CONTENTS

CHAPTER 1

Review the Cisco DNA Center Appliance Features 1
 Appliance Hardware Specifications 1
 Front and Rear Panels 2
 Physical Specifications 8
 Environmental Specifications 9
 Power Specifications 10

CHAPTER 2

Plan the Deployment 11
 Planning Workflow 11
 Cisco DNA Center and Cisco Software-Defined Access 12
 Interface Cable Connections 12
 Required IP Addresses and Subnets 15
 Interface Names and Wizard Configuration Order 18
 Required Internet URLs and Fully Qualified Domain Names 19
 Provide Secure Access to the Internet 21
 Required Network Ports 21
 Required Ports and Protocols for Cisco Software-Defined Access 23
 Required Configuration Information 31
 Required First-Time Setup Information 32

CHAPTER 3

Install the Appliance 35
 Appliance Installation Workflow 35
 Unpack and Inspect the Appliance 36
 Review the Installation Warnings and Guidelines 37
 Review the Rack Requirements 38
 Connect and Power On the Appliance 38
Check the LEDs 39

CHAPTER 4 Prepare the Appliance for Configuration 41
 Preparation for Appliance Configuration Overview 41
 Enable Browser Access to Cisco Integrated Management Controller 41
 Execute Preconfiguration Checks 46
 Reimage the Appliance 52
 Verify the Cisco DNA Center ISO Image 54
 Create a Bootable USB Drive 54
 Using Etcher 55
 Using the Linux CLI 55
 Using the Mac CLI 56
 Install the Cisco DNA Center ISO Image 57

CHAPTER 5 Configure the Appliance 59
 Appliance Configuration Overview 59
 Configure the Master Node 59
 Configure Add-On Nodes 72
 Upgrade to the Latest Cisco DNA Center Release 85

CHAPTER 6 Complete First-Time Setup 87
 First-Time Setup Workflow 87
 Compatible Browsers 88
 Log In for the First Time 88
 Integrate Cisco ISE with Cisco DNA Center 90
 Configure Authentication and Policy Servers 92
 Configure SNMP Properties 94

CHAPTER 7 Troubleshoot the Deployment 95
 Troubleshooting Tasks 95
 Log Out 95
 Reconfigure the Appliance Using the Configuration Wizard 96
 Power-Cycle the Appliance 97
APPENDIX A

Review High Availability Cluster Deployment Scenarios 99
 New HA Deployment 99
 Existing HA Deployment of the Master Node with Standard Interface Configurations 100
 Existing HA Deployment of Master Node with Nonstandard Interface Configurations 100
 Redistribute Services 101
 Additional HA Deployment Considerations 101
 Telemetry 101
 Wireless Controller 102
Review the Cisco DNA Center Appliance Features

• Appliance Hardware Specifications, on page 1
• Front and Rear Panels, on page 2
• Physical Specifications, on page 8
• Environmental Specifications, on page 9
• Power Specifications, on page 10

Appliance Hardware Specifications

Cisco supplies Cisco Digital Network Architecture (DNA) Center in the form of a rack-mountable, physical appliance. The first generation Cisco DNA Center appliance (Cisco part number DN1-HW-APL) consists of a Cisco Unified Computing System (UCS) C220 M4 small form factor (SFF) chassis, with the addition of a Virtual Interface Card (VIC) 1227 in the mLOM slot. The Cisco DNA Center software image is preinstalled on the appliance, but must be configured for use.

The following table summarizes the appliance's hardware specifications.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>One rack-unit (1RU) chassis</td>
</tr>
<tr>
<td>Processors</td>
<td>Two 22-core Intel Xeon E5-2699 v4 2.20 GHz processors</td>
</tr>
<tr>
<td>Memory</td>
<td>Eight 32 GB DDR4 2400 MHz registered DIMMs (RDIMMs)</td>
</tr>
<tr>
<td>Storage</td>
<td>• Six 1.9 TB 2.5 inch Enterprise Value 6G SATA solid state drives (SSD)</td>
</tr>
<tr>
<td></td>
<td>• Two 480 GB 2.5 inch Enterprise Value 12G SATA SSD</td>
</tr>
<tr>
<td>Disk Management (RAID)</td>
<td>• RAID 1 on slots 1 through 4</td>
</tr>
<tr>
<td></td>
<td>• RAID 10 on slots 5 through 8</td>
</tr>
</tbody>
</table>
Network and Management I/O

- **Supported connectors:**
 - Two 10-Gbps Ethernet ports on the Cisco UCS VIC 1227
 - One 1-Gbps Ethernet dedicated management port
 - Two 1-Gbps BASE-T Ethernet LAN ports

 The following connectors are available but not typically used in the day-to-day operation of Cisco DNA Center:
 - One RS-232 serial port (RJ-45 connector).
 - One 15-pin VGA2 connector.
 - Two USB 3.0 connectors.
 - One front-panel KVM connector that is used with the KVM cable, which provides two USB 2.0, one VGA, and one serial (DB-9) connector.

Power

- Two 770 W AC power supplies.
- Redundant as 1+1.

Cooling

- Six hot-swappable fan modules for front-to-rear cooling.

Video

- Video Graphics Array (VGA) video resolution up to 1920 x 1200, 16 bpp at 60 Hz, and up to 256 MB of video memory.

Front and Rear Panels

The following figures and tables describe the front and rear panels of the 44 core Cisco DNA Center appliance. [Click this link for a short video](#) describing the appliance front and rear panels and how the appliance NICs are cabled.
A total of eight drives are available on the appliance:

- Six 1.9 TB SATA SSD
- Two 480 GB SAS SSD

Each installed drive bay has a fault LED and an activity LED. When the drive fault LED is:

- Off: The drive is operating properly.
- Amber: The drive has failed.
- Amber, blinking: The drive is rebuilding.

When the drive activity LED is:

- Off: There is no drive in the sled (no access, no fault).
- Green: The drive is ready.
- Green, blinking: The drive is reading or writing data.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A total of eight drives are available on the appliance:</td>
</tr>
<tr>
<td></td>
<td>- Six 1.9 TB SATA SSD</td>
</tr>
<tr>
<td></td>
<td>- Two 480 GB SAS SSD</td>
</tr>
<tr>
<td></td>
<td>Each installed drive bay has a fault LED and an activity LED. When the drive fault LED is:</td>
</tr>
<tr>
<td></td>
<td>- Off: The drive is operating properly.</td>
</tr>
<tr>
<td></td>
<td>- Amber: The drive has failed.</td>
</tr>
<tr>
<td></td>
<td>- Amber, blinking: The drive is rebuilding.</td>
</tr>
<tr>
<td></td>
<td>When the drive activity LED is:</td>
</tr>
<tr>
<td></td>
<td>- Off: There is no drive in the sled (no access, no fault).</td>
</tr>
<tr>
<td></td>
<td>- Green: The drive is ready.</td>
</tr>
<tr>
<td></td>
<td>- Green, blinking: The drive is reading or writing data.</td>
</tr>
<tr>
<td>2</td>
<td>Pull-out asset tag</td>
</tr>
<tr>
<td>3</td>
<td>Operations sub-panel buttons and LEDs. LED states for these buttons and the conditions they indicate are described in the following entries.</td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 4 | Power button/power status LED. When the LED is:
| | • Off: There is no AC power to the appliance.
| | • Amber: The appliance is in standby power mode. Power is supplied only to the Cisco Integrated Management Controller (CIMC) and some motherboard functions.
| | • Green: The appliance is in main power mode. Power is supplied to all the server components. |
| 5 | Unit identification button and LED. When the LED is:
| | • Blue: Unit identification is active.
| | • Off: Unit identification is inactive. |
| 6 | System status LED. When the LED is:
| | • Green: The appliance is running in a normal operating condition.
| | • Green, blinking: The appliance is performing system initialization and memory checks.
| | • Amber, steady: The appliance is in a degraded operational state, which may be due to one or more of the following causes:
| | • Power supply redundancy is lost.
| | • CPUs are mismatched.
| | • At least one CPU is faulty.
| | • At least one DIMM is faulty.
| | • At least one drive in a RAID configuration failed.
| | • Amber, blinking: The appliance is in a critical fault state, which may be due to one or more of the following:
| | • Boot failed.
| | • Fatal CPU and/or bus error was detected.
| | • Server is in an over-temperature condition. |
| 7 | Fan status LED. When the LED is:
| | • Green: All fan modules are operating properly.
| | • Amber, steady: One fan module has failed.
<p>| | • Amber, blinking: Critical fault, two or more fan modules have failed. |</p>
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| 8 | Temperature status LED. When the LED is:
 - Green: The appliance is operating at normal temperature.
 - Amber, steady: One or more temperature sensors have exceeded a warning threshold.
 - Amber, blinking: One or more temperature sensors have exceeded a critical threshold. |
| 9 | Power supply status LED. When the LED is:
 - Green: All power supplies are operating normally.
 - Amber, steady: One or more power supplies are in a degraded operational state.
 - Amber, blinking: One or more power supplies are in a critical fault state. |
| 10 | Network link activity LED. When the LED is:
 - Green, blinking: One or more Ethernet LOM ports are link-active, with activity.
 - Green: One or more Ethernet LOM ports are link-active, but there is no activity.
 - Off: The Ethernet link is idle. |
| 11 | KVM connector. Used with a KVM cable that provides two USB 2.0, one VGA, and one serial connector. |

Figure 2: Appliance Rear Panel

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grounding-lug hole (for DC power supplies)</td>
</tr>
<tr>
<td>2</td>
<td>PCIe riser 1/slot 1</td>
</tr>
<tr>
<td>3</td>
<td>PCIe riser 2/slot 2</td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| 4 | Power supplies (up to two: redundant as 1+1). Each power supply has a power supply fault LED and an AC power LED.
When the fault LED is:
• Off: The power supply is operating normally.
• Amber, blinking: An event warning threshold has been reached, but the power supply continues to operate.
• Amber, solid: A critical fault threshold has been reached, causing the power supply to shut down (for example, a fan failure or an over-temperature condition).
When the AC Power LED is:
• Green, solid: AC power is OK, DC output is OK.
• Green, blinking: AC power is OK, DC output is not enabled.
• Off: There is no AC power to the power supply.
For more details, see Power Specifications. |
| 5 | 10-Gbps Cluster Port (Port 2, enp10s0, Network Adapter 1): This is the second 10-Gbps port on the Cisco Virtual Interface Card (VIC) 1227 in the appliance mLOM slot. The rear panel labels it Port 2 and the Maglev Configuration wizard identifies it as enp10s0 and Network Adapter 1. Connect this port to a switch with connections to the other nodes in the Cisco DNA Center cluster.
This port has a link status (ACT) LED and a link speed (LINK) LED.
When the link status LED is:
• Green, blinking: Traffic is present on the active link.
• Green: Link is active, but there is no traffic present.
• Off: No link is present.
When the link speed LED is:
• Green: Link speed is 10 Gbps.
• Amber: Link speed is 1 Gbps.
• Off: Link speed is 100 Mbps or less.
Note The enterprise and cluster ports must operate at 10 Gbps only. |
Component Description

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6 | 10-Gbps Enterprise Port (Port 1, enp9s0, Network Adapter 4): This is the first 10-Gbps port on the Cisco Virtual Interface Card (VIC) 1227 in the appliance mLOM slot. The rear panel labels it Port 1 and the Maglev Configuration wizard identifies it as enp9s0 and Network Adapter 4. Connect this port to a switch with IP reachability to the networking equipment that Cisco DNA Center will manage. This port has a link status (ACT) LED and a link speed (LINK) LED. When the link status LED is:
 • Green, blinking: Traffic is present on the active link.
 • Green: Link is active, but there is no traffic present.
 • Off: No link is present.
 When the speed LED is:
 • Green: Link speed is 10 Gbps.
 • Amber: Link speed is 1 Gbps.
 • Off: Link speed is 100 Mbps or less.
 Note The Cisco DNA Center appliance enterprise and cluster ports must operate at 10 Gbps only. |
| 7 | Two USB 3.0 ports |
| 8 | 1-Gbps CIMC Port (M): This is the embedded port to the right of the two USB ports and to the left of the RJ45 serial port. The back panel labels it M and you assign an IP address to it when you enable browser access to the appliance's CIMC GUI (see [Enable Browser Access to Cisco Integrated Management Controller](#)). This port is reserved for out-of-band (OOB) management of the Cisco DNA Center appliance chassis and software. Connect this port to a switch that provides access to your dedicated OOB enterprise management network. This port has a link status LED and a link speed LED. When the link status LED is:
 • Green, blinking: Traffic is present on the active link.
 • Green: Link is active, but there is no traffic present.
 • Off: No link is present.
 When the speed LED is:
 • Green: Link speed is 1 Gbps.
 • Amber: Link speed is 100 Mbps.
 • Off: Link speed is 10 Mbps or less. |
| 9 | Serial port (RJ-45 connector) |
Physical Specifications

The following table lists the physical specifications for the appliance.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| 10 | 1-Gbps Cisco DNA Center GUI Port (1, enp1s0f0, Network Adapter 2): This is the first Intel i350 1Gb Ethernet controller port. It is embedded on the appliance motherboard. The rear panel labels it 1 and the Maglev Configuration wizard identifies it as enp1s0f0 and Network Adapter 2. Connect this port to a switch that provides access to your dedicated enterprise management network. This port has a link status LED and a link speed LED. When the status LED is:
 - Green, blinking: Traffic is present on the active link.
 - Green: Link is active, but there is no traffic present.
 - Off: No link is present.
 When the speed LED is:
 - Green: Link speed is 1 Gbps.
 - Amber: Link speed is 100 Mbps.
 - Off: Link speed is 10 Mbps or less. |
| 11 | 1-Gbps Cloud Port (2, enp1s0f1, Network Adapter 3): This is the second embedded 1Gbps Ethernet controller port. The rear panel labels it 2 and the Maglev Configuration wizard identifies it as enp1s0f1 and Network Adapter 3. This port is optional. It is used for connecting to the Internet when it is not possible to do so via the 10-Gbps enterprise port (Port 1, enp9s0, Network Adapter 4). This port has a link status LED and a link speed LED. When the link status LED is:
 - Green, blinking: Traffic is present on the active link.
 - Green: Link is active, but there is no traffic.
 - Off: No link is present.
 When the speed LED is:
 - Green: Link speed is 1 Gbps.
 - Amber: Link speed is 100 Mbps.
 - Off: Link speed is 10 Mbps or less. |
| 12 | VGA video port (DB-15). This panel area around this port is blue. |
| 13 | Blue LED locator button |
Table 1: Physical Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1.7 in. (4.32 cm)</td>
</tr>
<tr>
<td>Width</td>
<td>16.89 in. (43.0 cm)</td>
</tr>
<tr>
<td></td>
<td>Including handles:</td>
</tr>
<tr>
<td></td>
<td>18.98 in. (48.2 cm)</td>
</tr>
<tr>
<td>Depth (length)</td>
<td>29.8 in. (75.6 cm)</td>
</tr>
<tr>
<td></td>
<td>Including handles:</td>
</tr>
<tr>
<td></td>
<td>30.98 in. (78.7 cm)</td>
</tr>
<tr>
<td>Front Clearance</td>
<td>3 in. (76 mm)</td>
</tr>
<tr>
<td>Side Clearance</td>
<td>1 in. (25 mm)</td>
</tr>
<tr>
<td>Rear Clearance</td>
<td>6 in. (152 mm)</td>
</tr>
<tr>
<td>Maximum weight (fully loaded chassis)</td>
<td>37.9 lb. (17.2 kg)</td>
</tr>
</tbody>
</table>

Environmental Specifications

The following table lists the environmental specifications for the Cisco DNA Center appliance.

Table 2: Environmental Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, operating</td>
<td>41 to 95°F (5 to 35°C)</td>
</tr>
<tr>
<td></td>
<td>Derate the maximum temperature by 1°C for every 1000 ft. (305 meters) of altitude above sea level.</td>
</tr>
<tr>
<td>Temperature, nonoperating (when the appliance is stored or transported)</td>
<td>–40 to 149°F (–40 to 65°C)</td>
</tr>
<tr>
<td>Humidity (RH), operating</td>
<td>10 to 90%, noncondensing at 82°F (28°C)</td>
</tr>
<tr>
<td>Humidity, nonoperating</td>
<td>5 to 93% at 82°F (28°C)</td>
</tr>
<tr>
<td>Altitude, operating</td>
<td>0 to 10,000 ft. (0 to 3,000 m)</td>
</tr>
<tr>
<td>Altitude, nonoperating (when the appliance is stored or transported)</td>
<td>0 to 40,000 ft. (0 to 12,192 m)</td>
</tr>
<tr>
<td>Sound power level, measure A-weighted per ISO7779 LwAd (Bels), operation at 73°F (23°C)</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Power Specifications

The specifications for the two 770 W AC power supplies (Cisco part number UCSC-PSU1-770W) provided with the Cisco DNA Center appliance are listed in the table below.

Table 3: AC Power Supply Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC input voltage</td>
<td>Nominal range: 100–120 VAC, 200–240 VAC</td>
</tr>
<tr>
<td></td>
<td>Range: 90–132 VAC, 180–264 VAC</td>
</tr>
<tr>
<td>AC input frequency</td>
<td>Nominal range: 50 to 60 Hz</td>
</tr>
<tr>
<td></td>
<td>(Range: 47–63 Hz)</td>
</tr>
<tr>
<td>Maximum AC input current</td>
<td>9.5 A at 100 VAC</td>
</tr>
<tr>
<td></td>
<td>4.5 A at 208 VAC</td>
</tr>
<tr>
<td>Maximum input volt-amperes</td>
<td>950 VA at 100 VAC</td>
</tr>
<tr>
<td>Maximum output power per PSU</td>
<td>770 W at 100–120 VAC</td>
</tr>
<tr>
<td>Maximum inrush current</td>
<td>15 A at 35°C</td>
</tr>
<tr>
<td>Maximum hold-up time</td>
<td>12 ms at 770 W</td>
</tr>
<tr>
<td>Power supply output voltage</td>
<td>12 VDC</td>
</tr>
<tr>
<td>Power supply standby voltage</td>
<td>12 VDC</td>
</tr>
<tr>
<td>Efficiency rating</td>
<td>Climate Savers Platinum Efficiency (80Plus Platinum certified)</td>
</tr>
<tr>
<td>Form factor</td>
<td>RSP2</td>
</tr>
<tr>
<td>Input connector</td>
<td>IEC320 C14</td>
</tr>
</tbody>
</table>

Note

You can get more specific power information for the exact configuration of your appliance by using the Cisco UCS Power Calculator: http://ucspowercalc.cisco.com
Plan the Deployment

- Planning Workflow, on page 11
- Cisco DNA Center and Cisco Software-Defined Access, on page 12
- Interface Cable Connections, on page 12
- Required IP Addresses and Subnets, on page 15
- Required Internet URLs and Fully Qualified Domain Names, on page 19
- Provide Secure Access to the Internet, on page 21
- Required Network Ports, on page 21
- Required Ports and Protocols for Cisco Software-Defined Access, on page 23
- Required Configuration Information, on page 31
- Required First-Time Setup Information, on page 32

Planning Workflow

The following table details the planning and information-gathering tasks that you must perform before attempting to install, configure, and set up your Cisco DNA Center appliance. After you complete the tasks listed in this table, you can continue by physically installing your appliance in the data center.

Click this link for a video series giving an overview of Cisco DNA Center and of the installation and configuration process.

For more information, see Cisco DNA Center and Cisco Software-Defined Access.

Table 4: Planning Tasks

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review the recommended cabling and switching requirements for standalone and cluster installations. For more information, see Interface Cable Connections.</td>
</tr>
<tr>
<td>2</td>
<td>Gather the IP addressing, subnetting, and other IP traffic information that you will apply during appliance configuration. For more information, see Required IP Addresses and Subnets.</td>
</tr>
<tr>
<td>3</td>
<td>Prepare a solution for the required access to web-based resources. For more information, see Required Internet URLs and Fully Qualified Domain Names and Provide Secure Access to the Internet.</td>
</tr>
</tbody>
</table>
Step 4
Reconfigure your firewalls and security policies for Cisco DNA Center traffic. For more information, see **Required Network Ports**. If you are using Cisco DNA Center to manage a Cisco Software-Defined Access (SD-Access) network, also see **Required Ports and Protocols for Cisco Software-Defined Access**.

Step 5
Gather the additional information used during appliance configuration and first-time setup. For more information, see **Required Configuration Information** and **Required First-Time Setup Information**.

Cisco DNA Center and Cisco Software-Defined Access

You can use Cisco DNA Center to manage any type of network, including networks that employ the Cisco SD-Access fabric architecture. Cisco SD-Access transforms conventional networks into intent-based networks, where business logic becomes a physical part of the network, making it easy to automate day-to-day tasks such as configuration, provisioning, and troubleshooting. The Cisco SD-Access solution reduces the time taken to adapt the network to business needs, improves issue resolutions, and reduces security-breach impacts.

A complete discussion of the Cisco SD-Access solution is outside the scope of this guide. Network architects and administrators planning to implement a Cisco SD-Access fabric architecture for use with Cisco DNA Center can find additional information and guidance from the following resources:

- For a brief introduction to Cisco SD-Access and Cisco DNA, see the white paper "The Cisco Digital Network Architecture Vision – An Overview".
- For more information on how Cisco DNA Center leverages Cisco SD-Access to automate solutions that are not possible with normal networking approaches and techniques, see **Software Defined Access: Enabling Intent-Based Networking**.
- For validated designs demonstrating how to implement Cisco SD-Access in your network, see the latest version of the **Cisco Software-Defined Access Design Guide**.
- For guidance in using Cisco SD-Access access segmentation to enhance network security, see the **Software-Defined Access Segmentation Design Guide**.
- For wireless-specific design guidance, see the **SD-Access Wireless Design and Deployment Guide**.
- For guidance on deploying SDA with Cisco DNA Center, see the **Software-Defined Access Deployment Guide**.
- For more information on the digital network architecture that is the foundation of Cisco DNA Center and the Cisco SD-Access solution, and the roles that other Cisco and third-party products and solutions play in this innovative architecture, see the **Cisco DNA Design Zone**.
- For other design guides, deployment guides, and white papers, see the **Cisco Design Zone**.

Interface Cable Connections

Connect the ports on the appliance to switches providing the following types of network access. At a minimum, you must configure the Enterprise and Cluster port interfaces, as they are required for Cisco DNA Center functionality.
• **(Required) 10-Gbps Cluster Port (Port 2, enp10so, Network Adapter 1):** This is the left-hand port on the VIC 1227 card in the appliance mLOM slot. Its purpose is to enable communications among the master and add-on nodes in a Cisco DNA Center cluster. Connect this port to a switch with connections to the other nodes in the cluster and configure one IP address with subnet mask for the port.

During configuration, the Maglev Configuration wizard does not let you proceed until you assign the Cluster Link option to an interface. We recommend that you designate port enp10so as the cluster link. Be aware, however, that the interface marked as the cluster link cannot be changed after configuration completes. Later, if you must change the interface marked as the cluster link, you are required to reconfigure the appliance. With this in mind, we recommend that you set up the cluster port with an IP address, so as to allow for expansion to a three-node cluster in the future. Also, make sure that the cluster link interface is connected to a switch port and is in the UP state.

• **(Optional) 1-Gbps Cisco DNA Center GUI Port (1, enp1s0f0, Network Adapter 2):** This port provides access to the Cisco DNA Center GUI. Its purpose is to enable users to use the software on the appliance. Connect this port to a switch with connections to your enterprise management network, and configure one IP address with a subnet mask for the port.

• **(Optional) 1-Gbps Cloud Port (2, enp1s0f1, Network Adapter 3):** This port is optional. Use it only if you cannot connect the appliance to the Internet (including to your Internet proxy server) using the 10-Gbps enterprise port (Port 1, enp9s0, Network Adapter 4). If you need to use the cloud port, connect it to a switch with connections to your Internet proxy server and configure an IP address with a subnet mask for the port.

• **(Required) 10-Gbps Enterprise Port (Port 1, enp9s0, Network Adapter 4):** This is the right-hand port on the VIC 1227 card in the appliance mLOM slot. Its purpose is to enable Cisco DNA Center to communicate with and manage your network. Connect this port to a switch with connections to the enterprise network and configure one IP address with subnet mask for the port.

• **(Optional, but strongly recommended) 1-Gbps CIMC Port (M):** This port provides browser access to the Cisco Integrated Management Controller (CIMC) out-of-band appliance management interface and its GUI. Its purpose is to allow you to manage the appliance and its hardware. Connect this port to a switch with connections to your enterprise management network and configure an IP address with subnet mask for the port.

The following figure shows the recommended connections for a single-node Cisco DNA Center cluster:

![Figure 3: Recommended Cabling for Single-Node Cluster](image)

Legend:
- 10 Gbps Cluster Port (Port 2, enp10so, Network Adapter 1)
- 1 Gbps Cisco DNA Center GUI Port (1, enp1s0f0, Network Adapter 2)
- 10 Gbps Enterprise Port (Port 1, enp9s0, Network Adapter 4)
- 1 Gbps Cloud Port (2, enp1s0f1, Network Adapter 3)
- 1 Gbps CIMC Port (M)

The following figure shows the recommended connections for a three-node Cisco DNA Center cluster. All but one of the connections for each node in the three-node cluster are the same as those for the single-node
cluster, and use the same ports. The exception is the Cluster Port (Port 2, enp10so, Network Adapter 1), which is required so that each host in the three-node cluster can communicate with the other hosts.

Figure 4: Recommended Cabling for Three-Node Cluster

For a short video presentation about the rear-panel ports and how they are used, see the first five minutes of Unboxing Cisco DNA Center Appliance for Assurance and SD-Access (under the section "Get Started").

For more details on each of the ports, see the rear panel diagram and accompanying descriptions for your Cisco DNA Center appliance in Front and Rear Panels.

Note

Multinode cluster deployments require all the member nodes to be in the same network and at the same site. The appliance does not support distribution of nodes across multiple networks or sites.

When cabling the 10-Gbps enterprise and cluster ports, please note that both ports support only the following media types:

- SFP10G-USR (Ultra short range, MMF)
- SFP-10G-SR (Short range, MMF)
- SFP-10G-LR (Long range, SMF)
- SFP-H10GB-CU1M (Twinax cable, passive, 1 Meter)
- SFP-H10GB-CU3M (Twinax cable, passive, 3 Meters)
• SFP-H10GB-CU5M (Twinax cable, passive, 5 Meters)
• SFP-H10GB-CU7M (Twinax cable, passive, 7 Meters)
• SFP-H10GB-ACU7M (Twinax cable, active, 7 Meters)

Required IP Addresses and Subnets

Before beginning the installation, you must ensure that your network has sufficient IP addresses available to assign to each of the appliance ports that you plan on using. Depending on whether you are installing the appliance as a single-node cluster or as a master or add-on node in a three-node cluster, you will need the following appliance port (NIC) addresses:

• **Enterprise Port Address (Required):** One IP address with subnet mask.

• **Cluster Port Address (Required):** One IP address with subnet mask.

• **Management Port Address (Optional):** One IP address with subnet mask.

• **Cloud Port Address (Optional):** One IP address with subnet mask. This is an optional port, used only when you cannot connect to the cloud using the Enterprise port. You do not need an IP address for the Cloud port unless you must use it for this purpose.

• **CIMC Port Address (Optional, but strongly recommended):** One IP address with subnet mask.

Note

All of the IP addresses called for in these requirements must be valid, physical IPv4 addresses with valid IPv4 netmasks. Ensure that the addresses and their corresponding subnets do not overlap. Service communication issues can result if they do.

You will also need the following additional IP addresses and dedicated IP subnets, which are prompted for and applied during configuration of the appliance:

• **Cluster Virtual IP Addresses:** One virtual IP (VIP) address per configured network interface per cluster. This requirement applies to three-node clusters and single-node clusters that are likely to be converted into a three-node cluster in the future. You must supply a VIP for each network interface you configure. Each VIP should be from the same subnet as the IP address of the corresponding configured interface. There are four interfaces on each appliance: Enterprise, Cluster, Management, and Cloud. At a minimum, you must configure the Enterprise and Cluster port interfaces, as they are required for Cisco DNA Center functionality. An interface is considered configured if you supply an IP for that interface, along with a subnet mask and one or more associated gateways or static routes. If you skip an interface entirely during configuration, that interface is considered as not configured.

Note the following:

• If you have a single-node setup and do not plan to convert it into a three-node cluster in the future, you are not required to specify a VIP address. However, if you decide to do so, you must specify a VIP address for every configured network interface (just as you would for a three-node cluster).

• If the intracluster link for a single-node cluster goes down, then the VIP addresses associated with the Management and Enterprise interfaces will also go down. When this happens, Cisco DNA Center is unusable until the intracluster link is restored (because the Software Image Management (SWIM) and Cisco Identity Services Engine (ISE) integration will not be operational and Cisco DNA
Assurance data will not be displayed because information cannot be gathered from Network Data Platform (NDP) collectors.

- **Default Gateway IP Address**: The IP address for your network's preferred default gateway. If no other routes match the traffic, traffic will be routed through this IP address. Typically, you should assign the default gateway to the interface in your network configuration that accesses the internet. For information on security considerations to keep in mind when deploying Cisco DNA Center, see the Cisco Digital Network Architecture Center Security Best Practices Guide.

- **DNS Server IP Addresses**: The IP address for one or more of your network's preferred Domain Name System (DNS) servers. During configuration, you can specify multiple DNS server IP addresses and netmasks by entering them as a space-separated list.

- **(Optional) Static Route Addresses**: The IP addresses, subnet masks, and gateways for one or more static routes. During configuration, you can specify multiple static-route IP addresses, netmasks, and gateways by entering them as a space-separated list.

 You can set one or more static routes for an interface on the appliance. You should supply static routes when you want to route traffic in a specific direction other than the default gateway. Each of the interfaces with static routes will be set as the device the traffic will be routed through in the IP route command table. For this reason, it is important to match the static route directions with the interface through which the traffic will be sent.

 Static routes are not recommended in network device routing tables such as those used by switches and routers. Dynamic routing protocols are better for this. However, you should add static routes where needed, to allow the appliance access to particular parts of the network that can be reached no other way.

- **NTP Server IP Addresses**: The DNS-resolvable hostname or IP address for at least one Network Time Protocol (NTP) server.

 During configuration, you can specify multiple NTP server IPs/masks or hostnames by entering them as a space-separated list. For a production deployment, we recommend that you configure a minimum of three NTP servers.

 Specify these NTP servers during preflight hardware synchronization, and again during the configuration of the software on each appliance in the cluster. Time synchronization is critical to the accuracy of data and the coordination of processing across a multihost cluster. Before deploying the appliance in a production environment, make sure that the time on the appliance system clock is current and that the NTP servers you specified are keeping accurate time. If you are planning to integrate the appliance with ISE, you should also ensure that ISE is synchronizing with the same NTP servers as the appliance.

- **Services Subnet**: Identifies a dedicated IP subnet for the appliance to use in managing and getting IPs for communications among its internal application services, such as Cisco DNA Assurance, inventory collection, and so on. The dedicated IPv4 Services subnet must not conflict with or overlap any other subnet used by the Cisco DNA Center internal network or an external network. The minimum size of the subnet is 21 bits. The IPv4 Services subnet must conform with the IETF RFC 1918 and RFC 6598 specifications for private networks, which support the following address ranges:

 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
 - 100.64.0.0/10
For details, see RFC 1918, *Address Allocation for Private Internets*, and RFC 6598, *IANA-Reserved IPv4 Prefix for Shared Address Space*.

Important

- Ensure that you specify a valid CIDR subnet. Otherwise, incorrect bits will be present in the 172.17.1.0/20 and 172.17.61.0/20 subnets.

- After configuration of your Cisco DNA Center appliance is completed, you cannot assign a different subnet without first reimaging the appliance (see *Reimage the Appliance* for more information).

Cluster Services Subnet: Identifies a dedicated IP subnet for the appliance to use in managing and getting IP addresses for communications among its infrastructure services, such as database access, the message bus, and so on. The dedicated IPv4 Cluster Services subnet must not conflict with or overlap any other subnet used by the Cisco DNA Center internal network or an external network. The minimum size of the subnet is 21 bits. The IPv4 Cluster Services subnet must conform with the IETF RFC 1918 and RFC 6598 specifications for private networks, which support the following address ranges:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16
- 100.64.0.0/10

For details, see RFC 1918, *Address Allocation for Private Internets*, and RFC 6598, *IANA-Reserved IPv4 Prefix for Shared Address Space*.

If you were to specify 10.10.10.0/21 as your Services subnet, you could also specify a Cluster Services subnet of 10.0.8.0/21 since these two subnets do not overlap. Also note that the configuration wizard detects overlaps (if any) between these subnets and prompts you to correct the overlap.

Important

- Ensure that you specify a valid CIDR subnet. Otherwise, incorrect bits will be present in the 172.17.1.0/20 and 172.17.61.0/20 subnets.

- After configuration of your Cisco DNA Center appliance is completed, you cannot assign a different subnet without first reimaging the appliance (see *Reimage the Appliance* for more information).

The recommended total IP address space for the two Services and Cluster Services subnets contains 4,096 addresses, broken down into two /21 subnets of 2,048 addresses each. The two /21 subnets must not overlap. The Cisco DNA Center internal services require a dedicated set of IP addresses to operate (a Cisco DNA Center microservice architecture requirement). To accommodate this requirement, you must allocate two dedicated subnets for each Cisco DNA Center system.

One reason the appliance requires this amount of address space is to maintain system performance. Because it uses internal routing and tunneling technologies for east-west (inter-node) communications, using overlapping address spaces forces the appliance to run Virtual Routing and Forwarding (VRF) FIBs internally. This leads to multiple encaps and decaps for packets going from one service to another, causing high internal latency at a very low level, with cascading impacts at higher layers.
Another reason is the Cisco DNA Center Kubernetes-based service containerization architecture. Each appliance uses the IP addresses in this space for each Kubernetes K8 node. Multiple nodes can make up a single service. Currently, Cisco DNA Center supports more than 100 services, each requiring several IP addresses, and new features and corresponding services being added all the time. The address space requirement is purposely kept large at the start to ensure that Cisco can add new services and features without running out of IP addresses or requiring customers to reallocate contiguous address spaces simply to upgrade their systems.

The services supported over these subnets are also enabled at Layer 3. The Cluster Services space, in particular, carries data between application and infrastructure services, and is heavily used.

The RFC 1918 and RFC 6598 requirement is because of the requirement by Cisco DNA Center to download packages and updates from the cloud. If the selected IP ranges do not conform with RFC 1918 and RFC 6598, this can quickly lead to problems with public IP overlaps.

Interface Names and Wizard Configuration Order

Interface names and the order in which these interfaces are configured in the Maglev Configuration wizard differ between the first and second generation Cisco DNA Center appliance, as illustrated in the following table. Refer to these Cisco part numbers to determine whether you have a first or second generation appliance:

- **First generation 44 core appliance**: DN1-HW-APL
- **Second generation**:
 - 44 core appliance: DN2-HW-APL
 - 44 core upgrade appliance: DN2-HW-APL-U
 - 56 core appliance: DN2-HW-APL-L
 - 112 core appliance: DN2-HW-APL-XL

<table>
<thead>
<tr>
<th>Function</th>
<th>Cisco DNA Center Appliance Type</th>
<th>Interface Name</th>
<th>Configuration Order in the Maglev Configuration Wizard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster: Links the appliance to your cluster nodes.</td>
<td>First generation</td>
<td>enp10s0</td>
<td>Network Adapter #1</td>
</tr>
<tr>
<td></td>
<td>Second generation</td>
<td>44 and 56 core appliance: enp94s0f1
112 core appliance: enp69s0f1</td>
<td>Network Adapter #4</td>
</tr>
<tr>
<td>Management: Allows you to access the Cisco DNA Center GUI from your management network.</td>
<td>First generation</td>
<td>enp1s0f0</td>
<td>Network Adapter #2</td>
</tr>
<tr>
<td></td>
<td>Second generation</td>
<td>44 and 56 core appliance: eno1
112 core appliance: enp53s0f0</td>
<td>Network Adapter #1</td>
</tr>
</tbody>
</table>

Table 5: Interface Names and Wizard Configuration Order
Required Internet URLs and Fully Qualified Domain Names

The appliance requires secure access to the following table of URLs and Fully Qualified Domain Names (FQDNs).

The table describes the features that make use of each URL and FQDN. You must configure either your network firewall or a proxy server so that IP traffic can travel to and from the appliance and these resources. If you cannot provide this access for any listed URL and FQDN, the associated features will be impaired or inoperable.

For more on requirements for proxy access to the internet, see [Provide Secure Access to the Internet](#).

Table 6: Required URLs and FQDN Access

<table>
<thead>
<tr>
<th>In order to...</th>
<th>...Cisco DNA Center must access these URLs and FQDNs</th>
</tr>
</thead>
</table>
| Download updates to the system and application package software, submit user feedback to the product team. | Recommended: *.ciscoconnectdna.com:443¹ Customers who want to avoid wildcards can specify these URLs instead:
 - https://www.ciscoconnectdna.com
 - https://cdn.ciscoconnectdna.com
 - https://registry.ciscoconnectdna.com
 - https://registry-edn.ciscoconnectdna.com |
| Cisco DNA Center update package | https://*.ciscoconnectdna.com/* |
| Smart Account and SWIM software downloads | https://apx.cisco.com
 https://cloudsso.cisco.com/as/token.oauth2
 https://*.cisco.com/* |
Required Internet URLs and Fully Qualified Domain Names

<table>
<thead>
<tr>
<th>In order to...</th>
<th>...Cisco DNA Center must access these URLs and FQDNs</th>
</tr>
</thead>
<tbody>
<tr>
<td>User feedback</td>
<td>https://dnacenter.uservoice.com</td>
</tr>
</tbody>
</table>
| Integrate with Cisco Meraki. | Recommended: *.meraki.com:443
Customers who want to avoid wildcards can specify these URLs instead:
 - dashboard.meraki.com:443
 - api.meraki.com:443
 - n63.meraki.com:443 |
| Integrate with Cisco.com and Cisco Smart Licensing. | *.cisco.com:443
Customers who want to avoid wildcards can specify these URLs instead:
 - software.cisco.com
 - cl oud sso. cisco.com
 - cloud sso1.cisco.com
 - cloud sso2.cisco.com
 - apiconsole.cisco.com
 - api.cisco.com
 - apx.cisco.com
 - sso.cisco.com
 - apmx-prod1-vip.cisco.com
 - apmx-prod2-vip.cisco.com
 - tools.cisco.com |
| Render accurate information in site and location maps. | www.mapbox.com
..tiles.mapbox.com/*:443. For a proxy, the destination is *.*.tiles.mapbox.com/* |

1 Cisco owns and maintains ciscoconnectdna.com and its subdomains. The Cisco Connect DNA infrastructure meets Cisco Security and Trust guidelines and undergoes continuous security testing. This infrastructure is robust, with built-in load balancing and automation capabilities, and is monitored and maintained by a cloud operations team to ensure 24x7x365 availability.
Provide Secure Access to the Internet

By default, the appliance is configured to access the internet in order to download software updates, licenses, and device software, as well as provide up-to-date map information, user feedback, and so on. Providing internet connections for these purposes is a mandatory requirement.

Using an HTTPS proxy server is a reliable way to access remote URLs securely. We recommend that you use an HTTPS proxy server to provide the appliance with the access it needs to the URLs listed in Required Internet URLs and Fully Qualified Domain Names. During appliance installation, you are prompted to enter the URL and port number of the proxy server you want to use for this purpose, along with the proxy's login credentials (if the proxy requires them).

As of this release, the appliance supports communication with proxy servers over HTTP only. You can place the HTTPS proxy server anywhere within your network. The proxy server communicates with the internet using HTTPS, while the appliance communicates with the proxy server via HTTP. Therefore, we recommend that you specify the proxy's HTTP port when configuring the proxy during appliance configuration.

If you need to change the proxy setting after configuration, you can do so using the GUI.

Required Network Ports

The following two tables list the well-known network service ports that the appliance uses. You must ensure that these ports are open for traffic flows to and from the appliance, whether you open them using firewall settings or a proxy gateway.

Additional ports, protocols, and types of traffic must be accommodated if you are deploying the appliance in a network that employs SDA infrastructure. For details, see Required Ports and Protocols for Cisco Software-Defined Access.

For information on security considerations when deploying Cisco DNA Center, see the Cisco Digital Network Architecture Center Security Best Practices Guide.

<table>
<thead>
<tr>
<th>Table 7: Ports: Incoming Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Number</td>
</tr>
<tr>
<td>2222</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>162</td>
</tr>
<tr>
<td>443</td>
</tr>
</tbody>
</table>
Table 8: Ports: Outgoing Traffic

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Permitted Traffic</th>
<th>Protocol (TCP or UDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>SSH (to the network devices)</td>
<td>TCP</td>
</tr>
<tr>
<td>23</td>
<td>Telnet (to the network devices)</td>
<td>TCP</td>
</tr>
<tr>
<td>53</td>
<td>DNS</td>
<td>UDP</td>
</tr>
<tr>
<td>80</td>
<td>Port 80 can be used for an outgoing proxy configuration. Additionally, other common ports (such as 8080) can also be used when a proxy is being configured by the Configuration wizard (if a proxy is already in use for your network). To access Cisco-supported certificates and trust pools, configure your network to allow outgoing IP traffic from the appliance to the Cisco addresses at: https://www.cisco.com/security/pki/</td>
<td>TCP</td>
</tr>
<tr>
<td>123</td>
<td>NTP</td>
<td>UDP</td>
</tr>
<tr>
<td>161</td>
<td>SNMP agent</td>
<td>UDP</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>TCP</td>
</tr>
<tr>
<td>5222</td>
<td>ISE XMP for PxGrid</td>
<td>TCP</td>
</tr>
<tr>
<td>9060</td>
<td>ISE ERS API traffic</td>
<td>TCP</td>
</tr>
</tbody>
</table>

The following table lists the ports that permit incoming IP traffic to the appliance:

Table 9: Ports: IP Traffic

<table>
<thead>
<tr>
<th>Protocol (TCP or UDP)</th>
<th>Port Number</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>22</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP</td>
<td>2222</td>
<td>SSH</td>
</tr>
<tr>
<td>TCP</td>
<td>80</td>
<td>HTTP</td>
</tr>
<tr>
<td>TCP</td>
<td>443</td>
<td>HTTPS</td>
</tr>
<tr>
<td>UDP</td>
<td>67</td>
<td>bootps</td>
</tr>
<tr>
<td>UDP</td>
<td>123</td>
<td>NTP</td>
</tr>
</tbody>
</table>
Additionally, you can configure your network to allow outgoing IP traffic from the appliance to the Cisco addresses at: https://www.cisco.com/security/pki/. The appliance uses the IP addresses listed at the above URL to access Cisco-supported certificates and trust pools.

Required Ports and Protocols for Cisco Software-Defined Access

This topic details the ports, protocols and types of traffic native to a typical Cisco SD-Access fabric deployment that is similar to the one shown in the figure below.
If you have implemented Cisco SD-Access in your network, use the information in the following tables to plan firewall and security policies that secure your Cisco SD-Access infrastructure properly while providing Cisco DNA Center with the access it requires to automate your network management.
Table 10: Cisco DNA Center Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source</th>
<th>Destination Port</th>
<th>Destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>UDP 53</td>
<td>DNS Server</td>
<td>From Cisco DNA Center to DNS server</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 22</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches’ loopbacks for SSH</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 23</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches’ loopbacks for TELNET</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>UDP 161</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches’ loopbacks for SNMP device discovery</td>
</tr>
<tr>
<td>ICMP</td>
<td>Cisco DNA Center</td>
<td>ICMP</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches’ loopbacks for SNMP device discovery</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches for software upgrades (also to the internet if there is no proxy)</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 80</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches for Plug and Play (PnP) (also to the internet if there is no proxy)</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 830</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches for Netconf (Cisco SD-Access embedded wireless)</td>
</tr>
<tr>
<td>UDP 123</td>
<td>Cisco DNA Center</td>
<td>UDP 123</td>
<td>Fabric underlay</td>
<td>From Cisco DNA Center to fabric switches for the initial period during LAN automation</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>UDP 123</td>
<td>NTP Server</td>
<td>From Cisco DNA Center to NTP server</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 22, UDP 161</td>
<td>Cisco Wireless Controller</td>
<td>From Cisco DNA Center to Cisco Wireless Controller</td>
</tr>
<tr>
<td>ICMP</td>
<td>Cisco DNA Center</td>
<td>ICMP</td>
<td>Cisco Wireless Controller</td>
<td>From Cisco DNA Center to Cisco Wireless Controller</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 80, TCP 443</td>
<td>AP</td>
<td>From Cisco DNA Center to an AP as a sensor and active sensor (Cisco Aironet 1800S)</td>
</tr>
<tr>
<td>Any</td>
<td>AP</td>
<td>TCP 32626</td>
<td>Cisco DNA Center</td>
<td>Used for receiving traffic statistics and packet capture data used by the Cisco DNA Assurance Intelligent Capture (gRPC) feature.</td>
</tr>
</tbody>
</table>
Cluster, PKI, SFTP server, and proxy port traffic are not included in this table.

Table 11: Internet Connectivity Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source</th>
<th>Destination Port</th>
<th>Destination Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>registry.ciscoconnectdna.com</td>
<td>Download Cisco DNA Center package updates</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>www.ciscoconnectdna.com</td>
<td>Download Cisco DNA Center package updates</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>registry-cdn.ciscoconnectdna.com</td>
<td>Download Cisco DNA Center package updates</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>cdn.ciscoconnectdna.com</td>
<td>Download Cisco DNA Center package updates</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>software.cisco.com</td>
<td>Download device software</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>cloudsso.cisco.com</td>
<td>Validate Cisco.com and Smart Account credentials</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>cloudsso1.cisco.com</td>
<td>Validate Cisco.com and Smart Account credentials</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>cloudsso2.cisco.com</td>
<td>Validate Cisco.com and Smart Account credentials</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>apiconsle.cisco.com</td>
<td>CSSM Smart Licensing API</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>sso.cisco.com</td>
<td>CCO and Smart Licensing</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>api.cisco.com</td>
<td>CCO and Smart Licensing</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>apx.cisco.com</td>
<td>CCO and Smart Licensing</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>dashboard.meraki.com</td>
<td>Meraki integration</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>api.meraki.com</td>
<td>Meraki integration</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>n63.meraki.com</td>
<td>Meraki integration</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>dnaescenter.servicere.com</td>
<td>User feedback submission</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center Admin Client</td>
<td>TCP 443</td>
<td>*.tiles.mapbox.com</td>
<td>Render maps in the browser (for access through proxy; the destination is .tiles.mapbox.com/)</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>TCP 443</td>
<td>www.mapbox.com</td>
<td>Maps and Cisco Wireless Controller country code identification</td>
</tr>
</tbody>
</table>

Table 12: Cisco Software-Defined Access Fabric Underlay Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source</th>
<th>Destination Port</th>
<th>Destination Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Source</td>
<td>Destination</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>UDP 68</td>
<td>Fabric underlay</td>
<td>UDP 67</td>
<td>DHCP server</td>
<td>From fabric switches and routers to the DHCP server for DHCP Relay packets initiated by the fabric edge nodes.</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>TCP 80</td>
<td>Cisco DNA Center</td>
<td>From fabric switch and router loopback IPs to Cisco DNA Center for PnP</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>TCP 443</td>
<td>Cisco DNA Center</td>
<td>From fabric switch and router loopback IPs to Cisco DNA Center for image upgrade</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 162</td>
<td>Cisco DNA Center</td>
<td>From fabric switch and router loopback IPs to Cisco DNA Center for SNMP Traps</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 514</td>
<td>Cisco DNA Center</td>
<td>From fabric switches and routers to Cisco DNA Assurance</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 6007</td>
<td>Cisco DNA Center</td>
<td>From fabric routers to Cisco DNA Center for NetFlow</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 123</td>
<td>Cisco DNA Center</td>
<td>From fabric switches to Cisco DNA Center; used when doing LAN automation</td>
</tr>
<tr>
<td>ICMP</td>
<td>Fabric underlay</td>
<td>ICMP</td>
<td>Cisco DNA Center</td>
<td>From fabric switch and router loopbacks to Cisco DNA Center for SNMP: device discovery</td>
</tr>
<tr>
<td>UDP 161</td>
<td>Fabric underlay</td>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>From fabric switch and router loopbacks to Cisco DNA Center for SNMP: Device Discovery</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 53</td>
<td>DNS Server</td>
<td>From fabric switches and routers to DNS server for name resolution</td>
</tr>
<tr>
<td>TCP and UDP 4342</td>
<td>Fabric underlay</td>
<td>TCP and UDP 4342</td>
<td>Fabric Routers and Switches</td>
<td>LISP-encapsulated control messages</td>
</tr>
<tr>
<td>TCP and UDP 4342</td>
<td>Fabric underlay</td>
<td>Any</td>
<td>Fabric Routers and Switches</td>
<td>LISP control-plane communications</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 4789</td>
<td>Fabric Routers and Switches</td>
<td>Fabric-encapsulated data packets (VXLAN-GPO)</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 1645/1646/1812/1813</td>
<td>ISE</td>
<td>From fabric switch and router loopback IPs to ISE for RADIUS</td>
</tr>
<tr>
<td>ICMP</td>
<td>Fabric underlay</td>
<td>ICMP</td>
<td>ISE</td>
<td>From fabric switches and routers to ISE for troubleshooting</td>
</tr>
<tr>
<td>UDP 1700/3799</td>
<td>Fabric underlay</td>
<td>Any</td>
<td>ISE</td>
<td>From fabric switches to ISE for care-of address (CoA)</td>
</tr>
<tr>
<td>Any</td>
<td>Fabric underlay</td>
<td>UDP 123</td>
<td>NTP Server</td>
<td>From fabric switch and router loopback IPs to the NTP server</td>
</tr>
<tr>
<td>Source Port</td>
<td>Source</td>
<td>Destination Port</td>
<td>Destination</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>UDP 5246/5247/5248</td>
<td>Cisco Wireless Controller</td>
<td>Any</td>
<td>AP IP Pool</td>
<td>From Cisco Wireless Controller to an AP subnet for CAPWAP</td>
</tr>
<tr>
<td>ICMP</td>
<td>Cisco Wireless Controller</td>
<td>ICMP</td>
<td>AP IP Pool</td>
<td>From Cisco Wireless Controller to APs allowing ping for troubleshooting</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 69/5246/5247</td>
<td>AP IP Pool</td>
<td>From Cisco Wireless Controller to an AP subnet for CAPWAP</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP and TCP 4342/4343</td>
<td>Control plane</td>
<td>From Cisco Wireless Controller to control-plane loopback IP</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>TCP 32222</td>
<td>Cisco DNA Center</td>
<td>From Cisco Wireless Controller to Cisco DNA Center for device discovery</td>
</tr>
<tr>
<td>UDP 161</td>
<td>Cisco Wireless Controller</td>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>From Cisco Wireless Controller to Cisco DNA Center for SNMP</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 162</td>
<td>Cisco DNA Center</td>
<td>From Cisco Wireless Controller to Cisco DNA Center for SNMP traps</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>TCP 16113</td>
<td>Cisco Mobility Services Engine (MSE) and Cisco Spectrum Expert</td>
<td>From Cisco Wireless Controller to Cisco MSE and Spectrum Expert for NMSP</td>
</tr>
<tr>
<td>ICMP</td>
<td>Cisco Wireless Controller</td>
<td>ICMP</td>
<td>Cisco DNA Center</td>
<td>From Cisco Wireless Controller to allow ping for troubleshooting</td>
</tr>
<tr>
<td>Any</td>
<td>HA server</td>
<td>TCP 1315</td>
<td>Cisco DNA Center</td>
<td>Database server HA (QoS)</td>
</tr>
<tr>
<td>Any</td>
<td>HA server</td>
<td>TCP 1316–1320</td>
<td>Cisco DNA Center</td>
<td>HA database ports</td>
</tr>
<tr>
<td>Any</td>
<td>HA web server</td>
<td>TCP 8082</td>
<td>Cisco DNA Center</td>
<td>HA web server's health monitor port</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller and various syslog servers</td>
<td>UDP 514</td>
<td>Cisco Wireless Controller</td>
<td>Syslog (optional)</td>
</tr>
<tr>
<td>Source</td>
<td>Destination</td>
<td>Port</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 53</td>
<td>DNS Server</td>
<td>From Cisco Wireless Controller to DNS server</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>TCP 443</td>
<td>ISE</td>
<td>From Cisco Wireless Controller to ISE for Guest SSID web authorization</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 1645,1812</td>
<td>ISE</td>
<td>From Cisco Wireless Controller to ISE for RADIUS authentication</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 1646, 1813</td>
<td>ISE</td>
<td>From Cisco Wireless Controller to ISE for RADIUS accounting</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 1700, 3799</td>
<td>ISE</td>
<td>From Cisco Wireless Controller to ISE for RADIUS CoA</td>
</tr>
<tr>
<td>ICMP</td>
<td>Cisco Wireless Controller</td>
<td>ICMP</td>
<td>ISE</td>
<td>From Cisco Wireless Controller to ISE ICMP for troubleshooting</td>
</tr>
<tr>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>UDP 123</td>
<td>NTP server</td>
<td>From Cisco Wireless Controller to NTP server</td>
</tr>
</tbody>
</table>

Table 14: Fabric-Enabled Wireless AP IP Pool Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source</th>
<th>Destination Port</th>
<th>Destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP 68</td>
<td>AP IP Pool</td>
<td>UDP 67</td>
<td>DHCP server</td>
<td>From an AP IP pool to DHCP server.</td>
</tr>
<tr>
<td>ICMP</td>
<td>AP IP Pool</td>
<td>ICMP</td>
<td>DHCP server</td>
<td>From an AP IP pool to ICMP for troubleshooting.</td>
</tr>
<tr>
<td>Any</td>
<td>AP IP Pool</td>
<td>514</td>
<td>Various</td>
<td>Syslog—Destination configurable. Default is 255.255.255.255.</td>
</tr>
<tr>
<td>Any</td>
<td>AP IP Pool</td>
<td>UDP 69/5246/5247/5248</td>
<td>Cisco Wireless Controller</td>
<td>From an AP IP pool to Cisco Wireless Controller for CAPWAP.</td>
</tr>
<tr>
<td>ICMP</td>
<td>AP IP Pool</td>
<td>ICMP</td>
<td>Cisco Wireless Controller</td>
<td>From an AP IP pool to Cisco Wireless Controller, allowing ping for troubleshooting.</td>
</tr>
</tbody>
</table>

Table 15: ISE Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source</th>
<th>Destination Port</th>
<th>Destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>ISE</td>
<td>TCP 64999</td>
<td>Border</td>
<td>From ISE to border node for SGT Exchange Protocol (SXP)</td>
</tr>
<tr>
<td>Any</td>
<td>ISE</td>
<td>UDP 514</td>
<td>Cisco DNA Center</td>
<td>From ISE to syslog server (Cisco DNA Center)</td>
</tr>
<tr>
<td>UDP 1645/1646/1812/1813</td>
<td>ISE</td>
<td>Any</td>
<td>Fabric underlay</td>
<td>From ISE to fabric switches and routers for RADIUS and authorization</td>
</tr>
<tr>
<td>Source Port</td>
<td>Source Port</td>
<td>Destination Port</td>
<td>Destination Port</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>UDP 67</td>
<td>DHCP server</td>
<td>UDP 68</td>
<td>AP IP Pool</td>
<td>From DHCP server to fabric APs</td>
</tr>
<tr>
<td>ICMP</td>
<td>DHCP server</td>
<td>ICMP</td>
<td>AP IP Pool</td>
<td>ICMP for troubleshooting: Fabric to DHCP</td>
</tr>
<tr>
<td>UDP 67</td>
<td>DHCP server</td>
<td>UDP 68</td>
<td>Fabric underlay</td>
<td>From DHCP to fabric switches and routers</td>
</tr>
<tr>
<td>ICMP</td>
<td>DHCP server</td>
<td>ICMP</td>
<td>Fabric underlay</td>
<td>ICMP for troubleshooting: Fabric to DHCP</td>
</tr>
<tr>
<td>UDP 67</td>
<td>DHCP server</td>
<td>UDP 68</td>
<td>User IP Pool</td>
<td>From DHCP server to fabric switches and routers</td>
</tr>
<tr>
<td>ICMP</td>
<td>DHCP server</td>
<td>ICMP</td>
<td>User IP Pool</td>
<td>ICMP for troubleshooting: User to DHCP</td>
</tr>
</tbody>
</table>

Table 16: DHCP Server Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Destination Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP 123</td>
<td>NTP Server</td>
<td>Any</td>
<td>ISE</td>
<td>From NTP server to ISE</td>
</tr>
<tr>
<td>UDP 123</td>
<td>NTP Server</td>
<td>Any</td>
<td>Cisco DNA Center</td>
<td>From NTP server to Cisco DNA Center</td>
</tr>
<tr>
<td>UDP 123</td>
<td>NTP Server</td>
<td>Any</td>
<td>Fabric underlay</td>
<td>From NTP server to fabric switch and router loopback</td>
</tr>
<tr>
<td>UDP 123</td>
<td>NTP Server</td>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>From NTP server to Cisco Wireless Controller</td>
</tr>
</tbody>
</table>

Note: High availability and profiling traffic are not included in this table.
Table 18: DNS Traffic

<table>
<thead>
<tr>
<th>Source Port</th>
<th>Source</th>
<th>Destination Port</th>
<th>Destination</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP 53</td>
<td>DNS Server</td>
<td>Any</td>
<td>Fabric underlay</td>
<td>From DNS server to fabric switches</td>
</tr>
<tr>
<td>UDP 53</td>
<td>DNS Server</td>
<td>Any</td>
<td>Cisco Wireless Controller</td>
<td>From DNS server to Cisco Wireless Controller</td>
</tr>
</tbody>
</table>

Required Configuration Information

During appliance configuration, you will be prompted for the following information, in addition to the Required IP Addresses and Subnets:

- **Linux User Name**: This is `maglev`. This user name is the same on all the appliances in a cluster, including the master node and add-on nodes, and cannot be changed.

- **Linux Password**: Identifies the password for the Linux user name `maglev`. This password ensures secure access to each appliance using the Linux command line. If required, you can assign a different Linux password for each `maglev` Linux user name on each appliance in a cluster.

You must create the Linux password because there is no default. The password must meet the following requirements:

- Minimum length of eight characters.
- Should not contain a tab or a line break.
- Contains characters from at least three of the following categories:
 - Upper case alphabets
 - Lower case alphabets
 - Numerals
 - Special characters (for example, ! or #)

The Linux password is encrypted and hashed in the Cisco DNA Center database. If you are deploying a multinode cluster, you will also be prompted to enter the master node's Linux password on each of the add-on nodes.

- **Password Generation Seed (Optional)**: Instead of creating a Linux password, you can enter a seed phrase and click **Generate Password**. The **Maglev Configuration** wizard generates a random and secure password using this seed phrase. You can further edit the generated password by using the **Auto Generated Password** field.

- **Administrator Passphrase**: Identifies the password used for web access to Cisco DNA Center in a cluster. This is the password for the superuser account `admin`, which you use to log in to Cisco DNA Center for the first time (see **Log In for the First Time**). You are prompted to change this password when you log in for the first time.
You must create this password because there is no default. The Administrator Passphrase must meet the same requirements as the Linux password, described earlier.

- **CIMC User Password**: Identifies the password used for access to the CIMC GUI. The factory default is `password`, but you are prompted to change it when you first set up CIMC for access using a web browser (see Enable Browser Access to Cisco Integrated Management Controller).

 The CIMC user password must meet the same requirements as the Linux password described earlier. It can be changed back to `password` only by a reset to factory defaults.

- **Master Node IP Address**: Required only when you are installing add-on nodes in a cluster. This is the IP address of the cluster port on the master node (see Interface Cable Connections).

Required First-Time Setup Information

After you have configured your appliances, log in to Cisco DNA Center and complete the essential setup tasks. During this first-time setup, you should have the following information:

- **New Admin Superuser Password**: You will be prompted to enter a new password for the Cisco DNA Center admin super user. Resetting the super user password enhances operational security. This is especially important if, for example, the enterprise staff who installed and configured the Cisco DNA Center appliance is not a Cisco DNA Center user or administrator.

- **Cisco.com Credentials**: The Cisco.com user ID and password that your organization uses to register software downloads and receive system communications through email.

- **Cisco Smart Account Credentials**: The Cisco.com Smart Account user ID and password your organization uses for managing your device and software licenses.

- **IP Address Manager URL and Credentials**: The host name, URL, admin user name, and admin password of the third-party IP address manager (IPAM) server you plan to use with Cisco DNA Center. This release supports InfoBlox and Bluecat.

- **Proxy URL, Port, and Credentials**: The URL (host name or IP address), port number, user name, and user password of the proxy server you plan to use with Cisco DNA Center in order to get updates to the Cisco DNA Center software, manage device licenses, and retrieve other downloadable content.

- **Cisco DNA Center Users**: User names, passwords, and privilege settings for the new Cisco DNA Center users you will be creating. We recommend that you always use one of these new user accounts for all your normal Cisco DNA Center operations. Avoid using the admin super user account for activities, except reconfiguring Cisco DNA Center and operations where super user privileges are explicitly required.

For details about how to launch and respond to the first-time setup wizard that prompts you for this information, see [Log In for the First Time](#).

You will also need the following information to complete the remaining setup tasks, which can be done after your first login:

- **ISE Server IP and Credentials**: You will need the Cisco ISE server IP address, administrative user name, and password. These are needed to log in to and configure your organization's ISE server to share data with Cisco DNA Center, as explained in [Integrate Cisco ISE with Cisco DNA Center](#).

- **Authorization and Policy Server Information**: If you are using Cisco ISE as your authentication and policy server, you will need the same information listed in the previous bullet, plus the ISE CLI user
name, CLI password, server FQDN, a subscriber name (such as cdna), the ISE SSH key (optional), the protocol choice (RADIUS or TACACS), the authentication port, the accounting port, and retry and timeout settings.

If you are using an authorization and policy server that is not Cisco ISE, you will need the server's IP address, protocol choice (RADIUS or TACACS), authentication port, accounting port, and retry and timeout settings.

This information is required to integrate Cisco DNA Center with your chosen authentication and policy server, as explained in Configure Authentication and Policy Servers.

- **SNMP Retry and Timeout Values**: This is required to set up device polling and monitoring, as explained in Configure SNMP Properties.
Required First-Time Setup Information
Install the Appliance

- Appliance Installation Workflow, on page 35
- Unpack and Inspect the Appliance, on page 36
- Review the Installation Warnings and Guidelines, on page 37
- Review the Rack Requirements, on page 38
- Connect and Power On the Appliance, on page 38
- Check the LEDs, on page 39

Appliance Installation Workflow

The following table details the physical installation tasks and the order in which to perform them. Follow these steps for each Cisco DNA Center appliance you install. Be sure to install all of the appliances before configuring the first, master node.

After you have completed all of the tasks in this table successfully, continue with the steps described in Preparation for Appliance Configuration Overview.

Click this link for video that demonstrates the Cisco DNA Center appliance unboxing, installation and configuration process.
Table 19: Cisco DNA Center Appliance Installation Tasks

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | 1. Review and address the deployment planning requirements, including gathering the information you need to provide during configuration and setup (as described in the following topics):
 - Cisco DNA Center and Cisco Software-Defined Access
 - Interface Cable Connections
 - Required IP Addresses and Subnets
 - Required Internet URLs and Fully Qualified Domain Names
 - Provide Secure Access to the Internet
 - Required Network Ports
 - Required Configuration Information
 - Required First-Time Setup Information
| 2 | 2. Review the appliance's features and specifications:
 - Appliance Hardware Specifications
 - Front and Rear Panels
 - Physical Specifications
 - Environmental Specifications
 - Power Specifications
| 3 | 3. Unpack the appliance: Unpack and Inspect the Appliance
| 4 | 4. Review the operational warnings and guidelines about the appliance: Review the Installation Warnings and Guidelines
| 5 | 5. Install the appliance in a rack: Review the Rack Requirements
| 6 | 6. Connect power to the appliance and power it on: Connect and Power On the Appliance
| 7 | 7. Check the front-panel and back-panel LEDs to ensure that the appliance is functional: Check the LEDs

Unpack and Inspect the Appliance

⚠️ **Caution**
When handling internal appliance components, wear an ESD strap and handle modules by the carrier edges only.
Step 1 Remove the appliance from its cardboard container and save all the packaging material (in case the appliance requires shipping in the future).

Step 2 Compare the shipment with the equipment list provided by your customer service representative. Verify that you have all the items.

Step 3 Check for damage and report discrepancies or damage, if any, to your customer service representative immediately. Have the following information ready:

- Invoice number of the shipper (see the packing slip)
- Model and serial number of the damaged unit
- Description of damage
- Effect of damage on the installation

Review the Installation Warnings and Guidelines

⚠️ **Warning**

To prevent the system from overheating, do not operate it in an area that exceeds the maximum recommended ambient temperature of: 95°F (35°C). Statement 1047

⚠️ **Warning**

The plug-socket combination must be accessible at all times, because it serves as the main disconnecting device. Statement 1019

⚠️ **Warning**

This product relies on the building’s installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 15 A. Statement 1005

⚠️ **Warning**

Installation of the equipment must comply with local and national electrical codes. Statement 1074

⚠️ **Caution**

To ensure proper airflow, it is necessary to rack the appliances using rail kits. Physically placing the units on top of one another or stacking without the rail kits blocks the air vents on top of the appliances, which could result in overheating, higher fan speeds, and higher power consumption. We recommend that you mount your appliances on rail kits when you are installing them into the rack because these rails provide the minimal spacing required between the appliances. No additional spacing between the appliances is required when you mount the units using rail kits.
Caution

Avoid UPS models that use ferroresonant technology. These UPS models can become unstable with systems such as the Cisco UCS, which can have substantial current-draw fluctuations because of fluctuating data traffic patterns.

When you install an appliance, follow these guidelines:

- Plan your site configuration and prepare the site before installing the appliance. See the Cisco UCS Site Preparation Guide for help with the recommended site planning and preparation tasks.
- Ensure that there is adequate space around the appliance to enable servicing, and for adequate airflow. The airflow in this appliance is from front to back.
- Ensure that the site's air-conditioning meets the thermal requirements listed in Environmental Specifications.
- Ensure that the cabinet or rack meets the requirements listed in Review the Rack Requirements.
- Ensure that the site's power meets the requirements listed in Power Specifications. If available, use a UPS to protect against power failures.

Review the Rack Requirements

For proper operation, the rack in which you install the appliance must meet the following requirements:

- A standard 19-in. (48.3-cm) wide, four-post EIA rack, with mounting posts that conform to English universal hole spacing, per section 1 of ANSI/EIA-310-D-1992.
- The rack post holes can be square 0.38-in. (9.6 mm), round 0.28-in. (7.1 mm), #12-24 UNC, or #10-32 UNC when you use the supplied slide rails.
- The minimum vertical rack space per server must be one RU, equal to 1.75 in. (44.45 mm).

Connect and Power On the Appliance

This section describes how to power on the appliance and check that it is functional.

Step 1

Attach the supplied power cord to each power supply in the appliance and then attach the power cords to a grounded AC power outlet. See Power Specifications for details.

Wait for approximately two minutes to let the appliance boot into standby power mode during the first boot up.

The Power Status LED indicates the appliance’s power status:

- Off: There is no AC power present in the appliance.
- Amber: The appliance is in standby power mode. Power is supplied only to the CIMC and some motherboard functions.
- Green: The appliance is in main power mode. Power is supplied to all the appliance components.
For more information on these and other appliance LEDs, see Front and Rear Panels.

Step 2

Connect a USB keyboard and VGA monitor to the server, using the supplied KVM cable connected to the KVM connector on the front panel. Alternatively, you can use the VGA and USB ports on the rear panel. You can only connect to one VGA interface at a time.

Check the LEDs

After you have powered up the Cisco DNA Center appliance, check the state of the front-panel and rear-panel LEDs and buttons to ensure it is functioning.

The following illustrations show the LEDs for a functional appliance after physical installation and first power-up and before configuration.

Figure 6: Front Panel LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Desired Status Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drive Fault LEDs: Off.</td>
</tr>
<tr>
<td></td>
<td>Drive Activity LEDs: Green</td>
</tr>
<tr>
<td>2</td>
<td>Power Status: Green</td>
</tr>
<tr>
<td>3</td>
<td>System Status: Green</td>
</tr>
<tr>
<td>4</td>
<td>Fan Status: Green</td>
</tr>
</tbody>
</table>

Flex PT-1525 Power Supply User's Guide, Issue 1.0

Cisco Digital Network Architecture Center First Generation Appliance Installation Guide, Release 1.3
Check the LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Desired Status Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Temperature Status: Green</td>
</tr>
<tr>
<td>6</td>
<td>Power Supply Status: Green</td>
</tr>
<tr>
<td>7</td>
<td>Network Link Activity: Off</td>
</tr>
</tbody>
</table>

Figure 7: Rear Panel LEDs

2. AC Power LEDs: Green

If you see LEDs with colors other than those shown above, you may have a problem condition. See Front and Rear Panels for details on the likely causes of the status. Be sure to correct any problem conditions before proceeding to configure the appliance.
Prepare the Appliance for Configuration

• Preparation for Appliance Configuration Overview, on page 41
• Enable Browser Access to Cisco Integrated Management Controller, on page 41
• Execute Preconfiguration Checks, on page 46
• Reimage the Appliance, on page 52

Preparation for Appliance Configuration Overview

Before you can successfully configure your Cisco DNA Center appliance, first complete the following tasks:

1. Enable browser access to the appliance's Cisco IMC (see Enable Browser Access to Cisco Integrated Management Controller).

2. Use Cisco IMC to check and adjust important hardware and switch settings (see Execute Preconfiguration Checks).

3. Cisco DNA Center software is preinstalled on your appliance, but you may need to reinstall the software in certain situations (such as before you change the current cluster link configuration). If this is the case, you must also complete the tasks described in Reimage the Appliance.

Note

If you do not need to reimage your appliance, proceed to Appliance Configuration Overview.

Enable Browser Access to Cisco Integrated Management Controller

After installing the appliance, as described in Appliance Installation Workflow, use the Cisco IMC configuration utility to assign an IP address and gateway to the appliance's CIMC port. This gives you access to the Cisco IMC GUI, which you should use to configure the appliance.

After you complete the Cisco IMC setup, log in to Cisco IMC and run the tasks listed in Execute Preconfiguration Checks to ensure correct configuration.
To help ensure the security of your deployment, Cisco IMC prompts you to change the Cisco IMC user's default password when you boot the appliance for the first time. To change the Cisco IMC user password later, use the Cisco IMC GUI, as follows:

2. Click ID 1, and then Modify User.
3. Enter the new password in the Change Password field, and then click Save.

Step 1
Access the appliance console by attaching either of the following:
- A KVM cable to the KVM connector on the appliance's front panel (component 12 on the front panel illustrated in Front and Rear Panels)
- A keyboard and monitor to the USB and VGA ports on the appliance's rear panel (components 7 and 12, respectively, on the rear panel illustrated in Front and Rear Panels).

Step 2
Make sure that the appliance's power cord is plugged in and the power is on.

Step 3
Press the Power button on the front panel to boot the appliance. The Cisco IMC configuration utility boot screen to be displayed, as shown below.

The Cisco IMC configuration utility boot screen should be displayed, as shown below.

Step 4
As soon as the boot screen is displayed, press F8 to perform Cisco IMC configuration.

The CIMC configuration utility displays the CIMC User Details screen, as shown below.
Step 5 Enter the default CIMC user password (the default on a new appliance is `password`) in the **Enter current CIMC Password** field.

Step 6 Enter and confirm the new CIMC user password in the **Enter new CIMC password** and **Re-Enter new CIMC password** fields.

When you press **Enter** after entering the new password in the **Re-Enter new CIMC password** field, the Cisco IMC configuration utility displays the **NIC Properties** screen, as shown below.

Perform the following actions:

- **NIC mode**: Select **Dedicated**.
- **IP (Basic)**: Select **IPV4**.
- **CIMC IP**: Enter the IP address of the CIMC port.
- **Prefix/Subnet**: Enter the subnet mask for the CIMC port IP address.
- **Gateway**: Enter the IP address of your preferred default gateway.
• **Pref DNS Server**: Enter the IP address of your preferred DNS server.

• **NIC Redundancy**: Select None.

Step 8

Press F1 to specify Additional settings.

The Cisco IMC configuration utility displays the Common Properties screen, as shown below.

![Common Properties Screen]

Step 9

Perform the following actions:

• **Hostname**: Enter a hostname for CIMC on this appliance.

• **Dynamic DNS**: Uncheck the check box to disable this feature.

• **Factory Defaults**: Uncheck the check box to disable this feature.

• **Default User (Basic)**: Leave these fields blank.

• **Port Properties**: Enter new settings or accept the defaults shown in these fields.

• **Port Profiles**: Uncheck the check box to disable this feature.

Step 10

Press F10 to save the settings.

Step 11

Press Escape to exit and reboot the appliance.

Step 12

After the settings are saved and the appliance finishes rebooting, open a compatible browser on a client machine with access to the subnet on which the appliance is installed, and enter the following URL:

https://CIMC_ip_address, where **CIMC_ip_address** is the Cisco IMC port IP address that you entered in Step 7.
Your browser displays a main Cisco IMC GUI login window similar to the one shown below.

Step 13

Log in using the Cisco IMC user ID and password you set in Step 5. If the login is successful, your browser displays a **Cisco Integrated Management Controller Chassis Summary** window similar to the one shown below.
Execute Preconfiguration Checks

After installing the appliance (as described in Appliance Installation Workflow) and setting up access to the Cisco IMC GUI (as described in Enable Browser Access to Cisco Integrated Management Controller), use Cisco IMC to perform the following preconfiguration tasks, which help ensure correct configuration and deployment:

1. Synchronize the appliance hardware with the Network Time Protocol (NTP) servers you use to manage your network. These must be the same NTP servers whose hostnames or IPs you gathered for use when planning your implementation, as explained in Required IP Addresses and Subnets. This is a critical task that ensures that your Cisco DNA Center data is synchronized properly across the network.

2. Check that the appliance's 10-Gbps ports are enabled and properly configured for high throughput.

3. Reconfigure the switches connected to the 10-Gbps appliance ports to support higher throughput settings.

4. Reconfigure the switches connected to the 10-Gbps appliance ports to support oversize 802.1p frames.

Step 1

Login to the appliance's CIMC using the CIMC IP address, user ID and password you set in Enable Browser Access to Cisco Integrated Management Controller. If login is successful, your browser displays the Cisco Integrated Management Controller Chassis Summary window, as shown below.

Step 2

Synchronize the appliance hardware with the Network Time Protocol (NTP) servers you use to manage your network, as follows:

a) With the Chassis Summary window displayed, click the icon to display the CIMC menu.

b) From the CIMC menu, select Admin > Networking > NTP Setting. CIMC displays the NTP Setting tab.
Prepare the Appliance for Configuration

Step 3

Next, check that the appliance NICs are configured to support high throughput, as follows:

a) If needed, click the icon to display the CIMC menu.
b) From the CIMC menu, select Chassis > Inventory > Cisco VIC Adapters. Verify that the Product ID "UCSC-MLOM-CSC-02" is listed for the MLOM slot, as shown below:

c) Select Compute > BIOS > Configure BIOS > Advanced. Verify that the Reboot Host Immediately checkbox is unchecked and note the location of the LOM and PCIe Slots Configuration dropdown.
d) Select **LOM and PCIe Slots Configuration.** Then, using the dropdown selectors, set **PCIe Slot: MLOM OptionROM** to **Enabled** and **PCIe Slot: MLOM Link Speed** to **Auto.**

e) Click **Save.** You will be prompted to reboot the host. Click **Cancel** to continue instead of rebooting.

f) Select **Networking > Adapter Card MLOM > General.** Take note of the MAC addresses for **Port-0** and **Port-1** (shown in the **External Ethernet Interfaces** section at the bottom of the page). In the **Adapter Card**
Properties section, use the dropdown selectors next to Port-0 and Port-1 to set the speed of both these ports to Auto, as shown below. Then click Save Changes.

![Properties page](image1.png)

- **Port-0**
 - MAC Address: 00:1C:31:62:33:3F
 - Admin Speed: 1000bps
 - Operating Speed: 1000bps

- **Port-1**
 - MAC Address: 00:1C:31:62:33:3F
 - Admin Speed: 1000bps
 - Operating Speed: 1000bps

g) Click the vNICs tab and select eth0 from the vNICs dropdown. Use the selectors and fields to set these values for eth0:

- **VLAN Mode**: Trunk
- **MTU**: 1500
- **Default VLAN**: 99 (Please note that "99" is only an example. You should enter the default VLAN value you want your appliances and their connected uplink switch to use.)
1500 is the minimum MTU size. You can improve throughput on the 10Gbps ports by entering any higher value, up to a maximum of 9000.

h) Click Save Changes. You will be prompted to reboot the host again. Click Cancel to continue instead of rebooting.

i) Select eth1 from the vNICS dropdown and set the values that you want your appliances and their connected uplink switch to use.

j) When you are finished, click Save Changes. You will be prompted to reboot the host. This time, click OK to reboot the appliance.

k) When the appliance is finished rebooting, log in to the CIMC GUI again. Select Networking > Adapter Card MLOM > General > vNICs. Verify the accuracy of the vNIC MAC addresses and the MTU, VLAN and VLAN Mode parameters you set earlier.

l) When you are finished: Click the Host Power menu at top right and select Power Cycle. Then click OK.

Step 4

Next, reconfigure your switches to match the high-throughput settings on the appliance, as follows:

a) Using a Secure Shell (SSH) client, login to the switch to be configured and enter EXEC mode at the switch prompt.

b) Enter the following series of commands to configure the switch port:
MySwitch#Config terminal
MySwitch(config)#interface tengigabitethernet 1/1/3
MySwitch(config-if)#switchport mode trunk
MySwitch(config-if)#switchport trunk allowed vlan 99
MySwitch(config-if)#speed auto
MySwitch(config-if)#duplex full
MySwitch(config-if)#mtu 1500
MySwitch(config-if)#no shut
MySwitch(config-if)#end
MySwitch(config)#copy running-config startup-config

Note that these commands are examples only. Use the same VLAN ID and MTU values you entered when configuring the appliance NICs above. The command values for link speed, duplex and MTU are the defaults for the example switch, so you will need to enter them only if you have changed the defaults. You may, as with the appliance NICs, also set the MTU up to a maximum of 9000, for better throughput.

c) Run the command `show interface tengigabitethernet portID` and verify that the port is connected and running, and has the correct MTU, duplex, and link type settings in the command output. For example:

```
MySwitch#show interface tengigabitethernet 1/1/3
TenGigabitEthernet1/1/3 is up, line protocol is up (connected)
  Hardware is Ten Gigabit Ethernet, address is XXXe.310.8000 (bia XXX.310.8000)
  MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec,
  reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive not set
  Full-duplex, 10Gb/s, link type is auto, media type is SFP-10Gbase-SR
```

d) Run the command `show run interface tengigabitethernet portID` to configure the switch ports where the cables from the VIC 1227 ports are connected. For example:

```
MySwitch#show run interface tengigabitethernet 1/1/3
Building configuration...
Current configuration : 129 bytes

! interface TenGigabitEthernet1/1/3
  switchport trunk allowed vlan 99
  switchport mode trunk
  ip device tracking maximum 10
end

MySwitch#
```

e) Run the command `show mac address-table interface tengigabitethernet portID` and verify the MAC address from the command output. For example:

```
MySwitch#show mac address-table interface tengigabitethernet 1/1/3
Mac Address Table
----------
Vlan  Mac Address  Type  Ports
-----  -----------  ----  ------
  99  XXXe.3161.1000  DYNAMIC  Te1/1/3
Total Mac Addresses for this criterion: 1

MySwitch#
```

Step 5 Finally, configure the switches connected to the 10Gbps appliance ports to support oversize 802.1p frames:

a) If you have not already done so, use a Secure Shell (SSH) client to login in to the switch to be configured and enter EXEC mode at the switch prompt.

b) Enter the following series of commands to configure the switch port to support 802.1P frames:

```
MySwitch#Config terminal
MySwitch(config)#interface tengigabitethernet 1/1/3
```
MySwitch(config-if)#switchport voice vlan dot1p
MySwitch(config-if)#no shut
MySwitch(config-if)#end
MySwitch(config)#copy running-config startup-config

c) Run the command `show run interface tengigabitethernet portID` and verify from the command output that the port has the correct `voice vlan dot1p` setting. For example:

MySwitch#show run interface tengigabitEthernet 1/1/3
Building configuration...

Current configuration : 62 bytes
! interface tengigabitethernet1/1/3
 switchport mode trunk
 switchport voice vlan dot1p
MySwitch#end

What to do next

When this task is complete, do one of the following:

- If you need to reinstall Cisco DNA Center software before you configure your appliance, see Reimage the Appliance.
- If you are ready to configure your appliance, proceed to Appliance Configuration Overview.

Reimage the Appliance

Situations that require you to reimage your Cisco DNA Center appliance, such as recovering from a backup or changing your cluster link configuration, might arise. To do so, complete the following procedure.

Step 1
Download the Cisco DNA Center ISO image and verify that it is a genuine Cisco image.
See Verify the Cisco DNA Center ISO Image.

Step 2
Create a bootable USB drive that contains the Cisco DNA Center ISO image.
See Create a Bootable USB Drive.

Step 3
Reinitialize the three virtual drives that are managed by your appliance’s RAID controller:

a) Log in to Cisco IMC and start a KVM session.
b) Power on or power cycle the appliance by choosing one of the following menu options:

• Power > Power On System
• Power > Power Cycle System (cold boot)

As your appliance reboots, a screen that lists every drive on the appliance (both physical and virtual) will appear.
c) As soon as you see this screen, press Ctrl + R to run the MegaRAID Configuration Utility.

If you wait too long to press Ctrl + R, this screen will disappear. To get back to this screen, choose Power > Reset System (warm boot) from the KVM menu to reboot your appliance.

d) Select a drive’s entry (for example, ID: 0, 446.102 GB) and then press F2.

e) In the resulting menu, choose Initialization > Fast Initialization.

f) Repeat Steps 3b through 3e for the other virtual drives on your appliance.

Step 4
Reinstall Cisco DNA Center onto your appliance.

See Install the Cisco DNA Center ISO Image.
Verify the Cisco DNA Center ISO Image

Prior to deploying Cisco DNA Center, we strongly advise you to verify that the ISO image you downloaded is a genuine Cisco image.

Before you begin

Obtain the location of the Cisco DNA Center ISO image (either via email or contact with the Cisco support team).

Step 1
Download the Cisco DNA Center ISO image (.iso) from the location specified by Cisco.

Step 2
Download the Cisco public key (cisco_image_verification_key.pub) for signature verification from the location specified by Cisco.

Step 3
Download the secure hash algorithm (SHA512) checksum file for the ISO image from the location specified by Cisco.

Step 4
Obtain the ISO image's signature file (.sig) from Cisco support via email or by download from the secure Cisco website (if available).

Step 5
(Optional) Perform a SHA verification to determine whether the ISO image was corrupted due to a partial download.

Run one of the following commands (depending upon your operating system):

- On a Linux system: `sha512sum ISO-image-filename`
- On a Mac system: `shasum -a512 ISO-image-filename`

Microsoft Windows does not include a built-in checksum utility, but you can install a utility from Microsoft at this link: http://www.microsoft.com/en-us/download/details.aspx?id=11533. Compare the output of the command above (or Microsoft Windows utility) to the SHA512 checksum file downloaded earlier in Step 3. If the command output fails to match, download the ISO image again and run the appropriate command a second time. If the output still fails to match, contact Cisco support.

Step 6
Verify that the ISO image is genuine and from Cisco by verifying its signature:

`openssl dgst -sha512 -verify cisco_image_verification_key.pub -signature signature-filename ISO-image-filename`

Note

This command will work in both MAC and Linux environments. For Windows, you need to download and install OpenSSL (available [here](http://www.openssl.org)) if you have not already done so.

If the ISO image is genuine, then running this command should result in a **Verified OK** message. If this message fails to appear, then do not install the ISO image and contact Cisco support.

Step 7
After confirming you have downloaded a Cisco ISO image, create a bootable USB drive that contains the Cisco DNA Center ISO image. See [Create a Bootable USB Drive](#).

Create a Bootable USB Drive

Complete one of the following procedures to create a bootable USB drive from which you can install the Cisco DNA Center ISO image.

Before you begin:
• Download and verify your copy of the Cisco DNA Center ISO image. See Verify the Cisco DNA Center ISO Image.

• Confirm that the USB flash drive you are using has a capacity of at least 32 GB.

Using Etcher

Step 1
Download and install Etcher (version 1.3.1 or later), an open-source freeware utility that allows you to create a bootable USB drive on your laptop or desktop.

Linux, macOS, and Windows versions of Etcher are currently available. You can download a copy at https://www.balena.io/etcher/.

Note Only use the Windows version of Etcher on machines running Windows 10, as there are known compatibility issues with older versions of Windows.

Step 2
From the machine on which you installed Etcher, connect a USB drive and then start Etcher.

Step 3
Click the gear icon in the upper right corner of the window and verify that the following Etcher settings are set:

• Auto-unmount on success
• Validate write on success

Step 4
Click Back to return to the main window.

Step 5
Click Select Image.

Step 6
Navigate to the Cisco DNA Center ISO image you downloaded previously, select it, and then click Open.

The name of the USB drive you connected should be listed under the drive icon. If it is not:

1. Click Select drive.

2. Click the radio button for the correct USB drive, then click Continue.

Step 7
Click Flash! to copy the ISO image to the USB drive.

Etcher configures the USB drive as a bootable drive with the Cisco DNA Center ISO image installed.

Using the Linux CLI

Step 1
Verify that your USB flash drive is recognized by your machine:

a) Insert a flash drive into your machine's USB port.

b) Open a Linux shell and run the following command: lsblk

The command lists the disk partitions that are currently configured on your machine, as illustrated in the following example:

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 446.1G 0 disk
├─sda1 8:1 0 1M 0 part
Using the Mac CLI

Prepare the Appliance for Configuration

Using the Mac CLI

Step 1 Determine the disk partition associated with your USB flash drive:
 a) **Open a Terminal window and run the following command:** `diskutil list`
 The command lists the disk partitions that are currently configured on your machine.
 b) **Insert a flash drive into your machine’s USB port and run the `diskutil list` command a second time.**
 The partition that was not listed the first time you ran this command corresponds to your flash drive. For example, let’s assume that your flash drive’s partition is `/dev/disk2`.

Step 2 **Unmount the flash drive’s partition:** `diskutil unmountDisk flash-drive-partition`
 Continuing our example, you would enter `diskutil unmountDisk /dev/disk2`

Step 3 **Using the Cisco DNA Center ISO image you downloaded previously, create a disk image:** `hdiutil convert -format UDRW -o Cisco-DNA-Center-version ISO-image-filename`
 Continuing our example, let’s assume that you are working with a Cisco DNA Center 1.3 ISO image named `CDNAC-SW-1.3.iso`. You would run the following command, which creates a macOS disk image named `CDNAC-1.3.dmg`:
 `hdiutil convert -format UDRW -o CDNAC-1.3 CDNAC-SW-1.3.iso`
 Important Ensure that the ISO image does not reside on a Box partition.

Step 4 **Create a bootable USB drive:** `sudo dd if=macOS-disk-image-filename of=flash-drive-partition bs=1m`
 Continuing our example, you would run the following command: `sudo dd if=CDNAC-1.3.dmg of=/dev/disk2 bs=1m`
 The ISO image is about 18 GB in size, so this can take around an hour to complete.

| sda2 8:2 0 28.6G 0 part / |
| sda3 8:3 0 28.6G 0 part /install2 |
| sda4 8:4 0 9.5G 0 part /var |
| sda5 8:5 0 30.5G 0 part [SWAP] |
| sda6 8:6 0 348.8G 0 part /data |
| sdb 8:16 0 1.8T 0 disk |
| sdb1 8:17 0 426.1G 0 part /data/maglev/srv/fusion |
| sdb2 8:18 0 1.3T 0 part /data/maglev/srv/maglev-system |
| sdc 8:32 0 3.5T 0 disk |
| sdc1 8:33 0 3.5T 0 part /data/maglev/srv/ndp |
| sdd 8:48 0 28.7G 0 disk |
| sdd1 8:49 1 12G 0 part |

c) Confirm that an sdd partition (which indicates the presence of a USB flash drive) is listed.
Install the Cisco DNA Center ISO Image

Complete the following procedure to install the Cisco DNA Center ISO image onto your appliance.

Before you begin

Create the bootable USB drive from which you will install the Cisco DNA Center ISO image. See Create a Bootable USB Drive.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Connect the bootable USB drive with the Cisco DNA Center ISO image to the appliance.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Log into CIMC and start a KVM session.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Power on or power cycle the appliance:</td>
</tr>
<tr>
<td></td>
<td>• Choose Power > Power On System if the appliance is not currently running.</td>
</tr>
<tr>
<td></td>
<td>• Choose Power > Power Cycle System (cold boot) if the appliance is already running.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the resulting pop-up window, click Yes to acknowledge that you are about to execute a server control action.</td>
</tr>
<tr>
<td>Step 5</td>
<td>When the Cisco logo appears, either press the F6 key or choose Macros > User Defined Macros > F6 from the KVM menu. The boot device selection menu appears.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Select your USB drive and then press Enter.</td>
</tr>
<tr>
<td>Step 7</td>
<td>In the GNU GRUB bootloader window, choose Manufacture Cisco DNA appliance and then press Enter.</td>
</tr>
</tbody>
</table>

Note The bootloader will automatically boot the Maglev Installer instead if you do not make a selection within 30 seconds. Ensure that you make your selection before then.

When installation of the Cisco DNA Center ISO image completes, the installer reboots and opens the Maglev Configuration wizard's welcome screen. Depending on whether you are going to configure a master or secondary cluster node, proceed to Step 4 in either Configure the Master Node or Configure Add-On Nodes.
Prepare the Appliance for Configuration

Install the Cisco DNA Center ISO Image
CHAPTER 5

Configure the Appliance

- Appliance Configuration Overview, on page 59
- Configure the Master Node, on page 59
- Configure Add-On Nodes, on page 72
- Upgrade to the Latest Cisco DNA Center Release, on page 85

Appliance Configuration Overview

You can deploy the appliance in your network in one of the following two modes:

- **Standalone:** As a single node offering all the functions. This option is usually preferred for initial or test deployments and in smaller network environments.

- **Cluster:** As a node that belongs to a three-node cluster. In this mode, all the services and data are shared among the hosts. This is the preferred option for large deployments.

If you choose the Standalone mode for your initial deployment, you can add more appliances later to form a cluster. When configuring the standalone host, ensure that it is set it up as the first, or master, node in the cluster.

If you choose the Cluster mode for your initial deployment, be sure to finish configuring the master node before configuring the add-on nodes.

To proceed, complete the following tasks:

1. Launch the Maglev Configuration wizard from Cisco IMC and configure the master node in your cluster. See Configure the Master Node.

2. If you have installed three appliances and want to add the second and third nodes to your cluster, see Configure Add-On Nodes.

Configure the Master Node

Perform the following steps to configure the first installed appliance as the master node. You must always configure the first appliance as the master node, whether it will operate standalone or as part of a cluster.

If you are configuring the installed appliance as an add-on node for an existing cluster that already has a master node, follow the steps in Configure Add-On Nodes instead.
For each appliance in your cluster, configure DNS servers on only one of its interfaces. Problems can occur if you configure DNS servers on multiple interfaces.

Before you begin

Ensure that you:

- Collected all of the information called for in Required IP Addresses and Subnets and Required Configuration Information.
- Installed the first appliance as described in Appliance Installation Workflow.
- Configured Cisco IMC browser access on the master node, as described in Enable Browser Access to Cisco Integrated Management Controller.
- Checked that the master node appliance's ports and the switches it uses are properly configured, as described in Execute Preconfiguration Checks.
- Are using a browser that is compatible with Cisco IMC and Cisco DNA Center. For a list of compatible browsers, see the Release Notes for the version of Cisco DNA Center you are installing.
- Enabled ICMP on the firewall between Cisco DNA Center and the DNS server you will specify in Step 8 of the following procedure. The Maglev Configuration wizard uses Ping to verify the DNS server you specify. This ping can be blocked if there is a firewall between Cisco DNA Center and the DNS server and ICMP is not enabled on that firewall. When this happens, you will not be able to complete the wizard.

Step 1

Point your browser to the Cisco IMC IP address you set during the Cisco IMC GUI configuration you performed, and login to the Cisco IMC GUI as the Cisco IMC user (see Enable Browser Access to Cisco Integrated Management Controller).

After successful login, the appliance displays the **Cisco Integrated Management Controller Chassis Summary** window, with a blue link menu at the upper right, as shown below.

![Cisco Integrated Management Controller Chassis Summary](image)

Step 2

From the blue link menu, choose **Launch KVM** and then select either **Java based KVM** or **HTML based KVM**. If you select the Java-based KVM, you will need to launch the Java startup file from your browser or file manager in order to view the KVM console in its own window. If you select the HTML-based KVM, it will launch the KVM console in a separate browser window or tab automatically.

Irrespective of the KVM type you choose, use the KVM console to monitor the progress of the configuration and respond to Maglev Configuration wizard prompts.
Step 3

With the KVM displayed, reboot the appliance by making one of the following selections:

a) In the main Cisco IMC GUI browser window: Choose **Host Power > Power Cycle**. Then switch to the KVM console to continue.

b) In the KVM console: Choose **Power > Power Cycle System (cold boot)**.

If asked to confirm your choice to reboot the appliance, click **OK**.

After displaying reboot messages, the KVM console displays the Maglev Configuration wizard welcome screen, shown below.

![Welcome to the Maglev Configuration Wizard](image)

Step 4

Choose **Start a Cisco DNA Center Cluster** to begin configuring the master node.

The wizard discovers all of the ports on the appliance and presents them to you one by one, in separate screens, in the following order:

1. 10Gbps Cluster Port (Port 2, enp10s0, Network Adapter #1)
2. 1Gbps Cisco DNA Center GUI Port (1, enp1s0f0, Network Adapter #2)
3. 1Gbps Cloud Port (2, enp1s0f1, Network Adapter #3)
4. 10Gbps Enterprise Port (Port 1, enp9s0, Network Adapter #4)

Note
If the wizard fails to display one or both of the 10Gbps ports during the course of configuration, these ports may be non-functional or disabled. These 10Gbps ports are required for Cisco DNA Center functionality. If you discover they are non-functional, choose **cancel** to exit the configuration immediately. Be sure you have completed all of the steps provided in **Execute Preconfiguration Checks** before resuming configuration or contacting the Cisco Technical Assistance Center (TAC).
The wizard discovers the 10Gbps Cluster Port (Port 2, enp10s0) first, and presents it as **NETWORK ADAPTER #1**. As explained in *Interface Cable Connections*, this port is used to link the appliance to the cluster, so apply the host IP address, netmask, and other values appropriate for this purpose (see *Required IP Addresses and Subnets* and *Required Configuration Information* for the values to enter).

Enter configuration values for **NETWORK ADAPTER #1** as shown in the table below.

Table 20: Master Node Entries for Network Adapter #1: 10Gbps Cluster Port (enp10s0)

<table>
<thead>
<tr>
<th>Host IP address</th>
<th>Enter the IP address for the Cluster Port. This is required. Note that you cannot change the address of the Cluster Port later.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the port. This is usually required on the Enterprise Port only.</td>
</tr>
<tr>
<td>DNS Servers</td>
<td>Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Enter one or more static routes in the following format, separated by spaces: <code><network>/<netmask>/<gateway></code>. This is usually required on the GUI Port only.</td>
</tr>
</tbody>
</table>
Select the checkbox to indicate that this port will be the link to a cluster. This is required on the Cluster Port only.

Reserved for future use. Leave this field blank.

When you are finished entering configuration values, enter **next>>** to proceed. After entering **next>>**, the wizard validates the values you entered and issues an error message if any are incorrect. If you receive an error message, check that the value you entered is correct, then re-enter it. If needed, select <<back to re-enter it.

Step 6

After successful validation of the Cluster Port values you entered, the wizard presents the 1Gbps Cisco DNA Center GUI Port (1, enp1s0f0) as **NETWORK ADAPTER #2**. As explained in Interface Cable Connections, this port is used to access the Cisco DNA Center GUI from your management network. Apply the host IP address, netmask, and other values appropriate for this purpose (see Required IP Addresses and Subnets and Required Configuration Information for the values to enter).

Enter configuration values for **NETWORK ADAPTER #2** as shown in the table below.

Table 21: Master Node Entries for Network Adapter #2: 1Gbps GUI Port (enp1s0f0)

<table>
<thead>
<tr>
<th>Host IP address</th>
<th>Enter the IP address for the 1Gbps GUI Port. This is required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the port. This is usually required on the Enterprise Port only.</td>
</tr>
</tbody>
</table>
Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.

Note For NTP, ensure port 121 (UDP) is open between Cisco DNA Center and your NTP server.

Static Routes
Enter one or more static routes in the following format, separated by spaces: `<network>/<netmask>/<gateway>`.

Cluster Link
Leave this field blank. It is required on the Cluster Port only.

Configure IPv6 Address
Reserved for future use. Leave this field blank.

When you are finished, enter `next>>` to proceed. Correct any validation errors as you did in previous screens.

Step 7

After successful validation of the Cisco DNA Center GUI Port values you entered, the wizard presents the 1Gbps Cloud Port (2, enp1s0f1) as **NETWORK ADAPTER #3**. As explained in Interface Cable Connections, this is an optional port used to link the appliance to the Internet when you cannot do so through the 10Gbps Enterprise Port (Port 1, enp9s0). Apply the host IP address, netmask, and other values appropriate for this purpose (see Required IP Addresses and Subnets and Required Configuration Information for the values to enter).

Enter configuration values for **NETWORK ADAPTER #3** as shown in the table below.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host IP Address</td>
<td></td>
</tr>
<tr>
<td>Netmask</td>
<td></td>
</tr>
<tr>
<td>Default Gateway IP Address</td>
<td></td>
</tr>
<tr>
<td>DNS Servers</td>
<td></td>
</tr>
<tr>
<td>Static Routes</td>
<td></td>
</tr>
<tr>
<td>Cluster Link</td>
<td></td>
</tr>
<tr>
<td>Configure IPv6 address</td>
<td></td>
</tr>
</tbody>
</table>
Table 22: Master Node Entries for Network Adapter #3: 1Gbps Cloud Port (enp1s0f1)

<table>
<thead>
<tr>
<th>Host IP address</th>
<th>Enter the IP address for the Cloud Port. This is required only if you are using the Cloud Port for internet connection; otherwise, you can leave it blank.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required if you enter an IP address.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the Cloud Port. This is usually required on the Enterprise Port only.</td>
</tr>
<tr>
<td>DNS Servers</td>
<td>Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Enter one or more static routes in the following format, separated by spaces: <code><network>/<netmask>/<gateway></code>. This is usually required on the Cisco DNA Center GUI Port only.</td>
</tr>
<tr>
<td>Cluster Link</td>
<td>Leave this field blank. It is required on the Cluster Port only.</td>
</tr>
<tr>
<td>Configure IPv6 Address</td>
<td>Reserved for future use. Leave this field blank.</td>
</tr>
</tbody>
</table>

When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens.

Step 8

After successful validation of the Cloud Port values you entered, the wizard presents the 10Gbps Enterprise Port (Port 1, enp9s0) as **NETWORK ADAPTER #4**. As explained in Interface Cable Connections, this is a required port used to link the appliance to the enterprise network. Apply the host IP address, netmask, and other values appropriate for this purpose, (see Required IP Addresses and Subnets and Required Configuration Information for the values to enter).
Enter configuration values for **NETWORK ADAPTER #4** as shown in the table below.

Table 23: Master Node Entries for Network Adapter #4: 10Gbps Enterprise Port (enp9s0)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host IP address</td>
<td>Enter the IP address for the 10Gpbs Enterprise Port. This is required.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the port. This is required.</td>
</tr>
<tr>
<td>DNS Servers</td>
<td>Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Enter one or more static routes in the following format, separated by spaces: <network>/<netmask>/<gateway>. This is usually required on the Cisco DNA Center GUI Port only.</td>
</tr>
<tr>
<td>Cluster Link</td>
<td>Leave this field blank. It is required on the Cluster Port only.</td>
</tr>
<tr>
<td>Configure IPv6 Address</td>
<td>Reserved for future use. Leave this field blank.</td>
</tr>
</tbody>
</table>
When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens. The wizard will validate and apply your network adapter configurations.

Step 9

Once network adapter configuration is complete, the wizard will prompt you to enter configuration values for the **NETWORK PROXY** you are using, as shown below.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>NETWORK PROXY</th>
</tr>
</thead>
<tbody>
<tr>
<td>The controller appears to be behind a network proxy. Enter your network proxy configuration settings to enable cloud connectivity.</td>
<td>HTTPS Proxy:</td>
</tr>
<tr>
<td></td>
<td>http://proxy.example.com:80</td>
</tr>
<tr>
<td></td>
<td>HTTPS Proxy Username:</td>
</tr>
<tr>
<td></td>
<td>HTTPS Proxy Password:</td>
</tr>
</tbody>
</table>

Enter configuration values for the **NETWORK PROXY** as shown in the table below.

Table 24: Master Node Entries for Network Proxy

<table>
<thead>
<tr>
<th>HTTPS Proxy</th>
<th>Enter the URL or host name of an HTTPS network proxy used to access the Internet.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note Connection from Cisco DNA Center to the HTTPS proxy is supported only via HTTP in this release.</td>
</tr>
<tr>
<td>HTTPS Proxy Username</td>
<td>Enter the user name used to access the network proxy. If no proxy login is required, leave this field blank.</td>
</tr>
<tr>
<td>HTTPS Proxy Password</td>
<td>Enter the password used to access the network proxy. If no proxy login is required, leave this field blank.</td>
</tr>
</tbody>
</table>

When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens.

Step 10

Once network proxy configuration is complete, the wizard will prompt you to enter virtual IP addresses for the master node, in **MAGLEV CLUSTER DETAILS**, as shown below.
Enter a space-separated list of the virtual IP addresses used for traffic between the cluster and your network. This is required for both three-node clusters and single-node clusters that will be converted into a three-node cluster in the future. If you have a single-node cluster setup and plan to stick with it, skip this step and proceed to Step 11.

Important You must enter one virtual IP address for each configured network interface. You will not be able to complete the wizard unless you do so. These addresses are tied to the cluster link's status, which must be in the **UP** state.

You also have the option to specify the fully qualified domain name (FQDN) for your cluster. Cisco DNA Center does the following with this hostname:

- It uses this hostname to access your cluster’s web interface and the Representational State Transfer (REST) APIs used by devices in the enterprise network that Cisco DNA Center manages.

- In the Subject Alternative Name (SAN) field of Cisco DNA Center certificates, it uses the FQDN to define the Plug and Play server that should be used for device provisioning.

When you are finished, enter **next>>** to proceed. Correct any validation errors as you did in previous screens.

Step 11 Once the virtual IP addresses are entered, the wizard will prompt you to enter values for **USER ACCOUNT SETTINGS**, as shown below.
Enter values for USER ACCOUNT SETTINGS as shown in the table below.

Table 25: Master Node Entries for User Account Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux Password</td>
<td>Enter a Linux password for the maglev user.</td>
</tr>
<tr>
<td>Re-enter Linux Password</td>
<td>Confirm the Linux password by entering it a second time.</td>
</tr>
<tr>
<td>Password Generation Seed</td>
<td>If you do not want to create the Linux Password yourself, enter a seed phrase in this field and then press <Generate Password> to generate the password.</td>
</tr>
<tr>
<td>Auto Generated Password</td>
<td>(Optional) The seed phrase appears as part of a random and secure password. If desired, you can either use this password "as is", or you can further edit this auto-generated password. Press <Use Generated Password> to save the password.</td>
</tr>
<tr>
<td>Administrator Passphrase</td>
<td>Enter a password for the default admin superuser, used to log in to Cisco DNA Center for the first time.</td>
</tr>
<tr>
<td>Re-enter Administrator Passphrase</td>
<td>Confirm the administrator passphrase by entering it a second time.</td>
</tr>
</tbody>
</table>

When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens.
Step 12 Once user account details are entered, the wizard will prompt you to enter values for **NTP SERVER SETTINGS**, as shown below.

Enter one or more NTP server addresses or hostnames, separated by spaces. At least one NTP address or hostname is required. For a production deployment, Cisco recommends that you configure a minimum of three NTP servers.

When you are finished, enter **next>>** to proceed. Correct any validation errors as you did in previous screens. The wizard will validate and apply your NTP server configuration.

Step 13 Once you have specified NTP servers, the wizard will prompt you to enter values for **MAGLEV ADVANCED SETTINGS**, as shown below.
Enter configuration values for **MAGLEV ADVANCED SETTINGS** as shown in the table below.

Table 26: Master Node Entries for Maglev Advanced Settings

<table>
<thead>
<tr>
<th>Services Subnet</th>
<th>Enter a dedicated IP subnet for Cisco DNA Center to use in managing its own services.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Services Subnet</td>
<td>Enter a dedicated IP subnet for Cisco DNA Center to use in managing its clustering services.</td>
</tr>
</tbody>
</table>

When you are finished, enter **next>>** to proceed. Correct any validation errors as you did in previous screens.

Step 14

When you are finished entering Maglev Advanced Settings, a final message appears stating that the wizard is now ready to proceed with applying the configuration, as shown below.
The host will reboot automatically and display messages on the KVM console as it applies your settings and brings up services. This process can take several hours. You can monitor its progress via the KVM console.

At the end of the configuration process, the appliance power-cycles again, then displays a CONFIGURATION SUCCEEDED! message.

What to do next

When this task is complete:

- If you are deploying this appliance in standalone mode only, continue by performing first-time setup: First-Time Setup Workflow.

- If you are deploying this Cisco DNA Center appliance as the master node in a cluster, configure the second and third installed appliances in the cluster: Configure Add-On Nodes.

Configure Add-On Nodes

Perform the steps in this procedure to configure the second and third appliances in the cluster.
For each appliance in your cluster, configure DNS servers on only one of its interfaces. Problems can occur if you configure DNS servers on multiple interfaces.

When joining each new add-on node to the cluster, you must specify the first host in the cluster as the master node. Note the following when joining add-on nodes to a cluster:

- Be sure to join only a single node to the cluster at a time. Do not attempt to add multiple nodes at the same time, as doing so will result in unpredictable behavior.

- Before adding a new node to the cluster, be sure that all installed packages are deployed on the master node. You can check this by using Secure Shell to log in to the master node's Cisco DNA Center GUI port as the Linux User (maglev) and then running the command `maglev package status`. All installed packages should appear in the command output as `DEPLOYED`. In the following example, the application-policy, sd-access, sensor-assurance and sensor-automation packages were not installed, so they are the only packages whose status is `NOT_DEPLOYED`. Your package status should look similar to this before configuring an add-on node.

```
$ ssh maglev@172.29.131.14 -p 2222
The authenticity of host '172.29.131.14:2222' (172.29.131.14:2222) can't be established.
ECDSA key fingerprint is SHA256:scye+2ll6NFHAkOZDs0cNLHBR75j1KV3ZXIXuUaiadk.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '172.29.131.14:2222' (ECDSA) to the list of known hosts.
Welcome to the Maglev Appliance
maglev@172.29.131.14's password:
Welcome to the Maglev Appliance
System information as of Thu Dec 20 03:07:13 UTC 2018
System load: 4.08 IP address for enp9s0: 17.192.1.14
Usage of /: 59.8% of 28.03GB IP address for enp10s0: 192.192.192.14
Memory usage: 21% IP address for enp1s0f0: 172.29.131.14
Swap usage: 0% IP address for docker0: 169.254.0.1
Processes: 831 IP address for tun10: 10.60.3.0
Users logged in: 0
To run a command as administrator (user "root"), use "sudo <command>". See "man sudo_root" for details.

[Thu Dec 20 03:07:13 UTC] maglev@192.192.192.14 (maglev-master-1) ~
$ maglev package status
[administration] password for 'admin':

maglev-1 [main - https://kong-frontend.maglev-system.svc.cluster.local:443]

<table>
<thead>
<tr>
<th>NAME</th>
<th>DEPLOYED</th>
<th>AVAILABLE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>application-policy</td>
<td>2.1.10.170000</td>
<td>NOT_DEPLOYED</td>
<td></td>
</tr>
<tr>
<td>assurance</td>
<td>1.0.5.686</td>
<td>1.1.8.1440</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>automation-core</td>
<td>2.1.8.60044</td>
<td>2.1.12.60011</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>base-provision-core</td>
<td>2.1.8.60044</td>
<td>2.1.12.60016</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>command-runner</td>
<td>2.1.8.60044</td>
<td>2.1.9.60029</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>device-onboarding</td>
<td>2.1.8.60044</td>
<td>2.1.12.60016</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>image-management</td>
<td>2.1.8.60044</td>
<td>2.1.12.60011</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>ncp-system</td>
<td>2.1.8.60044</td>
<td>2.1.9.60029</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>ndp-base-analytics</td>
<td>1.0.7.878</td>
<td>1.0.7.908</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>ndp-platform</td>
<td>1.0.7.829</td>
<td>1.0.7.866</td>
<td>DEPLOYED</td>
</tr>
<tr>
<td>ndp-ui</td>
<td>1.0.7.956</td>
<td>1.0.7.975</td>
<td>DEPLOYED</td>
</tr>
</tbody>
</table>
```
Configure Add-On Nodes

Before you begin

Ensure that you:

- Configured the first appliance in the cluster, following the steps in Configure the Master Node.
- Collected all of the information called for in Required IP Addresses and Subnets and Required Configuration Information.
- Installed the second and third appliances as described in Appliance Installation Workflow.
- Configured Cisco IMC browser access on both add-on appliances as described in Enable Browser Access to Cisco Integrated Management Controller.
- Checked that both add-on node appliances' ports and the switches they use are properly configured, as described in Execute Preconfiguration Checks.
- Are using a browser that is compatible with Cisco IMC and Cisco DNA Center. For a list of compatible browsers, see the Release Notes for the version of Cisco DNA Center you are installing.
- Enabled ICMP on the firewall between Cisco DNA Center and the DNS server you will specify in Step 8 of the following procedure. The Maglev Configuration wizard uses Ping to verify the DNS server you specify. This ping can be blocked if there is a firewall between Cisco DNA Center and the DNS server and ICMP is not enabled on that firewall. When this happens, you will not be able to complete the wizard.

Step 1

Point your browser to the Cisco IMC IP address you set during the Cisco IMC GUI configuration you performed, and login to the Cisco IMC GUI as the Cisco IMC user (see Enable Browser Access to Cisco Integrated Management Controller).

After successful login, the appliance displays the Cisco Integrated Management Controller Chassis Summary window, with a blue link menu at the upper right, as shown below.
Step 2 From the blue link menu, choose **Launch KVM** and then select either **Java based KVM** or **HTML based KVM**. If you select the Java-based KVM, you will need to launch the Java startup file from your browser or file manager in order to view the KVM console in its own window. If you select the HTML-based KVM, it will launch the KVM console in a separate browser window or tab automatically.

Irrespective of the KVM type you choose, use the KVM console to monitor the progress of the configuration and respond to Maglev Configuration wizard prompts.

Step 3 With the KVM displayed, reboot the appliance by making one of the following selections:

a) In the main Cisco IMC GUI browser window: Choose **Host Power > Power Cycle**. Then switch to the KVM console to continue.

b) In the KVM console: Choose **Power > Power Cycle System (cold boot)**.

If asked to confirm your choice to reboot the appliance, click **OK**.

After displaying reboot messages, the KVM console displays the Maglev Configuration wizard welcome screen, shown below.

Step 4 Choose **Join a Cisco DNA Center Cluster** to begin configuring the add-on node.

The wizard discovers all of the ports on the appliance and presents them to you one by one, in separate screens, in the following order:

1. 10Gbps Cluster Port (Port 2, enp10s0, Network Adapter #1)

2. 1Gbps Cisco DNA Center GUI Port (1, enp1s0f0, Network Adapter #2)

3. 1Gbps Cloud Port (2, enp1s0f1, Network Adapter #3)
4. 10Gbps Enterprise Port (Port 1, enp9s0, Network Adapter #4)

Note If the wizard fails to display one or both of the 10Gbps ports during the course of configuration, these ports may be non-functional or disabled. These 10Gbps ports are required for Cisco DNA Center functionality. If you discover they are non-functional, choose **cancel** to exit the configuration immediately. Be sure you have completed all of the steps provided in **Execute Preconfiguration Checks** before resuming configuration or contacting the Cisco Technical Assistance Center (TAC).

Step 5 The wizard discovers the 10Gbps Cluster Port (Port 2, enp10s0) first, and presents it as **NETWORK ADAPTER #1**. As explained in **Interface Cable Connections**, this port is used to link the appliance to the cluster, so apply the host IP address, netmask, and other values appropriate for this purpose (see **Required IP Addresses and Subnets** and **Required Configuration Information** for the values to enter).

Enter configuration values for **NETWORK ADAPTER #1** as shown in the table below.

Table 27: Add-On Node Entries for Network Adapter #1: 10Gbps Cluster Port (enp10s0)

<table>
<thead>
<tr>
<th>Configuration Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host IP address</td>
<td>Enter the IP address for the Cluster Port. This is required. Note that you cannot change the address of the Cluster Port later.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the port. This is usually required on the Enterprise Port only.</td>
</tr>
</tbody>
</table>
Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.

Static Routes
Enter one or more static routes in the following format, separated by spaces: <network>/<netmask>/<gateway>. This is usually required on the Cisco DNA Center GUI Port only.

Cluster Link
Select the checkbox to indicate that this port will be the link to a cluster. This is required on the Cluster Port only.

Configure IPv6 Address
Reserved for future use. Leave this field blank.

When you are finished entering configuration values, enter `next>>` to proceed. After entering `next>>`, the wizard validates the values you entered and issues an error message if any are incorrect. If you receive an error message, check that the value you entered is correct, then re-enter it. If needed, select `<<back` to re-enter it.

Step 6

After successful validation of the Cluster Port values you entered, the wizard presents the 1Gbps Cisco DNA Center GUI Port (1, enp1s0f0) as **NETWORK ADAPTER #2**. As explained in Interface Cable Connections, this port is used to access the Cisco DNA Center GUI from your management network. Apply the host IP address, netmask, and other values appropriate for this purpose (see Required IP Addresses and Subnets and Required Configuration Information for the values to enter).

STEP #4

(Optional) Enter the network settings for the 2nd network adapter (2Gbps: enp1s0f0).

Select “Cluster Link” if used for cluster communication.

OPTIONAL - NETWORK ADAPTER #2 (enp1s0f0)

Host IP Address: 172.29.151.16
Netmask: 255.255.255.0
Default Gateway IP Address:

DNS Servers:
171.30.229.122 171.30.131.30
Static Routes:
10.0.0.0/255.0.0.0/172.29.131.1
172.29.131.1
Cluster Link
Configure IPv6 address

Enter configuration values for **NETWORK ADAPTER #2** as shown in the table below.
Table 28: Add-On Node Entries for Network Adapter #2: 1Gbps GUI Port (enp1s0f0)

<table>
<thead>
<tr>
<th>Host IP address</th>
<th>Enter the IP address for the 1Gbps Cisco DNA Center GUI Port. This is required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the port. This is usually required on the Enterprise Port only.</td>
</tr>
<tr>
<td>DNS Servers</td>
<td>Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces. Note For NTP, ensure port 121 (UDP) is open between Cisco DNA Center and your NTP server.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Enter one or more static routes in the following format, separated by spaces: <network>/<netmask>/<gateway>.</td>
</tr>
<tr>
<td>Cluster Link</td>
<td>Leave this field blank. It is required on the Cluster Port only.</td>
</tr>
<tr>
<td>Configure IPv6 Address</td>
<td>Reserved for future use. Leave this field blank.</td>
</tr>
</tbody>
</table>

When you are finished, enter `next>>` to proceed. Correct any validation errors as you did in previous screens.

Step 7

After successful validation of the Cisco DNA Center GUI Port values you entered, the wizard presents the 1Gbps Cloud Port (2, enp1s0f1) as **NETWORK ADAPTER #3**. As explained in Interface Cable Connections, this is an optional port used to link the appliance to the Internet when you cannot do so through the 10Gbps Enterprise Port (Port 1, enp9s0). Apply the host IP address, netmask, and other values appropriate for this purpose (see Required IP Addresses and Subnets and Required Configuration Information for the values to enter).
Enter configuration values for **NETWORK ADAPTER #3** as shown in the table below.

Table 29: Add-On Node Entries for Network Adapter #3: 1Gbps Cloud Port (enp1s0f1)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host IP address</td>
<td>Enter the IP address for the Cloud Port. This is required only if you are using the Cloud Port for internet connection; otherwise, you can leave it blank.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required if you enter an IP address.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the Cloud Port. This is usually required on the Enterprise Port only.</td>
</tr>
<tr>
<td>DNS Servers</td>
<td>Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Enter one or more static routes in the following format, separated by spaces: <code><network>/<netmask>/<gateway></code>. This is usually required on the GUI Port only.</td>
</tr>
<tr>
<td>Cluster Link</td>
<td>Leave this field blank. It is required on the Cluster Port only.</td>
</tr>
<tr>
<td>Configure IPv6 Address</td>
<td>Reserved for future use. Leave this field blank.</td>
</tr>
</tbody>
</table>
When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens.

Step 8

After successful validation of the Cloud Port values you entered, the wizard presents the 10Gbps Enterprise Port (Port 1, enp9s0) as NETWORK ADAPTER #4. As explained in Interface Cable Connections, this is a required port used to link the appliance to the enterprise network. Apply the host IP address, netmask, and other values appropriate for this purpose (see Required IP Addresses and Subnets and Required Configuration Information for the values to enter).

Enter configuration values for NETWORK ADAPTER #4 as shown in the table below.

Table 30: Add-On Node Entries for Network Adapter #4: 10Gbps Enterprise Port (enp9s0)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host IP address</td>
<td>Enter the IP address for the 10Gb/s Enterprise Port. This is required.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Enter the netmask for the port's IP address. This is required.</td>
</tr>
<tr>
<td>Default Gateway IP address</td>
<td>Enter a default gateway IP address to use for the port. This is required.</td>
</tr>
<tr>
<td>DNS Servers</td>
<td>Enter the IP address of the preferred DNS server. If entering multiple DNS servers, separate the IP addresses in the list with spaces.</td>
</tr>
<tr>
<td>Static Routes</td>
<td>Enter one or more static routes in the following format, separated by spaces: <network>/<netmask>/<gateway>. This is usually required on the GUI Port only.</td>
</tr>
</tbody>
</table>
Cluster Link

<table>
<thead>
<tr>
<th>Cluster Link</th>
<th>Leave this field blank. It is required on the Cluster Port only.</th>
</tr>
</thead>
</table>

Configure IPv6 Address

<table>
<thead>
<tr>
<th>Configure IPv6 Address</th>
<th>Reserved for future use. Leave this field blank.</th>
</tr>
</thead>
</table>

When you are finished, enter **next>>** to proceed. Correct any validation errors as you did in previous screens.

Step 9

Once network adapter configuration is complete, the wizard will prompt you to enter configuration values for the NETWORK PROXY you are using, as shown below.

Enter configuration values for the NETWORK PROXY as shown in the table below.

Table 31: Add-On Node Entries for Network Proxy

<table>
<thead>
<tr>
<th>HTTPS Proxy</th>
<th>Enter the URL or host name of an HTTPS network proxy used to access the Internet.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note Connection from Cisco DNA Center to the HTTPS proxy is supported only via HTTP in this release.</td>
</tr>
<tr>
<td>HTTPS Proxy Username</td>
<td>Enter the user name used to access the network proxy. If no proxy login is required, leave this field blank.</td>
</tr>
<tr>
<td>HTTPS Proxy Password</td>
<td>Enter the password used to access the network proxy. If no proxy login is required, leave this field blank.</td>
</tr>
</tbody>
</table>
When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens.

Step 10

Once network proxy configuration is complete, the wizard will prompt you to identify the Cluster Port on the master node, and master node login details, in **MAGLEV CLUSTER DETAILS**, as shown below.

Enter values for **MAGLEV CLUSTER DETAILS** as shown in the table below.

Table 32: Add-On Node Entries for Maglev Cluster Details

<table>
<thead>
<tr>
<th>Maglev Master Node</th>
<th>Enter the IP address of the Cluster Port on the master node in the cluster. If you have followed recommendations for port assignment, this will be the IP address of Port 2, enp10s0, Network Adapter #1 on the master node.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>Enter <code>maglev</code>.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter the Linux Password you configured on the master node.</td>
</tr>
</tbody>
</table>

When you are finished, enter next>> to proceed. Correct any validation errors as you did in previous screens.

Step 11

Once Maglev Cluster Details are entered, the wizard will prompt you to enter values for **USER ACCOUNT SETTINGS** for this add-on node, as shown below.
Enter values for **USER ACCOUNT SETTINGS** as shown in the table below.

Table 33: Add-On Node Entries for User Account Settings

<table>
<thead>
<tr>
<th>Linux Password</th>
<th>Enter a Linux password for the maglev user.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-enter Linux Password</td>
<td>Confirm the Linux password by entering it a second time.</td>
</tr>
<tr>
<td>Password Generation Seed</td>
<td>If you do not want to create the Linux Password yourself, enter a seed phrase in this field and then press <code><Generate Password></code> to generate the password.</td>
</tr>
<tr>
<td>Auto Generated Password</td>
<td>(Optional) The seed phrase appears as part of a random and secure password. If desired, you can either use this password "as is", or you can further edit this auto-generated password. Press <code><Use Generated Password></code> to save the password.</td>
</tr>
<tr>
<td>Administrator Passphrase</td>
<td>Enter a password for the default admin superuser, used to log in to Cisco DNA Center for the first time.</td>
</tr>
<tr>
<td>Re-enter Administrator Passphrase</td>
<td>Confirm the administrator passphrase by entering it a second time.</td>
</tr>
</tbody>
</table>

When you are finished, enter **next>>** to proceed. Correct any validation errors as you did in previous screens.
Step 12

Once user account details are entered, the wizard will prompt you to enter values for **NTP SERVER SETTINGS**, as shown below.

<table>
<thead>
<tr>
<th>NTP SERVER SETTINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP Servers:</td>
</tr>
<tr>
<td>1.ntp.example.com 2.ntp.example.com 3.ntp.example.com</td>
</tr>
</tbody>
</table>

Enter one or more NTP server addresses or hostnames, separated by spaces. At least one NTP address or hostname is required. They should be the same NTP servers you specified for the master node.

When you are finished, enter **next>>** to proceed. Correct any validation errors as you did in previous screens.

Step 13

When you are finished entering NTP Server Settings, a final message appears, stating that the wizard is now ready to proceed with applying the configuration, as shown below.
Enter **proceed>>** to complete the configuration.

The host will reboot automatically and display messages on the KVM console as it applies your settings and brings up services. This process can take several hours. You can monitor its progress via the KVM console.

At the end of the configuration process, the appliance power-cycles again, then displays a **CONFIGURATION SUCCEEDED!** message.

What to do next

When this task is complete:

- If you have an additional Cisco DNA Center appliance to deploy as the third and final node in the cluster, repeat this procedure.
- If you are finished adding hosts to the cluster, continue by performing first-time setup: [First-Time Setup Workflow](#).

Upgrade to the Latest Cisco DNA Center Release

For information about upgrading your current release of Cisco DNA Center, see the [Cisco Digital Network Architecture Center Upgrade Guide](#).

Upgrade to the Latest Cisco DNA Center Release
Complete First-Time Setup

- First-Time Setup Workflow, on page 87
- Compatible Browsers, on page 88
- Log In for the First Time, on page 88
- Integrate Cisco ISE with Cisco DNA Center, on page 90
- Configure Authentication and Policy Servers, on page 92
- Configure SNMP Properties, on page 94

First-Time Setup Workflow

After you finish configuring all the Cisco DNA Center appliances you have installed, perform the tasks listed in the following table to prepare Cisco DNA Center for production use.

For the parameter information you need to complete this work, see Required First-Time Setup Information.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Make sure that you are accessing Cisco DNA Center using a compatible browser. For a list of compatible browsers, see the Release Notes document for the version of Cisco DNA Center you are installing.</td>
</tr>
<tr>
<td>2</td>
<td>Log in to the Cisco DNA Center GUI as an administrator for the first time. During this first administrative login, you will be prompted to: 1. Provide a new password for the admin superuser. 2. Enter the cisco.com username and password your organization uses to download software images and receive email communications from Cisco. 3. Enter the cisco.com username and password your organization uses to manage its Smart Account licenses. 4. Configure the IP address manager (IPAM) server you plan to use with Cisco DNA Center. For details on these tasks, see Log In for the First Time.</td>
</tr>
</tbody>
</table>
If you are planning to use Cisco DNA Center with Cisco Identity Services Engine (ISE), make sure the two are properly integrated: **Integrate Cisco ISE with Cisco DNA Center.**

Connect Cisco DNA Center with your policy and AAA server (including ISE): **Configure Authentication and Policy Servers.**

Configure the basic SNMP retry and polling parameters: **Configure SNMP Properties.**

Redistribute services among your cluster nodes to optimize high availability (HA) operation: **Redistribute Services**

After you are finished with the first-time setup: **Log Out.**

Compatible Browsers

The Cisco DNA Center GUI is compatible with the following HTTPS-enabled browsers:

- Google Chrome: Version 62.0 or later.
- Mozilla Firefox: Version 54.0 or later.

We recommend that the client systems you use to log in to Cisco DNA Center be equipped with 64-bit operating systems and browsers.

Log In for the First Time

After you have installed and configured the Cisco DNA Center appliance, you can log in to its GUI. Use a compatible, HTTPS-enabled browser when accessing Cisco DNA Center.

When you log in for the first time as the admin superuser (with the username `admin` and the `SUPER-ADMIN-ROLE` assigned), you are asked to complete a first-time setup wizard that helps you enhance system security and complete the essential setup tasks. Although you can skip each of the steps in the wizard, we recommend that you complete all of them as indicated, so that your system is ready for use as soon as possible.

You should also create new Cisco DNA Center users. We recommend that you create at least one additional user account to be used for daily operations, and that this user account have the `NETWORK-ADMIN-ROLE`.

Before you begin

To log in to Cisco DNA Center and complete the first-time setup wizard, you will need:

- The `admin` superuser username and password you specified when following the steps in **Configure the Master Node.**
- The requisite information, as described in **Required First-Time Setup Information.**

Step 1

After the Cisco DNA Center appliance reboot is completed, launch your browser.
Step 2 Enter the host IP address to access the Cisco DNA Center GUI, using HTTPS:// and the IP address of the Cisco DNA Center GUI that was displayed at the end of the configuration process.

After entering the IP address, one of the following messages appears (depending on the browser you are using):

- **Google Chrome:** Your connection is not private
- **Mozilla Firefox:** Warning: Potential Security Risk Ahead

Step 3 Ignore the message and click Advanced.

A message stating that the site's security certificate is not trusted appears. This message appears because the controller uses a self-signed certificate. For information on how Cisco DNA Center uses certificates, see the "Certificate and Private Key Support" section in the Cisco Digital Network Architecture Center Administrator Guide.

Step 4 Ignore the message and click the link at the bottom of the window.

The Cisco DNA Center Login window appears.

Step 5 In the Login window, enter the admin's username (admin) and password that you set when you configured Cisco DNA Center, then click Log In.

The Reset Login window appears.

Step 6 Enter the old password, enter and confirm a new password for the admin superuser, and then click Save.

The Enter Cisco.com ID window appears.

Step 7 Enter the username and password for the cisco.com user, then click Next.

If the cisco.com user login does not match any known Cisco Smart Account user login, the Smart Account window appears.

Step 8 If the Smart Account window appears, enter the username and password for your organization's Smart Account, or click the corresponding link to open a new Smart Account. After you are finished, click Next.

The IPAddressManager window appears.

Step 9 If your organization uses an external IP address manager (IPAM), do the following and then click Next:

- Enter your IPAM server's name and URL.
- Enter the username and password required for server access.
- Choose your IPAM provider (such as Infoblox).
- Choose the specific view of IP addresses available in the IPAM server database that you want Cisco DNA Center to use.

The Enter Proxy Server window appears.

Step 10 Enter the proxy server information your organization will use, then click Next:

- Include the server username and password if your proxy server requires a login.
- To validate this information before proceeding (recommended), ensure that the Validate Settings check box is checked.

The software EULA window appears.
Step 11
Click Next to accept the software End User License Agreement and continue.

The Ready to go! window appears.

Step 12
Click any of the links in this window, or click Go to System 360 to display the System 360 dashboard and start using Cisco DNA Center.

We recommend that you click the User Management link to display the User Management window. Then click Add to begin adding new Cisco DNA Center users. After you have entered the new user's name and password, and selected the user's role, click Save to create the new user. Repeat this as needed until you have added all the new users for your initial deployment. Be sure to create at least one user with the NETWORK-ADMIN-ROLE.

What to do next

Complete other administrative setup tasks, in any order:

- Integrate Cisco ISE with Cisco DNA Center
- Configure Authentication and Policy Servers
- Configure SNMP Properties

Integrate Cisco ISE with Cisco DNA Center

This release of Cisco DNA Center provides a mechanism to create a trusted communications link with Cisco ISE and permits Cisco DNA Center to share data with Cisco ISE in a secure manner. After Cisco ISE is registered with Cisco DNA Center, any device that Cisco DNA Center discovers, along with relevant configuration and other data, is pushed to Cisco ISE. Users can use Cisco DNA Center to discover devices and then apply both Cisco DNA Center and Cisco ISE functions to them because these devices will be exposed in both applications. Cisco DNA Center and Cisco ISE devices are all uniquely identified by their device names.

As soon as they are provisioned and belong to a particular site in the Cisco DNA Center site hierarchy, Cisco DNA Center devices are pushed to Cisco ISE. Any updates to a Cisco DNA Center device (such as changes to IP address, SNMP or CLI credentials, Cisco ISE shared secret, and so on) will flow to the corresponding device instance on ISE automatically. When a Cisco DNA Center device is deleted, it is removed from Cisco ISE as well. Note that Cisco DNA Center devices are pushed to Cisco ISE only when these devices are associated with a particular site where Cisco ISE is configured as its AAA server.

Before you begin

Before attempting to integrate Cisco ISE with Cisco DNA Center, ensure that you have met the following prerequisites:

- You have deployed one or more Cisco ISE version 2.3 (and later) hosts on your network. For information on installing Cisco ISE, see the Cisco Identity Services Engine Install and Upgrade guides for version 2.3 and later.
- If you have a standalone ISE deployment, you must integrate with the Cisco ISE node and enable the pxGrid service and External RESTful Services (ERS) on that node.
- If you have a distributed Cisco ISE deployment:
• You must integrate Cisco DNA Center with the Cisco ISE admin node, the primary policy administration node (PAN), and enable ERS on the PAN.

• As with single-node deployments, you must enable the pxGrid service on one of the Cisco ISE nodes within the distributed deployment. Although you can choose to do so, you do not have to enable pxGrid on the PAN. You can enable pxGrid on any of the other Cisco ISE nodes in your distributed deployment.

• The Cisco ISE host on which pxGrid is enabled must be reachable from Cisco DNA Center on the IP address of the Cisco ISE eth0 interface.

• The Cisco ISE node can reach the fabric underlay network via the appliance's NIC.

• The Cisco ISE node has SSH enabled.

• The Cisco ISE CLI and GUI user accounts must use the same username and password.

• The Cisco ISE admin node certificate must contain the Cisco ISE IP address or FQDN in either the certificate subject name or the SAN.

• The Cisco DNA Center system certificate must list both the Cisco DNA Center appliance IP address and FQDN in the Subject Alternative Name (SAN) field.

Step 1

Enable Cisco ISE pxGrid service and ERS as follows:

a) Log in to the Cisco ISE primary policy administration node.
b) Choose **Administration > Deployment**.
c) Choose the hostname of the Cisco ISE node on which you want to enable pxGrid services. In a distributed deployment, this can be any Cisco ISE node in the deployment.
d) Under the **General Settings** tab, make sure the **pxGrid** check box is checked.
e) Click **Save**.
f) Choose **Administration > System > Settings > ERS Settings** and then click **Enable ERS for Read/Write**.
g) Click **OK** at the notification prompt.

Step 2

Add the Cisco ISE node to Cisco DNA Center as an AAA server, as follows:

a) Log in to the Cisco DNA Center GUI.
b) From the home page, click 🌐 and then choose **System Settings**.
c) In the Identity Services Engine (ISE) panel, click the **Configure** link.
d) From the **Settings > Authentication and Policy Servers** window, click ![Add](Add.png).
e) Complete the following tasks in the **Add AAA/ISE server** slide-in pane:
 • In the **Server IP Address** field, enter the Cisco ISE management IP address.
 • Enter the **Shared Secret** used to secure communications between your network devices and Cisco ISE.
 • Click the **Cisco ISE server** slider to ensure that all the Cisco ISE-related fields are shown.
 • In the **Username** and **Password** fields, enter the corresponding Cisco ISE admin credentials.
 • Enter the **FQDN** for the Cisco ISE node.
 • Enter the **Subscriber Name** (for example, cdnacenter).
• (Optional) Enter the Diffie-Hellman-Group14-SHA1 **SSH key** used to connect to Cisco ISE

• (Optional) Enter the **virtual IP address** of the load balancer behind which the Cisco ISE policy service nodes are located. If you have multiple policy service node farms behind different load balancers, you can enter a maximum of six virtual IP addresses.

f) Click **Apply** and wait for the server status to turn to **Active**.

Step 3 Verify that Cisco ISE is connected to Cisco DNA Center and that the connection has subscribers, as follows:

a) Log in to the Cisco ISE node with which you integrated Cisco DNA Center.

b) Choose **Administration > pxGrid Services**.

You should see a subscriber with the name you entered (for example, cdnacenter) whose current status is **online**.

c) If the subscriber's status is **Pending**, choose **Total Pending Approval > Approve All Clients** to approve this subscriber.

The subscriber's status should change to **online**.

Step 4 Verify that Cisco DNA Center is connected to Cisco ISE, and that the Cisco ISE SGT groups and devices are being pushed to Cisco DNA Center, as follows:

a) Log in to the Cisco DNA Center GUI.

b) From the home page, click ✽ and then choose **System Settings**.

c) In the Identity Services Engine (ISE) panel, click the **Configure** link.

d) From the **Settings > Authentication and Policy Servers** window, verify that the status of the Cisco ISE AAA server is still **Active**.

e) Choose **Policy > Registry > Scalable Groups**.

The ISE SGT groups are displayed in the **Scalable Groups** list.

Configure Authentication and Policy Servers

Cisco DNA Center uses AAA servers for user authentication and Cisco ISE for both user authentication and access control. Use this procedure to configure AAA servers, including Cisco ISE.

Before you begin

• If you are using Cisco ISE to perform both policy and AAA functions, make sure that Cisco DNA Center and Cisco ISE are integrated as described in **Integrate Cisco ISE with Cisco DNA Center**.

• If you are using another product (not Cisco ISE) to perform AAA functions, make sure that you do the following:

 • Register Cisco DNA Center with the AAA server, and define the shared secret on both the AAA server and Cisco DNA Center.

 • Define an attribute name for Cisco DNA Center on the AAA server.

 • For a Cisco DNA Center multihost cluster configuration, define all the individual host IP addresses and the virtual IP address for the multihost cluster on the AAA server.
Step 1 From the Cisco DNA Center home page, choose 📡 > System Settings > Settings > Authentication and Policy Servers.

Step 2 Click Add.

Step 3 Configure the primary AAA server by providing the following information:

- **Server IP Address**: IP address of the AAA server.
- **Shared Secret**: Key for device authentications. The shared secret can be up to 128 characters in length.

Step 4 To configure an AAA server (except Cisco ISE), leave the Cisco ISE Server slider in the Off position and proceed to Step 5.

To configure a Cisco ISE server, click the Cisco ISE server slider to move it to the On position and enter information in the following fields:

- **Username**—Name that is used to log in to Cisco ISE CLI.

 Note This user must be a Super Admin.

- **Password**—Password for the Cisco ISE CLI username.

- **FQDN**—FQDN of the Cisco ISE server.

 Note We recommend that you copy the FQDN that is defined in Cisco ISE (Administration > Deployment > Deployment Nodes > List) and paste it directly into this field.

 - The FQDN that you enter must match the FQDN, Common Name (CN), or Subject Alternative Name (SAN) defined in the Cisco ISE certificate.

 The FQDN consists of two parts, a hostname and a domain name, in the following format:

 hostname.domainname.com.

 For example, the FQDN for a Cisco ISE server might be ise.cisco.com.

- **Subscriber Name**—Unique text string that identifies a pxGrid client registering for Cisco ISE pxGrid services; for example, acme. The subscriber name is used during Cisco DNA Center-to-Cisco ISE integration.

- **(Optional) SSH Key**—Diffie-Hellman-Group14-SHA1 SSH key used to connect to Cisco ISE.

- **(Optional) Virtual IP Address(es)**—Virtual IP address of the load balancer behind which the Cisco ISE policy service nodes are located. If you have multiple policy service node farms behind different load balancers, you can enter a maximum of six virtual IP addresses.

 Note If the status of the configured ISE server is "FAILED" due to password change, click Retry, and update the password to resync the ISE connectivity.

Step 5 Click View Advanced Settings and configure the settings:

 Note The settings you need to configure will vary, depending on the protocol you set for the server.

- **Protocol**: RADIUS is set by default, but you can choose TACACS instead or choose both protocols.

 Attention If you do not choose TACACS for Cisco ISE servers, it will not be available when you configure Cisco ISE nodes.
• **Authentication Port**: Port used by RADIUS to relay authentication messages to the AAA server. The default is UDP port 1812.

• **Accounting Port**: Port used by RADIUS to relay important events to the AAA server. The information in these events is used for security and billing purposes. The default UDP port is 1813.

• **Port**: Port used by TACACS to communicate with the AAA server. The default port is 49.

• **Retries**: Number of times that Cisco DNA Center attempts to connect with the AAA server before abandoning the attempt to connect. The default number of attempts is 3.

• **Timeout**: Length of time the device waits for the AAA server to respond before abandoning the attempt to connect. The default timeout is 4 seconds.

Step 6
Click **Apply**.

Step 7
To add a secondary server, repeat Step 2 through Step 6.

Configure SNMP Properties

You can configure the retry and timeout values for SNMP.

Before you begin

Only a user with SUPER-ADMIN-ROLE permissions can perform this procedure. For more information, see the *Cisco Digital Network Architecture Center Administrator Guide*.

Step 1
From the Cisco DNA Center homepage, click the gear icon (⚙️) and then choose **System Settings > Settings > SNMP Properties**.

Step 2
Configure the following fields:

• **Retries**: Number of attempts allowed to connect to the device. Valid values are from 1 to 3. The default is 3.

• **Timeout (in Seconds)**: Number of seconds Cisco DNA Center waits for when trying to establish a connection with a device before timing out. Valid values are from 1 to 300 seconds, in intervals of 5 seconds. The default is 5 seconds.

Step 3
Click **Apply**.

Note
To return to the default settings, click **Revert to Defaults**.
Troubleshoot the Deployment

- Troubleshooting Tasks, on page 95
- Log Out, on page 95
- Reconfigure the Appliance Using the Configuration Wizard, on page 96
- Power-Cycle the Appliance, on page 97

Troubleshooting Tasks

When troubleshooting issues with the appliance's configuration, you will normally perform the following tasks:

Table 35: Basic Troubleshooting Tasks

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>If you are currently using the Cisco DNA Center GUI: Log Out.</td>
</tr>
<tr>
<td>2</td>
<td>To reconfigure the appliance's hardware, log in to and use the CIMC GUI, as explained in Steps 12 and 13 of Enable Browser Access to Cisco Integrated Management Controller.</td>
</tr>
<tr>
<td>3</td>
<td>To change the appliance configuration, launch and use the Maglev Configuration wizard, as explained in Reconfigure the Appliance Using the Configuration Wizard.</td>
</tr>
<tr>
<td>4</td>
<td>Power-cycle the appliance so that your changes are active: Power-Cycle the Appliance.</td>
</tr>
</tbody>
</table>

For more information about the appliance's network adapters, see the Managing Adapters section of the Cisco UCS C-Series Servers Integrated Management Controller CLI Configuration Guide, Release 3.1. As noted elsewhere, never attempt to manage the appliance hardware through the Linux CLI. Use only the CIMC GUI or the Maglev Configuration wizard to change appliance settings.

Log Out

Follow the steps below to log out of the Cisco DNA Center GUI.

For security reasons, we recommend that you log out after you complete a work session. If you do not log out yourself, you will be logged out automatically after 30 minutes of inactivity.
Reconfigure the Appliance Using the Configuration Wizard

To reconfigure an appliance, you must use the Configuration wizard to update the appliance settings. You cannot use the Linux CLI to do this. The normal Linux administration procedures that you might use to update configuration settings on a standard Linux server will not work and should not be attempted.

After the appliance is configured, you cannot use the Configuration wizard to change all of the appliance settings. Changes are restricted to the following settings only:

- Host IP address of the appliance
- DNS server IP addresses
- Default gateway IP address
- NTP server IP addresses
- Cluster Virtual IP address
- Static routes
- Proxy server IP address
- Maglev user password
- Admin user password

Before you begin

You will need the following:

- Secure Shell (SSH) client software.
- The IP address that you configured for the Enterprise port on the appliance that needs reconfiguration. To identify this port, see the rear-panel figure in Front and Rear Panels. Log into the appliance at this address, on port 2222.
- The Linux user name (maglev) and password that are currently configured on the target appliance.

Step 1
Using a Secure Shell (SSH) client, log in to the IP address of the Enterprise port of the appliance that needs to be reconfigured, on port 2222:

```bash
ssh maglev@Enterprise-port's-IP-address -p 2222
```

Step 2
When prompted, enter the Linux password.
Step 3
Enter the following command to access the Configuration wizard.

`sudo maglev-config update`

If you are prompted for the Linux password, enter it again.

Step 4
The Configuration wizard presents an abbreviated version of the same series of screens shown in, for example, Configure Add-On Nodes. Make changes to the settings presented, if required. After you finish making changes on each screen, choose [Next], as needed, to proceed through the Configuration wizard.

Step 5
At the end of the configuration process, a message appears, stating that the Configuration wizard is now ready to apply your changes. The following options are available:

- [back]: Review and verify your changes.
- [cancel]: Discard your changes and exit the Configuration wizard.
- [proceed]: Save your changes and begin applying them.

Choose proceed>> to complete the installation. The Configuration wizard applies the changes you made.

At the end of the configuration process, a CONFIGURATION SUCCEEDED! message appears.

What to do next

Ensure your changes are applied and active by power-cycling the appliance. See Power-Cycle the Appliance.

Note

If you have updated the DNS Server IP addresses, we recommend that you perform a cold boot when power-cycling the appliance. This ensures that your DNS changes are applied.

Power-Cycle the Appliance

Complete the following procedure on your Cisco DNA Center appliance to either halt it or perform a warm restart. You can halt the appliance before you make hardware repairs, or you can initiate a warm restart after you have corrected software issues. Any hardware changes you make using Cisco IMC will be applied after the appliance reboots.

Note that it is also possible to power-cycle an appliance from the Cisco IMC GUI and the KVM console that is accessible from the Cisco IMC GUI. For details, see Steps 1 through 3 in either Configure the Master Node or Configure Add-On Nodes.

Caution

Power-cycling your appliance from the Cisco IMC GUI can result in the corruption or loss of data. Only do so if your appliance is completely unresponsive to SSH, the Cisco IMC console, or the physical console.

Before you begin

You will need the following:

- Secure Shell (SSH) client software.
• The IP address that you configured for the 10-Gbps Enterprise port on the appliance that needs reconfiguration. To identify this port, see the rear-panel figure in Front and Rear Panels. Log in to the appliance at this address, on port 2222.

• The Linux user name (maglev) and the password that is currently configured on the target appliance.

Step 1 Using a Secure Shell (SSH) client, log in to the IP address of the Enterprise port of the appliance that needs to be reconfigured, on port 2222:

```
ssh maglev@Enterprise-port's-IP-address -p 2222
```

Step 2 When prompted, enter the Linux password.

Step 3 Enter the command that is appropriate for the task you want to perform:

- To halt the appliance, enter: `sudo shutdown -h now`
- To initiate a warm restart, enter: `sudo shutdown -r now`

If you are prompted for the Linux password, enter it again.

Step 4 Review the command output that is displayed as the host shuts down.

Step 5 If you halted your appliance, power up the Maglev root process by turning the appliance back on, using the front-panel power button.
Review High Availability Cluster Deployment Scenarios

Cisco DNA Center's implementation of high availability (HA) is described in the *Cisco Digital Network Architecture Center High Availability Guide*. We recommend that you first review this information and then determine whether you want to deploy HA in your production environment. If you choose to do so, complete the following tasks:

1. Complete the deployment procedure that is appropriate for your network:
 - New HA Deployment
 - Existing HA Deployment of the Master Node with Standard Interface Configurations
 - Existing HA Deployment of Master Node with Nonstandard Interface Configurations

2. Redistribute Services among your cluster nodes.

3. See Additional HA Deployment Considerations and make any additional configurations that are necessary.
 - New HA Deployment, on page 99
 - Existing HA Deployment of the Master Node with Standard Interface Configurations, on page 100
 - Existing HA Deployment of Master Node with Nonstandard Interface Configurations, on page 100
 - Redistribute Services, on page 101
 - Additional HA Deployment Considerations, on page 101

New HA Deployment

To install a brand new HA cluster, complete the following steps:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Configure the first installed appliance as the master node.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See Configure the Master Node.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Configure the second and third appliances in the cluster.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See Configure Add-On Nodes.</td>
</tr>
</tbody>
</table>
Existing HA Deployment of the Master Node with Standard Interface Configurations

To deploy an existing HA cluster, where the master node uses the required interface cable configurations, complete the following steps.

Step 1: Upgrade the master node to Cisco DNA Center 1.3.
For information about upgrading your current release of Cisco DNA Center, see Cisco Digital Network Architecture Center Upgrade Guide.

Step 2: Confirm that you are using the required interface cable configurations on the master node.
See Interface Cable Connections.

Step 3: Update the virtual IP address (if the virtual IP address is not yet added).
See Reconfigure the Appliance Using the Configuration Wizard.

Step 4: Configure the second and third appliances in the cluster.
See Configure Add-On Nodes.

Step 5: Enter the following command to check the GlusterFS size:

```
sudo du -h /data/maglev/srv/maglev-system/glusterfs/mnt/bricks/default_brick/ | tail -1 | awk '{print $1}'
```

If the GlusterFS file system size is larger than 150 GB, complete the steps described in Existing HA Deployment of Master Node with Nonstandard Interface Configurations.

Existing HA Deployment of Master Node with Nonstandard Interface Configurations

To deploy an existing HA cluster where the master node uses nonstandard interface configurations, complete the following steps.

Step 1: Upgrade the master node to Cisco DNA Center 1.3.
For information about upgrading your current release of Cisco DNA Center, see Cisco Digital Network Architecture Center Upgrade Guide.

Step 2: Create a backup of the remote repository.
See the "Backup and Restore" chapter in the Cisco Digital Network Architecture Center Administrator Guide.

Step 3: Reimage the master node with the required interface cable configuration.
See Interface Cable Connections and Install the Cisco DNA Center ISO Image. Make sure that the VIP has been configured correctly on the master node.

Step 4
On the master node, install the same set of packages that you selected during the backup.

Step 5
Using the backup file that you created in Step 2, restore the remote repository's data.

Step 6
Configure the second and third appliances in the cluster.
See Configure Add-On Nodes.

Redistribute Services

After you have deployed HA, optimize HA operation by redistributing system services among your cluster nodes:

1. Click 🕵️ and then choose **System Settings**.

 The **System 360** tab is displayed by default.

2. In the **Hosts** area, click **Enable Service Distribution**.

After you click **Enable Service Distribution**, Cisco DNA Center enters into maintenance mode. In this mode, Cisco DNA Center is unavailable until the redistribution of services is completed. You should take this into account when scheduling an HA deployment.

Note
Cisco DNA Center goes into maintenance mode every time you restore the database, perform a system upgrade (not a package upgrade), and enable a service redistribution for HA (as described above).

Additional HA Deployment Considerations

For an existing HA deployment, the following additional configurations must be made.

Note
For information about known HA bugs and workarounds, see “Open Bugs—HA” in the Release Notes for Cisco Digital Network Architecture Center.

Telemetry

If you enabled telemetry for a device (without enabling the VIP), complete the following steps:

Step 1
Use the `maglev-config update` command to update the cluster VIP.

Step 2
Disable telemetry on the device:

1. From the Cisco DNA Center home page, choose **Network Telemetry** from the **Tools** area.
The **Network Telemetry** window appears.

2. Click the **Site View** tab.

3. Check the check box of the device on which you want to disable telemetry, and then choose **Actions > Disable Telemetry**.

Step 3

Reenable telemetry using the profile associated with the device previously.

Wireless Controller

You must update the wireless controllers in your network with the new VIP of Cisco DNA Center.