Objective

Quality of Service (QoS) permits transportation of traffic with unique requirements. It causes the computer networks to become usable as a telephone network and support new applications. QoS profile binding is used to bind the Wide Area Network (WAN) with the traffic flow binder after the QoS bandwidth profile has been set up. A traffic selector allows an efficient identification of well-known protocols in IPv4 and IPv6 transport layer headers like TCP and UDP. A user can configure WAN QoS profiles to control the rate at which the device will transmit data. For example, the outbound traffic is to help you prevent the LAN users from consuming all of the bandwidth of the Internet link.

This article explains how to configure Quality of Service (QoS) profile bindings on the RV120W and RV220W.

Note: The user must enable the WAN QoS and have at least one WAN QoS profile configured before they can perform this configuration. Refer to the article Configuration of Quality of Service (QoS) Profile Binding on RV120W and RV220W for more information on how to do this.

Applicable Devices

- RV120W
- RV220W

Software Version

- v1.0.4.17

QOS Profile Binding Configuration

Step 1. Log in to the web configuration utility to choose QoS > Profile Binding. The Profile Binding page opens:

<table>
<thead>
<tr>
<th>Profile Binding Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN QoS Profile</td>
</tr>
<tr>
<td>☑</td>
</tr>
<tr>
<td>0 results found</td>
</tr>
<tr>
<td>[Add]</td>
</tr>
</tbody>
</table>

Step 2. Click Add. The Add/Edit Profile Binding Configuration window appears:
Step 3. Choose a previously configured bandwidth profile to link to this traffic selector. Click the **Configure Profile** to configure new profiles or edit the existing profile.

Step 4. Choose the service from the Service drop-down list. A service provides the maximum amount of flexibility and control over a certain profile. This allows a user to override the identity values that are on the server at the time of association.
Step 5. Choose the traffic selector from the Traffic Selector Match Type drop-down list. The traffic selector allows an efficient identification of well-known protocols in IPv4 and IPv6 transport layer headers like TCP and UDP.

Step 6. If you chose IP Address Range in Step 5, enter the first IP address for the pool of PCs or pool of wireless client devices in the Starting IP Address field.

Step 7. If you chose IP Address Range in Step 5, enter the last IP address for the pool of PCs or pool of wireless client devices in the Ending IP Address field.
Step 8. If you chose MAC Address in Step 5, enter the MAC address for the PC or wireless client devices in the **MAC Address** field.

Step 9. If you chose VLAN in Step 5, choose the VLAN ID on the router to which the traffic selector applies from the VLAN ID drop-down list.

Step 10. If you chose DSCP in Step 5, enter the DSCP value, the range is from 0 to 63. The priority of the traffic is given to the lesser value.
Step 11. If you chose SSID in Step 5 then the Available SSIDs field is enabled. Choose the SSID on the router from the Available SSID drop-down list. This assigns router an appropriate SSID selected.

Step 12. Click **Save** to update the settings.