
© 2021 Cisco and/or its affiliates. All rights reserved. Page 1 of 61

Catalyst 9800
Programmability and

Telemetry Deployment Guide

November 2021

Guide

Cisco public

D

© 2021 Cisco and/or its affiliates. All rights reserved. Page 2 of 61

Contents

Feature overview 5

Telemetry history 6

Cisco device compatibility 8

Configuration overview 9

Authentication requirements 9

NETCONF Access Control Module (NACM) and Model-Based AAA 9

API – Role-Based Access Control 9

YANG data models 10

Native models 11

Native configuration models 11

Native operational models 13

Open models 14

NETCONF telemetry and programmatic interface 14

NETCONF configuration 14

NETCONF-YANG SSH server support 14

YANG models 15

Verifying NETCONF status 15

NETCONF XML RPC payload examples 15

WLAN creation 16

WLAN verification 17

WLAN removal 17

NETCONF Dial-In Model-Driven Telemetry 18

RESTCONF programmatic interface 19

RESTCONF configuration 19

RESTCONF Verification 19

RESTCONF YANG Models 20

Verifying RESTCONF status 21

RESTCONF Debugging 21

Prerequisites 21

Enable wireless conditional debugging 22

Generate trace archive 23

Generate trace message 24

© 2021 Cisco and/or its affiliates. All rights reserved. Page 3 of 61

gRPC Dial-Out model driven telemetry 25

Dial-In Dynamic vs. Dial-out Configured MDT Subscriptions 25

gRPC Dial-Out Model-Driven Telemetry Configuration 26

Receiving gRPC Model-Driven Telemetry with Telegraf 27

Verifying telemetry subscriptions 28

gNMI 29

gNMI configuration 29

gNMI configuration Secure Mode 29

gNMI Operations 30

Verifying gNMI status 30

JSON IETF Encoding for YANG Data Trees 31

gNMI Wildcard 32

Verifying the Device Management Interface (DMI) processes are running 36

Cisco YANG Suite 37

YANG suite resources 37

YANG suite installation 38

Quick start 38

YANG Suite Day 0 configuration 39

Creating default repository and YANG set 40

Explore YANG models 41

NETCONF plus YANG Suite 42

gNMI plus YANG Suite 44

RESTCONF plus YANG Suite 45

Ansible automation 48

Ansible Example: Enable NETCONF-YANG and RESTCONF 49

Ansible hosts file for Day 0 configuration 49

Ansible YAML configuration file to enable NETCONF and RESTCONF 50

Ansible YAML CLI automation show file to verify NETCONF and RESTCONF configuration 50

Executing the task to enable and verify NETCONF and RESTCONF 51

Ansible Example: Use NETCONF to create a WLAN 52

© 2021 Cisco and/or its affiliates. All rights reserved. Page 4 of 61

Guest Shell 54

Enabling and Running the Guest Shell 54

Enabling Guest Shell on the Management Interface 54

Verifying IOx Status 55

Accessing and Using Guest Shell 56

Guest Shell Usage 56

Accessing the Python Interpreter 56

Accessing the IOS CLI from the Guest Shell 56

Disabling and Destroying the Guest Shell 57

Non-Interactive Python 57

Guest Shell with EEM 58

Guest Shell Resources 59

Conclusion 59

Additional resources 59

Reference 61

Questions? 61

© 2021 Cisco and/or its affiliates. All rights reserved. Page 5 of 61

Feature overview

The world of programmability has been evolving for years, and with the latest Cisco® IOS XE releases, we've

included new Yet Another Next Generation (YANG) models to bring additional automation to wireless

technology. With the use of APIs, interacting with devices and retrieving data got much easier. Back in the day,

we used many commands sent from a Command Line Interfaces (CLIs) to communicate with the software. In

addition, the Simple Network Management Protocol (SNMP) is frequently used for network management. Fast

forward to today, we use the new way to interact with the software commonly called an API. Even though CLIs

and SNMP are widely used, they are not as efficient and scalable as APIs.

This document will dive into the different programmable interfaces used to communicate with the various Cisco

devices and specifically target the Catalyst® 9800 Wireless LAN Controller. We will discuss the pros and cons

of using Network Configuration Protocol (NETCONF), Representational State Transfer Configuration

(RESTCONF), and the gRPC Network Management Interface/Google Remote Procedure Call (gNMI/gRPC)

protocols, and the main differences between them.

The Catalyst 9800 IOS XE–based Wireless LAN Controller (WLC) has several options for programmatic

configuration. Traditional methods for configuring the WLC include the CLI and WebUI, but that has now been

expanded to include the programmatic interfaces. These programmatic interfaces include NETCONF,

RESTCONF, and the gNMI/gRPC protocols. YANG data models define what data is accessible over the

programmatic interfaces, and they come in several varieties. Cisco IOS XE features are defined within the

Native data models, while standard and vendor agnostic features are defined within the open data models that

are mapped to Native data models. Either model can be used for many tasks; however, features specific to IOS

XE are available only in the Native models.

Models created by Cisco are referred to as Native data models since they are specifically created for devices

and software with which they are associated. The Native data models provide most comprehensive and

operational coverage for device functionality.

 Figure 1.

Wireless model-driven telemetry interfaces

© 2021 Cisco and/or its affiliates. All rights reserved. Page 6 of 61

Telemetry history

SNMP and CLI have been used as traditional network management tools for years. Since the technology is

widely popular in network management for network monitoring, network engineers still actively use it. All the

SNMP messages are transported via User Datagram Protocol (UDP) and always require active polling by the

collector, which is not fully reliable. The read-write mode can make a network vulnerable to attacks and can be

used to access it. Other limitations include the security concerns of SNMP, lack of information about the source

IP address, what type of traffic is sent, and the information about the destination IP address. In other words, the

data is mainly unstructured, and the format frequently changes between each software release. Nevertheless,

more recent versions of SNMP bring improvements in security, performance, and flexibility.

In contrast to SNMP, NetFlow was designed for network monitoring. It brings more visibility into the network

and explicitly gives information about the source IP address, application protocol, and destination IP address,

which SNMP lacks. NetFlow works in the same way as SNMP, it sends records from a cache to a collector, and

all the records are being pushed to the collector without being requested each time. However, NetFlow is not

used for collecting information about bandwidth, CPU utilization, memory, and the temperature of the device

apart from the SNMP functionalities.

 Figure 2.

Telemetry standards timeline

For the past couple of years, we have adopted new technologies that helped us solve predecessors' flaws in

the modern world, but not all. Cisco IOS XE supports the YANG data modeling language, which can be used

with the NETCONF to deliver the desired programmable and automated network operations. NETCONF is an

XML-based protocol used to install, manipulate, and delete the configuration of network devices via Secure

Shell (SSH) as the transport layer. It is based on an RPC (Remote Procedure Call) mechanism to provide

communication between a client and a server. In our case, the server is the network device—Cisco Catalyst

9800 Wireless LAN Controller—and the controller is the client.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 7 of 61

The Web is progressing at an exponential speed, and that's when we started seeing a quick adoption of

RESTCONF in the Web-based monitoring stack. RESTCONF uses HTTP methods to implement similar

NETCONF operations for accessing data defined in YANG. In comparison to NETCONF, RESTCONF supports

both XML and JavaScript Object Notation (JSON) encodings. But it’s important to clarify that RETCONF is not a

NETCONF replacement and has never been intended to be one. From a capabilities standpoint, RESTCONF

has its limitations like any other network automation tool. It lacks any way of validation and also lacks the

“lock” concept found in NETCONF.

 Figure 3.

Comparison chart

In addition, we have gRPC or Google Remote Procedure Call. It is a modern open-source RPC using HTTP for

APIs. Model-driven telemetry with gRPC addresses many of the shortfalls of the legacy monitoring capabilities

and provides an additional interface that telemetry is now available to be published from. gRPC is a YANG

model using JSON and Protobuf encodings. Unlike NETCONF telemetry interface, which is “dial-in” and

session-based, the gRPC interface is “dial out” and is based on configuration within the Catalyst 9800 device.

gRPC is push-based, meaning that once it is configured, it will send the requested telemetry data regularly to

the provided recipient(s) without them needing to request the data. Now you decide what data is needed, how

often, and where to send it to. Once the configuration is in place, the Cisco IOS XE device happily publishes the

telemetry data to the third-party collectors, your monitoring tools, extensive data search and visualization

engines such as Splunk and Elastic, or even a simple text file.

Finally, while the CLI and SNMP aren't going away anytime soon, automation is a big part of where networks are

headed. Protocols like YANG, NETCONF, RESTCONF, and gRPC were designed with this in mind. That's why

Cisco uses them within their platforms.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 8 of 61

Cisco device compatibility

Table 1. Catalyst 9800 WLC IOS XE operational consistency

 CAT9100-EWC CAT9800-CL CAT9800-L CAT9800-40/80

Provisioning Automation

ZTP No No 17.7.1 16.12+

Model-Driven Configuration Management

NETCONF 16.12+ 16.10+ 16.12+ 16.10+

RESTCONF 16.12+ 16.11+ 16.12+ 16.11+

gNMI No 17.6+ 17.6+ 17.6+

Model-Driven Telemetry

NETCONF Dial-In 16.12+ No No No

gRPC Dial-Out 17.6 17.6 17.6 17.6

gNMI Dial-In 17.6 17.6 17.6 17.6

gNMI explicit wildcard No No No No

Software Image Management

GuestShell (On box Python) No No 17.7.1 16.11+

gRPC Network Operations Interface (gNOI)

cert.proto No 17.6 17.6 17.6

os.proto No No No No

reset.proto No No No No

© 2021 Cisco and/or its affiliates. All rights reserved. Page 9 of 61

Configuration overview

Regardless of the interfaces used, the following configuration is required on the Catalyst 9800:

configure terminal

aaa new-model

aaa authentication login default local

aaa authorization exec default local

exit

write memory

Authentication requirements

A user account is required to access the programmatic interfaces. This could come in the form of an existing or

preconfigured “username” account because a dedicated NETCONF or RESTCONF account is not required.

Alternately, an existing or pre-configure “admin” account can be used. Authentication via Terminal Access

Controller Access Control System Plus (TACACS) or RADIUS is also supported if the user is granted full or

privilege Level 15 rights upon login. To create an additional user account with username netconf or restconf and

password netconf or restconf, use the following commands when using local authentication:

username netconf privilege 15 password 0 netconf

username restconf privilege 15 password 0 restconf

NETCONF Access Control Module (NACM) and Model-Based AAA

The programmatic interfaces support NETCONF Access Control Model (NACM), which is a form of Role-Based

Access Control (RBAC) that is defined in RFC6536. This is commonly referred to as Model-Based AAA. Use this

feature to create rules for users that are logging in over the programmatic interfaces so that access to certain

models or functions can be permitted or denied as needed. More details can be found in the “Model-Based

AAA” chapter of the IOS XE Programmability User Guide, which is linked in the additional resources section.

API – Role-Based Access Control

Prior to the 17.5 release, a user with privilege Level 15 was required for any NETCONF operations. In the 17.5+

releases, support for a lower privileged and read-only user has been introduced. Whenever a lower privileged

user attempts to access information such as username or password, that sensitive data gets masked and not

visible to the user.

To enable the API RBAC, enter the following commands:

Device#configure terminal

Device(config)#username <USERNAME> privilege 1 password <PASSWORD>

Device(config)#end

Device#request platform software yang-management nacm populate-read-rules privilege 1

© 2021 Cisco and/or its affiliates. All rights reserved. Page 10 of 61

To get configs as priv1 user when the NACM rules are populated, use the following command:

netconf-console --host <IP_ADDRESS_OF_THE_DEVICE> --port 830 -u <USERNAME> -p <PASSWORD> --

get-config

When specifying the NETCONF read-only privilege level:

● Allowed RPCs are set – get, get-config, get-schema.

● Sensitive information is masked - Native/enable, native/aaa, native/username.

● Read-only access to all models is provided.

YANG data models

YANG is a data modelling language for NETCONF, RESTCONF, and gNMI. YANG models within the IOS XE

device have been defined to describe how to structure the data to send or receive. The YANG standard was

defined in RFC6020. There are two main types of YANG models in use: Native and Open. The models are

further categorized as either Configuration or Operational models. The configuration models can be used for

programmatic configuration, while the operational models can be used with telemetry to show real-time

operational data.

 Figure 4.

Model-driven telemetry interfaces

© 2021 Cisco and/or its affiliates. All rights reserved. Page 11 of 61

Native models

The Native models for wireless can be grouped into two main categories: config and operational. The config

modules contain configuration information for the related features, while the operational models provide run

time and operational data about the feature. All of the XPath expressions listed below are a part of the

openconfig-access-points YANG model, except the last one, which is a part of the openconfig-ap-manager

YANG model. For the telemetry operation to work correctly, ensure that configurations are done based on the

OpenConfig model.

 Figure 5.

Wireless Native config and oper models

Native configuration models

Table 2. Native configuration models

Config Module Data Model Details

ap AP configuration: tags, policy tags, rf tags, site tags

apf Global dot11 parameters: country, association request limit, blocklisting

cts-sxp CTS SXP configuration connection information, SXP mode, password, profile name, hold times,
retry periods

dot11 802.11 configuration: TX Powe, 802,11 n/802.11ac features, admin state data rates

dot15 802.15 global configurations: global 802.15 radio switch

fabric Fabric configuration: list of trace export profiles, transfer parameters for profiles, config download

file-transfer File transfer configuration: list of trace export profiles, transfer parameters for profiles, config
download

© 2021 Cisco and/or its affiliates. All rights reserved. Page 12 of 61

Config Module Data Model Details

flex Flex configuration: Remote LAN (RLAN) configuration, VLAN ALCs

fqdn Fully qualified domain name (FQDN) configurations: url-filter, domain names, filter action

general Misc WLC configurations: AP join configs, wireless management interfaces, multicast, WSA config

hotspot Configuration for the Wi-Fi Alliance Hotspot 2.0 (Passpoint) capabilities of the wireless controller,
including configuration for 802.11u

image-download Model for managing AP and Mobility Express Wireless Controller (MEWLC) image download
configurations

location Location configurations: Network Mobility Services Protocol (NMSP), CMX cloud, server URL,
timeouts, measurement intervals

me-general Model for managing Embedded Wireless Controller miscellaneous configuration

mesh Wireless Mesh configurations: mesh profile, psk, aaa method, threshold values

mobility Mobility configurations: mode, congif, peer config, group config, guest mode

mstream Multicast configurations: group, url, group name, stream groups, priority

radio Radio configurations: ap-specific configs

rf RF configurations: allowed channels, rf-profile, data rates config, Dynamic Channel Assignment
(DCA)

rfid Radio Frequency Identification (RDIF) configurations: timeouts, Received Signal Strength Indicator
(RSSI) expiry, notify thresholds

rogue Rogue configurations: rogue global parameters, SSID rules, clients, ignore list

rrm Radio Resource Management (RRM) configurations: intervals, grouping algorithm, static members

rule Model for rule configuration for wireless application based on regular expression match

security AP security configurations: AP Local Session Controller (LSC) config, CA trustpoint, key size

site Site configurations: site tag, rlan ports, master AP, join profile, BLE, Access Point Packet Capture
(AP PCAP), AP config profiles

tunnel Wireless tunnel configuration: tunnel profiles, Ethernet over Soft Generic Routing Encapsulation
(EoGRE) tunnel domain, AAA tunnel proxy for EoGRE

wlan WLAN configurations: aaa, dhep, umbrella, 802.11v, flex profiles, WLAN SSID, 802.lx security

© 2021 Cisco and/or its affiliates. All rights reserved. Page 13 of 61

Native operational models

Table 3. Native operational models

Config Module Data Model Details

access-point Join failure, discovery, certificates, country

ap AP configuration: tags, policy tags, rf tags, site tags

awips This module contains a collection of YANG definitions for SWIPS (Adaptive Wireless Intrusion
Prevention Service) operational data.

ble-ltx This module contains a collection of YANG definitions for wireless Bluetooth Low Energy (BLE) LTX
operational data.

ble-mgmt This module contains a collection of YANG definitions for wireless Bluetooth Low Energy (BLE)
management operational data.

client Session details, eapol, wlan id, delete reasons, association details

cts-sxp This module contains a collection of YANG definitions for AP Scalable Group Tag (SGT) Exchange
Protocol (SXP) operational data.

events This module contains a collection of YANG definitions for wireless operations events generated from
the Cisco Wireless controller. These models may produce high volume of data.

general This module contains a collection of YANG definitions for general operational data.

hyperlocation This module contains a collection of YANG definitions for wireless Hyperlocation operational data.

lisp-agent Wireless Fabric Control Plane oper data

location Model for accessing location data for clients. This module produces a large amount of data. The
update rate will be high for this data.

mcast Multicast

mdns This module contains a collection of YANG definitions for Multicast DNS (MDNS) gateways
operational data. This operational data consists of consolidated MDNS packet statistics and per
WLAN MDNS packet statistics.

mesh Mesh

mobility Mobility

nmsp NMSP location

rfid Radio Frequency Identification (RFID)

rogue Rogues

rrm Radio Re

rule-mdns This module contains a collection of YANG definitions for rule MDNS operational data

© 2021 Cisco and/or its affiliates. All rights reserved. Page 14 of 61

Open models

In addition to the Cisco Native configuration and operational models, there are several additional YANG models

that are supported on the device. The capabilities exchange via NETCONF, RESTCONF and gNMI YANG library.

There are models for SNMP MIBs, IETF, and OpenConfig. These models can be used in the same way as the

Native models; however, they offer a limited or subset of the capabilities available on the device.

NETCONF telemetry and programmatic interface

NETCONF is a protocol defined by the Internet Engineering Task Force (IETF) to “install, manipulate, and delete

the configuration of network devices.” NETCONF operations are realized on top of a Remote Procedure Call

(RPC) layer using an XML encoding and provide a basic set of operations to edit and query configuration and

operational state on a network device.

NETCONF configuration

To enable the NETCONF interface, enter the following commands:

Device# configure terminal

Device(config)# netconf-yang

Device(config)# exit

NETCONF-YANG SSH server support

NETCONF-YANG uses the IOS Secure Shell and can be configured to use Rivest, Shamir, and Adelman (RSA)

public keys to authenticate users as an alternative to password-based authentication.

For public-key authentication to work on NETCONF-YANG, the IOS SSH server must be configured. To

authenticate users to the SSH server, use one of the RSA keys configured, by using the ip ssh pubkey-

chain and user commands.

NACM is a group-based access control mechanism. When users are authenticated, they are automatically

placed in an NACM privilege group based on their configured privilege level. Users can also be manually placed

in other user-defined groups. The default privilege level is 1. There are 16 privilege levels, PRIV00 to PRIV15.

If a user authenticates via the public-key; but does not have a corresponding Authentication, Authorization, and

Accounting (AAA) configuration, this user is rejected. If a user authenticates via a public key; but the AAA

configuration for NETCONF is using a AAA source other than the local, this user is also rejected. Local and

Terminal Access Controller Access-Control System Plus (TACACS+) AAA authorization are supported.

An example of how to allow local login in the console line, and NETCONF to authenticate and get authorization

from TACACS can be found here: https://github.com/jeremycohoe/netconf-tacacs-aaa.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 15 of 61

YANG models

The NETCONF capabilities exchange can be retrieved by connecting to the device on the default port TCP 830,

using ssh. The capabilities exchange lists all available YANG data models supported by the device. Using tools

like YANG Suite, which is detailed in further sections, these YANG modules can be downloaded from the device

and analyzed further.

Verifying NETCONF status

To verify the NETCONF interface is operational, run the command:

Device#show platform software yang-management process

Ensure the NETCONF SSHD “ncsshd” process is running

NETCONF XML RPC payload examples

The XML RPC payloads below can be generated, modified, and sent from within the Cisco YANG Suite, or any

other tool that can send XML payloads over the NETCONF interface, such as a Python script. Example WLC

creation, verification, and removal XML payloads are listed below. These can be used to create, verify, and

remove a WLAN over the NETCONF interface quickly and easily.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 16 of 61

WLAN creation

The XML RPC below can be sent over the NETCONF interface to create a WLAN with the defined parameters. In

this case, the WLAN ID is 4 and the SSID is “open.”

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <wlan-cfg-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-wireless-wlan-cfg">

 <wlan-cfg-entries>

 <wlan-cfg-entry>

 <profile-name>Open</profile-name>

 <wlan-id>4</wlan-id>

 <security-wpa>true</security-wpa>

 <wpa2-enabled>true</wpa2-enabled>

 <wpa2-aes>true</wpa2-aes>

 <auth-key-mgmt-dot1x>true</auth-key-mgmt-dot1x>

 <apf-vap-id-data>

 <broadcast-ssid>true</broadcast-ssid>

 <ssid>open</ssid>

 </apf-vap-id-data>

 </wlan-cfg-entry>

 </wlan-cfg-entries>

 <wlan-policies>

 <wlan-policy>

 <policy-profile-name>open</policy-profile-name>

 <status>true</status>

 </wlan-policy>

 </wlan-policies>

 </wlan-cfg-data>

 </config>

 </edit-config>

</rpc>

© 2021 Cisco and/or its affiliates. All rights reserved. Page 17 of 61

WLAN verification

The XML RPC below can be sent over the NETCONF interface to verify a WLAN with ID 4.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

 <get>

 <source>

 <running/>

 </source>

 <filter>

 <wlan-cfg-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-wireless-wlan-cfg">

 <wlan-cfg-entries>

 <wlan-cfg-entry>

 <profile-name>Open</profile-name>

 <wlan-id>4</wlan-id>

 </wlan-cfg-entry>

 </wlan-cfg-entries>

 </wlan-cfg-data>

 </filter>

 </get>

</rpc>

WLAN removal

The XML RPC below can be sent over the NETCONF interface to remove a WLAN with ID 4.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <wlan-cfg-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-wireless-wlan-cfg">

 <wlan-cfg-entries xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

nc:operation="delete">

 <wlan-cfg-entry>

 <profile-name>Test-WLAN</profile-name>

 <wlan-id>4</wlan-id>

 </wlan-cfg-entry>

 </wlan-cfg-entries>

 </wlan-cfg-data>

 </config>

 </edit-config>

</rpc>

© 2021 Cisco and/or its affiliates. All rights reserved. Page 18 of 61

NETCONF Dial-In Model-Driven Telemetry

Dynamic Telemetry Subscription with Python NCC

Dial-in telemetry subscriptions can be easily created by using the NCC tools available from CiscoDevNet at

https://github.com/CiscoDevNet/ncc. The repository can be simply cloned from Github with the git clone

command. An additional requirement is to use a patched ncclient tool that works with the ncc-establish-

subscription.py tool. This can be installed by following the directions on the ncc Github page or by executing

the two commands below:

$ git clone https://github.com/CiscoDevNet/ncc

$ sudo pip install --upgrade git+https://github.com/CiscoDevNet/ncclient.git

Once downloaded, a subscription can be established by running the following command:

$ python3 ncc-establish-subscription.py --host <HOST_IP_ADDRESS> --port 830 -x "/wireless-

client-oper:client-oper-data/dot1-oper-data" --period 1000 -u <USERNAME> -p <PASSWORD>

In the example above, a telemetry subscription has been created using the Cisco-IOS-XE-wireless-client-oper

YANG model, which has a prefix of “wireless-client-oper” and an xpath of “/client-oper-data/dot11-oper-

data.” YANG Suite is used to determine the correct XPath Filter for this YANG model as seen in the screenshot

below:

 Figure 6.

Cisco YANG Suite, Explore YANG Models dashboard

https://github.com/CiscoDevNet/ncc
https://github.com/CiscoDevNet/ncc

© 2021 Cisco and/or its affiliates. All rights reserved. Page 19 of 61

RESTCONF programmatic interface

RESTCONF stands for the HTTP-based Representational State Configuration Protocol (RFC 8040). It is a

stateless protocol that uses the secure HTTP method. RESTCONF uses structured XML or JSON and YANG data

models to provide a REST-like API that enables programmatic access to the network device. RESTCONF API

uses HTTPs method and commands like PUT and GET to send information to and from the Cisco devices. The

Catalyst 9800 IOS XE implementation supports the following RESTCONF operations: GET, PATCH, PUT,

POST, DELETE, HEAD.

RESTCONF configuration

To enable the RESTCONF interface on the device, enter the following commands:

configure terminal

ip http secure-server

restconf

exit

RESTCONF Verification

Verify that RESTCONF is running by sending the GET request to the device:

curl -k https://<IP ADDRESS>/restconf/ -u "username:password"

If everything was configured properly, you should get the following response:

<restconf xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">

 <data/>

 <operations/>

 <yang-library-version>2016-06-21</yang-library-version>

</restconf>

© 2021 Cisco and/or its affiliates. All rights reserved. Page 20 of 61

RESTCONF YANG Models

The list of supported YANG data models can be retrieved from the RESTCONF interface by sending GET

request to the URI restconf/ietf-yang-library:modules-state.

For example:

curl -k -u username:password https://<IP_ADDRESS>/restconf/data/ietf-yang-library:modules-

state

A specific YANG module can be downloaded by sending another GET request to the URI containing the model.

For example, to download the Cisco-IOS-XE-wireless-client-oper model send, the GET request to

/restconf/tailf/modules/Cisco-IOS-XE-wireless-client-oper/2021-03-01 as seen in the screenshot below:

© 2021 Cisco and/or its affiliates. All rights reserved. Page 21 of 61

Verifying RESTCONF status

To verify the RESTCONF interface is operational, run the command:

show platform software yang-management process

Ensure the “nginx” process is running:

RESTCONF Debugging

With the rise of programmable APIs for network devices, customers are looking to leverage NETCONF and

RESTCONF APIs in their automation workflow for uses like deploying, provisioning, and monitoring. Thus,

customers are now looking to include debugging uses as well, like generating log files for troubleshooting.

Starting from IOS XE 17.6, a support for YANG models exists for enabling debugging of specific wireless clients

as well as generating trace logs for these clients. Therefore, customers can leverage NETCONF and RESTCONF

in their debugging workflows.

Prerequisites

1. Enable NETCONF and RESTCONF.

2. To enable RESTCONF: https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/prog/configuration/174/b_174_programmability_cg/restconf_protocol.html

3. NETCONF is used by Cisco YANG Suit to download the YANG models. To enable NETCONF:

https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/prog/configuration/174/b_174_programmability_cg/configuring_yang_datamodel.html

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/174/b_174_programmability_cg/restconf_protocol.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/174/b_174_programmability_cg/restconf_protocol.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/174/b_174_programmability_cg/configuring_yang_datamodel.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/174/b_174_programmability_cg/configuring_yang_datamodel.html

© 2021 Cisco and/or its affiliates. All rights reserved. Page 22 of 61

Enable wireless conditional debugging

Based on the either the MAC or IP address of a device we can generate debug messages using the Cisco-

IOS-XE-wireless-actions-rpc.yang model. This is equivalent to entering the following CLI command:

debug platform condition feature wireless <mac/ip> <MAC/IP Address>

 Figure 7.

How to build the NETCONF operation using the MAC address of an AP for the debugging

You can use YANG Suite to generate the RPC in XML form using NETCONF. To use the RPC for RESTCONF, the

RPC will need to be converted from XML to JSON with any XML-specific information removed.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 23 of 61

Generate trace archive

Using the Cisco-IOS-XE-trace-rpc.yang, we can generate a trace archive for the C9800 device. It is equivalent

to the System Report which can be found in the C9800 WebUI under Troubleshooting > Core > Dump and

System Report.

 Figure 8.

How to build the NETCONF operation to generate the RPC in XML form for trace archive

In the NETCONF page of YANG Suite, build another RPC call to generate the RPC in XML form.

Note: The location where the trace archive will be saved depends on the model of C9800. This could be

either bootflash or harddisk.

In order to use the RPC for RESTCONF, the RPC will need to be converted from XML to JSON with any XML

specific information removed.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 24 of 61

Generate trace message

Similar to a trace archive, the Cisco-IOS-XE-trace-rpc.yang module is used to generate trace debug

messages based on the either the MAC or IP address of a device. It is equivalent to the Radioactive Trace

which can be found in the C9800 WebUI under Troubleshooting > Radioactive Trace.

 Figure 9.

How to build the NETCONF operation to generate the RPC in XML form for trace message

© 2021 Cisco and/or its affiliates. All rights reserved. Page 25 of 61

You can use YANG Suite to generate the RPC in XML form using NETCONF. In order to use the RPC for

RESTCONF, the RPC will need to be converted from XML to JSON with any XML specific information removed.

The following trace-message leaves are not supported.

/trace-message/trace-all-options/trace-filter-options/metadata

/trace-message/trace-all-options/trace-filter-options/pcap-extract

/trace-message/trace-all-options/trace-filter-options/switch-info

/trace-message/trace-all-options/trace-filter-options/filter/integer-value

/trace-message/trace-all-options/trace-filter-options/switch-info

/trace-message/trace-all-options/trace-filter-options/filter/uuid-string

/trace-message/trace-all-options/trace-filter-options/filter/string-value

/trace-message/trace-all-options/profile/profile-location

/trace-message/trace-all-options/profile/profile-file

gRPC Dial-Out model driven telemetry

gRPC is a Remote Procedure Call dial-out model-driven telemetry interface. gRPC Dial-Out telemetry is an

automated communications process by which measurements and other data are collected and transmitted to

the remote receiving equipment for monitoring. Model-driven telemetry provides a mechanism to stream

YANG-modeled data to a data collector over the network.

Dial-In Dynamic vs. Dial-out Configured MDT Subscriptions

With a dial-in or “dynamic” subscription, the subscriber must first establish session a connection to the device

and then subscribe to the data models. The NETCONF session must remain established for telemetry data to

remain streaming. If the session is disconnected, then the telemetry subscription must be manually re-

established. With dial-out or “configured” subscriptions, once the configuration is setup by the user, the device

will maintain the subscription configuration and send telemetry to the subscriber without needing an active

session to the collector.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 26 of 61

 Figure 10.

Model-driven telemetry interfaces

gRPC Dial-Out Model-Driven Telemetry Configuration

gRPC Dial out subscriptions support encoding with key-value google protocol buffers (kv-gpb) over a TCP

connection. The following configuration can be used to establish a gRPC dial-out with FQDN DNS support

telemetry subscription. Configure domain lookup and name-server IP first and then add telemetry subscription

with the DNS named receiver.

telemetry ietf subscription 101

 encoding encode-kvgpb

 filter xpath /wireless-client-oper:client-oper-data/dot11-oper-data

 source-address <IP_ADDRESS>

 stream yang-push

 update-policy periodic 2000

 receiver-type protocol

 receiver name yangsuite

telemetry receiver protocol yangsuite

 host name yangsuite-telemetry.cisco.com 57500

 protocol grpc-tcp

© 2021 Cisco and/or its affiliates. All rights reserved. Page 27 of 61

This configuration creates a new configuration subscription with an ID of 101. The encoding is set to kv-gpb,

and the xpath filter defines the API to subscribe to, in this case dot11-oper-data. The xpath filter is defined

within the YANG model, and YANG Suite is used to determine the exact xpath and prefix for this model. The

source address and Virtual Routing and Forwarding (VRF) to use from the device is set, as well as the receiver

IP, port, and protocol. The yang-push stream defines how often to publish data in centiseconds. In this case it

is set to 1000, which means data will be published every 10 seconds. The following IOS XE CLI can be added

to IOS XE 17.6 to enable the publication of Model-Driven Telemetry (MDT) on C9800. Make sure to change the

source IP address and host name. Before enabling the publication of MDT, make sure to enable netconf-yang

on the device.

Receiving gRPC Model-Driven Telemetry with Telegraf

The key-value encoded google protocol buffer (kv-gpb) telemetry data that is sent over the gRPC interface can

be received with many tools and in many different configurations, depending on the business needs and use-

cases. Telegraf is an open-source tool that can be used to receive the data and is available on Github at

https://github.com/influxdata/telegraf. Telegraf works by acting as the gRPC server and receiver, where it

processes the Google Protocol Buffers encoded data and sends the text data into the time series database

InfluxDB. From there Grafana can be used to visualize the data. Telegraf and Grafana are highly configurable

and can receive and visualize a variety of telemetry sources as well as output data to a variety of data source,

including Kafka, InfluxDB, Elasticsearch, and Prometheus.

 Figure 11.

gRPC workflow example

https://github.com/influxdata/telegraf

© 2021 Cisco and/or its affiliates. All rights reserved. Page 28 of 61

Verifying telemetry subscriptions

There are several show commands available to verify the status of the telemetry subscription configurations.

Examples of each are below:

show telemetry ietf subscription all

show telemetry ietf subscription <ID> detail

show telemetry ietf subscription <ID> receiver

© 2021 Cisco and/or its affiliates. All rights reserved. Page 29 of 61

gNMI

gNMI is a gRPC Network Management Interface. gNMI provides the mechanism to install, manipulate, and

delete the configuration of network devices, and to view operational data. The content provided through gNMI

can be modeled using YANG. gRPC is a remote procedure call developed by Google for low-latency, scalable

distributions with mobile clients communicating to a cloud server. gRPC carries gNMI and provides the means

to formulate and transmit data and operation requests.

gNMI configuration

To enable the gNMI interface enter the following commands:

configure terminal

gnxi

gnxi server

gnxi port 50052

exit

write memory

gNMI configuration Secure Mode

The following example shows how to enable the gNXI server secure mode.

configure terminal

gnxi

gnxi secure-trustpoint trustpoint1

gnxi secure-server

gnxi secure-client-auth

gnxi secure-port 9339

exit

write memory

Ensure the gNMI secure server is enabled.

show gnxi state detail

© 2021 Cisco and/or its affiliates. All rights reserved. Page 30 of 61

gNMI Operations

The following operations are supported over the gNMI interface:

gNMI GetRequest

gNMI SetRequest

gNMI Subscribe

Additional details on utilizing this interface are available from the Programmability Configuration Guide linked in

the Additional Resources section.

Verifying gNMI status

To verify the gNMI interface is operational, run the command:

show gnxi state

Ensure the state is enabled and status is up.

show gnxi state detail

© 2021 Cisco and/or its affiliates. All rights reserved. Page 31 of 61

JSON IETF Encoding for YANG Data Trees

JSON is supported encoding for the gNMI interface. RFC 7951 defines JavaScript Object Notation (JSON)

encoding for YANG data trees and their subtrees. gNMI uses JSON for encoding data in its content layer.

The JSON type indicates that the value is encoded as a JSON string. JSON_IETF-encoded data must conform

to the rules for JSON serialization described in RFC 7951. Both the client and target must support JSON

encoding.

Instances of YANG data nodes (leaves, containers, leaf-lists, lists, anydata nodes, and anyxml nodes) are

encoded as members of a JSON object or name/value pairs. Encoding rules are identical for all types of data

trees, such as configuration data, state data, parameters of RPC operations, actions, and notifications.

Every data node instance is encoded as a name/value pair where the name is formed from the data node

identifier. The value depends on the category of the data node.

A leaf node has a value, but no children, in a data tree. A leaf instance is encoded as a name/value pair. This

value can be a string, number, literal true or false, or the special array [null], depending on the type of the leaf.

In the case that the data item at the specified path is a leaf node (which means it has no children, and an

associated value) the value of that leaf is encoded directly. (A bare JSON value is included; it does not require a

JSON object.)

© 2021 Cisco and/or its affiliates. All rights reserved. Page 32 of 61

The following example shows a leaf node definition:

leaf foo {

 type uint8;

}

The following is a valid JSON-encoded instance:

"foo": 123

gNMI Wildcard

gNMI wildcard has been introduced in the 17.5 release. This is the ability to use a wildcard in a path to match

multiple elements. Now, it is easier to know which variables are used, instead of having to perform a separate

GET request.

There are two types of wildcards; implicit and explicit, and both are supported. Get paths support all types and

combinations of path wildcards.

● Implicit wildcards: These expand a list of elements in an element tree. Implicit wildcard occurs when a

key value is not provided for elements of a list.

The following is a sample path implicit wildcard. This wildcard will return the descriptions of all interfaces

on a device:

path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "interface"

 }

 elem {

 name: "config"

 }

 elem {

 name: "description"

 }

}

Explicit wildcards: Provides the same functionality by specifying an asterisk (*) for either the path element name

or key name.

The following sample shows a path asterisk wildcard as the key name. This wildcard returns the description for

all interfaces on a device.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 33 of 61

path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "interface"

 key {

 key: "name"

 value: "*"

 }

 }

 elem {

 name: “config"

 }

 elem {

 name: "description"

 }

}

The following sample shows a path asterisk wildcard as the path name. This wildcard will return the description

for all elements that are available in the Loopback111 interface.

path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "interface"

 key {

 key: "name"

 value: "Loopback111"

 }

 }

 elem {

 name: "*"

 }

 elem {

 name: "description"

 }

}

© 2021 Cisco and/or its affiliates. All rights reserved. Page 34 of 61

Specifying an ellipsis (...) or a blank entry as element names. These wildcards can expand to multiple elements

in a path.

The following sample shows a path ellipsis wildcard. This wildcard returns all description fields available under

/interfaces.

path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "..."

 }

 elem {

 name: "description"

 }

}

The following is a sample GetRequest with an implicit wildcard. This GetRequest will return the oper-status of

all interfaces on a device.

path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "interface"

 }

 elem {

 name: "state"

 }

 elem {

 name: "oper-status"

 }

},

type: 0,

encoding: 4

© 2021 Cisco and/or its affiliates. All rights reserved. Page 35 of 61

The following is a sample GetResponse with an implicit wildcard:

notification {

 timestamp: 1520627877608777450

 update {

 path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "interface"

 key {

 key: "name"

 value: "\"FortyGigabitEthernet1/1/1\""

 }

 }

 elem {

 name: "state"

}

 elem {

 name: "oper-status"

 }

 }

 val {

 json_ietf_val: "\"LOWER_LAYER_DOWN\""

 }

 },

<snip>

…

</snip>

update {

 path {

 elem {

 name: "interfaces"

 }

 elem {

 name: "interface"

 key {

 key: "name"

 value: "\"Vlan1\""

© 2021 Cisco and/or its affiliates. All rights reserved. Page 36 of 61

 }

 }

 elem {

 name: "state"

 }

 elem {

 name: "oper-status"

 }

 }

 val {

 json_ietf_val: "\"DOWN\""

 }

 }

}

Verifying the Device Management Interface (DMI) processes are running

To verify the DMI processes, run the command:

show platform software yang-management process

© 2021 Cisco and/or its affiliates. All rights reserved. Page 37 of 61

Cisco YANG Suite

YANG Suite is a tool used for interacting with the NETCONF and RESTCONF gNMI interfaces. YANG Suite was

publicly released onto GitHub. It can be used to generate and send XML RPC payloads to the device. YANG

Suite provides a YANG API testing and validation environments that supports NETCONF, RESTCONF, gNMI, and

gRPC Telemetry.

 Figure 12.

Example of NETCONF operation in Cisco YANG Suite

YANG suite resources

● DevNet landing page: developer.cisco.com/yangsuite

● Documentation: developer.cisco.com/docs/yangsuite

https://developer.cisco.com/yangsuite
https://developer.cisco.com/docs/yangsuite

© 2021 Cisco and/or its affiliates. All rights reserved. Page 38 of 61

YANG suite installation

Follow the instructions from the Github site at https://github.com/CiscoDevNet/yangsuite to complete the

installation. Detailed instructions are available for Mac, Windows, and Linux. YANG Suite can be installed as a

Docker Container or through Python package management. Installing YANG Suite as a Docker Container is the

recommended install.

Prerequisites:

● Docker

● Docker Compose

● Docker Desktop for Mac

● Docker Desktop for Windows

For Mac and Windows follow these instructions to install Docker Compose.

For Linux follow these instructions to install Docker Compose.

Quick start

1. Clone the repository https://github.com/CiscoDevNet/yangsuite

2. Run start_yang_suite.sh or,

3. Run docker-compose up if you have already ran the start_yang_suite.sh

4. Access the YANG Suite tool at https://localhost:8443

git clone https://github.com/CiscoDevNet/yangsuite

cd yangsuite/docker/ ; ./start_yang_suite.sh

or

cd yangsuite/docker/ ; docker compose up

When the YANG Suite is ready for use, the following will be seen:

https://docs.docker.com/install
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
https://github.com/CiscoDevNet/yangsuite
https://localhost:8443/

© 2021 Cisco and/or its affiliates. All rights reserved. Page 39 of 61

YANG Suite Day 0 configuration

When YANG Suite is installed and running, a few tasks must be completed before interacting with the Catalyst

9800. Navigate to the Google/Firefox web browser and access YANG Suite at http://localhost:8443. Log in

using the credentials configured during the installation process. Once logged in, you’ll end up at the main YANG

Suite application window.

Navigate to the Setup > Device profiles menu. Click Create new device.

The New Device Profile window will pop up where information about the device must be added. Enter the

profile name, address, username, and password. Since YANG Suite now supports gNMI, check the Device

supports gNMI box. Check the Device supports NETCONF, Skip SSH key validation for this device, and

Device supports RESTCONF boxes. Make sure to enter username and password for both NETCONF and

RESTCONF, if you have configured a separate authentication. Click Create Profile to add the device to YANG

Suite.

http://localhost:8443/

© 2021 Cisco and/or its affiliates. All rights reserved. Page 40 of 61

Once the device is added, check the device reachability by clicking Check selected device’s reachability.

Make sure to see the green checkmark for ping, gNMI, NETCONF, and RESTCONF.

Creating default repository and YANG set

From within the YANG Suite, the YANG modules can be downloaded from the device. The Yang repository can

be created automatically from the Manage Device Profiles page. Yang Set is a subset of a YANG repository that

consists of a set of modules and any other necessary dependencies. A YANG set could store an entire

repository, but it’s more efficient to narrow the set down to only the models we are interested in. A YANG Set

needs to be created to Build and Run RPC(s).

Follow the steps to download the models:

On the Manage Device Profiles page, click the Create default Repository and Yangset button. The following

option will automatically create a default repository and a default set.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 41 of 61

When the download is completed, the desired modules will appear in the repository and set boxes.

Explore YANG models

With the created YANG set we can easily explore the YANG data models. From the menu on the left side of the

page, select Explore > YANG.

1. From the left navigation pane select Explore > YANG.

2. From the Select a YANG set drop-down menu, select a newly created set.

3. In the Select YANG modules(s) box, enter any wireless data model of choice. In this example, we

explore the Cisco-IOS-XE-wireless-client-oper module.

4. Click the Load module(s). After a moment, the left column will be populated with a tree view of the

contents of the module. Initially the tree view shows only the module itself, but you can click the

triangle icon next to it to expand the tree.

5. Refer to the screenshot to examine the structure of the model and its content.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 42 of 61

Two important pieces of YANG model metadata are the Xpath and the Prefix. These fields are used with Model-

Driven Telemetry to retrieve information. If a telemetry subscription was to be created based on the IOS XE

interfaces YANG data model, the Xpath of “/interfaces/interface/interface-type” and “interfaces-ios-xe-oper”

would be used to retrieve and publish information from those models.

NETCONF plus YANG Suite

YANG Suite enables interaction with the devices using most of the programmatic interfaces: NETCONF,

RESTCONF, gNMI, and gRPC. The example below shows the use of a NETCONF programmatic interface on the

C9800 Wireless controller. With the help of the NETCONF Operation get-config, it’s easy to retrieve all or part

of the specified wireless configuration datastore. Also, the NETCONF Operation edit-config loads all of a

specified configuration to a specified target configuration.

Steps to access the NETCONF plugin using YANG Suite:

1. From the left navigation pane select Protocols > NETCONF.

2. Select the created YANG Set.

3. Select the Module(s): Cisco-IOS-XE-wireless-wlan-cfg.

4. Select a C9800 device from a drop-down menu, and click Load Module(s).

The C9800 Wireless Controller from the above example has been preconfigured with a wlan-id 3. To retrieve

the part of WLAN configuration datastore, a get-config NETCONF operation is used.

Steps to build and run RPC(s):

1. Expand the Cisco-IOS-XE-wireless-wlan-cfg, wlan-cfg-data, and wlan-cfg-entries nodes tree.

2. In the value column next to the wlan-id, type the number of the WLAN you wish to retrieve.

3. Click the Build RPC button, and the RPC appears in the text window.

4. Click RUN RPC(s) button, and a new dialog window appears in a separate tab.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 43 of 61

The configuration of the WLAN should be displayed if everything is done correctly.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 44 of 61

gNMI plus YANG Suite

The gNMI tooling can be used to retrieve information from the device. With the help of programmatic interfaces

and YANG Suite, it became easier to retrieve operational information from the IOS XE devices. YANG Suite

provides a YANG API testing and validation environment that supports gNMI. The gNMI tooling uses JSON_IETF

for encoding data in its content layer. In this example, we run RPC for one of the wireless modules Cisco-IOS-

XE-wireless-access-point-oper.

Steps to access the gNMI plugin using YANG Suite:

1. From the left navigation pane, select Protocols > gNMI.

2. Select the created YANG Set.

3. Select the Module(s): Cisco-IOS-XE-wireless-access-point-oper. Click Load Modules.

4. From the drop-down list, select the Device.

5. For Origin, select RFC7951.

In the Nodes section, make sure to expand the loaded YANG data model. Click the Value column next to the

access-point-oper-data row. To narrow down the search, each individual node can be selected from the list.

To generate the payload, click the Build JSON button. Once the payload is generated, it is ready to Run RPC.

The gNMI GET, gNMI GET Response, and gNMI Response value decoded will show up in separate window.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 45 of 61

RESTCONF plus YANG Suite

To access the RESTCONF plugin using YANG Suite, navigate to the Protocols > RESTCONF on the left pane of

the YANG Suite application. Make sure to fill out all the necessary fields to load the YANG modules from the

device and generate API(s). For the YANG module, we used the Cisco-IOS-XE-wireless-wlan-cfg to get

the information about the configured WLANs on the C9800 device.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 46 of 61

When these four fields are correctly set, click Load module(s) to generate the tree.

When the module is loaded, expand the tree. Select the wlan-cfg-entries container, then click the

Generate API(s) button. The message from YANG Suite outlined in red above indicates that the API(s) were

successfully generated and ready to be viewed. When you see a similar pop-up message, close it. Click the

Show API(s) button to view all the available requests.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 47 of 61

All the default requests are displayed on a separate page. In the following example, we take a closer look at the

GET request. If you click any of the above requests, you’ll be able to expand the data and run RPC.

Select the GET request. Click the Try it out button, and then click the Execute button. The RESTCONF API call

will be sent to the device, which will reply with the WLAN config data as requested.

If the request is successful, a response of 200 will be returned with the JSON response body. If the response

body doesn’t contain any information, a response of 204 will be returned, which also indicates a successful

request.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 48 of 61

Ansible automation

Ansible is a popular and easy to use open-source software suite that automates software provisioning,

configuration, and management. It connects to and controls devices via SSH, NETCONF, and a variety of other

protocols as well. Ansible is agentless, meaning there are no installation or requirements on the target device,

other than having an accessible API or interface. It is minimal in nature and provides a secure and reliable way

to interact with remote devices. It is commonly used with other automation tools to accomplish complex

workflows as it is highly adaptable. Below are some examples of using Ansible to complete basic Day 0

configuration tasks.

Ansible has several components that work together to provide a holistic solution. There are modules that are

reusable and a standalone script that can be called. Tasks call upon modules to perform an action. When there

are multiple tasks, a play can be used to call the tasks in order. A playbook is then used when there are multiple

plays. Finally, a role is a set of playbooks.

© 2021 Cisco and/or its affiliates. All rights reserved. Page 49 of 61

 Figure 13.

Ansible Taxonomy

Ansible Example: Enable NETCONF-YANG and RESTCONF

The hosts file has connection details and device-specific information including credentials. In this example, it is

assumed that the Catalyst 9800 has already been configured to allow SSH logins, and that the enable password

has also been set. The hosts files and YAML file are used together to accomplish a task. In this case, the tasks

are to connect to the CLI over SSH, enter enable mode, and execute the required IOS commands to enable

netconf-yang and set up the AAA requirements.

Ansible hosts file for Day 0 configuration

This example hosts.txt file contains the variables needed to successfully establish a connection to the device.

[C9800]

10.0.0.237

[ios_xe:children]

C9800

[ios_xe:vars]

ansible_connection=network_cli

ansible_network_os=ios

ansible_password=cisco

ansible_python_interpreter = "/usr/bin/python"

© 2021 Cisco and/or its affiliates. All rights reserved. Page 50 of 61

Ansible YAML configuration file to enable NETCONF and RESTCONF

This example enable_netconf_yang.yaml YAML file that can be used to enable the NETCONF interface on the

device and configure the authentication prerequisites including adding a user.

- hosts: C9800

 gather_facts: no

 tasks:

 - ios_config:

 commands:

 - aaa new-model

 - aaa authorization exec default local

 - aaa authentication login default local

 - username netconf privilege 15 password 0 netconf

 - netconf-yang

 - ip http secure-server

 - restconf

 save_when: modified

Ansible YAML CLI automation show file to verify NETCONF and RESTCONF
configuration

This example cat9800_verify.yaml YAML file will run two IOS XE SHOW commands to verify that netconf-yang

and restconf is enabled. and The output will be registered and displayed on the screen when executed:

- hosts: C9800

 gather_facts: no

 tasks:

 - ios_command:

 commands:

 - show run | i netconf-yang

 - show run | i restconf

 register: show

 - debug: var=show.stdout_lines

© 2021 Cisco and/or its affiliates. All rights reserved. Page 51 of 61

Executing the task to enable and verify NETCONF and RESTCONF

The ansible-playbook command can be used to execute the task that we define above to enable the

NETCONF-YANG interface on the device. In this example, we define a variable to set the Host Key Checking to

false, so that the SSH host key is not validated. In production environments, it is important to verify the

authenticity of the device being accessed. However in this lab example, the check is set to False for ease of

use.

From the command line, execute the following command to run the enable_netconf_yang.yaml configuration:

$ ANSIBLE_HOST_KEY_CHECKING=False ansible-playbook -i ./hosts.txt

./enable_netconf_yang.yaml

From the command line, execute the following command to run the cat9800_verify.yaml configuration

$ ANSIBLE_HOST_KEY_CHECKING=False ansible-playbook -i ./hosts.txt ./cat9800_verify.yaml

© 2021 Cisco and/or its affiliates. All rights reserved. Page 52 of 61

Ansible Example: Use NETCONF to create a WLAN

Previously we have learned how to create a WLAN with the help of NETCONF. Now, let’s create a new WLAN

with the help of Ansible + NETCONF. This example sends xml into the NETCONF interface to add a WLAN.

Create a folder named ansible. In the newly created folder, create three files: host.txt, ansible.cfg, and

add_wlan.yaml. the content for each file is listed below. Make sure to change the IP address, username, and

password.

The host.txt file:

[C9800]

172.20.229.206

[ios_xe:children]

C9800

[ios_xe:vars]

ansible_connection=netconf

ansible_network_os=ios

ansible_password=netconf

ansible_python_interpreter = "/usr/bin/python"

ansible.cfg:

[defaults]

inventory = ./hosts.txt

host_key_checking = False

roles_path = ./

remote_user = admin

© 2021 Cisco and/or its affiliates. All rights reserved. Page 53 of 61

add_wlan.yaml

- hosts: C9800

 gather_facts: no

 connection: netconf

 remote_user: netconf

 tasks:

 - name: establish subscription

 netconf_config:

 content: |

 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <wlan-cfg-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-wireless-wlan-cfg">

 <wlan-cfg-entries>

 <wlan-cfg-entry>

 <profile-name>Test</profile-name>

 <wlan-id>5</wlan-id>

 <security-wpa>true</security-wpa>

 <wpa2-enabled>true</wpa2-enabled>

 <apf-vap-id-data>

 <broadcast-ssid>true</broadcast-ssid>

 <ssid>Test-WLAN</ssid>

 </apf-vap-id-data>

 </wlan-cfg-entry>

 </wlan-cfg-entries>

 </wlan-cfg-data>

 </config>

From the command line, execute the following command to run the add-wlan.yaml configuration.

ansible-playbook add_wlan.yaml

© 2021 Cisco and/or its affiliates. All rights reserved. Page 54 of 61

Guest Shell

Guest Shell is a virtualized Linux-based environment, designed to run custom Linux applications, including

Python for automated control and management of Cisco devices. Using the Guest Shell, you can also install,

update, and operate third-party Linux applications. The guest shell is bundled with the system image and can

be installed using the guestshell enable Cisco IOS command. This container shell provides a secure

environment, decoupled from the host device, in which users can install scripts or software packages and run

them. The existing network hardware is used to deliver the scalability, high availability, and flexibility required,

with no requirements for dedicated or separate compute. The Guest Shell environment is intended for tools,

Linux utilities, and manageability rather than networking.

 Figure 14.

Guestshell on C9800-WLC

Enabling and Running the Guest Shell

Before enabling the Guest Shell, IOx must be configured. If IOx is not configured, a message to configure IOx is

displayed. Removing IOx removes access to the Guest Shell. To enable and operate Guest Shell, management

interface needs to be configured on C9800. To enable IOx, enter the following commands:

configure terminal

iox

exit

Enabling Guest Shell on the Management Interface

configure terminal

app-hosting appid <name>

app-vnic management guest-interface <interface number>

end

show app-hosting list

© 2021 Cisco and/or its affiliates. All rights reserved. Page 55 of 61

Once the prerequisite configuration is setup then enable and enter the Guest Shell container:

guestshell enable

Device#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Device(config)#app-hosting appid guestshell

Device(config-app-hosting)#app-vnic management guest-interface 1

Device(config-app-hosting-mgmt-gateway)#end

Device#show app-hosting list

App id State

guestshell DEPLOYED

Device#guestshell enable

Interface will be selected if configured in app-hosting

Please wait for completion

guestshell activated successfully

Current state is: ACTIVATED

guestshell started successfully

Current state is: RUNNING

Guestshell enabled successfully

Device#show app-hosting list

App id State

guestshell RUNNING

Verifying IOx Status

To confirm that the IOX service has been enabled, enter the show iox-service command and ensure IOx

Cisco application hosting framework (CAF), IOx service IOxman, and Libertd are in Running state.

Device#show iox-service

IOx Infrastructure Summary:

IOx service (CAF) : Running

IOx service (HA) : Not Supported

IOx service (IOxman) : Running

IOx service (Sec storage) : Not Supported

Libvirtd 5.5.0 : Running

© 2021 Cisco and/or its affiliates. All rights reserved. Page 56 of 61

Device#show app-hosting list

App id State

guestshell RUNNING

Accessing and Using Guest Shell

Linux commands can be run directly from the IOS CLI. The guestshell run bash command opens the Guest

Shell bash prompt. To log into guest shell run the following command:

C9800-40#guestshell run bash

Guest Shell Usage

From the Guest Shell prompt, you can run Linux commands:

C9800-40 #guestshell run bash

[guestshell@guestshell ~]$ pwd

/home/guestshell

[guestshell@guestshell ~]$ whoami

guestshell

[guestshell@guestshell ~]$ uname -a

Linux guestshell 5.4.69 #1 SMP Fri Mar 19 21:47:56 UTC 2021 x86_64 x86_64 x86_64 GNU/Linux

Accessing the Python Interpreter

Python scripts can be run in the Guest Shell. The guestshell run python3 commands launch the Python

Interpreter.

guestshell run python3

Accessing the IOS CLI from the Guest Shell

The dohost command is built into Guest Shell and will send the command directly to the device. The command

is limited to exec privilege mode and won’t work for the config mode.

Note: The dohost command requires the ip hhtp server command to be configured on the device

© 2021 Cisco and/or its affiliates. All rights reserved. Page 57 of 61

Once the interactive shell is entered, the clip python module can be used to execute

IOS CLI commands:

>>> from cli import clip

>>> clip(“show wlan summary”)

Disabling and Destroying the Guest Shell

The guestshell disable command shuts down and disables Guest Shell.

The guestshell destroy command removes the rootfs from the flash filesystem.

Non-Interactive Python

Guest Shell can execute python scripts in a non-interactive environment. Copy the python script from the TFTP

server to the bootflash, then execute it with the guestshell run python3 command. Alternately, use the ‘vi’

editor within the Bash environment to create the python file.

A very easy python script can be executed using the guestshell run python3 command. Copy the whole script

shown below to the /bootflash/guest-share location on your device. You can modify the script to your own

needs. The purpose of this section is to showcase the guestshell capability:

#!/usr/bin/python

from cli import clip

clip("show wlan summary")

exit()

The command to execute the python script is:

guestshell run python3 /bootflash/show_wlans.py

© 2021 Cisco and/or its affiliates. All rights reserved. Page 58 of 61

Guest Shell with EEM

Embedded Event Manager (EEM) is a distributed and customized approach to event detection and recovery

offered directly in a Cisco IOS device. EEM offers the ability to monitor events and take informational,

corrective, or any desired EEM action when the monitored events occur or when a threshold is reached. An EEM

policy is an entity that defines an event and the actions to be taken when that event occurs.

The Embedded Event Manager (EEM) can be used to execute Python scripts within the Guest Shell

environment. In this example, whenever a syslog message is generated indicating an AP joined or disjoined the

controller, then the guestshell_script.py Python script will run. This script runs some CLI commands and saves

the output to the bootflash.

Configure EEM with the following commands so whenever a syslog message with “Joined” or “Disjoined” is

generated, a Python script will be executed. Ensure the Python file name and path is correct, and that the

Python script can run successfully within Guest Shell prior to configuring EEM.

configure terminal

event manager applet ap_join

event syslog pattern “Joined|Disjoined”

action 0.0 cli command “en”

action 0.1 syslog msg “AP Join or Disjoin detected – starting show_ap script”

action 0.2 cli command “guestshell run python /bootflash/show_ap.py”

action 0.3 syslog msg “AP Join or Disjoin script completed”

© 2021 Cisco and/or its affiliates. All rights reserved. Page 59 of 61

Guest Shell Resources

Resources used by the Guest Shell container can be checked with the CLI command. The hardware resource

allocations for CPU, memory and disk are displayed.

show app-hosting utilization appid guestshell

Conclusion

The Cisco IOS XE network OS delivers an innovative level of programmability and automation, decreasing the

complexity of the business and network. Now, we understand the need of programmable interfaces and the

difference between them. Using the details within the guide the programmatic interfaces can be enabled and

configured for use to communicate with the Cisco devices. Configured and Dynamic telemetry subscriptions

can be established using open-source tools. Example XML payloads can be used to create, verify, and remove

a WLAN programmatically using the YANG Suite tools. An example Ansible configuration can be used to enable

the programmatic interfaces on the Catalyst 9800 device.

Additional resources

Cisco IOS XE Programmability Book

https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-

en.pdf

https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-en.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/enterprise-networks/nb-06-ios-xe-prog-ebook-cte-en.pdf

© 2021 Cisco and/or its affiliates. All rights reserved. Page 60 of 61

 Figure 15.

Cisco IOS XE Programmability Book

Programmability Configuration Guide: https://www.cisco.com/c/en/us/td/docs/ios-

xml/ios/prog/configuration/176/b_176_programmability_cg.html?dtid=osscdc000283

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/176/b_176_programmability_cg.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/176/b_176_programmability_cg.html?dtid=osscdc000283

© 2021 Cisco and/or its affiliates. All rights reserved. Page 61 of 61

Reference

YANG Suite: https://developer.cisco.com/yangsuite/

NCC: https://github.com/CiscoDevNet/ncc

Embedded Event Manager: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-

17/eem-xe-17-book.html?dtid=osscdc000283

Questions?

Cisco DevNet: https://developer.cisco.com/

Cisco Communities: https://community.cisco.com

Printed in USA C07-745008-00 11/21

https://developer.cisco.com/yangsuite/
https://github.com/CiscoDevNet/ncc
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-17/eem-xe-17-book.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-17/eem-xe-17-book.html?dtid=osscdc000283
https://developer.cisco.com/
https://community.cisco.com/

