Identity Awareness and Control on Cisco Firepower NGFW
Contents

Overview .. 3

Passive identity with Cisco ISE overview .. 5
 Active Directory (AD) .. 7
 SPAN .. 7
 Syslog ... 7
 API .. 7
 Passive ID provider/subscriber scaling matrix .. 8

Components used ... 9

Prerequisites ... 9

ISE-PIC configuration and integration .. 9
 Joining ISE-PIC to Active Directory domain .. 9
 AD integration with ISE/PIC ... 14
 WMI as probe: Directly monitoring DC using WMI .. 14
 WMI as probe: Monitoring of DC running as Windows Event Collector (WEC) 16
 ISE-PIC agent: Directly monitoring DC using agent .. 21
 ISE-PIC agent: Agent installed on and monitoring DC running as Windows Event Collector (WEC) 24
 ISE-PIC agent: Agent installed on member server and monitoring DC running as Windows Event Collector (WEC) .. 25

FMC configuration and integration .. 26
 Configuring AD Realm ... 27
 Configuring ISE as identity source .. 29
 Configuring access policies to be user identity aware ... 34

Conclusion .. 35
Overview

The **Cisco Firepower® Next-Generation Firewall (NGFW)** provides an additional layer of network security and visibility by associating user identity to traffic flows.

The **Firepower Management Center (FMC)** receives the following information as a part of the identity integration:

1. User identity information from configured identity sources: This provides the live user with IP address mapping to the FMC and is updated frequently.

2. User and group information using the Lightweight Directory Access Protocol (LDAP) or from an Active Directory server: Realms are configured to provide the user and group data that the FMC stores in its user database. Realms are connections between the FMC and the user accounts on the servers that are monitored.

When the FMC detects user data from a user login, from any identity source, the user from the login is checked against the list of users in the FMC user database. If the login user matches an existing user, the data from the login is assigned to the user. Logins that do not match existing users cause a new user to be created.

Figure 1. Identity policy management on FMC.

Cisco Firepower supports different user identity sources to determine identity for network traffic flowing through the system. Each identity source provides a store of users for user awareness. These users can then be controlled with identity and access control policies. The following table highlights these different identity sources:
Table 1. FMC user identity sources.

<table>
<thead>
<tr>
<th>User identity source</th>
<th>Policy</th>
<th>Server requirements</th>
<th>Type</th>
<th>Authentication type</th>
<th>User awareness?</th>
<th>User control?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco® Identity Services Engine (ISE)/ ISE Passive Identity Connector (ISE-PIC)</td>
<td>Identity</td>
<td>Microsoft Active Directory</td>
<td>Authoritative logins</td>
<td>Passive</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Captive portal</td>
<td>Identity</td>
<td>LDAP or Microsoft Active Directory</td>
<td>Authoritative logins</td>
<td>Active</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TS agent</td>
<td>Identity</td>
<td>Microsoft and Citrix terminal servers</td>
<td>Authoritative logins</td>
<td>Passive</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sourcefire user agent</td>
<td>Identity</td>
<td>Microsoft Active Directory</td>
<td>Authoritative logins</td>
<td>Passive</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Traffic-based detection</td>
<td>Network discovery</td>
<td>N/A</td>
<td>Nonauthoritative logins</td>
<td>N/A</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

ISE/ISE-PIC preferred

In the above table, we can see that there are two authentication types defined:

1. **Passive authentication:** Passive identity learning is the technique wherein a security tool will passively learn the username and IP address of users on the network from a third party, such as Microsoft Active Directory (AD). The methods used for learning the identities of the users on a network will vary based on the identity source and the use case. In all the passive identity sources above, there is no additional end user interaction required to receive identity and the firewall is able to transparently authenticate users.

2. **Active authentication:** The user authenticates through preconfigured managed devices through some form of interaction (such as a captive portal). The Domain Controller (DC) is the AD server component that performs the authentication of the user. That is, it receives the user’s username and password hash and validates that against the AD database.

This document is a high-level reference guide to integrating Cisco ISE with Cisco Firepower for passive user identity awareness and control.
Passive identity with Cisco ISE overview

Figure 2. ISE pxGrid provider/subscriber ecosystem.

Cisco ISE or ISE-PIC, referred to together as ISE/PIC in this document, is an authoritative identity source and provides user awareness data for users who authenticate using AD, LDAP, RADIUS, or RSA (Rivest–Shamir–Adleman). ISE/PIC then uses Cisco pxGrid services in order to publish authenticated user identities collected from a variety of providers and stored by the Cisco ISE/PIC session directory to the Cisco FMC. All the testing in this document has been done with ISE versions 2.4 and later, but most scenarios will work with 2.2 and later unless explicitly mentioned.

ISE/PIC is uniquely positioned to be source of passive identity due to a variety of reasons. As a multivendor security ecosystem, it can connect subscribers like FMC, Cisco Stealthwatch®, Cisco DNA Center™, and Web Security Appliance (WSA) to third-party identity provider products like Active Directory, Splunk, and Infoblox for identity sharing. We are constantly adding more products to this list.

In a full ISE deployment (not ISE-PIC), you can additionally use 802.1X user information from wired and wireless networks, and additional integration with profiling and Cisco TrustSec® can be done, allowing for firewall policies that include the device type and Scalable Group Tag (SGT).
ISE/PIC creates a session directory that exposes the authenticated user’s session attribute information including username, domain, and so on. pxGrid then publishes these session directories as topics to subscribers such as FMC. When the FMC subscribes to these session topics, then ISE/PIC directs it to download the bulk session data from the Monitoring node (MnT). When updates to the session information are discovered, the corresponding session directory is updated and published to the FMC in real time. ISE-PIC does not provide ISE attribute data or support ISE EPS remediations (Endpoint Protection Services).

Figure 3. FMC-ISE workflow.
The different types of providers and probes include:

Active Directory (AD)
AD is the most common source from which to receive user identity information, including username, IP address, and domain name. ISE/PIC version 2.2 through v2.4 supports Microsoft AD servers 2003 and 2003 R2 (both deprecated by Microsoft), 2008, 2008 R2, 2012, 2012 R2, and 2016 at all functional levels. It also supports multidomain and multiforest integration with AD infrastructures to support authentication and attribute collection across large enterprise networks and supports up to 50 join points. The two types of AD-based probes are detailed below:

Windows Management Instrumentation (WMI)
WMI is a Microsoft communication mechanism that allows ISE/PIC to remotely subscribe to security events generated for Kerberos authentication ticket generation and renewals. Put simply, ISE/PIC can use WMI to be notified of domain user logins and renewals without needing an external agent to be installed on the AD domain controller or member server.

ISE-PIC agent
The ISE/PIC agent is a native Windows 32-bit application introduced with ISE/PIC 2.2 that can be installed on Active Directory domain controllers or on member servers. The agent probe is a quick and efficient solution when using Active Directory for user identity information and when WMI is not a preferred option. The agent installation on the AD server has also been greatly simplified by allowing remote install from the ISE/PIC administrative GUI.

SPAN
SPAN allows you to quickly and easily enable ISE/PIC to listen to the network and retrieve user information without having to configure Active Directory to work directly with ISE/PIC. SPAN monitors network traffic, specifically examining Kerberos messages, extracting user identity information - username, IP address, and domain name.

Syslog
This feature parses syslog messages from any client (identity data provider) that delivers RFC-compliant syslog messages, including event-style syslog messages from providers such as InfoBlox, Blue Coat, BlueCat, and Lucent as well as DHCP syslog messages. Those syslog messages are parsed for user identity information, including MAC addresses that are then added to the session directory.

API
The API providers feature in Cisco ISE/PIC enables you to push user identity information from your customized program or from Cisco’s Terminal Server (TS) agent to the built-in ISE/PIC REST API service. In this way, you can customize a programmable client from your network to send user identities that were collected from any Network Access Control (NAC) system to the service. Furthermore, the Cisco ISE/PIC API provider enables you to interface with network applications such as the TS agent on a Citrix server, where all users have the same IP address but are assigned unique ports.
Passive ID provider/subscriber scaling matrix

Table 2. Passive ID scaling matrix.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>3515/3595 virtual appliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max AD domain controllers supported via WMI or ISE AD Agent</td>
<td>100</td>
</tr>
<tr>
<td>Max ISE-PIC agents (assuming 1:1 agent to DC)</td>
<td>100</td>
</tr>
<tr>
<td>Recommended # DCs per agent (agent on DC)</td>
<td>1</td>
</tr>
<tr>
<td>Recommended # DCs per agent (agent on member server)</td>
<td>10</td>
</tr>
<tr>
<td>Recommended # Policy Service Nodes (PSNs) enabled for WMI (passive ID service)</td>
<td>2</td>
</tr>
<tr>
<td>Max REST API providers</td>
<td>50</td>
</tr>
<tr>
<td>Max REST API EPS</td>
<td>1,000</td>
</tr>
<tr>
<td>Max syslog providers</td>
<td>70</td>
</tr>
<tr>
<td>Max syslog EPS</td>
<td>400</td>
</tr>
<tr>
<td>Max endpoints probed per interval</td>
<td>100,000</td>
</tr>
<tr>
<td>Max pxGrid subscribers</td>
<td>20</td>
</tr>
<tr>
<td>Bindings (IP address, MAC address, and username)</td>
<td>300,000</td>
</tr>
</tbody>
</table>

Table 3. User limits by FMC.

<table>
<thead>
<tr>
<th>Management center model</th>
<th>Concurrent users</th>
<th>Total users</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC750</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>MC1000</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>MC1500</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>FS2000</td>
<td>64,000</td>
<td>150,000</td>
</tr>
<tr>
<td>MC2500</td>
<td>64,000</td>
<td>150,000</td>
</tr>
<tr>
<td>MC3500</td>
<td>64,000</td>
<td>300,000</td>
</tr>
<tr>
<td>MC4000</td>
<td>64,000</td>
<td>600,000</td>
</tr>
<tr>
<td>MC4500</td>
<td>64,000</td>
<td>600,000</td>
</tr>
<tr>
<td>Virtual</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>ASA (Adaptive Services Engine) with Firepower services</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>FDM (Firepower Device Manager) onbox manager</td>
<td>2,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

Each AD realm on the FMC points to a single domain. While there are no hard limits on the number of AD realms, keep in mind that the total number of users downloaded do not exceed the limits given in the above table. As of FMC version 6.2.3, you can add only one ISE/PIC integration points. The FMC supports Microsoft AD servers 2008, 2008 R2, 2012, 2012 R2, and 2016 at all functional levels for passive identity.

As you will see in the following sections, with ISE/PIC integration to your FMC, you will have a variety of options, including scalable deployments for your passive identity needs.
Components used

- FMC and virtual Firepower Thread Defense (FTD) running 6.2.3
- Single-node ISE-PIC running 2.4
- AD domain Controllers and member servers running Windows Server 2012 R2

Prerequisites

- Working knowledge of Cisco Firepower. More details can be found on the NGFW Communities.
- AD credentials with the required permissions (different depending on deployment scenario).
- Verify the version of ISE/PIC is compatible with the FMC using the Cisco Firepower Compatibility Guide.

ISE-PIC configuration and integration

The following sections contain the steps to configure and setup passive identity with ISE-PIC but can also be used with an ISE standalone or distributed deployment since the UI that you see here is the same as the passive identity work center on ISE.

Joining ISE-PIC to Active Directory domain

Before you begin

- Ensure that the Microsoft Active Directory server does not reside behind a network address translator and does not have a Network Address Translation (NAT) address.
- Ensure that the Microsoft Active Directory account intended for the join operation is valid and is not configured with the Change Password on Next Login.
- Ensure that ISE-PIC has an entry in the Domain Name Server (DNS). Ensure you have properly configured reverse lookup for the client machine from ISE-PIC.
- The AD user used to perform the join operation does not need to be a domain administrator but needs to have the following permissions. This is true irrespective of using WMI or ISE-PIC agent:

<table>
<thead>
<tr>
<th>Table 4. AD account permissions.</th>
<th>Join operations</th>
<th>Leave operations</th>
<th>Cisco ISE machine accounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the account that is used to perform the join operation, the following permissions are required:</td>
<td></td>
<td>For the account that is used to perform the leave operation, the following permissions are required:</td>
<td>For the newly created Cisco ISE machine account that is used to communicate to the Active Directory connection, the following permissions are required:</td>
</tr>
<tr>
<td>- Search Active Directory (to see if a Cisco ISE machine account already exists)</td>
<td>- Search Active Directory (to see if a Cisco ISE machine account already exists)</td>
<td>- Ability to change own password</td>
<td>- Ability to change own password</td>
</tr>
<tr>
<td>- Create Cisco ISE machine account to domain (if the machine account does not already exist)</td>
<td>- Remove Cisco ISE machine account from domain</td>
<td>- Read the user/machine objects corresponding to users/machines being authenticated</td>
<td>- Read the user/machine objects corresponding to users/machines being authenticated</td>
</tr>
<tr>
<td>- Set attributes on the new machine account (for example, Cisco ISE machine account password, SPN, and dnsHostname)</td>
<td>If you perform a force leave (leave without the password), it will not remove the machine account from the domain.</td>
<td>- Query some parts of the Active Directory to learn about required information (for example, trusted domains, alternative UPN suffixes, and so on)</td>
<td>- Query some parts of the Active Directory to learn about required information (for example, trusted domains, alternative UPN suffixes, and so on)</td>
</tr>
<tr>
<td>It is not mandatory to be a domain administrator to perform a join operation.</td>
<td></td>
<td>- Ability to read tokenGroups attribute</td>
<td>- Ability to read tokenGroups attribute</td>
</tr>
</tbody>
</table>

You can precreate the machine account in Active Directory, and if the samAccountName name matches the Cisco ISE appliance hostname, it should be located during the join operation and reused. If multiple join operations are performed, multiple machine accounts are maintained inside Cisco ISE, one for each join.
ISE-PIC makes the process of joining an AD domain easy by providing a step-by-step wizard to quickly setup AD as a provider.

Figure 4. ISE-PIC PassiveID wizard.

For the purposes of this guide, we will not be using this wizard and will be configuring each element separately.

1. Navigate to **Providers -> Active Directory**. This will take you to the Active Directory landing page where we can add, edit, view, and delete AD identity providers.

Figure 5. AD provider.

2. Click on **Add**.

Figure 6. AD join point.
3. In the dialog box that appears, enter a unique name that distinguishes this configured Active Directory join point quickly and easily in the **Join Point Name** field. Enter the AD domain name in the **Active Directory Domain** field. Click on **Submit**.

Figure 7. AD join point configuration.

4. You will be prompted to join the ISE nodes to the configured AD domain. Click on **Yes**.

Figure 8. AD join prompt.

5. Enter the **User Principle Name (UPN)** of a domain user with privileges as mentioned previously in the **Domain Administrator** field. Enter this user’s password in the **Password** field. You will notice that these credentials are stored on the system by default. This is specific to standalone ISE-PIC deployments and reduces the overhead of having to re-enter the domain credentials for any future changes. Storing credentials is essential to allow the ISE endpoint probe to function and detect user logoffs. In ISE (not ISE-PIC), specific subnets can be mapped to different PSNs especially in geographically widespread deployments. The AD credentials are also used by WMI to collect AD events to send to ISE. You can also enter the OU of the domain administrator in the **Specify Organizational Unit (OU)** field if the user’s OU is other than **CN=Computers,DC=someDomain,DC=someTLD**. Click on **OK**.

Figure 9. Domain admin credentials.

6. At this point, the ISE node will attempt to join the AD domain with the credentials provided. Once the status shows as completed, click on **Close**.
7. Let’s configure the AD user groups that will be used. **Edit** the join point created. Click the **Groups** tab.

Figure 10. Edit join point.

8. You can either manually add a group or retrieve and select existing groups. In this example, we will be choosing the latter option. Click on **Retrieve Groups** to view user groups on this domain. You can also use a filter to retrieve a subset of the groups. Check all the groups that are relevant. Click **OK** and **Save**.

Figure 11. Select groups from directory.

Figure 12. Select groups from directory.
9. Next, we will add the domain controllers that you would like to add to the join point for monitoring. Navigate to Providers -> Active Directory and edit the join point created.

Figure 13. Edit AD join point.

10. After joining the AD and adding the DCs, let’s navigate to Providers -> Endpoint Probes. The endpoint probe functionality gets enabled automatically after AD join and runs on every user session with last update time of 4 hours to check whether the user is still logged in and its MAC address and OS version. This requires port 445 to be enabled on the endpoints and allows the FMC subscriber to be notified if the user is still active or has disconnected.

Figure 14. Endpoint probes.

11. Let’s also look at the Passive ID settings. The history interval in minutes specifies the time interval for which the Passive ID service reads back login information, while the user session aging time determines how long to keep the user id session alive if the endpoint probe does not disconnect the session earlier.

Figure 15. PassiveID settings.

12. There are a few more steps to achieving ISE AD integration but these vary depending on the type of probe used and the source of the AD domain login events. We will explore these options in the upcoming sections.
Configuring event forwarding with AD

Windows Event Forwarding (WEF) is an existing Windows service that allows a designated collector to receive and store events from a remote source. While centralized events are an important element of incident response, in our case, event forwarding is especially important to allow a scalable method in obtaining user IP mappings in a distributed AD environment. Event forwarding requires one or more servers that are the event collectors to serve as subscription managers and allow an administrator to configure which event subscriptions will get sent to the server. These events are sent over WinRM, requiring no extra log forwarder software, and WEF can be configured easily using Windows Group Policy Object (GPO). For more details, please refer to https://blogs.technet.microsoft.com/jepayne/2015/11/23/monitoring-what-matters-windows-event-forwarding-for-everyone-even-if-you-already-have-a-siem/.

AD integration with ISE/PIC

In this section, we will walk through the AD deployment options that are possible when integrating ISE/PIC and FMC. You can adopt any method listed below depending on the size of your AD infrastructure and type of probe that you want to use. The choice of probe used is typically a matter of administrator preference.

Table 5. ISE-AD deployment support matrix.

<table>
<thead>
<tr>
<th>Deployment method</th>
<th>WMI on ISE 2.4</th>
<th>Agent on ISE 2.4</th>
<th>WMI (upcoming in future release)</th>
<th>Agent (upcoming in future release)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct DC monitoring</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Events forwarded to DC, monitored on DC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Events forwarded to DC, monitored on member server</td>
<td>N/A</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>Events forwarded to member server, monitored on member server</td>
<td>N/A</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*Due to CSCvj41029, use ISE/PIC version 2.3 p5, 2.4 p3.

WMI as probe: Directly monitoring DC using WMI

Figure 16. Direct DC monitoring.
ISE communicates directly to the DCs via WMI and subscribes to the DC's security events. This type of connection was introduced back in ISE 1.3 and requires you to set up WMI on each DC in your AD infrastructure. Beginning in ISE 2.1, the WMI setup was made much easier. Steps to set this up are as follows:

1. Edit the AD join point created in step 7 of Joining ISE-PIC to Active Directory domain. Navigate to the passive ID tab and click on Add DCs. Select the DCs, and click on OK.

Figure 17. Add domain controllers.

2. After adding the required DCs, you will see them listed in the PassiveID Domain Controllers list. Select the DCs, and click on Config WMI.

Figure 18. Config WMI.

3. The “Config WMI in process” message is displayed.

Figure 19. WMI config in process.

During this step, the following actions are happening in the background:
a) Add the ID of the WMI client used by ISE (76A64158-CB41-11D1-8B02-00600806D9B6) to the DC's registry in two locations: HKEY_CLASSES_ROOT\CLSID and HKLM\Software\Classes\Wow6432Node\CLSID. This allows the WMI to be recognized as a valid application by the Distributed Component Object Model (DCOM).

b) Set permissions to use DCOM for a Windows account.

c) Set permissions to use WMI remotely by enabling the Execute Methods and Remote Enable permissions.

d) Allow read access to the Windows account to the security event log by adding the user to the Event Log Readers and Distributed COM Users Group.

e) Configure the Windows firewall to allow communication to and from ISE.

4. After the configuration process is complete, a success message is displayed.

Figure 20. WMI configured successfully.

5. At this point, you can navigate to the Live Sessions screen on ISE/PIC to view the AD domain login events that you are subscribing to.

Figure 21. ISE live logs.

WMI as probe: Monitoring of DC running as Windows Event Collector (WEC)

Figure 22. Events forwarded to DC, monitored on DC.
In this scenario, all the domain logon event logs are forwarded to a Domain Controller designated as a WEC. This method requires ISE/PIC version 2.2 or later and allows you to scale monitoring without having to set up WMI on all the DCs in your AD infrastructure. Steps to set this up are as follows:

1. Let’s first set up a selected DC as a WEC:
 a) Open up an administrative command prompt on the DC and enable the WEC service using Windows Event Collector utility. The command to do so is `wecutil qc`. Type Yes when prompted.
 b) To allow remote server management and open the required ports on the Windows firewall, we’ll use the WinRM utility. On the administrative command prompt, type in `winrm qc`. When the utility created the WinRM listener, it also created a Service Principal Name for Kerberos authentication to the service.

 ![Configure WinRM](image)

 Figure 23. Configure WinRM.

 c) Navigate to the Event Viewer. From the left-hand pane, right click on Subscriptions and select Create Subscription.

 ![Create Windows subscription](image)

 Figure 24. Create Windows subscription.
d) Enter a name for the subscription. **Destination log** needs to be set to either Application or System. Subscription type and source computers in our example will be **Source computer initiated**. Click on **Select Computer Groups**, and add a computer group or individual DCs. Click on **OK**.

Figure 25. Subscription properties.

Figure 26. Add DCs to subscription.
e) Next click on **Select Events** and check all the event levels. Change the **By log** filter to Security. You can filter for specifically the following event IDs: **4624, 4768, 4769,** and **4770.** Click on **OK.**

Figure 27. Subscription query filter.

f) Lastly, click on **Advanced** for **Configure advanced settings** and select **Minimize Latency.** Click on **OK** and **OK.**

Figure 28. Advanced subscription settings.
g) To allow the WEC’s WinRM service to access the security events on the DCs, we will need to copy the following line from the output of `wevtutil gl security` on the WEC. This is the Service Principle of the Event Log Readers group. If the line does not have the string `(A;;0x1;;;NS)` append that in Notepad to the below string for use in the next step. This string adds READ access to the network service account (used by WinRM) to read the security event logs.

Figure 29. Copy security principle to access security log.

```
wevtutil gl security
```

```
BAG:SYD: (A;0x00000011::SY) (A;0x11::BA) (A;0x11::S-1-5-32-545)
```

2. Leveraging GPO, we will configure the other DCs to forward their events to the designated WEC.
 a) Launch the group policy utility and right click on the computer OU. Click on Create GPO in this domain and link it here. Provide it with a name and click OK. Assign this GPO to all the DCs that will be forwarding events to the WEC server.
 b) Edit the newly created GPO and modify the target subscription manager at Computer -> Policies -> Admin Templates -> Windows Components -> Event Forwarding -> Configure target subscription manager and populate the Server Address field with `http://<fqdnofsubscriptionserver>:5985/wsman/SubscriptionManager/WEC`.
 c) Allow security event access by the subscription manager. This is where the string copied in step 1g will come handy. Edit Computer -> Policies -> Admin Templates -> Windows Components -> Event Log Service -> Security -> Configure log access and paste the `BAG:SYD` line from above.
 d) Your GPO should look like this:

Figure 30. GPO configuration.
e) After a group policy update on all the DCs, you should start seeing domain login events in the specified destination (*Application/System*) on the WEC.

3. On ISE/PIC, you will have to configure WMI on the WEC. To do this, please follow the steps at [WMI as Probe: Directly monitoring DC using WMI](#).

ISE-PIC agent: Directly monitoring DC using agent

![Diagram of Directly monitoring DC](image)

All the domain logon events are forwarded to the Domain Controller. The ISE-PIC agent is installed either using remote or local install on the Domain Controller itself and monitors these events to pass back on to the ISE/PIC node. The steps to do this are as follows:

1. Edit the AD join point created in step 7 of [Joining ISE-PIC to Active Directory domain](#). Navigate to the passive ID tab, and click on **Add DCs**. Select the DCs and click on **OK**.

![Add Domain Controllers dialog](image)
2. After adding the required DCs, you will see them listed in the Passive ID Domain Controllers list. Select the DCs that need to be monitored, and click on Add Agent.

3. In the agent popup, enter a name, the Fully Qualified Domain Name (FQDN) of the host on which the agent is going to be installed, and username/password of an account that has enough permissions to install the agent (preferably Domain Admin). Click on Deploy.

Figure 33. Configure and deploy agent.

4. When the agent is deployed, ISE/PIC logs in to the server, copies the agent MSI (Microsoft Installer) file, and installs it without needing any manual intervention. Once successfully installed, the agent can be seen in the list of installed programs.

Figure 34. ISE/PIC agent install.
5. You can also see the ISE-PIC agent local config and log files at Program Files/Cisco/Cisco ISE PassiveID Agent.

Figure 35. ISE/PIC agent config and log file location.

6. At this point, with the agent configured and running on the DC, you can navigate to the Live Sessions screen on ISE/PIC to view the AD domain logon events that you are subscribing to.

Figure 36. ISE live logs.
ISE-PIC agent: Agent installed on and monitoring DC running as Windows Event Collector (WEC)

Figure 37. Events forwarded to DC, monitored on DC.

In this scenario, all the domain logon event logs are forwarded to a Domain Controller designated as a WEC. The ISE-PIC agent is installed on the same DC and monitors these events to pass back on to the ISE node. The steps to do this are as follows:

1. Set up Windows Event Forwarding to the designated DC using steps 1 and 2 from [WMI as probe: Monitoring of DC running as Windows Event Collector (WEC)].
2. On the ISE/PIC server, install the agent on the designated DC and monitor the same DC using steps 1 through 4 from [ISE-PIC agent: Directly monitoring DC using agent].
3. At this point, with the agent configured and running on the DC, you can navigate to the Live Sessions screen on ISE/PIC to view the AD domain logon events that you are subscribing to.

Figure 38. ISE live logs.
ISE-PIC agent: Agent installed on member server and monitoring DC running as Windows Event Collector (WEC)

Figure 39. Events forwarded to DC, monitored on member server.

All the domain logon events are forwarded to a Domain Controller designated as a WEC. The ISE-PIC agent is automatically or manually installed on a member server and monitors the events on the WEC to pass back on to the ISE node. This allows event monitoring without having to install the agent on the DC itself. The steps to do this are as follows:

1. Set up Windows Event Forwarding to the designated DC using steps 1 and 2 from *WMI as probe: Monitoring of DC running as Windows Event Collector (WEC)*.
2. On the ISE/PIC server, install the agent on the member server and monitor the WEC DC using steps 1 through 4 from *ISE-PIC agent: Directly monitoring DC using agent*.
3. At this point, with the agent configured and running on the member server, you can navigate to the Live Sessions screen on ISE/PIC to view the AD domain logon events that you are subscribing to.

Figure 40. ISE live logs.
FMC configuration and integration

In the following section, the FMC will be configured to separately download the user IP mappings from ISE/PIC and user/user group database from the Active Directory server. The FMC combines both the above sets of information, which allows the NGFW to apply user-based access control.

Figure 41. FMC communication with AD and ISE.

AD Realm in Firepower terminology is used to denote the connection between the FMC and the AD server. The FMC stores user session information by default for 24 hours. This value can be changed by editing the realm created below. The FMC obtains the following information and metadata about each user:

- LDAP username
- First and last names
- Email address
- Department
- Telephone number

The maximum number of users that can be stored and used in access control policies is dependent on the FMC model.

FMC leverages pxGrid to integrate with ISE/PIC for a wealth of information ranging from user sessions to TrustSec information. These attributes, including SGT tags, are very useful for enforcing policy on user traffic. As of writing this document, source-based SGTs are supported in the FMC access policy. pxGrid is Cisco’s premier publish and subscribe communication bus that was designed from the ground up to be a scalable and secure data sharing system.
Before you begin

- The FMC and ISE/PIC server must have their time synchronized to avoid unexpected user timeouts.
- The following table lists the ports needed by different identity services on the FMC:

<table>
<thead>
<tr>
<th>Service</th>
<th>Ports that need to be opened</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD Realm</td>
<td>TCP 389 outbound—Unencrypted</td>
</tr>
<tr>
<td></td>
<td>TCP 636 outbound—Encrypted</td>
</tr>
<tr>
<td></td>
<td>Can be customized</td>
</tr>
<tr>
<td>ISE/PIC</td>
<td>TCP 5222 outbound—pxGrid communication</td>
</tr>
<tr>
<td></td>
<td>TCP 8910 outbound—pxGrid bulk download</td>
</tr>
</tbody>
</table>

Configuring AD Realm

1. On the FMC, navigate to System -> Integration -> Realms.
2. To create a new realm, click New Realm.
3. In the Add New Realm popup, use the following guidelines to fill the fields:
 a) Provide a Name and Description and set the Type to AD.
 b) The AD Primary Domain is the unique domain.
 c) The AD Join username and password will be used to join the AD Realm and should have enough permissions to create a domain computer account on the AD domain. The username should be fully qualified.
 d) The Directory username and password are the credentials of a user account with enough permissions to read the relevant user and user groups. The username should be fully qualified. The same credentials as the above step can be used here.
 e) The Base DN is the directory tree on the server where the FMC should begin searching for user data.
 f) The Group DN is the directory tree on the server where the FMC should begin searching for group data.
 g) A Group attribute such as Member or Unique Member can also be specified.

Figure 42. Adding new AD Realm.
4. Click on **OK**.

5. At this point, the FMC will redirect you to the AD directory configuration page. Click on **Add directory**.

6. Enter the following field details:
 a) **The Hostname/IP Address** field is the host name or IP address of an Active Directory domain controller. If you specify an encryption method, you must specify a host name in this field.
 b) You can change the port used for the connection between FMC and the DC. By default, this is set to 389 for unencrypted connection.
 c) The encryption protocol for the connection between FMC and the DC can be set to either STARTTLS or LDAPS. If no encryption is done, this is set to NONE.
 d) The SSL (Secure Sockets Layer) certificate of the DC can also be specified if using encryption.
 e) To test the connection, click **Test**. The FMC will then try to send an LDAP query to the server, and if this is successful, the test succeeds.

Figure 43. Add DC.

7. Click on **OK**.

8. Click **Save**. You are returned to the realms tab page. On this page, enable the realm by sliding the state toggle so that the AD join can happen and user/user groups can be downloaded.

9. Edit the realm and navigate to **User Download**. Here you should see that the FMC has automatically downloaded all users and groups from the AD domain. You can specify which users and groups are to be downloaded. Filtering the relevant users and groups is recommended for better performance on the FMC.
Figure 44. Filter AD users and groups.

10. The download can be customized to start at a particular time and repeat at configurable intervals.

11. Click on Save.

Configuring ISE as identity source

1. The FMC needs to be able to securely communicate with ISE/PIC using pxGrid. To do so, a certificate trust relationship should be established. This can be done easily using ISE/PIC as the Certificate Authority (CA) for the FMC certificate.

2. On ISE/PIC, navigate to Subscribers -> Certificates and enter the following fields:
 a) From the I want to dropdown, select the Generate a single certificate without a certificate signing request option.
 b) Enter the Common Name (CN) that you want to assign to the FMC’s certificate. You can add an optional description. To avoid confusion with other certificates generated for the FMC, you can prefix the CN with pxgrid-.
 c) The pxGrid certificate template based on which the certificate will be generated can be viewed and edited. The FMC certificate must include clientAuth extended key usage value, or it must not include any extended key usage values.
 d) Optionally, you can specify the Subject Alternative Name (SAN) to be added to the certificate if the CN does not contain the FQDN of the FMC.
 e) From the Certificate Download Format drop-down list, select the option Certificate in Private Enhanced Electronic Mail (PEM), and key in the PKCS8 PEM format (including certificate chain).
 f) Enter an encryption password for the private key.
 g) Click on Create.
3. There will be a popup to download the certificate bundle zip file. Save and extract this bundle. You will be able to see the certificate and key generated for FMC along with the root and sub CA (Certificate Authority) certificates used by ISE services.

Figure 45. Generate FMC pxGrid certificate.

4. Navigate to **Subscribers -> Settings.** Under pxGrid Settings, check **Automatically approve new certificate-based accounts.** This will allow the ISE/PIC server to automatically approve the incoming connection from the FMC.

Figure 47. pxGrid settings.
5. On the FMC, navigate to System -> Integration -> Identity Sources. Click on Identity Services Engine.

6. In the fields that appear, enter the following details:
 a) Enter a primary host name/IP address and, optionally, a secondary host name/IP address of the pxGrid controller.
 b) In the pxGrid server CA dropdown, click on the + symbol to import the root CA of the pxGrid controller. Click on Browse and navigate to the folder that was extracted in step 3. Select the pxGrid root CA certificate from here. Enter a name for this certificate.

Figure 48. Import pxGrid root certificate.

Figure 49. Import pxGrid root certificate.
c) Starting from ISE 2.2, all pxGrid communications occur within the secure pxGrid channel. This means that all bulk downloads from the MnT node are secured using the pxGrid certificate and not the admin certificate. Go ahead and select the same pxGrid certificate from the step above for the MNT Server CA field.

d) Click on the + sign next to the FMC Server Certificate field. Click on Browse next to Certificate Data and select the FMC PEM certificate. Click on Browse next to Key and select the FMC PKCS#8 key. Enter the private key password in the field below. Click on Save.

Figure 50. Import FMC certificate and key generated by pxGrid.
e) The ISE Network Filter instructs the FMC to download user data only for the IPv4 address block(s) provided.

Figure 51. FMC ISE/PIC integration configuration.

f) You can test the connection to the ISE/PIC server by clicking on the Test button.

Figure 52. ISE integration test.

g) Once the test is successful, navigate to Analysis -> Users -> Active Sessions and you should start seeing domain logon events.

Figure 53. FMC user activity events.
You can also view the active sessions from the FMC CLI sudo mode using the following command:

```
root@firepower:~# adi_cli session
```

Configuring access policies to be user identity aware

1. Navigate to **Policies -> Access Control -> Identity** and click **New Policy**.
2. Enter a **Name** and, optionally, a **Description**. Click on **Save**.
3. Click on **Add New Rule** to configure an identity rule.
4. Enter a **Name**. Keep the **Enabled** field checked and **Action** set to **Passive Authentication**.
5. Navigate to **Realm & Settings**. From the realm dropdown list, select the **Security_Demo AD** realm. Click on **Add**.

![Add identity rule.](image)

Figure 54. Add identity rule.

6. Navigate to **Policies -> Access Control -> Access Control** and edit the access policy.
7. Click on **Identity Policy** and select the policy name from the dropdown list. Click on **OK**.

![Add identity policy.](image)

Figure 55. Add identity policy.
8. Within the same access policy, click on Add Rule. To be able to use the downloaded users and groups, navigate to Users and select Security_Demo from the Available Domains. This will populate the Available Users list from where the required users can be selected as shown.

Figure 56. Add user identity to access policy.

9. Click on Add.
10. Click on Save.
11. Deploy this configuration to the FTD.

Conclusion
The integration of FMC-ISE pxGrid-AD as shown above provides a powerful capability for administrators to gain user context awareness and control. This solution can also be tailored to scale from small to large Active Directory domain and forest environments.