IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
CONTENTS

DHCP Overview 1
 Information About DHCP 1
 DHCP Overview 1
 Benefits of Using Cisco IOS DHCP 2
 DHCP Server Relay Agent and Client Operation 2
 DHCP Database 3
 DHCP Attribute Inheritance 3
 DHCP Options and Suboptions 4
 DHCP Server On-Demand Address Pool Management Overview 6
 DHCP Services for Accounting and Security Overview 6
 Additional References 7
 Glossary 8

Configuring the Cisco IOS DHCP Server 11
 Finding Feature Information 11
 Prerequisites for Configuring the DHCP Server 11
 Information About the Cisco IOS DHCP Server 12
 Overview of the DHCP Server 12
 DHCP Attribute Inheritance 12
 DHCP Server Address Allocation Using Option 82 12
 How to Configure the Cisco IOS DHCP Server 12
 Configuring a DHCP Database Agent or Disabling Conflict Logging 13
 Excluding IP Addresses 14
 Configuring DHCP Address Pools 15
 Configuring a DHCP Address Pool 15
 Configuring a DHCP Address Pool with Secondary Subnets 20
 Troubleshooting Tips 25
 Verifying the DHCP Address Pool Configuration 25
 Configuring Manual Bindings 27
 Troubleshooting Tips 29
Subnet Allocation Server Operation 60
Benefits of Using ODAPs 61
How to Configure the DHCP Server On-Demand Address Pool Manager 61
Specifying DHCP ODAPs as the Global Default Mechanism 61
Defining DHCP ODAPs on an Interface 62
Configuring the DHCP Pool as an ODAP 63
Configuring ODAPs to Obtain Subnets Through IPCP Negotiation 65
Configuring AAA 67
Configuring RADIUS 69
ODAP AAA Profile 69
Disabling ODAPs 71
Verifying ODAP Operation 72
Troubleshooting Tips 74
Monitoring and Maintaining the ODAP 74
Configuring DHCP ODAP Subnet Allocation Server Support 76
Configuring a Global Subnet Pool on a Subnet Allocation Server 77
Global Subnet Pools 77
Configuring a VRF Subnet Pool on a Subnet Allocation Server 78
VRF Subnet Pools 78
Using a VPN ID to Configure a VRF Subnet Pool on a Subnet Allocation Server 79
VRF Pools and VPN IDs 80
Verifying Subnet Allocation and DHCP Bindings 82
Troubleshooting the DHCP ODAP Subnet Allocation Server 83
Configuration Examples for DHCP Server On-Demand Address Pool Manager 84
Specifying DHCP ODAPs as the Global Default Mechanism Example 84
Defining DHCP ODAPs on an Interface Example 85
Configuring the DHCP Pool as an ODAP Example 85
Configuring the DHCP Pool as an ODAP for Non-MPLS VPNs Example 87
IPCP Subnet Mask Delivery Example 88
Configuring AAA and RADIUS Example 89
Configuring a Global Pool on a Subnet Allocation Server Example 89
Configuring a VRF Pool on a Subnet Allocation Server Example 90
Using a VPN ID to Configure a VRF Pool on a Subnet Allocation Server Example 90
Verifying Local Configuration on a Subnet Allocation Server Example 90
Verifying Address Pool Allocation Information Example 91
Restrictions for Configuring the DHCP Client 129
Information About the DHCP Client 130
 DHCP Client Operation 130
 DHCP Client Overview 130
 DHCP Client on WAN Interfaces 131
 DHCP FORCERENEW 131
How to Configure the DHCP Client 132
 Configuring the DHCP Client 132
 DHCP Client Default Behavior 132
 Troubleshooting Tips 134
 Forcing a Release or Renewal of a DHCP Lease for a DHCP Client 134
 DHCP Release and Renew CLI Operation 135
 Release a DHCP Lease 135
 Renew a DHCP Lease 135
 Enabling FORCERENEW-Message Handling 136
Configuration Examples for the DHCP Client 138
 Example Configuring the DHCP Client 139
 Example Customizing the DHCP Client Configuration 139
 Example Configuring an ATM Primary Interface (Multipoint) Using aal5snap Encapsulation and Inverse ARP 139
 Example Configuring an ATM Point-to-Point Subinterface Using aal5snap Encapsulation 140
 Example Configuring an ATM Point-to-Point Subinterface Using aal5nlpid Encapsulation 140
 Example Configuring an ATM Point-to-Point Subinterface Using aal5mux PPP Encapsulation 140
 Example Releasing a DHCP Lease 140
 Example Renewing a DHCP Lease 141
Additional References 141

Feature Information for the DHCP Client 143

Configuring DHCP Services for Accounting and Security 145
Finding Feature Information 145
Prerequisites for Configuring DHCP Services for Accounting and Security 145
Information About DHCP Services for Accounting and Security 146
 DHCP Operation in Public Wireless LANs 146
 Security Vulnerabilities in Public Wireless LANs 146
 DHCP Services for Security and Accounting Overview 146
 DHCP Lease Limits 147
DHCP Overview

The Dynamic Host Configuration Protocol (DHCP) is based on the Bootstrap Protocol (BOOTP), which provides the framework for passing configuration information to hosts on a TCP/IP network. DHCP adds the capability to automatically allocate reusable network addresses and configuration options to Internet hosts. DHCP consists of two components: a protocol for delivering host-specific configuration parameters from a DHCP server to a host and a mechanism for allocating network addresses to hosts. DHCP is built on a client/server model, where designated DHCP server hosts allocate network addresses and deliver configuration parameters to dynamically configured hosts.

This module describes the concepts needed to understand Cisco IOS DHCP.

• Information About DHCP, page 1
• Additional References, page 7
• Glossary, page 8

Information About DHCP

• DHCP Overview, page 1
• Benefits of Using Cisco IOS DHCP, page 2
• DHCP Server Relay Agent and Client Operation, page 2
• DHCP Database, page 3
• DHCP Attribute Inheritance, page 3
• DHCP Options and Suboptions, page 4
• DHCP Server On-Demand Address Pool Management Overview, page 6
• DHCP Services for Accounting and Security Overview, page 6

DHCP Overview

Cisco routers running Cisco IOS software include DHCP server and relay agent software. The Cisco IOS DHCP server is a full DHCP server implementation that assigns and manages IP addresses from specified address pools within the router to DHCP clients. These address pools can also be configured to supply additional information to the requesting client such as the IP address of the DNS server, the default router, and other configuration parameters. If the Cisco IOS DHCP server cannot satisfy a DHCP request from its own database, it can forward the request to one or more secondary DHCP servers defined by the network administrator.

DHCP supports three mechanisms for IP address allocation:

• Automatic allocation--DHCP assigns a permanent IP address to a client.
• Dynamic allocation--DHCP assigns an IP address to a client for a limited period of time, which is called a lease (or until the client explicitly relinquishes the address). DHCP also supports on-demand
address pools (ODAPs), which is a feature in which pools of IP addresses can be dynamically increased or reduced in size depending on the address utilization level. ODAPs support address assignment for customers using private addresses.

- Manual allocation--The network administrator assigns an IP address to a client and DHCP is used simply to convey the assigned address to the client.

The format of DHCP messages is based on the format of BOOTP messages, which ensures support for BOOTP relay agent functionality and interoperability between BOOTP clients and DHCP servers. BOOTP relay agents eliminate the need for deploying a DHCP server on each physical network segment. BOOTP is explained in RFC 951, Bootstrap Protocol (BOOTP), and RFC 1542, Clarifications and Extensions for the Bootstrap Protocol.

The main advantage of DHCP compared to BOOTP is that DHCP does not require that the DHCP server be configured with all MAC addresses of all clients. DHCP defines a process by which the DHCP server knows the IP subnet in which the DHCP client resides, and it can assign an IP address from a pool of valid IP addresses in that subnet. Most of the other information that DHCP might supply, such as the default router IP address, is the same for all hosts in the subnet, so DHCP servers can usually configure information per subnet rather than per host. This functionality reduces network administration tasks compared to BOOTP.

Benefits of Using Cisco IOS DHCP

The Cisco IOS DHCP implementation offers the following benefits:

- Reduced Internet access costs

Using automatic IP address assignment at each remote site substantially reduces Internet access costs. Static IP addresses are considerably more expensive to purchase than are automatically allocated IP addresses.

- Reduced client configuration tasks and costs

Because DHCP is easy to configure, it minimizes operational overhead and costs associated with device configuration tasks and eases deployment by non-technical users.

- Centralized management

Because the DHCP server maintains configurations for several subnets, an administrator only needs to update a single, central server when configuration parameters change.

DHCP Server Relay Agent and Client Operation

DHCP provides a framework for passing configuration information dynamically to hosts on a TCP/IP network. A DHCP client is an Internet host that uses DHCP to obtain configuration parameters such as an IP address.

A DHCP relay agent is any host that forwards DHCP packets between clients and servers. Relay agents are used to forward requests and replies between clients and servers when they are not on the same physical subnet. Relay agent forwarding is distinct from the normal forwarding of an IP router, where IP datagrams are switched between networks, somewhat transparently. In contrast, relay agents receive DHCP messages and then generate a new DHCP message to send on another interface.

The figure below shows the basic steps that occur when a DHCP client requests an IP address from a DHCP server. The client, Host A, sends a DHCPDISCOVER broadcast message to locate a DHCP server. A relay agent forwards the packets between the DHCP client and server. A DHCP server offers
configuration parameters (such as an IP address, a MAC address, a domain name, and a lease for the IP address) to the client in a DHCPOFFER unicast message.

A DHCP client may receive offers from multiple DHCP servers and can accept any one of the offers; however, the client usually accepts the first offer it receives. Additionally, the offer from the DHCP server is not a guarantee that the IP address will be allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address.

The client returns a formal request for the offered IP address to the DHCP server in a DHCPREQUEST broadcast message. The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client.

The formal request for the offered IP address (the DHCPREQUEST message) that is sent by the client is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

If the configuration parameters sent to the client in the DHCPOFFER unicast message by the DHCP server are invalid (a misconfiguration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server will send a DHCPNAK denial broadcast message to the client, which means that the offered configuration parameters have not been assigned, if an error has occurred during the negotiation of the parameters or the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client) of the DHCP server.

DHCP Database

DHCP address pools are stored in nonvolatile RAM (NVRAM). There is no limit on the number of address pools. An address binding is the mapping between the client’s IP and hardware addresses. The client’s IP address can be configured by the administrator (manual address allocation) or assigned from a pool by the DHCP server.

Manual bindings are stored in NVRAM. Manual bindings are just special address pools configured by a network administrator. There is no limit on the number of manual bindings.

Automatic bindings are IP addresses that have been automatically mapped to the MAC addresses of hosts that are found in the DHCP database. Automatic bindings are stored on a remote host called the database agent. A DHCP database agent is any host—for example, an FTP, TFTP, or RCP server—that stores the DHCP bindings database. The bindings are saved as text records for easy maintenance.

You can configure multiple DHCP database agents and the interval between database updates and transfers for each agent.

DHCP Attribute Inheritance

The DHCP server database is organized as a tree. The root of the tree is the address pool for natural networks, branches are subnetwork address pools, and leaves are manual bindings to clients. Subnetworks
inherit network parameters and clients inherit subnetwork parameters. Therefore, common parameters, for example the domain name, should be configured at the highest (network or subnetwork) level of the tree.

Inherited parameters can be overridden. For example, if a parameter is defined in both the natural network and a subnetwork, the definition of the subnetwork is used.

Address leases are not inherited. If a lease is not specified for an IP address, by default, the DHCP server assigns a one-day lease for the address.

DHCP Options and Suboptions

Configuration parameters and other control information are carried in tagged data items that are stored in the options field of the DHCP message. Options provide a method of appending additional information. Vendors that want to provide additional information to their client not designed into the protocol can use options.

The Cisco IOS DHCP implementation also allows most DHCP server options to be customized. For example, the TFTP server, which stores the Cisco IOS image, can be customized with option 150 to support intelligent IP phones.

VPNs allow the possibility that two pools in separate networks can have the same address space, with private network addresses, served by the same DHCP server. Cisco IOS software supports VPN-related options and suboptions such as the relay agent information option and VPN identification suboption. A relay agent can recognize these VPN-related options and suboptions and forward the client-originated DHCP packets to a DHCP server. The DHCP server can use this information to assign IP addresses and other parameters, distinguished by a VPN identifier, to help select the VPN to which the client belongs.

For more information on DHCP options and suboptions, see the “DHCP Options” appendix in the *Network Registrar User’s Guide*, Release 6.2.

During lease negotiation, the DHCP server sends the options shown in the table below to the client.

<table>
<thead>
<tr>
<th>Dhcp Option Name</th>
<th>Dhcp Option Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet mask option</td>
<td>1</td>
<td>Specifies the client’s subnet mask per RFC 950.</td>
</tr>
<tr>
<td>Router option</td>
<td>3</td>
<td>Specifies a list of IP addresses for routers on the client’s subnet, usually listed in order of preference.</td>
</tr>
<tr>
<td>Domain name server option</td>
<td>6</td>
<td>Specifies a list of DNS name servers available to the client, usually listed in order of preference.</td>
</tr>
<tr>
<td>Hostname option</td>
<td>12</td>
<td>Specifies the name of the client. The name may or may not be qualified with the local domain name.</td>
</tr>
<tr>
<td>Domain name option</td>
<td>15</td>
<td>Specifies the domain name that the client should use when resolving hostnames via the Domain Name System.</td>
</tr>
<tr>
<td>DHCP Option Name</td>
<td>DHCP Option Code</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>NetBIOS over TCP/IP name server option</td>
<td>44</td>
<td>Specifies a list of RFC 1001/1002 NetBIOS name servers listed in order of preference.</td>
</tr>
<tr>
<td>NetBIOS over TCP/IP node type option</td>
<td>46</td>
<td>Enables NetBIOS over TCP/IP clients that are configurable to be configured as described in RFC 1001/1002.</td>
</tr>
<tr>
<td>IP address lease time option</td>
<td>51</td>
<td>Allows the client to request a lease for the IP address.</td>
</tr>
<tr>
<td>DHCP message type option</td>
<td>53</td>
<td>Conveys the type of the DHCP message.</td>
</tr>
<tr>
<td>Server identifier option</td>
<td>54</td>
<td>Identifies the IP address of the selected DHCP server.</td>
</tr>
<tr>
<td>Renewal (T1) time option</td>
<td>58</td>
<td>Specifies the time interval from address assignment until the client transitions to the renewing state.</td>
</tr>
<tr>
<td>Rebinding (T2) time option</td>
<td>59</td>
<td>Specifies the time interval from address assignment until the client transitions to the rebinding state.</td>
</tr>
</tbody>
</table>

The table below lists the option codes that are not used for DHCP pool configuration:

<table>
<thead>
<tr>
<th>Macro Name</th>
<th>DHCP Option Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCPOPT_PAD</td>
<td>0</td>
</tr>
<tr>
<td>DHCPOPT_SUBNET_MASK</td>
<td>1</td>
</tr>
<tr>
<td>DHCPOPT_DEFAULT_ROUTER</td>
<td>3</td>
</tr>
<tr>
<td>DHCPOPT_DOMAIN_NAME_SERVER</td>
<td>6</td>
</tr>
<tr>
<td>DHCPOPT_HOST_NAME</td>
<td>12</td>
</tr>
<tr>
<td>DHCPOPT_DOMAIN_NAME</td>
<td>15</td>
</tr>
<tr>
<td>DHCPOPT_NETBIOS_NAME_SERVER</td>
<td>44</td>
</tr>
<tr>
<td>DHCPOPT_NETBIOS_NODE_TYPE</td>
<td>46</td>
</tr>
<tr>
<td>DHCPOPT_REQUESTED_ADDRESS</td>
<td>50</td>
</tr>
<tr>
<td>DHCPOPT_LEASE_TIME</td>
<td>51</td>
</tr>
<tr>
<td>DHCPOPT_OPTION_OVERLOAD</td>
<td>52</td>
</tr>
<tr>
<td>DHCPOPT_MESSAGE_TYPE</td>
<td>53</td>
</tr>
</tbody>
</table>
DHCP Server On-Demand Address Pool Management Overview

The Cisco IOS DHCP server on-demand address pool (ODAP) manager is used to centralize the management of large pools of addresses and simplify the configuration of large networks. ODAP provides a central management point for the allocation and assignment of IP addresses. When a Cisco IOS router is configured as an ODAP manager, pools of IP addresses are dynamically increased or reduced in size depending on the address utilization level.

ODAPs support address assignment using DHCP for customers using private addresses. Each ODAP is configured and associated with a particular Multiprotocol Label Switching (MPLS) VPN. Cisco IOS software also provides ODAP support for non-MPLS VPN address pools by adding pool name support to the `peer default ip address dhcp-pool pool name` command.

DHCP server subnet allocation is a way of offering entire subnets (ranges of addresses) to relay agents so that remote access devices can provision IP addresses to DHCP clients. This functionality can occur along with or instead of managing individual client addresses. Subnet allocation can improve IP address provisioning, aggregation, characterization, and distribution by relying on the DHCP infrastructure to dynamically manage subnets.

This capability allows the DHCP server to be configured with a pool of subnets for lease to ODAP clients. Subnet pools can be configured for global ODAP clients or MPLS VPN ODAP clients on a per-client basis. The DHCP subnet allocation server creates bindings for the subnet leases and stores these leases in the DHCP database.

DHCP Services for Accounting and Security Overview

Cisco IOS software supports several new capabilities that enhance DHCP accounting, reliability, and security in Public Wireless LANs (PWLANs). This functionality can also be used in other network implementations.

DHCP accounting provides authentication, authorization, and accounting (AAA) and Remote Authentication Dial-In User Service (RADIUS) support for DHCP. The AAA and RADIUS support improves security by sending secure START and STOP accounting messages. The configuration of DHCP accounting adds a layer of security that allows DHCP lease assignment and termination to be triggered for the appropriate RADIUS START and STOP accounting records so that the session state is properly maintained by upstream devices such as a Service Selection Gateway (SSG). This additional security can help to prevent unauthorized clients or hackers from gaining illegal entry to the network by spoofing authorized DHCP leases.

Three other features have been designed and implemented to address the security concerns in PWLANs. The first feature secures ARP table entries to DHCP leases in the DHCP database. The secure ARP
functionality prevents IP spoofing by synchronizing the database of the DHCP server with the ARP table to avoid address hijacking. Secure ARP adds an entry to the ARP table for a client when an address is allocated that can be deleted by the DHCP server only when a binding expires.

The second feature is DHCP authorized ARP. This functionality provides a complete solution by addressing the need for DHCP to explicitly know when a user logs out. Before the introduction of DHCP authorized ARP, there was no mechanism to inform the DHCP server if a user had left the system ungracefully, which could result in excessive billing for a customer that had logged out but the system had not detected the log out. To prevent this problem, DHCP authorized ARP sends periodic ARP messages on a per-minute basis to determine if a user is still logged in. Only authorized users can respond to the ARP request. ARP responses from unauthorized users are blocked at the DHCP server providing an extra level of security.

In addition, DHCP authorized ARP disables dynamic ARP learning on an interface. The address mapping can be installed only by the authorized component specified by the `arp authorized` interface configuration command. DHCP is the only authorized component currently allowed to install ARP entries.

The third feature is ARP autologoff, which adds finer control for probing when authorized users log out. The `arp probe interval` command specifies when to start a probe (the timeout), how frequent a peer is probed (the interval), and the maximum number of retries (the count).

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>DHCP commands: complete command syntax,</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>command mode, command history, defaults, usage</td>
<td></td>
</tr>
<tr>
<td>guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>DHCP server configuration</td>
<td>“Configuring the Cisco IOS DHCP Server” module</td>
</tr>
<tr>
<td>DHCP relay agent configuration</td>
<td>“Configuring the Cisco IOS DHCP Relay Agent” module</td>
</tr>
<tr>
<td>DHCP client configuration</td>
<td>“Configuring the Cisco IOS DHCP Client” module</td>
</tr>
<tr>
<td>DHCP server on-demand address pools</td>
<td>“Configuring the DHCP Server On-Demand Address Pool Manager” module</td>
</tr>
<tr>
<td>DHCP advanced features</td>
<td>“Configuring DHCP Services for Accounting and Security” module</td>
</tr>
<tr>
<td>DHCP enhancements for edge-session management</td>
<td>“Configuring DHCP Enhancements for Edge-Session Management” module</td>
</tr>
<tr>
<td>DHCP options</td>
<td>“DHCP Options” appendix in the Network Registrar User’s Guide, Release 6.1.1</td>
</tr>
</tbody>
</table>

Related Topic

- Cisco IOS commands
- DHCP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples
- DHCP server configuration
- DHCP relay agent configuration
- DHCP client configuration
- DHCP server on-demand address pools
- DHCP advanced features
- DHCP enhancements for edge-session management
- DHCP options

Additional References

- IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T
- Cisco IOS commands
- Cisco IOS Master Commands List, All Releases
- Cisco IOS IP Addressing Services Command Reference
- DHCP server configuration
- “Configuring the Cisco IOS DHCP Server” module
- DHCP relay agent configuration
- “Configuring the Cisco IOS DHCP Relay Agent” module
- DHCP client configuration
- “Configuring the Cisco IOS DHCP Client” module
- DHCP server on-demand address pools
- “Configuring the DHCP Server On-Demand Address Pool Manager” module
- DHCP advanced features
- “Configuring DHCP Services for Accounting and Security” module
- DHCP enhancements for edge-session management
- “Configuring DHCP Enhancements for Edge-Session Management” module
- DHCP options
- “DHCP Options” appendix in the *Network Registrar User’s Guide*, Release 6.1.1
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 951</td>
<td>Bootstrap Protocol (BOOTP)</td>
</tr>
<tr>
<td>RFC 1542</td>
<td>Clarifications and Extensions for the Bootstrap Protocol</td>
</tr>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>RFC 2132</td>
<td>DHCP Options and BOOTP Vendor Extensions</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Glossary

address binding --A mapping between the client’s IP and hardware (MAC) addresses. The client’s IP address may be configured by the administrator (manual address allocation) or assigned from a pool by the DHCP server (automatic address allocation). The binding also contains a lease expiration date. The default for the lease expiration date is one day.
address conflict -- A duplication of use of the same IP address by two hosts. During address assignment, DHCP checks for conflicts using ping and gratuitous (ARP). If a conflict is detected, the address is removed from the pool. The address will not be assigned until the administrator resolves the conflict.

address pool -- The range of IP addresses assigned by the DHCP server. Address pools are indexed by subnet number.

automatic address allocation -- An address assignment method where a network administrator obtains an IP address for a client for a finite period of time or until the client explicitly relinquishes the address. Automatic allocation is particularly useful for assigning an address to a client that will be connected to the network only temporarily or for sharing a limited pool of IP addresses among a group of clients that do not need permanent IP addresses. Automatic allocation may also be a good choice for assigning an IP address to a new client being permanently connected to a network where IP addresses are sufficiently scarce that it is important to reclaim them when old clients are retired.

BOOTP -- Bootstrap Protocol. A protocol that provides a method for a booting computer to find out its IP address and the location of the boot file with the rest of its parameters.

client -- Any host requesting configuration parameters.

database -- A collection of address pools and bindings.

database agent -- Any host storing the DHCP bindings database, for example, a Trivial File Transfer Protocol (TFTP) server.

DHCP -- Dynamic Host Configuration Protocol. A protocol that provides a mechanism for allocating IP addresses dynamically so that addresses can be reused when hosts no longer need them.

DNS -- Domain Name System. A system used in the Internet for translating names of network nodes into addresses.

manual address allocation -- An address assignment method that allocates an administratively assigned IP address to a host. Manual allocation allows DHCP to be used to eliminate the error-prone process of manually configuring hosts with IP addresses.

PWLAN -- Public Wireless Local Area Network. A type of wireless LAN, often referred to as a hotspot, that anyone having a properly configured computer device can access.

relay agent -- A router that forwards DHCP and BOOTP messages between a server and a client on different subnets.

server -- Any host providing configuration parameters.

SSG -- Service Selection Gateway. The Cisco IOS feature set that provides on-demand service enforcement within the Cisco network.
Configuring the Cisco IOS DHCP Server

Cisco routers running Cisco IOS software include Dynamic Host Configuration Protocol (DHCP) server and relay agent software. The Cisco IOS DHCP server is a full DHCP server implementation that assigns and manages IP addresses from specified address pools within the router to DHCP clients. The DHCP server can be configured to assign additional parameters such as the IP address of the Domain Name System (DNS) server and the default router.

This module describes the concepts and the tasks needed to configure the Cisco IOS DHCP server.

- Finding Feature Information, page 11
- Prerequisites for Configuring the DHCP Server, page 11
- Information About the Cisco IOS DHCP Server, page 12
- How to Configure the Cisco IOS DHCP Server, page 12
- Configuration Examples for the Cisco IOS DHCP Server, page 45
- Additional References, page 52
- Feature Information for the Cisco IOS DHCP Server, page 54

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring the DHCP Server

Before you configure the Cisco IOS DHCP server, you should understand the concepts documented in the “DHCP Overview” module.

The Cisco IOS DHCP server and relay agent are enabled by default. You can verify if they have been disabled by checking your configuration file. If they have been disabled, the no service dhcp command will appear in the configuration file. Use the service dhcp command to reenable the functionality if necessary.

Port 67 (the server port) is closed in the Cisco IOS DHCP/BOOTP default configuration. There are two logical parts to the service dhcp command: service enabled and service running. The DHCP service is enabled by default, but port 67 is not opened until the DHCP service is running. If the service is running, the show ip sockets details or show sockets detail command displays port 67 as open.
The Cisco IOS DHCP relay agent will be enabled on an interface only when the `ip helper-address` is configured. This command enables the DHCP broadcast to be forwarded to the configured DHCP server.

Information About the Cisco IOS DHCP Server

- Overview of the DHCP Server, page 12
- DHCP Attribute Inheritance, page 12
- DHCP Server Address Allocation Using Option 82, page 12

Overview of the DHCP Server

The Cisco IOS DHCP server accepts address assignment requests and renewals and assigns the addresses from predefined groups of addresses contained within DHCP address pools. These address pools can also be configured to supply additional information to the requesting client such as the IP address of the DNS server, the default router, and other configuration parameters. The Cisco IOS DHCP server can accept broadcasts from locally attached LAN segments or from DHCP requests that have been forwarded by other DHCP relay agents within the network.

DHCP Attribute Inheritance

The DHCP server database is organized as a tree. The root of the tree is the address pool for natural networks, branches are subnetwork address pools, and leaves are manual bindings to clients. Subnetworks inherit network parameters and clients inherit subnetwork parameters. Therefore, common parameters (for example, the domain name) should be configured at the highest (network or subnetwork) level of the tree.

Inherited parameters can be overridden. For example, if a parameter is defined in both the natural network and a subnetwork, the definition of the subnetwork is used.

Address leases are not inherited. If a lease is not specified for an IP address, by default, the DHCP server assigns a one-day lease for the address.

DHCP Server Address Allocation Using Option 82

The Cisco IOS DHCP server can allocate dynamic IP addresses based on the relay information option (option 82) information sent by the relay agent.

Automatic DHCP address allocation is typically based on an IP address, whether it be the gateway address (giaddr field of the DHCP packet) or the incoming interface IP address. In some networks, it is necessary to use additional information to further determine which IP addresses to allocate. By using option 82, the Cisco IOS relay agent has long been able to include additional information about itself when forwarding client-originated DHCP packets to a DHCP server. The Cisco IOS DHCP server can also use option 82 as a means to provide additional information to properly allocate IP addresses to DHCP clients.

How to Configure the Cisco IOS DHCP Server

- Configuring a DHCP Database Agent or Disabling Conflict Logging, page 13
- Excluding IP Addresses, page 14
- Configuring DHCP Address Pools, page 15
Configuring a DHCP Database Agent or Disabling Conflict Logging

Perform this task to configure a DHCP database agent.

A DHCP database agent is any host (for example, an FTP, TFTP, or rcp server) or storage media on the DHCP server (for example, disk0) that stores the DHCP bindings database. You can configure multiple DHCP database agents, and you can configure the interval between database updates and transfers for each agent.

Automatic bindings are IP addresses that have been automatically mapped to the MAC addresses of hosts that are found in the DHCP database. Automatic binding information (such as lease expiration date and time, interface index, and VPN routing and forwarding [VRF] name) is stored on a database agent. The bindings are saved as text records for easy maintenance.

An address conflict occurs when two hosts use the same IP address. During address assignment, DHCP checks for conflicts using ping and gratuitous Address Resolution Protocol (ARP). If a conflict is detected, the address is removed from the pool. The address will not be assigned until the administrator resolves the conflict.

Note
We strongly recommend using database agents. However, the Cisco IOS server can run without them. If you choose not to configure a DHCP database agent, disable the recording of DHCP address conflicts on the DHCP server by using the `no ip dhcp conflict logging` command in global configuration mode. If there is conflict logging but no database agent configured, bindings are lost across router reboots. Possible false conflicts can occur causing the address to be removed from the address pool until the network administrator intervenes.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. Do one of the following:
 - `ip dhcp database url [timeout seconds | write-delay seconds]`
 - or
 - `no ip dhcp conflict logging`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Configures a DHCP server to save automatic bindings on a remote host called a database agent. or Disables DHCP address conflict logging.</td>
</tr>
<tr>
<td>- ip dhcp database url [timeout seconds</td>
<td>write-delay seconds]</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>- no ip dhcp conflict logging</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp database ftp://user:password@172.16.1.1/ router-dhcp timeout 80</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no ip dhcp conflict logging</td>
<td></td>
</tr>
</tbody>
</table>

Excluding IP Addresses

Perform this task to specify IP addresses (excluded addresses) that the DHCP server should not assign to clients.

The IP address configured on the router interface is automatically excluded from the DHCP address pool. The DHCP server assumes that all other IP addresses in a DHCP address pool subnet are available for assigning to DHCP clients.

You need to exclude addresses from the pool if the DHCP server should not allocate those IP addresses. An example usage scenario is when two DHCP servers are set up to service the same network segment (subnet) for redundancy. If the two DHCP servers do not coordinate their services with each other using a protocol such as DHCP failover, then each DHCP server must be configured to allocate from a nonoverlapping set of addresses in the shared subnet. See the "Configuring Manual Bindings Example" section for a configuration example.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp excluded-address low-address [high-address]

DETAIL STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip dhcp excluded-address low-address [high-address]</td>
<td>Specifies the IP addresses that the DHCP server should not assign to DHCP clients.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp excluded-address 172.16.1.100 172.16.1.103</td>
</tr>
</tbody>
</table>

Configuring DHCP Address Pools

- Configuring a DHCP Address Pool, page 15
- Configuring a DHCP Address Pool with Secondary Subnets, page 20
- Troubleshooting Tips, page 25
- Verifying the DHCP Address Pool Configuration, page 25

Configuring a DHCP Address Pool

Perform this task to configure a DHCP address pool. On a per-address pool basis, specify DHCP options for the client as necessary.

You can configure a DHCP address pool with a name that is a symbolic string (such as “engineering”) or an integer (such as 0). Configuring a DHCP address pool also puts the router into DHCP pool configuration mode--identified by the (dhcp-config)# prompt--from which you can configure pool parameters (for example, the IP subnet number and default router list).

DHCP defines a process by which the DHCP server knows the IP subnet in which the DHCP client resides, and it can assign an IP address from a pool of valid IP addresses in that subnet. The process by which the
DHCP server identifies which DHCP address pool to use to service a client request is described in the “Configuring Manual Bindings” task.

The DHCP server identifies which DHCP address pool to use to service a client request as follows:

- If the client is not directly connected (the giaddr field of the DHCPDISCOVER broadcast message is nonzero), the DHCP server matches the DHCPDISCOVER with a DHCP pool that has the subnet that contains the IP address in the giaddr field.
- If the client is directly connected (the giaddr field is zero), the DHCP server matches the DHCPDISCOVER with DHCP pools that contain the subnets configured on the receiving interface. If the interface has secondary IP addresses, the subnets associated with the secondary IP addresses are examined for possible allocation only after the subnet associated with the primary IP address (on the interface) is exhausted.

Cisco IOS DHCP server software supports advanced capabilities for IP address allocation. See the “Configuring DHCP Address Allocation Using Option” section for more information.

Before you configure the DHCP address pool, you need to:

- Identify DHCP options for devices where necessary, including the following:
 - Default boot image name
 - Default routers
 - DNS servers
 - NetBIOS name server
 - Primary subnet
 - Secondary subnets and subnet-specific default router lists (see "Configuring a DHCP Address Pool with Secondary Subnets" for information on secondary subnets).
- Decide on a NetBIOS node type (b, p, m, or h).
- Decide on a DNS domain name.

Note: You cannot configure manual bindings within the same pool that is configured with the network DHCP pool configuration command. To configure manual bindings, see "Configuring Manual Bindings".
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool *name*
4. utilization mark high *percentage-number* [log]
5. utilization mark low *percentage-number* [log]
6. network *network-number* [{mask | prefix-length} [secondary]]
7. domain-name *domain*
8. dns-server *address* [{address2 ... address8}]
9. bootfile *filename*
10. next-server *address* [{address2 ... address8}]
11. netbios-name-server *address* [{address2 ... address8}]
12. netbios-node-type *type*
13. default-router *address* [{address2 ... address8}]
14. option *code* [{instance number} {ascii string | hex string | ip-address}]
15. lease {days [hours [minutes]] | infinite}
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool 1</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>utilization mark high percentage-number [log]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Configures the high utilization mark of the current address pool size.</td>
</tr>
<tr>
<td></td>
<td>• The <code>log</code> keyword enables the logging of a system message. A system message will be generated for a DHCP pool when the pool utilization exceeds the configured high utilization threshold.</td>
</tr>
</tbody>
</table>

Example:

```
Router(dhcp-config)# utilization mark high 80 log
```

<table>
<thead>
<tr>
<th>Step 5</th>
<th>utilization mark low percentage-number [log]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Configures the low utilization mark of the current address pool size.</td>
</tr>
<tr>
<td></td>
<td>• The <code>log</code> keyword enables the logging of a system message. A system message will be generated for a DHCP pool when the pool utilization falls below the configured low utilization threshold.</td>
</tr>
</tbody>
</table>

Example:

```
Router(dhcp-config)# utilization mark low 70 log
```

| Step 6 | network network-number [{[mask | /prefix-length]} [secondary]] |
|--------|---|
| | Specifies the subnet network number and mask of the DHCP address pool. |

Example:

```
Router(dhcp-config)# network 172.16.0.0 /16
```

<table>
<thead>
<tr>
<th>Step 7</th>
<th>domain-name domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specifies the domain name for the client.</td>
</tr>
</tbody>
</table>

Example:

```
Router(dhcp-config)# domain-name cisco.com
```

<table>
<thead>
<tr>
<th>Step 8</th>
<th>dns-server address [address2 ... address8]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specifies the IP address of a DNS server that is available to a DHCP client.</td>
</tr>
<tr>
<td></td>
<td>• One IP address is required; however, you can specify up to eight IP addresses in one command line.</td>
</tr>
<tr>
<td></td>
<td>• Servers should be listed in order of preference.</td>
</tr>
</tbody>
</table>

Example:

```
Router(dhcp-config)# dns server 172.16.1.103 172.16.2.103
```

<table>
<thead>
<tr>
<th>Step 9</th>
<th>bootfile filename</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Specifies the name of the default boot image for a DHCP client.</td>
</tr>
<tr>
<td></td>
<td>• The boot file is used to store the boot image for the client. The boot image is generally the operating system the client uses to load.</td>
</tr>
</tbody>
</table>

Example:

```
Router(dhcp-config)# bootfile xllboot
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 10** next-server **address [address2 ... address8]** | (Optional) Configures the next server in the boot process of a DHCP client.
 • If multiple servers are specified, DHCP assigns them to clients in round-robin order. The first client gets address 1, the next client gets address 2, and so on.
 • If this command is not configured, DHCP uses the server specified by the **ip helper address** command as the boot server. |
| **Example:** | **Router(dhcp-config)# next-server 172.17.1.103 172.17.2.103** |
| **Step 11** netbios-name-server **address [address2 ... address8]** | (Optional) Specifies the NetBIOS WINS server that is available to a Microsoft DHCP client.
 • One address is required; however, you can specify up to eight addresses in one command line.
 • Servers should be listed in order of preference. |
| **Example:** | **Router(dhcp-config)# netbios-name-server 172.16.1.103 172.16.2.103** |
| **Step 12** netbios-node-type **type** | (Optional) Specifies the NetBIOS node type for a Microsoft DHCP client. |
| **Example:** | **Router(dhcp-config)# netbios-node-type h-node** |
| **Step 13** default-router **address [address2 ... address8]** | (Optional) Specifies the IP address of the default router for a DHCP client.
 • The IP address should be on the same subnet as the client.
 • One IP address is required; however, you can specify up to eight IP addresses in one command line. These default routers are listed in order of preference; that is, **address** is the most preferred router, **address2** is the next most preferred router, and so on.
 • When a DHCP client requests an IP address, the router--acting as a DHCP server--accesses the default router list to select another router that the DHCP client is to use as the first hop for forwarding messages. After a DHCP client has booted, the client begins sending packets to its default router. |
| **Example:** | **Router(dhcp-config)# default-router 172.16.1.100 172.16.1.101** | | |
| **Step 14** option **code [instance number] {ascii string | hex string | ip-address}** | (Optional) Configures DHCP server options. |
| **Example:** | **Router(dhcp-config)# option 19 hex 01** |
Command or Action

Step 15

lease {days [hours [minutes]] | infinite}

(Optional) Specifies the duration of the lease.

- The default is a one-day lease.
- The `infinite` keyword specifies that the duration of the lease is unlimited.

Example:

```
Router(dhcp-config)# lease 30
```

Step 16

end

Returns to global configuration mode.

Example:

```
Router(dhcp-config)# end
```

Configuring a DHCP Address Pool with Secondary Subnets

Perform this task to configure a DHCP address pool with secondary subnets.

For any DHCP pool, you can configure a primary subnet and any number of secondary subnets. Each subnet is a range of IP addresses that the router uses to allocate an IP address to a DHCP client. The DHCP server multiple subnet functionality enables a Cisco IOS DHCP server address pool to manage additional IP addresses by adding the addresses to a secondary subnet of an existing DHCP address pool (instead of using a separate address pool).

Configuring a secondary DHCP subnetwork places the router in DHCP pool secondary subnet configuration mode--identified by the `(config-dhcp-subnet-secondary)#` prompt--from which you can configure a default address list that is specific to the secondary subnet. You can also specify the utilization rate of the secondary subnet, which allows pools of IP addresses to dynamically increase or reduce in size depending on the address utilization level. This setting overrides the global utilization rate.

If the DHCP server selects an address pool that contains multiple subnets, the DHCP server allocates an IP address from the subnets as follows:

- When the DHCP server receives an address assignment request, it looks for a free address in the primary subnet.
- When the primary subnet is exhausted, the DHCP server automatically looks for a free address in any secondary subnets maintained by the DHCP server (even though the giaddr does not necessarily match the secondary subnet). The server inspects the subnets for address availability in the order in which the subnets were added to the pool.
- If the giaddr matches a secondary subnet in the pool, the DHCP server allocates an IP address from that secondary subnet (even if IP addresses are available in the primary subnet and irrespective of the order in which secondary subnets where added).
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. utilization mark high percentage-number [log]
5. utilization mark low percentage-number [log]
6. network network-number [mask | / prefix-length]
7. domain-name domain
8. dns-server address [address2 ... address8]
9. bootfile filename
10. next-server address [address2 ... address8]
11. netbios-name-server address [address2 ... address8]
12. netbios-node-type type
13. default-router address [address2 ... address8]
14. option code [instance number] {ascii string | hex string | ip-address}
15. lease {days [hours] [minutes] infinite}
16. network network-number [{mask | /prefix-length} [secondary]]
17. override default-router address [address2 ... address8]
18. override utilization high percentage-number
19. override utilization low percentage-number
20. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp pool 1</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4 utilization mark high percentage-number [log]</td>
<td>(Optional) Configures the high utilization mark of the current address pool size.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# utilization mark high 80 log</td>
<td>- The log keyword enables the logging of a system message. A system message will be generated for a DHCP pool when the pool utilization exceeds the configured high utilization threshold.</td>
</tr>
<tr>
<td>Step 5 utilization mark low percentage-number [log]</td>
<td>(Optional) Configures the low utilization mark of the current address pool size.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# utilization mark low 70 log</td>
<td>- The log keyword enables the logging of a system message. A system message will be generated for a DHCP pool when the pool utilization falls below the configured low utilization threshold.</td>
</tr>
<tr>
<td>Step 6 network network-number [mask]</td>
<td>Specifies the subnet network number and mask of the DHCP address pool.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# network 172.16.0.0 /16</td>
<td></td>
</tr>
<tr>
<td>Step 7 domain-name domain</td>
<td>Specifies the domain name for the client.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# domain-name cisco.com</td>
<td></td>
</tr>
<tr>
<td>Step 8 dns-server address [address2 ... address8]</td>
<td>Specifies the IP address of a DNS server that is available to a DHCP client.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# dns server 172.16.1.103 172.16.2.103</td>
<td>- One IP address is required; however, you can specify up to eight IP addresses in one command line.</td>
</tr>
<tr>
<td>Step 9 bootfile filename</td>
<td>(Optional) Specifies the name of the default boot image for a DHCP client.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# bootfile xllboot</td>
<td>- The boot file is used to store the boot image for the client. The boot image is generally the operating system the client uses to load.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| **Step 10** next-server *address [address2 ... address8]* | (Optional) Configures the next server in the boot process of a DHCP client.
• If multiple servers are specified, DHCP assigns them to clients in round-robin order. The first client gets address 1, the next client gets address 2, and so on.
• If this command is not configured, DHCP uses the server specified by the `ip helper address` command as the boot server. |
| **Example:** | `Router(dhcp-config)# next-server 172.17.1.103 172.17.2.103` |
| **Step 11** netbios-name-server *address [address2 ... address8]* | (Optional) Specifies the NetBIOS Windows Internet Naming Service (WINS) server that is available to a Microsoft DHCP client.
• One address is required; however, you can specify up to eight addresses in one command line.
• Servers should be listed in order of preference. |
| **Example:** | `Router(dhcp-config)# netbios-name-server 172.16.1.103 172.16.2.103` |
| **Step 12** netbios-node-type *type* | (Optional) Specifies the NetBIOS node type for a Microsoft DHCP client. |
| **Example:** | `Router(dhcp-config)# netbios-node-type h-node` |
| **Step 13** default-router *address [address2 ... address8]* | (Optional) Specifies the IP address of the default router for a DHCP client.
• The IP address should be on the same subnet as the client.
• One IP address is required; however, you can specify up to eight IP addresses in one command line. These default routers are listed in order of preference; that is, *address* is the most preferred router, *address2* is the next most preferred router, and so on.
• When a DHCP client requests an IP address, the router--acting as a DHCP server--accesses the default router list to select another router that the DHCP client is to use as the first hop for forwarding messages. After a DHCP client has booted, the client begins sending packets to its default router. |
<p>| Example: | <code>Router(dhcp-config)# default-router 172.16.1.100 172.16.1.101</code> |
| Step 14 option code [instance number] {ascii string | hex string | ip-address} | (Optional) Configures DHCP server options. |
| Example: | <code>Router(dhcp-config)# option 19 hex 01</code> |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 15** lease /days [hours] [minutes] **infinite** | (Optional) Specifies the duration of the lease.
- The default is a one-day lease.
- The **infinite** keyword specifies that the duration of the lease is unlimited. |
| **Example:** | Router(dhcp-config)# lease 30 |
| **Step 16** network network-number [{mask | / prefix-length} [secondary]] | (Optional) Specifies the network number and mask of a secondary DHCP server address pool.
- Any number of secondary subnets can be added to the DHCP server address pool.
- During execution of this command, the configuration mode changes to DHCP pool secondary subnet configuration mode, which is identified by the (config-dhcp-subnet-secondary)# prompt. In this mode, the administrator can configure a default router list that is specific to the subnet.
- See “Troubleshooting Tips” if you are using secondary IP addresses under a loopback interface with DHCP secondary subnets. |
| **Example:** | Router(dhcp-config)# network 10.10.0.0 255.255.0.0 secondary |
| **Step 17** override default-router **address** [address2 ... address8] | (Optional) Specifies the default router list that is used when an IP address is assigned to a DHCP client from this secondary subnet.
- If this subnet-specific override value is configured, it is used when assigning an IP address from the subnet; the network-wide default router list is used only to set the gateway router for the primary subnet.
- If this subnet-specific override value is not configured, the network-wide default router list is used when assigning an IP address from the subnet.
- See "Configuring a DHCP Address Pool with Multiple Disjoint Subnets Example" for an example configuration. |
| **Example:** | Router(config-dhcp-subnet-secondary)# override default-router 10.10.0.100 10.10.0.101 |
| **Step 18** override utilization high **percentage**-number | (Optional) Sets the high utilization mark of the subnet size.
- This command overrides the global default setting specified by the **utilization mark high** global configuration command. |
| **Example:** | Router(config-dhcp-subnet-secondary)# override utilization high 60 |
| **Step 19** override utilization low **percentage**-number | (Optional) Sets the low utilization mark of the subnet size.
- This command overrides the global default setting specified by the **utilization mark low** global configuration command. |
| **Example:** | Router(config-dhcp-subnet-secondary)# override utilization low 40 |
Troubleshooting Tips

If you are using secondary IP addresses under a single loopback interface and using secondary subnets under a DHCP pool, use one DHCP pool to configure networks for all the secondary subnets instead of one pool per secondary subnet. The `network network-number [mask /prefix-length] [secondary]` command must be configured under a single DHCP address pool rather than multiple DHCP address pools.

The following is the correct configuration:

```
! ip dhcp pool dhcp_1
  network 172.16.1.0 255.255.255.0
  network 172.16.2.0 255.255.255.0 secondary
  network 172.16.3.0 255.255.255.0 secondary
  network 172.16.4.0 255.255.255.0 secondary
!
interface Loopback111
  ip address 172.16.1.1 255.255.255.255 secondary
  ip address 172.16.2.1 255.255.255.255 secondary
  ip address 172.16.3.1 255.255.255.255 secondary
  ip address 172.16.4.1 255.255.255.255 secondary
```

The following is the incorrect configuration:

```
!
ip dhcp pool dhcp_1
  network 172.16.1.0 255.255.255.0
    lease 1 20 30
    accounting default
!
ip dhcp pool dhcp_2
  network 172.16.2.0 255.255.255.0
    lease 1 20 30
    accounting default
!
ip dhcp pool dhcp_3
  network 172.16.3.0 255.255.255.0
    lease 1 20 30
    accounting default
!
ip dhcp pool dhcp_4
  network 172.16.4.0 255.255.255.0
    lease 1 20 30
    accounting default
!
interface Loopback111
  ip address 172.16.1.1 255.255.255.255 secondary
  ip address 172.16.2.1 255.255.255.255 secondary
  ip address 172.16.3.1 255.255.255.255 secondary
  ip address 172.16.4.1 255.255.255.255 secondary
```

Verifying the DHCP Address Pool Configuration
Perform this task to verify the DHCP address pool configuration. These show commands need not be entered in any specific order.

SUMMARY STEPS

1. `enable`
2. `show ip dhcp pool [name]`
3. `show ip dhcp binding [address]`
4. `show ip dhcp conflict [address]`
5. `show ip dhcp database [url]`
6. `show ip dhcp server statistics [type-number]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>show ip dhcp pool [name]</code></td>
<td>(Optional) Displays information about DHCP address pools.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip dhcp pool</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>show ip dhcp binding [address]</code></td>
<td>(Optional) Displays a list of all bindings created on a specific DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip dhcp binding</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>show ip dhcp conflict [address]</code></td>
<td>(Optional) Displays a list of all address conflicts.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip dhcp conflict</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>show ip dhcp database [url]</code></td>
<td>(Optional) Displays recent activity on the DHCP database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip dhcp database</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Manual Bindings

An address binding is a mapping between the IP address and MAC address of a client. The IP address of a client can be assigned manually by an administrator or assigned automatically from a pool by a DHCP server.

Manual bindings are IP addresses that have been manually mapped to the MAC addresses of hosts that are found in the DHCP database. Manual bindings are stored in NVRAM on the DHCP server. Manual bindings are just special address pools. There is no limit on the number of manual bindings, but you can configure only one manual binding per host pool.

Automatic bindings are IP addresses that have been automatically mapped to the MAC addresses of hosts that are found in the DHCP database. Because the bindings are stored in volatile memory on the DHCP server, binding information is lost in the event of a power failure or upon router reload for any other reason. To prevent the loss of automatic binding information in such an event, store a copy of the automatic binding information on a remote host called a DHCP database agent. The bindings are periodically written to the database agent. If the router reloads, the bindings are read back from the database agent to the DHCP database on the DHCP server.

Note

We strongly recommend using database agents. However, the Cisco IOS DHCP server can function without database agents.

Some DHCP clients send a client identifier (DHCP option 61) in the DHCP packet. To configure manual bindings for such clients, you must enter the `client-identifier` DHCP pool configuration command with the appropriate hexadecimal values identifying the DHCP client. To configure manual bindings for clients who do not send a client identifier option, you must enter the `hardware-address` DHCP pool configuration command with the appropriate hexadecimal hardware address of the client.

In Cisco IOS Release 12.4(22)T and later releases the DHCP server sends infinite lease time to the clients for which manual bindings are configured.

In Cisco IOS Release 15.1(1)S1 and later releases, the DHCP server sends lease time configured using the `lease` command to the clients for which manual bindings are configured.

Note

You cannot configure manual bindings within the same pool that is configured with the `network` command in DHCP pool configuration mode. See the "Configuring DHCP Address Pools" section for information about DHCP address pools and the `network` command.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 <code>show ip dhcp server statistics [type-number]</code></td>
<td>(Optional) Displays count information about server statistics and messages sent and received.</td>
</tr>
</tbody>
</table>

Example:

```
Router# show ip dhcp server statistics
```

Command or Action

Purpose

- **Step 6** `show ip dhcp server statistics [type-number]` (Optional) Displays count information about server statistics and messages sent and received.

Verifying the DHCP Address Pool Configuration

IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T

27
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool pool-name
4. host address [mask] / prefix-length
5. client-identifier unique-identifier
6. hardware-address hardware-address [protocol-type | hardware-number]
7. client-name name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Creates a name for the DHCP server address pool and places you in DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp pool pool1</td>
</tr>
<tr>
<td>Step 4 host address [mask] / prefix-length</td>
<td>Specifies the IP address and subnet mask of the client.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# host 172.16.0.1</td>
</tr>
<tr>
<td></td>
<td>• There is no limit on the number of manual bindings but you can configure only one manual binding per host pool.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5 client-identifier unique-identifier</td>
<td>Specifies the unique identifier for DHCP clients.</td>
</tr>
<tr>
<td>Example: Router(dhcp-config)# client-identifier 01b7.0813.8811.66</td>
<td>• This command is used for DHCP requests.</td>
</tr>
<tr>
<td></td>
<td>• DHCP clients require client identifiers. The unique identification of the client is specified in dotted hexadecimal notation; for example, 01b7.0813.8811.66, where 01 represents the Ethernet media type.</td>
</tr>
<tr>
<td></td>
<td>• See the "Troubleshooting Tips" section for information on how to determine the client identifier of the DHCP client.</td>
</tr>
<tr>
<td>Note The identifier specified here is considered for the DHCP clients who send a client identifier in the packet.</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 6** hardware-address hardware-address [protocol-type | hardware-number] | Specifies a hardware address for the client. |
| **Example:** Router(dhcp-config)# hardware-address b708.1388.f166 ethernet | • This command is used for BOOTP requests. |
| **Note** The hardware address specified here is considered for the DHCP clients who do not send a client identifier in the packet. |

| **Step 7** client-name name | (Optional) Specifies the name of the client using any standard ASCII character. |
| **Example:** Router(dhcp-config)# client-name client1 | • The client name should not include the domain name. For example, the name client1 should not be specified as client1.cisco.com. |

Troubleshooting Tips

You can determine the client identifier by using the `debug ip dhcp server packet` command. In the following example, the client is identified by the value 0b07.1134.a029:

```
Router# debug ip dhcp server packet
DHCPD:DHCPDISCOVER received from client 0b07.1134.a029 through relay 10.1.0.253.
DHCPD:assigned IP address 10.1.0.3 to client 0b07.1134.a029.
```

Configuring DHCP Static Mapping

The DHCP—Static Mapping feature enables assignment of static IP addresses without creating numerous host pools with manual bindings by using a customer-created text file that the DHCP server reads. The benefit of this feature is that it eliminates the need for a long configuration file and reduces the space required in NVRAM to maintain address pools.

This section contains the following task:

A DHCP database contains the mappings between a client IP address and hardware address, referred to as a binding. There are two types of bindings: manual bindings that map a single hardware address to a single IP...
address, and automatic bindings that dynamically map a hardware address to an IP address from a pool of IP addresses. Manual (also known as static) bindings can be configured individually directly on the router or, by using the DHCP--Static Mapping feature, these static bindings can be read from a separate static mapping text file. The static mapping text files are read when a router reloads or the DHCP service restarts. These files are read-only.

The read static bindings are treated just like the manual bindings, in that they are:

- Retained across DHCPRELEASEs from the clients.
- Not timed out.
- Deleted only upon deletion of the pool.
- Provided appropriate exclusions for the contained addresses, which are created at the time of the read.

Just like automatic bindings and manual bindings, the static bindings from the static mapping text file are also displayed by using the `show ip dhcp binding` command.

Perform this task to create the static mapping text file. You will input your addresses in the text file, which is stored in the DHCP database for the DHCP server to read. There is no limit on the number of addresses in the file. The file format has the following elements:

- Time the file was created
- Database version number
- IP address
- Hardware type
- Hardware address
- Lease expiration
- End-of-file designator

See the table below for more details about the format of the text file.

The following is a sample static mapping text file:

```
*time* Jan 21 2005 03:52 PM
*version* 2
!IP address    Type    Hardware address     Lease expiration
10.0.0.4 /24   1       0090.bff6.081e       Infinite
10.0.0.5 /28   id      00b7.0813.88f1.66    Infinite
10.0.0.2 /21   1       0090.bff6.081d       Infinite
*end*
```

Table 3 Static Mapping Text File Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>Specifies the time the file was created. This field allows DHCP to differentiate between newer and older database versions when multiple agents are configured. The valid format of the time is Mm dd yyyy hh:mm AM/PM.</td>
</tr>
<tr>
<td>version 2</td>
<td>Database version number.</td>
</tr>
<tr>
<td>IP address</td>
<td>Static IP address. If the subnet mask is not specified, a natural mask is assumed depending on the IP address. There must be a space between the IP address and mask.</td>
</tr>
</tbody>
</table>
Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Specifies the hardware type. For example, type “1” indicates Ethernet. The type “id” indicates that the field is a DHCP client identifier. Legal values can be found online at http://www.iana.org/assignments/arp-parameters in the “Number Hardware Type” list.</td>
</tr>
<tr>
<td>Hardware address</td>
<td>Specifies the hardware address. When the type is numeric, it refers to the hardware media. Legal values can be found online at http://www.iana.org/assignments/arp-parameters in the “Number Hardware Type” list. When the type is “id,” this means that we are matching on the client identifier. For more information about the client identifier, please see RFC 2132, DHCP Options and BOOTP Vendor Extensions, section 9.14, located at http://www.ietf.org/rfc/rfc2132.txt, or the client-identifier command reference page. If you are unsure what client identifier to match on, use the <code>debug dhcp detail</code> command to display the client identifier being sent to the DHCP server from the client.</td>
</tr>
<tr>
<td>Lease expiration</td>
<td>Specifies the expiration of the lease. “Infinite” specifies that the duration of the lease is unlimited.</td>
</tr>
</tbody>
</table>

- **End of file.** DHCP uses the *end* designator to detect file truncation.

Configuring the DHCP Server to Read a Static Mapping Text File

Perform this task to configure the DHCP server to read the static mapping text file. The administrator should create the static mapping text file in the correct format and configure the address pools before performing this task. Before editing the file, you must disable the DHCP server using the `no service dhcp` command.

The static bindings must not be deleted when a DHCPRELEASE is received or must not be timed out by the DHCP timer. The static bindings should be treated just like manual bindings created by using the `ip dhcp pool` command.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. origin file url
5. end
6. show ip dhcp binding [address]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** |
Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** |
Router# configure terminal |
| **Step 3** ip dhcp pool name | Assigns a name to a DHCP pool and enters DHCP configuration mode.
Note If you have already configured the IP DHCP pool name using the `ip dhcp pool` command and the static file URL using the `origin file` command, you must perform a fresh read using the `no service dhcp` command and `service dhcp` command. |
| **Example:** |
Router(config)# ip dhcp pool pool1 |
| **Step 4** origin file url | Specifies the URL from which the DHCP server can locate the text file. |
| **Example:** |
Router(dhcp-config)# origin file tftp://10.1.0.1/static-bindings |
| **Step 5** end | Returns to privileged EXEC mode. |
| **Example:** |
Router(dhcp-config)# end |
Command or Action

Step 6
`show ip dhcp binding [address]`

Purpose
(Optional) Displays a list of all bindings created on a specific DHCP server.

Examples

The following example shows the address bindings that have been configured:

```bash
Router# show ip dhcp binding
00:05:14:%SYS-5-CONFIG_I: Configured from console by console
Bindings from all pools not associated with VRF:
10.9.9.4/8  0063.7363.2d30.3036.  Infinite   Static  302e.3762.2e39.3634. 632d.4574.8892.  
10.9.9.1/24 0063.6973.636f.2d30.  Infinite   Static  3036.302e.3437.3165. 2e64.6462.342d.
```

The following sample shows each entry in the static mapping text file:

```bash
*time* Jan 21 2005 22:52 PM  
/IP address     Type        Hardware address                              Lease expiration
10.19.9.1 /24    id          0063.6973.636f.2d30.3036.302e.3437
10.9.9.4         id          0063.7363.2d30.3036.302e.3762.2e39.3634.632d
*end*
```

The following sample debug output shows the reading of the static mapping text file from the TFTP server:

```bash
Router# debug ip dhcp server
Loading abc/static_pool from 10.19.192.33 (via Ethernet0):  
[OK - 333 bytes]  
*May 26 23:14:21.707: DHCPD: Adding binding to radix tree (10.9.9.1)
*May 26 23:14:21.707: DHCPD: Adding binding to radix tree (10.9.9.4)
```

Configuring the DHCP Server to Read a Static Mapping Text File

IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T
Customizing DHCP Server Operation

By default, the DHCP server pings a pool address twice before assigning a particular address to a requesting client. If the ping is unanswered, the DHCP server assumes (with a high probability) that the address is not in use and assigns the address to the requesting client.

By default, the DHCP server waits 2 seconds before timing out a ping packet.

You can configure the DHCP server to ignore and not reply to received Bootstrap Protocol (BOOTP) requests. This functionality is beneficial when there is a mix of BOOTP and DHCP clients in a network segment and there is a BOOTP server and a Cisco IOS DHCP server servicing the network segment. The BOOTP server is configured with static bindings for the BOOTP clients and the BOOTP clients are intended to obtain their addresses from the BOOTP server. However, because a DHCP server can also respond to a BOOTP request, an address offer may be made by the DHCP server causing the BOOTP clients to boot with the address from the DHCP server, instead of the address from the BOOTP server. Configuring the DHCP server to ignore BOOTP requests means that the BOOTP clients will receive address information from the BOOTP server and will not inadvertently accept an address from a DHCP server.

The Cisco IOS software can forward these ignored BOOTP request packets to another DHCP server if the `ip helper-address` interface configuration command is configured on the incoming interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. `ip dhcp ping packets number`
4. `ip dhcp ping timeout milliseconds`
5. `ip dhcp bootp ignore`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |

Example:

`Router> enable`

| Step 2 configure terminal | Enters global configuration mode. |

Example:

`Router# configure terminal`
Configuring the Central DHCP Server to Update DHCP Options

Perform this task to configure the central DHCP server to update DHCP options.

Configuring a Remote Router to Import DHCP Server Options from a Central DHCP Server

The Cisco IOS DHCP server can dynamically configure options such as the DNS and WINS addresses to respond to DHCP requests from local clients behind the customer premises equipment (CPE). Previously, network administrators needed to manually configure the Cisco IOS DHCP server on each device. The Cisco IOS DHCP server was enhanced to allow configuration information to be updated automatically. Network administrators can configure one or more centralized DHCP servers to update specific DHCP options within the DHCP pools. The remote servers can request or “import” these option parameters from the centralized servers.

This section contains the following tasks:

- Configuring the Central DHCP Server to Update DHCP Options, page 35
- Configuring the Remote Router to Import DHCP Options, page 36

Step 3

ip dhcp ping packets number

(Optional) Specifies the number of ping packets the DHCP server sends to a pool address before assigning the address to a requesting client.

- The default is two packets. Setting the number argument to a value of 0 disables the DHCP server ping operation completely.

Example:

```
Router(config)# ip dhcp ping packets 5
```

Step 4

ip dhcp ping timeout milliseconds

(Optional) Specifies the amount of time the DHCP server waits for a ping reply from an address pool.

Example:

```
Router(config)# ip dhcp ping timeout 850
```

Step 5

ip dhcp bootp ignore

(Optional) Allows the DHCP server to selectively ignore and not reply to received BOOTP requests.

- The **ip dhcp bootp ignore** command applies to all DHCP pools configured on the router. BOOTP requests cannot be selectively ignored on a per-DHCP pool basis.

Example:

```
Router(config)# ip dhcp bootp ignore
```
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. network network-number [mask | /prefix-length]
5. dns-server address [address2 ... address8]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 network network-number [mask</td>
<td>/prefix-length]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# network 172.16.0.0 /16</td>
<td></td>
</tr>
<tr>
<td>Step 5 dns-server address [address2 ... address8]</td>
<td>(Optional) Specifies the IP address of a DNS server that is available to a DHCP client.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# dns server 172.16.1.103 172.16.2.103</td>
<td>One IP address is required; however, you can specify up to eight IP addresses in one command line.</td>
</tr>
<tr>
<td></td>
<td>Servers should be listed in order of preference.</td>
</tr>
</tbody>
</table>

Configuring the Remote Router to Import DHCP Options

Perform this task to configure the remote router to import DHCP options from a central DHCP server.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool *pool-name*
4. network *network-number* [*mask* | *prefix-length*]
5. import all
6. exit
7. interface *type* *number*
8. ip address dhcp
9. end
10. show ip dhcp import

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Creates a name for the DHCP server address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool pool1</td>
<td></td>
</tr>
<tr>
<td>Step 4 network network-number [mask</td>
<td>prefix-length]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# network 172.30.0.0 /16</td>
<td></td>
</tr>
<tr>
<td>Step 5 import all</td>
<td>Imports DHCP option parameters into the DHCP server database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# import all</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 6 | **exit** | Exits DHCP pool configuration mode.
Example:
Router(dhcp-config)# exit

Step 7 | **interface type number** | Configures an interface and enters interface configuration mode.
Example:
Router(config)# interface FastEthernet 0/0

Step 8 | **ip address dhcp** | Specifies that the interface acquires an IP address through DHCP.
Example:
Router(config-if)# ip address dhcp

Step 9 | **end** | Returns to privileged EXEC mode.
Example:
Router(config-if)# end

Step 10 | **show ip dhcp import** | Displays the options that have been imported from the central DHCP server.
Example:
Router# show ip dhcp import

Configuring DHCP Address Allocation Using Option 82

- DHCP Address Allocation Using Option 82 Feature Design, page 38
- Enabling Option 82 for DHCP Address Allocation, page 39
- Troubleshooting Tips, page 40
- Defining the DHCP Class and Relay Agent Information Patterns, page 40
- Troubleshooting Tips, page 41
- Defining the DHCP Address Pool, page 41

DHCP Address Allocation Using Option 82 Feature Design

DHCP provides a framework for passing configuration information to hosts on a TCP/IP network. Configuration parameters and other control information are carried in tagged data items that are stored in the options field of the DHCP message. The data items themselves are also called options. Option 82 is organized as a single DHCP option that contains information known by the relay agent.
This feature is designed to allow the Cisco IOS DHCP server to use option 82 information to help determine which IP addresses to allocate to clients. The information sent via option 82 will be used to identify which port the DHCP request came in on. This feature does not parse out the individual suboptions contained within option 82. Rather, the address allocation is done by matching a configured pattern byte by byte.

The feature introduces a new DHCP class capability, which is a method to group DHCP clients based on some shared characteristics other than the subnet in which the clients reside.

In an example application, DHCP clients are connected to two ports of a single switch. Each port can be configured to be part of two VLANs: VLAN1 and VLAN2. DHCP clients belong to either VLAN1 or VLAN2 and it is assumed that the switch can differentiate the VLAN that a particular DHCP Discover message belongs to (possibly through Layer 2 encapsulation). Each VLAN has its own subnet and all DHCP messages from the same VLAN (same switch) will have the giaddr field set to the same value indicating the subnet of the VLAN.

The problem is that for a DHCP client connecting to port 1 of VLAN1, it must be allocated an IP address from one range within the VLAN’s subnet, whereas a DHCP client connecting to port 2 of VLAN1 must be allocated an IP address from another range. Both these two IP address ranges are part of the same subnet (and have the same subnet mask). In the normal DHCP address allocation, the DHCP server will look only at the giaddr field and thus will not be able to differentiate between the two ranges.

To solve this problem, a relay agent residing at the switch inserts the relay information option (option 82), which carries information specific to the port, and the DHCP server must inspect both the giaddr field and the inserted option 82 during the address selection process.

The Cisco IOS software will look up a pool based on IP address (giaddr or incoming interface IP address) and then match the request to a class or classes configured in the pool in the order the classes are specified in the DHCP pool configuration.

When a DHCP address pool has been configured with one or more DHCP classes, the pool becomes a restricted access pool, which means that no addresses will be allocated from the pool unless one or more of the classes in the pool is matched. This design allows DHCP classes to be used for either access control (no default class is configured on the pool) or to provide further address range partitions with the subnet of the pool.

Multiple pools can be configured with the same class, eliminating the need to configure the same pattern in multiple pools.

The following capabilities are supported for DHCP class-based address allocation:

- Specifying the full relay agent information option value as a raw hexadecimal string by using the `relay-information hex` command in the new relay agent information configuration mode.
- Support for bitmasking the raw relay information hexadecimal value.
- Support for a wildcard at the end of the hexadecimal string specified by the `relay-information hex` command.

If the relay agent inserts option 82 but does not set the giaddr field in the DHCP packet, the DHCP server interface must be configured as a trusted interface by using the `ip dhcp relay information trusted` global configuration command. This configuration prevents the server from dropping the DHCP message.

Enabling Option 82 for DHCP Address Allocation

By default, the Cisco IOS DHCP server can use information provided by option 82 to allocate IP addresses. To reenable this capability if it has been disabled, perform the task described in this section.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp use class

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp use class</td>
<td>Controls whether DHCP classes are used for address allocation.</td>
</tr>
<tr>
<td>Example:</td>
<td>• This functionality is enabled by default.</td>
</tr>
<tr>
<td>Router(config)# ip dhcp use class</td>
<td>Use the no form of this command to disable this functionality without deleting the DHCP class configuration.</td>
</tr>
</tbody>
</table>

Troubleshooting Tips

If DHCP classes are configured in the pool, but the DHCP server does not make use of the classes, verify if the no ip dhcp use class command was configured.

Defining the DHCP Class and Relay Agent Information Patterns

Perform this task to define the DHCP class and relay agent information patterns.

You must know the hexadecimal value of each byte location in option 82 to be able to configure the relay-information hex command. The option 82 format may vary from product to product. Contact the relay agent vendor for this information.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp class class-name
4. relay agent information
5. relay-information hex pattern [*] [bitmask mask]
6. Repeat Steps 3 through 5 for each DHCP class you need to configure.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |

 Example:

  ```
  Router> enable
  ```

| **Step 2** configure terminal | Enters global configuration mode. |

 Example:

  ```
  Router# configure terminal
  ```

| **Step 3** ip dhcp class class-name | Defines a DHCP class and enters DHCP class configuration mode. |

 Example:

  ```
  Router(config)# ip dhcp class CLASS1
  ```

| **Step 4** relay agent information | Enters relay agent information option configuration mode.
 • If this step is omitted, then the DHCP class matches to any relay agent information option, whether it is present or not. |

 Example:

  ```
  Router(dhcp-class)# relay agent information
  ```

| **Step 5** relay-information hex pattern [*] [bitmask mask] | (Optional) Specifies a hexadecimal value for the full relay information option.
 • The **pattern** argument creates a pattern that is used to match to the DHCP class.
 • If you omit this step, no pattern is configured and it is considered a match to any relay agent information option value, but the relay information option must be present in the DHCP packet.
 • You can configure multiple **relay-information hex** commands in a DHCP class. |

 Example:

  ```
  Router(dhcp-class-relayinfo)# relay-information hex 01030a0b0c02050000000123
  ```

| **Step 6** Repeat Steps 3 through 5 for each DHCP class you need to configure. | -- |

Troubleshooting Tips

Use the `debug ip dhcp server class` command to display the class matching results.

Defining the DHCP Address Pool

Perform this task to define the DHCP address pool.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. network network-number [mask | /prefix-length]
5. class class-name
6. address range start-ip end-ip
7. Repeat Steps 5 and 6 for each DHCP class you need to associate to the DHCP pool.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Multiple pools can be configured with the same class, eliminating the need to configure the same pattern in multiple pools.</td>
</tr>
<tr>
<td>Router# ip dhcp pool ABC</td>
<td></td>
</tr>
<tr>
<td>Step 4 network network-number [mask</td>
<td>/prefix-length]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# network 10.0.20.0</td>
<td></td>
</tr>
<tr>
<td>Step 5 class class-name</td>
<td>Associates a class with a pool and enters DHCP pool class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• This command will also create a DHCP class if the DHCP class is not yet defined.</td>
</tr>
<tr>
<td>Router(dhcp-config)# class CLASS1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Static Route with the Next Hop Dynamically Obtained Through DHCP

Perform this task to configure a static route to use a DHCP default gateway as the next-hop router.

This task enables static routes to be assigned using a DHCP default gateway as the next-hop router. This behavior was not possible before the introduction of this feature because the gateway IP address is not known until after the DHCP address assignment. A static route could not be configured with the command-line interface (CLI) that used that DHCP-supplied address.

The static routes are installed in the routing table when the default gateway is assigned by the DHCP server. The routes remain in the routing table until the DHCP lease expires, at which time the routes are removed.

When a DHCP client releases an address, the corresponding static route (the route configured with the `ip route` command) is automatically removed from the routing table. If the DHCP router option (option 3 of the DHCP packet) changes during the client renewal, the DHCP default gateway changes to the new IP address supplied in the renewal.

This feature is particularly useful for VPN deployments such as Dynamic Multipoint VPNs (DMVPNs). This feature is useful when a nonphysical interface like a multipoint generic routing encapsulation (mGRE) tunnel is configured on the router and certain traffic needs to be excluded from going to the tunnel interface.

Verify all DHCP client and server configuration steps. Ensure that the DHCP client and server are properly defined to supply a DHCP router option 3 of the DHCP packet.

- If the DHCP client is not able to obtain an IP address or default router IP address, the static route is not installed in the routing table.
- If the lease has expired and the DHCP client cannot renew the address, the DHCP IP address assigned to the client is released and any associated static routes are removed from the routing table.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip route prefix mask {ip-address | interface-type interface-number [ip-address]} dhcp [distance]
4. end
5. show ip route

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.
| Example: | • Enter your password if prompted. |
| | Router> enable |

Step 2 configure terminal

| Example: | Enters global configuration mode. |
| Router# configure terminal |

Step 3 ip route prefix mask {ip-address | interface-type interface-number [ip-address]} dhcp [distance]

| Example: | Assigns a static route for the default next-hop router when the DHCP server is accessed for an IP address.
| Router(config)# ip route 209.165.200.225 255.255.255.255 dhcp |
| Example: | • If more than one interface on a router is configured to obtain an IP address from a DHCP server, use the ip route prefix mask interface-type interface-number dhcp command for each interface. If the interface is not specified, the route is added to the routing table as soon as any of the interfaces obtain an IP address and default router. |

Step 4 end

| Example: | Returns to privileged Exec mode. |
| Router(config)# end |

Step 5 show ip route

| Example: | (Optional) Displays the current state of the routing table.
| Router# show ip route |
| Example: | • Use this command to display assigned static routes once the DHCP client obtains an address and a default router address from the DHCP server. |

Clearing DHCP Server Variables

Perform this task to clear DHCP server variables.
SUMMARY STEPS

1. enable
2. clear ip dhcp binding {address | *}
3. clear ip dhcp conflict {address | *}
4. clear ip dhcp server statistics

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.

 • Enter your password if prompted. |
| **Example:**
 Router> enable | |
| **Step 2** clear ip dhcp binding {address | *} | Deletes an automatic address binding from the DHCP database.

 • Specifying the address argument clears the automatic binding for a specific (client) IP address, whereas specifying an asterisk (*) clears all automatic bindings. |
| **Example:**
 Router# clear ip dhcp binding * | |
| **Step 3** clear ip dhcp conflict {address | *} | Clears an address conflict from the DHCP database.

 • Specifying the address argument clears the conflict for a specific IP address, whereas specifying an asterisk (*) clears conflicts for all addresses. |
| **Example:**
 Router# clear ip dhcp conflict 172.16.1.103 | |
| **Step 4** clear ip dhcp server statistics | Resets all DHCP server counters to 0. |
| **Example:**
 Router# clear ip dhcp server statistics | |

Configuration Examples for the Cisco IOS DHCP Server

- Configuring the DHCP Database Agent Example, page 46
- Excluding IP Addresses Example, page 46
- Configuring DHCP Address Pools Example, page 46
- Configuring a DHCP Address Pool with Multiple Disjoint Subnets Example, page 47
- Configuring Manual Bindings Example, page 48
- Configuring Static Mapping Example, page 49
- Configuring the Option to Ignore all BOOTP Requests Example, page 49
- Importing DHCP Options Example, page 50
• Configuring DHCP Address Allocation Using Option 82 Example, page 51
• Configuring a Static Route with the Next-Hop Dynamically Obtained Through DHCP Example, page 52

Configuring the DHCP Database Agent Example

The following example shows how to store bindings on host 172.16.4.253. The file transfer protocol is FTP. The server should wait 2 minutes (120 seconds) before writing database changes.

```
ip dhcp database ftp://user:password@172.16.4.253/router-dhcp write-delay 120
```

Excluding IP Addresses Example

In the following example, server A and server B service the subnet 10.0.20.0/24. Splitting the subnet equally between the two servers, server A is configured to allocate IP addresses 10.0.20.1 to 10.0.20.125 and server B is configured to allocate IP addresses 10.0.20.126 to 10.0.20.254.

Server A

```
ip dhcp excluded-address 10.0.20.126 10.0.20.255
ip dhcp pool A
    network 10.0.20.0 255.255.255.0
```

Server B

```
ip dhcp excluded-address 10.0.20.0 10.0.20.125
ip dhcp pool B
    network 10.0.20.0 255.255.255.0
```

Configuring DHCP Address Pools Example

In the following example, three DHCP address pools are created: one in network 172.16.0.0, one in subnetwork 172.16.1.0, and one in subnetwork 172.16.2.0. Attributes from network 172.16.0.0--such as the domain name, DNS server, NetBIOS name server, and NetBIOS node type--are inherited in subnetworks 172.16.1.0 and 172.16.2.0. In each pool, clients are granted 30-day leases and all addresses in each subnetwork, except the excluded addresses, are available to the DHCP server for assigning to clients. The table below lists the IP addresses for the devices in three DHCP address pools.

<table>
<thead>
<tr>
<th>Table 4 DHCP Address Pool Configuration Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool 0 (Network 172.16.0.0)</td>
</tr>
<tr>
<td>Device</td>
</tr>
<tr>
<td>Default routers</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Configuring a DHCP Address Pool with Multiple Disjoint Subnets Example

Multiple disjoint subnets in a DHCP pool can be used in any of the following network topologies:

- **IP address pooling** -- The DHCP client and server reside on the same subnet.
- **DHCP relay** -- The DHCP client and DHCP server communicate through a DHCP relay agent where the relay interface is configured with secondary IP addresses.
- **Hierarchical DHCP** -- The DHCP server is configured as the DHCP subnet allocation server, and the DHCP client and DHCP subnet allocation server communicate through an on-demand address pool (ODAP) router.

In the following example, one DHCP address pool named pool3 is created; the primary subnet is 172.16.0.0/16, one secondary subnet is 172.16.1.0/24, and another secondary subnet is 172.16.2.0/24.

- When the IP addresses in the primary subnet are exhausted, the DHCP server inspects the secondary subnets in the order in which the subnets were added to the pool.
- When the DHCP server allocates an IP address from the secondary subnet 172.16.1.0/24, the server uses the subnet-specific default router list that consists of IP addresses 172.16.1.100 and 172.16.1.101. When the DHCP server allocates an IP address from the subnet 172.16.2.0/24, however, the server uses the pool-wide list that consists of the four IP addresses from 172.16.0.100 to 172.16.0.103.
- Other attributes from the primary subnet 172.16.0.0/16 -- such as the domain name, DNS server, NetBIOS name server, and NetBIOS node type -- are inherited in both of the secondary subnets.
- DHCP clients are granted 30-day leases on IP addresses in the pool. All addresses in each subnet, except the excluded addresses, are available to the DHCP server for assigning to clients.

```
ip dhcp database ftp://user:password@172.16.4.253/router-dhcp write-delay 120
ip dhcp excluded-address 172.16.1.100 172.16.1.103
! ip dhcp pool 0
  network 172.16.0.0 /16
  domain-name cisco.com
  dns-server 172.16.1.102 172.16.2.102
  netbios-name-server 172.16.1.103 172.16.2.103
  netbios-node-type h-node
! ip dhcp pool 1
  network 172.16.1.0 /24
  default-router 172.16.1.100 172.16.1.101
  lease 30
! ip dhcp pool 2
  network 172.16.2.0 /24
  default-router 172.16.2.100 172.16.2.101
  lease 30
```
The table below lists the IP addresses for the devices in the DHCP address pool that consists of three disjoint subnets.

<table>
<thead>
<tr>
<th>Primary Subnet (172.16.0.0/16)</th>
<th>First Secondary Subnet (172.16.1.0/24)</th>
<th>Second Secondary Subnet (172.16.2.0/24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>IP Address</td>
<td>Device</td>
</tr>
<tr>
<td>Default routers</td>
<td>172.16.0.100</td>
<td>Default routers</td>
</tr>
<tr>
<td></td>
<td>172.16.0.101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>172.16.0.102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>172.16.0.103</td>
<td></td>
</tr>
<tr>
<td>DNS server</td>
<td>172.16.1.102</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>172.16.2.102</td>
<td></td>
</tr>
<tr>
<td>NetBIOS name server</td>
<td>172.16.1.103</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>172.16.2.103</td>
<td></td>
</tr>
<tr>
<td>NetBIOS node type</td>
<td>h-node</td>
<td>--</td>
</tr>
</tbody>
</table>

ip dhcp database ftp://user:password@172.16.4.253/router-dhcp write-delay 120
ip dhcp excluded-address 172.16.0.100 172.16.1.103
ip dhcp excluded-address 172.16.1.100 172.16.1.101
!
ip dhcp pool pool3
network 172.16.0.0 /16
default-router 172.16.0.100 172.16.2.101 172.16.0.102 172.16.0.103
domain-name cisco.com
dns-server 172.16.1.102 172.16.2.102
netbios-name-server 172.16.1.103 172.16.2.103
netbios-node-type h-node
lease 30
!
network 172.16.1.0 /24 secondary
 override default-router 172.16.1.100 172.16.1.101
end
!

Configuring Manual Bindings Example

The following example shows how to create a manual binding for a client named example1.cisco.com that sends a client identifier in the DHCP packet. The MAC address of the client is 02c7.f800.0422 and the IP address of the client is 172.16.2.254.

ip dhcp pool pool1
host 172.16.2.254
 client-identifier 01b7.0813.8811.66
 client-name example1
The following example shows how to create a manual binding for a client named example2.cisco.com that do not send a client identifier in the DHCP packet. The MAC address of the client is 02c7.f800.0422 and the IP address of the client is 172.16.2.253.

```
ip dhcp pool pool2
host 172.16.2.253
  hardware-address 02c7.f800.0422 ethernet
  client-name example1
```

Because attributes are inherited, the two preceding configurations are equivalent to the following:

```
ip dhcp pool pool1
host 172.16.2.254 255.255.255.0
  hardware-address 02c7.f800.0422 ieee802
  client-name client1
  default-router 172.16.2.100 172.16.2.101
domain-name cisco.com
dns-server 172.16.1.102 172.16.2.102
netbios-name-server 172.16.1.103 172.16.2.103
netbios-node-type h-node
```

Configuring Static Mapping Example

The following example shows how to restart the DHCP server, configure the pool, and specify the URL at which the static mapping text file is stored:

```
no service dhcp
service dhcp
ip dhcp pool abcpool
  origin file tftp://10.1.0.1/staticfilename
```

Note
The static mapping text file can be copied to flash memory on the router and served by the TFTP process of the router. In this case, the IP address in the origin file line must be an address owned by the router and one additional line of configuration is required on the router:

```
tftp-server

flash

static-filename
```

Configuring the Option to Ignore all BOOTP Requests Example

The following example shows two DHCP pools that are configured on the router and that the router’s DHCP server is configured to ignore all received BOOTP requests. If a BOOTP request is received from subnet 10.0.18.0/24, the request will be dropped by the router (because the `ip helper-address` command is not configured). If there is a BOOTP request from subnet 192.168.1.0/24, the request will be forwarded to 172.16.1.1 via the `ip helper-address` command.

```
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Router
!
ip subnet-zero
!
ip dhcp bootp ignore
!
ip dhcp pool ABC
  network 192.168.1.0 255.255.255.0
  default-router 192.168.1.3
  lease 2
```
ip dhcp pool DEF
 ip address 10.0.18.0 255.255.255.0
!
!
ip cef
!
interface FastEthernet0/0
 no ip address
 shutdown
duplex half
!
interface Ethernet1/0
 ip address 10.0.18.68 255.255.255.0
duplex half
!
interface Ethernet1/1
 ip address 192.168.1.1 255.255.255.0
 ip helper-address 172.16.1.1
duplex half
!
interface Ethernet1/2
 shutdown
duplex half
!
interface Ethernet1/3
 no ip address
 shutdown
duplex half
!
interface FastEthernet2/0
 no ip address
 shutdown
duplex half
!
ip route 172.16.1.1 255.255.255.255 e1/0
 no ip http server
 no ip pim bidir-enable
!
call rsvp-sync
!
mgcp profile default
!
dial-peer cor custom
!
gatekeeper
 shutdown
!
 line con 0
 line aux 0
 line vty 0 4
!
end

Importing DHCP Options Example

The following example shows a remote and central server configured to support the importing of DHCP options. The central server is configured to automatically update DHCP options, such as DNS and WINS addresses, within the DHCP pools. In response to a DHCP request from a local client behind CPE
equipment, the remote server can request or “import” these option parameters from the centralized server. See the figure below for a diagram of the network topology.

Figure 2 **DHCP Example Network Topology**

![DHCP Example Network Topology Diagram](image_url)

Central Router

```plaintext
! do not assign this range to DHCP clients
ip dhcp-excluded address 10.0.0.1 10.0.0.5
!
! Specifies network number and mask for DHCP clients
network 10.0.0.0 255.255.255.0
!
! Specifies the domain name for the client
domain-name central
!
! Specifies DNS server that will respond to DHCP clients when they need to correlate host ! name to ip address
dns-server 10.0.0.2
!
! Specifies the NETBIOS WINS server
netbios-name-server 10.0.0.2
!
interface FastEthernet0/0
ip address 10.0.0.1 255.255.255.0
duplex auto
speed auto
```

Remote Router

```plaintext
ip dhcp pool client
!
! Imports DHCP option parameters into DHCP server database
import all
!
interface FastEthernet0/0
ip address dhcp
duplex auto
speed auto
```

Configuring DHCP Address Allocation Using Option 82 Example

This example configures two DHCP classes. CLASS1 defines the group of DHCP clients whose address requests contain the relay agent information option with the specified hexadecimal values. CLASS2 defines the group of DHCP clients whose address requests contain the configured relay agent information.
suboptions. CLASS3 has no pattern configured and is treated as a “match to any” class. This type of class is useful for specifying a “default” class.

In the following example, the subnet of pool ABC has been divided into three ranges without further subnetting of the 10.0.20.0/24 subnet. If there is a DHCP Discover message from the 10.0.20.0/24 subnet with option 82 matching that of class CLASS1, an available address in the range from 10.0.20.1 to 10.0.20.100 will be allocated. If there is no free address in CLASS1’s address range, the DHCP Discover message will be matched against CLASS2, and so on.

Thus, each class in the DHCP pool will be examined for a match in the order configured by the user. In pool ABC, the order of matching is CLASS1, CLASS2, and finally CLASS3. In pool DEF, class CLASS2 does not have any address range configured. By default, the address range for a particular class is the pool’s entire subnets. Therefore, clients matching CLASS2 may be allocated addresses from 11.0.20.1 to 11.0.20.254.

Multiple pools can be configured with the same class, eliminating the need to configure the same patterns in multiple pools. In the future, further classification method may be implemented. For example, there may be a need to specify that one or more pools should be used only to service a particular class of devices (for example, cable modems and IP phones).

! Defines the DHCP classes and relay information patterns
ip dhcp class CLASS1
relay agent information
 relay-information hex 01030a0b0c02050000000123
 relay-information hex 01030a0b0c0202
relay-information hex 01030a0b0c020500000000000000 bitmask 0000000000000000000000FF
ip dhcp class CLASS2
relay agent information
 relay-information hex 01040102030402020102
 relay-information hex 01040101030402020102
ip dhcp class CLASS3
relay agent information
! Associates the DHCP pool with DHCP classes
ip dhcp pool ABC
 network 10.0.20.0 255.255.255.0
 class CLASS1
 address range 10.0.20.1 10.0.20.100
 class CLASS2
 address range 10.0.20.101 10.0.20.200
 class CLASS3
 address range 10.0.20.201 10.0.20.254
ip dhcp pool DEF
 network 172.64.2.2 255.255.255.0
 class CLASS1
 address range 172.64.2.3 172.64.2.10
 class CLASS2

Configuring a Static Route with the Next-Hop Dynamically Obtained Through DHCP Example

The following example shows how to configure two Ethernet interfaces to obtain the next-hop router IP address from the DHCP server:

ip route 10.10.10.0 255.255.255.0 dhcp 200
ip route 10.10.20.1 255.255.255.255 ethernet 1 dhcp

Additional References

The following sections provide references related to configuring the Cisco IOS DHCP server.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>“DHCP Overview” module</td>
</tr>
<tr>
<td>DHCP relay agent configuration</td>
<td>“Configuring the Cisco IOS DHCP Relay Agent” module</td>
</tr>
<tr>
<td>DHCP server on-demand address pools</td>
<td>“Configuring the DHCP Server On-Demand Address Pool Manager” module</td>
</tr>
<tr>
<td>DHCP client configuration</td>
<td>“Configuring the Cisco IOS DHCP Client” module</td>
</tr>
<tr>
<td>DHCP advanced features</td>
<td>“Configuring DHCP Services for Accounting and Security” module</td>
</tr>
<tr>
<td>DHCP enhancements for edge-session management</td>
<td>“Configuring DHCP Enhancements for Edge-Session Management” module</td>
</tr>
<tr>
<td>DHCP options</td>
<td>“DHCP Options” appendix in the Network Registrar User’s Guide, Release 6.1.1</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this functionality.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 951</td>
<td>Bootstrap Protocol (BOOTP)</td>
</tr>
<tr>
<td>RFC 1542</td>
<td>Clarifications and Extensions for the Bootstrap Protocol</td>
</tr>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2132</td>
<td>DHCP Options and BOOTP Vendor Extensions</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for the Cisco IOS DHCP Server

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 6 Feature Information for the Cisco IOS DHCP Server

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Address Allocation Using Option 82</td>
<td>12.3(4)T 12.2(28)SB 12.2(33)SRB</td>
<td>The Cisco IOS DHCP server can allocate dynamic IP addresses based on the relay information option (option 82) information sent by the relay agent. The following commands were introduced or modified: address range, class, ip dhcp class, ip dhcp use class, relay agent information, relay-information hex.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Configuration Information</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>DHCP Server Import All Enhancement</td>
<td>12.2(15)T 12.2(33)SRC</td>
<td>The feature is an enhancement to the <code>import all</code> global configuration command. Before this feature was introduced, the options imported through the <code>import all</code> command were overwritten by those imported by another subsystem. Through this feature, options imported by multiple subsystems can coexist in the DHCP address pool. When the session is terminated or the lease is released, the imported options are cleared.</td>
</tr>
<tr>
<td>DHCP Server Multiple Subnet</td>
<td>12.4(15)T 12.2(33)SRB</td>
<td>This feature enables multiple subnets to be configured under the same DHCP address pool. The following commands were introduced or modified: <code>network(DHCP), override default-router</code>.</td>
</tr>
<tr>
<td>DHCP Server Option to Ignore all BOOTP Requests</td>
<td>12.2(8)T 12.2(28)SB</td>
<td>This feature allows the Cisco IOS DHCP server to selectively ignore and not reply to received Bootstrap Protocol (BOOTP) request packets. The following command was introduced or modified: <code>ip dhcp bootp ignore</code>.</td>
</tr>
<tr>
<td>DHCP Static Mapping</td>
<td>12.3(11)T 12.2(28)SB 12.2(33)SRC</td>
<td>Configuring static mapping pools enables the DHCP server to read the static bindings from a separate text file (similar in format to the DHCP database file) that is stored in these special pools. The following command was introduced or modified: <code>origin</code>.</td>
</tr>
<tr>
<td>DHCP Statically Configured Routes Using a DHCP Gateway</td>
<td>12.3(8)T 12.2(28)S 12.2(33)SRC</td>
<td>This feature enables the configuration of static routes that point to an assigned DHCP next-hop router. The following commands were introduced or modified: <code>ip route, show ip route</code>.</td>
</tr>
</tbody>
</table>
Configuring the Cisco IOS DHCP Server

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Configuring the DHCP Server On-Demand Address Pool Manager

The Cisco IOS Dynamic Host Configuration Protocol (DHCP) server on-demand address pool (ODAP) manager is used to centralize the management of large pools of addresses and simplify the configuration of large networks. ODAP provides a central management point for the allocation and assignment of IP addresses. When a Cisco IOS router is configured as an ODAP manager, pools of IP addresses are dynamically increased or reduced in size depending on the address utilization level. A DHCP pool configured in the router can also be used as an IP address pooling mechanism. The IP address pooling mechanism is configured in the router to specify the source of IP addresses for PPP peers.

- Finding Feature Information, page 57
- Prerequisites for Configuring the DHCP Server On-Demand Address Pool Manager, page 57
- Restrictions for Configuring the DHCP Server On-Demand Address Pool Manager, page 58
- Information About the DHCP Server On-Demand Address Pool Manager, page 58
- How to Configure the DHCP Server On-Demand Address Pool Manager, page 61
- Configuration Examples for DHCP Server On-Demand Address Pool Manager, page 84
- Additional References, page 91
- Feature Information for the DHCP Server On-Demand Address Pool Manager, page 93
- Glossary, page 94

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring the DHCP Server On-Demand Address Pool Manager

Before you configure the ODAP manager, you should understand the concepts documented in the “DHCP Overview” module.
You must configure standard Multiprotocol Label Switching (MPLS) Virtual Private Networks (VPNs) unless you intend to use non-MPLS VPNs.

In order for the IP address pooling mechanism to work correctly, the VPN routing and forwarding (VRF) instance of the PPP session must match that configured on the pool. Typically this matching is done either by configuring the `ip vrf forwarding vrf-name` command on the virtual template interface, or if Authentication, Authorization, and Accounting (AAA) is used to authorize the PPP user, the command can be part of the user’s profile configuration.

Restrictions for Configuring the DHCP Server On-Demand Address Pool Manager

- The `ip dhcp excluded-address` command available in global configuration mode cannot be used to exclude addresses from VRF-associated pools.
- The `vrf` command available in DHCP pool configuration mode is currently not supported for host pools.
- Attribute inheritance is not supported on VRF pools.
- A router can be configured as a subnet allocation server and a DHCP server at the same time with one restriction: Separate pools must be created for subnet allocation and IP address assignment. An address pool cannot be used by DHCP for both subnet allocation and IP address assignment.

Information About the DHCP Server On-Demand Address Pool Manager

- ODAP Manager Operation, page 58
- Subnet Allocation Server Operation, page 60
- Benefits of Using ODAPs, page 61

ODAP Manager Operation

ODAPs enable pools of IP addresses to be dynamically increased or reduced in size depending on the address utilization level. Once configured, the ODAP is populated with one or more subnets leased from a source server and is ready to serve address requests from DHCP clients or from PPP sessions. The source server can be a remote DHCP server or a RADIUS server (via AAA). Currently, only the Cisco Access Registrar RADIUS server supports ODAPs. Subnets can be added to the pool when a certain utilization level (high utilization mark) is achieved. When the utilization level falls below a certain level (low utilization mark), a subnet can be returned to the server from which it was originally leased. Summarized routes for each leased subnet must be inserted or removed from the related VRF with each addition or removal of subnets into the ODAP.

ODAPs support address assignment using DHCP for customers using private addresses such as in MPLS VPNs. VPNs allow the possibility that two pools in separate networks can have the same address space, with private network addresses, served by the same DHCP server. These IP addresses can be distinguished by a VPN identifier to help select the VPN to which the client belongs.
Each ODAP is configured and associated with a particular MPLS VPN. Cisco IOS software also supports non-MPLS VPN address pools by adding pool name support to the `peer default ip address dhcp-pool pool-name` command.

For MPLS VPNs, each VPN is associated with one or more VRFs. The VRF is a key element in the VPN technology because it maintains the routing information that defines a customer VPN site. This customer site is attached to a provider edge (PE) router. A VRF consists of an IP routing table, a derived Cisco Express Forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocol parameters that control the information that is included in the routing table.

A PPP session belonging to a specific VPN is allocated an address only from the ODAP associated with that VPN. These PPP sessions are terminated on a Virtual Home Gateway (VHG)/PE router where the ODAP is configured. The VHG/PE router maps the remote user to the corresponding MPLS VPNs.

For PPP sessions, individual address allocation from an ODAP follows a First Leased subnet First (FLF) policy. FLF searches for a free address beginning on the first leased subnet, followed by a search on the second leased subnet if no free address is available in the first subnet, and so on. This policy provides the benefit of grouping the leased addresses over time to a set of subnets, which allows an efficient subnet release and route summarization.

However, the FLF policy differs from the normal DHCP address selection policy. Normal DHCP address selection considers the IP address of the receiving interface or the gateway address if it is nonzero. To support both policies, the DHCP server needs to be able to distinguish between a normal DHCP address request and an address request for a PPP client. The ODAP manager uses an IP address pooling mechanism for PPP that allows the DHCP server to distinguish between a normal DHCP address request and a request from a PPP client.

Subnet release from an ODAP follows a Last Leased subnet First (LLF) policy, which prefers the last leased subnet to be released first. This LLF policy searches for a releasable subnet (a subnet with no addresses currently being leased) starting with the last leased subnet. If a releasable subnet is found (candidate subnet), it is released, and the summarized route for that subnet is removed. If more than one releasable subnets exists at that time, only the most recently allocated is released. If there are no releasable subnets, no action is taken. If by releasing the candidate subnet, the high utilization mark is reached, the subnet is not released. The first leased subnet is never released (regardless of the instantaneous utilization level) until the ODAP is disabled.

When a DHCP pool receives multiple subnets from an upstream DHCP server, an address from each subnet is automatically configured on the client connected interface so that the addresses within the subnets can be requested by DHCP clients.

The first address in the first subnet is automatically assigned to the primary address on the interface. The first address of each subsequent subnet is assigned to secondary addresses on the interface. In addition, as client addresses are reclaimed, the count of lease addresses for that subnet is decremented. Once a lease counter for a subnet reaches zero (that is, lease expiry), the subnet is returned to the pool. The previous address on the interface is removed and the first secondary address on the interface is promoted as the primary address of the interface.

The figure below shows an ODAP manager configured on the Cisco IOS DHCP server. The ODAP requests an initial pool from the AAA server. Clients make DHCP requests and the DHCP server fulfills requests from the pool. When the utilization rate meets 90 percent, the ODAP manager requests an
expansion and the AAA server allocates another subnet from which the ODAP manager can allocate addresses.

Figure 3 ODAP Address Pool Management for MPLS VPNs

Subnet Allocation Server Operation

You can configure the ODAP manager to allocate subnets instead of individual IP addresses.

This capability allows the network operator to configure a Cisco IOS router as a subnet allocation server. The operation of a subnet allocation server is similar to the operation of a DHCP server, except that pools of subnets are created and assigned instead of pools of IP addresses. Subnet allocation pools are created and configured by using the `subnet prefix-length` command in DHCP pool configuration mode. The size of each assigned or allocated subnet is set by the `prefix-length` argument, using standard Common Interdomain Routing (CIDR) bit count notation to determine the number of addresses that are configured in each subnet lease.

When a DHCP server is configured as a subnet allocation server, it provides subnet allocation pools for ODAP manager allocation. In the figure below, Router B is the subnet allocation server and allocates subnets to the ODAP manager based on the demand for IP addresses and subnet availability. Router B is configured to allocate an initial amount of address space in the form of subnets to the ODAP manager. The size of the subnet allocated by the ODAP manager is determined by the subnet size that is configured on the subnet allocation server. The ODAP manager will then assign addresses to clients from these subnets and allocate more subnets as the need for address space increases.

Figure 4 Subnet Allocation Server Topology

When the ODAP manager allocates a subnet, the subnet allocation server creates a subnet binding. This binding is stored in the DHCP database for as long as the ODAP manager requires the address space. The binding is removed and the subnet is returned to the subnet pool only when the ODAP manager releases the subnet as address space utilization decreases.
The subnet allocation server can also be associated with a VRF. A VRF consists of an IP routing table, a derived Cisco Express Forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocol parameters that control the information that is included in the routing table.

Benefits of Using ODAPs

Efficient Address Management
The ODAP manager allows customers to optimize their use of IP addresses, thus conserving address space.

Efficient Route Summarization and Update
The ODAP manager inserts a summarized route when a subnet is added to the ODAP.

Multiple VRF and Independent Private Addressing Support
The ODAP manager automatically injects subnet routing information into the appropriate VRF.

How to Configure the DHCP Server On-Demand Address Pool Manager

- Specifying DHCP ODAPs as the Global Default Mechanism, page 61
- Defining DHCP ODAPs on an Interface, page 62
- Configuring the DHCP Pool as an ODAP, page 63
- Configuring ODAPs to Obtain Subnets Through IPCP Negotiation, page 65
- Configuring AAA, page 67
- Configuring RADIUS, page 69
- Disabling ODAPs, page 71
- Verifying ODAP Operation, page 72
- Monitoring and Maintaining the ODAP, page 74
- Configuring DHCP ODAP Subnet Allocation Server Support, page 76

Specifying DHCP ODAPs as the Global Default Mechanism

Perform this task to specify that the global default mechanism to use is on-demand address pooling.

IP addressing allows configuration of a global default address pooling mechanism. The DHCP server needs to be able to distinguish between a normal DHCP address request and an address request for a PPP client.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip address-pool dhcp-pool
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip address-pool dhcp-pool</td>
<td>Specifies on-demand address pooling as the global default IP address mechanism.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip address-pool dhcp-pool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• For remote access (PPP) sessions into MPLS VPNs, IP addresses are obtained from locally configured VRF-associated DHCP pools.</td>
</tr>
<tr>
<td>Note</td>
<td>You must use two separate DHCP address pools for global configuration mode and VRF mode. If you change a global configuration pool to VRF mode, then all the IP addresses in the global pool will be lost. Hence make sure that you have a VRF pool for an interface in order to add an interface under a VRF.</td>
</tr>
</tbody>
</table>

Defining DHCP ODAPs on an Interface

Perform this task to define on-demand address pools on an interface.

The interface on-demand address pooling configuration overrides the global default mechanism on that interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. peer default ip address dhcp-pool [pool-name]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** interface type number | Specifies the interface and enters interface configuration mode. |
| **Example:** | |
| Router(config)# interface Virtual-Template 1 | |
| **Step 4** peer default ip address dhcp-pool [pool-name] | Specifies an IP address from an on-demand address pool to be returned to a remote peer connecting to this interface.
 • The pool-name argument supports non-MPLS VPNs and is mandatory if the session is not associated with any VRF.
 Multiple pool names can be accepted but must be separated by blank spaces. |
| **Example:** | |
| Router(config)# peer default ip address dhcp-pool mypool | |

Configuring the DHCP Pool as an ODAP

Perform this task to configure a DHCP address pool as an ODAP pool.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool pool-name
4. vrf name
5. origin {dhcp | aaa | ipcp} [subnet size initial size [autogrow size]]
6. utilization mark low percentage-number
7. utilization mark high percentage-number
8. end
9. show ip dhcp pool [pool-name]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** ip dhcp pool *pool-name* | Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode. |
| **Example:** | |
| Router(config)# ip dhcp pool pool1 | |
| **Step 4** vrf *name* | (Optional) Associates the address pool with a VRF name.
 • Only use this command for MPLS VPNs. |
| **Example:** | |
| Router(dhcp-config)# vrf vrf1 | |
| **Step 5** origin {dhcp | aaa | ipcp} | Configures an address pool as an on-demand address pool.
 • If you do not configure the pool as an autogrow pool, the pool will not request additional subnets if one subnet is already in the pool.
 • You can enter size as either the subnet mask (\textit{nnnn.nnnn.nnnn.nnnn}) or prefix size (/\textit{nn}). The valid values are /0 and /4 to /30.
 • When a DHCP pool receives multiple subnets from an upstream DHCP server, an address from each subnet is automatically configured on the client connected interface so that the addresses within the subnets can be requested by DHCP clients. The first address in the first subnet is assigned to the primary address on the interface. The first address of each subsequent subnet is assigned to secondary addresses on the interface. In addition, as client addresses are reclaimed, the count of lease addresses for that subnet is decremented. Once a lease counter for a subnet reaches zero (that is, lease expiry), the subnet is returned to the pool. The previous address on the interface is removed and the first secondary address on the interface is promoted as the primary address of the interface.
 • If the origin aaa option is configured, AAA must be configured. |
| **Example:** | |
| Router(dhcp-config)# origin dhcp subnet size initial /16 autogrow /16 | |
Command or Action | Purpose
--- | ---
Step 6 utilization mark low *percentage-number* | Sets the low utilization mark of the pool size.
- This command cannot be used unless the *autogrow* size option of the *origin* command is configured.
- The default value is 0 percent.

Example:
Router(dhcp-config)# utilization mark low 40

Step 7 utilization mark high *percentage-number* | Sets the high utilization mark of the pool size.
- This command cannot be used unless the *autogrow* size option of the *origin* command is configured.
- The default value is 100 percent.

Example:
Router(dhcp-config)# utilization mark high 60

Step 8 end | Returns to privileged EXEC mode.

Example:
Router(dhcp-config)# end

Step 9 show ip dhcp pool [*pool-name*] | (Optional) Displays information about DHCP address pools.
- Information about the primary and secondary interface address assignment is also displayed.

Example:
Router# show ip dhcp pool

Configuring ODAPs to Obtain Subnets Through IPCP Negotiation

Perform this task to configure ODAPs to use subnets obtained through IP Control Protocol (IPCP) negotiation.

You can assign IP address pools to customer premises equipment (CPE) devices, which, in turn, assign IP addresses to the CPE and to a DHCP pool. This functionality has three requirements:

- The Cisco IOS CPE device must be able to request and use the subnet.
- The RADIUS server (via AAA) must be able to provide that subnet and insert the framed route into the proper VRF table.
- The PE router must be able to facilitate providing the subnet through (IPCP) negotiation.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp pool pool-name`
4. `import all`
5. `origin ipcp`
6. `exit`
7. `interface type number`
8. `ip address pool pool-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool red-pool</td>
<td></td>
</tr>
<tr>
<td>Step 4 import all</td>
<td>Imports option parameters into the Cisco IOS DHCP server database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# import all</td>
<td></td>
</tr>
<tr>
<td>Step 5 origin ipcp</td>
<td>Configures an address pool as an on-demand address pool using IPCP as the subnet allocation protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# origin ipcp</td>
<td></td>
</tr>
</tbody>
</table>
Configuring AAA

To allow ODAP to obtain subnets from the AAA server, the AAA client must be configured on the VHG/PE router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa new-model`
4. `aaa authorization configuration default group radius`
5. `aaa accounting network default start-stop group radius`
6. `aaa session-id common`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 6 `exit`

Exits DHCP pool configuration mode.

Example:

```
Router(dhcp-config)# exit
```

Step 7 `interface type number`

Specifies the interface and enters interface configuration mode.

Example:

```
Router(config)# interface ethernet 0
```

Step 8 `ip address pool pool-name`

Specifies that the interface IP address will be automatically configured from the named pool, when the pool is populated with a subnet from IPCP.

Example:

```
Router(config-if)# ip address pool red-pool
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 aaa new-model</td>
<td>Enables AAA access control.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Step 4 aaa authorization configuration default group radius</td>
<td>Downloads static route configuration information from the AAA server using RADIUS.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa authorization configuration default group radius</td>
<td></td>
</tr>
</tbody>
</table>
Step 5 **aaa accounting network default start-stop group radius**

Example:

```
or
```

Example:

```
Router(config)# aaa accounting network default start-stop group radius
```

Step 6 **aaa session-id common**

Example:

```
Router(config)# aaa session-id common
```

Purpose

Enables AAA accounting of requested services for billing or security purposes when you use RADIUS, and sends a “start” accounting notice at the beginning of a process. or Enables AAA accounting of requested services for billing or security purposes when you use RADIUS, and sends a “stop” accounting notice at the end of the requested user process.

Configuring RADIUS

- **ODAP AAA Profile, page 69**

ODAP AAA Profile

The AAA server sends the RADIUS Cisco attribute value (AV) pair attributes “pool-addr” and “pool-mask” to the Cisco IOS DHCP server in the access request and access accept. The pool-addr attribute is the
IP address and the pool-mask attribute is the network mask (for example, pool-addr=192.168.1.0 and pool-mask=255.255.0.0). Together, these attributes comprise a network address (address/mask) that is allocated by the AAA server to the Cisco IOS DHCP server.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip radius source-interface subinterface-name
4. radius-server host ip-address auth-port port-number acct-port port-number
5. radius server attribute 32 include-in-access-req
6. radius server attribute 44 include-in-access-req
7. radius-server vsa send accounting
8. radius-server vsa send authentication

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip radius source-interface subinterface-name</td>
<td>Forces RADIUS to use the IP address of a specified interface for all outgoing RADIUS packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>ip radius source-interface Ethernet1/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 radius-server host ip-address auth-port port-number acct-port port-number</td>
<td>Specifies a RADIUS server host.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>radius-server host 172.16.1.1 auth-port 1645 acct-port 1646</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The ip-address argument specifies the IP address of the RADIUS server host.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5 radius server attribute 32 include-in-access-req</td>
<td>Sends RADIUS attribute 32 (NAS-Identifier) in an access request or accounting request.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>radius server attribute 32 include-in-access-req</td>
</tr>
<tr>
<td>Step 6 radius server attribute 44 include-in-access-req</td>
<td>Sends RADIUS attribute 44 (Accounting Session ID) in an access request or accounting request.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>radius server attribute 44 include-in-access-req</td>
</tr>
<tr>
<td>Step 7 radius-server vsa send accounting</td>
<td>Configures the network access server (NAS) to recognize and use vendor-specific accounting attributes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>radius-server vsa send accounting</td>
</tr>
<tr>
<td>Step 8 radius-server vsa send authentication</td>
<td>Configures the NAS to recognize and use vendor-specific authentication attributes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>radius-server vsa send authentication</td>
</tr>
</tbody>
</table>

Disabling ODAPs

This task shows how to disable an ODAP from a DHCP pool.

When an ODAP is disabled, all leased subnets are released. If active PPP sessions are using addresses from the released subnets, those sessions will be reset. DHCP clients leasing addresses from the released subnets will not be able to renew their leases.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool *pool-name*
4. no origin (dhcp | aaa | ipcp)
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp pool pool1</td>
</tr>
<tr>
<td>Step 4 no origin {dhcp</td>
<td>aaa</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# no origin dhcp</td>
</tr>
</tbody>
</table>

Verifying ODAP Operation

SUMMARY STEPS

1. **enable**

2. **show ip dhcp binding** The following output shows the bindings from pool Green. The Type field shows On-demand, which indicates that the address binding was created for a PPP session. The Lease expiration field shows Infinite, which means that the binding is valid as long as the session is up. If a subnet must be released back to the leasing server while the session is still up, the session is reset so that it will be forced to obtain a new IP address. The Hardware address column for an On-demand entry shows the identifier for the session as detected by PPP. No bindings are shown under the Bindings from all pools not associated with VRF field because the Global pool has not allocated any addresses.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Example:

Router> enable

show ip dhcp pool [pool-name] The following output is for two DHCP pools: Green and Global. Pool Green is configured with a high utilization mark of 50 and a low utilization mark of 30. The pool is also configured to obtain more subnets when the high utilization mark is reached (autogrow). The Subnet size field indicates the values configured in the origin command as the initial and incremental subnet sizes that would be requested by the pool named Green. The Total addresses field is a count of all the usable addresses in the pool. The Leased addresses field is a total count of how many bindings were created from the pool. The Pending event field shows subnet request, which means that a subnet request is pending for the pool. The subnet request was scheduled because the Leased addresses count has exceeded the high utilization level of the pool. Subnets currently added to pool Green are shown in sequence. The Current index column shows the address that would be allocated next from this subnet. The IP address range column shows the range of usable addresses from the subnet. The Leased addresses column shows individual count of bindings created from each subnet. Three subnets are currently added to pool Green. The first two subnets have used all their addresses and thus the Current index is showing 0.0.0.0. Notice that pool Green and pool Global can have the same subnet (172.16.0.1-172.16.0.6) because pool Green is configured to be in VRF Green, and pool Global is configured to be in the global address space.

Example:

Router# show ip dhcp pool
Pool Green :
 Utilization mark (high/low) : 50 / 30
 Subnet size (first/next) : 24 / 24 (autogrow)
 VRF name : Green
 Total addresses : 18
 Leased addresses : 13
 Pending event : subnet request
3 subnets are currently in the pool :
 Current index IP address range Leased addresses
 0.0.0.0 172.16.0.1 - 172.16.0.6 6
 0.0.0.0 172.16.0.9 - 172.16.0.14 6
 172.16.0.18 172.16.0.17 - 172.16.0.22 1
Pool Global :
 Utilization mark (high/low) : 100 / 0
 Subnet size (first/next) : 24 / 24 (autogrow)
 Total addresses : 6
 Leased addresses : 0
 Pending event : none
1 subnet is currently in the pool :
 Current index IP address range Leased addresses
 172.16.0.1 172.16.0.1 - 172.16.0.6 0

Step 2

show ip dhcp binding The following output shows the bindings from pool Green. The Type field shows On-demand, which indicates that the address binding was created for a PPP session. The Lease expiration field shows Infinite, which means that the binding is valid as long as the session is up. If a subnet must be released back to the leasing server while the session is still up, the session is reset so that it will be forced to obtain a new IP address. The Hardware address column for an On-demand entry shows the identifier for the session as detected by PPP. No bindings are shown under the Bindings from all pools not associated with VRF field because the Global pool has not allocated any addresses.

Example:

Router# show ip dhcp binding

Bindings from all pools not associated with VRF:
 IP address Hardware address Lease expiration Type

Bindings from VRF pool Green:
Troubleshooting Tips

By default, the Cisco IOS DHCP server on which the ODAP manager is based attempts to verify an address availability by performing a ping operation to the address before allocation. The default DHCP ping configuration will wait for 2 seconds for an Internet Control Message Protocol (ICMP) echo reply. This default configuration results in the DHCP server servicing one address request every 2 seconds. The number of ping packets being sent and the ping timeout are configurable. Thus, to reduce the address allocation time, you can reduce either the timeout or the number of ping packets sent. Reducing the timeout or the ping packets being sent will improve the address allocation time, at the cost of less ability to detect duplicate addresses.

Each ODAP will make a finite number of attempts (up to four retries) to obtain a subnet from DHCP or AAA. If these attempts are not successful, the subnet request from the pool automatically starts when there is another individual address request to the pool (for example, from a newly brought up PPP session). If a pool has not been allocated any subnets, you can force restarting the subnet request process by using the `clear ip dhcp pool pool-name subnet *` command.

Monitoring and Maintaining the ODAP

This task shows how to monitor and maintain the ODAP. These commands need not be entered in any specific order.

Note the following behavior for the `clear ip dhcp binding`, `clear ip dhcp conflict`, and `clear ip dhcp subnet` commands:
• If you do not specify the `pool pool-name` option and an IP address is specified, it is assumed that the IP address is an address in the global address space and will look among all the non-VRF DHCP pools for the specified binding/conflict/subnet.
• If you do not specify the `pool pool-name` option and the `*` option is specified, it is assumed that all automatic/ or on-demand bindings/conflicts/subnets in all VRF and non-VRF pools are to be deleted.
• If you specify both the `pool pool-name` option and the `*` option, all automatic or on-demand bindings/conflicts/subnets in the specified pool only will be cleared.
• If you specify the `pool pool-name` option and an IP address, the specified binding/conflict or the subnet containing the specified IP address will be deleted from the specified pool.

SUMMARY STEPS

1. `enable`
2. `clear ip dhcp [pool pool-name] binding {* | address}`
3. `clear ip dhcp [pool pool-name] conflict {* | address}`
4. `clear ip dhcp [pool pool-name] subnet {* | address}`
5. `debug dhcp details`
6. `debug ip dhcp server events`
7. `show ip dhcp import`
8. `show ip interface [type number]`
9. `show ip dhcp pool pool-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 clear ip dhcp [pool pool-name] binding {*</td>
<td>address}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# clear ip dhcp binding *</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 clear ip dhcp [pool pool-name] conflict {*</td>
<td>address}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# clear ip dhcp conflict *</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 4 clear ip dhcp [pool pool-name] subnet {* | address}** Example:**
Router# clear ip dhcp subnet *
Clears all currently leased subnets in the named DHCP pool or all DHCP pools if pool-name is not specified.

Step 5 debug dhcp details** Example:**
Router# debug dhcp details
Monitors the subnet allocation/releasing in the on-demand address pools.

Step 6 debug ip dhcp server events** Example:**
Router# debug ip dhcp server events
Reports DHCP server events, such as address assignments and database updates.

Step 7 show ip dhcp import** Example:**
Router# show ip dhcp import
Displays the option parameters that were imported into the DHCP server database.

Step 8 show ip interface [type number]** Example:**
Router# show ip interface
Displays the usability status of interfaces configured for IP.

Step 9 show ip dhcp pool pool-name** Example:**
Router# show ip dhcp pool green
Displays DHCP address pool information.

Configuring DHCP ODAP Subnet Allocation Server Support

- Configuring a Global Subnet Pool on a Subnet Allocation Server, page 77
- Configuring a VRF Subnet Pool on a Subnet Allocation Server, page 78
- Using a VPN ID to Configure a VRF Subnet Pool on a Subnet Allocation Server, page 79
- Verifying Subnet Allocation and DHCP Bindings, page 82
- Troubleshooting the DHCP ODAP Subnet Allocation Server, page 83
Global Subnet Pools

Global subnet pools are created in a centralized network. The ODAP manager allocates subnets from the subnet allocation server based on subnet availability. When the ODAP manager allocates a subnet, the subnet allocation server creates a subnet binding. This binding is stored in the DHCP database for as long as the ODAP manager requires the address space. The binding is destroyed and the subnet is returned to the subnet pool only when the ODAP manager releases the subnet as address space utilization decreases.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool pool-name
4. network network-number [mask | prefix-length]
5. subnet prefix-length prefix-length

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Enters DHCP pool configuration mode and specifies the subnet pool name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool GLOBAL-POOL</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 4** `network network-number [mask] / prefix-length` | Configures the subnet number and mask for a DHCP address pool on a Cisco IOS DHCP server.
 • The subnet mask or the prefix length can be configured in this step. The values that can be configured for the `prefix-length` argument follow CIDR bit count notation. The forward slash character must be used when configuring the `prefix-length` argument. |
| **Example:**
Router(dhcp-config)# network 10.0.0.0 255.255.255.0 | |
| **Step 5** `subnet prefix-length prefix-length` | Configures the subnet prefix length. The range of the `prefix-length` argument is from 1 to 31.
 • This command configures the number of IP addresses that each subnet is configured to allocate from the subnet pool. The values that can be configured for the `prefix-length` argument follow CIDR bit count notation format. |
| **Example:**
Router(dhcp-config)# subnet prefix-length 8 | |

Configuring a VRF Subnet Pool on a Subnet Allocation Server

- [VRF Subnet Pools](#), page 78

VRF Subnet Pools

A subnet allocation server can be configured to assign subnets from VRF subnet allocation pools for MPLS VPN clients. VPN routes between the ODAP manager and the subnet allocation server are configured based on the VRF name or VPN ID configuration. The VRF and VPN ID are configured to maintain routing information that defines customer VPN sites. The VPN customer site (or customer equipment [CE]) is attached to a PE router. The VRF is used to specify the VPN and consists of an IP routing table, a derived Cisco Express Forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocol parameters that control the information that is included in the routing table.

The VRF name and VPN ID can be configured on the ODAP manager and subnet allocation server prior to the configuration of the subnet allocation pool.

SUMMARY STEPS

1. enable
2. configure terminal
3. `ip dhcp pool pool-name`
4. `vrf vrf-name`
5. `network network-number [mask] / prefix-length`
6. `subnet prefix-length prefix-length`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** |
Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** |
Router# configure terminal |
| **Step 3** ip dhcp pool *pool-name* | Enters DHCP pool configuration mode and specifies the subnet pool name. |
| **Example:** |
Router(config)# ip dhcp pool VRF-POOL |
| **Step 4** vrf *vrf-name* | Associates the on-demand address pool with a VRF instance name (or tag).
- The `vrf` command and `vrf-name` argument are used to specify the VPN for the VRF pool. The `vrf-name` argument must match the VRF name (or tag) that is configured for the client. |
| **Example:** |
Router(dhcp-config)# vrf vrf1 |
| **Step 5** network *network-number [mask | /prefix-length]* | Configures the subnet number and mask for a DHCP address pool on a Cisco IOS DHCP server.
- The subnet mask or the prefix length can be configured in this step. The values that can be configured for the `prefix-length` argument follow CIDR bit count notation. The forward slash character must be used when configuring the `prefix-length` argument. |
| **Example:** |
Router(dhcp-config)# network 10.1.1.0 /24 |
| **Step 6** subnet *prefix-length* *prefix-length* | Configures the subnet prefix length.
- The range of the `prefix-length` argument is from 1 to 31.
- This command configures the number of IP addresses that each subnet is configured to allocate from the subnet pool. The values that can be configured for the `prefix-length` argument follow CIDR bit count notation format. |
| **Example:** |
Router(dhcp-config)# subnet prefix-length 16 |

Using a VPN ID to Configure a VRF Subnet Pool on a Subnet Allocation Server

Perform this task to configure a VRF subnet pool, using a VPN ID, on a subnet allocation server.
- **VRF Pools and VPN IDs**, page 80
VRF Pools and VPN IDs

A subnet allocation server can be configured to assign subnets from VPN subnet allocation pools based on the VPN ID of a client. The VPN ID (or Organizational Unique Identifier [OUI]) is a unique identifier assigned by the IEEE.

The VRF name and VPN ID can be configured on the ODAP manager and subnet allocation server prior to the configuration of the subnet allocation pool.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. route-target both route-target-number
6. vpn id vpn-id
7. exit
8. ip dhcp pool pool-name
9. vrf vrf-name
10. network network-number [mask] [prefix-length]
11. subnet prefix-length prefix-length

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	

<p>| Step 3 ip vrf vrf-name | Creates a VRF routing table and specifies the VRF name (or tag). |
| Example: | |
| Router(config)# ip vrf vrf1 | • The vrf-name argument must match the VRF name that is configured for the client and VRF pool in Step 9. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** rd route-distinguisher | Creates routing and forwarding tables for a VRF instance created in Step 3.
 * There are two formats for configuring the route distinguisher argument. It can be configured in the as-number:network number (ASN:nn) format, as shown in the example, or it can be configured in the IP address:network number format (IP-address:nn). |
| **Example:** | Router(config-vrf)# rd 100:1 |
| **Step 5** route-target both route-target-number | Creates a route-target extended community for the VRF instance that was created in Step 3.
 * The **both** keyword is used to specify which routes should be imported and exported to the target VPN extended community (or the ODAP manager in this configuration).
 * The **route-target-number** argument follows the same format as the **route-distinguisher** argument in Step 4. These two arguments must match. |
| **Example:** | Router(config-vrf)# route-target both 100:1 |
| **Step 6** vpn id vpn-id | Configures the VPN ID.
 * This command is used only if the client (ODAP manager) is also configured with or assigned a VPN ID. |
| **Example:** | Router(config-vrf)# vpn id 1234:123456 |
| **Step 7** exit | Exits VRF configuration mode and enters global configuration mode. |
| **Example:** | Router(config-vrf)# exit |
| **Step 8** ip dhcp pool pool-name | Enters DHCP pool configuration mode and specifies the subnet pool name.
 * The **vrf** keyword and **vrf-name** argument are used to specify the VPN for the VRF pool. The **vrf-name** argument must match the VRF name (or tag) that is configured for the client. |
| **Example:** | Router(config)# ip dhcp pool VPN-POOL |
| **Step 9** vrf vrf-name | Associates the on-demand address pool with a VRF instance name.
 * The **vrf-name** argument must match the **vrf-name** argument that was configured in Step 3. |
| **Example:** | Router(dhcp-config)#vrf RED |
Command or Action

Step 10

network network-number [mask| prefix-length]

Example:

```
Router(dhcp-config)# network 192.168.0.0 /24
```

Purpose

Configures the subnet number and mask for a DHCP address pool on a Cisco IOS DHCP server.

- The subnet mask or the prefix length can be configured in this step. The values that can be configured for the `prefix-length` argument follow CIDR bit count notation. The forward slash character must be used when configuring the `prefix-length` argument.

Step 11

subnet prefix-length prefix-length

Example:

```
Router(dhcp-config)# subnet prefix-length 16
```

Purpose

Configures the subnet prefix length.

- The range of the `prefix-length` argument is from 1 to 31.
- This command configures the number of IP addresses that each subnet is configured to allocate from the subnet pool. The values that can be configured for the `prefix-length` argument follow CIDR bit count notation format.

Verifying Subnet Allocation and DHCP Bindings

Perform this task to verify subnet allocation and DHCP bindings. The `show` commands need not be entered in any specific order.

The `show ip dhcp pool` and `show ip dhcp binding` commands need not be issued together or even in the same session because there are differences in the information that is provided. These commands, however, can be used to display and verify subnet allocation and DHCP bindings. The `show running-config | begin dhcp` command is used to display the local configuration of DHCP and the configuration of the `subnet prefix-length` command.

SUMMARY STEPS

1. enable
2. show running-config | begin dhcp
3. show ip dhcp pool [pool-name]
4. show ip dhcp binding [ip-address]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

- Enter your password if prompted.
### Command or Action	Purpose
Step 2
`show running-config | begin dhcp`

- Displays the local configuration of the router.
 - The configuration of the `subnet prefix-length` command will be displayed under the DHCP pools, for which subnet lease allocation has been configured. The subnet allocation size will be shown, following this command, in CIDR bit count notation.
 - The sample output is filtered with the `begin` keyword to start displaying output at the DHCP section of the running configuration.

Example:

```
Router# show running-config | begin dhcp
```

Step 3
`show ip dhcp pool [pool-name]`

- Displays information about DHCP pools.
 - This command can be used to verify subnet allocation pool configuration on both the subnet allocation server and the ODAP manager.
 - The output of this command displays specific address pool information, including the name of the pool, utilization of address space, subnet size, number of total addresses, number of leased address, and pending events.

Example:

```
Router# show ip dhcp pool
```

Step 4
`show ip dhcp binding [ip-address]`

- Displays information about DHCP bindings.
 - This command can be used to display subnet allocation to DHCP binding mapping information.
 - The output from this command displays binding information for individual IP address assignment and allocated subnets. The output that is generated for DHCP IP address assignment and subnet allocation is almost identical, except that subnet leases display an IP address followed by the subnet mask (which shows the size of the allocated subnet). Bindings for individual IP address display only an IP address and are not followed by a subnet mask.

Example:

```
Router# show ip dhcp binding
```

Troubleshooting the DHCP ODAP Subnet Allocation Server

SUMMARY STEPS

1. enable
2. debug dhcp [detail]
3. debug ip dhcp server {events | packets | linkage}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
 - Enter your password if prompted.

Example:

```
Router> enable
```
Command or Action	**Purpose**
Step 2 | debug dhcp [detail]

Example:
Router# debug dhcp detail

Displays debugging information about DHCP client activities and monitors the status of DHCP packets.

- This example is issued with the `detail` keyword on the ODAP manager. The `detail` keyword is used to display and monitor the lease entry structure of the client and the state transitions of lease entries. This command also displays the values of the `op`, `htype`, `hlen`, `hops`, `server identifier option`, `xid`, `secs`, `flags`, `ciaddr`, `yiaddr`, `siaddr`, and `giaddr` fields of the DHCP packet that are shown in addition to the length of the options field.

Step 3 | debug ip dhcp server {events | packets | linkage}

Example:
Router# debug ip dhcp server packets

Enables DHCP server debugging.

- This example is issued with the `packets` keyword on the subnet allocation server. The output displays lease transition, reception, and database information.

Configuration Examples for DHCP Server On-Demand Address Pool Manager

- Specifying DHCP ODAPs as the Global Default Mechanism Example, page 84
- Defining DHCP ODAPs on an Interface Example, page 85
- Configuring the DHCP Pool as an ODAP Example, page 85
- Configuring the DHCP Pool as an ODAP for Non-MPLS VPNs Example, page 87
- IPCP Subnet Mask Delivery Example, page 88
- Configuring AAA and RADIUS Example, page 89
- Configuring a Global Pool on a Subnet Allocation Server Example, page 89
- Configuring a VRF Pool on a Subnet Allocation Server Example, page 90
- Using a VPN ID to Configure a VRF Pool on a Subnet Allocation Server Example, page 90
- Verifying Local Configuration on a Subnet Allocation Server Example, page 90
- Verifying Address Pool Allocation Information Example, page 91
- Verifying Subnet Allocation and DHCP Bindings Example, page 91

Specifying DHCP ODAPs as the Global Default Mechanism Example

The following example shows how to configure the on-demand address pooling mechanism to be used to serve an address request from a PPP client.

```
ip address-pool dhcp-pool
ip dhcp pool Green-pool
```
Defining DHCP ODAPs on an Interface Example

The following example shows how to configure an interface to retrieve an IP address from an on-demand address pool:

```
interface Virtual-Template 1
  ip vrf forwarding green
  ip unnumbered loopback1
  ppp authentication chap
  peer default ip address dhcp-pool
```

Configuring the DHCP Pool as an ODAP Example

The following example shows two ODAPs configured to obtain their subnets from an external DHCP server:

```
Router# show running-config
Building configuration...
Current configuration : 3943 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Router
!
no logging console
enable password password
!
username vpn_green_net1 password 0 lab
username vpn_red_net1 password 0 lab
ip subnet-zero
!
ip dhcp pool green_pool
  vrf Green
  utilization mark high 60
  utilization mark low 40
  origin dhcp subnet size initial /24 autogrow /24
!
ip dhcp pool red_pool
  vrf Red
  origin dhcp
!
ip vrf Green
  rd 200:1
  route-target export 200:1
  route-target import 200:1
!
ip vrf Red
  rd 300:1
  route-target export 300:1
  route-target import 300:1
ip cef
ip address-pool dhcp-pool
!
no voice hpi capture buffer
no voice hpi capture destination
!
interface Loopback0
  ip address 192.0.2.1 255.255.255.255
!
interface Loopback1
  ip vrf forwarding Green
  ip address 192.0.2.2 255.255.255.255
```
interface Loopback2
 ip vrf forwarding Red
 ip address 192.0.2.3 255.255.255.255

interface ATM2/0
 no ip address
 shutdown
 no atm ilmi-keepalive

interface ATM3/0
 no ip address
 no atm ilmi-keepalive

interface Ethernet4/0
 ip address 192.0.2.4 255.255.255.224
duplex half

interface Ethernet4/1
 ip address 192.0.2.5 255.255.255.0
duplex half

interface Ethernet4/2
 ip address 192.0.2.6 255.255.255.0
duplex half
tag-switching ip

interface Virtual-Template1
 ip vrf forwarding Green
 ip unnumbered Loopback1
 ppp authentication chap

interface Virtual-Template2
 ip vrf forwarding Green
 ip unnumbered Loopback1
 ppp authentication chap

interface Virtual-Template3
 ip vrf forwarding Green
 ip unnumbered Loopback1
 ppp authentication chap

interface Virtual-Template4
 ip vrf forwarding Red
 ip unnumbered Loopback2
 ppp authentication chap

interface Virtual-Template5
 ip vrf forwarding Red
 ip unnumbered Loopback2
 ppp authentication chap

interface Virtual-Template6
 ip vrf forwarding Red
 ip unnumbered Loopback2
 ppp authentication chap

router ospf 100
log-adjacency-changes
redistribute connected
network 209.165.200.225 255.255.255.224 area 0
network 209.165.200.226 255.255.255.224 area 0
network 209.165.200.227 255.255.255.224 area 0

router bgp 100
 no synchronization
 bgp log-neighbor-changes
 neighbor 192.0.2.1 remote-as 100
 neighbor 192.0.2.2 update-source Loopback0

 address-family ipv4 vrf Red
 redistribute connected
 redistribute static
 no auto-summary
no synchronization
network 110.0.0.0
exit-address-family
!
address-family ipv4 vrf Green
redistribute connected
redistribute static
no auto-summary
no synchronization
network 100.0.0.0
exit-address-family
!
address-family vpnv4
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community extended
exit-address-family
!
ip classless
ip route 172.19.0.0 255.255.0.0 10.0.105.1
no ip http server
ip pim bidir-enable
!
call rsvp-sync
!
mgcp profile default
!
dial-peer cor custom
!
gatekeeper
shutdown
!
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
password password
login
!
end

Configuring the DHCP Pool as an ODAP for Non-MPLS VPNs Example

The following example shows how to configure an interface to retrieve an IP address from an on-demand address pool. In this example, two non-VRF ODAPs are configured. There are two virtual templates and two DHCP address pools, usergroup1 and usergroup2. Each virtual template interface is configured to obtain IP addresses for the peer from the associated address pool.

! ip dhcp pool usergroup1
 origin dhcp subnet size initial /24 autogrow /24
 lease 0 1
! ip dhcp pool usergroup2
 origin dhcp subnet size initial /24 autogrow /24
 lease 0 1
! interface virtual-template1
 ip unnumbered loopback1
 peer default ip address dhcp-pool usergroup1
! interface virtual-template2
 ip unnumbered loopback1
 peer default ip address dhcp-pool usergroup2
IPCP Subnet Mask Delivery Example

The following example shows a Cisco 827 router configured to use IPCP subnet masks:

Router# show running-config
Building configuration...

Current configuration: 1479 bytes
!
version 12.2
no service single-slot-reload-enable
no service pad
service timestamps debug datetime msec
service timestamps log uptime
no service password-encryption
!
hostname Router
!
no logging buffered
logging rate-limit console 10 except errors
!
username 6400-nrp2 password 0 lab
ip subnet-zero
ip dhcp smart-relay
!
ip dhcp pool IPPOOLTEST
 import all
origin ipcp
!
no ip dhcp-client network-discovery
!
interface Ethernet0
 ip address pool IPPOOLTEST
 ip verify unicast reverse-path
 hold-queue 32 in
!
interface ATM0
 no ip address
 atm ilmi-keepalive
 bundle-enable
dsl operating-mode auto
 hold-queue 224 in
!
interface ATM0.1 point-to-point
 pvc 1/40
 no ilmi manage
 encapsulation aal5mux ppp dialer
dialer pool-member 1
!
!
interface Dialer0
 ip unnumbered Ethernet0
 ip verify unicast reverse-path
 encapsulation ppp
dialer pool 1
dialer-group 1
 no cdp enable
 ppp authentication chap callin
 ppp chap hostname Router
 ppp chap password 7 12150415
 ppp ipcp accept-address
 ppp ipcp dns request
 ppp ipcp wins request
 ppp ipcp mask request
!
ip classless
ip route 0.0.0.0 0.0.0.0 Dialer0
no ip http server
!
dialer-list 1 protocol ip permit
Configuring AAA and RADIUS Example

The following example shows one pool “Green” configured to obtain its subnets from the AAA (RADIUS) server located at IP address 172.16.1.1:

```
! aaa new-model
! aaa authorization configuration default group radius
aaa accounting network default start-stop group radius
aaa session-id common
! ip subnet-zero
! ip dhcp ping packets 0
! ip dhcp pool Green
    vrf Green
    utilization mark high 50
    utilization mark low 30
    origin aaa subnet size initial /28 autogrow /28
! ip vrf Green
    rd 300:1
    route-target export 300:1
    route-target import 300:1
! interface Ethernet1/1
    ip address 172.16.1.12 255.255.255.0
duplex half
! interface Virtual-Template1
    ip vrf forwarding Green
    no ip address
! ip radius source-interface Ethernet1/1
! radius-server host 172.16.1.1 auth-port 1645 acct-port 1646
radius-server retransmit 3
radius-server attribute 32 include-in-access-req
radius-server attribute 44 include-in-access-req
radius-server key cisco
radius-server vsa send accounting
radius-server vsa send authentication
```

Configuring a Global Pool on a Subnet Allocation Server Example

The following example shows how to configure a router to be a subnet allocation server and create a global subnet allocation pool named “GLOBAL-POOL” that allocates subnets from the 10.0.0.0/24 network. The use of the subnet prefix-length command in this example configures the size of each subnet that is allocated from the subnet pool to support 254 host IP addresses.

```
ip dhcp pool GLOBAL-POOL
    network 10.0.0.0 255.255.255.0
```
Configuring a VRF Pool on a Subnet Allocation Server Example

The following example shows how to configure a router to be a subnet allocation server and create a VRF subnet allocation pool named “VRF-POOL” that allocates subnets from the 172.16.0.0/16 network and configures the VPN to match the VRF named “RED.” The use of the `subnet prefix-length` command in this example configures the size of each subnet that is allocated from the subnet pool to support 62 host IP addresses.

```
ip dhcp pool VRF-POOL
vrf RED
network 172.16.0.0 /16
subnet prefix-length 26
```

Using a VPN ID to Configure a VRF Pool on a Subnet Allocation Server Example

The following example shows how to configure a router to be a subnet allocation server and create a VRF subnet allocation pool named “VRF-POOL” that allocates subnets from the 192.168.0.0/24 network and configures the VRF named “RED.” The VPN ID must match the unique identifier that is assigned to the client site. The route target and route distinguisher are configured in the as-number:network-number format. The route target and route distinguisher must match. The configuration of the `subnet prefix-length` command in this example configures the size of each subnet that is allocated from the subnet pool to support 30 host IP addresses.

```
ip vrf RED
rd 100:1
route-target both 100:1
vpn id 1234:123456
exit
ip dhcp pool VPN-POOL
vrf RED
network 192.168.0.0 /24
subnet prefix-length /27
exit
```

Verifying Local Configuration on a Subnet Allocation Server Example

The following example is output from the `show running-config` command. This command can be used to verify the local configuration on a subnet allocation server. The output from this command displays the configuration of the `subnet prefix-length` command under the DHCP pool named “GLOBAL-POOL.” The total size of the subnet allocation pool is set to 254 addresses with the `network` command. The use of the `subnet prefix-length` command configures this pool to allocate a subnet that will support 254 host IP addresses. Because the total pool size supports only 254 addresses, only one subnet can be allocated from this pool.

```
Router# show running-config | begin dhcp
ip dhcp pool GLOBAL-POOL
  network 10.0.0.0 255.255.255.0
  subnet prefix-length 24
```
Verifying Address Pool Allocation Information Example

The following examples are output from the `show ip dhcp pool` command. This command can be used to verify subnet allocation pool configuration on the subnet allocation server and the ODAP manager. The output from this command displays information about the address pool name, utilization level, configured subnet size, total number of addresses (from subnet), pending events, and specific subnet lease information.

The following sample output shows that the configured subnet allocation size is /24 (254 IP addresses), that there is a pending subnet allocation request, and that no subnets are in the pool:

```
Router# show ip dhcp pool ISP-1
Pool ISP-1 :
  Utilization mark (high/low)    :100 / 0
  Subnet size (first/next)       :24 / 24 (autogrow)
  Total addresses                :0
  Leased addresses               :0
  Pending event                  :subnet request
  0 subnet is currently in the pool
```

The next example shows that the configured subnet allocation size is /24 (254 IP address), the configured VRF name is “RED” and a subnet containing 254 IP addresses has been allocated but no IP addresses have been leased from the subnet:

```
Router# show ip dhcp pool SUBNET-ALLOC
Pool SUBNET-ALLOC :
  Utilization mark (high/low)    :100 / 0
  Subnet size (first/next)       :24 / 24 (autogrow)
  VRF name                       :RED
  Total addresses                :254
  Leased addresses               :0
  Pending event                  :none
  1 subnet is currently in the pool :
  Current index        IP address range                    Leased addresses
 10.0.0.1              10.0.0.1          - 10.0.0.254         0
```

Verifying Subnet Allocation and DHCP Bindings Example

The following example is from the `show ip dhcp binding` command. This command can be used to display subnet allocation to DHCP binding mapping information. The output of this command shows the subnet lease to MAC address mapping, the lease expiration, and the lease type (subnet lease bindings are configured to be automatically created and released by default). The output that is generated for DHCP IP address assignment and subnet allocation is almost identical, except that subnet leases display an IP address followed by the subnet mask (which shows the size of the allocated subnet) in CIDR bit count notation. Bindings for individual IP address display only an IP address and are not followed by a subnet mask.

```
Router# show ip dhcp binding
Bindings from all pools not associated with VRF:
  IP address          Client-ID/        Lease expiration        Type
  Hardware address/   User name
  10.0.0.0/26         0063.6973.636f.2d64.656d.6574.6572.2d47.4c4f.4241.4c Mar 29 2003 04:36 AM  Automatic
```

Additional References

The following sections provide references related to configuring the DHCP ODAP manager.

Additional References

- IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>“DHCP Overview” module</td>
</tr>
<tr>
<td>DHCP server configuration</td>
<td>“Configuring the Cisco IOS DHCP Server” module</td>
</tr>
<tr>
<td>DHCP client configuration</td>
<td>“Configuring the Cisco IOS DHCP Client” module</td>
</tr>
<tr>
<td>DHCP relay agent configuration</td>
<td>“Configuring the Cisco IOS DHCP Relay Agent” module</td>
</tr>
<tr>
<td>DHCP advanced features</td>
<td>“Configuring DHCP Services for Accounting and Security” module</td>
</tr>
<tr>
<td>DHCP enhancements for edge-session management configuration</td>
<td>“Configuring DHCP Enhancements for Edge-Session Management” module</td>
</tr>
<tr>
<td>DHCP options</td>
<td>“DHCP Options” appendix in the Network Registrar User’s Guide, Release 6.1.1</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this functionality.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 951</td>
<td>Bootstrap Protocol (BOOTP)</td>
</tr>
<tr>
<td>RFC 1542</td>
<td>Clarifications and Extensions for the Bootstrap Protocol</td>
</tr>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
</tbody>
</table>
Feature Information for the DHCP Server On-Demand Address Pool Manager

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Server On-Demand Address Pool Manager for Non-MPLS VPNs</td>
<td>12.2(15)T 12.2(28)SB 12.2(33)SRC</td>
<td>This feature was enhanced to provide ODAP support for non-MPLS VPNs. The following command was modified by this feature: <code>peer default ip address</code>.</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2685</td>
<td>Virtual Private Networks Identifier</td>
</tr>
<tr>
<td>RFC 3046</td>
<td>DHCP Relay Information Option</td>
</tr>
</tbody>
</table>

Technical Assistance

Description

The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.

To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.

Feature Information for the DHCP Server On-Demand Address Pool Manager

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Server On-Demand Address Pool Manager for Non-MPLS VPNs</td>
<td>12.2(15)T 12.2(28)SB 12.2(33)SRC</td>
<td>This feature was enhanced to provide ODAP support for non-MPLS VPNs. The following command was modified by this feature: <code>peer default ip address</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Configuration Information</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>DHCP ODAP Server Support</td>
<td>12.2(15)T 12.2(28)SB 12.2(33)SRC</td>
<td>This feature introduces the capability to configure a DHCP server (or router) as a subnet allocation server. This capability allows the Cisco IOS DHCP server to be configured with a pool of subnets for lease to ODAP clients. The following commands were introduced or modified by this feature: show ip dhcp binding, subnet prefix-length.</td>
</tr>
<tr>
<td>DHCP Server On-Demand Address Pool Manager</td>
<td>12.2(8)T 12.28(SB) 12.2(33)SRC</td>
<td>The ODAP manager is used to centralize the management of large pools of addresses and simplify the configuration of large networks. ODAP provides a central management point for the allocation and assignment of IP addresses. When a Cisco IOS router is configured as an ODAP manager, pools of IP addresses are dynamically increased or reduced in size depending on the address utilization level. The following commands were introduced or modified: aaa session-id, clear ip dhcp binding, clear ip dhcp conflict, clear ip dhcp subnet, ip address-pool, ip address pool, ip dhcp aaa default username, origin, peer default ip address, show ip dhcp pool, utilization mark high, utilization mark low, vrf.</td>
</tr>
</tbody>
</table>

Glossary

AAA -- authentication, authorization, and accounting. Suite of network security services that provide the primary framework through which access control can be set up on your Cisco router or access server.

Cisco Access Registrar -- A RADIUS server that supports service provider deployment of access services by centralizing AAA information and simplifying provisioning and management.

client -- A host trying to configure its interface (obtain an IP address) using DHCP or BOOTP protocols.

DHCP -- Dynamic Host Configuration Protocol.
incremental subnet size -- The desired size of the second and subsequent subnets requested for an on-demand pool.

initial subnet size -- The desired size of the first subnet requested for an on-demand pool.

IPCP -- IP Control Protocol. Protocol that establishes and configures IP over PPP.

MPLS -- Multiprotocol Label Switching. Emerging industry standard upon which tag switching is based.

ODAP -- on-demand address pool.

PE router -- provider edge router.

PPP -- Point-to-Point Protocol.

RADIUS -- Remote Authentication Dial-In User Service. Database for authenticating modem and ISDN connections and for tracking connection time.

relay agent -- A router that forwards DHCP and BOOTP messages between a server and a client on different subnets.

releasable subnet -- A leased subnet that has no address leased from it.

server -- DHCP or BOOTP server.

VHG -- Virtual Home Gateway. A Cisco IOS software component that terminates PPP sessions. It is owned and managed by the service provider on behalf of its customer to provide access to remote users of that customer’s network. A single service provider device (router) can host multiple VHGs of different customers. A VHG can be dynamically brought up and down based on the access pattern of the remote users. Note that no single Cisco IOS feature is called the VHG; it is a collection of function and features.

VHG/PE router -- A device that terminates PPP sessions and maps the remote users to the corresponding MPLS VPNs.

VPN -- Virtual Private Network. Enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF -- VPN routing and forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router. Each VPN instantiated on the PE router has its own VRF.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Configuring the Cisco IOS DHCP Relay Agent

All Cisco routers that run Cisco software include a DHCP server and the relay agent software. A DHCP relay agent is any host or IP router that forwards DHCP packets between clients and servers. This module describes the concepts and tasks needed to configure the Cisco IOS DHCP relay agent.

• Finding Feature Information, page 97
• Prerequisites for Configuring the Cisco IOS DHCP Relay Agent, page 97
• Information About the DHCP Relay Agent, page 98
• How to Configure the DHCP Relay Agent, page 98
• Configuration Examples for the Cisco IOS DHCP Relay Agent, page 120
• Additional References, page 123
• Feature Information for the Cisco IOS DHCP Relay Agent, page 124
• Glossary, page 127

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring the Cisco IOS DHCP Relay Agent

• Before you configure the DHCP relay agent, you should understand the concepts documented in the “DHCP Overview” module.
• The Cisco IOS DHCP server and relay agent are enabled by default. You can verify whether they have been disabled by checking your configuration file. If they have been disabled, the no service dhcp command will appear in the configuration file. Use the service dhcp command to reenable the functionality if necessary.
• The Cisco IOS DHCP relay agent will be enabled on an interface only when the ip helper-address command is configured. This command enables the DHCP broadcast to be forwarded to the configured DHCP server.
Information About the DHCP Relay Agent

- DHCP Relay Agent Overview, page 98

DHCP Relay Agent Overview

A DHCP relay agent is any host that forwards DHCP packets between clients and servers. Relay agents forward requests and replies between clients and servers when they are not on the same physical subnet. Relay agent forwarding is distinct from the normal forwarding of an IP router, where IP datagrams are switched between networks somewhat transparently. In contrast, when relay agents receive DHCP messages, the agents generate a new DHCP message to send out through another interface. The relay agent sets the gateway IP address (the giaddr field of the DHCP packet) and, if configured, adds the relay agent information option (option 82) to the packet and forwards the packet to the DHCP server. The reply from the server is forwarded back to the client after removing option 82.

The Cisco IOS DHCP relay agent supports the use of unnumbered interfaces, including the use of smart relay agent forwarding. For DHCP clients that are connected through unnumbered interfaces, the DHCP relay agent automatically adds a static host route after the DHCP client obtains an address, specifying the unnumbered interface as the outbound interface. The route is automatically removed once the lease time expires or when the client releases the address.

How to Configure the DHCP Relay Agent

- Specifying the Packet Forwarding Address, page 98
- Configuring Support for the Relay Agent Information Option, page 100
- Configuring Per-Interface Support for the Relay Agent Information Option, page 104
- Configuring the Subscriber Identifier Suboption of the Relay Agent Information Option, page 106
- Configuring DHCP Relay Class Support for Client Identification, page 107
- Configuring DHCP Relay Agent Support for MPLS VPNs, page 110
- Configuring Support for Relay Agent Information Option Encapsulation, page 114
- Setting the Gateway Address of the DHCP Broadcast to a Secondary Address Using Smart Relay Agent Forwarding, page 117
- Configuring Support for Private and Standard Suboption Numbers, page 118
- Troubleshooting the DHCP Relay Agent, page 119

Specifying the Packet Forwarding Address

DHCP clients need to use UDP broadcasts to send their initial DHCPDISCOVER messages because the clients do not have information about the network to which they are attached. If the client is on a network segment that does not include a server, UDP broadcasts are not usually forwarded because most routers are configured to not forward broadcast traffic. When the DHCP client broadcasts a DHCPDISCOVER message, the relay agent sends the broadcast message toward the server, which may create Address Resolution Protocol (ARP) entries due to unnecessary ARP checks performed by the client after receiving the ACK message. If there are two entries in the ARP table, one times out after the ARP timeout. You can remedy this situation by configuring the interface of your router that is receiving the broadcasts to forward certain classes of broadcasts to a helper address. You can use more than one helper address per interface.
When a router forwards these address assignment/parameter requests, it acts as a DHCP relay agent. The Cisco router implementation of the DHCP relay agent is provided through the `ip helper-address` interface configuration command.

In the figure below, the DHCP client broadcasts a request for an IP address and additional configuration parameters on its local LAN. Router B, acting as a DHCP relay agent, picks up the broadcast and generates a new DHCP message to send out on another interface. As part of this DHCP message, the relay agent inserts the IP address of the interface containing the `ip helper-address` command into the gateway IP address (giaddr) field of the DHCP packet. This IP address enables the DHCP server to determine which subnet should receive the packet. The DHCP relay agent sends the local broadcast, through IP unicast, to the DHCP server address 172.16.1.2 that is specified by the `ip helper-address` interface configuration command.

Figure 5 Forwarding UDP Broadcasts to a DHCP Server Using a Helper Address

Perform this task to configure the DHCP relay agent to forward packets to a DHCP server.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip helper-address address`
5. `exit`
6. `ip dhcp relay prefer known-good-server`
7. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Device> enable
### Command or Action	Purpose
Step 2 configure terminal | Enters global configuration mode.

Example:
Device# configure terminal

Step 3 interface type number | Configures an interface and enters interface configuration mode.

Example:
Device(config)# interface FastEthernet0/0

Step 4 ip helper-address *address* | Forwards UDP broadcasts, including BOOTP and DHCP.
- The *address* argument can be a specific DHCP server address, or it can be the network address if other DHCP servers are on the destination network segment. The network address enables other servers to respond to DHCP requests.
- If you have multiple servers, you can configure one helper address for each server.

Example:
Device(config-if)# ip helper-address 172.16.1.2

Step 5 exit | Exits interface configuration mode and returns to global configuration mode.

Example:
Device(config-if)# exit

Step 6 ip dhcp relay prefer known-good-server | (Optional) Reduces the frequency with which the DHCP clients change their addresses and forwards client requests to the server that handled the previous request.
- The DHCP relay agent deletes the ARP entries for addresses offered to the DHCP client on unnumbered interfaces.

Example:
Device(config)# ip dhcp relay prefer known-good-server

Step 7 exit | Returns to privileged EXEC mode.

Example:
Device(config)# exit

Configuring Support for the Relay Agent Information Option
Automatic DHCP address allocation is typically based on an IP address, which may be either the gateway IP address (giaddr field of the DHCP packet) or the incoming interface IP address. In some networks, additional information may be required to further determine the IP addresses that need to be allocated. By using the relay agent information option (option 82), the Cisco IOS relay agent can include additional...
information about itself when forwarding client-originated DHCP packets to a DHCP server. Cisco software supports this functionality by using the \texttt{ip dhcp relay information option} command. The relay agent will automatically add the circuit identifier suboption and the remote ID suboption to the relay agent information option and forward them to the DHCP server.

The DHCP server can use this information to assign IP addresses, perform access control, and set quality of service (QoS) and security policies (or other parameter-assignment policies) for each subscriber of a service provider network.

The figure below shows how the relay agent information option is inserted into the DHCP packet as follows:

1. The DHCP client generates a DHCP request and broadcasts it on the network.
2. The DHCP relay agent intercepts the broadcast DHCP request packet and inserts the relay agent information option (option 82) into the packet. The relay agent information option contains related suboptions.
3. The DHCP relay agent unicasts the DHCP packet to the DHCP server.
4. The DHCP server receives the packet, uses the suboptions to assign IP addresses and other configuration parameters to the packet, and forwards the packet back to the client.
5. The suboption fields are stripped off of the packet by the relay agent while forwarding the packet to the client.

\textbf{Figure 6} \textit{Operation of the Relay Agent Information Option}

A DHCP relay agent may receive a message from another DHCP relay agent that already contains relay information. By default, the relay information from the previous relay agent is replaced. If this behavior is not suitable for your network, you can use the \texttt{ip dhcp relay information policy \{drop | keep | replace\}} global configuration command to change it.

To ensure the correct operation of the reforwarding policy, disable the relay agent information check by using the \texttt{no ip dhcp relay information check} global configuration command.

It is important to understand how DHCP options work. See the “DHCP Overview” module for more information.
• If the `ip dhcp relay information` command is configured in global configuration mode but not configured in interface configuration mode, the global configuration is applied to all interfaces.
• If the `ip dhcp relay information` command is configured in both global configuration mode and interface configuration mode, the interface configuration command takes precedence over the global configuration command. However, the global configuration is applied to interfaces without the interface configuration.
• If the `ip dhcp relay information` command is not configured in global configuration mode but is configured in interface configuration mode, only the interface with the configuration option applied is affected. All other interfaces are not impacted by the configuration.

See the “Configuring Relay Agent Information Option Support per Interface” section for more information on per-interface support for the relay agent information option.

SUMMARY STEPS
1. enable
2. configure terminal
3. ip dhcp relay information option
4. ip dhcp relay information check
5. ip dhcp relay information policy {drop | keep | replace}
6. ip dhcp relay information trust-all
7. end
8. show ip dhcp relay information trusted-sources

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 3** ip dhcp relay information option | Enables the system to insert the DHCP relay agent information option (option-82 field) in BOOTREQUEST messages forwarded to a DHCP server.
 - This function is disabled by default.
 | Example:
 Device(config)# ip dhcp relay information option |
| **Step 4** ip dhcp relay information check | (Optional) Configures DHCP to check whether the relay agent information option in forwarded BOOTREPLY messages is valid.
 - By default, DHCP verifies whether the option-82 field in DHCP reply packets that it receives from the DHCP server is valid. If an invalid message is received, the relay agent drops the packet. If a valid message is received, the relay agent removes the option-82 field and forwards the packet. Use the **ip dhcp relay information check** command to reenable this functionality if it has been disabled.
 | Example:
 Device(config)# ip dhcp relay information check |
| **Step 5** ip dhcp relay information policy {drop | keep | replace} | (Optional) Configures the reforwarding policy (that specifies what a relay agent should do if a message already contains relay information) for a DHCP relay agent.
 | Example:
 Device(config)# ip dhcp relay information policy replace |
| **Step 6** ip dhcp relay information trust-all | (Optional) Configures all interfaces on a router as trusted sources of the DHCP relay information option.
 - By default, if the gateway address is set to all zeros in the DHCP packet and the relay agent information option is already present in the packet, the DHCP relay agent will discard the packet. Use the **ip dhcp relay information trust-all** command to override this behavior and accept the packets.
 - This command is useful if there is a switch placed between the client and the relay agent that may insert option 82. Use this command to ensure that these packets do not get dropped.
 - You can configure an individual interface as a trusted source of the DHCP relay information option by using the **ip dhcp relay information trusted** interface configuration mode command.
 | Example:
 Device(config)# ip dhcp relay information trust-all |
| **Step 7** end | Returns to privileged EXEC mode.
 | Example:
 Device(config)# end |
Configuring Per-Interface Support for the Relay Agent Information Option

The interface configuration allows a Cisco router to reach subscribers with different DHCP option 82 requirements on different interfaces.

It is important to understand how DHCP options work. See the “DHCP Overview” module for more information.

Note

- If the `ip dhcp relay information` command is configured in global configuration mode but not configured in interface configuration mode, the global configuration is applied to all interfaces.
- If the `ip dhcp relay information` command is configured in both global configuration mode and interface configuration mode, the interface configuration command takes precedence over the global configuration command. However, the global configuration is applied to interfaces without the interface configuration.
- If the `ip dhcp relay information` command is not configured in global configuration mode but is configured in interface configuration mode, only the interface on which the configuration option is applied is affected. All other interfaces are not impacted by the configuration.

SUMMARY STEPS

1. enable
2. configure terminal
3. `interface type number`
4. `ip dhcp relay information option-insert [none]`
5. `ip dhcp relay information check-reply [none]`
6. `ip dhcp relay information policy-action {drop | keep | replace}`
7. `exit`
8. Repeat Steps 3 through 7 to configure relay agent information settings on different interfaces.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:**
Device> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**
Device# configure terminal | |
| **Step 3** interface **type** **number** | Configures an interface and enters interface configuration mode. |
| **Example:**
Device(config)# interface FastEthernet0/0 | |
| **Step 4** ip dhcp relay information option-insert [none] | Enables the system to insert the DHCP relay agent information option (option-82 field) in forwarded BOOTREQUEST messages to a DHCP server.
• This function is disabled by default. However, if support for the relay agent information option is configured in global configuration mode, but not configured in interface configuration mode, the interface inherits the global configuration.
• The **ip dhcp relay information option-insert none** interface configuration command is saved in the running configuration. This command takes precedence over any global relay agent information configuration. |
| **Example:**
Device(config-if)# ip dhcp relay information option-insert | |
| **Step 5** ip dhcp relay information check-reply [none] | Configures a DHCP server to validate the relay information option in forwarded BOOTREPLY messages.
• By default, DHCP verifies whether the option-82 field in the DHCP reply packets that it receives from the DHCP server is valid. If an invalid message is received, the relay agent drops the packet. If a valid message is received, the relay agent removes the option-82 field and forwards the packet. Use the **ip dhcp relay information check-reply** command to reenable this functionality if it has been disabled.
• The **ip dhcp relay information check-reply none** interface configuration command option is saved in the running configuration. This command takes precedence over any global relay agent information configuration. |
| **Example:**
Device(config-if)# ip dhcp relay information check-reply | |
Command or Action

Step 6
`ip dhcp relay information policy-action {drop | keep | replace}`

Purpose
Configures the information reforwarding policy (that specifies what a relay agent should do if a message already contains relay information) for a DHCP relay agent.

Example:
Device(config-if)# ip dhcp relay information policy-action replace

Step 7

exit

Purpose
Exits interface configuration mode.

Example:
Device(config-if)# exit

Step 8

Repeat Steps 3 through 7 to configure relay agent information settings on different interfaces.

Configuring the Subscriber Identifier Suboption of the Relay Agent Information Option

Perform this task to enable an ISP to add a unique identifier to the subscriber identifier suboption of the relay agent information option. The unique identifier enables an ISP to identify a subscriber, assign specific actions to that subscriber (for example, assignment of the host IP address, subnet mask, and domain name system [DNS]), and trigger accounting.

Before the introduction of the subscriber identifier suboption, if a subscriber moved from one Network Access Server to another, each ISP had to be informed of the change and all ISPs had to reconfigure the DHCP settings for the affected customers at the same time. Even if the service was not changed, every move involved administrative changes in the ISP environment. With the introduction of the subscriber identifier suboption, if a subscriber moves from one Network Access Server to another, there is no need for a change in the configuration on the DHCP server or the ISPs.

You should configure a unique identifier for each subscriber.

The new configurable subscriber identifier suboption should be configured on the interface that is connected to the client. When a subscriber moves from one Network Access Server to another, the interface configuration should also be changed.

The server should be able to recognize the new suboption.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp relay information option`
4. `interface type number`
5. `ip dhcp relay information option subscriber-id string`
6. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp relay information option</td>
<td>Enables the system to insert the DHCP relay agent information option (option-82 field) in forwarded BOOTREQUEST messages to a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp relay information option</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface type number</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface atm4/0.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip dhcp relay information option subscriber-id string</td>
<td>Specifies that a DHCP relay agent add a subscriber identifier suboption to the relay information option.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# ip dhcp relay information option subscriber-id newsubscriber123</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring DHCP Relay Class Support for Client Identification

DHCP relay class support for client identification allows the Cisco relay agent to forward client-generated DHCP messages to different DHCP servers based on the content of the following four options:

- Option 60: vendor class identifier
• Option 77: user class
• Option 124: vendor-identifying vendor class
• Option 125: vendor-identifying vendor-specific information

Each option identifies the type of client that is sending the DHCP message.

Relay pools provide a method to define DHCP pools that are not used for address allocation. These relay pools can specify that DHCP messages from clients on a specific subnet should be forwarded to a specific DHCP server. These relay pools can be configured with relay classes inside the pool that help determine the forwarding behavior.

For example, after receiving the option in a DHCP DISCOVER message, the relay agent will match and identify the relay class from the relay pool and then direct the DHCP DISCOVER message to the DHCP server associated with that identified relay class.

In an example application, a Cisco router acting as a DHCP relay agent receives DHCP requests from two VoIP services (H.323 and the Session Initiation Protocol [SIP]). The requesting devices are identified by option 60.

Both VoIP services have a different back-office infrastructure, so they cannot be serviced by the same DHCP server. Requests for H.323 devices must be forwarded to the H.323 server, and requests from SIP devices must be forwarded to the SIP server. The solution is to configure the relay agent with relay classes that are configured to match option 60 values sent by the client devices. Based on the option value, the relay agent will match and identify the relay class, and forward the DHCP DISCOVER message to the DHCP server associated with the identified relay class.

The Cisco IOS DHCP server examines the relay classes that are applicable to a pool and then uses the exact match class regardless of the configuration order. If the exact match is not found, the DHCP server uses the first default match found.

It is important to understand how DHCP options work. See the “DHCP Overview” module for more information.

You must know the hexadecimal value of each byte location in the options to be able to configure the `option hex` command. The format may vary from product to product. Contact the relay agent vendor for this information.

SUMMARY STEPS

1. enable
2. configure terminal
3. `ip dhcp class class-name`
4. `option code hex hex-pattern [*][mask bit-mask-pattern]`
5. exit
6. Repeat Steps 3 through 5 for each DHCP class that you need to configure.
7. `ip dhcp pool name`
8. `relay source ip-address subnet-mask`
9. `class class-name`
10. `relay target [vrf vrf-name | global] ip-address`
11. exit
12. Repeat Steps 9 through 11 for each DHCP class that you need to configure.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** Device> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Device# configure terminal |
| **Step 3** ip dhcp class class-name | Defines a DHCP class and enters DHCP class configuration mode. |
| **Example:** Device(config)# ip dhcp class SIP |
| **Step 4** option code hex hex-pattern [mask bit-mask-pattern] | Enables the relay agent to make forwarding decisions based on DHCP options inserted in the DHCP message. |
| **Example:** Device(dhcp-class)# option 60 hex 010203 |
| **Step 5** exit | Exits DHCP class configuration mode. |
| **Example:** Device(dhcp-class)# exit |
| **Step 6** Repeat Steps 3 through 5 for each DHCP class that you need to configure. |
| **Step 7** ip dhcp pool name | Configures a DHCP pool on a DHCP server and enters DHCP pool configuration mode. |
| **Example:** Device(config)# ip dhcp pool ABC |
Configuring DHCP Relay Agent Support for MPLS VPNs

DHCP relay support for Multiprotocol Label Switching (MPLS) VPNs enables a network administrator to conserve address space by allowing overlapping addresses. The relay agent can support multiple clients on different VPNs, and many of these clients from different VPNs can share the same IP address.

Configuring VPNs involves an adjustment to the usual DHCP host IP address designation. VPNs use private address spaces that might not be unique across the Internet.

In some environments, a relay agent resides in a network element that also has access to one or more MPLS VPNs. A DHCP server that provides service to DHCP clients on those different VPNs must locate the VPN in which each client resides. The network element that contains the relay agent typically captures the VPN association of the DHCP client and includes this information in the relay agent information option of the DHCP packet.

DHCP relay support for MPLS VPNs allows the relay agent to forward this necessary VPN-related information to the DHCP server using the following three suboptions of the DHCP relay agent information option:

- **VPN identifier**
• Subnet selection
• Server identifier override

The VPN identifier suboption is used by the relay agent to inform the DHCP server about the VPN for every DHCP request that the relay agent passes on to the DHCP server; the VPN identifier suboption is also used to properly forward any DHCP reply that the DHCP server sends back to the relay agent. The VPN identifier suboption contains the VPN ID configured on the incoming interface to which the client is connected. If you configure the VPN routing and forwarding (VRF) name but not the VPN ID, the VRF name is used as the VPN identifier suboption. If the interface is in the global routing space, VPN suboptions are not added.

The subnet selection suboption allows the separation of the subnet, where the client resides, from the IP address used to communicate with the relay agent. In typical DHCP processing, the gateway address specifies both the subnet on which a DHCP client resides and the IP address that the server can use to communicate with the relay agent. Situations exist where the relay agent needs to specify the subnet on which a DHCP client resides that is different from the IP address that the server can use to communicate with the relay agent. The subnet selection suboption is included in the relay agent information option and passed on to the DHCP server. The gateway address is changed to the outgoing interface of the relay agent toward the DHCP server. The DHCP server uses this gateway address to send reply packets back to the relay agent.

The server identifier override suboption value is copied in the reply packet from the DHCP server instead of the normal server ID address. The server identifier override suboption contains the incoming interface IP address, which is the IP address on the relay agent that is accessible from the client. Using this information, the DHCP client sends all renew and release packets to the relay agent. The relay agent adds all the VPN suboptions to the packets and forwards the packets to the original DHCP server.

After adding these suboptions to the DHCP relay agent information option, the gateway address is changed to the outgoing interface of the relay agent toward the DHCP server. When the packets are returned from the DHCP server, the relay agent removes the relay agent information options from the packets and forwards the packets to the DHCP client on the correct VPN.

The figure below shows a VPN scenario where the DHCP relay agent and DHCP server can recognize the VPN within which each client resides. DHCP client 1 is part of VPN green, and DHCP client 2 is part of VPN red, and both have the same private IP address 192.168.1.0/24. Because the clients have the same IP address, the DHCP relay agent and DHCP server use the VPN identifier, subnet selection, and server identifier override suboptions of the relay agent information option to distinguish the correct VPN of the client.

Figure 7 VPN DHCP Configuration
Before configuring DHCP relay support for Multiprotocol Label Switching (MPLS) VPNs, you must configure standard MPLS VPNs.

Note

- If the `ip dhcp relay information option vpn` global configuration command is configured and the `ip dhcp relay information option vpn-id` interface configuration command is not configured, the global configuration is applied to all interfaces.
- If the `ip dhcp relay information option vpn` global configuration command is configured and the `ip dhcp relay information option vpn-id` interface configuration command is also configured, the interface configuration command takes precedence over the global configuration command. However, the global configuration is applied to interfaces without the interface configuration.
- If the `ip dhcp relay information option vpn` global configuration command is not configured and the `ip dhcp relay information option vpn-id` interface configuration command is configured, only the interface on which the configuration option is applied is affected. All other interfaces are not impacted by the configuration.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp relay information option vpn`
4. `interface type number`
5. `ip helper-address vrf name [global] address`
6. `ip dhcp relay information option vpn-id [none]`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 3 `ip dhcp relay information option vpn` | Enables the system to insert VPN suboptions into the DHCP relay agent information option in forwarded BOOTREQUEST messages to a DHCP server and sets the gateway address to the outgoing interface toward the DHCP server.
- The VPN suboptions are also added to the BOOTP broadcast packets when the command is configured.

Example:
```
Device(config)# ip dhcp relay information option vpn
```

Step 4 `interface type number` | Configures an interface and enters interface configuration mode.

Example:
```
Device(config)# interface FastEthernet0/0
```

Step 5 `ip helper-address vrf name [global] address` | Forwards UDP broadcasts, including BOOTP, received on an interface.
- If the DHCP server resides in a different VRF or global space that is different from the VPN, the `vrf name` or `global` options allow you to specify the name of the VRF or the global space in which the DHCP server resides.

Example:
```
Device(config-if)# ip helper-address vrf vrf1 172.27.180.232
```

Step 6 `ip dhcp relay information option vpn-id [none]` | (Optional) Enables the system to insert VPN suboptions into the DHCP relay agent information option in forwarded BOOTREQUEST messages to a DHCP server and sets the gateway address to the outgoing interface toward the DHCP server.
- The VPN suboptions are also added to the BOOTP broadcast packets when the command is configured.
- The `ip dhcp relay information option vpn-id none` command allows you to disable the VPN functionality on the interface. The only time you need to use this command is when the `ip dhcp relay information option vpn` global configuration command is configured and you want to override the global configuration.
- The `no ip dhcp relay information option vpn-id` command removes the configuration from the running configuration. In this case, the interface inherits the global configuration, which may or may not be configured to insert VPN suboptions.

Example:
```
Device(config-if)# ip dhcp relay information option vpn-id
```

Step 7 `end` | Returns to privileged EXEC mode.

Example:
```
Device(config-if)# end
```
Configuring Support for Relay Agent Information Option Encapsulation

When two relay agents are relaying messages between the DHCP client and the DHCP server, the relay agent closer to the server, by default, replaces the first option 82 information with its own option 82. The remote ID and circuit ID information from the first relay agent is lost. In some deployment scenarios, it is necessary to maintain the initial option 82 from the first relay agent, in addition to the option 82 from the second relay agent, for example, in a situation where an Intelligent Services Gateway (ISG) acting as a second relay agent is connected to a Layer 2 device. The Layer 2 device connects to the household and identifies the household with its own option 82.

The DHCP Relay Option 82 Encapsulation feature allows the second relay agent to encapsulate option 82 information in a received message from the first relay agent if the second relay agent is configured to add its own option 82 information. This configuration allows the DHCP server to use option 82 information from both relay agents. The DHCP server can use the VPN information from the second relay agent, along with the option 82 information from the first relay agent, to send correct address assignments and other configuration parameters for the client devices based on the VRF, option 60, and encapsulated option 82. The reply message from the DHCP server to the DHCP client traverses the same path as the request messages through the two relay agents to the DHCP client.

The figure below shows the processing that occurs on the two relay agents and the DHCP server when this feature is configured:

1. The DHCP client generates a DHCP message (including option 60) and broadcasts it on the network.
2. The first DHCP relay agent intercepts the broadcast DHCP request packet and inserts its own option 82 in the packet.
3. The relay agent automatically adds the circuit ID suboption and the remote ID suboption to option 82 and forwards them to the second relay agent.
4. The second relay agent encapsulates the first relay agent’s option 82 and inserts its own option 82.
5. The gateway IP address (giaddr) is set to the incoming interface on the second relay agent and the original giaddr from the first relay agent is encapsulated.
6. The second DHCP relay agent unicasts the DHCP packet to the DHCP server.
7. The DHCP server receives the packet and uses the VPN suboption information from the second relay agent, along with the option 82 information from the first relay agent, to assign IP addresses and other configuration parameters and forwards the packet back to the second relay agent.
8. When the second relay agent receives the reply message from the server, it restores the encapsulated option 82 and prior giaddr from the first relay agent. The reply message is then sent to the prior giaddr.
9 The first relay agent strips option 82 off from the packet before forwarding the packet to the client.

Figure 8 Processing DHCP Relay Agent Information Option Encapsulation Support

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp relay information option`
4. `ip dhcp relay information option vpn`
5. `ip dhcp relay information policy encapsulate`
6. `interface type number`
7. `ip dhcp relay information policy-action encapsulate`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 <code>ip dhcp relay information option</code></td>
<td>Enables the system to insert the DHCP relay agent information option (option-82 field) in forwarded BOOTREQUEST messages to a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# ip dhcp relay information option</code></td>
<td>• This function is disabled by default.</td>
</tr>
<tr>
<td>Step 4 <code>ip dhcp relay information option vpn</code></td>
<td>(Optional) Enables the system to insert VPN suboptions into the DHCP relay agent information option in forwarded BOOTREQUEST messages to a DHCP server and sets the gateway address to the outgoing interface toward the DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# ip dhcp relay information option vpn</code></td>
<td>• The VPN suboptions are also added to the BOOTP broadcast packets when the command is configured.</td>
</tr>
<tr>
<td>Step 5 <code>ip dhcp relay information policy-encapsulate</code></td>
<td>Enables the system to encapsulate the DHCP relay agent information option (option-82 field) received from a prior relay agent in forwarded BOOTREQUEST messages to a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# ip dhcp relay information policy-encapsulate</code></td>
<td>• Option 82 information from both relay agents will be forwarded to the DHCP server.</td>
</tr>
<tr>
<td>Step 6 <code>interface type number</code></td>
<td>(Optional) Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# interface FastEthernet0/0</code></td>
<td>• If you configure the global configuration command, there is no need to configure the interface configuration command unless you want to apply a different configuration on a specific interface.</td>
</tr>
<tr>
<td>Step 7 <code>ip dhcp relay information policy-action-encapsulate</code></td>
<td>(Optional) Enables the system to encapsulate the DHCP relay agent information option (option-82 field) received on an interface from a prior relay agent in forwarded BOOTREQUEST messages to a DHCP server on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# ip dhcp relay information policy-action-encapsulate</code></td>
<td>• This function is disabled by default. This command has precedence over the global configuration command. However, if the relay agent information option encapsulation support is configured in global configuration mode, but not in interface configuration mode, the interface inherits the global configuration.</td>
</tr>
<tr>
<td>Step 8 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Setting the Gateway Address of the DHCP Broadcast to a Secondary Address Using Smart Relay Agent Forwarding

You only need to configure helper addresses on the interface where the UDP broadcasts that you want to forward to the DHCP server are being received. You only need to configure the `ip dhcp smart-relay` command if you have secondary addresses on that interface and you want the router to step through each IP network when forwarding DHCP requests. If smart relay agent forwarding is not configured, all requests are forwarded using the primary IP address on the interface.

If the `ip dhcp smart-relay` command is configured, the relay agent counts the number of times that the client retries sending a request to the DHCP server when there is no DHCPOFFER message from the DHCP server. After three retries, the relay agent sets the gateway address to the secondary address. If the DHCP server still does not respond after three more retries, then the next secondary address is used as the gateway address.

This functionality is useful when the DHCP server cannot be configured to use secondary pools.

SUMMARY STEPS

1. enable
2. configure terminal
3. `ip dhcp smart-relay`
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ip dhcp smart-relay</code></td>
<td>Allows the DHCP relay agent to switch the gateway address (giaddr field of a DHCP packet) to a secondary address when there is no DHCPOFFER message from a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip dhcp smart-relay</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Support for Private and Standard Suboption Numbers

Some features that are not standardized will use the private Cisco relay agent suboption numbers. After the features are standardized, the relay agent suboptions are assigned the Internet Assigned Numbers Authority (IANA) numbers. Cisco software supports both private and IANA numbers for these suboptions.

Perform this task to configure the DHCP client to use private or IANA standard relay agent suboption numbers.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp compatibility suboption link-selection {cisco | standard}`
4. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 `ip dhcp compatibility suboption link-selection {cisco</td>
<td>standard}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip dhcp compatibility suboption link-selection standard</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting the DHCP Relay Agent

The **show ip route dhcp** command is useful to help troubleshoot issues with the DHCP relay agent that adds routes to clients from unnumbered interfaces. This command displays all routes added to the routing table by the DHCP server and the relay agent.

SUMMARY STEPS

1. **enable**
2. **show ip route dhcp**
3. **show ip route dhcp ip-address**
4. **show ip route vrf vrf-name dhcp**
5. **clear ip route [vrf vrf-name] dhcp [ip-address]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show ip route dhcp</td>
<td>Displays all routes added by the Cisco IOS DHCP server and relay agent.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show ip route dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 3 show ip route dhcp ip-address</td>
<td>Displays all routes added by the Cisco IOS DHCP server and relay agent associated with the specified IP address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show ip route dhcp 172.16.1.3</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th><code>show ip route vrf vrf-name dhcp</code></th>
<th>Purpose</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Displays all routes added by the Cisco IOS DHCP server and relay agent associated with the named VRF.</td>
<td></td>
<td><code>Device# show ip route vrf vrf1 dhcp</code></td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>clear ip route [vrf vrf-name] dhcp [ip-address]</th>
<th>Removes routes from the routing table added by the DHCP server and relay agent for DHCP clients on unnumbered interfaces.</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# clear ip route dhcp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for the Cisco IOS DHCP Relay Agent

- Example: Configuring Support for the Relay Agent Information Option, page 120
- Example: Configuring Per-Interface Support for the Relay Agent Information Option, page 120
- Example: Configuring the Subscriber Identifier Suboption of the Relay Agent Information Option, page 121
- Example: Configuring DHCP Relay Class Support for Client Identification, page 121
- Example: Configuring DHCP Relay Agent Support for MPLS VPNs, page 122
- Example: Configuring Support for Relay Agent Information Option Encapsulation, page 122
- Example: Setting the Gateway Address of the DHCP Broadcast to a Secondary Address Using Smart Relay Agent Forwarding, page 122

Example: Configuring Support for the Relay Agent Information Option

The following example shows how to enable the DHCP server, the relay agent, and the insertion and removal of the DHCP relay information option (option 82). Note that the Cisco IOS DHCP server is enabled by default. In this example, the DHCP server is disabled:

```
! Reenables the DHCP server.
service dhcp
ip dhcp relay information option
! interface ethernet0/0
ip address 192.168.100.1 255.255.255.0
ip helper-address 10.55.11.3
```

Example: Configuring Per-Interface Support for the Relay Agent Information Option

The following example shows that for subscribers who are being serviced by the same aggregation router, the relay agent information option for ATM subscribers must be processed differently from that for Ethernet digital subscribers. For ATM subscribers, the relay agent information option is configured to be removed from the packet by the relay agent before forwarding the packet to the client. For Ethernet
subscribers, the connected device provides the relay agent information option, and the option is configured to remain in the packet and be forwarded to the client.

```
ip dhcp relay information trust-all
interface Loopback0
  ip address 10.16.0.1 255.255.255.0
!
interface ATM3/0
  no ip address
!
interface ATM3/0.1
  ip helper-address 10.16.1.2
  ip unnumbered loopback0
  ip dhcp relay information option-insert
!
interface Loopback1
  ip address 10.18.0.1 255.255.255.0
!
interface Ethernet4
  no ip address
!
interface Ethernet4/0.1
  encapsulation dot1q 123
  ip unnumbered Loopback1
  ip helper-address 10.18.1.2
  ip dhcp relay information policy-action keep
```

Example: Configuring the Subscriber Identifier Suboption of the Relay Agent Information Option

The following example shows how to add a unique identifier to the subscriber-identifier suboption of the relay agent information option:

```
ip dhcp relay information option
!
interface Loopback0
  ip address 10.1.1.129 255.255.255.192
!
interface ATM4/0
  no ip address
!
interface ATM4/0.1 point-to-point
  ip helper-address 10.16.1.2
  ip unnumbered Loopback0
  ip dhcp relay information option subscriber-id newperson123
  atm route-bridged ip
  pvc 88/800
  encapsulation aal5snap
```

Example: Configuring DHCP Relay Class Support for Client Identification

In the following example, DHCP messages are received from DHCP clients on subnet 10.2.2.0. The relay agent will match and identify the relay class from the relay pool and forward the DHCP message to the appropriate DHCP server identified by the `relay target` command.

```
!
ip dhcp class H323
  option 60 hex 010203
!
ip dhcp class SIP
  option 60 hex 040506
!
! The following is the relay pool:
ip dhcp pool pool1
```
Example: Configuring DHCP Relay Agent Support for MPLS VPNs

In the following example, the DHCP relay agent receives a DHCP request on Ethernet interface 0/1 and sends the request to the DHCP server located at IP helper address 10.44.23.7, which is associated with the VRF named vrf1:

```
relay source 10.2.2.0 255.255.255.0
class H323
 relay target 192.168.2.1
 relay target 192.168.3.1
!
class SIP
 relay target 192.168.4.1
```

Example: Configuring Support for Relay Agent Information Option Encapsulation

In the following example, DHCP relay agent 1 is configured globally to insert the relay agent information option into the DHCP packet. DHCP relay agent 2 is configured to add its own relay agent information option, including the VPN information, and to encapsulate the relay agent information option received from DHCP relay agent 1. The DHCP server receives the relay agent information options from both the relay agents, uses this information to assign IP addresses and other configuration parameters, and forwards them back to the client.

DHCP Relay Agent 1

```
ip dhcp relay information option
```

DHCP Relay Agent 2

```
ip dhcp relay information option
ip dhcp relay information option vpn
ip dhcp relay information option encapsulation
```

Example: Setting the Gateway Address of the DHCP Broadcast to a Secondary Address Using Smart Relay Agent Forwarding

In the following example, the router will forward the DHCP broadcast received on Ethernet interface 0/0 to the DHCP server (10.55.11.3), by inserting 192.168.100.1 in the giaddr field of the DHCP packet. If the DHCP server has a scope or pool configured for the 192.168.100.0/24 network, the server will respond; otherwise, it will not respond.

Because the `ip dhcp smart-relay` global configuration command is configured, if the router sends three requests using 192.168.100.1 in the giaddr field and does not get a response, the router will move on and start using 172.16.31.254 in the giaddr field instead. Without the smart relay functionality, the router uses only 192.168.100.1 in the giaddr field.

```
Example: Configuring DHCP Relay Agent Support for MPLS VPNs
```

```
ip dhcp smart-relay
```

```
Example: Configuring Support for Relay Agent Information Option Encapsulation
```

```
Example: Setting the Gateway Address of the DHCP Broadcast to a Secondary Address Using Smart Relay Agent Forwarding
```

```
ip dhcp smart-relay
```
interface ethernet0/0
ip address 192.168.100.1 255.255.255.0
ip address 172.16.31.254 255.255.255.0
ip helper-address 10.55.11.3

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>DHCP commands: complete command syntax, command modes, command history,</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>“DHCP Overview” module in the IP Addressing: DHCP Configuration Guide</td>
</tr>
<tr>
<td>DHCP server configuration</td>
<td>“Configuring the Cisco IOS DHCP Server” module in the IP Addressing:</td>
</tr>
<tr>
<td>DHCP client configuration</td>
<td>“Configuring the Cisco IOS DHCP Client” module in the IP Addressing:</td>
</tr>
<tr>
<td>DHCP server on-demand address pool manager configuration</td>
<td>“Configuring the DHCP Server On-Demand Address Pool Manager” module in</td>
</tr>
<tr>
<td>DHCP advanced features</td>
<td>“Configuring DHCP Services for Accounting and Security” module in the</td>
</tr>
<tr>
<td>DHCP enhancements for edge-session management configuration</td>
<td>“Configuring DHCP Enhancements for Edge-Session Management” module in</td>
</tr>
<tr>
<td>DHCP options</td>
<td>“DHCP Options” appendix in the Network Registrar User’s Guide, Release</td>
</tr>
<tr>
<td>DHCP for IPv6</td>
<td>“Implementing DHCP for IPv6” module in the IP Addressing: DHCP</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 951</td>
<td>Bootstrap Protocol (BOOTP)</td>
</tr>
</tbody>
</table>
Feature Information for the Cisco IOS DHCP Relay Agent

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Standard/RFC	**Title**
RFC 1542 | *Clarifications and Extensions for the Bootstrap Protocol*
RFC 2131 | *Dynamic Host Configuration Protocol*
RFC 2685 | *Virtual Private Networks Identifier*
RFC 3046 | *DHCP Relay Information Option*
RFC 5460 | *DHCPv6 Bulk Leasequery*

Table 8 Feature Information for the Cisco IOS DHCP Relay Agent

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP Class Support for Client Identification</td>
<td>12.4(11)T</td>
<td>The DHCP Class Support for Client Identification feature enhances the DHCP class mechanism to support options 60, 77, 124, and 125. These options identify the type of client that is sending the DHCP message. The DHCP relay agent can make forwarding decisions based on the content of the options in the DHCP message sent by the client. The following command was introduced by this feature: <code>option hex</code>.</td>
</tr>
<tr>
<td>DHCP Relay MPLS VPN Support</td>
<td>12.2(8)</td>
<td>DHCP relay support for MPLS VPNs enables a network administrator to conserve address space by allowing overlapping addresses. The relay agent can support multiple clients on different VPNs, and many of these clients from different VPNs can share the same IP address. The following commands were modified by this feature: <code>ip dhcp relay information option</code>, and <code>ip helper address</code>.</td>
</tr>
<tr>
<td></td>
<td>12.2(28)SB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRC</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>DHCP Relay Option 82 Encapsulation</td>
<td>12.2(33)SRD</td>
<td>This feature allows a second DHCP relay agent to encapsulate the relay agent information option (option 82) from a prior relay agent, to add its own option 82, and to forward the packet to the DHCP server. The DHCP server can use the VPN information from the second relay agent, along with the option 82 information from the first relay agent, to send correct address assignments and other configuration parameters for the client devices based on the VRF, option 60, and encapsulated option 82. The following commands were modified by this feature: <code>ip dhcp relay information policy</code>, and <code>ip dhcp relay information policy-action</code>.</td>
</tr>
<tr>
<td>DHCP Relay Option 82 per Interface Support</td>
<td>12.2(31)SB2 12.2(33)SRC 12.4(6)T</td>
<td>This feature enables support for the DHCP relay agent information option (option 82) on a per-interface basis. The interface configuration allows different DHCP servers, with different DHCP option 82 requirements to be reached from one Cisco router. The following commands were introduced by this feature: <code>ip dhcp relay information check-reply</code>, <code>ip dhcp relay information option-insert</code>, and <code>ip dhcp relay information policy-action</code>.</td>
</tr>
<tr>
<td>DHCP Subscriber Identifier Suboption of Option 82</td>
<td>12.2(28)SB 12.2(33)SRB 12.3(14)T</td>
<td>This feature enables an ISP to add a unique identifier to the subscriber-identifier suboption of the relay agent information option. The following command was introduced by this feature: <code>ip dhcp relay information option subscriber-id</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>DHCPv4 Relay per Interface</td>
<td>12.4(11)T</td>
<td>The DHCPv4 Relay per Interface VPN ID Support feature allows the Cisco IOS DHCP relay agent to be configured per interface to override the global configuration of the <code>ip dhcp relay information option vpn</code> command. This feature allows subscribers with different relay information option VPN ID requirements on different interfaces to be reached from one Cisco router. The following command was introduced by this feature: <code>ip dhcp relay information option vpn-id</code>.</td>
</tr>
<tr>
<td>DHCPv6 Bulk Lease Query</td>
<td>15.1(1)S</td>
<td>The Cisco IOS DHCPv6 relay agent supports bulk lease query in accordance with RFC 5460. The following commands were introduced or modified by this feature: <code>debug ipv6 dhcp relay</code> and <code>ipv6 dhcp-relay bulk-lease</code>.</td>
</tr>
</tbody>
</table>

Glossary

client—A host that is trying to configure its interface (obtain an IP address) using DHCP or BOOTP protocols.

DHCP—Dynamic Host Configuration Protocol. A network protocol that automatically provides an IP host with an IP address and other related configuration information (for example, subnet mask and default gateway).

giaddr—gateway IP address. The giaddr field of the DHCP message provides the DHCP server with information about the IP address subnet on which the client is to reside. It also provides the DHCP server with an IP address where the response messages are to be sent.

MPLS—Multiprotocol Label Switching. Industry standard upon which tag switching is based.

relay agent—A router that forwards DHCP and BOOTP messages between a server and a client on different subnets.

server—A DHCP or BOOTP server.

VPN—Virtual Private Network. Enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF—VPN routing and forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that
defines a customer VPN site that is attached to a Provider Edge (PE) router. Each VPN that is instantiated on the PE router has its own VRF.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Configuring the Cisco IOS DHCP Client

Cisco IOS Dynamic Host Configuration Protocol (DHCP) client software provides the flexibility to include various configuration options for the DHCP client. A DHCP client is defined as an Internet host using DHCP to obtain configuration parameters such as an IP address. This module describes the concepts and tasks needed to configure the Cisco IOS DHCP client. It includes information on the Cisco DHCP FORCERENEW feature, which provides entity authentication and message authentication.

- Finding Feature Information, page 129
- Restrictions for Configuring the DHCP Client, page 129
- Information About the DHCP Client, page 130
- How to Configure the DHCP Client, page 132
- Configuration Examples for the DHCP Client, page 138
- Additional References, page 141
- Feature Information for the DHCP Client, page 143

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Configuring the DHCP Client

The DHCP client can be configured on Ethernet interfaces and on PPP over ATM (PPPoA) and certain ATM interfaces. The DHCP client works with ATM point-to-point interfaces and will accept any encapsulation type. For ATM multipoint interfaces, the DHCP client is supported using only the aal5snap encapsulation type combined with Inverse Address Resolution Protocol (ARP). Inverse ARP, which builds an ATM map entry, is necessary to send unicast packets to the server (or relay agent) on the other end of the connection. Inverse ARP is supported only for the aal5snap encapsulation type.

For multipoint interfaces, an IP address can be acquired using other encapsulation types because broadcast packets are used. However, unicast packets to the other end will fail because there is no ATM map entry and thus DHCP renewals and releases also fail.
Information About the DHCP Client

- DHCP Client Operation, page 130
- DHCP Client Overview, page 130
- DHCP Client on WAN Interfaces, page 131
- DHCP FORCERENEW, page 131

DHCP Client Operation

DHCP provides a framework for passing configuration information to hosts on a TCP/IP network. A DHCP client is an Internet host using DHCP to obtain configuration parameters such as an IP address. The figure below shows the basic steps that occur when a DHCP client requests an IP address from a DHCP server. The client, Host A, sends a DHCPDISCOVER broadcast message to locate a DHCP server. A DHCP server offers configuration parameters (such as an IP address, a MAC address, a domain name, and a lease for the IP address) to the client in a DHCPOFFER unicast message.

Figure 9 DHCP Request for an IP Address from a DHCP Server

A DHCP client may receive offers from multiple DHCP servers and can accept any one of the offers; however, the client usually accepts the first offer it receives. Additionally, the offer from the DHCP server is not a guarantee that the IP address will be allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address.

The client returns a formal request for the offered IP address to the DHCP server in a DHCPREQUEST broadcast message. The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client.

DHCP Client Overview

The configurable DHCP client functionality allows a DHCP client to use a user-specified client identifier, class identifier, or suggested lease time when requesting an address from a DHCP server.

Configuration parameters and other control information are carried in tagged data items that are stored in the options field of the DHCP message. The DHCP client provides flexibility by allowing the following options to be configured for a DHCP client:

- Option 12--This option specifies the name of the client. The name may or may not be qualified with the local domain.
- Option 33--This option is used to configure a list of static routes in the client.
- Option 51--This option is used in a client request (DHCPDISCOVER or DHCPREQUEST) to allow the client to request a lease time for the IP address.
- Option 55--This option allows the DHCP client to request certain options from the DHCP server. The \texttt{ip dhcp client request} command allows the system administrator to turn off some of the requested options, thus removing them from the request list.
- Option 60--This option allows the user to configure the vendor class identifier string to use in the DHCP interaction.
- Option 61--This option is used by DHCP clients to specify their unique identifier. DHCP servers use this value to index their database of address bindings. This value is expected to be unique for all clients in an administrative domain.
- Option 120--This option is used to specify a 32-bit (binary) IPv4 address to be used by the Session Initiation Protocol (SIP) client to locate a SIP server.
- Option 121--This option is used to configure classless static routes by specifying classless network destinations in these routes: that is, each routing table entry includes a subnet mask.

\textbf{Note}

If a request includes both static routes and classless static routes, the client uses only the classless static routes. If the DHCP server returns both a classless static route option and a router option, the DHCP client ignores the router option.

- Option 125--This option is used by DHCP clients and servers to exchange vendor-specific information.

\section*{DHCP Client on WAN Interfaces}

The DHCP client on WAN interfaces allows a DHCP client to acquire an IP address over PPPoA and certain ATM interfaces. By using DHCP rather than the IP Control Protocol (IPCP), a DHCP client can acquire other useful information such as Domain Name System (DNS) addresses, the DNS default domain name, and the default route.

The configuration of PPPoA and Classical IP and ARP over ATM already allows for a broadcast capability over the interface (using the \texttt{broadcast} keyword on the ATM interface). Most changes in this feature are directed at removing already existing restrictions on what types of interfaces are allowed to send out DHCP packets (previously, dialer interfaces have not been allowed). This feature also ensures that DHCP RELEASE messages are sent out the interface before a connection is allowed to be broken.

\section*{DHCP FORCERENEW}

The Cisco DHCP FORCERENEW feature provides entity authentication and message authentication, in accordance with RFC 3118, by which DHCP clients and servers authenticate the identity of other DHCP entities and verify that the content of a DHCP message has not been changed during delivery through the network.

The message authentication mechanism allows servers to determine whether a request for DHCP information comes from a client that is authorized to use the network. It also allows clients to verify that a DHCP server can be trusted to provide valid configuration.

The Cisco DHCP FORCERENEW feature requires authentication. All client-server exchanges must be authenticated: The \texttt{ip dhcp client authentication mode} and \texttt{key chain} commands must be configured.

When the client gets a FORCERENEW message, it does the following:

- Authenticates the message according to the authentication mode specified in the \texttt{ip dhcp client authentication mode} command. The Cisco DHCP FORCERENEW feature supports both token-based and Message Digest 5 (MD5)-based authentication.
Token-based authentication is useful only for basic protection against inadvertently instantiated DHCP servers. Tokens are transmitted in plain text; they provide weak authentication and do not provide message authentication.

- MD5-based authentication provides better message and entity authentication because it contains a single-use value generated by the source as a message authentication code.
 - Changes its state to RENEW.
 - Tries to renew its lease according to normal DHCP procedures.

The client discards any multicast FORCERENEW message or message that fails authentication.

How to Configure the DHCP Client

- Configuring the DHCP Client, page 132
- Forcing a Release or Renewal of a DHCP Lease for a DHCP Client, page 134
- Enabling FORCERENEW-Message Handling, page 136

Configuring the DHCP Client

- DHCP Client Default Behavior, page 132
- Troubleshooting Tips, page 134

DHCP Client Default Behavior

Cisco routers running Cisco IOS software include DHCP server and relay agent software, which are enabled by default. Your router can act as both the DHCP client and DHCP server. Use the `ip address dhcp` command to obtain IP address information for the configured interface.

You must configure the `ip dhcp client` commands before entering the `ip address dhcp` command on an interface to ensure that the DHCPDISCOVER messages that are generated contain the correct option values. The `ip dhcp client` commands are checked only when an IP address is acquired from DHCP. If any of the `ip dhcp client` commands are entered after an IP address has been acquired from DHCP, it will not take effect until the next time the router acquires an IP address from DHCP. This means that the new configuration will take effect only after either the `ip address dhcp` command or the `release dhcp` and `renew dhcp` EXECcommandshave been configured.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip dhcp client client-id {interface-name|ascii string|hex string}`
5. `ip dhcp client class-id {string hex string}`
6. `ip dhcp client lease days [hours][minutes]`
7. `ip dhcp client hostname host-name`
8. `[no] ip dhcp client request option-name`
9. `ip address dhcp`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface Ethernet 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip dhcp client client-id {interface-name</td>
<td>ascii string</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip dhcp client client-id ascii mytest1</td>
<td>- When you specify the no form of this command, the configuration is removed and the system returns to using the default form. It is not possible to configure the system to not include a client identifier.</td>
</tr>
<tr>
<td>Step 5 ip dhcp client class-id {string</td>
<td>hex string}</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip dhcp client class-id my-class-id</td>
<td></td>
</tr>
<tr>
<td>Step 6 ip dhcp client lease days [hours][minutes]</td>
<td>(Optional) Configures the duration of the lease for an IP address that is requested from a DHCP client to a DHCP server.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip dhcp client lease 2</td>
<td></td>
</tr>
<tr>
<td>Step 7 ip dhcp client hostname host-name</td>
<td>(Optional) Specifies or modifies the hostname sent in the DHCP message.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip dhcp client hostname router1</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Tips

To verify the configuration, you can use the `debug dhcp detail` command to display the DHCP packets that were sent and received. To display the server side of the DHCP interaction, use the `debug ip dhcp server packets` command.

The following are troubleshooting tips for DHCP clients on WAN interfaces:

- An ATM primary interface is always multipoint.
- An ATM subinterface can be multipoint or point-to-point.
- If you are using a point-to-point interface, the routing table determines when to send a packet to the interface and ATM map entries are not needed. Consequently, Inverse ARP, which builds ATM map entries, is not needed.
- If you are using a multipoint interface, you must use Inverse ARP to discover the IP address of the other side of the connection.
- You can specify Inverse ARP through the `protocol ip inarp` command. You must use the aal5snap encapsulation type when using Inverse ARP because it is the only encapsulation type that supports Inverse ARP.

Forcing a Release or Renewal of a DHCP Lease for a DHCP Client

Perform this task to force a release or renewal of a DHCP lease for a DHCP client.

Forcing a release or renewal of a DHCP lease for a DHCP client provides the ability to perform two independent operations from the command-line interface (CLI) in EXEC mode:

- Immediately release a DHCP lease for a DHCP client.
- Force a DHCP renewal of a lease for a DHCP client.

This functionality provides the following benefits:

- Eliminates the need to go into the configuration mode to reconfigure the router to release or renew a DHCP lease.
- Simplifies the release and renewal of a DHCP lease.
- Reduces the amount of time spent performing DHCP IP release and renewal configuration tasks.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8 [no] ip dhcp client request option-name</td>
<td>(Optional) Configures a DHCP client to request an option from a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# no ip dhcp client request tftp-server-address</code></td>
<td>• The option name can be <code>tftp-server-address</code>, <code>netbios-nameserver</code>, <code>vendor-specific</code>, <code>static-route</code>, <code>domain-name</code>, <code>dns-nameserver</code>, or <code>router</code>. By default, all these options are requested. The no form of the command instructs the system to not request certain options.</td>
</tr>
<tr>
<td>Step 9 ip address dhcp</td>
<td>Acquires an IP address on an interface from DHCP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ip address dhcp</code></td>
<td></td>
</tr>
</tbody>
</table>
DHCP Release and Renew CLI Operation

- Release a DHCP Lease, page 135
- Renew a DHCP Lease, page 135

Release a DHCP Lease

The `release dhcp` command starts the process to immediately release a DHCP lease for the specified interface. After the lease is released, the interface address is deconfigured. The `release dhcp` command does not deconfigure the `ip address dhcp` command specified in the configuration file for the interface. During a write memory or show running configuration file action, or if the router is rebooted, the `ip address dhcp` command executes to acquire a DHCP address for the interface.

The original IP address for the interface must be assigned by the DHCP server. If the interface is not assigned an IP address by the DHCP server, the `release dhcp` command fails and displays the following error message:

```
Interface does not have a DHCP originated address
```

Renew a DHCP Lease

The `renew dhcp` command advances the DHCP lease timer to the next stage, at which point one of the following occurs:

- If the lease is currently in a BOUND state, the lease is advanced to the RENEW state and a DHCP RENEW request is sent.
- If the lease is currently in a RENEW state, the timer is advanced to the REBIND state and a DHCP REBIND request is sent.

If there is no response to the RENEW request, the interface remains in the RENEW state. In this case, the lease timer will advance to the REBIND state and subsequently send a REBIND request.

If a NAK response is sent in response to the RENEW request, the interface is deconfigured.

The original IP address for the interface must be assigned by the DHCP server. If the interface is not assigned an IP address by the DHCP server, the `renew dhcp` command fails and displays the following error message:

```
Interface does not have a DHCP originated address
```

Note

In Cisco IOS Release 15.0(1)M and later releases Cisco IOS DHCP clients do not accept packets with zero lease time or no lease time option.

The DHCP client must be assigned an IP address by the DHCP server.
Note
If the DHCP client is not assigned an IP address by the DHCP server, the DHCP release and renew CLI commands will fail.

SUMMARY STEPS
1. enable
2. release dhcp type number
3. renew dhcp type number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 release dhcp type number</td>
<td>Performs an immediate release of the DHCP lease for the interface and deconfigures the IP address for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# release dhcp ethernet 3/1</td>
<td></td>
</tr>
<tr>
<td>Step 3 renew dhcp type number</td>
<td>Forces the DHCP timer to advance to the next stage, at which point a subsequent action is taken: A DHCP REQUEST packet is sent to renew or rebind the lease.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# renew dhcp ethernet 3/1</td>
<td></td>
</tr>
</tbody>
</table>

Enabling FORCERENEW-Message Handling

Perform this task to specify the type of authentication to be used in DHCP messages on the interface, specify the key chain to be used in authenticating a request, and enable FORCERENEW-message handling on the DHCP client when authentication is enabled.

You must configure the same authentication mode, and the same secret ID and secret value that were configured in the key chain command, on both the client and the server.
SUMMARY STEPS

1. interface type number
2. ip dhcp client authentication key-chain name
3. ip dhcp client authentication mode type
4. exit
5. key chain name-of-chain
6. exit
7. ip dhcp-client forcerenew
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 interface type number</td>
<td>Configures an interface type and enters interface-configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface Ethernet 1</td>
<td></td>
</tr>
<tr>
<td>Step 2 ip dhcp client authentication key-chain name</td>
<td>Specifies the key chain to be used in authenticating a request.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip dhcp client authentication key-chain dhcp1</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp client authentication mode type</td>
<td>Specifies the type of authentication to be used in DHCP messages on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip dhcp client authentication mode md5</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 5 key chain *name-of-chain* | Enters key-chain configuration mode and identifies the authentication strings to be used in the named key chain.

Example:

```
Router(config-keychain)# key chain dhcp1
```

Example:

```
key 1234
```

Example:

```
key-string secret
```

Step 6 `exit` | Exits key-chain configuration mode and enters global configuration mode.

Example:

```
Router(config-keychain)# exit
```

Step 7 `ip dhcp-client forcerenew` | Enables DHCP FORCERENEW-message handling on the DHCP client.

Example:

```
Router(config)# ip dhcp-client forcerenew
```

Step 8 `end` | (Optional) Exits global configuration mode and returns to privileged EXEC mode.

Example:

```
Router(config)# end
```

Configuration Examples for the DHCP Client

- Example Configuring the DHCP Client, page 139
- Example Customizing the DHCP Client Configuration, page 139
- Example Configuring an ATM Primary Interface (Multipoint) Using aal5snap Encapsulation and Inverse ARP, page 139
- Example Configuring an ATM Point-to-Point Subinterface Using aal5snap Encapsulation, page 140
- Example Configuring an ATM Point-to-Point Subinterface Using aal5nlpid Encapsulation, page 140
- Example Configuring an ATM Point-to-Point Subinterface Using aal5mux PPP Encapsulation, page 140
- Example Releasing a DHCP Lease, page 140
Example Configuring the DHCP Client

The figure below shows a simple network diagram of a DHCP client on an Ethernet LAN.

Figure 10 Topology Showing a DHCP Client with a Ethernet Interface

On the DHCP server, the configuration is as follows:

```
ip dhcp pool 1
network 10.1.1.0 255.255.255.0
lease 1 6
```

On the DHCP client, the configuration is as follows on interface E2:

```
interface Ethernet2
ip address dhcp
```

This configuration allows the DHCP client to acquire an IP address from the DHCP server through an Ethernet interface.

Example Customizing the DHCP Client Configuration

The following example shows how to customize the DHCP client configuration with various options on Ethernet interface 1:

```
interface Ethernet 1
ip dhcp client client-id ascii my-test1
ip dhcp client class-id my-class-id
ip dhcp client lease 0 1 0
ip dhcp client hostname host1
no ip dhcp client request tftp-server-address
ip address dhcp
```

Example Configuring an ATM Primary Interface (Multipoint) Using aal5snap Encapsulation and Inverse ARP

In the following example, the **protocol ip 255.255.255.255 broadcast** configuration is needed because there must be an ATM map entry to recognize the broadcast flag on the permanent virtual circuit (PVC). You can use any ATM map entry. The **protocol ip inarp** configuration is needed so that the ATM Inverse ARP can operate on the interface such that the system can be pinged once an address is assigned by DHCP.

```
interface atm0
ip address dhcp
pvc 1/100
encapsulation aal5snap
broadcast
```
protocol ip 255.255.255.255 broadcast
protocol ip inarp

Example Configuring an ATM Point-to-Point Subinterface Using aa15snap Encapsulation

The following example shows an ATM point-to-point subinterface configuration using aa15snap encapsulation:

```
interface atm0.1 point-to-point
ip address dhcp
pvc 1/100
encapsulation aal5snap
broadcast
```

Example Configuring an ATM Point-to-Point Subinterface Using aa15nlpid Encapsulation

The following example shows an ATM point-to-point subinterface configuration using aa15nlpid encapsulation:

```
interface atm0.1 point-to-point
ip address dhcp
pvc 1/100
encapsulation aal5nlpid
broadcast
```

Example Configuring an ATM Point-to-Point Subinterface Using aa15mux PPP Encapsulation

The following example shows an ATM point-to-point subinterface configuration using aa15mux PPP encapsulation:

```
interface atm0.1 point-to-point
pvc 1/100
encapsulation aal5mux ppp virtual-template1
broadcast

interface virtual-template1
ip address dhcp
```

Example Releasing a DHCP Lease

In the following example, a DHCP release is performed on an interface that was originally assigned an IP address by the DHCP server:

```
Router# release dhcp ethernet 3/1
```

In the following example, an attempt is made to release the DHCP lease on an interface that was not originally assigned an IP address by the DHCP server:

```
Router# release dhcp ethernet 3/1
```

Interface does not have a DHCP originated address
In the following example, the `release dhcp` command is executed without specifying the `type` and `number` arguments:

Router# release dhcp

Incomplete command.

Example Renewing a DHCP Lease

In the following example, the DHCP lease is renewed on an interface that was originally assigned an IP address by the DHCP server:

Router# renew dhcp ethernet 3/1

In the following example, an attempt is made to renew the DHCP lease on an interface that was not originally assigned an IP address by the DHCP server:

Router# renew dhcp ethernet 3/1

Interface does not have a DHCP originated address

In the following example, the `renew dhcp` command is executed without specifying the `type` and `number` arguments:

Router# renew dhcp

Incomplete command.

Additional References

The following sections provide references related to the DHCP client.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>“DHCP Overview” module</td>
</tr>
<tr>
<td>DHCP server configuration</td>
<td>“Configuring the Cisco IOS DHCP Server” module</td>
</tr>
<tr>
<td>DHCP server on-demand address pools</td>
<td>“Configuring the DHCP Server On-Demand Address Pool Manager” module</td>
</tr>
<tr>
<td>DHCP relay agent configuration</td>
<td>“Configuring the Cisco IOS DHCP Relay Agent” module</td>
</tr>
<tr>
<td>DHCP advanced features</td>
<td>“Configuring DHCP Services for Accounting and Security” module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP enhancements for edge-session management</td>
<td>“Configuring DHCP Enhancements for Edge-Session Management” module</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>RFC 2132</td>
<td>DHCP Options and BOOTP Vendor Extensions</td>
</tr>
<tr>
<td>RFC 3118</td>
<td>Authentication for DHCP Messages</td>
</tr>
<tr>
<td>RFC 3203</td>
<td>DHCP reconfigure extension</td>
</tr>
<tr>
<td>RFC 3361</td>
<td>DHCP-for-IPv4 Option for SIP Servers</td>
</tr>
<tr>
<td>RFC 3442</td>
<td>Classless Static Route Option for DHCPv4</td>
</tr>
<tr>
<td>RFC 3925</td>
<td>Vendor-Identifying Vendor Options for DHCPv4</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for the DHCP Client

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configurable DHCP Client</td>
<td>12.2(28)SB 12.3(8)T</td>
<td>The Configurable DHCP Client feature provides the flexibility to include various configuration options for the DHCP client. A DHCP client is defined as an Internet host using DHCP to obtain configuration parameters such as an IP address. The following commands were introduced: ip dhcp client class-id, ip dhcp client client-id, ip dhcp client hostname, ip dhcp client lease, ip dhcp client request.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| DHCP Release and Renew CLI in EXEC Mode | 12.2(8)T 12.2(28)SB 12.3(4)T | This feature provides the ability to perform two independent operations from the CLI:
 • Immediately release a DHCP lease for a DHCP client
 • Force a DHCP renewal of a lease for a DHCP client
 The following commands were introduced: `release dhcp` and `renew dhcp`. |
| DHCP Client on WAN Interfaces | 12.2(8)T 12.2(28)SB | The DHCP Client on WAN Interfaces feature extends the DHCP to allow a DHCP client to acquire an IP address over PPP over ATM (PPPoA) and certain ATM interfaces.
 No commands were introduced or modified by this feature. |
| Cisco DHCP FORCERENEW | 12.4(22)YB 15.0(1)M | This feature enhances security by providing entity authentication and message authentication.
 The following commands were introduced or modified: `ip dhcp client authentication key-chain`, `ip dhcp client authentication mode`, `ip dhcp-client forcerenew`, `ip dhcp client request`. |

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Configuring DHCP Services for Accounting and Security

Cisco IOS software supports several capabilities that enhance DHCP security, reliability, and accounting in Public Wireless LANs (PWLANs). This functionality can also be used in other network implementations. This module describes the concepts and tasks needed to configure DHCP services for accounting and security.

- Finding Feature Information, page 145
- Prerequisites for Configuring DHCP Services for Accounting and Security, page 145
- Information About DHCP Services for Accounting and Security, page 146
- How to Configure DHCP Services for Accounting and Security, page 147
- Configuration Examples for DHCP Services for Accounting and Security, page 161
- Additional References, page 164
- Technical Assistance, page 166
- Feature Information for DHCP Services for Accounting and Security, page 166

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring DHCP Services for Accounting and Security

Before you configure DHCP services for accounting and security, you should understand the concepts documented in the “DHCP Overview” module.
Information About DHCP Services for Accounting and Security

- DHCP Operation in Public Wireless LANs, page 146
- Security Vulnerabilities in Public Wireless LANs, page 146
- DHCP Services for Security and Accounting Overview, page 146
- DHCP Lease Limits, page 147

DHCP Operation in Public Wireless LANs

The configuration of DHCP in a PWLAN simplifies the configuration of wireless clients and reduces the overhead necessary to maintain the network. DHCP clients are leased IP addresses by the DHCP server and then authenticated by the Service Selection Gateway (SSG), which allows the clients to access network services. The DHCP server and client exchange DHCP messages for IP address assignments. When a DHCP server assigns an IP address to a client, a DHCP binding is created. The IP address is leased to the client until the client explicitly releases the IP address and disconnects from the network. If the client disconnects without releasing the address, the server terminates the lease after the lease time is over. In either case, the DHCP server removes the binding and the IP address is returned to the pool.

Security Vulnerabilities in Public Wireless LANs

As more people start using PWLANs, security becomes an important concern. Most implementations of PWLANs rely on DHCP for users to obtain an IP address while in a hot spot (such as a coffee shop, airport terminal, hotel, and so on) and use this IP address provided by the DHCP server throughout their session.

IP spoofing is a common technique used by hackers to spoof IP addresses. For example, customer A obtains an IP address from DHCP and has already been authenticated to use the PWLAN, but a hacker spoofs the IP address of customer A and uses this IP address to send and receive traffic. Customer A will still be billed for the service even though he or she is not using the service.

Address Resolution Protocol (ARP) table entries are dynamic by design. Request and reply ARP packets are sent and received by all the networking devices in a network. In a DHCP network, the DHCP server stores the leased IP address to the MAC address or the client identifier of the client in the DHCP binding. But as ARP entries are learned dynamically, an unauthorized client can spoof the IP address given by the DHCP server and start using that IP address. The MAC address of this unauthorized client will replace the MAC address of the authorized client in the ARP table, allowing the unauthorized client to freely use the spoofed IP address.

DHCP Services for Security and Accounting Overview

DHCP security and accounting features have been designed and implemented to address the security concerns in PWLANs but also can be used in other network implementations.

DHCP accounting provides authentication, authorization, and accounting (AAA) and RADIUS support for DHCP. The AAA and RADIUS support improves security by sending secure START and STOP accounting messages. The configuration of DHCP accounting adds a layer of security that allows DHCP lease assignment and termination to be triggered for the appropriate RADIUS START and STOP accounting records so that the session state is properly maintained by upstream devices, such as an SSG. This additional security can help to prevent hackers or unauthorized clients from gaining illegal entry to the network by spoofing authorized DHCP leases.
Three other features have been designed and implemented to address the security concerns in PWLANs. The first feature secures ARP table entries to DHCP leases in the DHCP database. The secure ARP functionality prevents IP spoofing by synchronizing the database of the DHCP server with the ARP table to avoid address hijacking. Secure ARP adds an entry to the ARP table for a client when an address is allocated that can be deleted by the DHCP server only when a binding expires.

The second feature is DHCP authorized ARP. This functionality provides a complete solution by addressing the need for DHCP to explicitly know when a user logs out. Before the introduction of DHCP authorized ARP, there was no mechanism to inform the DHCP server if a user had left the system ungracefully, which could result in excessive billing for a customer that had logged out but without the system detecting it. To prevent this problem, DHCP authorized ARP sends periodic ARP messages on a per-minute basis to determine if a user is still logged in. Only authorized users can respond to the ARP request. ARP responses from unauthorized users are blocked at the DHCP server, providing an extra level of security.

In addition, DHCP authorized ARP disables dynamic ARP learning on an interface. The address mapping can be installed only by the authorized component specified by the `arp authorized` interface configuration command. DHCP is the only authorized component allowed to install ARP entries.

The third feature is ARP Auto-logoff, which adds finer control for probing when authorized users log out. The `arp probe interval` command specifies when to start a probe (the timeout), how frequently a peer is probed (the interval), and the maximum number of retries (the count).

DHCP Lease Limits

You can control the number of subscribers globally or on a per-interface basis by configuring a DHCP lease limit. This functionality allows an ISP to limit the number of leases available to clients per household or connection.

How to Configure DHCP Services for Accounting and Security

- Configuring AAA and RADIUS for DHCP Accounting, page 147
- Configuring DHCP Accounting, page 150
- Verifying DHCP Accounting, page 152
- Securing ARP Table Entries to DHCP Leases, page 153
- Configuring DHCP Authorized ARP, page 155
- Configuring a DHCP Lease Limit to Globally Control the Number of Subscribers, page 157
- Configuring a DHCP Lease Limit to Control the Number of Subscribers on an Interface, page 159

Configuring AAA and RADIUS for DHCP Accounting

RADIUS provides the accounting capability for the transmission of secure START and STOP messages. AAA and RADIUS are enabled prior to the configuration of DHCP accounting but can also be enabled to secure an insecure DHCP network. The configuration steps in this section are required for configuring DHCP accounting in a new or existing network.

- RADIUS Accounting Attributes, page 148
- Troubleshooting Tips, page 150
RADIUS Accounting Attributes

DHCP accounting introduces the attributes shown in the table below. These attributes are processed directly by the RADIUS server when DHCP accounting is enabled. These attributes can be monitored in the output of the `debug radius` command. The output will show the status of the DHCP leases and specific configuration details about the client. The `accounting` keyword can be used with the `debug radius` command to filter the output and display only DHCP accounting messages.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calling-Station-ID</td>
<td>The output from this attribute displays the MAC address of the client.</td>
</tr>
<tr>
<td>Framed-IP-Address</td>
<td>The output from this attribute displays the IP address that is leased to the client.</td>
</tr>
<tr>
<td>Acct-Terminate-Cause</td>
<td>The output from this attribute displays the message “session-timeout” if a client does not explicitly disconnect.</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa group server radius group-name
5. server ip-address auth-port port-number acct-port port-number
6. exit
7. aaa accounting {system | network | exec | connection | commands level} {default | list-name} {start-stop | stop-only | none} [broadcast] group group-name
8. aaa session-id {common | unique}
9. ip radius source-interface type number [vrf vrf-name]
10. radius-server host {hostname | ip-address} [auth-port port-number] [acct-port port-number]
11. radius-server retransmit number-of-retries

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 aaa new-model</td>
<td>Enables the AAA access control model.</td>
</tr>
<tr>
<td>Note</td>
<td>TACACS and extended TACACS commands are not available after this command is configured and are not supported by DHCP accounting.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# aaa new-model</td>
</tr>
<tr>
<td>Step 4 aaa group server radius group-name</td>
<td>Creates a server group for AAA or TACACS+ services and enters server group RADIUS configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# aaa group server radius RGROUP-1</td>
</tr>
<tr>
<td>Step 5 server ip-address auth-port port-number acct-port port-number</td>
<td>Specifies the servers that are members of the server group that was created in Step 4.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sg-radius)# server 10.0.0.1 auth-port 1645 acct-port 1646</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits server group RADIUS configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sg-radius)# exit</td>
</tr>
<tr>
<td>Step 7 aaa accounting {system</td>
<td>network</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# aaa accounting network RADIUS-GROUP1 start-stop group RGROUP-1</td>
</tr>
</tbody>
</table>

RADIUS Accounting Attributes

IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T 149
Step 8 aaa session-id { common | unique }

Example:

 Router(config)# aaa session-id common

Purpose:
Specifies whether the same session ID will be used for each AAA accounting service type within a call or whether a different session ID will be assigned to each accounting service type.

Step 9 ip radius source-interface type number [vrf vrf-name]

Example:

 Router(config)# ip radius source-interface Ethernet 0

Purpose:
Forces RADIUS to use the IP address of the specified interface for all outgoing RADIUS packets.

Step 10 radius-server host { hostname | ip-address } [auth-port port-number] [acct-port port-number]

Example:

 Router(config)# radius-server host 10.1.1.1 auth-port 1645 acct-port 1646

Purpose:
Specifies the RADIUS server host.

Troubleshooting Tips:
To monitor and troubleshoot the configuration of RADIUS accounting, use the following command:

disable radius accounting

Configuring DHCP Accounting

Perform this task to configure DHCP accounting.

DHCP accounting is enabled with the accounting DHCP pool configuration command. This command configures DHCP to operate with AAA and RADIUS to enable secure START and STOP accounting messages. This configuration adds a layer of security that allows DHCP lease assignment and termination to be triggered for the appropriate RADIUS START and STOP accounting records so that the session state is properly maintained by upstream devices, such as the SSG.

DHCP accounting is configured on a per-client or per-lease basis. Separate DHCP accounting processes can be configured on a per-pool basis.
You must configure an SSG for client authentication. AAA and RADIUS must be enabled before DHCP accounting will operate.

Note

The following restrictions apply to DHCP accounting:

- DHCP accounting can be configured only for DHCP network pools in which bindings are created automatically and destroyed upon lease termination or when the client sends a DHCPRELEASE message.
- DHCP bindings are destroyed when the clear ip dhcp binding or no service dhcp command is entered, which also triggers an accounting STOP message. You should exercise caution when entering these commands if a pool is configured with DHCP accounting, because these commands will clear active leases.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool pool-name
4. accounting method-list-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Configures a DHCP address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool WIRELESS-POOL</td>
<td></td>
</tr>
</tbody>
</table>
Verifying DHCP Accounting

Perform this task to verify the DHCP accounting configuration.

The `debug radius`, `debug radius accounting`, `debug ip dhcp server events`, `debug aaa accounting`, and `debug aaa id` commands need not be issued together or in the same session because there are differences in the information that is provided. These commands, however, can be used to display DHCP accounting start and stop events, AAA accounting messages, and information about AAA and DHCP hosts and clients. See the "RADIUS Accounting Attributes" section of this module for a list of AAA attributes that have been introduced by DHCP accounting. The `show running-config | begin dhcp` command can be used to display the local DHCP configuration including the configuration of DHCP accounting.

SUMMARY STEPS

1. `enable`
2. `debug radius accounting`
3. `debug ip dhcp server events`
4. `debug aaa accounting`
5. `debug aaa id`
6. `show running-config | begin dhcp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 debug radius accounting</td>
<td>Displays RADIUS events on the console of the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# debug radius accounting</code></td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config-dhcp)# accounting method-list-name
```

Purpose

- Enables DHCP accounting if the specified server group is configured to run RADIUS accounting.

- The example configures DHCP accounting START and STOP messages to be sent if RADIUS-GROUP1 is configured as a start-stop group. STOP messages will be sent only if RADIUS-GROUP1 is configured as a stop-only group. See Step 7 in the Configuring AAA and RADIUS for DHCP Accounting, page 147 section for more details.
### Command or Action	Purpose
Step 3 debug ip dhcp server events | Displays DHCP IP address assignments, DHCP lease expirations, and DHCP database changes.

Example:
```
Router# debug ip dhcp server events
```

Step 4 debug aaa accounting | Displays AAA accounting events.

Example:
```
Router# debug aaa accounting
```

- START and STOP accounting messages will be displayed in the output.

Step 5 debug aaa id | Displays AAA events as they relate to unique AAA session IDs.

Example:
```
Router# debug aaa id
```

Step 6 show running-config | begin dhcp | Displays the local configuration of the router.

Example:
```
Router# show running-config | begin dhcp
```

- The sample output is filtered with the begin keyword to start displaying output at the DHCP section of the running configuration.

Securing ARP Table Entries to DHCP Leases

Perform this task to secure ARP table entries to DHCP leases in the DHCP database.

When the `update arp` command is used, ARP table entries and their corresponding DHCP leases are secured automatically for all new leases and DHCP bindings. However, existing active leases are not secured. These leases are still insecure until they are renewed. When the lease is renewed, it is treated as a new lease and will be secured automatically. If this command is disabled on the DHCP server, all existing secured ARP table entries will automatically change to dynamic ARP entries.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp pool pool -name`
4. `update arp`
5. `renew deny unknown`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool pool-name</td>
<td>Configures a DHCP address pool and enters DHCP pool configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ip dhcp pool WIRELESS-POOL</td>
<td></td>
</tr>
<tr>
<td>Step 4 update arp</td>
<td>Secures insecure ARP table entries to the corresponding DHCP leases.</td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# update arp</td>
<td>• Existing active DHCP leases will not be secured until they are renewed. Using the no update arp command will change secured ARP table entries back to dynamic ARP table entries.</td>
</tr>
<tr>
<td>Step 5 renew deny unknown</td>
<td>(Optional) Configures the renewal policy for unknown clients.</td>
</tr>
<tr>
<td>Example: Router(config-dhcp)# renew deny unknown</td>
<td>• See the "Troubleshooting Tips" section for information about when to use this command.</td>
</tr>
</tbody>
</table>

- **Troubleshooting Tips, page 154**

Troubleshooting Tips

In some usage scenarios, such as a wireless hot spot, where both DHCP and secure ARP are configured, a connected client device might go to sleep or suspend for a period of time. If the suspended time period is greater than the secure ARP timeout (default of 91 seconds), but less than the DHCP lease time, the client can awaken with a valid lease, but the secure ARP timeout has caused the lease binding to be removed because the client has been inactive. When the client awakens, the client still has a lease on the client side but is blocked from sending traffic. The client will try to renew its IP address but the DHCP server will ignore the request because the DHCP server has no lease for the client. The client must wait for the lease to expire before being able to recover and send traffic again.

To remedy this situation, use the **renew deny unknown** command in DHCP pool configuration mode. This command forces the DHCP server to reject renewal requests from clients if the requested address is present.
at the server but is not leased. The DHCP server sends a DHCPNAK denial message to the client, which forces the client back to its initial state. The client can then negotiate for a new lease immediately, instead of waiting for its old lease to expire.

Configuring DHCP Authorized ARP

Perform this task to configure DHCP authorized ARP, which disables dynamic ARP learning on an interface.

DHCP authorized ARP has a limitation in supporting accurate one-minute billing. DHCP authorized ARP probes for authorized users once or twice, 30 seconds apart. In a busy network the possibility of missing reply packets increases, which can cause a premature logoff. If you need a more accurate and finer control for probing of the authorized user, configure the `arp probe interval` command. This command specifies when to start a probe, the interval between unsuccessful probes, and the maximum number of retries before triggering an automatic logoff.

Note

If both static and authorized ARP are installing the same ARP entry, static configuration overrides authorized ARP. You can install a static ARP entry by using the `arp` global configuration command. You can only remove a nondynamic ARP entry by the same method in which it was installed.

The ARP timeout period should not be set to less than 30 seconds. The feature is designed to send out an ARP message every 30 seconds, beginning 90 seconds before the ARP timeout period specified by the `arp timeout` command. This behavior allows probing for the client at least three times before giving up on the client. If the ARP timeout is set to 60 seconds, an ARP message is sent twice, and if it is set to 30 seconds, an ARP message is sent once. An ARP timeout period set to less than 30 seconds can yield unpredictable results.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip address ip-address mask`
5. `arp authorized`
6. `arp timeout seconds`
7. `arp probe interval seconds count number`
8. `end`
9. `show arp`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>type number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface</td>
<td></td>
</tr>
<tr>
<td>ethernet 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip address</td>
<td>Sets a primary IP address for an interface.</td>
</tr>
<tr>
<td>ip-address mask</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip</td>
<td></td>
</tr>
<tr>
<td>address 209.165.200.224</td>
<td></td>
</tr>
<tr>
<td>209.165.200.224</td>
<td></td>
</tr>
<tr>
<td>Step 5 arp authorized</td>
<td>Disables dynamic ARP learning on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# arp</td>
<td></td>
</tr>
<tr>
<td>authorized</td>
<td></td>
</tr>
<tr>
<td>Step 6 arp timeout</td>
<td>Configures how long an entry remains in the ARP cache.</td>
</tr>
<tr>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# arp</td>
<td></td>
</tr>
<tr>
<td>timeout 60</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a DHCP Lease Limit to Globally Control the Number of Subscribers

Perform this task to globally control the number of DHCP leases allowed for clients behind an ATM Routed Bridged Encapsulation (RBE) unnumbered interface or serial unnumbered interface.

This feature allows an ISP to globally limit the number of leases available to clients per household or connection.

If this feature is enabled on a Cisco IOS DHCP relay agent connected to clients through unnumbered interfaces, the relay agent keeps information about the DHCP leases offered to the clients per subinterface. When a DHCPACK message is forwarded to the client, the relay agent increments the number of leases offered to clients on that subinterface. If a new DHCP client tries to obtain an IP address and the number of leases has already reached the configured lease limit, DHCP messages from the client will be dropped and will not be forwarded to the DHCP server.

If this feature is enabled on the Cisco IOS DHCP server directly connected to clients through unnumbered interfaces, the server allocates addresses and increments the number of leases per subinterface. If a new client tries to obtain an IP address, the server will not offer an IP address if the number of leases on the subinterface has already reached the configured lease limit.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 <code>arp probe interval seconds count number</code></td>
<td>(Optional) Specifies an interval, in seconds, and number of probe retries.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# arp probe interval 5 count 30</code></td>
<td>• <code>seconds</code> --Interval, in seconds, after which the next probe will be sent to see if a peer is present. The range is from 1 to 10.</td>
</tr>
<tr>
<td></td>
<td>• <code>number</code> --Number of probe retries. If there is no reply after the count has been reached, the peer has logged off. The range is from 1 to 60.</td>
</tr>
<tr>
<td></td>
<td>Note You must use the <code>no</code> form of the command to stop the probing process.</td>
</tr>
<tr>
<td>Step 8 <code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 9 <code>show arp</code></td>
<td>(Optional) Displays the entries in the ARP table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# show arp</code></td>
<td></td>
</tr>
</tbody>
</table>
This feature is not supported on numbered interfaces. The lease limit can be applied only to ATM with RBE unnumbered interfaces or serial unnumbered interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp limit lease log
4. ip dhcp limit lease per interface lease-limit
5. end
6. show ip dhcp limit lease [type number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp limit lease log</td>
<td>(Optional) Enables DHCP lease violation logging when a DHCP lease limit threshold is exceeded.</td>
</tr>
<tr>
<td></td>
<td>• If this command is configured, any lease limit violations will display in the output of the show ip dhcp limit lease command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp limit lease log</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip dhcp limit lease per interface lease-limit</td>
<td>Limits the number of leases offered to DHCP clients behind an ATM RBE unnumbered or serial unnumbered interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp limit lease per interface 2</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

Purpose

Exits global configuration mode and returns to privileged EXEC mode.

Step 6 show ip dhcp limit lease [type number]

Example:

Router# show ip dhcp limit lease

(Optional) Displays the number of times the lease limit threshold has been violated.

- You can use the `clear ip dhcp limit lease` privileged EXEC command to manually clear the stored lease violation entries.

Troubleshooting Tips

You can use the `debug ip dhcp server packet` and `debug ip server events` commands to troubleshoot the DHCP lease limit.

Configuring a DHCP Lease Limit to Control the Number of Subscribers on an Interface

Perform this task to limit the number of DHCP leases allowed on an interface.

This feature allows an ISP to limit the number of leases available to clients per household or connection on an interface.

If this feature is enabled on the Cisco IOS DHCP server directly connected to clients through unnumbered interfaces, the server allocates addresses and increments the number of leases per subinterface. If a new client tries to obtain an IP address, the server will not offer an IP address if the number of leases on the subinterface has already reached the configured lease limit.

Note

This feature is not supported on numbered interfaces. The lease limit can be applied only to ATM with RBE unnumbered interfaces or serial unnumbered interfaces.

>
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp limit lease log
4. interface type number
5. ip dhcp limit lease lease-limit
6. end
7. show ip dhcp limit lease [type number]
8. show ip dhcp server statistics [type number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** ip dhcp limit lease log | (Optional) Enables DHCP lease violation logging when a DHCP lease limit threshold is exceeded.
 • If this command is configured, any lease limit violations will display in the output of the show ip dhcp limit lease command. |
| **Example:** Router(config)# ip dhcp limit lease log |
| **Step 4** interface type number | Enters interface configuration mode. |
| **Example:** Router(config)# interface Serial 1/0 |
| **Step 5** ip dhcp limit lease lease-limit | Limits the number of leases offered to DHCP clients per interface.
 • The interface configuration will override any global setting specified by the ip dhcp limit lease per interface global configuration command. |
<p>| Example: Router(config-if)# ip dhcp limit lease 6 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Step 7 show ip dhcp limit lease [type number]	(Optional) Displays the number of times the lease limit threshold has been violated.
Example:	
Router# show ip dhcp limit lease Serial 0/0	You can use the clear ip dhcp limit lease privileged EXEC command to manually clear the stored lease violation entries.

Step 8 show ip dhcp server statistics [type number]	(Optional) Displays DHCP server statistics.
Example:	
Router# show ip dhcp server statistics Serial0/0	This command was modified in Cisco IOS Release 12.2(33)SRC to display interface-level DHCP statistics.

- Troubleshooting Tips, page 161

Troubleshooting Tips

You can use the debug ip dhcp server packet and debug ip server events commands to troubleshoot the DHCP lease limit.

Configuration Examples for DHCP Services for Accounting and Security

- Example Configuring AAA and RADIUS for DHCP Accounting, page 161
- Example Configuring DHCP Accounting, page 162
- Example Verifying DHCP Accounting, page 162
- Example Configuring DHCP Authorized ARP, page 163
- Example Verifying DHCP Authorized ARP, page 164
- Example Configuring a DHCP Lease Limit, page 164

Example Configuring AAA and RADIUS for DHCP Accounting

The following example shows how to configure AAA and RADIUS for DHCP accounting:

```bash
aaa new-model
aaa group server radius RGROUP-1
  server 10.1.1.1 auth-port 1645 acct-port 1646
exit
```
aaa accounting network RADIUS-GROUP1 start-stop group RGROUP-1
aaa session-id common
ip radius source-interface Ethernet 0
radius-server host 10.1.1.1 auth-port 1645 acct-port 1646
radius-server retransmit 3
exit

Example Configuring DHCP Accounting

DHCP accounting is configured on a per-client or per-lease basis. Separate DHCP accounting processes can be configured on a per-pool basis. The following example shows how to configure DHCP accounting START and STOP messages to be sent if RADIUS-GROUP1 is configured as a start-stop group:

ip dhcp pool WIRELESS-POOL
accounting RADIUS-GROUP1
exit

Example Verifying DHCP Accounting

DHCP accounting is enabled after both RADIUS and AAA for DHCP are configured. DHCP START and STOP accounting generation information can be monitored with the `debug radius accounting` and `debug ip dhcp server events` commands. See the "RADIUS Accounting Attributes" task for a list of AAA attributes that have been introduced by DHCP accounting.

The following is sample output from the `debug radius accounting` command. The output shows the DHCP lease session ID, the MAC address, and the IP address of the client interface.

```
00:00:53: RADIUS: Pick NAS IP for uid=2 tableid=0 cfg_addr=10.0.18.3 best_addr=0.0.0.0
00:00:53: RADIUS(00000002): sending Request to unknown id 21645/1 10.1.1.1 :1646, Accounting-Request, len 76
00:00:53: RADIUS: authenticator C6 FE EA B2 1F 9A B5 A2 - 9A 5B 09 B5 36 B5 B9 27
00:00:53: RADIUS: Acct-Session-Id [44] 10 "00000002"
00:00:53: RADIUS: Framed-IP-Address [8] 6 10.0.0.10
00:00:53: RADIUS: Calling-Station-Id [31] 16 "00000c59df76"
00:00:53: RADIUS: Acct-Status-Type [40] 6 Start [1]
00:00:53: RADIUS: Service-Type [6] 6 Framed [2]
00:00:53: RADIUS: NAS-IP-Address [4] 6 10.0.18.3
00:00:53: RADIUS: Acct-Delay-Time [41] 6 0
```

The following is sample output from the `debug ip dhcp server events` command. The output was generated on a DHCP server and shows an exchange of DHCP messages between the client and server to negotiate a DHCP lease. The acknowledgment that confirms to the DHCP server that the client has accepted the assigned IP address triggers the accounting START message. It is shown in the last line of the following output:

```
00:45:50:DHCPD:DHCPDISCOVER received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 on interface Ethernet0.
00:45:50:DHCPD:DHCPDISCOVER received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 on interface Ethernet0.
00:45:50:DHCPD:DHCPDISCOVER received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 on interface Ethernet0.
00:45:52:DHCPD:Sending DHCPOFFER to client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 (10.10.10.16)
00:45:52:DHCPD:DHCPDISCOVER received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 (10.10.10.16)
00:45:52:DHCPD:DHCPREQUEST received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 (10.10.10.16)
00:45:52:DHCPD:DHCPREQUEST received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 (10.10.10.16)
00:45:52:DHCPD:DHCPREQUEST received from client
00:00:063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 (10.10.10.16)
```

The following is sample output from the `debug ip dhcp server events` command. The output was generated on a DHCP server and shows the receipt of an explicit release message from the DHCP client. The DHCP
server triggers an accounting STOP message and then returns the IP address to the DHCP pool. Information about the accounting STOP message is shown in the third line of the following output:

```
00:46:26:DHCPD:DHCPRELEASE message received from client
0063.6973.636f.2d30.3030.312e.3432.6339.2e65.6337.352d.4574.31 (10.10.10.16)
00:46:26:DHCPD:triggered Acct Stop for (10.10.10.16).
00:46:26:DHCPD:returned 10.10.10.16 to address pool WIRELESS-POOL.
```

Example Configuring DHCP Authorized ARP

Router 1 is the DHCP server that assigns IP addresses to the routers that are seeking IP addresses, and Router 2 is the DHCP client configured to obtain its IP address through the DHCP server. Because the `update arp` DHCP pool configuration command is configured on Router 1, the router will install a secure ARP entry in its ARP table. The `arp authorized` command stops any dynamic ARP on that interface. Router 1 sends periodic ARPs to Router 2 to make sure that the client is still active. Router 2 responds with an ARP reply. Unauthorized clients cannot respond to these periodic ARPs. The unauthorized ARP responses are blocked at the DHCP server. The timer for the entry is refreshed on Router 1 upon receiving the response from the authorized client.

See the figure below for a sample topology.

Figure 11 Sample Topology for DHCP Authorized ARP

```
Router 1
   2
   |
   
   3

E0

Router 2
   1
   |
   
   4

E0/0

1. Send request for IP address.
2. Assign IP address and install secure ARP entry for it in Router 1.
3. Send periodic ARPs to make sure Router 2 is still active.
4. Reply to periodic ARPs.
```

Router 1 (DHCP Server)

```
ip dhcp pool name1
    network 10.0.0.0 255.255.255.0
    lease 0 0 20
    update arp
!
interface Ethernet 0
    ip address 10.0.0.1 255.255.255.0
    half-duplex
    arp authorized
    arp timeout 60
! optional command to adjust the periodic ARP probes sent to the peer
    arp probe interval 5 count 15
```

Router 2 (DHCP Client)

```
interface Ethernet 0/0
    ip address dhcp
    half-duplex
```

Example Configuring DHCP Authorized ARP

Router 1 is the DHCP server that assigns IP addresses to the routers that are seeking IP addresses, and Router 2 is the DHCP client configured to obtain its IP address through the DHCP server. Because the `update arp` DHCP pool configuration command is configured on Router 1, the router will install a secure ARP entry in its ARP table. The `arp authorized` command stops any dynamic ARP on that interface. Router 1 sends periodic ARPs to Router 2 to make sure that the client is still active. Router 2 responds with an ARP reply. Unauthorized clients cannot respond to these periodic ARPs. The unauthorized ARP responses are blocked at the DHCP server. The timer for the entry is refreshed on Router 1 upon receiving the response from the authorized client.

See the figure below for a sample topology.

Figure 11 Sample Topology for DHCP Authorized ARP

```
Router 1
   2
   |
   
   3

E0

Router 2
   1
   |
   
   4

E0/0

1. Send request for IP address.
2. Assign IP address and install secure ARP entry for it in Router 1.
3. Send periodic ARPs to make sure Router 2 is still active.
4. Reply to periodic ARPs.
```

Router 1 (DHCP Server)

```
ip dhcp pool name1
    network 10.0.0.0 255.255.255.0
    lease 0 0 20
    update arp
!
interface Ethernet 0
    ip address 10.0.0.1 255.255.255.0
    half-duplex
    arp authorized
    arp timeout 60
! optional command to adjust the periodic ARP probes sent to the peer
    arp probe interval 5 count 15
```

Router 2 (DHCP Client)

```
interface Ethernet 0/0
    ip address dhcp
    half-duplex
```
Example Verifying DHCP Authorized ARP

The following is sample output from the `show arp` command on Router 1 (see the figure above):

```
Router1# show arp
Protocol Address          Age (min)  Hardware Addr   Type   Interface
Internet 10.0.0.3                0   0004.dd0c.ffcb  ARPA   Ethernet01
Internet 10.0.0.1                -   0004.dd0c.ff86  ARPA   Ethernet0
```

The following is sample output from the `show arp` command on Router 2 (see the figure above):

```
Router2# show arp
Protocol Address          Age (min)  Hardware Addr   Type   Interface
Internet 10.0.0.3                -   0004.dd0c.ffcb  ARPA   Ethernet0/02
Internet 10.0.0.1                0   0004.dd0c.ff86  ARPA   Ethernet0/0
```

Example Configuring a DHCP Lease Limit

In the following example, if more than three clients try to obtain an IP address from ATM interface 4/0.1, the DHCPDISCOVER packets will not be forwarded to the DHCP server. If the DHCP server resides on the same router, DHCP will not reply to more than three clients.

```
ip dhcp limit lease per interface 3

interface loopback 0
  ip address 10.1.1.129 255.255.255.192

interface ATM 4/0.1
  no ip address

interface ATM 4/0.1 point-to-point
  ip helper-address 172.16.1.2
  ip unnumbered loopback 0
  atm route-bridged ip
  pvc 88/800
  encapsulation aal5snap
```

In the following example, five DHCP clients are allowed to receive IP addresses. If a sixth client tries to obtain an IP address, the DHCPDISCOVER messages will not be forwarded to the DHCP server and a trap will be sent to the SNMP manager.

```
ip dhcp limit lease log

ip dhcp pool pool1
  network 10.1.1.0 255.255.255.0

interface loopback 0
  ip address 10.1.1.1 255.255.255.0

interface serial 0/0.2 point-to-point
  ip dhcp limit lease 5
  ip unnumbered loopback 0
  exit

snmp-server enable traps dhcp interface
```

Additional References

IP Addressing: DHCP Configuration Guide, Cisco IOS Release 12.4T
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP commands: complete command syntax, command modes, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP commands: complete command syntax, command modes, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>“DHCP Overview” module in the Cisco IOS IP Addressing Configuration Guide</td>
</tr>
<tr>
<td>DHCP server configuration</td>
<td>“Configuring the Cisco IOS DHCP Server” module in the Cisco IOS IP Addressing Configuration Guide</td>
</tr>
<tr>
<td>DHCP ODAP configuration</td>
<td>“Configuring the DHCP Server On-Demand Address Pool Manager” module in the Cisco IOS IP Addressing Configuration Guide</td>
</tr>
<tr>
<td>DHCP client configuration</td>
<td>“Configuring the Cisco IOS DHCP Client” module in the Cisco IOS IP Addressing Configuration Guide</td>
</tr>
<tr>
<td>DHCP relay agent configuration</td>
<td>“Configuring the Cisco IOS DHCP Relay Agent” module in the Cisco IOS IP Addressing Configuration Guide</td>
</tr>
<tr>
<td>DHCP enhancements for edge-session management</td>
<td>“Configuring DHCP Enhancements for Edge-Session Management” module in the Cisco IOS IP Addressing Configuration Guide</td>
</tr>
<tr>
<td>AAA and RADIUS configuration tasks</td>
<td>Cisco IOS Security Configuration Guide</td>
</tr>
<tr>
<td>AAA and RADIUS commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this functionality.</td>
<td>--</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for DHCP Services for Accounting and Security

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP per Interface Lease Limit and Statistics</td>
<td>12.2(33)SRC</td>
<td>This feature limits the number of DHCP leases offered to DHCP clients on an interface. DHCP server statistics reporting was enhanced to display interface-level statistics. The following commands were introduced or modified by this feature: <code>clear ip dhcp limit lease</code>, <code>ip dhcp limit lease</code>, <code>ip dhcp limit lease log</code>, <code>show ip dhcp limit lease</code>, <code>show ip dhcp server statistics</code>.</td>
</tr>
<tr>
<td>DHCP Lease Limit per ATM RBE Unnumbered Interface</td>
<td>12.2(28)SB 12.3(2)T 15.1(1)S</td>
<td>This feature limits the number of DHCP leases per subinterface offered to DHCP clients connected from an ATM RBE unnumbered interface or serial unnumbered interface of the DHCP server or DHCP relay agent. The following command was introduced by this feature: <code>ip dhcp limit lease per interface</code>.</td>
</tr>
<tr>
<td>ARP Auto-logoff</td>
<td>12.3(14)T</td>
<td>The ARP Auto-logoff feature enhances DHCP authorized ARP by providing finer control and probing of authorized clients to detect a logoff. The following command was introduced by this feature: <code>arp probe interval</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>DHCP Authorized ARP</td>
<td>12.2(33)SRC 12.3(4)T</td>
<td>DHCP authorized ARP enhances the DHCP and ARP components of the Cisco IOS software to limit the leasing of IP addresses to mobile users to authorized users. This feature enhances security in PWLANs by blocking ARP responses from unauthorized users at the DHCP server. The following command was introduced by this feature: arp authorized.</td>
</tr>
<tr>
<td>DHCP Accounting</td>
<td>12.2(15)T 12.2(28)SB 12.2(33)SRB</td>
<td>DHCP accounting introduces AAA and RADIUS support for DHCP configuration. The following command was introduced by this feature: accounting.</td>
</tr>
<tr>
<td>DHCP Secured IP Address</td>
<td>12.2(15)T 12.2(28)SB 12.2(33)SRC</td>
<td>DHCP secure IP address assignment provides the capability to secure ARP table entries to DHCP leases in the DHCP database. This feature secures and synchronizes the MAC address of the client to the DHCP binding, preventing hackers or unauthorized clients from spoofing the DHCP server and taking over a DHCP lease of an authorized client. The following commands were introduced or modified by this feature: show ip dhcp server statistics, update arp.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Configuring DHCP Enhancements for Edge-Session Management

The DHCP Enhancements for Edge-Session Management feature provides the capability of simultaneous service by multiple Internet Service Providers (ISPs) to customers using one network infrastructure. The end-user customer may change ISPs at any time.

The DHCP enhancements evolved out of the Service Gateways (SGs) requirement to receive information from the DHCP server about when client DISCOVER packets (session initiation) are received, when an address has been allocated to a client, and when a client has released a DHCP lease or the lease has expired (session termination).

- Finding Feature Information, page 171
- Information About DHCP Enhancements for Edge-Session Management, page 171
- How to Configure DHCP Enhancements for Edge-Session Management, page 174
- Configuration Examples for DHCP Enhancements for Edge Session Management, page 185
- Additional References, page 188
- Feature Information for DHCP Enhancements for Edge-Session Management, page 190

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About DHCP Enhancements for Edge-Session Management

- DHCP Servers and Relay Agents, page 172
- On-Demand Address Pool Management, page 172
- Design of the DHCP Enhancements for Edge-Session Management Feature, page 172
- Benefits of the DHCP Enhancements for Edge-Session Management, page 173
DHCP Servers and Relay Agents

DHCP provides a framework for passing configuration information dynamically to hosts on a TCP/IP network. A DHCP client is an Internet host using DHCP to obtain configuration parameters such as an IP address.

A DHCP relay agent is any host that forwards DHCP packets between clients and servers. Relay agents are used to forward requests and replies between clients and servers when they are not on the same physical subnet. Relay agent forwarding is distinct from the normal forwarding of an IP router, where IP datagrams are switched between networks somewhat transparently. By contrast, relay agents receive DHCP messages and then generate a new DHCP message to send on another interface.

For more information, refer to the DHCP modules in the *Cisco IOS IP Addressing Services Configuration Guide*, Release 12.4.

On-Demand Address Pool Management

An On-Demand Address Pool (ODAP) is used to centralize the management of large pools of addresses and simplifies the configuration of large networks. ODAP provides a central management point for the allocation and assignment of IP addresses.

When a Cisco router is configured as an ODAP manager, pools of IP addresses are dynamically increased or reduced in size depending on the address utilization level. The ODAP manager is supported by centralized Remote Authentication Dial-In User Service (RADIUS) or DHCP servers and is configured to request an initial pool of addresses from either the RADIUS or DHCP server.

The ODAP manager controls IP address assignment and will allocate additional IP addresses as necessary. This method of address allocation and assignment optimizes the use of available address space and simplifies the configuration of medium and large-sized networks.

For more information, see the “Configuring the DHCP Server On-Demand Address Pool Manager” module.

Design of the DHCP Enhancements for Edge-Session Management Feature

With the DHCP Enhancements for Edge-Session Management feature, a DHCP server and relay agent are separate, but closely coupled. The basic design of the feature encompasses two types of configuration at the edge of an ISP network as follows:

- DHCP server and an SG that are co-resident (in the same device)
- DHCP relay agent and an SG that are co-resident

- DHCP Server Co-Resident with the SG, page 172
- DHCP Relay Agent Co-Resident with the SG, page 173

DHCP Server Co-Resident with the SG

With this configuration, the DHCP server is in the same device as the SG and allocates addresses from locally configured address pools or acquires a subnet of addresses to allocate from some other system in the network. There are no changes to the server address allocation function to support the configuration.

This configuration enables the DHCP server to notify the SG that it has received a broadcast sent by the end-user DHCP client. The SG passes the MAC address and other information to the DHCP server. The SG
also passes a class name (for example, the name of the ISP), which is used by the DHCP server to match a pool-class definition.

Lease-state notifications are always made by the DHCP server to the SG, because the information is already present.

Note

The local configuration may also be performed by an ODAP that acquires subnets for the address pools from another DHCP server or a RADIUS server.

DHCP Relay Agent Co-Resident with the SG

With this configuration, the relay agent is in the same device as the SG and intercedes in DHCP sessions to appear as the DHCP server to the DHCP client. As the server, the relay agent may obtain enough information about the DHCP session to notify the SG of all events (for example, lease termination).

Appearing to be the DHCP server is performed by using the DHCP functionality that is currently in use on unnumbered interfaces. This functionality enables the relay agent to substitute its own IP address for the server.

The packet is passed by the relay agent to the DHCP server and the SG is notified of the receipt. Following the notification, an inquiry is made by the relay agent to the SG about which DHCP class name to use. Then, the packet is passed by the relay agent to the selected DHCP server.

The end-user DHCP client MAC address and other pertinent information is passed to the SG. The SG returns the DHCP class name to use when matching a DHCP pool if the SG is configured to do so. If the DHCP relay agent is not acting as a server, it relays the packet to the DHCP server.

Note

An address pool may have one DHCP class defined to specify one central DHCP server to which the relay agent passes the packet, or it may have multiple DHCP classes defined to specify a different DHCP server for each client.

Benefits of the DHCP Enhancements for Edge-Session Management

The benefits of the DHCP Enhancements for Edge-Session Management feature are as follows:

- Allows the full DHCP server system to be located farther inside the network, while only running a relatively simple DHCP relay agent at the edge.
- Simplifies the DHCP configuration at the edge.
- Allows all DHCP server administration to occur closer to the middle of the network on one centralized DHCP server, or on separate DHCP servers (one for each ISP).
- Allows each ISP full control over all DHCP options and lease times.
- Allows both the DHCP server and client configurations to be used on the same edge system simultaneously.
How to Configure DHCP Enhancements for Edge-Session Management

- Configuring the DHCP Address Pool and a Class Name, page 174
- Configuring a Relay Pool with a Relay Source and Destination, page 176
- Configuring a Relay Pool for a Remote DHCP Server, page 178
- Configuring Other Types of Relay Pools, page 181

Configuring the DHCP Address Pool and a Class Name

Perform this task to configure a DHCP server that assigns addresses from an address pool for a specific class name that has been assigned by an SG that is co-resident with the DHCP server at the edge.

If a DHCP server is resident in the same device as an SG and both are at the edge, a class name and address pool should be configured. In this case, the DHCP server notifies an SG of a DISCOVER broadcast received from a client and the SG returns a class name. The returned class name designates an address range of an address pool. The DHCP server sends the MAC address and IP address of the incoming interface or the specified relay-agent address to the SG.

Note

If the DHCP server has its address pools defined locally or retrieves the subnets from ISP DHCP servers or AAA servers using ODAP, additional DHCP server configuration on behalf of the SG is not required.

If dynamic allocation of the address pool is required using ODAP, the origin command is specified.

The specification of the class name is required in the DHCP address-pool configuration and in the SG system itself to designate each DHCP client class name. A default class name should be configured if a user does not have one.

Each address pool should be associated with one or more DHCP classes (address-provider ISPs). When the DHCP client selects an ISP, the selection becomes the class name designated by the SG.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. origin \{ dhcp | file url \}
5. network network-number [mask | prefix-length]
6. class class-name
7. address range start-ip end-ip
9. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode. The name argument is the name of the pool and may either be a symbolic string (such as engineering) or an integer (such as 0).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool abc-pool</td>
<td></td>
</tr>
<tr>
<td>Step 4 origin {dhcp</td>
<td>(Optional) Configures an address pool as an On-Demand Address Pool (ODAP) or static mapping pool. The argument and keywords are as follows:</td>
</tr>
<tr>
<td>file url}</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# origin dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 5 network network-number [mask</td>
<td>Configures the subnet number and mask for a DHCP address pool on a Cisco IOS DHCP server. The arguments are as follows:</td>
</tr>
<tr>
<td>prefix-length]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# network 10.10.0.0 255.255.0.0</td>
<td></td>
</tr>
<tr>
<td>Step 6 class class-name</td>
<td>Associates a class with a DHCP address pool and enters DHCP pool-class configuration mode. The class-name argument is the name of the class. It should match the DHCP address pool name. Repeat this step to specify a default class name if required by the SG.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(dhcp-config)# class abc-pool</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

| Step 7 | address range start-ip end-ip |

(Optional) Configures an IP address range from which the DHCP server would allocate the IP addresses. If an SG returned an IP address that is not configured, no action is taken.

Example:

Router(config-dhcp-pool-class)# address range 10.10.5.0 10.99.99.99

This step enables the allocation of an address from a range for the class name specified in the previous step.

Note The `address range` command cannot be used with a relay pool that is configured with the `relay destination` command. Further, if no address range is assigned to a class name, the address is specified with the `network` command.

| Step 8 | Repeat Steps 3, 5, and 6. |

If there is an interface configured with multiple subnets and different ISPs, repeat this step to match the number of subnets. See the "Multiple DHCP Pools and Different ISPs" Configuration Example.

| Step 9 | exit |

Exits to DHCP pool configuration mode.

Example:

Router(config-dhcp-pool-class)# exit

Configuring a Relay Pool with a Relay Source and Destination

Perform this task to configure a relay pool when the DHCP relay and SG are resident in the same device at the edge, and all end users will obtain addresses from one pool. This task replaces the IP helper-address interface configuration.

If the SG notifies the relay agent that DHCP session notifications are required for a particular DHCP client, the relay agent will retain enough information about the DHCP session to notify the SG of all events (for example, lease termination). The relay intercedes DHCP sessions and assumes the role of the DHCP server. The IP address configuration becomes a dynamically changing value depending on the DHCP client information and the SG device policy information.

Note If a relay agent is interceding in DHCP sessions and assuming the role of the DHCP server, the use of DHCP authentication is not possible.

>
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. update arp
5. relay source ip-address subnet-mask
6. relay destination [vrf vrf-name | global] ip-address
7. accounting method-list-name
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode. The name argument is the name of the pool and may either be a symbolic string (such as engineering) or an integer (such as 0). More than one name may be configured.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp pool abc-pool</td>
</tr>
<tr>
<td>Step 4 update arp</td>
<td>(Optional) Configures secure and dynamic Address Resolution Protocol (ARP) entries in the ARP table to their corresponding DHCP bindings.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# update arp</td>
</tr>
<tr>
<td>Note</td>
<td>If the system is allocating an address from an address pool, it will add secure ARP. If the system is relaying a packet using an address pool, it will also add secure ARP.</td>
</tr>
<tr>
<td>Step 5 relay source ip-address subnet-mask</td>
<td>Configures the relay source. The ip-address and subnet-mask arguments are the IP address and subnet mask for the relay source.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# relay source 10.0.0.0 255.0.0.0</td>
</tr>
<tr>
<td>Note</td>
<td>This command is similar to the network command in a normal DHCP network pool, because it restricts the use of the address pool to packets arriving on the interface whose configured IP address and mask matches the relay source configuration.</td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
--- | ---
Step 6 relay destination [vrf vrf-name | global] ip-address | Configures the IPv4 address of a remote DHCP server to which DHCP client packets are sent. The arguments and keywords are as follows:
- **vrf** --(Optional) Virtual routing and forwarding (VRF). The vrf-name argument is the name of the VRF associated with the relay destination IP address.
- **global** --(Optional) Global IP address. Use this keyword when the relay agent is in the global address space and the relay source is in a VRF.
- **ip-address** --IP address of the relay destination.

Example:
Router(dhcp-config)# relay destination 10.5.5.0

Note When using the relay destination command, the ip-address argument is assumed to be in the same VRF as the address pool under which the command was configured. If the relay destination IP address is in a different VRF, or in the global address space, then the vrf vrf-name or global keywords need to be specified.

Step 7 accounting method-list-name | (Optional) Enables DHCP accounting if the specified server group is configured to run RADIUS accounting.

Example:
Router(dhcp-config)# accounting RADIUS-GROUP1

Step 8 exit | Exits to global configuration mode.

Example:
Router(dhcp-config)# exit

Configuring a Relay Pool for a Remote DHCP Server

Perform this task to use an SG-supplied class name when selecting the remote DHCP server in a configured relay pool, which is used to specify how DHCP client packets should be relayed. Multiple configurations of relay targets may appear in a pool-class definition in which case all addresses are used for relay purposes.

Note The relay source command cannot be used with the network command or origin command since those commands implicitly designate the incoming interface and are used to define a different type of pool. It associates the relay only with an interface in the same way that the ip helper-address command does by its presence as an interface configuration command.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. relay source ip-address subnet-mask
5. relay destination [vrf vrf-name | global] ip-address
6. accounting method-list-name
7. class class-name
8. relay target [vrf vrf-name | global] ip-address
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip dhcp pool name</td>
<td>Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode. The name argument is the name of the pool and may either be a symbolic string (such as engineering) or an integer (such as 0). You may specify more than one DHCP address pool.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip dhcp pool abc-pool</td>
</tr>
<tr>
<td>Step 4 relay source ip-address subnet-mask</td>
<td>Configures the relay source. The ip-address and subnet-mask arguments are the IP address and subnet mask for the relay source.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# relay source 10.0.0.0 255.0.0.0</td>
</tr>
</tbody>
</table>

Note: This command is similar to the network command in a normal DHCP network pool, because it restricts the use of the address pool to packets arriving on the interface whose configured IP address and mask matches the relay source configuration.
Command or Action

Step 5 `relay destination [vrf vrf-name | global] ip-address`

Configures the IPv4 address of a remote DHCP server to which DHCP client packets are sent. The arguments and keywords are as follows:

- **vrf** --(Optional) Virtual routing and forwarding (VRF). The `vrf-name` argument is the name of the VRF associated with the relay destination IP address.
- **global** --(Optional) Global IP address. Use the `this` keyword when the relay agent is in the global address space and the relay source is in a VRF.
- **ip-address** --IP address of the relay destination.

Example:

```
Router(dhcp-config)# relay destination 10.5.5.0
```

Note When using the `relay destination` command, the `ip-address` argument is assumed to be in the same VRF as the address pool under which the command was configured. If the relay destination IP address is in a different VRF, or in the global address space, then the `vrf vrf-name` or `global` keywords need to be specified.

Purpose

Step 6 `accounting method-list-name`

(Optional) Enables DHCP accounting if the specified server group is configured to run RADIUS accounting.

Example:

```
Router(dhcp-config)# accounting RADIUS-GROUP1
```

- AAA and RADIUS must be enabled before DHCP accounting will operate.
- The example configures DHCP accounting START and STOP messages to be sent if RADIUS-GROUP1 is configured as a start-stop group. STOP messages will only be sent if RADIUS-GROUP1 is configured as a stop-only group. See “Configuring DHCP Services for Accounting and Security” module for more information on DHCP accounting.

Step 7

`class class-name`

Associates a class with a DHCP address pool and enters DHCP pool-class configuration mode. The `class-name` argument is the name of the class. You may configure more than one class name.

Example:

```
Router(dhcp-config)# class abc-pool
```

Step 8

`relay target [vrf vrf-name | global] ip-address`

Configures the relay target IP address. The arguments and keywords are as follows:

- **vrf** --(Optional) Virtual routing and forwarding (VRF). The `vrf-name` argument is the name of VRF associated with the relay target IP address and more than one target may be specified.
- **global** --(Optional) Global IP address space.
- **ip-address** --IP address of the relay target. More than one target IP address may be specified.

Note This command specifies the destination for the relay function in the same manner as the `ip helper-address` command.

Note When using the `relay target` command, the `ip-address` argument is assumed to be in the same VRF as the address pool under which the command was configured. If the relay target IP address is in a different VRF, or in the global address space, then the `vrf vrf-name` or `global` keywords need to be specified.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 exit</td>
<td>Exits to DHCP pool configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-dhcp-pool-class)# exit
```

Configuring Other Types of Relay Pools

- Configuring Relay Information for an Address Pool, page 181
- Configuring Multiple Relay Sources for a Relay Pool, page 183

Configuring Relay Information for an Address Pool

Perform this task to configure relay information for an address pool. In this configuration, the SG sends one class name that results in the DISCOVER packet being relayed to a server at the IP address configured using the `relay target` command. If the SG sends a class name that is not configured as being associated with the address pool, then no action is taken.

Note

Specifying the `address range` command and `relay target` command in a pool-class definition is not possible, because this would allocate an address and relay for the same packet.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp pool name
4. network network-number [mask | prefix-length]
5. class class-name
6. relay target [vrf vrf-name | global] ip-address
7. exit
8. Repeat Steps 5 through 7 for each DHCP class you need to configure.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** ip dhcp pool name | Configures a DHCP address pool on a Cisco IOS DHCP server and enters DHCP pool configuration mode. The `name` argument is the name of the pool and may either be a symbolic string (such as engineering) or an integer (such as 0). |
| **Example:** | Router(config)# ip dhcp pool abc-pool |
| **Step 4** network network-number [mask | prefix-length] | Configures the subnet number and mask for a DHCP address pool on a Cisco IOS DHCP server. The arguments are as follows:
 • `network-number` --The IP address of the DHCP address pool.
 • `mask` --(Optional) The bit combination that renders which portion of the address of the DHCP address pool refers to the network or subnet and which part refers to the host.
 • `prefix-length` --(Optional) The number of bits that comprise the address prefix. The prefix is an alternative way of specifying the network mask of the client. The prefix length must be preceded by a forward slash (/). |
| **Example:** | Router(dhcp-config)# network 10.0.0.0 255.0.0.0 |
| **Step 5** class class-name | Associates a class with a DHCP address pool and enters DHCP pool-class configuration mode. The `class-name` argument is the name of the class. More than one class name may be configured. |
| **Example:** | Router(dhcp-config)# class abc-pool |

Note If no relay target or address range is configured for a DHCP pool class name, the DHCP pool configuration is used as the class by default.
Configuring Multiple Relay Sources for a Relay Pool

Perform this task to configure multiple relay sources for a relay pool. The configuration is similar to configuring an IP helper address on multiple interfaces. Pools are matched to the IP addresses on an incoming interface in the order in which the interfaces display when the `show running-config` command is used. Once a relay is found or an address allocation is found, the search stops.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask [secondary]
5. exit
6. ip dhcp pool name
7. relay source ip-address subnet-mask
8. relay destination [vrf vrf-name | global] ip-address
9. accounting method-list-name
10. Repeat Steps 6 and 7 for each configured DHCP pool.
11. exit

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 6** relay target [vrf vrf-name | global] ip-address | Configures the relay target IP address. The arguments and keywords for the `relay target` command are as follows:
- **vrf** --(Optional) Virtual routing and forwarding (VRF). The `vrf-name` argument is the name of VRF associated with the relay target IP address and more than one target may be specified.
- **global** --(Optional) Global IP address space.
- **ip-address** --IP address of the relay target. More than one target IP address may be specified.
\[Note\] When using the `relay target` command, the `ip-address` argument is assumed to be in the same VRF as the address pool under which the command was configured. If the relay target IP address is in a different VRF, or in the global address space, then the `vrf vrf-name` or `global` keywords need to be specified. |
| **Step 7** exit | Exits to DHCP pool configuration mode. |
| **Step 8** Repeat Steps 5 through 7 for each DHCP class you need to configure. | -- |
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface and enters interface configuration mode. The</td>
</tr>
<tr>
<td>Example:</td>
<td>arguments are as follows:</td>
</tr>
<tr>
<td>Router(config)# interface ethernet1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip address ip-address mask [secondary]</td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.0 255.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 ip dhcp pool name</td>
<td>Configures a DHCP address pool on a DHCP server and enters DHCP pool</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode. The name argument is the name of the pool and may</td>
</tr>
<tr>
<td>Router(config)# ip dhcp pool abc-pool1</td>
<td>either be a symbolic string (such as engineering) or an integer (such as 0).</td>
</tr>
<tr>
<td></td>
<td>More than one pool may be assigned.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 7 relay source ip-address subnet-mask</td>
<td>Configures the relay source. The ip-address and subnet-mask arguments are the IP address and subnet mask for the relay source.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# relay source 10.0.0.0 255.0.0.0</td>
</tr>
<tr>
<td>Note</td>
<td>This command is similar to the network command in a normal DHCP network pool, because it restricts the use of the address pool to packets arriving on the interface whose configured IP address and mask matches the relay source configuration.</td>
</tr>
<tr>
<td>Step 8 relay destination [vrf vrf-name</td>
<td>global] ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# relay destination 10.5.5.0</td>
</tr>
<tr>
<td>• vrf --(Optional) Virtual routing and forwarding (VRF). The vrf-name argument is the name of the VRF associated with the relay destination IP address.</td>
<td></td>
</tr>
<tr>
<td>• global --(Optional) Global IP address. Use this keyword when the relay agent is in the global address space and the relay source is in a VRF.</td>
<td></td>
</tr>
<tr>
<td>• ip-address --IP address of the relay destination.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>When using the relay destination command, the ip-address argument is assumed to be in the same VRF as the address pool under which the command was configured. If the relay destination IP address is in a different VRF, or in the global address space, then the vrf vrf-name or global keywords need to be specified.</td>
</tr>
<tr>
<td>Step 9 accounting method-list-name</td>
<td>(Optional) Enables DHCP accounting if the specified server group is configured to run RADIUS accounting.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# accounting RADIUS-GROUP1</td>
</tr>
<tr>
<td>• AAA and RADIUS must be enabled before DHCP accounting will operate.</td>
<td></td>
</tr>
<tr>
<td>• The example configures DHCP accounting START and STOP messages to be sent if RADIUS-GROUP1 is configured as a start-stop group. STOP messages will only be sent if RADIUS-GROUP1 is configured as a stop-only group. See “Configuring DHCP Services for Accounting and Security” module for more information on DHCP accounting.</td>
<td></td>
</tr>
<tr>
<td>Step 10 Repeat Steps 6 and 7 for each configured DHCP pool.</td>
<td>--</td>
</tr>
<tr>
<td>Step 11 exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(dhcp-config)# exit</td>
</tr>
</tbody>
</table>
DHCP Address Range and Class Name Configuration Example

The following example shows how to configure an address range for a particular network and class name for a DHCP pool.

```plaintext
ip dhcp pool abc-pool
    network 10.10.0.0 255.255.0.0
    class abc-pool
    address range 10.10.5.0 10.10.5.99
```

DHCP Server Co-Resident with SG Configuration Example

In the following example, the ISPs are ABC and DEF companies. The ABC company has its addresses assigned from an address pool that is dynamically allocated using ODAP. The DEF company has its customer addresses assigned from the address pool 10.100.0.0/16. Customers not associated with any ISP will have an address allocated from the address pool 10.1.0.0/16 and the lease time is set to 10 minutes.

```plaintext
!Interface configuration
interface ethernet1
    ip address 10.20.0.1 255.255.0.0
    ip address 10.1.0.1 255.255.0.0 secondary
    ip address 10.100.0.1 255.255.0.0 secondary

!Address pool for ABC customers
ip dhcp pool abc-pool
    network 20.1.0.0 255.255.0.0
    class abc

!Address pool for DEF customers
ip dhcp pool def-pool
    network 10.100.0.0 255.255.0.0
    class def

!Address pool for customers without an ISP
ip dhcp pool temp
    network 10.1.0.0 255.255.0.0
    lease 0 0 10
    class default
```

DHCP Relay Agent Co-Resident with SG Configuration Example

In the following example, there are two ISPs: abcpool and defpool. The abcpool ISP and its customers are allowed to have addresses in the ranges 10.1.0.0/16 and 30.1.0.0/16 and are relayed to the DHCP server at 10.55.10.1. The defpool ISP and its customers are allowed to have addresses in the ranges 20.1.0.0/16 and 40.4.0.0/16 and are relayed to the DHCP server at 12.10.2.1.

```plaintext
!Address ranges:
interface ethernet1
    ip address 10.1.0.0 255.255.0.0
    ip address 10.2.0.0 255.255.0.0 secondary

interface ethernet2
    ip address 10.3.0.0 255.255.0.0
    ip address 10.4.0.0 255.255.0.0 secondary
```
Multiple DHCP Pools and Different ISPs Configuration Example

The following example shows how to configure one interface and multiple DHCP pools that have different ISPs by using the network command.

```
interface ethernet1
   ip address 10.0.0.1 255.0.0.0
   ip address 10.1.0.1 255.0.0.0
   ip dhcp pool x
      network 10.0.0.0 255.0.0.0
      class ISP1
   ip dhcp pool y
      network 10.1.0.0 255.0.0.0
      class ISP2
```

Multiple Relay Sources and Destinations Configuration Example

In the following example, multiple relay sources and destinations may be configured for a relay pool. This is similar to the ip helper-address configuration on multiple interfaces. Pools are matched to the (possibly multiple) IP addresses on an incoming interface in the order in which they appear when using the show running-config command to display information about that interface. Once either a relay is found or an address allocation is found, the search stops. For example, given the following configuration:

```
interface ethernet1
   ip address 10.0.0.1 255.0.0.0
   ip address 10.0.0.5 255.0.0.0 secondary
   ip dhcp pool x
      relay source 10.0.0.0 255.0.0.0
      relay destination 10.0.0.1
   ip dhcp pool y
      relay source 10.0.0.0 255.0.0.0
      relay destination 10.0.0.1
```

In the following example, the DHCP client packet would be relayed to 10.0.0.1, if the SG specified ISP1 as the class name, and would be relayed to 10.0.0.5, if the SG specified ISP2 as the class name.

```
interface ethernet1
   ip address 10.0.0.1 255.0.0.0
   ip address 10.0.0.5 255.0.0.0 secondary
   ip dhcp pool x
      relay source 10.0.0.0 255.0.0.0
      relay destination 10.0.0.1
      class ISP1
```
SG-Supplied Class Name Configuration Example

In the following example, an SG-supplied class name is to be used in selecting the remote DHCP server to which packets should be relayed.

```plaintext
ip dhcp pool abc-pool-1
  relay source 10.1.0.0 255.255.0.0
  relay destination 10.1.0.0
  class classname1
    relay target 10.20.10.1
  class classname2
    relay target 10.0.10.1
  class classname3
```

In the example above, an SG-supplied class name, called classname1, would relay the DHCP DISCOVER packet to the server at the relay target IP address 10.20.10.1, while SG classname2 would relay the DHCP DISCOVER packet to the server at the relay target IP address 10.0.10.1. This configuration relays the packet to destination IP address 10.0.0.1, because the pool matches the first configured address on the interface. If the SG returns a classname3, then the default pool is the default address specified as the relay destination. If the SG returns any class name other than classname1, classname2, or classname3, then no relay action is taken.

Additional References

The following sections provide references related to configuring DHCP Enhancements for Edge-Session Management.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>“DHCP Overview” module</td>
</tr>
<tr>
<td>DHCP server configuration</td>
<td>“Configuring the Cisco IOS DHCP Server” module</td>
</tr>
<tr>
<td>DHCP client configuration</td>
<td>“Configuring the Cisco IOS DHCP Client” module</td>
</tr>
<tr>
<td>DHCP relay agent configuration</td>
<td>“Configuring the Cisco IOS DHCP Relay Agent” module</td>
</tr>
<tr>
<td>DHCP server on-demand address pool manager configuration</td>
<td>“Configuring the DHCP Server On-Demand Address Pool Manager” module</td>
</tr>
<tr>
<td>DHCP advanced features</td>
<td>“Configuring DHCP Services for Accounting and Security” module</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>DHCP options</td>
<td>“DHCP Options” appendix in the Network Registrar User’s Guide, Release 6.1.1</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this functionality.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 951</td>
<td>Bootstrap Protocol (BOOTP)</td>
</tr>
<tr>
<td>RFC 1542</td>
<td>Clarifications and Extensions for the Bootstrap Protocol</td>
</tr>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>RFC 2685</td>
<td>Virtual Private Networks Identifier</td>
</tr>
<tr>
<td>RFC 3046</td>
<td>DHCP Relay Information Option</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for DHCP Enhancements for Edge-Session Management

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

| Table 12 Feature Information for DHCP Enhancements for Edge-Session Management |
|------------------------------|---------------------------------|
| Feature Name | Releases | Feature Configuration Information |
| DHCP Relay Accounting | 12.4(6)T | The DHCP Relay Accounting feature allows a Cisco IOS DHCP relay agent to send a RADIUS accounting start packet when an address is assigned to a client and a RADIUS accounting stop packet when the address is released. This feature is enabled by using the accounting command with relay pools that use the relay destination command in DHCP pool configuration mode. No new commands were introduced by this feature. |
Feature Name

DHCP Enhancements for Edge-Session Management

Releases

<table>
<thead>
<tr>
<th>Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3(14)T</td>
</tr>
<tr>
<td>12.2(28)SB</td>
</tr>
<tr>
<td>12.2(33)SRC</td>
</tr>
</tbody>
</table>

Feature Configuration Information

The DHCP Enhancements for Edge-Session Management feature provides the capability of simultaneous service by multiple ISPs to customers using one network infrastructure. The end-user customer may change ISPs at any time.

The following commands were introduced by this feature: `relay destination`, `relay source`, and `relay target`.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.