Stack IPv4 and IPv6 features are used to configure and monitor Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6).

This module describes the new and revised tasks you need to implement Network Stack IPv4 and IPv6 on your Cisco IOS XR network.

For a complete description of the Network Stack IPv4 and IPv6 commands, refer to the Network Stack IPv4 and IPv6 Commands module of the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router. To locate documentation for other commands that appear in this chapter, use the Cisco IOS XR Commands Master List for the Cisco CRS Router, or search online.

Feature History for Implementing Network Stack IPv4 and IPv6

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.8.0</td>
<td>The Route-Tag Support for Connected Routes feature was added.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>GRE for IPv4/ v6 feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Network Stack IPv4 and IPv6, page 172
- Restrictions for Implementing Network Stack IPv4 and IPv6, page 172
- Information About Implementing Network Stack IPv4 and IPv6, page 172
- How to Implement Network Stack IPv4 and IPv6, page 190
- Generic Routing Encapsulation, page 202
- Configuration Examples for Implementing Network Stack IPv4 and IPv6, page 203
- Additional References, page 204
Prerequisites for Implementing Network Stack IPv4 and IPv6

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing Network Stack IPv4 and IPv6

In any Cisco IOS XR software release with IPv6 support, multiple IPv6 global addresses can be configured on an interface. However, multiple IPv6 link-local addresses on an interface are not supported.

Information About Implementing Network Stack IPv4 and IPv6

To implement Network Stack IPv4 and IPv6, you need to understand the following concepts:

Network Stack IPv4 and IPv6 Exceptions

The Network Stack feature in the Cisco IOS XR software has the following exceptions:

- In Cisco IOS XR software, the `clear ipv6 neighbors` and `show ipv6 neighbors` commands include the `location node-id` keyword. If a location is specified, only the neighbor entries in the specified location are displayed.

- The `ipv6 nd scavenger-timeout` command sets the lifetime for neighbor entries in the stale state. When the scavenger-timer for a neighbor entry expires, the entry is cleared.

- In Cisco IOS XR software, the `show ipv4 interface` and `show ipv6 interface` commands include the `location node-id` keyword. If a location is specified, only the interface entries in the specified location are displayed.

- Cisco IOS XR software allows conflicting IP address entries at the time of configuration. If an IP address conflict exists between two interfaces that are active, Cisco IOS XR software brings down the interface according to the configured conflict policy, the default policy being to bring down the higher interface instance. For example, if GigabitEthernet 0/1/0/1 conflicts with GigabitEthernet 0/2/0/1, then the IPv4 protocol on GigabitEthernet 0/2/0/1 is brought down and IPv4 remains active on GigabitEthernet 0/1/0/1.

IPv4 and IPv6 Functionality

When Cisco IOS XR software is configured with both an IPv4 and an IPv6 address, the interface can send and receive data on both IPv4 and IPv6 networks.

The architecture of IPv6 has been designed to allow existing IPv4 users to make the transition easily to IPv6 while providing services such as end-to-end security, quality of service (QoS), and globally unique addresses. The larger IPv6 address space allows networks to scale and provide global reachability. The simplified IPv6 packet header format handles packets more efficiently. IPv6 prefix aggregation, simplified network renumbering, and IPv6 site multihoming capabilities provide an IPv6 addressing hierarchy that allows for more efficient
routering. IPv6 supports widely deployed routing protocols such as Intermediate System-to-Intermediate System (IS-IS), Open Shortest Path First (OSPF), and multiprotocol Border Gateway Protocol (BGP).

The IPv6 neighbor discovery (nd) process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and keep track of neighboring routers.

IPv6 for Cisco IOS XR Software

IPv6, formerly named IPng (next generation) is the latest version of the Internet Protocol (IP). IP is a packet-based protocol used to exchange data, voice, and video traffic over digital networks. IPv6 was proposed when it became clear that the 32-bit addressing scheme of IP version 4 (IPv4) was inadequate to meet the demands of Internet growth. After extensive discussion, it was decided to base IPng on IP but add a much larger address space and improvements such as a simplified main header and extension headers. IPv6 is described initially in RFC 2460, *Internet Protocol, Version 6 (IPv6) Specification* issued by the Internet Engineering Task Force (IETF). Further RFCs describe the architecture and services supported by IPv6.

Larger IPv6 Address Space

The primary motivation for IPv6 is the need to meet the anticipated future demand for globally unique IP addresses. Applications such as mobile Internet-enabled devices (such as personal digital assistants [PDAs], telephones, and cars), home-area networks (HANs), and wireless data services are driving the demand for globally unique IP addresses. IPv6 quadruples the number of network address bits from 32 bits (in IPv4) to 128 bits, which provides more than enough globally unique IP addresses for every networked device on the planet. By being globally unique, IPv6 addresses inherently enable global reachability and end-to-end security for networked devices, functionality that is crucial to the applications and services that are driving the demand for the addresses. Additionally, the flexibility of the IPv6 address space reduces the need for private addresses and the use of Network Address Translation (NAT); therefore, IPv6 enables new application protocols that do not require special processing by border routers at the edge of networks.

IPv6 Address Formats

IPv6 addresses are represented as a series of 16-bit hexadecimal fields separated by colons (:). The format is: x:x:x:x:x:x:x:x. Following are two examples of IPv6 addresses:

```
2001:0DB8:0:0:8:800:200C:417A
```

It is common for IPv6 addresses to contain successive hexadecimal fields of zeros. To make IPv6 addresses less cumbersome, two colons (::) can be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address. (The colons represent successive hexadecimal fields of zeros.) Table 2: Compressed IPv6 Address Formats, on page 174 lists compressed IPv6 address formats.

A double colon may be used as part of the *ipv6-address* argument when consecutive 16-bit values are denoted as zero. You can configure multiple IPv6 addresses per interfaces, but only one link-local address.

Note

Two colons (::) can be used only once in an IPv6 address to represent the longest successive hexadecimal fields of zeros.
The hexadecimal letters in IPv6 addresses are not case-sensitive.

Table 2: Compressed IPv6 Address Formats

<table>
<thead>
<tr>
<th>IPv6 Address Type</th>
<th>Preferred Format</th>
<th>Compressed Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
<td>2001:0:0:0:0DB8:800:200C:417A</td>
<td>1080::0DB8:800:200C:417A</td>
</tr>
<tr>
<td>Multicast</td>
<td>FF01:0:0:0:0:0:0:101</td>
<td>FF01::101</td>
</tr>
<tr>
<td>Loopback</td>
<td>0:0:0:0:0:0:0:1</td>
<td>::1</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0:0:0:0:0:0:0:0</td>
<td>::</td>
</tr>
</tbody>
</table>

The loopback address listed in **Table 2: Compressed IPv6 Address Formats, on page 174** may be used by a node to send an IPv6 packet to itself. The loopback address in IPv6 functions the same as the loopback address in IPv4 (127.0.0.1).

Note

The IPv6 loopback address cannot be assigned to a physical interface. A packet that has the IPv6 loopback address as its source or destination address must remain within the node that created the packet. IPv6 routers do not forward packets that have the IPv6 loopback address as their source or destination address.

The unspecified address listed in **Table 2: Compressed IPv6 Address Formats, on page 174** indicates the absence of an IPv6 address. For example, a newly initialized node on an IPv6 network may use the unspecified address as the source address in its packets until it receives its IPv6 address.

Note

The IPv6 unspecified address cannot be assigned to an interface. The unspecified IPv6 addresses must not be used as destination addresses in IPv6 packets or the IPv6 routing header.

An IPv6 address prefix, in the format `ipv6-prefix/prefix-length`, can be used to represent bit-wise contiguous blocks of the entire address space. The `ipv6-prefix` argument must be in the form documented in RFC 2373, in which the address is specified in hexadecimal using 16-bit values between colons. The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). For example, 2001:0DB8:8086:6502::/32 is a valid IPv6 prefix.

IPv6 Address Type: Unicast

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. Cisco IOS XR software supports the following IPv6 unicast address types:

- Global aggregatable address
- Site-local address (proposal to remove by IETF)
- Link-local address
- IPv4-compatible IPv6 address
Aggregatable Global Address

An aggregatable global address is an IPv6 address from the aggregatable global unicast prefix. The structure of aggregatable global unicast addresses enables strict aggregation of routing prefixes that limits the number of routing table entries in the global routing table. Aggregatable global addresses are used on links that are aggregated upward through organizations, and eventually to the Internet service providers (ISPs).

Aggregatable global IPv6 addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Except for addresses that start with binary 000, all global unicast addresses have a 64-bit interface ID. The current global unicast address allocation uses the range of addresses that start with binary value 001 (2000::/3).

Figure 5: Aggregatable Global Address Format, on page 175 shows the structure of an aggregatable global address.

Figure 5: Aggregatable Global Address Format

<table>
<thead>
<tr>
<th>Provider</th>
<th>Site</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>45 bits</td>
<td>16 bits</td>
</tr>
</tbody>
</table>

Addresses with a prefix of 2000::/3 (001) through E000::/3 (111) are required to have 64-bit interface identifiers in the extended universal identifier (EUI)-64 format. The Internet Assigned Numbers Authority (IANA) allocates the IPv6 address space in the range of 2000::/16 to regional registries.

The aggregatable global address typically consists of a 48-bit global routing prefix and a 16-bit subnet ID or Site-Level Aggregator (SLA). In the IPv6 aggregatable global unicast address format document (RFC 2374), the global routing prefix included two other hierarchically structured fields named Top-Level Aggregator (TLA) and Next-Level Aggregator (NLA). The IETF decided to remove the TLA and NLA fields from the RFCs, because these fields are policy-based. Some existing IPv6 networks deployed before the change might still be using networks based on the older architecture.

A 16-bit subnet field called the subnet ID could be used by individual organizations to create their own local addressing hierarchy and to identify subnets. A subnet ID is similar to a subnet in IPv4, except that an organization with an IPv6 subnet ID can support up to 65,535 individual subnets.

An interface ID is used to identify interfaces on a link. The interface ID must be unique to the link. It may also be unique over a broader scope. In many cases, an interface ID is the same as or based on the link-layer address of an interface. Interface IDs used in aggregatable global unicast and other IPv6 address types must be 64 bits long and constructed in the modified EUI-64 format.

Interface IDs are constructed in the modified EUI-64 format in one of the following ways:

- For all IEEE 802 interface types (for example, Ethernet interfaces and FDDI interfaces), the first three octets (24 bits) are taken from the Organizationally Unique Identifier (OUI) of the 48-bit link-layer address (MAC address) of the interface, the fourth and fifth octets (16 bits) are a fixed hexadecimal value of FFFE, and the last three octets (24 bits) are taken from the last three octets of the MAC address. The construction of the interface ID is completed by setting the Universal/Local (U/L) bit—the seventh bit of the first octet—to a value of 0 or 1. A value of 0 indicates a locally administered identifier; a value of 1 indicates a globally unique IPv6 interface identifier.
For all other interface types (for example, serial, loopback, ATM, Frame Relay, and tunnel interface types—except tunnel interfaces used with IPv6 overlay tunnels), the interface ID is constructed in the same way as the interface ID for IEEE 802 interface types; however, the first MAC address from the pool of MAC addresses in the router is used to construct the identifier (because the interface does not have a MAC address).

For tunnel interface types that are used with IPv6 overlay tunnels, the interface ID is the IPv4 address assigned to the tunnel interface with all zeros in the high-order 32 bits of the identifier.

Note

For interfaces using Point-to-Point Protocol (PPP), given that the interfaces at both ends of the connection might have the same MAC address, the interface identifiers used at both ends of the connection are negotiated (picked randomly and, if necessary, reconstructed) until both identifiers are unique. The first MAC address in the router is used to construct the identifier for interfaces using PPP.

If no IEEE 802 interface types are in the router, link-local IPv6 addresses are generated on the interfaces in the router in the following sequence:

1. The router is queried for MAC addresses (from the pool of MAC addresses in the router).
2. If no MAC address is available, the serial number of the Route Processor (RP) or line card (LC) is used to form the link-local address.

Link-Local Address

A link-local address is an IPv6 unicast address that can be automatically configured on any interface using the link-local prefix FE80::/10 (1111 1110 10) and the interface identifier in the modified EUI-64 format. Link-local addresses are used in the neighbor discovery protocol and the stateless autoconfiguration process. Nodes on a local link can use link-local addresses to communicate; the nodes do not need site-local or globally unique addresses to communicate. Figure 6: Link-Local Address Format, on page 176 shows the structure of a link-local address.

IPv6 routers must not forward packets that have link-local source or destination addresses to other links.

Figure 6: Link-Local Address Format
IPv4-Compatible IPv6 Address

An IPv4-compatible IPv6 address is an IPv6 unicast address that has zeros in the high-order 96 bits of the address and an IPv4 address in the low-order 32 bits of the address. The format of an IPv4-compatible IPv6 address is 0:0:0:0:0:0:A.B.C.D or ::A.B.C.D. The entire 128-bit IPv4-compatible IPv6 address is used as the IPv6 address of a node and the IPv4 address embedded in the low-order 32 bits is used as the IPv4 address of the node. IPv4-compatible IPv6 addresses are assigned to nodes that support both the IPv4 and IPv6 protocol stacks and are used in automatic tunnels. Figure 7: IPv4-Compatible IPv6 Address Format, on page 177 shows the structure of an IPv4-compatible IPv6 address and a few acceptable formats for the address.

IPv6 Address Type: Multicast

An IPv6 multicast address is an IPv6 address that has a prefix of FF00::/8 (1111 1111). An IPv6 multicast address is an identifier for a set of interfaces that typically belong to different nodes. A packet sent to a multicast address is delivered to all interfaces identified by the multicast address. The second octet following the prefix defines the lifetime and scope of the multicast address. A permanent multicast address has a lifetime parameter equal to 0; a temporary multicast address has a lifetime parameter equal to 1. A multicast address that has the scope of a node, link, site, or organization, or a global scope has a scope parameter of 1, 2, 5, 8, or E, respectively. For example, a multicast address with the prefix FF02::/16 is a permanent multicast address with a link scope. Figure 8: IPv6 Multicast Address Format, on page 177 shows the format of the IPv6 multicast address.
IPv6 nodes (hosts and routers) are required to join (receive packets destined for) the following multicast groups:

- All-nodes multicast group FF02:0:0:0:0:0:0:1 (scope is link-local)
- Solicited-node multicast group FF02:0:0:0:0:1:FF00:0000/104 for each of its assigned unicast and anycast addresses

IPv6 routers must also join the all-routers multicast group FF02:0:0:0:0:0:0:2 (scope is link-local).

The solicited-node multicast address is a multicast group that corresponds to an IPv6 unicast or anycast address. IPv6 nodes must join the associated solicited-node multicast group for every unicast and anycast address to which it is assigned. The IPv6 solicited-node multicast address has the prefix FF02:0:0:0:0:1:FF00:0000/104 concatenated with the 24 low-order bits of a corresponding IPv6 unicast address. (See Figure 9: IPv6 Solicited-Node Multicast Address Format, on page 178.) For example, the solicited-node multicast address corresponding to the IPv6 address 2037::01:800:200E:8C6C is FF02::1:FF0E:8C6C. Solicited-node addresses are used in neighbor solicitation messages.

Figure 9: IPv6 Solicited-Node Multicast Address Format

<table>
<thead>
<tr>
<th>IPv6 unicast or anycast address</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefix</td>
<td>Interface ID</td>
</tr>
</tbody>
</table>

Solicited-node multicast address

<table>
<thead>
<tr>
<th>FF02</th>
<th>0</th>
<th>1</th>
<th>FF</th>
<th>Lower 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 bits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are no broadcast addresses in IPv6. IPv6 multicast addresses are used instead of broadcast addresses.

For further information on IPv6 multicast, refer to the Implementing Multicast module in the Cisco IOS XR Multicast Configuration Guide for the Cisco CRS Router.

Simplified IPv6 Packet Header

The basic IPv4 packet header has 12 fields with a total size of 20 octets (160 bits). The 12 fields may be followed by an Options field, which is followed by a data portion that is usually the transport-layer packet. The variable length of the Options field adds to the total size of the IPv4 packet header. The shaded fields of
the IPv4 packet header are not included in the IPv6 packet header. (See Figure 10: IPv4 Packet Header Format, on page 179)

Figure 10: IPv4 Packet Header Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Octets)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1</td>
<td>Version number</td>
</tr>
<tr>
<td>Total Length</td>
<td>1</td>
<td>Total length of the packet</td>
</tr>
<tr>
<td>Identification</td>
<td>1</td>
<td>Identification number</td>
</tr>
<tr>
<td>Flags</td>
<td>1</td>
<td>Flags information</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>2</td>
<td>Fragment offset information</td>
</tr>
<tr>
<td>Time to Live</td>
<td>1</td>
<td>Time to live information</td>
</tr>
<tr>
<td>Protocol</td>
<td>1</td>
<td>Protocol type information</td>
</tr>
<tr>
<td>Source Address</td>
<td>16</td>
<td>Source address information</td>
</tr>
<tr>
<td>Destination Address</td>
<td>16</td>
<td>Destination address information</td>
</tr>
<tr>
<td>Options</td>
<td>Variable</td>
<td>Options information</td>
</tr>
<tr>
<td>Padding</td>
<td>Variable</td>
<td>Padding information</td>
</tr>
<tr>
<td>Data Portion</td>
<td>32</td>
<td>Data portion of the packet</td>
</tr>
</tbody>
</table>

The basic IPv6 packet header has 8 fields with a total size of 40 octets (320 bits). (See Figure 11: IPv6 Packet Header Format, on page 179.) Fields were removed from the IPv6 header because, in IPv6, fragmentation is not handled by routers and checksums at the network layer are not used. Instead, fragmentation in IPv6 is handled by the source of a packet and checksums at the data link layer and transport layer are used. (In IPv4, the User Datagram Protocol (UDP) transport layer uses an optional checksum. In IPv6, use of the UDP checksum is required to check the integrity of the inner packet.) Additionally, the basic IPv6 packet header and Options field are aligned to 64 bits, which can facilitate the processing of IPv6 packets.

Figure 11: IPv6 Packet Header Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Size (Octets)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>1</td>
<td>Version number</td>
</tr>
<tr>
<td>Traffic Class</td>
<td>1</td>
<td>Traffic class information</td>
</tr>
<tr>
<td>Flow Label</td>
<td>1</td>
<td>Flow label information</td>
</tr>
<tr>
<td>Payload Length</td>
<td>1</td>
<td>Payload length information</td>
</tr>
<tr>
<td>Next Header</td>
<td>1</td>
<td>Next header information</td>
</tr>
<tr>
<td>Hop Limit</td>
<td>1</td>
<td>Hop limit information</td>
</tr>
<tr>
<td>Source Address</td>
<td>16</td>
<td>Source address information</td>
</tr>
<tr>
<td>Destination Address</td>
<td>16</td>
<td>Destination address information</td>
</tr>
<tr>
<td>Next Header</td>
<td>1</td>
<td>Next header information</td>
</tr>
<tr>
<td>Extension Header information</td>
<td>Variable</td>
<td>Extension header information</td>
</tr>
<tr>
<td>Data Portion</td>
<td>32</td>
<td>Data portion of the packet</td>
</tr>
</tbody>
</table>

This table lists the fields in the basic IPv6 packet header.
Table 3: Basic IPv6 Packet Header Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Similar to the Version field in the IPv4 packet header, except that the field lists number 6 for IPv6 instead of number 4 for IPv4.</td>
</tr>
<tr>
<td>Traffic Class</td>
<td>Similar to the Type of Service field in the IPv4 packet header. The Traffic Class field tags packets with a traffic class that is used in differentiated services.</td>
</tr>
<tr>
<td>Flow Label</td>
<td>A new field in the IPv6 packet header. The Flow Label field tags packets with a specific flow that differentiates the packets at the network layer.</td>
</tr>
<tr>
<td>Payload Length</td>
<td>Similar to the Total Length field in the IPv4 packet header. The Payload Length field indicates the total length of the data portion of the packet.</td>
</tr>
<tr>
<td>Next Header</td>
<td>Similar to the Protocol field in the IPv4 packet header. The value of the Next Header field determines the type of information following the basic IPv6 header. The type of information following the basic IPv6 header can be a transport-layer packet, for example, a TCP or UDP packet, or an Extension Header, as shown in Figure 12: IPv6 Extension Header Format, on page 181.</td>
</tr>
<tr>
<td>Hop Limit</td>
<td>Similar to the Time to Live field in the IPv4 packet header. The value of the Hop Limit field specifies the maximum number of routers that an IPv6 packet can pass through before the packet is considered invalid. Each router decrements the value by one. Because no checksum is in the IPv6 header, the router can decrement the value without needing to recalculate the checksum, which saves processing resources.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Similar to the Source Address field in the IPv4 packet header, except that the field contains a 128-bit source address for IPv6 instead of a 32-bit source address for IPv4.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Similar to the Destination Address field in the IPv4 packet header, except that the field contains a 128-bit destination address for IPv6 instead of a 32-bit destination address for IPv4.</td>
</tr>
</tbody>
</table>

Following the eight fields of the basic IPv6 packet header are optional extension headers and the data portion of the packet. If present, each extension header is aligned to 64 bits. There is no fixed number of extension
headers in an IPv6 packet. Together, the extension headers form a chain of headers. Each extension header is identified by the Next Header field of the previous header. Typically, the final extension header has a Next Header field of a transport-layer protocol, such as TCP or UDP. Figure 12: IPv6 Extension Header Format, on page 181 shows the IPv6 extension header format.

Figure 12: IPv6 Extension Header Format

![IPv6 Extension Header Format Diagram](image)

This table lists the extension header types and their Next Header field values.

Table 4: IPv6 Extension Header Types

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Next Header Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop-by-hop options header</td>
<td>0</td>
<td>This header is processed by all hops in the path of a packet. When present, the hop-by-hop options header always follows immediately after the basic IPv6 packet header.</td>
</tr>
<tr>
<td>Header Type</td>
<td>Next Header Value</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Destination options header</td>
<td>60</td>
<td>The destination options header can follow any hop-by-hop options header, in which case the destination options header is processed at the final destination and also at each visited address specified by a routing header. Alternatively, the destination options header can follow any Encapsulating Security Payload (ESP) header, in which case the destination options header is processed only at the final destination.</td>
</tr>
<tr>
<td>Routing header</td>
<td>43</td>
<td>The routing header is used for source routing.</td>
</tr>
<tr>
<td>Fragment header</td>
<td>44</td>
<td>The fragment header is used when a source must fragment a packet that is larger than the maximum transmission unit (MTU) for the path between itself and a destination. The Fragment header is used in each fragmented packet.</td>
</tr>
<tr>
<td>Authentication header and ESP header</td>
<td>51, 50</td>
<td>The Authentication header and the ESP header are used within IP Security Protocol (IPSec) to provide authentication, integrity, and confidentiality of a packet. These headers are identical for both IPv4 and IPv6.</td>
</tr>
<tr>
<td>Upper-layer header</td>
<td>6 (TCP), 17 (UDP)</td>
<td>The upper-layer (transport) headers are the typical headers used inside a packet to transport the data. The two main transport protocols are TCP and UDP.</td>
</tr>
<tr>
<td>Mobility header</td>
<td>To be done by IANA</td>
<td>Extension headers used by mobile nodes, correspondent nodes, and home agents in all messaging related to the creation and management of bindings.</td>
</tr>
</tbody>
</table>
IPv6 Neighbor Discovery

The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and keep track of neighboring routers.

IPv6 Neighbor Solicitation Message

A value of 135 in the Type field of the ICMP packet header identifies a neighbor solicitation message. Neighbor solicitation messages are sent on the local link when a node wants to determine the link-layer address of another node on the same local link. (See Figure 13: IPv6 Neighbor Discovery—Neighbor Solicitation Message, on page 183.) When a node wants to determine the link-layer address of another node, the source address in a neighbor solicitation message is the IPv6 address of the node sending the neighbor solicitation message. The destination address in the neighbor solicitation message is the solicited-node multicast address that corresponds to the IPv6 address of the destination node. The neighbor solicitation message also includes the link-layer address of the source node.

Figure 13: IPv6 Neighbor Discovery—Neighbor Solicitation Message

ICMPv6 Type = 135
Src = A
Dst = solicited-node multicast of B
Data = link-layer address of A
Query = what is your link address?

ICMPv6 Type = 136
Src = B
Dst = A
Data = link-layer address of B

A and B can now exchange packets on this link

After receiving the neighbor solicitation message, the destination node replies by sending a neighbor advertisement message, which has a value of 136 in the Type field of the ICMP packet header, on the local link. The source address in the neighbor advertisement message is the IPv6 address of the node (more specifically, the IPv6 address of the node interface) sending the neighbor advertisement message. The destination address in the neighbor advertisement message is the IPv6 address of the node that sent the neighbor solicitation message. The data portion of the neighbor advertisement message includes the link-layer address of the node sending the neighbor advertisement message.

After the source node receives the neighbor advertisement, the source node and destination node can communicate.

Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer address of a neighbor is identified. When a node wants to verifying the reachability of a neighbor, the destination address in a neighbor solicitation message is the unicast address of the neighbor.
Neighbor advertisement messages are also sent when there is a change in the link-layer address of a node on a local link. When there is such a change, the destination address for the neighbor advertisement is the all-nodes multicast address.

Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer address of a neighbor is identified. Neighbor unreachability detection identifies the failure of a neighbor or the failure of the forward path to the neighbor, and is used for all paths between hosts and neighboring nodes (hosts or routers). Neighbor unreachability detection is performed for neighbors to which only unicast packets are being sent and is not performed for neighbors to which multicast packets are being sent.

A neighbor is considered reachable when a positive acknowledgment is returned from the neighbor (indicating that packets previously sent to the neighbor have been received and processed). A positive acknowledgment—from an upper-layer protocol (such as TCP)—indicates that a connection is making forward progress (reaching its destination) or that a neighbor advertisement message in response to a neighbor solicitation message has been received. If packets are reaching the peer, they are also reaching the next-hop neighbor of the source. Therefore, forward progress is also a confirmation that the next-hop neighbor is reachable.

For destinations that are not on the local link, forward progress implies that the first-hop router is reachable. When acknowledgments from an upper-layer protocol are not available, a node probes the neighbor using unicast neighbor solicitation messages to verify that the forward path is still working. The return of a solicited neighbor advertisement message from the neighbor is a positive acknowledgment that the forward path is still working. (Neighbor advertisement messages that have the solicited flag set to a value of 1 are sent only in response to a neighbor solicitation message.) Unsolicited messages confirm only the one-way path from the source to the destination node; solicited neighbor advertisement messages indicate that a path is working in both directions.

Note

A neighbor advertisement message that has the solicited flag set to a value of 0 must not be considered as a positive acknowledgment that the forward path is still working.

Neighbor solicitation messages are also used in the stateless autoconfiguration process to verify the uniqueness of unicast IPv6 addresses before the addresses are assigned to an interface. Duplicate address detection is performed first on a new, link-local IPv6 address before the address is assigned to an interface. (The new address remains in a tentative state while duplicate address detection is performed.) Specifically, a node sends a neighbor solicitation message with an unspecified source address and a tentative link-local address in the body of the message. If another node is already using that address, the node returns a neighbor advertisement message that contains the tentative link-local address. If another node is simultaneously verifying the uniqueness of the same address, that node also returns a neighbor solicitation message. If no neighbor advertisement messages are received in response to the neighbor solicitation message and no neighbor solicitation messages are received from other nodes that are attempting to verify the same tentative address, the node that sent the original neighbor solicitation message considers the tentative link-local address to be unique and assigns the address to the interface.

Every IPv6 unicast address (global or link-local) must be checked for uniqueness on the link; however, until the uniqueness of the link-local address is verified, duplicate address detection is not performed on any other IPv6 addresses associated with the link-local address. The Cisco implementation of duplicate address detection in the Cisco IOS XR software does not check the uniqueness of anycast or global addresses that are generated from 64-bit interface identifiers.
IPv6 Router Advertisement Message

Router advertisement (RA) messages, which have a value of 134 in the Type field of the ICMP packet header, are periodically sent out each configured interface of an IPv6 router. The router advertisement messages are sent to the all-nodes multicast address. (See Figure 14: IPv6 Neighbor Discovery—Router Advertisement Message, on page 185.)

Figure 14: IPv6 Neighbor Discovery—Router Advertisement Message

Router advertisement packet definitions:
- ICMPv6 Type = 134
- Src = router link-local address
- Dst = all-nodes multicast address
- Data = options, prefix, lifetime, autoconfig flag

Router advertisement messages typically include the following information:

- One or more onlink IPv6 prefixes that nodes on the local link can use to automatically configure their IPv6 addresses
- Lifetime information for each prefix included in the advertisement
- Sets of flags that indicate the type of autoconfiguration (stateless or statefull) that can be completed
- Default router information (whether the router sending the advertisement should be used as a default router and, if so, the amount of time, in seconds, that the router should be used as a default router)
- Additional information for hosts, such as the hop limit and MTU a host should use in packets that it originates

Router advertisements are also sent in response to router solicitation messages. Router solicitation messages, which have a value of 133 in the Type field of the ICMP packet header, are sent by hosts at system startup so that the host can immediately autoconfigure without needing to wait for the next scheduled router advertisement message. Given that router solicitation messages are usually sent by hosts at system startup (the host does not have a configured unicast address), the source address in router solicitation messages is usually the unspecified IPv6 address (0:0:0:0:0:0:0:0). If the host has a configured unicast address, the unicast address of the interface sending the router solicitation message is used as the source address in the message. The destination address in router solicitation messages is the all-routers multicast address with a scope of the link. When a router advertisement is sent in response to a router solicitation, the destination address in the router advertisement message is the unicast address of the source of the router solicitation message.

The following router advertisement message parameters can be configured:

- The time interval between periodic router advertisement messages
- The “router lifetime” value, which indicates the usefulness of a router as the default router (for use by all nodes on a given link)
- The network prefixes in use on a given link
The time interval between neighbor solicitation message retransmissions (on a given link)

The amount of time a node considers a neighbor reachable (for use by all nodes on a given link)

The configured parameters are specific to an interface. The sending of router advertisement messages (with default values) is automatically enabled on Ethernet and FDDI interfaces. For other interface types, the sending of router advertisement messages must be manually configured by using the `no ipv6 nd suppress-ra` command in interface configuration mode. The sending of router advertisement messages can be disabled on individual interfaces by using the `ipv6 nd suppress-ra` command in interface configuration mode.

Note
For stateless autoconfiguration to work properly, the advertised prefix length in router advertisement messages must always be 64 bits.

IPv6 Neighbor Redirect Message

A value of 137 in the Type field of the ICMP packet header identifies an IPv6 neighbor redirect message. Routers send neighbor redirect messages to inform hosts of better first-hop nodes on the path to a destination. (See Figure 15: IPv6 Neighbor Discovery—Neighbor Redirect Message, on page 186.)

Figure 15: IPv6 Neighbor Discovery—Neighbor Redirect Message

![Diagram of IPv6 Neighbor Redirect Message](image)

Neighbor redirect packet definitions:
- ICMPv6 Type = 137
- Src = link-local address of Device A
- Dst = link-local address of Host H
- Data = target address (link-local address of Device B), options (header of redirected packet)

Note: If the target is a host, the target address is equal to the destination address of the redirect packet and the options include the link-layer address of the target host (if known).
A router must be able to determine the link-local address for each of its neighboring routers to ensure that the target address (the final destination) in a redirect message identifies the neighbor router by its link-local address. For static routing, the address of the next-hop router should be specified using the link-local address of the router; for dynamic routing, all IPv6 routing protocols must exchange the link-local addresses of neighboring routers.

After forwarding a packet, a router should send a redirect message to the source of the packet under the following circumstances:

- The destination address of the packet is not a multicast address.
- The packet was not addressed to the router.
- The packet is about to be sent out the interface on which it was received.
- The router determines that a better first-hop node for the packet resides on the same link as the source of the packet.
- The source address of the packet is a global IPv6 address of a neighbor on the same link, or a link-local address.

Use the `ipv6 icmp error-interval` global configuration command to limit the rate at which the router generates all IPv6 ICMP error messages, including neighbor redirect messages, which ultimately reduces link-layer congestion.

A router must not update its routing tables after receiving a neighbor redirect message, and hosts must not originate neighbor redirect messages.

ICMP for IPv6

Internet Control Message Protocol (ICMP) in IPv6 functions the same as ICMP in IPv4—ICMP generates error messages, such as ICMP destination unreachable messages and informational messages like ICMP echo request and reply messages. Additionally, ICMP packets in IPv6 are used in the IPv6 neighbor discovery process, path MTU discovery, and the Multicast Listener Discovery (MLD) protocol for IPv6. MLD is used by IPv6 routers to discover multicast listeners (nodes that want to receive multicast packets destined for specific multicast addresses) on directly attached links. MLD is based on version 2 of the Internet Group Management Protocol (IGMP) for IPv4.

A value of 58 in the Next Header field of the basic IPv6 packet header identifies an IPv6 ICMP packet. ICMP packets in IPv6 are like a transport-layer packet in the sense that the ICMP packet follows all the extension headers and is the last piece of information in the IPv6 packet. Within IPv6 ICMP packets, the ICMPv6 Type and ICMPv6 Code fields identify IPv6 ICMP packet specifics, such as the ICMP message type. The value in the Checksum field is derived (computed by the sender and checked by the receiver) from the fields in the IPv6 ICMP packet and the IPv6 pseudoheader. The ICMPv6 Data field contains error or diagnostic information relevant to IP packet processing.
Address Repository Manager

IPv4 and IPv6 Address Repository Manager (IPARM) enforces the uniqueness of global IP addresses configured in the system, and provides global IP address information dissemination to processes on route processors (RPs) and line cards (LCs) using the IP address consumer application program interfaces (APIs), which includes unnumbered interface information.

Address Conflict Resolution

There are two parts to conflict resolution; the conflict database and the conflict set definition.

Conflict Database

IPARM maintains a global conflict database. IP addresses that conflict with each other are maintained in lists called conflict sets. These conflict sets make up the global conflict database.

A set of IP addresses are said to be part of a conflict set if at least one prefix in the set conflicts with every other IP address belonging to the same set. For example, the following four addresses are part of a single conflict set.

- address 1: 10.1.1.1/16
- address 2: 10.2.1.1/16
- address 3: 10.3.1.1/16
- address 4: 10.4.1.1/8

When a conflicting IP address is added to a conflict set, an algorithm runs through the set to determine the highest precedence address within the set.

This conflict policy algorithm is deterministic, that is, the user can tell which addresses on the interface are enabled or disabled. The address on the interface that is enabled is declared as the highest precedence IP address for that conflict set.

The conflict policy algorithm determines the highest precedence IP address within the set.

Multiple IP Addresses

The IPARM conflict handling algorithm allows multiple IP addresses to be enabled within a set. Multiple addresses could potentially be highest precedence IP addresses.

interface GigabitEthernet 0/2/0/0: 10.1.1.1/16
interface GigabitEthernet 0/3/0/0: 10.1.1.2/8
interface GigabitEthernet 0/4/0/0: 10.2.1.1/16

The IP address on GigabitEthernet 0/2/0/0 is declared as highest precedence as per the lowest rack/slot policy and is enabled. However, because the address on interface GigabitEthernet 0/4/0/0 does not conflict with the current highest precedence IP address, the address on GigabitEthernet 0/4/0/0 is enabled as well.

Recursive Resolution of Conflict Sets

In the example below, the address on the interface in GigabitEthernet 0/2/0/0 has the highest precedence because it is the lowest rack/slot. However, now the addresses on GigabitEthernet 0/4/0/0 and GigabitEthernet
0/5/0/0 also do not conflict with the highest precedence IP addresses on GigabitEthernet 0/2/0/0. However, the addresses on GigabitEthernet 0/4/0/0 and GigabitEthernet 0/5/0/0 conflict with each other. The conflict resolution software tries to keep the interface that is enabled as the one that needs to stay enabled. If both interfaces are disabled, the software enables the address based on the current conflict policy. Because GigabitEthernet 0/4/0/0 is on a lower rack/slot, it is enabled.

```plaintext
interface GigabitEthernet 0/2/0/0: 10.1.1.1/16
interface GigabitEthernet 0/3/0/0: 10.1.1.2/8
interface GigabitEthernet 0/4/0/0: 10.2.1.1/16
interface GigabitEthernet 0/5/0/0: 10.2.1.2/16
```

Route-Tag Support for Connected Routes

The Route-Tag Support for Connected Routes feature that attaches a tag with all IPv4 and IPv6 addresses of an interface. The tag is propagated from the IPv4 and IPv6 management agents (MA) to the IPv4 and IPv6 address repository managers (ARM) to routing protocols, thus enabling the user to control the redistribution of connected routes by looking at the route tags, by using routing policy language (RPL) scripts. This prevents the redistribution of some interfaces, by checking for route tags in a route policy.

The route tag feature is already available for static routes and connected routes (interfaces) wherein the route tags are matched to policies and redistribution can be prevented.

SUMMARY STEPS

1. `configure`
2. `interface type interface-path-id`
3. Do one of the following:
 - `ipv4 address ipv4-address mask [secondary]`
 - `ipv6 address ipv6-prefix/prefix-length [eui-64]`
4. `route-tag [route-tag value]`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
<td>Specifies a primary (or secondary) IPv4 address or an IPv6 address for an interface.</td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>- <code>ipv4 address ipv4-address mask [secondary]</code></td>
<td></td>
</tr>
</tbody>
</table>
Assigning IPv4 Addresses to Network Interfaces

This task assigns IPv4 addresses to individual network interfaces.

IPv4 Addresses

A basic and required task for configuring IP is to assign IPv4 addresses to network interfaces. Doing so enables the interfaces and allows communication with hosts on those interfaces using IPv4. An IP address identifies a location to which IP datagrams can be sent. An interface can have one primary IP address and multiple (up to 500) secondary addresses. Packets generated by the software always use the primary IPv4 address. Therefore, all networking devices on a segment should share the same primary network number.

Associated with this task are decisions about subnetting and masking the IP addresses. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is then referred to as a subnet mask.

Note

Cisco supports only network masks that use contiguous bits that are flush left against the network field.
SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 address ipv4-address mask [secondary]
4. commit
5. show ipv4 interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv4 address ipv4-address mask [secondary]</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-if)# ipv4 address 192.168.1.27/8</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ipv4 interface</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show ipv4 interface</td>
</tr>
</tbody>
</table>

IPv4 Virtual Addresses

Configuring an IPv4 virtual address enables you to access the router from a single virtual address with a management network, without the prior knowledge of which route processor (RP) is active. An IPv4 virtual address persists across RP failover situations. For this to happen, the virtual IPv4 address must share a common IPv4 subnet with a Management Ethernet interface on both RPs.

The `vrf` keyword supports virtual addresses on a per-VRF basis.
The `use-as-src-addr` keyword eliminates the need for configuring a loopback interface as the source interface (that is, update source) for management applications. When an update source is not configured, management applications allow the transport processes (TCP, UDP, raw_ip) to select a suitable source address. The transport processes, in turn, consult the FIB for selecting a suitable source address. If a Management Ethernet's IP address is selected as the source address and if the `use-as-src-addr` keyword is configured, then the transport substitutes the Management Ethernet's IP address with a relevant virtual IP address. This functionality works across RP switchovers. If the `use-as-src-addr` is not configured, then the source-address selected by transports can change after a failover and the NMS software may not be able to manage this situation.

Note
Protocol configuration such as tacacs source-interface, snmp-server trap-source, ntp source, logging source-interface do not use the virtual management IP address as their source by default. Use the `ipv4 virtual address use-as-src-addr` command to ensure that the protocol uses the virtual IPv4 address as its source address. Alternatively, you can also configure a loopback address with the designated or desired IPv4 address and set that as the source for protocols such as TACACS+ via the `tacacs source-interface` command.

Configuring IPv6 Addressing

This task assigns IPv6 addresses to individual router interfaces and enable the forwarding of IPv6 traffic globally on the router. By default, IPv6 addresses are not configured.

Note
The `ipv6-prefix` argument in the `ipv6 address` command must be in the form documented in RFC 2373 in which the address is specified in hexadecimal using 16-bit values between colons.

The `/prefix-length` argument in the `ipv6 address` command is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash must precede the decimal value.

The `ipv6-address` argument in the `ipv6 address link-local` command must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.

IPv6 Multicast Groups

An IPv6 address must be configured on an interface for the interface to forward IPv6 traffic. Configuring a global IPv6 address on an interface automatically configures a link-local address and activates IPv6 for that interface.

Additionally, the configured interface automatically joins the following required multicast groups for that link:

- Solicited-node multicast group FF02:0:0:0:1:FF00::/104 for each unicast address assigned to the interface
- All-nodes link-local multicast group FF02::1
- All-routers link-local multicast group FF02::2
The solicited-node multicast address is used in the neighbor discovery process.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. Do one of the following:
 - ipv6 address ipv6-prefix / prefix-length [eui-64]
 - ipv6 address ipv6-address link-local
 - ipv6 enable
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Specifies an IPv6 network assigned to the interface and enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>or Automatically configures an IPv6 link-local address on the interface while also enabling the interface for IPv6 processing. The link-local address can be used only to communicate with nodes on the same link.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# interface gigabitethernet 0/1/0/3</td>
<td></td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• ipv6 address ipv6-prefix / prefix-length [eui-64]</td>
<td></td>
</tr>
<tr>
<td>• ipv6 address ipv6-address link-local</td>
<td></td>
</tr>
<tr>
<td>• ipv6 enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-if)# ipv6 address 2001:0DB8:0:1::/64 eui-64</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-if)# ipv6 address 2001:0DB8:0:1::/64 link-local</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-if)# ipv6 address FE80::260:3EFF:FE11:6770 link-local</td>
<td></td>
</tr>
</tbody>
</table>
IPv6 Virtual Addresses

Configuring an IPv6 virtual address enables you to access the router from a single virtual address with a management network, without the prior knowledge of which route processor (RP) is active. An IPv6 virtual address persists across RP failover situations. For this to happen, the virtual IPv6 address must share a common IPv6 subnet with a Management Ethernet interface on both RPs.

The `vrf` keyword supports virtual addresses on a per-VRF basis.

The `use-as-src-addr` keyword eliminates the need for configuring a loopback interface as the source interface (that is, update source) for management applications. When an update source is not configured, management applications allow the transport processes (TCP, UDP, raw_ip) to select a suitable source address. The transport processes, in turn, consult the FIB for selecting a suitable source address. If a Management Ethernet's IP address is selected as the source address and if the `use-as-src-addr` keyword is configured, then the transport substitutes the Management Ethernet's IP address with a relevant virtual IP address. This functionality works across RP switchovers. If the `use-as-src-addr` is not configured, then the source-address selected by transports can change after a failover and the NMS software may not be able to manage this situation.

Note

Protocol configuration such as tacacs source-interface, snmp-server trap-source, ntp source, logging source-interface do not use the virtual management IP address as their source by default. Use the `ipv6 virtual address use-as-src-addr` command to ensure that the protocol uses the virtual IPv6 address as its source address. Alternatively, you can also configure a loopback address with the designated or desired IPv6 address and set that as the source for protocols such as TACACS+ via the `tacacs source-interface` command.

Assigning Multiple IP Addresses to Network Interfaces

This task assigns multiple IP addresses to network interfaces.

Secondary IPv4 Addresses

The Cisco IOS XR software supports multiple IP addresses per interface.

You can specify a maximum of 500 secondary addresses. Secondary IP addresses can be used in a variety of situations. The following are the most common applications:

- There might not be enough host addresses for a particular network segment. For example, suppose your subnetwork allows up to 254 hosts per logical subnet, but on one physical subnet you must have 300 host...
addresses. Using secondary IP addresses on the routers or access servers allows you to have two logical subnets using one physical subnet.

- Many older networks were built using Level 2 bridges, and were not subnetted. The judicious use of secondary addresses can aid in the transition to a subnetted, router-based network. Routers on an older, bridged segment can easily be made aware that many subnets are on that segment.

- Two subnets of a single network might otherwise be separated by another network. You can create a single network from subnets that are physically separated by another network by using a secondary address. In these instances, the first network is extended, or layered on top of the second network. Note that a subnet cannot appear on more than one active interface of the router at a time.

Note

If any router on a network segment uses a secondary IPv4 address, all other routers on that same segment must also use a secondary address from the same network or subnet.

Caution

Inconsistent use of secondary addresses on a network segment can quickly cause routing loops.

SUMMARY STEPS

1. `configure`
2. `interface type interface-path-id`
3. `ipv4 address ipv4-address mask [secondary]`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# interface gigabitethernet 0/1/0/3</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv4 address ipv4-address mask [secondary]</td>
<td>Specifies that the configured address is a secondary IPv4 address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.255.255.0 secondary</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring IPv4 and IPv6 Protocol Stacks

This task configures an interface in a Cisco networking device to support both the IPv4 and IPv6 protocol stacks.

When an interface in a Cisco networking device is configured with both an IPv4 and an IPv6 address, the interface forwards both IPv4 and IPv6 traffic—the interface can send and receive data on both IPv4 and IPv6 networks.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 address ip-address mask [secondary]
4. ipv6 address ipv6-prefix/prefix-length [eui-64]
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv4 address ip-address mask [secondary]</td>
<td>Specifies a primary or secondary IPv4 address for an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-if)# ipv4 address 192.168.99.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 address ipv6-prefix/prefix-length [eui-64]</td>
<td>Specifies the IPv6 address assigned to the interface and enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-if)# ipv6 address 2001:0DB8:c18:1::3/64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A slash mark (/) must precede the prefix-length, and there is no space between the ipv6-prefix and slash mark.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Enabling IPv4 Processing on an Unnumbered Interface

This task enables IPv4 processing on an unnumbered interface.
IPv4 Processing on an Unnumbered Interface

This section describes the process of enabling an IPv4 point-to-point interface without assigning an explicit IP address to the interface. Whenever the unnumbered interface generates a packet (for example, for a routing update), it uses the address of the interface you specified as the source address of the IP packet. It also uses the specified interface address in determining which routing processes are sending updates over the unnumbered interface. Restrictions are as follows:

- Serial interfaces using High-Level Data Link Control (HDLC), PPP, and Frame Relay encapsulations can be unnumbered. Serial interfaces using Frame Relay encapsulation can also be unnumbered, but the interface must be a point-to-point subinterface.
- You cannot use the ping EXEC command to determine whether the interface is up, because the interface has no IP address. The Simple Network Management Protocol (SNMP) can be used to remotely monitor interface status.
- You cannot support IP security options on an unnumbered interface.

If you are configuring Intermediate System-to-Intermediate System (IS-IS) across a serial line, you should configure the serial interfaces as unnumbered, which allows you to conform with RFC 1195, which states that IP addresses are not required on each interface.

SUMMARY STEPS

1. **configure**
2. **interface type interface-path-id**
3. **ipv4 unnumbered interface-type interface-instance**
4. **commit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
<td>Enables IPv4 processing on a point-to-point interface without assigning an explicit IPv4 address to that interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv4 unnumbered interface-type interface-instance</td>
<td>Enables IPv4 processing on a point-to-point interface without assigning an explicit IPv4 address to that interface.</td>
</tr>
</tbody>
</table>
| Example: | RP/0/RP0/CPU0:router(config-if)# ipv4 unnumbered loopback 5 | - The interface you specify must be the name of another interface in the router that has an IP address, not another unnumbered interface.
- The interface you specify by the interface-type and interface-instance arguments must be enabled (listed as "up" in the show interfaces command display).
Configuring ICMP Rate Limiting

This task explains how to configure IPv4 or IPv6 ICMP rate limiting.

IPv4 ICMP Rate Limiting

The IPv4 ICMP rate limiting feature limits the rate that IPv4 ICMP destination unreachable messages are generated. The Cisco IOS XR software maintains two timers: one for general destination unreachable messages and one for DF destination unreachable messages. Both share the same time limits and defaults. If the DF keyword is not configured, the `icmp ipv4 rate-limit unreachable` command sets the time values for DF destination unreachable messages. If the DF keyword is configured, its time values remain independent from those of general destination unreachable messages.

IPv6 ICMP Rate Limiting

The IPv6 ICMP rate limiting feature implements a token bucket algorithm for limiting the rate at which IPv6 ICMP error messages are sent out on the network. The initial implementation of IPv6 ICMP rate limiting defined a fixed interval between error messages, but some applications, such as traceroute, often require replies to a group of requests sent in rapid succession. The fixed interval between error messages is not flexible enough to work with applications such as traceroute and can cause the application to fail. Implementing a token bucket scheme allows a number of tokens—representing the ability to send one error message each—to be stored in a virtual bucket. The maximum number of tokens allowed in the bucket can be specified, and for every error message to be sent, one token is removed from the bucket. If a series of error messages is generated, error messages can be sent until the bucket is empty. When the bucket is empty of tokens, IPv6 ICMP error messages are not sent until a new token is placed in the bucket. The token bucket algorithm does not increase the average rate limiting time interval, and it is more flexible than the fixed time interval scheme.

SUMMARY STEPS

1. configure
2. Do one of the following:
 • `icmp ipv4 rate-limit unreachable [DF] milliseconds`
 • `ipv6 icmp error-interval milliseconds [bucketsize]`
3. commit
4. Do one of the following:
 • `show ipv4 traffic [brief]`
 • `show ipv6 traffic [brief]`
Detailed Steps

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- icmp ipv4 rate-limit unreachable [DF] milliseconds</td>
<td>Limits the rate that IPv4 ICMP destination unreachable messages are generated.</td>
</tr>
<tr>
<td></td>
<td>- ipv6 icmp error-interval milliseconds [bucketsize]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RPO/CPU0:router(config)# icmp ipv4 rate-limit unreachable 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RPO/CPU0:router(config)# ipv6 icmp error-interval 50 20</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RPO/CPU0:router(config)# icmp ipv4 rate-limit unreachable 1000
or
RP/0/RPO/CPU0:router(config)# ipv6 icmp error-interval 50 20
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>commit</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Do one of the following:</th>
<th>(Optional) Displays statistics about IPv4 traffic, including ICMP unreachable information.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- show ipv4 traffic [brief]</td>
<td>Use the brief keyword to display only IPv4 and ICMPv4 traffic statistics.</td>
</tr>
<tr>
<td></td>
<td>- show ipv6 traffic [brief]</td>
<td>or</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
RP/0/RPO/CPU0:router# show ipv4 traffic
or
RP/0/RPO/CPU0:router# show ipv6 traffic
```

Selecting Flexible Source IP

To allow for flexible source IP address selection in the Internet Control Message Protocol (ICMP) response packet in response to a failure, use the *icmp source* command in the Global Configuration mode.
Configuring IPARM Conflict Resolution

This task sets the IP Address Repository Manager (IPARM) address conflict resolution parameters.

Static Policy Resolution

The static policy resolution configuration prevents new address configurations from affecting interfaces that are currently running.

SUMMARY STEPS

1. configure
2. \{ipv4 | ipv6\} conflict-policy static
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>Allows flexible source IP address corresponding to strict vrf in outgoing IPv6 ICMP packets.</td>
</tr>
<tr>
<td>{ipv4</td>
<td>ipv6} source vrf</td>
</tr>
<tr>
<td>Step 3</td>
<td>commit</td>
</tr>
</tbody>
</table>

Implementing Network Stack IPv4 and IPv6

Configuring IPARM Conflict Resolution
Longest Prefix Address Conflict Resolution

This conflict resolution policy attempts to give highest precedence to the IP address that has the longest prefix length.

SUMMARY STEPS

1. configure
2. `{ipv4 | ipv6}` conflict-policy longest-prefix
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>`{ipv4</td>
<td>ipv6}` conflict-policy longest-prefix</td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Highest IP Address Conflict Resolution

This conflict resolution policy attempts to give highest precedence to the IP address that has the highest value.
SUMMARY STEPS

1. configure
2. { ipv4 | ipv6 } conflict-policy highest-ip
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 { ipv4</td>
<td>ipv6 } conflict-policy highest-ip</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv4 conflict-policy highest-ip</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv6 conflict-policy highest-ip</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Generic Routing Encapsulation

The Generic Routing Encapsulation (GRE) tunneling protocol provides a simple, and generic approach for transporting packets of one protocol over another protocol by means of encapsulation. The packet that needs to be transported is first encapsulated in a GRE header, which is further encapsulated in another protocol like IPv4 or IPv6; and the packet is then forwarded to the destination.

A typical GRE-encapsulated packet includes:

- The delivery header
- The GRE header
- The payload packet

A payload packet is a packet that a system encapsulates and delivers to a destination. The payload is first encapsulated in a GRE packet. The resulting GRE packet can then be encapsulated in another outer protocol and then forwarded. This outer protocol is called the delivery protocol.

Note

- When IPv4 is being carried as the GRE payload, the Protocol Type field must be set to 0x800.
- When IPv6 is being carried as the GRE payload, the Protocol Type field must be set to 0x86DD.
IPv4/IPv6 Forwarding over GRE Tunnels

Packets that are tunneled over GRE tunnels enter the router as normal IP packets. The packets are forwarded (routed) using the destination address of the IP packet. In the case of Equal Cost Multi Path (ECMP) scenarios, an output interface-adjacency is selected, based on a platform-specific L3 load balance (LB) hash. In the case of two stage forwarding platforms like CRS, the receive-adjacency of the selected output interface is used to reach the packet to the egress line card that hosts the interface. If the selected output interface is a GRE interface, the ingress line card has to determine the actual physical interface that can be used to reach the GRE tunnel destination. To determine this, a second routing (forwarding) decision is made based on the GRE tunnel destination address, where the L3 load balance hash is re-applied to determine the physical interface. Once the egress physical interface is known, the packet is sent out of that interface, after it is first encapsulated with GRE header followed by the L2 rewrite header of the physical interface. After the GRE encapsulated packet reaches the remote tunnel endpoint router, the GRE packet is decapsulated. The destination address lookup of the outer IP header (this is the same as the tunnel destination address) will find a local address (receive) entry on the ingress line card.

The first step in GRE decapsulation is to qualify the tunnel endpoint, before admitting the GRE packet into the router, based on the combination of tunnel source (the same as source IP address of outer IP header) and tunnel destination (the same as destination IP address of outer IP header). If the received packet fails tunnel admittance qualification check, the packet is dropped by the decapsulation router. On successful tunnel admittance check, the decapsulation strips the outer IP and GRE header off the packet, then starts processing the inner payload packet as a regular packet.

When a tunnel endpoint decapsulates a GRE packet, which has an IPv4/IPv6 packet as the payload, the destination address in the IPv4/IPv6 payload packet header is used to forward the packet, and the TTL of the payload packet is decremented. Care should be taken when forwarding such a packet. If the destination address of the payload packet is the encapsulator of the packet (that is the other end of the tunnel), looping can occur. In such a case, the packet must be discarded.

IPv6 forwarding over GRE tunnels

IPv6 forwarding over GRE is accomplished by IPv6 forwarding over IPv4 GRE tunnels. The functionality is similar to the IPv4 forwarding over GRE tunnels (as described above). In the case of IPv6, the FIM (Forward Information Base) module needs to confirm if the forwarding chain is correctly setup both in slowpath and hardware to send the IPv6 packet as a payload of IPv4 GRE encapsulated packet.

Configuration Examples for Implementing Network Stack IPv4 and IPv6

This section provides the following configuration examples:

Assigning an Unnumbered Interface: Example

In the following example, the second interface (GigabitEthernet 0/1/0/1) is given the address of loopback interface 0. The loopback interface is unnumbered.

interface loopback 0
Additional References

The following sections provide references related to implementing Network Stack IPv4 and IPv6.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address resolution configuration tasks</td>
<td>Configuring ARP module in this publication.</td>
</tr>
<tr>
<td>Mapping host names to IP addresses</td>
<td>Host Services and Applications Commands module in the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Network stack IPv4 and IPv6 commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Network Stack IPv4 and IPv6 Commands section in the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
CHAPTER 10

Configuring Transports

This module provides information about Nonstop Routing (NSR), Stream Control Transmission Protocol (SCTP), Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and RAW Transports.

If you have specific requirements and need to adjust the NSR, SCTP, TCP, UDP, or RAW values, refer to the Transport Stack Commands on Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router.

Feature History for Configuring NSR, SCTP, TCP, UDP, and UDP RAW Transports on the Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.6.0</td>
<td>The following features were introduced:</td>
</tr>
<tr>
<td></td>
<td>• Nonstop Routing (NSR)</td>
</tr>
<tr>
<td></td>
<td>• Stream Control Transmission Protocol (SCTP)</td>
</tr>
</tbody>
</table>

• Prerequisites for Configuring NSR, SCTP, TCP, UDP, and RAW Transports, page 207
• Information About Configuring NSR, SCTP, TCP, UDP, and RAW Transports, page 208
• How to Configure Failover as a Recovery Action for NSR, page 209
• Additional References, page 210

Prerequisites for Configuring NSR, SCTP, TCP, UDP, and RAW Transports

The following prerequisites are required to implement NSR, SCTP, TCP, UDP, and RAW Transports:

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
Information About Configuring NSR, SCTP, TCP, UDP, and RAW Transports

To configure NSR, SCTP, TCP, UDP, and RAW transports, you must understand the following concepts:

NSR Overview

Nonstop Routing (NSR) is provided for Open Shortest Path First (OSPF) and Label Distribution Protocol (LDP) protocols for the following events:

- Route Processor (RP) or Distributed Route Processor (DRP) failover
- Process restart for either OSPF, LDP, or TCP
- Minimum Disruption Restart (MDR)
- Rack online insertion and removal (OIR) in a Cisco CRS-1 Multishelf System

In the case of the RP failover, NSR is achieved by for both TCP and the applications (OSPF or LDP). NSR is a method to achieve High Availability (HA) of the routing protocols. TCP connections and the routing protocol sessions are migrated from the active RP to standby RP after the RP failover without letting the peers know about the failover. Currently, the sessions terminate and the protocols running on the standby RP reestablish the sessions after the standby RP goes active. Graceful Restart (GR) extensions are used in place of NSR to prevent traffic loss during an RP failover but GR has several drawbacks.

You can use the `nsr process-failures switchover` command to let the RP failover be used as a recovery action when the active TCP or active LDP restarts. When standby TCP or LDP restarts, only the NSR capability is lost till the standby instances come up and the sessions are resynchronized but the sessions do not go down.

In the case of the process failure of an active OSPF, a fault-management policy is used. For more information, refer to Implementing OSPF on Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router.

SCTP Overview

Stream Control Transmission Protocol (SCTP) is a reliable transport protocol that provides multihoming, stream support, and partial reliability. Multihoming occurs when one (or both) endpoints of a connection can consist of more than one IP address, which enables transparent failover between redundant network paths. SCTP can transport multiple message-streams.

TCP Overview

TCP is a connection-oriented protocol that specifies the format of data and acknowledgments that two computer systems exchange to transfer data. TCP also specifies the procedures the computers use to ensure that the data arrives correctly. TCP allows multiple applications on a system to communicate concurrently, because it handles all demultiplexing of the incoming traffic among the application programs.
UDP Overview

The User Datagram Protocol (UDP) is a connectionless transport-layer protocol that belongs to the IP family. UDP is the transport protocol for several well-known application-layer protocols, including Network File System (NFS), Simple Network Management Protocol (SNMP), Domain Name System (DNS), and TFTP. Any IP protocol other than TCP, UDP, or SCTP is known as a RAW protocol.

For most sites, the default settings for the TCP, UDP, and RAW transports need not be changed.

How to Configure Failover as a Recovery Action for NSR

This section contains the following procedure:

Configuring Failover as a Recovery Action for NSR

This task allows you to configure failover as a recovery action to process failures of active instances.

When the active TCP or the NSR client of the active TCP terminates or restarts, the TCP sessions go down. To continue to provide NSR, failover is configured as a recovery action. If failover is configured, a switchover is initiated if the active TCP or an active application (for example, LDP, OSPF, and so forth) restarts or terminates.

For information on how to configure MPLS Label Distribution Protocol (LDP) for NSR, refer to the Cisco IOS XR MPLS Configuration Guide for the Cisco CRS Router.

For information on how to configure NSR on a per-process level for each Open Shortest Path First (OSPF) process, refer to the Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router.

SUMMARY STEPS

1. configure
2. nsr process-failures switchover
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures failover as a recovery action for active instances to switch over to a standby route processor (RP) or a distributed route processor (DRP) to maintain nonstop routing (NSR).</td>
</tr>
<tr>
<td>Step 2 nsr process-failures switchover</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# nsr process-failures switchover</td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>
Additional References

The following sections provide references related to configuring NSR, SCTP, TCP, UDP, and RAW transports.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Cisco IOS XR Software Transport Stack commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Transport Stack Commands in the Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>the Cisco IOS XR Software MPLS LDP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>MPLS Label Distribution Protocol Commands in the Cisco IOS XR MPLS Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>the Cisco IOS XR Software OSPF commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>OSPF Commands in the Cisco IOS XR Routing Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>OSPF feature information</td>
<td>Implementing OSPF in the Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing VRRP

The Virtual Router Redundancy Protocol (VRRP) feature allows for transparent failover at the first-hop IP router, enabling a group of routers to form a single virtual router.

Feature History for Implementing VRRP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.4.0</td>
<td>This feature was updated to support the minimum and reload delay options.</td>
</tr>
<tr>
<td>Release 3.5.0</td>
<td>VRRP supports Ethernet link bundles.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>The <code>clear vrrp statistics</code> command was introduced</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>• BFD for VRRP feature was added.</td>
</tr>
<tr>
<td></td>
<td>• MIB support for VRRP feature was added.</td>
</tr>
<tr>
<td></td>
<td>• Hot Restartability for VRRP feature was added.</td>
</tr>
<tr>
<td>Release 4.1.0</td>
<td>VRRP over IPv6 feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing VRRP on Cisco IOS XR Software, page 214
- Restrictions for Implementing VRRP on Cisco IOS XR Software, page 214
- Information About Implementing VRRP, page 214
- How to Implement VRRP on Cisco IOS XR Software, page 217
- Configuration Examples for VRRP Implementation on Cisco IOS XR Software, page 223
- Multiple Group Optimization for Virtual Router Redundancy Protocol, page 231
- MIB support for VRRP, page 235
Prerequisites for Implementing VRRP on Cisco IOS XR Software

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing VRRP on Cisco IOS XR Software

The following are restrictions for implementing VRRP:

Information About Implementing VRRP

To implement VRRP on Cisco IOS XR software, you need to understand the following concepts:

VRRP Overview

A LAN client can use a dynamic process or static configuration to determine which router should be the first hop to a particular remote destination. The client examples of dynamic router discovery are as follows:

- Proxy ARP—The client uses Address Resolution Protocol (ARP) to get the destination it wants to reach, and a router responds to the ARP request with its own MAC address.
- Routing protocol—The client listens to dynamic routing protocol updates (for example, from Routing Information Protocol [RIP]) and forms its own routing table.
- IRDP (ICMP Router Discovery Protocol) client—The client runs an Internet Control Message Protocol (ICMP) router discovery client.

The drawback to dynamic discovery protocols is that they incur some configuration and processing overhead on the LAN client. Also, in the event of a router failure, the process of switching to another router can be slow.

An alternative to dynamic discovery protocols is to statically configure a default router on the client. This approach simplifies client configuration and processing, but creates a single point of failure. If the default gateway fails, the LAN client is limited to communicating only on the local IP network segment and is cut off from the rest of the network.

The Virtual Router Redundancy Protocol (VRRP) feature can solve the static configuration problem. VRRP is an IP routing redundancy protocol designed to allow for transparent failover at the first-hop IP router. VRRP enables a group of routers to form a single virtual router. The LAN clients can then be configured with the virtual router as their default gateway. The virtual router, representing a group of routers, is also known as a VRRP group.
For example, Figure 16: Basic VRRP Topology, on page 215 shows a LAN topology in which VRRP is configured. In this example, Routers A, B, and C are VRRP routers (routers running VRRP) that compose a virtual router. The IP address of the virtual router is the same as that configured for the interface of Router A (10.0.0.1).

Figure 16: Basic VRRP Topology

![Virtual Routers](image)

Because the virtual router uses the IP address of the physical interface of Router A, Router A assumes the role of the master virtual router and is also known as the IP address owner. As the master virtual router, Router A controls the IP address of the virtual router and is responsible for forwarding packets sent to this IP address. Clients 1 through 3 are configured with the default gateway IP address of 10.0.0.1.

Routers B and C function as backup virtual routers. If the master virtual router fails, the router configured with the higher priority becomes the master virtual router and provides uninterrupted service for the LAN hosts. When Router A recovers, it becomes the master virtual router again.

Note
We recommend that you disable Spanning Tree Protocol (STP) on switch ports to which the virtual routers are connected. Enable RSTP or rapid-PVST on the switch interfaces if the switch supports these protocols.

Multiple Virtual Router Support

You can configure up to 255 virtual routers on a router physical interface. The actual number of virtual routers that a router interface can support depends on the following factors:

- Router processing capability
- Router memory capability
- Router interface support of multiple MAC addresses
In a topology where multiple virtual routers are configured on a router interface, the interface can act as a master for one or more virtual routers and as a backup for one or more virtual routers.

VRRP Router Priority

An important aspect of the VRRP redundancy scheme is VRRP router priority. Priority determines the role that each VRRP router plays and what happens if the master virtual router fails.

If a VRRP router owns the IP address of the virtual router and the IP address of the physical interface, this router functions as a master virtual router.

Priority also determines if a VRRP router functions as a backup virtual router and determines the order of ascendance to becoming a master virtual router if the master virtual router fails. You can configure the priority of each backup virtual router with a value of 1 through 254, using the `vrrp priority` command.

For example, if Router A, the master virtual router in a LAN topology, fails, an election process takes place to determine if backup virtual Routers B or C should take over. If Routers B and C are configured with the priorities of 101 and 100, respectively, Router B is elected to become master virtual router because it has the higher priority. If Routers B and C are both configured with the priority of 100, the backup virtual router with the higher IP address is elected to become the master virtual router.

By default, a preemptive scheme is enabled whereby a higher-priority backup virtual router that becomes available takes over for the backup virtual router that was elected to become master virtual router. You can disable this preemptive scheme using the `no vrrp preempt` command. If preemption is disabled, the backup virtual router that is elected to become master virtual router remains the master until the original master virtual router recovers and becomes master again.

VRRP Advertisements

The master virtual router sends VRRP advertisements to other VRRP routers in the same group. The advertisements communicate the priority and state of the master virtual router. The VRRP advertisements are encapsulated in IP packets and sent to the IP Version 4 multicast address assigned to the VRRP group. The advertisements are sent every second by default; the interval is configurable.

Benefits of VRRP

The benefits of VRRP are as follows:

- **Redundancy**—VRRP enables you to configure multiple routers as the default gateway router, which reduces the possibility of a single point of failure in a network.

- **Load Sharing**—You can configure VRRP in such a way that traffic to and from LAN clients can be shared by multiple routers, thereby sharing the traffic load more equitably among available routers.

- **Multiple Virtual Routers**—VRRP supports up to 255 virtual routers (VRRP groups) on a router physical interface, subject to the platform supporting multiple MAC addresses. Multiple virtual router support enables you to implement redundancy and load sharing in your LAN topology.

- **Multiple IP Addresses**—The virtual router can manage multiple IP addresses, including secondary IP addresses. Therefore, if you have multiple subnets configured on an Ethernet interface, you can configure VRRP on each subnet.
• Preemption—The redundancy scheme of VRRP enables you to preempt a backup virtual router that has taken over for a failing master virtual router with a higher-priority backup virtual router that has become available.

• Text Authentication—You can ensure that VRRP messages received from VRRP routers that comprise a virtual router are authenticated by configuring a simple text password.

• Advertisement Protocol—VRRP uses a dedicated Internet Assigned Numbers Authority (IANA) standard multicast address (224.0.0.18) for VRRP advertisements. This addressing scheme minimizes the number of routers that must service the multicasts and allows test equipment to accurately identify VRRP packets on a segment. The IANA assigns VRRP the IP protocol number 112.

How to Implement VRRP on Cisco IOS XR Software

This section contains instructions for the following tasks:

The VRRP virtual router id (vrid) has to be different for different sub-interfaces, for a given physical interface.

Customizing VRRP

Customizing the behavior of VRRP is optional. Be aware that as soon as you enable a VRRP group, that group is operating. It is possible that if you first enable a VRRP group before customizing VRRP, the router could take over control of the group and become the master virtual router before you have finished customizing the feature. Therefore, if you plan to customize VRRP, it is a good idea to do so before enabling VRRP.

The sections that follow describe how to customize your VRRP configuration.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family {ipv4 | ipv6}
5. vrrp vrid version { 2 | 3 }
6. text-authentication
7. accept-mode {disable}
8. priority priority
9. preempt [delay seconds] [disable]
10. timer [msec] interval [force]
11. track interface type instance interface-path-id [priority-decrement]
12. delay [minimum seconds] [reload seconds]
13. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Step 4 address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Step 5 vrrp vrid version {2</td>
<td>3}</td>
</tr>
<tr>
<td>Step 6 text-authentication</td>
<td>(Optional) Configures the simple text authentication used for Virtual Router Redundancy Protocol (VRRP) packets received from other routers running VRRP.</td>
</tr>
</tbody>
</table>

- When a VRRP packet arrives from another router in the VRRP group, its authentication string is compared to the string configured on the local system. If the strings match, the message is accepted. If they do not match, the packet is discarded.
- All routers within the group must be configured with the same authentication string.
- To disable VRRP authentication, use the **no** command.
Purpose

Plain text authentication is not meant to be used for security. It simply provides a way to prevent a misconfigured router from participating in VRRP.

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 accept-mode {disable}</td>
<td>Enters the IPv4 or IPv6 address family submode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router# (config-vrrp-virtual-router)# accept-mode disable
```

Step 8

priority priority

Example:

```
RP/0/RP0/CPU0:router# (config-vrrp-virtual-router)# priority 254
```

(Optional) Sets the priority of the virtual router.

- Use the `priority` command to control which router becomes the master router.
- The `priority` command is ignored while the router is the virtual IP address owner.
- To remove the priority of the virtual router, use the `no priority` command.

Step 9

preempt [delay seconds] [disable]

Example:

```
RP/0/RP0/CPU0:router# (config-vrrp-virtual-router)# preempt delay 15
```

(Optional) Sets the priority of the virtual router.

- Use the `preempt` command to control which router becomes the master router.
- The `preempt` command is ignored while the router is the virtual IP address owner.
- To disable preemption, use the `no preempt` command.

Step 10

timer [msec] interval [force]

Example:

```
RP/0/RP0/CPU0:router# (config-vrrp-virtual-router)# timer 4
```

(Optional) Configures the interval between successive advertisements by the master router in a Virtual Router Redundancy Protocol (VRRP) virtual router.

- To restore the default value, use the `no timer` command.

Note

We recommend configuring the same VRRPv3 timers on all VRRP routers when interoperating with other vendors.

Step 11

track interface type instance interface-path-id [priority-decrement]

Example:

```
RP/0/RP0/CPU0:router# (config-vrrp-virtual-router)# track interface TenGigE 0/0/CPU0/1 30
```

(Optional) Configures the Virtual Router Redundancy Protocol (VRRP) to track an interface.

- Enter the `no track interface type instance interface-path-id [priority-decrement]` command to disable tracking.
- Only IP interfaces are tracked.
Enabling VRRP

Use the `address` command to enable VRRP on an interface, as described in the sections that follow.

SUMMARY STEPS

1. `configure`
2. `router vrrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `vrrp vrid version { 2 | 3 }`
6. `address address`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1 RP/0/RP0/CPU0:router(config-vrrp-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enters the IPv4 or IPv6 address family submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 vrrp vrid version { 2</td>
<td>3 }</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp-virtual-router)# vrrp 3 version 3 RP/0/RP0/CPU0:router(config-vrrp-virtual-router)#</td>
<td></td>
</tr>
<tr>
<td>Step 6 address address</td>
<td>Enables the Virtual Router Redundancy Protocol (VRRP) on an interface and specifies the IP address of the virtual router.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp-virtual-router)# address 2001:db8::/32</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>
Verifying VRRP

Use the `show vrrp` command to display a brief or detailed status of one or all VRRP virtual routers.

SUMMARY STEPS

1. `show vrrp [ipv4 | ipv6] [interface type instance interface-path-id [vrid]] [brief | detail | statistics [all]]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show vrrp [ipv4</td>
<td>ipv6] [interface type instance interface-path-id [vrid]] [brief</td>
</tr>
<tr>
<td>Example:</td>
<td>• If no interface is specified, all virtual routers are displayed.</td>
</tr>
</tbody>
</table>

Example:

RP/0/RP0/CPU0:router # show vrrp

Clearing VRRP Statistics

Use the `clear vrrp statistics` command to clear all the software counters for the specified virtual router.

SUMMARY STEPS

1. `clear vrrp statistics [ipv4 | ipv6] [interface type interface-path-id [vrid]]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 clear vrrp statistics [ipv4</td>
<td>ipv6] [interface type interface-path-id [vrid]]</td>
</tr>
<tr>
<td>Example:</td>
<td>• If no interface is specified, statistics of all virtual routers are removed.</td>
</tr>
</tbody>
</table>

Example:

RP/0/RP0/CPU0:router# clear vrrp statistics
Configuration Examples for VRRP Implementation on Cisco IOS XR Software

This section provides the following VRRP configuration examples:

Configuring accept-mode

Perform this task to disable the installation of routes for the VRRP virtual addresses.

SUMMARY STEPS

1. `configure`
2. `router vrrp`
3. `interface type interface-path-id`
4. `address-family {ipv4 | ipv6}`
5. `vrrp vrid version { 2 | 3 }`
6. `accept-mode disable`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure | Enables the VRRP configuration mode. |
| **Step 2**
routing vrrp | Enables the VRRP interface configuration mode on a specific interface. |
| Example:
RP/0/RP0/CPU0:router(config)# router vrrp | |
| **Step 3**
interface type interface-path-id |
Example:
RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1
RP/0/RP0/CPU0:router | |
| **Step 4**
address-family {ipv4 | ipv6} | Enters the IPv4 or IPv6 address family submode. |
| Example:
RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv6 | |
Configuring a Global Virtual IPv6 Address

Perform this task to configure the global virtual IPv6 address for a virtual router.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv6
5. vrrp vrid version 3
6. address global address
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>router vrrp</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>address-family ipv6</td>
<td></td>
</tr>
<tr>
<td>vrrp vrid version 3</td>
<td></td>
</tr>
<tr>
<td>address global address</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Command or Action

- `RP/0/RP0/CPU0:router(config-vrrp-virtual-router)#`
- `vrrp vrid version { 2 | 3 }`
- `accept-mode disable`
- `commit`

Purpose

- Enters the virtual router configuration submode.
- Note: The `version` keyword is available only for the ipv4 address family.
- Disables the installation of routes for the VRRP virtual addresses.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
</tbody>
</table>

Step 3

`interface type interface-path-id`

Example:

`RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1`

Step 4

`address-family ipv6`

Example:

`RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv6`

Step 5

`vrrp vrid version 3`

Example:

`RP/0/RP0/CPU0:router(config-vrrp-address-family)# vrrp 3 version 3`

Step 6

`address global address`

Example:

`RP/0/RP0/CPU0:router(config-vrrp-virtual-router)# address global 2001:db8::/32`

Step 7

`commit`

Configuring a Primary Virtual IPv4 Address

Perform this task to configure the primary virtual IPv4 address for a virtual router.
SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp vrid version \{ 2 | 3 \}
6. address address
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enters the IPv4 address family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-address-family)#</td>
<td></td>
</tr>
<tr>
<td>Step 5 vrrp vrid version { 2</td>
<td>3 }</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-address-family)# vrrp 3 version 2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-virtual-router)</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Secondary Virtual IPv4 Address

Perform this task to configure the secondary virtual IPv4 address for a virtual router.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp vrid version \{2 | 3\}
6. address address secondary
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router vrrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1 RP/0/RP0/CPU0:router</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>address-family ipv4</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:routerconfig-vrrp-if)# address-family ipv4</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-vrrp-virtual-router)#</td>
</tr>
<tr>
<td>Step 5</td>
<td>`vrrp vrid version { 2</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-vrrp-virtual-router)# vrrp 3 version 3</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-vrrp-virtual-router)#</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>address address secondary</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-vrrp-virtual-router)# address 10.20.30.1 secondary</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>

Configuring a Virtual Link-Local IPv6 Address

Perform this task to either configure the virtual link-local IPv6 address for a virtual router or to specify that the virtual link-local IPv6 address should be enabled and calculated automatically from the virtual router virtual Media Access Control (MAC) address.

The IPv6 address space is structured differently compared to IPv4. Link-local addresses are used to identify each interface on the local network. These addresses may either be configured or determined automatically in a standard way using the link-layer (hardware) address of the interface (MAC address for Ethernet interfaces). Link-local addresses have a standard format and are valid only on the local network (they cannot be routed to, from multiple hops away).

Global unicast IPv6 addresses occupy a disjoint subset of the IPv6 address space from link-local addresses. They can be routed to, from multiple hops away and have an associated prefix length (between 0 and 128 bits).

Each VRRP virtual router has an associated virtual link-local address. This may be configured or determined automatically from the virtual router's virtual MAC address. The virtual MAC address must be unique on the local network. The virtual link-local address is analogous to an IPv4 virtual router's primary virtual IPv4 address, except that its virtual IP (VIP) state is always considered to be up, since duplicate address detection is not required for addresses whose scope is local.
SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv6
5. vrrp vrid version 3 address linklocal \{address | autoconfigure\}
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enable the VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enters the IPv6 address family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4 address-family ipv6</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv6</td>
</tr>
<tr>
<td>Step 5 vrrp vrid version 3 address linklocal {address</td>
<td>autoconfigure}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:routerconfig-vrrp-address-family)# vrrp 1 version 3 address linklocal FE80::260:3EFF:FE11:6770</td>
</tr>
<tr>
<td>Note</td>
<td>• You must disable IPv6 Duplicate Address Detection (DAD) on an interface when the VRRP router's virtual link-local address is the same as the interface's link-local address. When DAD is disabled, duplicate packets are not flagged as duplicates.</td>
</tr>
<tr>
<td></td>
<td>• The version keyword is available only for the ipv4 address family.</td>
</tr>
</tbody>
</table>
Disabling State Change Logging

Perform this task to disable the task of logging the VRRP state change events via syslog.

SUMMARY STEPS

1. configure
2. router vrrp
3. message state disable
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 message state disable</td>
<td>Disables the task of logging the VRRP state change events via syslog.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp)# message state disable</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Multiple Group Optimization for Virtual Router Redundancy Protocol

Multiple Group Optimization for Virtual Router Redundancy Protocol (VRRP) provides a solution for reducing control traffic in a deployment consisting of many subinterfaces. By running the VRRP control traffic for just one session, the control traffic is reduced for the subinterfaces with identical redundancy requirements. All other sessions are slaves of this primary session, and inherit their states from it.

Configuring a VRRP Session Name

Perform this task to configure a VRRP session name.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp group-no
6. name name
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables RP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables VRRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Slave Follow(VRRP)

Perform this task to instruct the slave group to inherit its state from a specified group.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp group-no slave
6. follow mgo-session-name
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router vrrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Enables VRRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables VRRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>vrrp group-no slave</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-address-family)# vrrp 2 slave</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Instructs the slave group to inherit its state from a specified group.</td>
</tr>
<tr>
<td>follow mgo-session-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-vrrp-slave)# follow m1</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Primary Virtual IPv4 Address for a Slave Group (VRRP)

Perform this task to configure the primary virtual IPv4 address for the slave group.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp group-no slave
6. address ip-address
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>router vrrp</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables VRRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 vrrp group-no slave</td>
<td>Enables VRRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp-address-family)# vrrp 2 slave</td>
<td></td>
</tr>
<tr>
<td>Step 6 address ip-address</td>
<td>Configures the primary virtual IPv4 address for the slave group.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrrp-slave)# address 10.2.3.2</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Secondary Virtual IPv4 address for the Slave Group

Perform this task to configure the secondary virtual IPv4 address for the slave group.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. address address secondary
7. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-no slave</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-address-family)# hsrp 2 slave</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a router.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-hsrp-slave)# address 10.20.30.1 secondary</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

MIB support for VRRP

VRRP enables one or more IP addresses to be assumed by a router when a failure occurs. For example, when IP traffic from a host reaches a failed router because the failed router is the default gateway, the traffic is transparently forwarded by the VRRP router that has assumed control. VRRP does not require configuration of dynamic routing or router discovery protocols on every end host. The VRRP router controlling the IP address(es) associated with a virtual router is called the master, and forwards packets sent to these IP addresses. The election process provides dynamic failover(standby) in the forwarding responsibility should the master become unavailable. This allows any of the virtual router IP addresses on the LAN to be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host. SNMP
traps provide information of the state changes, when the virtual routers (in standby) are moved to master state or if the standby router is made master.

Configuring SNMP server notifications for VRRP events

The `snmp-server traps vrrp events` command enables the Simple Network Management Protocol (SNMP) server notifications (traps) for VRRP.

SUMMARY STEPS

1. configure
2. `snmp-server traps vrrp events`
3. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>snmp-server traps vrrp events</code></td>
<td>Enables the SNMP server notifications for VRRP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)snmp-server traps vrrp events</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Hot Restartability for VRRP

In the event of failure of a VRRP process in one group, forced failovers in peer VRRP master router groups should be prevented. Hot restartability supports warm RP failover without incurring forced failovers to peer VRRP routers.

Configuration Examples for VRRP Implementation on Cisco IOS XR Software

This section provides the following VRRP configuration examples:
Configuring a VRRP Group: Example

This section provides the following configuration example of Router A and Router B, each belonging to three VRRP groups:

Router A:

```
config
interface tenGigE 0/4/0/4
ipv4 address 10.1.0.1/24
exit
router vrrp
interface tenGigE 0/4/0/4
address-family ipv4
vrrp 1 version 2
priority 120
text-authentication cisco
timer 3
address 10.0.0.100
vrrp 5 version 2
timer 30
address 10.0.0.105
vrrp 5 version 2
preempt disable
address 10.0.0.200
commit
```

Router B:

```
config
interface tenGigE 0/4/0/4
ipv4 address 10.1.0.2/24
exit
router vrrp
interface tenGigE 0/4/0/4
address-family ipv4
vrrp 1 version 2
priority 100
text-authentication cisco
timer 3
address 10.0.0.100
vrrp 5 version 2
priority 200
timer 30
address 10.0.0.105
vrrp 5 version 2
preempt disable
address 10.0.0.200
commit
```

In the configuration example, each group has the following properties:

- Virtual Router 1:
 - Virtual IP address is 10.0.0.100.
 - Router A will become the master for this group with priority 120.
 - Advertising interval is 3 seconds.
 - Preemption is enabled.
 - Authentication is enabled.
• Virtual Router 5:
 * Virtual IP address is 10.0.0.105.
 * Whichever router comes up first will become master (as preemption is disabled).
 * Advertising interval is 30 seconds.
 * Preemption is disabled.
 * Authentication is disabled.

• Virtual Router 100:
 * Virtual IP address is 10.0.0.200.
 * Router B will become master for this group first, because it has a higher interface IP address (10.0.0.2).
 * Advertising interval is the default 1 second.
 * Preemption is enabled.
 * Authentication is disabled.

Clearing VRRP Statistics: Example

The `clear vrrp statistics` command produces no output of its own. The command modifies the statistics given by `show vrrp statistics` command so that all the statistics are reset to zero.

The following section provides examples of the output of the `show vrrp statistics` command followed by the `clear vrrp statistics` command:

Additional References

The following sections provide references related to VRRP.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Quality of Service Commands on Cisco IOS XR Modular Quality of Service Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Class-based traffic shaping, traffic policing, low-latency queuing, and Modified Deficit Round Robin (MDRR)</td>
<td>Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Modular Quality of Service Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>WRED, RED, and tail drop</td>
<td>Configuring Modular QoS Congestion Avoidance on Cisco IOS XR Modular Quality of Service Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRRP commands</td>
<td>VRPP Commands on Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>master command reference</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>getting started material</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Video Monitoring

Configuring Video Monitoring is a four-step procedure, which includes configuring the relevant class-maps and policy maps, and binding the video monitoring policy to an interface.

- Prerequisites for Implementing Video Monitoring, page 241
- Information About Implementing Video Monitoring, page 241
- Implementing Video Monitoring, page 246
- Configuration Examples for Implementing Video Monitoring, page 256
- Additional References, page 260

Prerequisites for Implementing Video Monitoring

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- You must install and activate packages for advanced video services. For detailed information about optional package installation, see Cisco IOS XR Getting Started Guide for the Cisco CRS Router.

- You must install and activate a package for the multicast routing software and enable multicast routing on the system. Video monitoring is supported on interfaces that are multicast-enabled. For detailed information about multicast routing, refer to the chapter Implementing Layer 3 Multicast Routing on Cisco CRS Routers.

Information About Implementing Video Monitoring

Video Monitoring

Poor video experience is a major cause for concern among service providers in terms of service costs and loss of revenue. To avoid the service costs of help desk time, NOC (network operation center) troubleshooting...
resources, and truck rolls, the capability of monitoring video traffic is essential. On Cisco IOS XR software, problems in video flows can be easily diagnosed by video monitoring.

Introduction to Video Monitoring

Packet loss is one common cause of video quality degradation. Its impact is more significant on compressed video flows. The video traffic transported through the service provider IP network is mostly compressed video – MPEG or similar encoding. Because of the way compression occurs, the traffic is extremely loss-sensitive. The video is encoded with an independent frame (I-frame) every few seconds, with subsequent frames being deltas from the I-frame. If the loss is in an I-frame, a 3 ms loss of traffic (roughly one IP packet) can result in a viewing degradation for up to 1.2 seconds.

Jitter is a key flow characteristic that requires careful buffer provisioning in the end device. The set top box (STB) that displays the media on a screen needs to decode the video in real-time. It buffers the incoming video stream so that it can decode and display the image smoothly. Large network jitter can lead to buffer underrun or overrun on the STB. Depending on how large the jitter is, this will create a visual artifact or even a "black screen" at the display.

End-to-end delay in transmission is not significant for a broadcast-only application. However, as the video applications get to be more interactive, the end-to-end latency (delay) becomes a critical Quality of Experience (QoE) component. Data loss is a major contributor for poor QoE.

Three main contributors to poor QoE can be summed up as:

- Packet Loss
- Jitter
- Delay

Video Monitoring plays a very significant role in improving video quality, and thus, in enhancing the QoE. Video monitoring is implemented on the routers and enables network operators to measure and track video transport performance on a per-flow basis. The video packets flow through a router. We can use the packet headers and compute a metric that gives us a measure of the network performance impacting the quality of the video. This information from multiple routers is compared for the same flow to get a clear end-to-end picture of the video issues in the network and the affected flows.

Problems in video flows (and more generally, any streaming flow) can be diagnosed by video monitoring. The purpose of video monitoring is to detect perturbations and anomalies introduced by the network that cause a degraded QoE; that is, it measures the transport performance for streaming (video) traffic. Encoding errors, audio-video-lag, and other errors too cause poor QoE. However, these are introduced by the encoding device and not the network. These latter errors are not monitored.

Key Features Supported on Video Monitoring

Direct Measurements from Data Plane

Video monitoring plays a significant role in improving video quality and therefore enhances the QoE. Video monitoring implemented on Cisco CRS Routers enable the network operator to measure and track video transport performance on a per-flow basis in real time. In contrast to the conventional traffic monitoring solutions, (where sampled flows have to be sent to the control plane or additional hardware, such as dedicated blade on the router), video monitoring on Cisco CRS Router performs the monitoring operation on the data
plane itself. This enables video monitoring to analyze forwarded packets in real time, to compute a metric that provides a measure of the network performance impacting the quality of the video.

Local Storage and Remote Access

Video monitoring measures packet loss and jitter at wire-speed, and stores collected information on the router, in order that the network operator can access it through a user interface. Furthermore, the performance metrics measured and stored on multiple routers can be accessed through standard SNMP from a remote operation center. These metrics provide a clear end-to-end picture of the video flow that can be composed and analyzed.

Proactive and Reactive Usages

Video monitoring on Cisco CRS Routers serve both reactive and proactive usage for service providers. It can be used to verify the quality of video service, before scaling up the service coverage to new customers. Also, it is a powerful tool for analysis and can be used to troubleshoot customer calls. Network operators can configure video monitoring to raise an alarm for various events such as variation in packet loss, jitter, flow rate, number of flows, and so on. Such an alarm can be configured to get triggered at any possible value or range.

Flow on Video Monitoring

Video monitoring uses four pieces of packet header fields to distinguish a unique flow - source IP address, destination IP address, source UDP port, and destination UDP port (this implies protocol ID is always UDP).

Unicast and Multicast

Video monitoring supports not only the monitoring of flows with IPv4 multicast destination address in the IP header, but also supports the monitoring of flows with unicast destination addresses.

Flow Rate Types and Protocol Layer

Video monitoring monitors CBR (constant bit rate) flows at the IP layer. In other words, video monitoring can monitor CBR-encoded media streams (for example, MPEG-2) encapsulated in UDP datagram, inside an IPv4 packet. Video monitoring allows users to configure expected packet rate at IP layer, or bit rate at media layer (along with the number and size of media packets).

Metrics

Video monitoring supports both packet loss and jitter metrics that follow MDI (media delivery index, RFC 4445) definition at the IP-UDP level. The MDI metrics are MLR (media loss rate) and DF (delay factor). Video monitoring uses MRV (media rate variation) which is an extension of MDI MLR; that is, MLR captures only loss, while MRV captures both loss and excess. Video monitoring DF is the same as MDI definition, where DF represents one nominal packet inter-arrival time in addition to the monitored MDI jitter. Along with the two key metrics, Video monitoring supports packet count, byte count, packet rate, bit rate, packet size, TTL (Time to Live) field in IP header, number of flows, raised alarms, and time stamp for various events.

Note

The term MDI jitter, is used to signify the correctness of DF metric measured by Video monitoring. MDI jitter is measured by comparing the actual packet arrival time against the nominal arrival reference, while simple inter-packet jitter is measured by the time difference between two consecutive packet arrivals. The former captures the performance of CBR flow more precisely than the latter.

For Cisco CRS Router, only MRV is applicable.
High Availability Features

Video monitoring on Cisco CRS Router supports high availability at various levels. It supports process OIR (online insertion and removable), line card OIR, RP (route processor) failover, and router reload. Configuration is persistent for all high availability scenarios. Monitored statistics data are preserved at process OIR and RP FO.

Interface Types and Direction

To activate video monitoring, you must configure video monitoring service policy on an interface. There are four types of interfaces to which you can attach the video monitoring policy; these are main interface, subinterface, ethernet bundle interface, and ethernet bundle subinterface. Video monitoring supports only layer 3 interfaces and not layer 2 interfaces. Video monitoring can be configured only on the input direction of the interface.

Flow Rate

Video monitoring supports standard definition (SD) video traffic (mostly compressed) of up to 100 Mbps flow rate. For uncompressed video streams, flow rate of max 3 Gbps is supported.

User Interface for Input

Video monitoring supports traditional CLI (command line interface) input for configuration that follows MQC (modular QoS configuration) syntax. You can configure video monitoring by configuring access control list (ACL), class map, and policy map; it can be activated by attaching the service policy to an interface. In-place policy modification is supported.

Note

In place policy modification internally behaves like policy removal and attach. So, flows are newly detected on the interface.

User Interface for Output

Video monitoring offers various show and clear commands for retrieving the monitored statistics. Refer the Video Monitoring Commands on Cisco CRS Routers module in the Cisco IOS XR Multicast Command Reference for the Cisco CRS Router for a detailed description of the video monitoring commands.

You can configure TCA (threshold crossing alert) as a part of the policy map to enable video monitoring to generate syslog message for various conditions. You can also retrieve standing alarms by using show command or through a SNMP pull. XML is supported by video monitoring.

Number of Class Maps and Policy Maps

To use video monitoring, you must configure class map and policy map that acts as a filter to determine which flow to monitor on the data plane. Video monitoring supports a maximum of 512 class maps per policy-map, and a maximum of 1500 class maps per system. It supports a maximum of 1500 policy maps on the system.

Video PIE Installation

Video monitoring requires video PIE installation. Depending on the RP type, the video pie name has the following version:

- hfr-video-px.pie
Video Monitoring Terminology

To implement and configure video monitoring service on Cisco CRS Routers, you must first understand video monitoring terminology and concepts.

Interval duration and interval updates

Video monitoring analyzes continuously all packets on the data plane for a time period called interval duration, which is configured by the user. Statistics are exported periodically at the end of each interval duration. These exported statistics are called interval updates. The status of a video monitoring flow and its transition is described solely in reference to these interval updates. Also, all exported video monitoring flow statistics are stored in terms of these interval updates.

The interval duration is a vital video monitoring parameter. Video monitoring configuration anchors upon interval duration for functions such as frequency of export, number of exports to store, time to delete inactive flows, and so on. All video monitoring functionalities, including raising alarm (for stopped flows and flows with performance degradation), are based on the contents of interval updates.

Video monitoring flows

A video monitoring flow is an instance of a packet stream whose header fields match the configured class map (and its associated access control list). A unique flow is local to the interface to which a video monitoring service policy is attached. A video monitoring flow is composed of a series of stored interval updates. A unique flow that is created on video monitoring after a monitoring interval is called a new flow.

Flow stop

If the router stops receiving packets on a monitored flow for one full interval update or longer, the monitored flow is considered as being stopped.

Flow resumption

When a stopped video monitoring flow resumes receiving packets, a normal interval update is exported in the next monitoring interval. A resumed flow has one or more zero intervals, followed by a normal interval update.

Flow switchover

A video monitoring flow on an ethernet bundle interface, or on an ethernet bundle sub-interface, may move from one physical member interface to another; that is, the packet stream stops flowing on one interface and starts flowing on another interface. This is defined as a flow switchover. In such a case, if both interfaces are on the same line card, video monitoring treats the pre-switchover flow and the post-switchover flow as the same flow. Otherwise, it treats them as two different flows.

Flow deletion

If a stopped video monitoring flow continues to export zero intervals for a configured timeout (in terms of the number of monitoring intervals), the flow is considered dead and is marked for deletion. The duration for which the user can control inactive flows is indicated using the timeout parameter. The actual deletion for all the marked flows takes place after some delay by the periodic sweeping function. Once deleted, all exported statistics (series of interval updates including zero intervals) are completely removed from storage.

Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
Implementing Video Monitoring

Configuring Video Monitoring is a four-step procedure, which includes configuring the relevant class-maps and policy maps, and binding the video monitoring policy to an interface.

Creating IPv4 Access Lists

This step is similar to typical IPv4 access list creation and configuration. An example configuration of ACL for video monitoring is presented here for quick reference. For more details, refer to the Implementing Access lists and Prefix lists chapter of the Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router.

This task configures a standard IPv4 access list.

Standard access lists use source addresses for matching operations.

Note

Video Monitoring policy allows deny statements in ACL configuration, but deny statements are treated as permit. Also, log or log-input is not supported in ACL configuration.

SUMMARY STEPS

1. configure
2. ipv4 access-list name
3. [sequence-number] remark remark
4. [sequence-number] permit udp source [source-port] destination [destination-port]
5. Repeat Step 4 as necessary, adding statements by sequence number. Use the no sequence-number command to delete an entry.
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv4 access-list name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# ipv4 access-list acl_1</td>
</tr>
<tr>
<td>Step 3</td>
<td>[sequence-number] remark remark</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ipv4-acl)# 10</td>
</tr>
</tbody>
</table>

(Optional) Allows you to comment on the permit statement that follows in the named access list.

- The remark can be up to 255 characters; anything longer is truncated.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>remark Do not allow user1 to telnet out</td>
<td>• Remarks can be configured before or after <code>permit</code> statements, but their location details should be consistent.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>[sequence-number] permit udp source [source-port] destination [destination-port]</code></td>
<td>Allows you to specify the source and destination ports with these conditions.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 permit udp 172.16.0.0/24 eq 5000 host 225.0.0.1 eq 5000</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Repeat Step 4 as necessary, adding statements by sequence number. Use the <code>no sequence-number</code> command to delete an entry.</td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
</tr>
<tr>
<td></td>
<td>Allows you to revise an access list.</td>
</tr>
</tbody>
</table>

Configuring class-map

This task sets up the flow classifier. This may match either an individual flow, or it may be an aggregate filter matching several flows.

SUMMARY STEPS

1. `configure`
2. `class-map type traffic class-map-name`
3. `match access-group ipv4 acl-name`
4. `end-class-map`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
</tbody>
</table>
Configuring policy-map

The policy map for video monitoring is of the performance-traffic type. Only one level of hierarchy is supported for video monitoring policy-maps. This means that no hierarchical policy map configuration is supported for video monitoring.

The policy map configuration for video monitoring has these three parts:

- **Flow parameters configuration**: Specifies the different properties of the flow that are monitored such as interval duration, required history intervals, timeout, etc.
- **Metric parameters configuration**: Specifies the metrics that need to be calculated for the flow that are monitored.
- **React parameters configuration**: Specifies the parameters, based on which, alerts are generated for the flow.

The configuration hierarchy is from **policy** to **class** to **flow**. This means that all the parameters that are specified above are applied to all flows that match a particular class, in the policy-map. While specifying flow and react parameters for flows matching a given class is optional, its metric parameters is mandatory.

Configuring policy-map with metric parameters

The metric parameters in a policy map can be:

- Layer 3 packet rate or...
• Media bit rate (with the number of media packet counts and size in the UDP payload specified).

Note
Layer 3 packet rate and Media rate have mutually exclusive configuration commands.

The configuration for each metric parameter is described in this section.

Layer 3 packet-rate

SUMMARY STEPS

1. configure
2. policy-map type *performance-traffic policy-map-name*
3. class type *traffic class-name*
4. monitor metric ip-cbr
5. rate layer3 packet *packet-rate pps*
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type performance-traffic policy-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
</tr>
<tr>
<td>Step 3</td>
<td>class type traffic class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor metric ip-cbr</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pmap-c)# monitor metric ip-cbr</td>
</tr>
<tr>
<td>Step 5</td>
<td>rate layer3 packet packet-rate pps</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pmap-c-ipcbr)# rate layer3 packet packet-rate pps</td>
</tr>
</tbody>
</table>
Media bit-rate
The metric parameters for media bit-rate consist of the media bit rate, media packet count and packet size. The rate media option enables the user to specify the number of media payload packets (that is MPEG-2 datagrams) that is present in one UDP packet, and the size of each of such media payload. It is mandatory to specify the media bit rate. There are no defaults for packet count and packet size in Cisco IOS XR Software Release 3.9.1. These values must be configured.

Note
With the media bit rate configured to 1052800 bps, media packet count to 7, and media packet size to 188 bytes, the media packet rate is 100 pps at layer 3. The calculation is: 1052800 / (7 * 188 * 8) = 100 pps.

SUMMARY STEPS
1. configure
2. policy-map type performance-traffic policy-map-name
3. class type traffic class-name
4. monitor metric ip-cbr
5. rate media bit-rate {bps|kbps|mbps|gbps}
6. media packet count in-layer3 packet-count
7. media packet size packet-size
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Step 2 policy-map type performance-traffic policy-map-name</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic. Example: RP/0/RP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
</tr>
<tr>
<td>Step 3 class type traffic class-name</td>
<td>Enters the class-map to be matched for this policy. Multiple classes can be specified for a single policy. Example: RP/0/RP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Step 4 monitor metric ip-cbr</td>
<td>Enters the IP-CBR metric monitor submode.</td>
</tr>
</tbody>
</table>
Configuring policy-map with flow parameters

The flow parameters in a policy map are optional.

For video monitoring, the data plane continuously monitors the flows and the metrics that are exported at the end of every interval. The duration of this interval and the number of such intervals that need to be stored for each flow (history) can also be optionally specified by the user. You can specify these flow parameters for each flow:

- **Interval Duration**: The time interval at whose end, metrics are exported. This is specified in multiples of 5 (any value between 10 and 300 seconds). The default value is 30.
- **History**: The number of intervals containing flow information (flow ID, metrics, etc.) that needs be stored for each flow. This can be any value between 1 and 60. The default value is 10.
- **Timeout**: The timeout in multiples of interval duration after which an inactive flow is marked for deletion. This can be any value between 2 and 60. The default value is 2.
- **Max Flows per class**: The maximum number of flows that need to be monitored for each class in the policy. This can be any value between 1 and 1024. The default value is 4096.

Monitoring this parameter requires maintaining a count per class in hardware and metro hardware does not provide the functionality to read the stats counter. Due to this limitation, this parameter is not supported. If the user has specified this parameter in the policy, the maximum number of flows per class is limited to maximum number of flows per line card.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c)# monitor metric ip-cbr</td>
<td>Note Currently only ip-cbr metric monitoring is supported for video monitoring.</td>
</tr>
<tr>
<td>Step 5 rate media bit-rate {bps</td>
<td>kbps</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-ipbr)# rate media 100 mbps</td>
<td></td>
</tr>
<tr>
<td>Step 6 media packet count in-layer3 packet-count</td>
<td>Specifies the number of media packets for each IP payload.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-ipbr)# media packet count in-layer3 10</td>
<td></td>
</tr>
<tr>
<td>Step 7 media packet size packet-size</td>
<td>Specifies the size in bytes for each media packet in the IP payload.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-ipbr)# media packet size 188</td>
<td></td>
</tr>
<tr>
<td>Step 8 commit</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. configure
2. policy-map type performance-traffic policy-map-name
3. class type traffic class-name
4. monitor parameters
5. {interval duration duration | flows number of flows | history intervals | timeout duration}
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type performance-traffic policy-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
</tr>
<tr>
<td>Step 3</td>
<td>class type traffic class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor parameters</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pmap-c)# monitor parameters</td>
</tr>
<tr>
<td>Step 5</td>
<td>{interval duration duration</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pmap-c-fparm)# interval duration 10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• Select the flows option to specify the maximum number of flows that can be monitored per class. Range is between 1 and 1024. The default value is 1024.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6 commit

Configuring policy-map with react parameters

The react parameters in a policy map are optional.

The react parameters are a direct reference for the user to indicate the flow quality. The flow is continuously monitored, and at the end of the interval duration, the statistics are examined to determine whether the threshold specified by the user for the specific parameter has exceeded. If it has, a syslog alarm is generated on the console. Once the alarm is set, no further syslog notifications are issued for the condition.

The following react parameters are used to configure the policy-map:

- Media Rate variation (MRV): video monitoring reacts and generates an alarm if the MRV statistic of the flow crosses the user-specified threshold.
- Media-Stop: video monitoring reacts and generates an alarm if a flow stops; this is to indicate that no packets were received for the flow during one full monitoring interval.
- Packet-Rate: video monitoring reacts and generates an alarm if the packet rate of the flow crosses the user-specified threshold.
- Flow-Count: video monitoring reacts and generates an alarm if the flow count for each class crosses the user-specified threshold.

SUMMARY STEPS

1. configure
2. policy-map **type** performance-traffic policy-map-name
3. class **type** traffic class-name
4. react react-id {mrv | delay-factor | packet-rate | flow-count | media-stop}
5. threshold **type** immediate
6. threshold value {ge | gt | le | lt | range} limit
7. action syslog
8. alarm severity {error | critical | alert | emergency}
9. alarm **type** {discrete | grouped}
10. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Step 2 policy-map type performance-traffic policy-map-name</td>
<td>Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3 class type traffic class-name</td>
<td>Enters the react parameter configuration submode. The react ID specified here needs to be unique for each class.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap)# class type traffic class-name</td>
<td>Note For the media-stop react parameter, the threshold-type and threshold-value options are not applicable. For the flow-count react parameter, the alarm-type option is not applicable.</td>
</tr>
<tr>
<td>Step 4 react react-id {mrv</td>
<td>delay-factor</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c)# react 1 mrv</td>
<td></td>
</tr>
<tr>
<td>Step 5 threshold type immediate</td>
<td>Specifies the trigger value range for the threshold.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-react)# threshold type immediate</td>
<td></td>
</tr>
<tr>
<td>Step 6 threshold value {ge</td>
<td>gt</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-react)# threshold value ge 50</td>
<td></td>
</tr>
<tr>
<td>Step 7 action syslog</td>
<td>Specifies the alarm severity for syslog.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-react)# action syslog</td>
<td></td>
</tr>
<tr>
<td>Step 8 alarm severity {error</td>
<td>critical</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pmap-c-react)#</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm severity critical</td>
<td></td>
</tr>
</tbody>
</table>

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm type {discrete</td>
<td>grouped}</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPUG:router(config- pmap-c-react)#
alarm type discrete
```

Step 10

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring service policy on an interface

The configured policy-map must be attached to an interface in ingress direction in order to enable the Video Monitoring service.

For ethernet bundle interface, service policy can be attached to only the bundle parent interface and not to the physical member interfaces. For ethernet bundle sub-interfaces, it can be attached to only sub-interfaces. For VLAN sub-interfaces, the service policy cannot be attached to the main interface.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. service-policy type performance-traffic input policy-name
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The type argument specifies an interface type. For more information on interface types, use the question mark (?) online help function.</td>
</tr>
<tr>
<td></td>
<td>• The instance argument specifies either a physical interface instance or a virtual instance.</td>
</tr>
<tr>
<td></td>
<td>• The naming notation for a physical interface instance is rack/slot/module/port. The slash (/) between values is required as part of the notation.</td>
</tr>
<tr>
<td>interface type interface-path-id</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The number range for a virtual interface instance varies, depending on the interface type.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

| service-policy type performance-traffic input policy-name | Attaches the policy to the interface in the ingress direction. |

Example:

```
RP/0/RP0/CPU0:router(config-if)#
service-policy type performance-traffic input policy1
```

Step 4

| commit |

Configuration Examples for Implementing Video Monitoring

Scenario-1

An ethernet bundle interface has three physical members over which multicast video traffic is flowing at 300 pps for each flow.

Use video monitoring to monitor all the flows on this ethernet bundle, and raise a critical-level alarm, if the per-flow traffic load is over 10% of expected rate. Raise an error-level alarm if the delay factor is greater than 4 ms. Report the collected statistics every 10 seconds. As long as the flow is active, keep the reported statistics for 10 minutes. Remove flow statistics if no packets are received for 30 seconds.

Example

```
ipv4 access-list sample-acl
  10 permit udp any any

class-map type traffic match-any sample-class
  match access-group ipv4 sample-acl
end-class-map

policy-map type performance-traffic sample-policy
  class type traffic sample-class
  monitor parameters
    interval duration 10
    history 60
    timeout 3
  !
  monitor metric ip-cbr
    rate layer3 packet 300 pps
  !
  react 100 mrv
    threshold type immediate
    threshold value gt 10.00
    action syslog
    alarm severity error
    alarm type discrete
  !
  react 101 delay-factor
```

Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
threshold type immediate
threshold value gt 4.00
action syslog
alarm severity error
alarm type discrete
!
end-policy-map
!
interface Bundle-Ether10
 ipv4 address 172.192.1.1 255.255.255.0
 service-policy type performance-traffic input sample-policy
!
interface TenGigE0/6/0/0
 bundle id 10 mode on
!
interface TenGigE0/6/0/1
 bundle id 10 mode on
!
interface TenGigE0/6/0/2
 bundle id 10 mode on
!

Scenario-2

A VLAN subinterface is carrying 100 video streams with a common multicast group address of 225.0.0.1 and varying UDP port numbers. The expected packet rate at IP layer is unknown, but the media bit rate is known to be 1052800 bps. The media payload is known to contain MPEG-2 encoded CBR flows and default packetization is used (that is, in one UDP payload, there are seven MPEG packets, where each packet is 188 bytes long).

Do not monitor over 100 flows. Do not timeout and delete any flow even if flow stops, but raise an error-level alarm if the percentage of the stopped flows is over 90%.

Example

ipv4 access-list sample-acl
 10 permit udp any host 225.0.0.1
!
class-map type traffic match-any sample-class
 match access-group ipv4 sample-acl
 end-class-map
!
policy-map type performance-traffic sample-policy
 class type traffic sample-class
 monitor parameters
 flows 100
 !
 monitor metric ip-cbr
 rate media 1052800 bps
 !
 react 100 media-stop
 action syslog
 alarm severity error
 alarm type grouped percent 90
 !
 end-policy-map
!
interface GigabitEthernet0/0/0/0
 no shutdown
!
interface GigabitEthernet0/0/0/0.1
 encapsulation dot1q 500
 ipv4 address 172.192.1.1 255.255.255.0
 service-policy type performance-traffic input sample-policy
!
Under **monitor metric ip-cbr**, these two lines need not be configured as they are defaults:

- media packet count in-layer3 7
- media packet size 188

However, if these parameters are different from default values, they need to be configured.

Scenario-3

A main interface has three groups of multicast streams where the first group has UDP destination port of 1000, the second group has 2000, and the third group has 3000 and 4000. These three groups of streams flow at 100 pps, 200 pps, and 300 pps respectively.

Limit the maximum number of flows in each group to 300 flows and raise the error-level alarm, when they reach 90% of the provisioned flow capacity.

Example

```plaintext
to do
```

Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router, Release 4.3.x
react 100 flow-count
 threshold type immediate
 threshold value gt 270
 action syslog
 alarm severity error
!
class type traffic sample-class-1
monitor parameters
 interval duration 10
 history 60
 timeout 3
 flows 300
!
monitor metric ip-cbr
 rate layer3 packet 300 pps
!
react 100 flow-count
 threshold type immediate
 threshold value gt 270
 action syslog
 alarm severity error
!
!
end-policy-map
!
interface GigabitEthernet0/0/0/0
ipv4 address 172.192.1.1 255.255.255.0
service-policy type performance-traffic input sample-policy
!

Scenario-4

A 10GE main interface receives six high definition (HD) video streams from the digital contents manager (DCM), directly connected to six HD cameras in a sports stadium. Each HD video stream is uncompressed and its bandwidth is as high as 1.611 Gbps at layer 2, which is equivalent to 140625 pps. These six streams are received with multicast groups of 225.0.0.1 through 225.0.0.6, and the UDP port number is 5000.

Raise a critical-level alarm when the delay factor of any flow is above 2 ms, or the media loss ratio is above 5%. Use 10s interval and keep maximum history. Do not monitor more than 6 flows on this interface. Do not time out inactive flows.

Example

ipv4 access-list sample-acl
 10 permit udp any eq 5000 225.0.0.0/24 eq 5000
!
class-map type traffic match-any sample-class
 match access-group ipv4 sample-acl
end-class-map
!
policy-map type performance-traffic sample-policy
class type traffic sample-class
monitor parameters
 interval duration 10
 history 60
 flows 6
!
monitor metric ip-cbr
 rate layer3 packet 140625 pps
!
react 100 mrv
 threshold type immediate
 threshold value gt 5.00
 action syslog
 alarm severity critical
 alarm type discrete
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast command reference document</td>
<td>Cisco IOS XR Multicast Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Modular quality of service command reference document</td>
<td>Cisco IOS XR Modular Quality of Service Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC4445</td>
<td>Proposed Media Delivery Index (MDI)</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>able technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>
C

cache entries 50

CEF (Cisco Express Forwarding) 53, 54, 55, 56, 57, 66

benefits 54

BGP policy accounting, classification 55
description 53

exact route, how to verify 66

features 54

FIB (Forwarding Information Base) 55

reverse path forwarding 56

route processor management ethernet forwarding 57

cef load-balancing fields 57

cef load-balancing fields command 57

Checking Network Connectivity 123

Example command 123

Checking Network Connectivity for Multiple Destinations 112

CIDR format 10

using 10

Cisco inetd 108

Cisco IOS XRDHCP Relay on a VRF 103

Example command 103

Cisco IOS XRDHCP Relay on an Interface 103

Example command 103

Cisco IOS XRDHCP Relay Profile 102

Example command 102

Cisco IOS XRRelay Agent Giaddr Policy 103

Example command 103

Cisco IOS XRRelay Agent Information Option Support 103

Example command 103

Class-map 247

configuring 247

Clearing VRRP Statistics 222, 238

Example command 238

commands 57, 66, 110, 208, 220, 222

bundle-hash 66

cnf load-balancing fields 57

nsr process-failures switchover 208

rcp copy 110

show mpls forwarding exact-route 66

show vrrp 222

vrrp ipv4 220

components 162

configuration 113

Configuration Examples for HSRP Implementation on Cisco IOS XR Software command 158

Configuration Examples for Implementing Access Lists and Prefix Lists command 36

Configuration Examples for Implementing ACL-based Forwarding command 37

Configuration Examples for Implementing CEF on RoutersCisco IOS XR Software command 68

Configuration Examples for Implementing Host Services and Applications on command 123

Configuration Examples for Implementing LPTS Policers command 164

Configuration Examples for Implementing Network Stack IPv4 and IPv6 203

Configuration examples for Implementing Video Monitoring 256

Configuration Examples for the Cisco IOS XR DHCP Relay Agent command 102

Configuration Examples for VRRP Implementation on Cisco IOS XR Software command 223, 236

configuring 163, 247, 248, 255

Configuring a Global Virtual IPv6 Address 224

Configuring a Primary Virtual IPv4 Address 144, 225

configuring a router 117

Configuring a Router for Multiple HSRP Groups 158

Example command 158

Configuring a Router to Use rcp, FTP, or TFTP Connections 125

Example command 125

Configuring a Secondary Virtual IPv4 Address 145, 227

Configuring a slave follow 146

Configuring a slave primary virtual IPv4 address 148

Configuring a slave secondary virtual IPv4 address 149, 234

Configuring a slave virtual mac address 150

Configuring a Virtual Link-Local IPv6 Address 228

Configuring a VRRP Group 237

Example command 237

Configuring accept mode 223

configuring activation delay 138

Configuring an HSRP Group 158

Example command 158

Configuring an HSRP Session Name 151

Configuring an IPSLA ICMP echo operation 122

Configuring BGP Attributes Download 84

Example command 84

Configuring BGP Policy Accounting 68

Example command 68

Configuring Domain Services 124

Example command 124

configuring failover as recovery 209

configuring group attributes 134

Configuring GTP Tunnel Load Balancing 84

Example command 84

configuring hash algorithm 65

Configuring LPTS Policers 165

Example command 165

Configuring object tracking for HSRP 157

Configuring Per-Flow Load Balancing 83

Example command 83

configuring relay agent 95

Configuring the DHCPv6 (Stateless) Relay Agent 92
Index

Configuring the Switching of Modular Services Card to Management Ethernet Interfaces on the Route Processor 82

Example command 82

Configuring Unicast RPF Checking 82

Example command 82

connections, how to 116, 117

customization 217
customize, how to 217
customizing 217

Customizing HSRP 141

D

defining preemption 131
definition 48, 90, 110, 111
description 53, 107, 127, 214
description, ICMP rate limit 198

DHCP (Dynamic Host Configuration Protocol) 90, 95

customing relay agent 95

forwarding UDP broadcaststo DHCP server, figure 90

relay agent, how to 95

DHCP relay agent 90
definition 90

DHCP relay agent information 95

Disabling State Change Logging 230
domain services 108, 113

customation 113

E

enable, how to 220

enabling 131, 133, 220

enabling HSRP 131

enabling HSRP for IPv6 133

enabling ICMP redirect messages 140

enabling IPv6 forward traffic globally 192

enabling support for ICMP redirect messages 140

Enhanced Object Tracking for HSRP and IP Static 156

exact route, how to verify 66

extended networks, using IP secondary addresses 194

extension header format, figure 178

F

failover as recovery, how to 209

features 54

Features 242

FIB (Forwarding Information Base) 55

figures 90, 175, 176, 177, 178, 183, 185, 186

aggregatable global address format 175

forwarding UDP broadcaststo DHCP server 90

IPv4 packet header format 178

IPv4-compatible IPv6 address format 177

IPv6 extension header format 178

IPv6 neighbor discovery-neighbor redirect message 186

IPv6 neighbor discovery-neighbor solicitation message 183

IPv6 neighbor discovery-router advertisement method 185

IPv6 packet header format 178

link local address format 176

File Transfer Protocol (FTP) 110

canical services 108, 110

File Transfer Protocol (FTP) 110

remote copy protocol (RCP) 110

Trivial File Transfer Services (TFTP) 110

filter configuration, IPv4 packets 16

filtering routes by a prefix list 15

for HSRP 158

for VRRP 236

formats 173

forward a next hop 16

forwarding of IPv6 traffic globally on a router, how to enable 192

forwarding UDP broadcaststo DHCP server 90

forwarding UDP broadcasts to DHCP server, figure 90

FTP 117

FTP (File Transfer Protocol) 111, 117

configuring a router 117

culations, how to 117

definition 111

troubleshooting tips 117

FTP connections 117

function 208

functions 57

G

giaddr attribute 97

Global Virtual IPv6 Address 224

groups 128

H

hash algorithm, how to configure 65

highest IP address resolution, how to configure 201

host services and applications 107, 108, 110, 111, 113

Cisco inetd 108
description 107
domain services 108, 113
customation 113
host services and applications (continued)
file transfer services 108, 110
 File Transfer Protocol (FTP) 110
 remote copy protocol (RCP) 110
 Trivial File Transfer Services (TFTP) 110
network connectivity 108
 ping tool 108
prerequisites 107
telnet 111
TFTP server 110
tools 108
Hot restartability 158
 for HSRP 158
Hot Restartability 236
 for VRRP 236
how to configure 163
 how to enable 220
HSRP 134, 138, 140
 configuring activation delay 138
 configuring group attributes 134
 enabling ICMP redirect messages 140
HSRP (Hot Standby Router Protocol) 127, 128, 131, 133, 134, 138, 140
 configuring group attributes 134
 configuring activation delay 138
 description 127
 enabling 131, 133
 enabling support for ICMP redirect messages 140
 groups 128
 overview 128
 preemption 131
HSRP (Hot Standby Router Protocol), figure 128

ICMP packet header 187
ICMP rate limiting 198
IFIB (Internal Forwarding Information Base) 162
Implementing 241
inbound connection, telnet 111
inbound or outbound interfaces, applying on 19
 interfaces, IP addresses 190, 194
 primary, IP address 190
introduction (IPv6 for Cisco IOS XR) 173
IP 19, 190, 194
 access lists 19
 addresses 190, 194
 multiple, assigning 194
 primary 190
 secondary 194
IP address conflict resolution 201
IP protocol number 216
IPARM conflict resolution 200
IPv4 and IPv6 protocol stacks 196
IPv4 and IPv6 protocol stacks, configuring 196
IPv4 and IPv6 protocol stacks, how to 196
IPv4 or IPv6 17
IPv4 or IPv6 access lists 17
IPv4 or IPv6, how to 17
IPv4 packet header format 178
IPv4 packet header format, figure 178
IPv4-compatible IPv6 address 177
IPv4-compatible IPv6 address format 177
IPv6 173, 177, 178, 183, 185, 186, 187, 192
 assigning addresses to individual router interfaces 192
 extension header format, figure 178
 multicast address 177
 multicast address, figure 177
 multicast groups 192
 neighbor redirect message 186
 packet header 178
 packet header format, figure 178
 solicited-node multicast address format, figure 177
 address argument 192
 address formats 173
 address types 177
 ICMP packet header 187
 introduction (IPv6 for Cisco IOS XR) 173
 neighbor discovery 183
 neighbor redirect message, figure 186
 neighbor solicitation message, figure 183
 prefix argument 192
 RFC 2460 173
 router advertisement method, figure 185
IPv6 ACL-based Forwarding Example command 38
IPv6 address 173
 formats 173
 IPv6 addresses to individual router interfaces, assigning 192
 IPv6 extension header 178
 IPv6 extension header format 178
 IPv6 for Cisco IOS XR 173
 IPv6 neighbor discovery 183, 185, 186
 neighbor redirect message, figure 186
 neighbor solicitation message, figure 183
 router advertisement method, figure 185
 IPv6 neighbor discovery-neighbor redirect message 186
 IPv6 neighbor discovery-neighbor solicitation message 183
 IPv6 neighbor discovery-router advertisement method 185
 IPv6 neighbor redirect message 186
 IPv6 packet header format 178
 IPv6 packet header format, figure 178
 IPv6 Support for IP SLA ICMP Echo operation 121
 ipv6-address argument 192
 ipv6-prefix argument 192
Layer 3 information 57
Layer 3 information (load-balancing) 57
Layer 4 information 57
Layer 4 information (load-balancing) 57
link local address format 176
link local address format, figure 176
link-local address 176
lists 17, 19
 applying 19
 inbound or outbound interfaces, applying on 19
IPv4 or IPv6, how to 17
load-balancing 57, 65, 66
 7-tuple hash algorithm how to configure 65
 7-tuple hash algorithm, configuring 65
 functions 57
Layer 3 information 57
Layer 4 information 57
overview 57
verification, CEF exact route 66
Local Packet Transport Services (LPTS) 162, 163
 components 162
 policers 162, 163
 configuring 163
 how to configure 163
 overview 162
Longest Prefix Resolution 201

MAC (Media Access Control) 47
master virtual router 216
MIB support for VRRP 235
multicast address 177
multicast address, figure 177
multicast groups 192
Multiple Group Optimization (MGO) for HSRP 141
Multiple Group Optimization for VRRP 231
multiple, assigning 194

neighbor discovery 183
neighbor redirect message 186
neighbor redirect message, figure 186
neighbor solicitation message, figure 183
neighbor, IPv6 183
network connectivity
 ping tool 108
 traceroute 108
network stack IPv4 and IPv6 188
Nonstop Routing (NSR) 208, 209
 configuring failover as recovery 209
 failover as recovery, how to 209
 function 208
 nsr process-failures switchover command 208
 nsr process-failures switchover 208
 nsr process-failures switchover command 208

OSPFv2 SPF 58
overview 16, 57, 128, 162
Overview 242

Packet header 178
packet header fields, IPv6 178
packet header format, figure 178
packet routes 113
packet routes, checking 113
packet routes, how to check 113
ping 108
 tool 108
 ping tool 108
policers 162, 163
 configuring 163
 how to configure 163
 overview 162
Policy-map 248
 configuring 248
 preemption 131
 prefix argument 192
 prefix list 15
 prefix prioritization 58
 OSPFv2 SPF 58
 Prefix Prioritization 58
 OSPFv2 SPF 58
prerequisites 107
primary 190
Primary Virtual IPv4 Address 225
primary, IP address 190
proxy ARP 49
pure ACL-based forwarding 33
pure ACL-based forwarding, how to 33

RAW protocol 208, 209
rcp 116
rcp (remote copy protocol) 110, 116
connections, how to 116
definition 110
crcp copy command 110
troubleshooting tips 116
crcp connections 116
crcp copy 110
crcp copy command 110
relay agent, how to 95
remote copy protocol (RCP) 110
Resequencing Entries in an Access List 36
Example command 36
reverse path forwarding 56
RFC 49, 111, 192, 197
1027 49
1195, OSI IS-IS usage 197
2373 192
826 49
959 111
RFC 1027 49
RFC 2460 173
RFC 826 49
route filtering, prefix list 15
route processor management ethernet forwarding 57
route-tag support for connected routes 189
router advertisement message 185
router advertisement method, figure 185
router as TFTP server 115
router configuration 119

S
secondary 194
secondary addresses, IP 194
Secondary Virtual IPv4 Address 227
security ACL, how to 31
See host services and applications 108
Selecting Flexible Source IP 199
sequence numbering behavior 10
server, router configuration 115
Service policy 255
configuring 255
show mpls forwarding exact-route 66
show mpls forwarding exact-route command 66
show vrrp 222
show vrrp command 222
simplified IPv6 packet header 178
single LAN, process 48
solicitation message, IPv6 183
solicited-node multicast address format, figure 177
State Change Logging 230
static 200
Stream Control Transmission Protocol (SCTP) 208
syslog source-interface 121

T
tasks 17, 19, 31, 33, 95, 111, 113, 115, 116, 117, 119, 120, 131, 133, 134,
138, 140, 192, 196, 198, 201, 217, 220, 222
enabling IPv6 forward traffic globally 192
ABF with security ACL 31
access lists, applying 19
DHCP relay agent information 95
domain services 113
enabling HSRP 131
enabling HSRP for IPv6 133
forwarding of IPv6 traffic globally on a router, how to enable 192
FTP connections 117
HSRP 134, 138, 140
configuring activation delay 138
configuring group attributes 134
enabling ICMP redirect messages 140
ICMP rate limiting 198
IP address conflict resolution 201
IPv4 and IPv6 protocol stacks 196
IPv4 or IPv6 access lists 17
IPv6 addresses to individual router interfaces, assigning 192
network connectivity 111
packet routes 113
pure ACL-based forwarding 33
crcp connections 116
router as TFTP server 115
telnet service 120
TFTP connections 119
VRRP 217, 220, 222
customization 217
how to enable 220
verification 222
TCP (Transmission Control Protocol) 208
telnet 111
telnet service 120
Terminology 245
TFTP 119
TFTP (Trivial File Transfer Protocol) 111, 115, 119
definition 111
router configuration 119
server, router configuration 115
troubleshooting tips 119
TFTP connections 119
TFTP server 110
tool 108
tools 108
traceroute 108
 tool 108
Trivial File Transfer Services (TFTP) 110
troubleshooting tips 116, 117, 119
 FTP 117
 rcp 116
 TFTP 119

U
UDP (User Datagram Protocol) 209
uRPF (Unicast IPv4 and IPv6 Reverse Path Forwarding) 56
using 10
using rcp connections 116

V
verification 222
verification, CEF exact route 66
verify, how to 222
Verifying BGP Policy Statistics 72
 Example command 72
Video Monitoring 241, 242, 245
 Implementing 241
 (continued)
Video Monitoring Trap and Clone 242
Virtual Link-Local IPv6 Address 228
VRRP 217, 220, 222
 customization 217
 how to enable 220
 verification 222
VRRP (Virtual Router Redundancy Protocol) 214, 216, 217, 220, 222
 description 214
 advertisement 216
 customize, how to 217
 customizing 217
 enable, how to 220
 enabling 220
 IP protocol number 216
 master virtual router 216
 show vrrp command 222
 verify, how to 222
 vrrp ipv4 command 220
vrrp ipv4 220
vrrp ipv4 command 220
VRRP Statistics, clearing 222