Netflow v9 for IPv6

Last Updated: July 31, 2012

This module contains information about and instructions for configuring NetFlow and NetFlow Data Export (NDE) for capturing and exporting data from IP version 6 (IPv6) traffic flows using the NetFlow version 9 (v9) export format.

- Finding Feature Information, page 1
- Prerequisites for Netflow v9 for IPv6, page 1
- Information About Netflow v9 for IPv6, page 1
- Configuring Netflow v9 for IPv6, page 5
- Configuration Examples for Configuring Netflow v9 for IPv6, page 8
- Additional References, page 9
- Feature Information for Netflow v9 for IPv6, page 10

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Netflow v9 for IPv6

Your router must be running Cisco IOS release 12.2(33)SRB or later to configure the Netflow v9 for IPv6 feature.

Information About Netflow v9 for IPv6

- NetFlow and NDE on the PFC, page 2
NetFlow and NDE on the PFC

The NetFlow cache on the PFC captures statistics for flows routed in hardware. The PFC uses one of these flow masks to create NetFlow entries:

- **source-only** -- The cache contains one entry for each source IP address. All flows from a given source IP address use this entry.
- **destination** -- The cache contains one entry for each destination IP address. All flows to a given destination IP address use this entry.
- **destination-source** -- The cache contains one entry for each source and destination IP address pair. All flows between the same source and destination IP addresses use this entry.
- **destination-source-interface** -- Adds the source VLAN SNMP ifIndex to the information in the destination-source flow mask.
- **full** -- A separate cache entry is created for each IP flow. A full entry includes the source IP address, destination IP address, protocol, and protocol interfaces.
- **full-interface** -- Adds the source VLAN SNMP ifIndex to the information in the full flow mask.

NetFlow Export Format Version 9

For all NetFlow export versions, the NetFlow export datagram consists of a header and a sequence of flow records. The header contains information such as sequence number, record count, and system uptime. The flow record contains flow information, such as IP addresses, ports, and routing information.

NetFlow version 9 export format is the newest NetFlow export format. The distinguishing feature of the NetFlow version 9 export format is that it is template based. Templates make the record format extensible. NetFlow version 9 export format allows future enhancements to NetFlow without requiring concurrent changes to the basic flow-record format.

The NetFlow version 9 export record format is different from the traditional NetFlow fixed format export record. In NetFlow version 9, a template describes the NetFlow data, and the flow set contains the actual data. This arrangement allows for flexible export.

The use of templates with the NetFlow version 9 export format provides several other key benefits:

- You can export almost any information from a router or switch, including Layer 2 through 7 information, routing information, IP version 6 (IPv6), IP version 4 (IPv4), multicast, and Multiprotocol Label Switching (MPLS) information. This new information allows new applications for export data and new views of network behavior.
- Third-party business partners who produce applications that provide NetFlow collector or display services for NetFlow are not required to recompile their applications each time a new NetFlow export field is added. Instead, they can use an external data file that documents the known template formats.
- New features can be added to NetFlow more quickly, without breaking current implementations.
- NetFlow is "future-proofed" against new or developing protocols, because the version 9 export format can be adapted to provide support for them and for other non-NetFlow-based approaches to data collection.

The NetFlow version 9 export packet header format is shown in the figure below.
Table 1 NetFlow Version 9 Export Packet Header Field Names and Descriptions

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>Version</td>
<td>The version of NetFlow records exported in this packet; for version 9, this value is 0x0009.</td>
</tr>
<tr>
<td>2-3</td>
<td>Count</td>
<td>Number of FlowSet records (both template and data) contained within this packet.</td>
</tr>
<tr>
<td>4-7</td>
<td>System Uptime</td>
<td>Time in milliseconds since this device was first booted.</td>
</tr>
<tr>
<td>8-11</td>
<td>UNIX Seconds</td>
<td>Seconds since 0000 Coordinated Universal Time (UTC) 1970.</td>
</tr>
<tr>
<td>12-15</td>
<td>Sequence Number</td>
<td>Incremental sequence counter of all export packets sent by this export device; this value is cumulative, and it can be used to find out whether any export packets have been missed. This is a change from the NetFlow version 5 and version 8 headers, where this number represented "total flows."</td>
</tr>
</tbody>
</table>
The Source ID field is a 32-bit value that is used to guarantee uniqueness for each flow exported from a particular device. (The Source ID field is the equivalent of the engine type and engine ID fields found in the NetFlow version 5 and version 8 headers.) The format of this field is vendor specific. In Cisco’s implementation, the first two bytes are reserved for future expansion and are always zero. Byte 3 provides uniqueness with respect to the routing engine on the exporting device. Byte 4 provides uniqueness with respect to the particular line card or Versatile Interface Processor on the exporting device. Collector devices should use the combination of the source IP address and the Source ID field to associate an incoming NetFlow export packet with a unique instance of NetFlow on a particular device.

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-19</td>
<td>Source ID</td>
<td>The Source ID field is a 32-bit value that is used to guarantee uniqueness for each flow exported from a particular device. (The Source ID field is the equivalent of the engine type and engine ID fields found in the NetFlow version 5 and version 8 headers.) The format of this field is vendor specific. In Cisco’s implementation, the first two bytes are reserved for future expansion and are always zero. Byte 3 provides uniqueness with respect to the routing engine on the exporting device. Byte 4 provides uniqueness with respect to the particular line card or Versatile Interface Processor on the exporting device. Collector devices should use the combination of the source IP address and the Source ID field to associate an incoming NetFlow export packet with a unique instance of NetFlow on a particular device.</td>
</tr>
</tbody>
</table>
The table below shows a typical example of exporting data using the NetFlow version 9 export format.

Figure 1
NetFlow Version 9 Export Format Packet Example

<table>
<thead>
<tr>
<th>Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Template FlowSet</td>
</tr>
<tr>
<td>Template Record</td>
</tr>
<tr>
<td>First Record FlowSet (Template ID 256)</td>
</tr>
<tr>
<td>First data Record</td>
</tr>
<tr>
<td>Second Data Record</td>
</tr>
<tr>
<td>Second Template Flow Set</td>
</tr>
<tr>
<td>Template Record</td>
</tr>
<tr>
<td>Template Record</td>
</tr>
<tr>
<td>Second Record FlowSet (Template ID 257)</td>
</tr>
<tr>
<td>Data Record</td>
</tr>
<tr>
<td>Data Record</td>
</tr>
<tr>
<td>Data Record</td>
</tr>
<tr>
<td>Data Record</td>
</tr>
<tr>
<td>NeFlow Version 9 Header: 32 bits</td>
</tr>
<tr>
<td>Version 9</td>
</tr>
<tr>
<td>Length = 28 bytes</td>
</tr>
<tr>
<td>FlowSet ID = 0</td>
</tr>
<tr>
<td>Template ID = 256</td>
</tr>
<tr>
<td>Field Count = 5</td>
</tr>
<tr>
<td>IPv4_SRCADDR (0x0000)</td>
</tr>
<tr>
<td>Length = 4</td>
</tr>
<tr>
<td>IPv4_DSTADDR (0x0000)</td>
</tr>
<tr>
<td>Length = 4</td>
</tr>
<tr>
<td>IPv4_NEXT_HOP (0x0000)</td>
</tr>
<tr>
<td>Length = 4</td>
</tr>
<tr>
<td>PKTS_32 (0x0002)</td>
</tr>
<tr>
<td>Length = 4</td>
</tr>
<tr>
<td>PKTS_64 (0x0001)</td>
</tr>
<tr>
<td>Length = 4</td>
</tr>
<tr>
<td>System Uptime</td>
</tr>
<tr>
<td>UNIX Seconds</td>
</tr>
<tr>
<td>Package Sequence</td>
</tr>
<tr>
<td>Source ID</td>
</tr>
<tr>
<td>Data FlowSet: 32 bits</td>
</tr>
<tr>
<td>FlowSet</td>
</tr>
<tr>
<td>ID = 256</td>
</tr>
<tr>
<td>Length = 64 bytes</td>
</tr>
<tr>
<td>192.168.1.12</td>
</tr>
<tr>
<td>10.5.12.254</td>
</tr>
<tr>
<td>192.168.1.1</td>
</tr>
<tr>
<td>5009</td>
</tr>
<tr>
<td>5344365</td>
</tr>
<tr>
<td>192.168.1.27</td>
</tr>
<tr>
<td>10.5.12.23</td>
</tr>
<tr>
<td>120.168.1.1</td>
</tr>
<tr>
<td>748</td>
</tr>
<tr>
<td>388934</td>
</tr>
<tr>
<td>192.168.1.55</td>
</tr>
<tr>
<td>10.5.12.65</td>
</tr>
<tr>
<td>192.168.1.1</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6534</td>
</tr>
</tbody>
</table>

Additional information about the NetFlow export format version 9 and the export format architecture is available in the NetFlow version 9 Flow-Record Format document.

Configuring Netflow v9 for IPv6

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 unicast-routing
4. mls flow {ip | ipv6} {destination | destination-source | full | interface-destination-source | interface-full | source}
5. mls nde sender
6. ip flow-export version 9
7. ip flow-export destination {ip-address | hostname} udp-port
8. interface type number
9. ipv6 address ip-address/mask
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1 enable** | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** Router> enable | | |
| **Step 2 configure terminal** | Enters global configuration mode. |
| **Example:** Router# configure terminal | |
| **Step 3 ipv6 unicast-routing** | Enables the forwarding of IPv6 unicast datagrams. |
| **Example:** Router(config)# ipv6 unicast-routing | |
| **Example:** Router(config)# mls flow ipv6 interface-full | |
| **Step 5 mls nde sender** | Enables NDE globally on the router. |
| **Example:** Router(config)# mls nde sender | **Note** NDE does not start exporting data until you specify a destination for the exported traffic. The destination for exported traffic is specified in Step 7. |
| **Step 6 ip flow-export version 9** | Configures NDE to use the NetFlow version 9 export format. |
| **Example:** Router(config)# ip flow-export version 9 | |
| **Step 7 ip flow-export destination [ip-address | hostname] udp-port** | Specifies the IP address or the hostname of the NetFlow collector and the UDP port on which the NetFlow collector is listening. |
| **Example:** Router(config)# ip flow-export destination 172.16.10.2 88 | |
Command or Action

<table>
<thead>
<tr>
<th>Step 8</th>
<th>interface type number</th>
</tr>
</thead>
</table>

Specifies the interface that you want to enable NetFlow on and enters interface configuration mode.

Example:

```bash
Router(config)# interface fastethernet 1/1
```

<table>
<thead>
<tr>
<th>Step 9</th>
<th>ipv6 address ip-address/mask</th>
</tr>
</thead>
</table>

Configure an IPv6 address on the interface.

Example:

```bash
Router(config-if)# ipv6 address 2001:0DB8:AB::2/64
```
Examples

The following output of the `show mls nde` command verifies that NDE is enabled on the router.

```
Router# show mls nde

NetFlow Data Export enabled
Exporting flows to 10.30.30.2 (12345) 172.16.10.2 (88)
Exporting flows from 10.4.9.149 (58970)
Version: 9
Layer2 flow creation is disabled
Layer2 flow export is disabled
Include Filter not configured
Exclude Filter not configured
Total NetFlow Data Export Packets are:
    0 packets, 0 no packets, 0 records
Total NetFlow Data Export Send Errors:
    IPWRITE_NO_FIB = 0
    IPWRITE_ADJ_FAILED = 0
    IPWRITE_PROCESS = 0
    IPWRITE_ENQUEUE_FAILED = 0
    IPWRITE_IPC_FAILED = 0
    IPWRITE_OUTPUT_FAILED = 0
    IPWRITE_MTU_FAILED = 0
    IPWRITE_ENCAPFIX_FAILED = 0
NetFlow Aggregation Disabled
```

Configuration Examples for Configuring Netflow v9 for IPv6

- Example: Configuring the NetFlow v9 for IPv6 Feature, page 8

Example: Configuring the NetFlow v9 for IPv6 Feature

```
ipv6 unicast-routing
```
```
mls flow ipv6 interface-full
mls nde sender
ip flow-export version 9
ip flow-export destination 172.16.10.2 88
interface FastEthernet1/1
ipv6 address
2001:0DB8::1/64
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform-independent NetFlow commands, complete command syntax, command mode,</td>
<td>Cisco IOS NetFlow Command Reference</td>
</tr>
<tr>
<td>defaults, command history, usage guidelines, and examples.</td>
<td></td>
</tr>
<tr>
<td>Command reference for Cisco 7600 series routers</td>
<td>Cisco 7600 Series Cisco IOS Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>There are no standards associated with this feature. --</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3954</td>
<td>Cisco Systems NetFlow Services Export Version 9</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed</td>
<td></td>
</tr>
<tr>
<td>from Field Notices), the Cisco Technical Services Newsletter, and Really</td>
<td></td>
</tr>
<tr>
<td>Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Netflow v9 for IPv6

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netflow v9 for</td>
<td>12.2(33)SRB</td>
<td>The Netflow v9 for IPv6 feature enables the export of NetFlow flow information for</td>
</tr>
<tr>
<td>IPv6</td>
<td>15.0(1)S</td>
<td>IPv6 traffic. In 12.2(33)SRB, support for this feature was introduced on the Cisco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7600 series routers.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.