14 SNMP

This chapter explains Simple Network Management Protocol (SNMP) as implemented by the Cisco ONS 15454 SDH.

For SNMP setup information, refer to the Cisco ONS 15454 SDH Procedure Guide.

Chapter topics include:

- 14.1 SNMP Overview, page 14-1
- 14.2 SNMP Basic Components, page 14-2
- 14.3 SNMP Support, page 14-3
- 14.4 SNMP Management Information Bases, page 14-3
- 14.5 SNMP Traps, page 14-5
- 14.6 SNMP Community Names, page 14-8

14.1 SNMP Overview

SNMP is an application-layer communication protocol that allows network devices to exchange management information. SNMP enables network administrators to manage network performance, find and solve network problems, and plan network growth.

The ONS 15454 SDH uses SNMP to provide asynchronous event notification to a network management system (NMS). ONS SNMP implementation uses standard Internet Engineering Task Force (IETF) management information bases (MIBs) to convey node-level inventory, fault, and performance management information for generic read-only management of DS-1, DS-3, SDH, and Ethernet technologies. SNMP allows limited management of the ONS 15454 SDH by a generic SNMP manager, for example HP OpenView Network Node Manager (NNM) or Open Systems Interconnection (OSI) NetExpert.

The Cisco ONS 15454 SDH supports SNMP Version 1 (SNMPv1) and SNMP Version 2c (SNMPv2c). Both versions share many features, but SNMPv2c includes additional protocol operations. This chapter describes both versions and explains how to configure SNMP on the ONS 15454 SDH. Figure 14-1 on page 14-2 illustrates a basic network managed by SNMP.
14.2 SNMP Basic Components

An SNMP-managed network consists of three primary components: managed devices, agents, and management systems. A managed device is a network node that contains an SNMP agent and resides on an SNMP-managed network. Managed devices collect and store management information and use SNMP to make this information available to management systems that use SNMP. Managed devices include routers, access servers, switches, bridges, hubs, computer hosts, and network elements such as an ONS 15454 SDH.

An agent is a software module that resides in a managed device. An agent has local knowledge of management information and translates that information into a form compatible with SNMP. The SNMP agent gathers data from the MIB, which is the repository for device parameter and network data. The agent can also send traps, which are notifications of certain events (such as changes), to the manager. Figure 14-2 illustrates these SNMP operations.

A management system such as HP OpenView executes applications that monitor and control managed devices. Management systems provide the bulk of the processing and memory resources required for network management. One or more management systems must exist on any managed network. Figure 14-3 on page 14-3 illustrates the relationship between the three key SNMP components.
14.3 SNMP Support

The ONS 15454 SDH supports SNMP v1 and v2c traps and get requests. The SNMP MIBs in the ONS 15454 SDH define alarms, traps, and status. Through SNMP, NMS applications can query a management agent using a supported MIB. The functional entities include Ethernet switches and SDH multiplexers. Refer to the Cisco ONS 15454 SDH Procedure Guide for procedures to set up or change SNMP settings.

14.4 SNMP Management Information Bases

A MIB is a hierarchically organized collection of information. It consists of managed objects and is identified by object identifiers. Network-management protocols, such as SNMP, are able to access to MIBs. The ONS 15454 SDH SNMP agent communicates with an SNMP management application using SNMP messages. Table 14-1 on page 14-4 describes these messages.
14.4 SNMP Management Information Bases

A managed object (sometimes called a MIB object) is one of any specific characteristics of a managed device. Managed objects consist of one or more object instances (variables). Table 14-3 lists the IETF standard MIBs implemented in the ONS 15454 SDH SNMP Agent.

The ONS 15454 SDH MIBs in Table 14-2 are included on the software CD that ships with the ONS 15454 SDH. Compile these MIBs in the following order. If you do not follow the order, one or more MIB files might not compile.

If you cannot compile the ONS 15454 SDH MIBs, call the Technical Assistance Center (TAC) at 1-877-323-7368.

Table 14-1 SNMP Message Types

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves the value following the named variable; this operation is often used to retrieve variables from within a table. With this operation, an SNMP manager does not need to know the exact variable name. The SNMP manager searches sequentially to find the needed variable from within the MIB.</td>
</tr>
<tr>
<td>get-response</td>
<td>The reply to a get-request, get-next-request, get-bulk-request, or set-request sent by an NMS.</td>
</tr>
<tr>
<td>get-bulk-request</td>
<td>Similar to a get-next-request, but this operation fills the get-response with up to the max-repetition number of get-next interactions.</td>
</tr>
<tr>
<td>set-request</td>
<td>Set-request processing is enabled to provide remote network monitoring (RMON) MIB.</td>
</tr>
<tr>
<td>trap</td>
<td>An unsolicited message sent by an SNMP agent to an SNMP manager indicating that an event has occurred.</td>
</tr>
</tbody>
</table>

Table 14-2 ONS 15454 SDH Proprietary MIBs

<table>
<thead>
<tr>
<th>MIB#</th>
<th>Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CERENT-GLOBAL-REGISTRY.mib</td>
</tr>
<tr>
<td>2</td>
<td>CERENT-TC.mib</td>
</tr>
<tr>
<td>3</td>
<td>CERENT-454.mib (for ONS 15454 SDH only)</td>
</tr>
<tr>
<td>4</td>
<td>CERENT-GENERIC.mib (for ONS 15327 only)</td>
</tr>
</tbody>
</table>

Table 14-3 IETF Standard MIBs Implemented in the ONS 15454 SDH SNMP Agent

<table>
<thead>
<tr>
<th>RFC#</th>
<th>Module Name</th>
<th>Title/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1213</td>
<td>IANAifType-MIB.mib</td>
<td>Internet Assigned Numbers Authority (IANA) ifType</td>
</tr>
<tr>
<td>1213</td>
<td>RFC1213-MIB-rfc1213.mib,</td>
<td>Management Information Base for Network Management of TCP/IP-based internets: MIB-II</td>
</tr>
<tr>
<td>1907</td>
<td>SNMPV2-MIB-rfc1907.mib</td>
<td>Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)</td>
</tr>
<tr>
<td>1253</td>
<td>RFC1253-MIB-rfc1253.mib</td>
<td>OSPF Version 2 Management Information Base</td>
</tr>
</tbody>
</table>
The ONS 15454 SDH can receive SNMP requests from a number of SNMP managers and send traps to eleven trap receivers. The ONS 15454 SDH generates all alarms and events as SNMP traps.

The ONS 15454 SDH generates traps containing an object ID that uniquely identifies the alarm. An entity identifier uniquely identifies the entity that generated the alarm (slot, port, STS, VT, BLSR, STP, etc.). The traps give the severity of the alarm (critical, major, minor, event, etc.) and indicate whether the alarm is service affecting or non-service affecting. The traps also contain a date/time stamp that shows the date and time the alarm occurred. The ONS 15454 SDH also generates a trap for each alarm when the alarm condition clears.

Each SNMP trap contains eleven variable bindings listed in Table 14-4 for the ONS 15454 SDH. Table 14-5 on page 14-6 lists the variable bindings for the ONS 15327.

Table 14-3 IETF Standard MIBs Implemented in the ONS 15454 SDH SNMP Agent (continued)

<table>
<thead>
<tr>
<th>RFC#</th>
<th>Module Name</th>
<th>Title/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1493</td>
<td>BRIDGE-MIB-rfc1493.mib</td>
<td>Definitions of Managed Objects for Bridges This defines MIB objects for managing MAC bridges based on the IEEE 802.1D-1990 standard between Local Area Network (LAN) segments.</td>
</tr>
<tr>
<td>1757</td>
<td>RMON-MIB-rfc1757.mib</td>
<td>Remote Network Monitoring Management Information Base</td>
</tr>
<tr>
<td>2737</td>
<td>ENTITY-MIB-rfc2737.mib</td>
<td>Entity MIB (Version 2)</td>
</tr>
<tr>
<td>2233</td>
<td>IF-MIB-rfc2233.mib</td>
<td>The Interfaces Group MIB using SMIv2</td>
</tr>
<tr>
<td>2358</td>
<td>EtherLike-MIB-rfc2358.mib</td>
<td>Definitions of Managed Objects for the Ethernet-like Interface Types</td>
</tr>
<tr>
<td>2493</td>
<td>PerfHist-TC-MIB-rfc2493.mib</td>
<td>Textual Conventions for MIB Modules Using Performance History Based on 15 Minute Intervals</td>
</tr>
<tr>
<td>2495</td>
<td>DS1-MIB-rfc2495.mib</td>
<td>Definitions of Managed Objects for the DS1, E1, DS2 and E2 Interface Types</td>
</tr>
<tr>
<td>2496</td>
<td>DS3-MIB-rfc2496.mib</td>
<td>Definitions of Managed Object for the DS3/E3 Interface Type</td>
</tr>
<tr>
<td>2558</td>
<td>SDH-MIB-rfc2558.mib</td>
<td>Definitions of Managed Objects for the SONET/SDH Interface Type</td>
</tr>
<tr>
<td>2674</td>
<td>P-BRIDGE-MIB-rfc2674.mib</td>
<td>Definitions of Managed Objects for Bridges with Traffic Classes, Multicast Filtering and Virtual LAN Extensions</td>
</tr>
</tbody>
</table>

Table 14-4 SNMP Trap Variable Bindings for ONS 15454 SDH

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sysUpTime</td>
<td>The first variable binding in the variable binding list of an SNMPv2-Trap-PDU.</td>
</tr>
<tr>
<td>2</td>
<td>snmpTrapOID</td>
<td>The second variable binding in the variable binding list of an SNMPv2-Trap-PDU.</td>
</tr>
<tr>
<td>3</td>
<td>cerentNodeTime</td>
<td>This variable gives the time that an event occurred.</td>
</tr>
</tbody>
</table>
14.5 SNMP Traps

The following variables are used to describe SNMP traps in the Cisco ONS 15454 SDH:

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>cerent454AlarmState</td>
<td>This variable specifies alarm severity and service-affecting status. Severities are minor, major, and critical. Service-affecting statuses are service-affecting and non-service affecting.</td>
</tr>
<tr>
<td>5</td>
<td>cerent454AlarmObjectType</td>
<td>This variable provides the entity type that raised the alarm. The NMS should use this value to decide which table to poll for further information about the alarm.</td>
</tr>
<tr>
<td>6</td>
<td>cerent454AlarmObjectIndex</td>
<td>Every alarm is raised by an object entry in a specific table. This variable is the index of the objects in each table; if the alarm is interface related, this is the index of the interfaces in the interface table.</td>
</tr>
<tr>
<td>7</td>
<td>cerent454AlarmSlotNumber</td>
<td>This variable indicates the slot of the object that raised the alarm. If a slot is not relevant to the alarm, the slot number is zero.</td>
</tr>
<tr>
<td>8</td>
<td>cerent454AlarmPortNumber</td>
<td>This variable provides the port of the object that raised the alarm. If a port is not relevant to the alarm, the port number is zero.</td>
</tr>
<tr>
<td>9</td>
<td>cerent454AlarmLineNumber</td>
<td>This variable provides the object line that raised the alarm. If a line is not relevant to the alarm, the line number is zero.</td>
</tr>
<tr>
<td>10</td>
<td>cerent454AlarmObjectName</td>
<td>This variable gives the TL1-style user-visible name which uniquely identifies an object in the system.</td>
</tr>
</tbody>
</table>

Table 14-5 SNMP Trap Variable Bindings used in ONS 15327

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sysUpTime</td>
<td>This table holds all the currently raised alarms. When an alarm is raised, it appears as a new entry in the table. When an alarm is cleared, it is removed from the table and all the subsequent entries move up by one row.</td>
</tr>
<tr>
<td>2</td>
<td>snmpTrapID</td>
<td>This variable uniquely identifies each entry in an alarm table. When an alarm in the alarm table clears, the alarm indexes change for each alarm located subsequent to the cleared alarm.</td>
</tr>
<tr>
<td>3</td>
<td>cerentNodeTime</td>
<td>This variable gives the time that an event occurred.</td>
</tr>
<tr>
<td>4</td>
<td>cerentGenericAlarmState</td>
<td>This variable specifies alarm severity and service-affecting status. Severities are minor, major, and critical. Service-affecting statuses are service-affecting and non-service affecting.</td>
</tr>
</tbody>
</table>
Table 14-5 SNMP Trap Variable Bindings used in ONS 15327 (continued)

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>cerentGenericAlarmObjectType</td>
<td>This variable provides the entity type that raised the alarm. The NMS should use this value to decide which table to poll for further information about the alarm.</td>
</tr>
<tr>
<td>6</td>
<td>cerentGenericAlarmObjectIndex</td>
<td>Every alarm is raised by an object entry in a specific table. This variable is the index of the objects in each table; if the alarm is interface related, this is the index of the interfaces in the interface table.</td>
</tr>
<tr>
<td>7</td>
<td>cerentGenericAlarmSlotNumber</td>
<td>This variable indicates the slot of the object that raised the alarm. If a slot is not relevant to the alarm, the slot number is zero.</td>
</tr>
<tr>
<td>8</td>
<td>cerentGenericAlarmPortNumber</td>
<td>This variable provides the port of the object that raised the alarm. If a port is not relevant to the alarm, the port number is zero.</td>
</tr>
<tr>
<td>9</td>
<td>cerentGenericAlarmLineNumber</td>
<td>This variable provides the object line that raised the alarm. If a line is not relevant to the alarm, the line number is zero.</td>
</tr>
<tr>
<td>10</td>
<td>cerentGenericAlarmObjectName</td>
<td>This variable gives the TL1-style user-visible name which uniquely identifies an object in the system.</td>
</tr>
</tbody>
</table>

The ONS 15454 SDH supports the generic and IETF traps listed in Table 14-6.

Table 14-6 Traps Supported in the ONS 15454 SDH

<table>
<thead>
<tr>
<th>Trap</th>
<th>FromRFC# MIB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coldStart</td>
<td>RFC1907-MIB</td>
<td>Agent up, cold start.</td>
</tr>
<tr>
<td>warmStart</td>
<td>RFC1907-MIB</td>
<td>Agent up, warm start.</td>
</tr>
<tr>
<td>authenticationFailure</td>
<td>RFC1907-MIB</td>
<td>Community string does not match.</td>
</tr>
<tr>
<td>newRoot</td>
<td>RFC1493/BRIDGE-MIB</td>
<td>Sending agent is the new root of the spanning tree.</td>
</tr>
<tr>
<td>topologyChange</td>
<td>RFC1493/BRIDGE-MIB</td>
<td>A port in a bridge has changed from Learning to Forwarding or Forwarding to Blocking.</td>
</tr>
<tr>
<td>entConfigChange</td>
<td>RFC2737/ENTITY-MIB</td>
<td>The entLastChangeTime value has changed.</td>
</tr>
<tr>
<td>dsx1LineStatusChange</td>
<td>RFC2495/DS1-MIB</td>
<td>A dsx1LineStatusChange trap is sent when the value of an instance dsx1LineStatus changes. The trap can be used by an NMS to trigger polls. When the line status change results from a higher-level line status change (for example, DS-3), no traps for the DS-1 are sent.</td>
</tr>
</tbody>
</table>
14.6 SNMP Community Names

You can provision community names for all SNMP requests from the SNMP Trap Destination dialog box in CTC. In effect, SNMP considers any request valid that uses a community name matching a community name on the list of provisioned SNMP trap destinations. Otherwise, SNMP considers the request invalid and drops it.

If an SNMP request contains an invalid community name, the request silently drops and the MIB variable (snmpInBadCommunityNames) increments. All MIB variables managed by the agent grant access to all SNMP requests containing a validated community name.

14.7 SNMP Remote Network Monitoring

The ONS 15454 SDH incorporates RMON to allow network operators to monitor the ONS 15454 SDH Ethernet cards. This feature is not apparent to the typical CTC user, because RMON interoperates with an NMS. However, with CTC you can provision the RMON alarm thresholds. For the procedure, see the Cisco ONS 15454 SDH Procedure Guide. CTC also monitors the five RMON groups implemented by the ONS 15454 SDH.

ONS 15454 SDH RMON implementation is based on the IETF-standard MIB Request for Comment (RFC)1757. The ONS 15454 SDH implements five groups from the standard MIB: Ethernet Statistics, History Control, Ethernet History, Alarm, and Event.

14.7.1 Ethernet Statistics Group

The Ethernet Statistics group contains the basic statistics for each monitored subnetwork in a single table named etherstats.

14.7.2 History Control Group

The History Control group defines sampling functions for one or more monitor interfaces. RFC 1757 defines the historyControlTable.

Table 14-6 Traps Supported in the ONS 15454 SDH (continued)

<table>
<thead>
<tr>
<th>Trap</th>
<th>From RFC#</th>
<th>MIB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dsx3LineStatusChange</td>
<td>RFC2496/</td>
<td>DS3-MIB</td>
<td>A dsx3LineStatusLastChange trap is sent when the value of an instance of dsx3LineStatus changes. This trap can be used by an NMS to trigger polls. When the line status change results in a lower-level line status change (for example, DS-1), no traps for the lower-level are sent.</td>
</tr>
<tr>
<td>risingAlarm</td>
<td>RFC1757/</td>
<td>RMON-MIB</td>
<td>The SNMP trap that is generated when an alarm entry crosses the rising threshold and the entry generates an event that is configured for sending SNMP traps.</td>
</tr>
<tr>
<td>fallingAlarm</td>
<td>RFC1757/</td>
<td>RMON-MIB</td>
<td>The SNMP trap that is generated when an alarm entry crosses the falling threshold and the entry generates an event that is configured for sending SNMP traps.</td>
</tr>
</tbody>
</table>
14.7.3 Ethernet History Group

The ONS 15454 SDH implements the etherHistoryTable as defined in RFC 1757, within the bounds of the historyControlTable.

14.7.4 Alarm Group

The Alarm group consists of a single alarm table. This table provides the network performance alarm thresholds for the network management application. With CTC, you can provision the thresholds in the table.

14.7.5 Event Group

The Event group consists of two tables, eventTable and logTable. The eventTable is read-only. The ONS 15454 SDH implements the logTable as specified in RFC 1757.