CONTENTS

About This Guide ... vii
 Conventions Used .. viii
 Supported Documents and Resources .. ix
 Related Common Documentation ... ix
 Related Product Documentation .. ix
 Obtaining Documentation .. ix
 Contacting Customer Support ... x

HNB Gateway in Wireless Network ... 11
 Product Description ... 12
 HNB Access Network Elements ... 13
 Home NodeB ... 13
 Security Gateway (SeGW) ... 14
 HNB Gateway (HNB-GW) ... 14
 HNB Management System (HMS) ... 14
 Licenses .. 14
 Platform Requirements ... 15
 Network Deployment and Interfaces .. 16
 HNB Gateway in 3G UMTS Network ... 16
 Supported Logical Interfaces ... 16

Features and Functionality - Base Software ... 19
 AAA Server Group Support ... 20
 AAL2 Establish and Release Support ... 20
 Access Control List Support ... 20
 ANSI T1.276 Compliance .. 21
 ATM VC Management Support ... 21
 Call Broadcasting Service (CBS) Support .. 22
 Congestion Control and Management Support ... 23
 DHCP Interface Support Between HNB-GW and HMS ... 23
 RADIUS Change of Authorization Extensions ... 24
 Emergency Call Handling ... 24
 Femto to Femto Handoff via CN .. 25
 GTP-U Tunnels Management Support ... 27
 HNB-UE Access Control .. 27
 HNB Management Function ... 27
 Hybrid Access Mode Support ... 27
 Intra-Domain Multiple CN Support Through Iu-Flex .. 28
 Iu Signalling Link Management Support .. 28
 IuH User-Plane Transport Bearer Handling Support ... 29
 LAI-based FAP Roaming Restriction Support ... 29
 Multiple HNB-GW Service Support .. 30
 Multiple MSC Selection without Iu-Flex ... 30
 Network Access Control Functions through SeGW ... 31
 Authentication and Key Agreement (AKA) .. 32
 3GPP AAA Server Support ... 32
 X.509 Certificate-based Authentication Support .. 33
Contents

- Monitoring the Service .. 129
 - Monitoring System Status and Performance .. 130
 - Monitoring Logging Facility ... 133
 - Clearing Statistics and Counters ... 134
Troubleshooting the Service ... 135
- Test Commands ... 136
 - Using the GTPu Test Echo Command .. 136
 - Using the GTPv0 Test Echo Command .. 136
 - Using the IPsec Tunnel Test Command .. 137
- Performance Improvement Commands .. 138
 - Turning off IPC Message Aggregation To Reduce Latency Towards Core Network .. 138

Engineering Rules... 139
- DHCP Service Engineering Rules ... 140
- HNB-GW Engineering Rules .. 141
- Interface and Port Engineering Rules .. 142
 - IuCS Interface Rules .. 142
 - IuPS Interface Rules ... 142
- Service Engineering Rules ... 143

CoA, RADIUS DM, and Session Redirection (Hotlining) 145
- RADIUS Change of Authorization and Disconnect Message 146
 - CoA Overview .. 146
 - DM Overview .. 146
 - License Requirements ... 146
 - Enabling CoA and DM .. 146
 - Enabling CoA and DM .. 147
 - CoA and DM Attributes .. 147
 - CoA and DM Error-Cause Attribute ... 148
 - Viewing CoA and DM Statistics .. 149
- Session Redirection (Hotlining) ... 152
 - Overview ... 152
 - License Requirements .. 152
 - Operation ... 152
 - ACL Rule ... 152
 - Redirecting Subscriber Sessions ... 152
 - Session Limits On Redirection ... 153
 - Stopping Redirection .. 153
 - Handling IP Fragments ... 153
 - Recovery ... 153
 - AAA Accounting .. 153
 - Viewing the Redirected Session Entries for a Subscriber 153
About This Guide

This preface describes the HNBGW Administration Guide, how it is organized, and its document conventions.

The Home NodeB Gateway (HNBGW) is a StarOS application that runs on Cisco ASR 5x00 platforms. For additional platform information, refer to the appropriate System Administration Guide and/or contact your Cisco account representative.
Conventions Used

The following tables describe the conventions used throughout this documentation.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Notice Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information Note</td>
<td>Provides information about important features or instructions.</td>
</tr>
<tr>
<td>![!]</td>
<td>Caution</td>
<td>Alerts you of potential damage to a program, device, or system.</td>
</tr>
<tr>
<td>![!]</td>
<td>Warning</td>
<td>Alerts you of potential personal injury or fatality. May also alert you of potential electrical hazards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typeface Conventions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text represented as a screen display</td>
<td>This typeface represents displays that appear on your terminal screen, for example: Login:</td>
</tr>
<tr>
<td>Text represented as commands</td>
<td>This typeface represents commands that you enter, for example: show ip access-list This document always gives the full form of a command in lowercase letters. Commands are not case sensitive.</td>
</tr>
<tr>
<td>Text represented as a command variable</td>
<td>This typeface represents a variable that is part of a command, for example: show card slot_number slot_number is a variable representing the desired chassis slot number.</td>
</tr>
<tr>
<td>Text represented as menu or sub-menu names</td>
<td>This typeface represents menus and sub-menus that you access within a software application, for example: Click the File menu, then click New</td>
</tr>
</tbody>
</table>
Supported Documents and Resources

Related Common Documentation

The most up-to-date information for this product is available in the product Release Notes provided with each product release.

- AAA Interface Administration and Reference
- Command Line Interface Reference
- GTPP Interface Administration and Reference
- Installation Guide (platform dependent)
- Release Change Reference
- SNMP MIB Reference
- Statistics and Counters Reference
- System Administration Guide (platform dependent)
- Thresholding Configuration Guide

Related Product Documentation

SGSN Administration Guide
GGSN Administration Guide

Obtaining Documentation

The most current Cisco documentation is available on the following website:
http://www.cisco.com/cisco/web/psa/default.html

Use the following path selections to access the ePDG documentation:
Contacting Customer Support

Use the information in this section to contact customer support.

Refer to the support area of http://www.cisco.com for up-to-date product documentation or to submit a service request. A valid username and password are required to access this site. Please contact your Cisco sales or service representative for additional information.
Chapter 1
HNB Gateway in Wireless Network

The Cisco® ASR5x00 system provides 3GPP wireless carriers with a flexible solution that functions as a Home NodeB Gateway (HNB-GW) in HNB Access Network to connect UEs with existing UMTS networks.

The Home NodeB Gateway works as a gateway for Home NodeBs (HNBs) to access the core networks. The HNB-GW concentrates connections from a large amount of HNBs through IuH interface and terminates the connection to existing Core Networks (CS or PS) using standard Iu (IuCS or IuPS) interface.

This overview provides general information about the HNB Gateway including:

- Product Description
- Network Deployment and Interfaces
- Features and Functionality - Base Software
- Features and Functionality - Optional Enhanced Feature Software
- How HNB-GW Works
- Supported Standards
Product Description

The Home NodeB Gateway is the HNB network access concentrator used to connect the Home NodeBs (HNBs)/Femto Access Point (FAP) to access the UMTS network through HNB Access Network. It aggregates Home Node-B or Femto Access Points to a single network element and then integrates them into the Mobile Operators Voice, Data and Multimedia networks.

Femtocell is an important technology and service offering that enables new Home and Enterprise service capabilities for Mobile Operators and Converged Mobile Operators (xDSL/Cable/FFTH plus Wireless). The Femtocell network consists of a plug-n-play customer premise device generically called a Home NodeB (HNB) with limited range radio access in home or Enterprise. The HNB will auto-configure itself with the Operators network and the user can start making voice, data and multimedia calls.

The figure given describes a high level view of UMTS network with Femtocell and HNB-GW.

Figure 1. HNB-GW Deployment in 3G UMTS Network

Once a secure tunnel has been established between the HNB and the SeGW and the HNB has been configured by the HMS, the Operator has to connect the Femtocell network to their Core Network and services. There are several interworking approaches to Circuit Switch (CS) and Packet Switch (PS) domains. One approach is to make the Femtocell network appear as a standard Radio Access Network (RAN) to the Core Network. In addition to the HNB, SeGW and HMS the RAN approach requires a network element generically called a Femto Gateway (FGW/HNB-GW). The HNB-GW provides interworking and aggregation of large amount of Femtocell sessions toward standard CN interfaces (IuPS/IuCS). In this approach services and mobility are completely transparent to CN elements (e.g. MSC, xGSN).
The other approach is to connect the Femtocell to an IMS Network to provide CS services to subscribers when on the Femtocell and deploy a new network element generically called a Convergence Server to provide service continuity and mobility over standard interfaces at the MSC layer (e.g. GSM-MAP, IS-41). These two approaches are clearly different in how CS based services and mobility are achieved.

In accordance with 3GPP standard, the HNB-GW provides following functions and procedures in UMTS core network:

- HNB Registration/De-registration Function
- UE Registration/De-registration Function for HNB
- IuH User-plane Management Functions
- IuH User-plan Transport Bearer Handling
- Iu Link Management Functions

Important: Some of the features may not be available in this release. Kindly contact your local Cisco representative for more information on supported features.

HNB Access Network Elements

This section provides the brief description and functionality of various network elements involved in the UMTS Femto access network. The HNB access network includes the following functional entities:

- Home NodeB
- Security Gateway (SeGW)
- HNB Gateway (HNB-GW)
- HNB Management System (HMS)

Home NodeB

A Home NodeB (HNB) is the a customer premise equipment that offers Uu interface to UE and IuH over IPSec tunnel to HNB-GW for accessing UMTS Core Network (PS or CS) in Femtocell access network.

It also provides the support to HNB registration and UE registration over IuH with HNB-GW. Apart from these functions HNB also supports some RNC like functions as given below:

- RAB management functions
- Radio Resource Management functions
- Iu Signalling Link management
- GTP-U Tunnels management
- Buffer Management
- Iu U-plane frame protocol initialization
- Mobility management functions
- Security Functions
- Service and Network Access functions
- Paging co-ordination functions
- UE Registration for HNB
• IuH user-plane Management functions

Security Gateway (SeGW)

Security Gateway is a logical entity in Cisco HNB-GW.

Basic function of this entity are:

• Authentication of HNB
• Providing access to HMS and HNB-GW

This entity terminates the secure tunnelling for IuH and TR-069 between HNB and HNB-GW and HMS respectively. In this implementation it is an optional element which is situated on HNB-GW.

HNB Gateway (HNB-GW)

The HNB-GW provides the access to Femto user to UMTS core network. It acts as an access gateway to HNB and concentrates connections from a large amount of HNBs. The IuH interface is used between HNB and HNB-GW and HNB-GW connects with the Core Networks (CS or PS) using the generic Iu (IuCS or IuPS) or Gn interface.

It also terminates Gn and other interfaces from UMTS core networks to provide mobile data services to HNB and to interact with HMS to perform HNB authentication and authorization.

HNB Management System (HMS)

It is a network element management system for HNB access. Management interface between HNB and HMS is based on TR-069 family of standards.

It performs following functions while managing HNB access network:

• Facilitates HNB-GW discovery for HNB
• Provision of configuration data to the HNB
• Performs location verification of HNB and assigns appropriate serving elements (HMS, Security Gateway and HNB-GW)

The HNB Management System (HMS) comprises of the following functional entities:

• File Server: used for file upload or download, as instructed by TR-069 manager
• TR-069 Manager: Performs CM, FM and PM functionality to the HNB through Auto-configuration server (HMS)

Licenses

The HNB-GW is a licensed Cisco product. Separate session and feature licenses may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.
Platform Requirements

The HNB-GW is a STAROS application that runs on Cisco® ASR 5x00 and virtualized platforms. For additional information, refer to appropriate *System Administration Guide* and/or contact your Cisco account representative.
Network Deployment and Interfaces

This section describes the supported interfaces and deployment scenario of HNB-GW in 3G Femto access network. The following information is provided in this section:

- HNB Gateway in 3G UMTS Network
- Supported Logical Interfaces

HNB Gateway in 3G UMTS Network

The following figure displays simplified network views of the HNB-GW in an Femto access network accessing UMTS PS or CS Core Network.

Figure 2. HNB-GW in UMTS Network and Interfaces

Supported Logical Interfaces

This section provides the brief information on supported interfaces on HNB-GW node. In support of both mobile and network originated subscriber UE contexts, the HNB-GW provides the following network interface support:

- **IuH Interface**: This interface is the reference point for the control plane protocol between Home NodeB and HNB-GW. IuH uses SCTP over IPSec IKEv2 tunnel as the transport layer protocol for guaranteed delivery of signaling messages between HNB-GW and Home NodeB.

 This is the interface used by the HNB-GW to communicate with HNB on the same Femtocell Access Network. This interface serves as path for establishing and maintaining subscriber UE contexts.

 One or more IuH interfaces can be configured per system context.
• **IuCS**: This interface is the reference point in UMTS which links the HNB-GW, which acts as an RNC (Radio Network Controller), with a Mobile Switching Centre (3G MSC) in the 3G UMTS Femtocell Access Network. This interface provides an IuCS over IP or IuCS over ATM (IP over AAL5 over ATM) interface between the MSC and the RNC (HNB-GW) in the 3G UMTS Femtocell Access Network. RAN Application Part (RANAP) is the control protocol that sets up the data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or QSAAL (MTP3B/QSAAL) handle IuCS (control) for the HNB-GW. This is the interface used by the HNB-GW to communicate with 3G MSC on the same Public Land Mobile Network (PLMN). This interface serves as path for establishing and maintaining the CS access for Femtocell UE to circuit switched UMTS core networks. One or more IuCS interfaces can be configured per system context.

• **IuPS**: This interface is the reference point between HNB-GW and SGSN. This interface provides an IuPS over IP or IuPS over ATM (IP over AAL5 over ATM) interface between the SGSN and the RNC (HNB-GW) in the 3G UMTS Femtocell Access Network. RAN Application Part (RANAP) is the control protocol that sets up the data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or QSAAL (MTP3B/QSAAL) handle IuPS-C (control) for the HNB-GW. This is the interface used by the HNB-GW to communicate with SGSN on the same Public Land Mobile Network (PLMN). This interface serves as path for establishing and maintaining the PS access for Femtocell UE to packet switched UMTS core networks. One or more IuPS interfaces can be configured per system context.

• **Iu-Bc**: This interface is the reference point between HNB-GW and Cell Broadcast Center (CBC) in the 3G UMTS access network. The cell broadcast center (CBC) is part of the core network (CN) and connected to a routing node, for example: a 3G SGSN, via the Bc reference point.

• **Gi**: This interface is the reference point between HNB-GW and IP Offload Gateway. It is used by the HNB-GW to communicate with Packet Data Networks (PDNs) through IP Offload Gateway in the H-PLMN/V-PLMN. Examples of PDNs are the Internet or corporate intranets. One or more Gi interfaces can be configured per system context.

• **Gn**: This interface is the reference point between HNB-GW and GGSN. It is used by the HNB-GW to communicate with GGSNs on the same GPRS/UMTS Public Land Mobile Network (PLMN). One or more Gn interfaces can be configured per system context.

• **RADIUS**: This interface is the reference point between a Security Gateway (SeGW) and a 3GPP AAA Server or 3GPP AAA proxy (OCS/CGF/AAA/HSS) over RADIUS protocol for AAA procedures for Femto user. In the roaming case, the 3GPP AAA Proxy can act as a stateful proxy between the SeGW and 3GPP AAA Server. The AAA server is responsible for transfer of subscription and authentication data for authenticating/authorizing user access and UE authentication. The SeGW communicates with the AAA on the PLMN using RADIUS protocol. One or more RADIUS interfaces can be configured per system context.

• **TR-069**: This interface is an application layer protocol which is used for remote configuration of terminal devices, such as DSL modems, HNBs and STBs. TR-069 provides an auto configuration mechanism between the HNB and a remote node in the service provider network termed the Auto Configuration Server. The standard also uses a combination of security measures including IKEv2 (Internet Key Exchange v2) and IPsec (IP Security) protocols to authenticate the operator and subscriber and then guarantee the privacy of the data exchanged. One TR-069 interface can be configured per HNB node.
• **DHCP:** This is the interface used by the HNB-GW to communicate with a Dynamic Host Control Protocol (DHCP) Server. The system can be configured to dynamically provide IP addresses for HNBs from the DHCP server.

⚠️ *Important:* DHCP interface support is available in StarOS Release 14.0 and later only.
Features and Functionality - Base Software

This section describes the features and functions supported by default in base software on HNB-GW service and do not require any additional license to implement the functionality with the HNB-GW service.

Following features and supports are discussed in this section:

- AAA Server Group Support
- AAL2 Establish and Release Support
- Access Control List Support
- ANSI T1.276 Compliance
- ATM VC Management Support
- Cell Broadcasting Service (CBS) Support
- Congestion Control and Management Support
- DHCP Interface Support on HNB-GW to HMS
- Dynamic RADIUS Extensions (Change of Authorization)
- Emergency Call Handling
- Femto to Femto Handoff via CN
- GTP-U Tunnels Management Support
- HNB-UE Access Control
- HNB Management Function
- Hybrid Access Mode Support
- Intra-Domain Multiple CN Support Through Iu-Flex
- Iu Signalling Link Management Support
- IuH User-Plane Transport Bearer Handling Support
- Multiple HNB-GW Service Support
- Multiple MSC Selection without Iu-Flex
- Network Access Control Functions through SeGW
- Open Access Mode Support
- Paging Optimization Support
- QoS Management with DSCP Marking
- RADIUS Support
- System Management Features
- UE Management Function for Pre-Rel-8 UEs
- IPNE services enhancement
- Grid based paging
- IURH based F2F handoff

AAA Server Group Support

Value-added feature to enable VPN service provisioning for enterprise or MVNO customers. Enables each corporate customer to maintain its own AAA servers with its own unique configurable parameters and custom dictionaries.

This feature provides support for up to 800 AAA (RADIUS and Diameter) server groups and 800 NAS IP addresses that can be provisioned within a single context or across the entire chassis. A total of 128 servers can be assigned to an individual server group. Up to 1,600, authentication and/or mediation servers are supported per chassis and may be distributed across a maximum of 1,000 nodes. This feature also enables the AAA servers to be distributed across multiple nodes within the same context.

Important: For more information on AAA Server Group configuration, if you are using StarOS 12.3 or an earlier release, refer to the AAA and GTPP Interface Administration and Reference. If you are using StarOS 14.0 or a later release, refer to the AAA Interface Administration and Reference.

AAL2 Establish and Release Support

Support to establish and release of ATM adaptation layer 2 (AAL2) channel within an ATM virtual connection by the HNB-GW in complete or partial compliance with the following standards:

- **ITU-T Recommendation Q.2630.1**: AAL type2 signalling protocol (Capability Set 1)
- **ITU-T Recommendation Q.2630.2**: AAL type2 signalling protocol (Capability Set 2)
- **ITU-T Recommendation L.363.2 B**: ISDN ATM Adaptation Layer (AAL) Specification: Type 2 AAL
- **ITU-T Recommendation L.366.1**: Segmentation and Reassembly Service Specific Convergence Sublayer for the AAL type 2

The HNB-GW connects to core network elements like MSC and SGSN over IuCS and IuPS interfaces respectively. The Iu interface towards core network elements could either by IP based or ATM based. To provide ATM based interface support, Cisco HNB-GW provides AAL2 support on system in order to establish a voice bearer with MSC.

Access Control List Support

Access Control Lists provide a mechanism for controlling (i.e. permitting, denying, redirecting, etc.) packets in and out of the system.
IP access lists, or Access Control Lists (ACLs) as they are commonly referred to, are used to control the flow of packets into and out of the system. They are configured on a per-context basis and consist of “rules” (ACL rules) or filters that control the action taken on packets that match the filter criteria.

Once configured, an ACL can be applied to any of the following:

- An individual interface
- All traffic facilitated by a context (known as a policy ACL)
- An individual subscriber
- All subscriber sessions facilitated by a specific context

There are two primary components of an ACL:

- Rule: A single ACL consists of one or more ACL rules. As discussed earlier, the rule is a filter configured to take a specific action on packets matching specific criteria. Up to 128 rules can be configured per ACL.

 Each rule specifies the action to take when a packet matches the specifies criteria. This section discusses the rule actions and criteria supported by the system.

- Rule Order: A single ACL can consist of multiple rules. Each packet is compared against each of the ACL rules, in the order in which they were entered, until a match is found. Once a match is identified, all subsequent rules are ignored.

Important: For more information on Access Control List configuration, refer to the IP Access Control List chapter in the System Administration Guide.

ANSI T1.276 Compliance

ANSI T1.276 specifies security measures for Network Elements (NE). In particular it specifies guidelines for password strength, storage, and maintenance security measures.

ANSI T1.276 specifies several measures for password security. These measures include:

- Password strength guidelines
- Password storage guidelines for network elements
- Password maintenance, e.g. periodic forced password changes

These measures are applicable to the systems and the Web Element Manager since both require password authentication. A subset of these guidelines where applicable to each platform will be implemented. A known subset of guidelines, such as certificate authentication, are not applicable to either product. Furthermore, the platforms support a variety of authentication methods such as RADIUS and SSH which are dependent on external elements. ANSI T1.276 compliance in such cases will be the domain of the external element. ANSI T1.276 guidelines will only be implemented for locally configured operators.

ATM VC Management Support

Support for Asynchronous Transfer Mode (ATM) virtual circuits (VC) management function of AAL2 and AAL5 protocol by the HNB-GW in accordance with the following standards:

- **3GPP TR 29.814 V7.1.0 (2007-06):** 3rd Generation Partnership Project; Technical Specification Group Core Networks and Terminals Feasibility Study on Bandwidth Savings at Nb Interface with IP transport (Release 7)
HNBGW supports PVC (permanent virtual circuits) connections with CN nodes for AAL2 and AAL5 type of traffic. The Common Part Sublayer (CPS) payload which is carried out by the AAL2 protocol over ATM is also configurable with this feature. It provides the dynamic Common Part Sublayer (CPS) payload configuration for AAL2 protocol traffic over ATM for negotiation between HNB-GW and MSC during call. Default size for payload is 45 but values may range from 1 to 64 Bytes. This feature makes the operator to choose the CPS payload size dynamically.

Cell Broadcasting Service (CBS) Support

Cell Broadcast is a mobile technology that allows a text or binary message to be distributed to all mobile equipments and similar devices connected to a set of cells or within a designated geographical area. Cell broadcast messages are destined to radio cells rather than a specific or a few mobile terminals.

This technology is used in deploying location-based subscriber services for simultaneous delivery of messages to multiple users in a specific geographical area. Cell Broadcast Center (CBC), located at the operator side, is a node which is a source of CBS and connected to RNC in UMTS networks via standardized interface over TCP/IP protocol. The RNC-CBC interface (Iu-BC) is described in the 3GPP standard TS 23.041 and TS 25.419. CBC sends broadcasting messages to the RNC with a list of cells/service areas (where the message is to be broadcast) at a repetition rate at which the messages will be broadcast. This repetition rate depends on the type of info in the CBS messages; for example, road traffic information will require more frequent transmission than weather information.

In case of Femto UMTS network, RNC is replaced with Home NodeB (HNB) and HNB-GW and therefore the CBC is connected to HNB-GW through Iu-BC interface. HNB-GW routes the broadcasting messages to HNB using the available SCTP connection with HNB. In order to exchange the broadcasting messages, Service Area Broadcast Protocol (SABP) is used between the CBC and HNB-GW. HNB-GW forwards these SABP messages individually to respective HNBs corresponding to the Service Area(s) present in the Service-Area list of received SABP messages by constructing new SABP messages. HNB-originated SABP messages are individually forwarded by HNB-GW to CBC. HNB-GW acts as an aggregate for the incoming SABP response messages from HNBs and forwards the combined SABP message to the CBC.

Following are the major functions of SABP:

- **Message Handling**: Broadcasting of new CB messages, amend and improve the existing broadcast messages and to halt broadcast of particular messages.
- **Load Handling**: Ascertaining the load on broadcast channels at any specific point of time.
- **Error Handling**: Reporting of some basic error situations, where there are no function-specific error messages defined.
- **Reset**: Function to end the CB message broadcasting to specific service areas by the CBC.
- **Bulkstats**: Bulkstat variables related to IuBC are added to HNBGW for CBS.
- **TCP Mode**: A new mode 'Server Only' is introduced. In this mode CBC server will initiate TCP connection towards HNB-GW instead of HNB-GW initiating towards CBC.
- **Class2-Aggregation Timer**: A new class2 aggregation timer is added under CBS service. HNB-GW will start this timer upon receiving a class-2 SABP message from HNB and will send a consolidated class-2 message towards CBC for all class-2 messages received during this time interval.
- **Support for secondary CBC server**: HNB-GW can validate the address of CBC server, with this functionality HNBGW will accept TCP connection only from CBC servers configured under CBS service.
- **TCP Keep Alive**: TCP Keep-Alive feature of CBS service helps HNB-GW in dead peer detection. HNBGW starts sending TCP Keep-Alive message if the TCP link is idle for a specific time. The HNBGW sends configured number of Keep Alive messages towards CBC and will close down the TCP connection if response is not received from the CBC.
Congestion Control and Management Support

Congestion Control monitors the system for conditions that could potentially degrade performance when the system is under heavy load. Typically, these conditions are temporary (for example, high CPU or memory utilization) and are quickly resolved. However, continuous or large numbers of these conditions within a specific time interval may have an impact the system’s ability to service subscriber sessions. Congestion control helps identify such conditions and invokes policies for addressing the situation.

Congestion control operation is based on configuring the following:

- **Congestion Condition Thresholds**: Thresholds dictate the conditions for which congestion control is enabled and establishes limits for defining the state of the system (congested or clear). These thresholds function in a way similar to operation thresholds that are configured for the system as described in the Thresholding Configuration Guide. The primary difference is that when congestion thresholds are reached, a service congestion policy and an SNMP trap, starCongestion, are generated.

 A threshold tolerance dictates the percentage under the configured threshold that must be reached in order for the condition to be cleared. An SNMP trap, starCongestionClear, is then triggered.

- **Port Utilization Thresholds**: If you set a port utilization threshold, when the average utilization of all ports in the system reaches the specified threshold, congestion control is enabled.

- **Port-specific Thresholds**: If you set port-specific thresholds, when any individual port-specific threshold is reached, congestion control is enabled system-wide.

- **Service Congestion Policies**: Congestion policies are configurable for each service. These policies dictate how services respond when the system detects that a congestion condition threshold has been crossed.

Important: For more information on Congestion Control support, refer Congestion Control chapter in System Administration Guide.

DHCP Interface Support Between HNB-GW and HMS

DHCP interface support at HNB-GW is provided to allocate IP address to HNB using DHCP procedure. Without this support IP address is allocated using locally configured IP pool. HNB connects to HNB Security Gateway (Se-GW) via IPSec tunnel. During IPSec tunnel establishment, HNB Se-GW allocates IP address to HNB. Femtocell provisioning system needs HNB IP address. This is achieved by co-locating this system with DHCP server. HNB Se-GW then uses DHCP procedure to allocate IP address to HNB.

Following is a typical message flow when HNB-GW performs as DHCP proxy:

1. HNB initiates IKE transaction by sending IKE SA INIT message to share encryption parameters.
2. Se-GW on HNB-GW responds with IKE SA INIT to confirm encryption parameters and the nonce.
3. HNB sends IKE Auth Request and includes IDi, IDr and configuration payload to request the IP address. IDi is the IKE ID of HNB-GW.
4. HNB-GW initiates Authentication with AAA Server. HNB and AAA server exchange EAP messages.
5. Finally AAA server confirms successful authentication of HNB to HNB-GW and Subscriber template is selected and aaa-data is returned to SessMGR by AAAMGR which contains necessary configuration and AAA returned values.
6. HNB-GW, as with previous EAP messages, relays EAP success over IKE Auth to HNB. Steps 4, 5 and 6 are not performed in case of certificate based authentication.
7. HNB then initiates IKE Auth request to authenticate the SA. HNB-GW selects the IP address allocation method using the configuration from AAA-data. Method is configured to be DHCP-proxy in subscriber template. To
initiate DHCP transaction, DHCP-service is used. A suitable DHCP service is selected using configuration parameters in AAA-data.

8. DHCP-service selects a DHCP servers using local configuration and starts DHCP transaction. DHCP DISCOVER message is unicasted to every configured server. CID (IKE ID of HNB taken from IDi) is sent in DHCP option (61) “Client Identifier”. The GIADDR is the DHCP Relay/Proxy IP, i.e. the IP to which the DHCP service is bound. The GIADDR is used by the DHCP server to select the IP pool while allocating the IP.

9. If one of the DHCP servers responds (DHCP server [9] uses Failover protocol [11]) with DHCP OFFER providing the IP address. HNB-GW validates the provided IP address with local pool to check if the address is already being allotted to some other HNB. If so, DHCP transaction is not continued further and the HNB IKE establishment is rejected.

10. Upon successful IP address validation for uniqueness, HNB-GW sends DHCP REQUEST message providing the same IP address and CID. Note that Every DHCP message is sent to every configured server.

11. DHCP reserves the IP address and sends DHCP ACK confirming the IP address.

12. HNB-GW sends IKE Auth Response with allotted IP address to HNB in configuration response payload.

For this support HNB-GW is configured to communicate with DHCP server at port 61610 only and uses IKE-id of HNB as DHCP client only.

Important: For more information on DHCP interface configuration, refer HNB-GW Service Configuration Procedures.

RADIUS Change of Authorization Extensions

Important: Dynamic extensions other than RADIUS Change of Authorization (CoA) and Disconnect Message (DM) are not supported on HNB-GW.

Dynamic RADIUS extension support provide operators with greater control over subscriber sessions by providing the ability to dynamically manage HNB-UE White-List and/or disconnect the subscriber session.

This functionality is based on the RFC 3576, Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS), July 2003 standard.

The system supports the configuration and use of the following dynamic RADIUS extensions:

- Change of Authorization: The system supports CoA messages from the AAA server to change data filters associated with a subscriber session. The CoA request message from the AAA server must contain attributes to identify NAS and the subscriber session and a data filter ID for the data filter to apply to the subscriber session.

- Disconnect Message: The DM message is used to disconnect subscriber sessions in the system from a RADIUS server. The DM request message should contain necessary attributes to identify the subscriber session.

The above extensions can be used to dynamically re-direct subscriber bearer to an alternate address for performing functions such as provisioning, access control, and/or session disconnect.

Important: For more information on dynamic RADIUS extensions support, refer CoA, RADIUS, And Session Redirection (Hotlining) chapter in System Administration Guide.

Emergency Call Handling

The HNB-GW supports the handling of Emergency call in accordance with the following standards:
The HNB-GW provides access for all UE/HNB when emergency call initiated. In case of non CSG UEs or non CSG HNBs, after Emergency call is finished, the context established between the HNB and operator's core network entities for UEs, who can not get access over the HNB, will be de-registered to prevent the UE from accessing non-emergency services. However if the UE remains idle for value equal to ue-idle-time, then it will be de-registered.

HNB-GW handles the emergency call in following way:

- **Authentication:** In case of emergency call, HNB sends a UE REGISTRATION REQUEST message with “Registration cause” as emergency call and excludes the “UE Permanent identity” (i.e IMSI) and HNB-GW does not perform access control for emergency call case.

- **Single Iu and Single RAB:** In case of emergency call, HNB-GW does not allow multiple RABs for UE. This means that UE must have only one Iu connection, either CS or PS, and have only one RAB on that Iu connection. HNB-GW implements “Single IU, Single RAB policy” when UE registration comes with Emergency.

The RUA-CONNECT has an IE called “establishment cause” which can take values as “Normal” or “Emergency”. If UE-registration was due to emergency then RUA-CONNECT must contain “Emergency”. If RUA-CONNECT contains “normal” then HNB-GW rejects it.

While rejecting RUA connection or RAB connection the HNB-GW uses following reject cause:

- RUA - Misc: unspecified
- RAB - Misc: unspecified

If UE-registration is normal then both (normal and emergency) RUA-CONNECT is allowed.

Femto to Femto Handoff via CN

Cisco HNB-GW supports the Femto to Femto Handoff via Core Network (CN) feature where a mobile in connected mode moves from the coverage area of one Home NodeB (HNB) to another HNB connected to the same chassis (ASR5x00).

Earlier, the HNB-GW supported hand-in for closed mode HNBs. In such case, hand-in is allowed for an IMSI if it is the owner (i.e. it is the first IMSI in the whitelist of the HNB) of the target HNB. Also, handin is allowed if the IMSI is not the owner of the target HNB but is not present in the whitelist of any other HNB known to the HNB-GW. Now, the HNB-GW is modified to select a target HNB using the target Cell ID information. In this case, hand-in is therefore supported for open and hybrid mode HNBs as well along with closed mode HNBs.

The HNB-GW support for the Femto to Femto Handoff via CN is in accordance with the following standards:

- **3GPP TS 23.060 Section 6.9.2.2.2:** 3rd Generation Partnership Project; Technical Specification Combined Hard Handover and SRNS Relocation Procedure

Feature description can be understood using following points:

Cell ID based lookup

Earlier, the HNB-GW employed whitelist-based target HNB selection during handin procedure. Therefore the hand-in was limited to the closed mode HNBs. The better way to IDentify target HNB is to use the cell ID of the HNB which is a unique IDentifier for an HNB within a particular PLMN.
The target cell ID is present in the source RNC to target RNC transparent container IE in the Relocation Request message received from SGSN/MSC. HNB sends its cell ID and PLMN ID in the HNBAP-HNB Register Request message. HNBMGR stores this information and maintains a lookup for hnb context based on the global cell ID. On receiving Relocation Request, HNBMGR uses the target cell ID to IDentify the HNB context. The global cell ID consist of PLMN ID and Cell ID.

GLOBAL CELL ID = PLMN ID + CELL ID

Following the introduction of this lookup, on receiving a HNB Register Request message with a certain cell ID, if an HNB already exists with same cell ID, the existing HNB is deregistered.

Identifying PLMN ID from Relocation Request
A Relocation Request message coming in an SCCP CR message comes directly to HNBMGR from LinkMGR. Earlier the HNBMGR did not have CS/PS network configuration and therefore it did not have the capability to identify the CS/PS network and the plmn id of the request too.

HNBMGR has been enhanced to store the CS/PS network configuration. Linkmgr now provides SCCP network ID and originating point code of the relocation request message. HNBMGR uses this info to find out the CS/PS network and therefore the PLMN ID from it.

A Relocation Request coming in an SCCP DT message comes to session manager first. Session manager finds out CS/PS network and then the PLMN ID and sends this information to HNBMGR.

Access Control
If the identified target HNB is a closed mode HNB, HNB-GW verifies that the IMSI mentioned in the Relocation Request message belongs to the whitelist of the target HNB before allowing the hand-in procedure to continue.

For a hybrid mode HNB, the existing limit checks for max non-access controlled UEs per hybrid mode HNB are performed.

For an open mode HNB, the existing limit checks for max number of UEs per open mode HNB are performed.

If any of the above access control checks fail, a Relocation Failure Message is sent back to the CN node.

Redundancy
In addition to existing information, the Cell ID of an HNB is backed up in CRR. For HNBMGR, the global Cell ID based lookup is recreated on recovering an HNB in HNBMGR.

Assumptions
Following assumptions to be considered for this feature implementation:

- It is assumed that a CELL ID (MCC+MNC+CellID) assigned to an HNB is not assigned to another HNB connecting to the same ASR5K via the same or via another HNB-GW Service.

- It is assumed that source HNB holds information about RNC ID and CELL ID of neighboring target HNB which it fills as TARGET RNC ID and TARGET CELL ID respectively in Relocation Requested message.

- It may happen that both, the source HNB and the target HNB, share the same RNC ID. It is assumed that the CN (SGSN/MSC) nodes continue with relocation in spite of this and they are able to send the Relocation Request to the right HNBGW

Emergency UE Handoff
RANAP Relocation Request may come without IMSI if the permanent UE identity is not known to the Core Node. This is possible in case of UE Registered for an Emergency Call and no SIM was inserted at the UE. If Relocation Request comes without IMSI for a single domain, then it is allowed at the HNB-GW.
GTP-U Tunnels Management Support

Support to manage the GTP-U tunnels between HNB-GW and GSNs by in accordance with the following standards:

- **3GPP TS 29.060 V9.0.0 (2009-09)**: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; General Packet Radio Service (GPRS); GPRS Tunneling Protocol (GTP) across the Gn and Gp interface (Release 9)

HNB-GW supports establishment of GTPU tunnels for each RAB over the IuPS interface. HNB-GW terminates the GTP-U tunnels coming from CN (SGSN) and initiates separate GTP-U tunnel towards HNB.

HNB-UE Access Control

UE/HNB access control support in 3G UMTS HNB Access Network is provided on HNB-GW through IMSI White list database and AAA attribute processing. This feature is in accordance with following standards:

- **3GPP TS 23.003 V8.9.0 (2010-06)**: 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Numbering, addressing and identification (Release 8)

- **3GPP TS 25.467 V9.3.0 (2010-06)**: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; UTRAN Iu interface for 3G Home Node B (HNB); Stage 2 (Release 9)

- **IETF RFC-2865**, Remote Authentication Dial In User Service (RADIUS), June 2000

The HNB-GW provides UE registration and de-registration procedure for the HNB to convey Rel-8 UE identification data to the HNB-GW in order to perform access control for the UE in the HNB-GW. The UE Registration also establishes a UE specific context identifier to be used between HNB and HNB-GW. The procedure triggered when the UE attempts to access the HNB via an initial NAS message and there is no context in the HNB allocated for that UE.

For pre-Release 8 UEs, which do not support CSG and does not listen for CSG-ID, the HNB-GW ensures that a UE is authorized to access a particular Femtocell. To perform access control check for pre-Release 8 UE, HNB-GW maintains a per-HNB Whitelist. This whitelist consists of IMSIs which are allowed to access that particular HNB. The whitelist is stored in the HMS and is downloaded to HNB-GW when HNB-REGISTRATION procedure happens.

HNB Management Function

Support for HNB registration and de-registration in 3G UMTS HNB Access Network accordance with the following standards:

The HNB-GW provides HNB registration and de-registration procedure to register the HNB with the HNB-GW. This procedure enables the HNB-GW to provide service and core network connectivity for the HNB. On HNB-GW node this procedure is the first HNBAP procedure triggered after the SCTP association has become operational between HNB and HNB-GW.

HNB management function processes the HNB/UE access control procedure through White-List processing on HNB-GW node. Dynamic update of White-List gives the dynamic HNB management ability to HNB-GW.

Hybrid Access Mode Support

A Closed HNB provides services only to the mobile subscribers which are member of the associated access control database (IMSI Whitelist). An HNB operating in Hybrid (Semi-Open) access mode provides services to other mobile subscribers along with members of the associated access control database whereas an Open HNB provides its services to any mobile subscriber.

HNB-GW supports Hybrids Access mode for Hybrid HNBs to expand its access control to Open, closed, and Hybrid HNB access.

This feature provides following procedure for Hybrid Access HNB registration on HNB-GW:

- **Hybrid HNB registration:**
 1. HNB-GW associates a set of access-controlled IMSIs (whitelist) with every Hybrid-HNB. For a Hybrid HNB, the whitelist is send by AAA-server in the Radius-Access-Accept message to the HNB-GW. The whitelist associated with a Hybrid HNB can also be empty.
 2. HNB-GW supports the modification of the whitelists associated with Hybrid HNBs. AAA-Server can send a COA message to the HNB-GW to change the whitelist associated with a Hybrid HNB.
- **HNB-GW does not support modification of the cell-access-mode of registered HNBs using RADIUS CoA message.**
- **HNB-GW supports Open, Closed and Hybrid access mode HNBs simultaneously.**
- **HNB-GW provides a configuration to disable the registration of Hybrid HNBs.**

- **UE registration:**
 1. HNB-GW supports guaranteed successful registration of the access-controlled (whitelisted) UEs associated with Hybrid HNBs.
 2. A configuration is provided to control the maximum number of simultaneously registered non-access-controlled UEs from a Hybrid HNB.

- **Paging:** Support paging of UEs simultaneously via Open, Closed and Hybrid HNBs

- **Hand-in and Hand-out:** HNB-GW supports UEs’ hand-in/hand-out relocation requests towards/from Hybrid HNBs. HNB-GW supports hand-in relocation for access-controlled UEs only.

Important: For more information on Hybrid Access Mode support configuration, refer Hybrid Access Mode Configuration section of HNB-GW Administration Guide.

Intra-Domain Multiple CN Support Through Iu-Flex

Iu-Flex is the routing functionality for intra domain connection of HNB-GW nodes to multiple CN nodes (MSC/SGSN). It provides a routing mechanism and related functionality on HNB-GW to enable it to route information of different Core Network (CN) nodes with in the CS or PS domain. It is implemented in accordance with the following standards:
HNB Gateway in Wireless Network

Features and Functionality

- **Base Software**

HNB-GW Administration Guide, StarOS Release 17

29

HNB-GW supports Iu-Flex routing mechanism and other applications like many-to-many relation and load-sharing between CN nodes with HNB-GW and CN node pooling. This mechanism provides following benefits to network operator:

- Eliminates the single point of failure between an RNC/HNB-GW and a CN Node.
- Ensures geographical redundancy, as a pool can be distributed across sites.
- Minimizes subscriber impact during service, maintenance, or node additions or replacements.
- Increases overall capacity via load sharing across the MSCs/SGSNs in a pool.
- Reduces the need/frequency for inter-CN node RAUs. This substantially reduces signaling load and data transfer delays.
- Supports load redistribution with the MSC/SGSN offloading procedure.

To incorporate the concept of multiple CN nodes, Iu-Flex introduces the concept of “pool-areas” which is enabled by the routing mechanism in HNB GW. A pool-area is served by multiple CN nodes (MSCs or SGSNs) in parallel which share the traffic of this area between each other. Furthermore, pool-areas may overlap. From a RAN perspective a pool-area comprises all LA(s)/RA(s) of one or more RNC/BSC or HNBGW that are served by a certain group of CN nodes in parallel. One or more of the CN nodes in this group may in addition serve LAs/RAs outside this pool-area or may also serve other pool-areas. This group of CN nodes is also referred to as MSC pool or SGSN pool respectively.

The Iu-Flex enables a few different application scenarios with certain characteristics. The service provision by multiple CN nodes within a pool-area enlarges the served area compared to the service area of one CN node. This results in reduced inter CN node updates, handovers and relocations and it reduces the HLR/HSS update traffic. The configuration of overlapping pool-areas allows to separate the overall traffic into different UE moving pattern, e.g. pool-areas where each covers a separate residential area and all the same city centre. Other advantages of multiple CN nodes in a pool-area are the possibility of capacity upgrades by additional CN nodes in the pool-area or the increased service availability as other CN nodes may provide services in case one CN node in the pool-area fails.

Iu Signalling Link Management Support

Support for Iu signal link management function for HNB-GW in accordance with the following standards:

HNBGW supports RANAP protocol for management of IuPS/IuCS connections. The IU connection on the IuPS/IuCS interface is realized using an SCCP connection towards SGSN/MSC. The SCCP could be over SIGTRAN or ATM.
IuH User-Plane Transport Bearer Handling Support

Support for transfer of CS as well as PS data over IP on the IuH interface:

HNB-GW supports GTP-U v1 for PS traffic transport and RTP/RTCP for CS traffic transport on IuH interface. HNB-GW terminates the GTPU tunnels and RTP sessions at itself for each tunnel/session between CN and HNB.

LAI-based FAP Roaming Restriction Support

In order to restrict the indirect or remote consequences, like overcharging due to roaming, the restriction on physical movement of FAPs has been supported.

The FAP roaming restriction works on mcaro location area identity (LAI) configuration in the HNB-GW per HNB-GW service. A macro LAI is the combination of PLMN ID and LAC. The support to the above mentioned restriction works as follows:

- During the HNB registration request, HNB sends the HNB location information, macro coverage information, and UTRAN Cell ID to the RADIUS server via Session Manager.
- If the mcaro LAI in the information passed from HNB matches the pre-configured macro LAI list at the session manager, the authentication request is passed to the RADIUS server.
- If the macro LAI in the information passed from HNB does not match the pre-configured macro LAI list at the session manager, the HNB is rejected with cause “Unauthorized-Location”.

Multiple HNB-GW Service Support

Support for multiple HNB-GW service on same chassis in one or multiple context is provided with this feature support.

With support of multiple HNB-GW service on same chassis operator can utilize the various combination of subscriber access network and connectivity model.

This feature can also be utilized if operator wants to use specific HNB-GW services for residential and enterprise service on the same chassis.
In order to associate multiple HNB-GW services with the same CS/PS network and to associate a particular HNB-GW service with more than one CS/PS network a dynamic association procedure is supported.

A unique logical RNC represents each CS/PS network on chassis and is assigned an RNC-ID as global RNC id.

When RUA Connect Request is received at HNB-GW, CS/PS network is selected based on values of mcc, mnc and rnc-id configured in radio network plmn of HNB-GW service and in CS/PS network.

Multiple HNB-GW services in the same context can share the same RTP Pool however a single GTP-U Service cannot be shared among multiple HNB-GW Services. Similarly, multiple PS networks cannot share a single GTP-U service but multiple CS networks can share the same RTP Pool and ALCAP Service.

Important: For more information on multiple HNB-GW service configuration, refer *HNB-GW Administration Guide*.

Multiple MSC Selection without Iu-Flex

Support for multiple MSC selection in a CS core network is provided with this feature support.

HNBGW can connect to multiple MSC and SGSN through Iu-Flex or LAC mapping. This feature implements the multiple MSC selection using LAC.

For this support the HNB-GW uses HNB's LAC, received during registration procedure in HNB_REGISTER_REQUEST message, to distribute RANAP-Initial UE message to an MSC. It maps the LAC with MSC point code and a set of LACs configured for each MSC, connected to the HNB-GW.

In the HNBGW, to select an MSC based on the LAC the following algorithm is used:

- If both Iu-Flex and LACs are configured for a MSC, then Iu-Flex is used to select a MSC.
- If only Iu-Flex is configured then Iu-Flex is used for selecting MSC.
• If only LACs are configured then MSC is selected using LAC from HNB.
• If both Iu-Flex and LACs are not configured in the HNBGW, it selects default MSC.

Network Access Control Functions through SeGW

These functions enable secure user and device level authentication between the authenticator component of the HNB-GW and a 3GPP HSS/AuC and RADIUS-based AAA interface support.

This section describes following features:

• Authentication and Key Agreement (AKA)
• 3GPP AAA Server Support
• X.509 Certificate-based Authentication Support

Authentication and Key Agreement (AKA)

HNB-GW provides Authentication and Key Agreement mechanism for user authentication procedure over the HNB Access Network. The Authentication and Key Agreement (AKA) mechanism performs authentication and session key distribution in networks. AKA is a challenge-response based mechanism that uses symmetric cryptography.

The AKA is the procedure that take between the user and network to authenticate themselves towards each other and to provide other security features such as integrity and confidentiality protection.

In a logical order this follows the following procedure:

1. **Authentication**: Performs authentication by, identifying the user to the network; and identifying the network to the user.
2. **Key agreement**: Performs key agreement by, generating the cipher key; and generating the integrity key.
3. **Protection**: When the AKA procedure is performed it protects, the integrity of messages; confidentiality of signalling data; and confidentiality of user data

3GPP AAA Server Support

This interface between the SeGW and AAA Server provides a secure connection carrying authentication, authorization, and related information. in accordance with the following standards:

This reference point is located between 3GPP AAA Server/Proxy and HNB-GW. The functionality of this reference point is to enable following requirements on SeGW:

• The SeGW shall be authenticated by the HNB using a SeGW certificate.
• The SeGW shall authenticate the HNB based on HNB certificate.
• The SeGW authenticates the hosting party of the HNB in cooperation with the AAA server using EAP-AKA.
• The SeGW shall allow the HNB access to the core network only after successful completion of all required authentications.
• Any unauthenticated traffic from the HNB shall be filtered out at the SeGW
X.509 Certificate-based Authentication Support

HNB-GW supports X.509 Certificate-based authentication to HNB/UE for a public key infrastructure (PKI) for single sign-on (SSO) and Privilege Management Infrastructure (PMI). X.509 specifies the standard formats for public key certificates, certificate revocation lists, attribute certificates, and a certification path validation algorithm.

Open Access Mode Support

An Open HNB provides its services to any mobile subscriber in Femto network. This feature is intended to provide Open access mode support on an UMTS HNB-GW. Open access HNBs can be deployed in public places like airports to increase the indoor coverage or to offload the traffic from the macro cell.

This feature provides following procedure for Open Access HNB registration on HNB-GW:

- **OPEN HNB registration:**
 1. On receiving HNB-REGISTER-REQ from HNB, HNB-GW sends RADIUS-Access-Request to AAA-server. HNB-GW will not care whether HNB has sent cell-access-mode in the register request or not.
 2. AAA-server performs authentication and authorization. If this is successful AAA-server sends RADIUS-Access-Accept to HNB-GW. Then AAA-server includes the Whitelist attribute in the response. AAA-server prepare Whitelist attribute in the following manner:
 - Cell-access-mode field in the Whitelist attribute will be set to “Open”.
 - Number-of-IMSI field in the Whitelist attribute will be set to 0 (zero).
 - IMSIs will not be included in the Whitelist attribute.
 3. HNB-GW overrides the cell-access-mode value received from HNB by the one received from AAA-server.
 4. HNB-GW discards “IMSI List” received for an Open Access-mode HNB from AAA-server in Access-Accept or COA message.
 5. AAA server sends access-mode as 0 (Closed mode) or 1 (Hybrid mode) or 2 (Open mode). If it sends any other value in Access-Accept, then HNB-GW shall send HNB-REGISTER-REJECT with Unauthorised-HNB cause.

Important: HNB-GW support both “Open” mode and “Closed” mode HNBs simultaneously. In case HNB registration is disabled the HNB-GW sends HNB-REGISTER-REJECT with O&M Intervention cause.

- **UE registration:**
 1. HNB-GW does not perform access control check of any UE registration request received from an Open Access-mode HNB.
 2. HNB-GW also does not perform any check on the UE-identity received in the registration request from an Open Access mode HNB.

- **RUA Connect:** HNB-GW does not check IMSI received in RANAP-CommonId if the same was not received from HNB in UE-REGISTER-REQ.

- **Paging:** Paging process has been optimized release 15.0 onwards and has been described in the Paging Optimization Support section of this chapter.
Paging Optimization Support

In 16.0 Paging is further optimized, now there are three phases for paging: Phase 1 Paging -- Page last known HNB Identity and LAI/RAI of the last known HNB from where a UE is/was registered even after the UE de-registers. The amount of time for which the HNB-GW stores this UE information after UE De-registration is configurable. Typically, the operator should set this value to the value of periodic LU/RAU timer value or more.

HNB-GW performs a two phase paging procedure:

- On receiving a Paging request from MSC, HNB-GW forwards the Paging request to the HNB where the UE had last registered from and starts a timer called Phase 1 timer.
- If no response is received from the UE before the Phase 1 timer expires, HNB-GW forwards the paging request to all the HNBs belonging to the LAI/RAI of the last known HNB of the UE and starts a timer called Phase 2 timer.

If no response is received from the UE before the Phase 2 timer expires, HNB-GW declares the paging procedure as failed. If a response is received from the UE anytime during the procedure, the paging procedure is declared successful and the currently running timer is stopped.

Each of the 2 phases of paging procedure can be enabled and disabled via configuration. The values of the Phase 1 and Phase 2 timers are also configurable. Separate configurations are provided for CS and PS domains.

The operator should set the values of these timers based on the Paging retry timer on MSC and SGSN. Typically, Phase 1 timer value + Phase 2 + Phase 3 timer value should be less than or equal to Paging retry timer on MSC/SGSN. Any paging request coming for an IMSI for a particular domain while paging procedure is ongoing in HNB-GW for same domain, Paging will be dropped. If any paging request coming for an IMSI for a particular domain while paging procedure is ongoing in HNB-GW for different domain, Paging will be served according to paging algorithm of that domain.

QoS Management with DSCP Marking

Differentiated Services Code Point (DSCP) marking over IuH interface support in 3G UMTS HNB Access Network is provided on HNB-GW for traffic quality management in accordance with following standards:

- **IETF RFC 2474,** Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
- **IETF RFC 4594,** Configuration Guidelines for DiffServ Service Classes
- IETF RFC 4960, Stream Control Transmission Protocol

In a fixed line-mobile convergence scenario, the user data and signaling traffic from a UE is forwarded by an HNB to HNB-GW over IuH interface. IP is used as network layer for IuH. RTP/RTCP or GTP over UDP/IP form transport for user data. SCTP/IP is used for control signaling over IuH.

These data and control packets traverse public Internet before reaching HNB-GW and vice-a-versa for the downlink traffic. RTP typically carries jitter-sensitive real-time media data such as voice and video. RTCP carries media reception/transmit feedback that is not delay sensitive. GTP carries generic, non-media data. These various traffic types, each, deserve different QoS handling by the IP nodes they traverse between HNB and HNB-GW. Thus DSCP codes are assigned in the IP headers of the traffic such that intermediate IP nodes can provide differentiated QoS treatment to the traffic for an acceptable end-user experience.

HNB-GW supports DSCP marking of the traffic on IuH and Iu interface for downlink traffic towards HNB and for uplink traffic towards CN when IP transport is used for IuCS or IuPS.

Important: For more information on DSCP marking configuration, refer DSCP Marking Configuration section of HNB-GW Administration Guide.

RADIUS Support

In HNB-GW the RADIUS support provides a mechanism for performing authorization and authentication for subscriber sessions based on the following standards:

- RFC-2618, RADIUS Authentication Client MIB, June 1999
- RFC-2620, RADIUS Accounting Client MIB, June 1999
- RFC-2865, Remote Authentication Dial In User Service (RADIUS), June 2000
- RFC-2866, RADIUS Accounting, June 2000
- RFC-2867, RADIUS Accounting Modifications for Tunnel Protocol Support, June 2000
- RFC-2868, RADIUS Attributes for Tunnel Protocol Support, June 2000
- RFC-2869, RADIUS Extensions, June 2000

Within context configured on the system, there are AAA and RADIUS protocol-specific parameters that can be configured. The RADIUS protocol-specific parameters are further differentiated between RADIUS Authentication server RADIUS Accounting server interaction.

Among the RADIUS parameters that can be configured are:

- **Priority:** Dictates the order in which the servers are used allowing for multiple servers to be configured in a single context.

- **Routing Algorithm:** Dictate the method for selecting among configured servers. The specified algorithm dictates how the system distributes AAA messages across the configured AAA servers for new sessions. Once a session is established and an AAA server has been selected, all subsequent AAA messages for the session will be delivered to the same server.

In the event that a single server becomes unreachable, the system attempts to communicate with the other servers that are configured. The system also provides configurable parameters that specify how it should behave should all of the RADIUS AAA servers become unreachable.
Important: For more information on RADIUS AAA configuration, if you are using StarOS 12.3 or an earlier release, refer to the *AAA and GTPP Interface Administration and Reference*. If you are using StarOS 14.0 or a later release, refer to the *AAA Interface Administration and Reference*.

UE Management Function for Pre-Rel-8 UEs

Support for Pre-Rel-8 UE registration and de-registration in 3G UMTS HNB Access Network in accordance with the following standards:

- **IETF RFC 4960, Stream Control Transmission Protocol, December 2007**

The HNB-GW provides UE registration and de-registration procedure for the HNB to convey pre-Rel-8 UE identification data to the HNB-GW in order to perform access control for the UE in the HNB-GW. The UE Registration also establishes a UE specific context identifier to be used between HNB and HNB-GW. The procedure triggered when the UE attempts to access the HNB via an initial NAS message and there is no context in the HNB allocated for that UE.

IPNE services enhancement

MINE (Mobile and IP Network Enabler) Client referred as IPNE Client for HNBGW cloud service provides a central portal for wireless operators and partners to share and exchange session/network information to realize intelligent services. A MINE client component running on various network nodes like PGW and HNBGW within operator's network to collect and distribute session/network information to MINE servers. The client is named IPNE, i.e. IP Network Enabler.
General Feature description

- IPNE client is a service running within the SMGR context PGW service or HNBGW service
- Any external service that wants to interact with IPNE should call IPNE API to create an IPNE handle for each session. All subsequent interaction between external service and IPNE will go through this handle, for example:
 - IPNE will call back HNBGW session through this handle to collect any session information when a query is received from MINE server
 - HNBGW session will submit a feed through this handle if any changes occur in the parameters dynamically
- The core object in IPNE service is the XMPP protocol engine, XMPP protocol is implemented using FSM. For every configured MINE server peer, there is one XMPP protocol engine instance.

IPNE Requirements

- Only one IPNE service should be associated to HNBGW service at one time
• IPNE service is allowed to associated/disassociated HNBGW

• HNBGW should provide the following mandatory session information to IPNE client:
 • HNB Identity
 • HNB Location Information
 • PLMN ID
 • Cell ID
 • LAC
 • RAC
 • SAC
 • UE Identity at UE registration

• HNBGW may provide the following optional information to IPNE client:
 • CSG ID
 • Service Area for Broadcast
 • HNB Cell Access Mode

• HNBGW should also send the information stated above to MINE server at the time of HNB/UE registration

• HNBGW should provide IPNE Client with session information for MINE server query for a specific call ID identifying a specific subscriber in the system

• HNBGW should maintain a subscription status from MINE server for a specific call-id. Whenever HNBGW detects a change in the subscription parameters, it should notify IPNE client with the changed value. IPNE client should then notify MINE server

Limitations

MINE server support available either through actual server or tools.

IPNE service configuration and associations will remain as they were in the previous release of HNBGW.

Grid based paging

Grid based paging is the way to find a UE amongst the HNBs by the HNBGW. Paging is complicated for the below reasons:

• UE can be in idle/unregistered state when HNBGW tries to page HNBs
• UE may not be at the HNB from which it was registered the last time
• Some HNBGW deployments may have around 500K active HNBs and it is not favorable to page all to locate the UE
• There are policies and optimizations to stop HNBGW from flooding the network with paging requests

Requirements for Grid Based Paging

• HNBGW is expected to remember the Grid Id of the HNB where the UE was last seen
• HNBGW is expected to fan out the paging request only to the HNBs which have matching Grid-Id to the HNB where the UE was last seen. The paging request will not be sent to the HNBs which have a different Grid-Id
When the UE moves out to HNB which has a different LAC than the existing one, it is supposed to do location update.

RMS will provide the Grid ID (Enterprise ID, Site ID, and Group ID Tuple) in the access accept message.

Assumptions and Limitations

The Grid ID will come to HNBGW from RMS via radius interface. The Grid Id contains Enterprise ID + Site ID + Group ID.

It is expected that for the HNBs belonging to the same Grid Id will have the same LAC.

IURH based F2F handoff

IURH based F2F Handoff Requirements

The IURH interface to connect UEs between HNBs is defined in 3GPP. Following is the protocol stack of the IURH interface:

```
  RNA
  SCTP
  IP
  L2/L1
```

HENBGW will not route messages at IP level as well as not terminate RNA. HNBs will talk to each other over proprietary interface directly.

HNBGW should implement HNBAP TNL Messages which includes TNL-Update-Request, TNL-Update-Response & TNL-Update-Failure and HNBA P Reloc-Complete.

Important: Iurh-support is a license controlled feature at HNBGW. One has to install the license for Iurh-support and additionally, enable the Iurh-feature for a particular HNBGW-service after installing the license.

IURH based F2F Handoff requirements

Following are the high level requirements for IURH based F2F handoff:

- HNBGW should allow to enable or disable IURH based F2F handoff
- HNBGW should implement HNBAP Relocation Complete procedure which includes Relocation Complete message
- HNBGW should deregister the UE from the source HNB once the relocation procedure is successfully completed

Limitations

- HNBGW allows IURH based handoff of a UE between two HNBs only if both are connected to the same HNBGW service
- HNBGW will support only a single SSRC within an RTP session for handoff. If there are multiple SSRCs being used within an RTP session, HNBGW will use a single SSRC value while forwarding it to Media GW.
- HNBGW allows IURH based handoff of a UE between two HNBs only if both are connected to the same PLMN and same HNBGW-service.
Multi-Operator Core Network (MOCN)

The MOCN is multiple core network operators sharing the costly radio access network. HNBGW does the functionality of selecting CN node for Non-supporting UE. It also does the functionality of routing messages to CN node for both Supporting and Non-supporting UE.

General description

Whenever MS is switched on, or has just returned to network coverage after being out of coverage, it would try to select a network to register itself and receive network services. Traditionally, each network would broadcast its own PLMN-Id on common broadcast channels which is visible to all MS in that area.

MS would start off by scanning for all the available radio networks in that area and would create an "available PLMN list". It would then refer to "Equivalent PLMN list" and "Forbidden PLMN list" (stored on SIM) to prioritize the "available PLMN list". Once this prioritized PLMN list is available, it would attempt registration with the PLMN based on priority.

In case of network sharing, single radio network will be shared by more than one network operator. This information about availability of multiple operators needs to be propagated to MS so that it can select correct (home or equivalent) network out of all available networks.

To advertise availability of multiple core network operators on a single radio network, broadcast information has been modified to contain a list of PLMN-Ids representing core network operators sharing the particular radio network. The traditional PLMN-Id broadcasted by radio network before network sharing support was available is now called as "common PLMN Id".

MS not supporting network sharing feature would see only "common PLMN Id", while MS supporting network sharing feature would be able to see the list of PLMN-Ids along with "common PLMN Id".

Supporting MS would be responsible for selecting appropriate core network, while RNC and MSC/SGSN will help select appropriate core network for non-supporting MS through redirection procedure.

Redirect for non-supported UEs

Selection of the operator for non-supporting UE is the responsibility of HNBGW. HNBGW sets redirect attempt flag in Initial UE Message and randomly/intelligently forwards the request to the CN node of the operator. Operator CN Node based on redirection attempt flag knows that redirection to different operator is possible for this node. If the current operator is ready to accept the call it will send redirection complete in direct transfer message. HNBGW based on the redirection complete IE knows that redirection procedure is successful. If operator is not ready to accept the call or it thinks that CS/PS co-ordination is required then it sends redirection indication to HNBGW. HNBGW then sends the Initial UE message randomly/intelligently to another operator.

CS/PS Domain Coordination

When a CN node receives a registration from a subscriber with a non-supporting UE having a P-TMSI/TMSI not belonging to the pool, and no IMSI is provided by RNC, it returns a Reroute Command message to the RNC with an indication that it is for coordination purposes. The coordination may result in that the registration is sent back to the same CN node or CN operator again.

As HNBGW will not look into MM/GMM messages, it will apply coordination for all RUA Connect/Initial UE Messages for non-supported UEs. For supported UEs CS/PS coordination is the responsibility of the UEs. HNBGW does not consider whether GS interface is present between SGSN and MSC. Because if GS interface is present UE may does combined CS/PS Attach, which inherently will take care of CS/PS coordination. If IMSI is available at HNBGW it sends it in Initial UE Message.

A request from any domain is processed first to select the operator. Once the operator is selected same is stored in UE context. If UE Context is active and request from another domain is received then this request is forwarded to the same
NAS Sequence number for CS-domain

When the redirection takes place for non-supported UEs, the CN node of the redirecting CN operator shall forward via the RAN the value of N(SD) of the last message received on the MM+CC+SS (via CS domain) message flow to the CN node of the next CN operator. By counting uplink direct transfer messages HNBGW will keep track of NAS sequence numbering. It will ignore NAS sequence number received in redirection indication to another CN operator.

Network Sharing - HNB without MOCN, CN with EPLMN and MOCN, non-supported UE with rerouting

Figure 5. Network Sharing - HNB with out MOCN and CN with E-PLMN and MOCN, Non-Supported UE with Re-Routing

In this scenario HNB supports MOCN. CN also supports MOCN. HNB broadcasts common PLMN and PLMN List as well. Supported UEs are able to read all these PLMNs.

1. RMS provisions common PLMN - C as the PLMN of the HNB. This PLMN is broadcasted and non-supported UEs are able to read only this PLMN.
2. HNB sends Common PLMN in HNB Registration Request.
3. HNBGW sends Access Request towards AAA.
4. Optional Allowed PLMN List is sent in Access Accept. This is not implemented in 17.0.
5. HNBGW sends HNB Register Accept to HNB. HNB broadcasts Common PLMN and the PLMN list.
6. UE1 was registered in Macro RNC with PLMN A and LAC X. UE1 has moved to HNB coverage area. UE1 does Location Update Request with Old LAI as PLMN A + LAC X.
7. HNB to know the IMSI can send Identity request to UE1.
8. UE1 will respond with Identity Response.
9. HNB sends UE Registration request with UE Identity as IMSI to HNBGW. HNBGW is considering that it always receives UE Registration Request with IMSI. MOCN will work even if IMSI is not received; only that re-routing load will increase.
10. HNBGW performs access control on the UE Registration request and sends UE Registration Accept if successful.
11. HNB prepares Initial UE Message with LAI as Common PLMN C + CN LAC "Y", It also populated Selected PLMN Identity received from the UE. The message is forwarded to HNBGW.
12. HNBGW reads the selected PLMN Identity from the Initial UE message. This is supported UE. Based on the received PLMN Identity request is forwarded to CN1.
13. MSC/CN1 sends the Location Update Accept with LAI as "PLMN A + LAC Y". As UE is supporting MSC assigns its own PLMN and not common PLMN.
14. HNBGW forwards the message to HNB.
15. If CN and OTA LAC are different HNB changes the LAC in Location Update Accept. i.e. PLMN A + LAC "Z".

Network Sharing - HNB with MOCN, CN with MOCN, non-supporting UE Re-Routing

In this scenario HNB supports MOCN, CN also supports MOCN. HNB broadcasts common PLMN and PLMN List as well. Non-Supported UEs are able to read only Common PLMN.
1. RMS provisions common PLMN - C as the PLMN of the HNB. It also provisions PLMN A and PLMN B in HNB.
2. HNB sends Common PLMN in HNB Registration Request.
3. HNBGW sends Access Request towards AAA.
4. Optional Allowed PLMN List is sent in Access Accept. This is not implemented in 17.0.
5. HNBGW sends HNB Register Accept to HNB. HNB broadcasts Common PLMN and the PLMN list.
6. UE1 was registered in Macro RNC with PLMN X and LAC X. UE1 has moved to HNB coverage area. UE1 does Location Update Request with Old LAI as PLMN X + LAC X.
7. HNB to know the IMSI can send Identity request to UE1.
8. UE1 will respond with Identity Response.
9. HNB sends UE Registration request with UE Identity as IMSI to HNBGW. HNBGW is considering that it always receives UE Registration Request with IMSI. MOCN will work even if IMSI is not received; only that re-routing load will increase.
10. HNBGW performs access control on the UE Registration request and sends UE Registration Accept if successful.
11. HNB prepares Initial UE Message with LAI as Common PLMN C + CN LAC "Y". The message is forwarded to HNBGW.
12. HNBGW applies selection algorithm for this Initial UE Message. As "Selected PLMN Identity" is not received HNBGW considers UE1 as non-supported UE. Assuming no NRI is received; UE retrieves MCC, MNC from the IMSI and selects the operator. HNBGW forwards the Location Update to the selected MSC. It sets the redirect attempt flag.
13. MSC is not able to handle this UE rejects it with reroute command.
14. HNBGW now forwards this request to CN2 with redirect attempt flag enabled off course.
15. MSC forwards the reroute complete to HNBGW. As the UE is non-supporting it assigns Common PLMN + CN-LAC i.e. PLMN C + LAC "Y".
16. HNBGW forwards the Location Update Accept to HNB.
17. If CN and OTA LAC are different HNB changes the LAC in Location Update Accept. i.e. PLMN C + LAC "Z".

System Management Features

This section describes following features:

- Management System Overview
- Bulk Statistics Support
- Threshold Crossing Alerts (TCA) Support
- ANSI T1.276 Compliance

Management System Overview

The system's management capabilities are designed around the Telecommunications Management Network (TMN) model for management - focusing on providing superior quality network element (NE) and element management system (Web Element Manager) functions. The system provides element management applications that can easily be integrated, using standards-based protocols (CORBA and SNMPv1, v2), into higher-level management systems - giving wireless operators the ability to integrate the system into their overall network, service, and business management systems. In addition, all management is performed out-of-band for security and to maintain system performance.

Operation and Maintenance module of chassis offers comprehensive management capabilities to the operators and enables them to operate the system more efficiently. There are multiple ways to manage the system either locally or remotely using its out-of-band management interfaces. These include:

- Using the command line interface (CLI)
- Remote login using Telnet, and Secure Shell (SSH) access to CLI through SPIO card's Ethernet management interfaces
- Local login through the Console port on SPIO card using an RS-232 serial connection
- Using the Web Element Manager application
- Supports communications through 10 Base-T, 100 Base-TX, 1000 Base-TX, or 1000 Base-SX (optical gigabit Ethernet) Ethernet management interfaces on the SPIO
- Client-Server model supports any browser (i.e. Microsoft Internet Explorer v5.0 and above or Netscape v4.7 or above, and others)
- Supports Common Object Request Broker Architecture (CORBA) protocol and Simple Network Management Protocol version 1 (SNMPv1) for fault management
- Provides complete Fault, Configuration, Accounting, Performance, and Security (FCAPS) capabilities
- Can be easily integrated with higher-level network, service, and business layer applications using the Object Management Group's (OMG’s) Interface Definition Language (IDL)

The following figure demonstrates these various element management options and how they can be utilized within the wireless carrier network.
Important: HNB-GW management functionality is enabled for console-based access by default. For GUI-based management support, refer *WEM Installation and Administration Guide*.

Important: For more information on command line interface based management, refer *Command Line Interface Reference*.

Bulk Statistics Support

The system's support for bulk statistics allows operators to choose to view not only statistics that are of importance to them, but also to configure the format in which it is presented. This simplifies the post-processing of statistical data since it can be formatted to be parsed by external, back-end processors.

When used in conjunction with the Web Element Manager, the data can be parsed, archived, and graphed.
The system can be configured to collect bulk statistics (performance data) and send them to a collection server (called a receiver). Bulk statistics are statistics that are collected in a group. The individual statistics are grouped by schema. Following is a partial list of supported schemas:

- **System**: Provides system-level statistics
- **Card**: Provides card-level statistics
- **Port**: Provides port-level statistics
- **GTP-U**: Provides GPRS Tunneling Protocol - User message statistics
- **HNB-AAL2**: Provides ATM adaptation layer 2 (AAL2) protocol level-statistics
- **HNB-ALCAP**: Provides Access Link Control Application Part (ALCAP) service-level statistics
- **CS-Network-RANAP**: Provides RANAP-level statistics for HNB-CS network
- **CS-Network-RTP**: Provides RTP protocol-level statistics for HNB-CS network
- **HNB-GW-HNBAP**: Provides HNBAP-level statistics for HNB-GW service
- **HNB-GW-HNBAP-ACCESS-CLOSED**: Provides HNBAP-level statistics filtered for HNBs registered for Closed access mode with HNB-GW service
- **HNB-GW-HNBAP-ACCESS-HYBRID**: Provides HNBAP-level statistics filtered for HNBs registered for Hybrid access mode with HNB-GW service
- **HNB-GW-HNBAP-ACCESS-OPEN**: Provides HNBAP-level statistics filtered for HNBs registered for Open access mode with HNB-GW service
- **HNB-GW-RANAP**: Provides RANAP-level statistics for HNB-GW service
- **HNB-GW-RANAP-ACCESS-CLOSED**: Provides RANAP-level statistics filtered for HNBs registered for Closed access mode with HNB-GW service
- **HNB-GW-RANAP-ACCESS-HYBRID**: Provides RANAP-level statistics filtered for HNBs registered for Hybrid access mode with HNB-GW service
- **HNB-GW-RANAP-ACCESS-OPEN**: Provides RANAP-level statistics filtered for HNBs registered for Open access mode with HNB-GW service
- **HNB-GW-RTP**: Provides RTP protocol-level statistics for HNB-GW service
- **HNB-GW-RUA**: Provides RUA protocol-level statistics for HNB-GW service
- **HNB-GW-RUA-ACCESS-CLOSED**: Provides RUA protocol-level statistics filtered for HNBs registered for Closed access mode with HNB-GW service
- **HNB-GW-RUA-ACCESS-HYBRID**: Provides RUA protocol-level statistics filtered for HNBs registered for Hybrid access mode with HNB-GW service
- **HNB-GW-RUA-ACCESS-OPEN**: Provides RUA protocol-level statistics filtered for HNBs registered for Open access mode with HNB-GW service
- **HNB-GW-SCTP**: Provides HNB -SCTP protocol-level statistics
- **PS-Network--RANAP**: Provides RANAP-level statistics for HNB-PS network
- **SCCP**: Provides SCCP service-level statistics at system-level
- **SS7Link**: Provides SS7 link configuration related statistics at system-level
- **SS7 Routing Domain**: Provides SS7 Routing domain configuration related statistics at system level
The system supports the configuration of up to 4 sets (primary/secondary) of receivers. Each set can be configured with to collect specific sets of statistics from the various schemas. Statistics can be pulled manually from the IMG or sent at configured intervals. The bulk statistics are stored on the receiver(s) in files.

The format of the bulk statistic data files can be configured by the user. Users can specify the format of the file name, file headers, and/or footers to include information such as the date, IMG host name, IMG uptime, the IP address of the system generating the statistics (available for only for headers and footers), and/or the time that the file was generated.

When the Web Element Manager is used as the receiver, it is capable of further processing the statistics data through XML parsing, archiving, and graphing.

The Bulk Statistics Server component of the Web Element Manager parses collected statistics and stores the information in the PostgreSQL database. If XML file generation and transfer is required, this element generates the XML output and can send it to a Northbound NMS or an alternate bulk statistics server for further processing.

Additionally, if archiving of the collected statistics is desired, the Bulk Statistics server writes the files to an alternative directory on the server. A specific directory can be configured by the administrative user or the default directory can be used. Regardless, the directory can be on a local file system or on an NFS-mounted file system on the Web Element Manager server.

Threshold Crossing Alerts (TCA) Support

Thresholding on the system is used to monitor the system for conditions that could potentially cause errors or outage. Typically, these conditions are temporary (i.e., high CPU utilization, or packet collisions on a network) and are quickly resolved. However, continuous or large numbers of these error conditions within a specific time interval may be indicative of larger, more severe issues. The purpose of thresholding is to help identify potentially severe conditions so that immediate action can be taken to minimize and/or avoid system downtime.

The system supports Threshold Crossing Alerts for certain key resources such as CPU, memory, number of sessions etc. With this capability, the operator can configure threshold on these resources whereby, should the resource depletion cross the configured threshold, a SNMP Trap would be sent.

The following thresholding models are supported by the system:

- **Alert**: A value is monitored and an alert condition occurs when the value reaches or exceeds the configured high threshold within the specified polling interval. The alert is generated then generated and/or sent at the end of the polling interval.

- **Alarm**: Both high and low threshold are defined for a value. An alarm condition occurs when the value reaches or exceeds the configured high threshold within the specified polling interval. The alert is generated then generated and/or sent at the end of the polling interval.

Thresholding reports conditions using one of the following mechanisms:

- **SNMP traps**: SNMP traps have been created that indicate the condition (high threshold crossing and/or clear) of each of the monitored values.

 Generation of specific traps can be enabled or disabled on the chassis. Ensuring that only important faults get displayed. SNMP traps are supported in both Alert and Alarm modes.

- **Logs**: The system provides a facility called threshold for which active and event logs can be generated. As with other system facilities, logs are generated Log messages pertaining to the condition of a monitored value are generated with a severity level of WARNING.

 Logs are supported in both the Alert and the Alarm models.

- **Alarm System**: High threshold alarms generated within the specified polling interval are considered “outstanding” until a the condition no longer exists or a condition clear alarm is generated. “Outstanding”
alarms are reported to the system's alarm subsystem and are viewable through the Alarm Management menu in the Web Element Manager.

The Alarm System is used only in conjunction with the Alarm model.

Important: For more information on threshold crossing alert configuration, refer Thresholding Configuration Guide.

ANSI T1.276 Compliance

ANSI T1.276 specifies security measures for Network Elements (NE). In particular it specifies guidelines for password strength, storage, and maintenance security measures.

ANSI T1.276 specifies several measures for password security. These measures include:

- Password strength guidelines
- Password storage guidelines for network elements
- Password maintenance, e.g. periodic forced password changes

These measures are applicable to the systems and the Web Element Manager since both require password authentication. A subset of these guidelines where applicable to each platform will be implemented. A known subset of guidelines, such as certificate authentication, are not applicable to either product. Furthermore, the platforms support a variety of authentication methods such as RADIUS and SSH which are dependent on external elements. ANSI T1.276 compliance in such cases will be the domain of the external element. ANSI T1.276 guidelines will only be implemented for locally configured operators.
Features and Functionality - Optional Enhanced Feature Software

This section describes the optional enhanced features and functions support with HNB-GW service.

Important: Some of the following features may require the purchase of an additional license to implement the functionality with the HNB-GW service.

This section describes the following features:

- Dynamic RADIUS Extensions (Change of Authorization)
- IP Security (IPSec)
- Session Recovery
- Web Element Management System

Dynamic RADIUS Extensions (Change of Authorization)

Dynamic RADIUS extension support provide operators with greater control over subscriber PDP contexts by providing the ability to dynamically redirect data traffic, and or disconnect the PDP context.

This functionality is based on the RFC 3576, Dynamic Authorization Extensions to Remote Authentication Dial In User Service (RADIUS), July 2003 standard.

The system supports the configuration and use of the following dynamic RADIUS extensions:

- **Change of Authorization**: The system supports CoA messages from the AAA server to change data filters associated with a subscriber session. The CoA request message from the AAA server must contain attributes to identify NAS and the subscriber session and a data filter ID for the data filter to apply to the subscriber session.

- **Disconnect Message**: The DM message is used to disconnect subscriber sessions in the system from a RADIUS server. The DM request message should contain necessary attributes to identify the subscriber session.

The above extensions can be used to dynamically re-direct subscriber PDP contexts to an alternate address for performing functions such as provisioning and/or account set up. This functionality is referred to as Session Redirection, or Hotlining.

Session redirection provides a means to redirect subscriber traffic to an external server by applying ACL rules to the traffic of an existing or a new subscriber session. The destination address and optionally the destination port of TCP/IP or UDP/IP packets from the subscriber are rewritten so the packet is forwarded to the designated redirected address.

Return traffic to the subscriber has the source address and port rewritten to the original values. The redirect ACL may be applied dynamically by means of the Radius Change of Authorization (CoA) extension.

Important: For more information on dynamic RADIUS extensions support, refer CoA, RADIUS, And Session Redirection (Hotlining) in this guide.
IP Security (IPSec)

IP Security (IPSec) provides a mechanism for establishing secure tunnels from mobile subscribers to pre-defined endpoints (i.e. enterprise or home networks) in accordance with the following standards:

- RFC 2401, Security Architecture for the Internet Protocol
- RFC 2402, IP Authentication Header (AH)
- RFC 2406, IP Encapsulating Security Payload (ESP)
- RFC 2409, The Internet Key Exchange (IKE)
- RFC 3193, Securing L2TP using IPSEC, November 2001

IP Security (IPSec) is a suite of protocols that interact with one another to provide secure private communications across IP networks. These protocols allow the system to establish and maintain secure tunnels with peer security gateways.

IPSec tunnel supports AAA and DHCP address overlapping. Address overlapping is meant for multiple customers using the same IP address for AAA/DHCP servers. The AAA and DHCP control messages are sent over IPSec tunnels and AAA/DHCP packets required to be encrypted are decided as per the ACL configuration done for specific session.

Important: For more information on IPSec configuration, refer to the HNB-GW Service Configuration section. Refer to the StarOS IP Security (IPSec) Reference for additional information.

Session Recovery

The Session Recovery feature provides seamless failover and reconstruction of subscriber session information in the event of a hardware or software fault within the system preventing a fully connected user session from being disconnected.

Session recovery is performed by mirroring key software processes (e.g. session manager and AAA manager) within the system. These mirrored processes remain in an idle state (in standby-mode), wherein they perform no processing, until they may be needed in the case of a software failure (e.g. a session manager task aborts). The system spawns new instances of “standby mode” session and AAA managers for each active Control Processor (CP) being used.

Additionally, other key system-level software tasks, such as VPN manager, are performed on a physically separate packet processing card to ensure that a double software fault (e.g. session manager and VPN manager fails at same time on same card) cannot occur. The packet processing card used to host the VPN manager process is in active mode and is reserved by the operating system for this sole use when session recovery is enabled.

The additional hardware resources required for session recovery include a standby System Processor Card (SPC) and a standby packet processing card.

There are two modes for Session Recovery.

- **Task recovery mode:** Wherein one or more session manager failures occur and are recovered without the need to use resources on a standby packet processing card. In this mode, recovery is performed by using the mirrored “standby-mode” session manager task(s) running on active packet processing cards. The “standby-mode” task is renamed, made active, and is then populated using information from other tasks such as AAA manager.

- **Full packet processing card recovery mode:** Used when a packet processing card hardware failure occurs, or when a packet processing card migration failure happens. In this mode, the standby packet processing card is made active and the “standby-mode” session manager and AAA manager tasks on the newly activated packet processing card perform session recovery.
Session/Call state information is saved in the peer AAA manager task because each AAA manager and session manager task is paired together. These pairs are started on physically different packet processing cards to ensure task recovery.

Important: For more information on this feature, refer to the Session Recovery chapter in the System Administration Guide.

Web Element Management System

Provides a Graphical User Interface (GUI) for performing Fault, Configuration, Accounting, Performance, and Security (FCAPS) management of the system.

The Web Element Manager is a Common Object Request Broker Architecture (CORBA)-based application that provides complete Fault, Configuration, Accounting, Performance, and Security (FCAPS) management capability for the system.

For maximum flexibility and scalability, the Web Element Manager application implements a client-server architecture. This architecture allows remote clients with Java-enabled web browsers to manage one or more systems via the server component which implements the CORBA interfaces. The server component is fully compatible with the fault-tolerant Sun® Solaris® operating system.

The following figure demonstrates various interfaces between the Cisco Web Element Manager and other network components.

Figure 8. Web Element Manager Network Interfaces

Important: For more information on WEM support, refer to the WEM Installation and Administration Guide.
How HNB-GW Works

This section provides information on the function and procedures of the HNB-GW in a wireless network and presents message flows for different stages of session setup.

The following procedures are supported in this release:

- HNB Provisioning and Registration Procedure
- UE Registration Procedure
- Iu Connection Procedures
- Paging and Serving RNS Relocation Procedures
- RANAP Reset Procedures

HNB Provisioning and Registration Procedure

This section describes the call flow for HNB provisioning and registration procedure.

The following figure and the text that follows describe the message flow for HNB provisioning and registration with HNB-GW procedure.

Figure 9. HNB Provisioning and Registration Setup Call Flow
1. HNB initialization is performed to obtain HNB configuration from the HNB Management System (HMS). Similarly, HNB-GW discovery is performed to obtain the initial serving HNB-GW information.

2. A secure tunnel is established from the HNB to the Security Gateway.

3. Location verification shall be performed by the HMS based on information sent by the HNB (e.g. macro neighbor cell scans, global navigational satellite system type of information etc.). HMS determines the serving elements and provides the HNB-GW, HMS and Security Gateway to the HNB. The HMS also provisions configuration parameters to the HNB only after successful location verification in the HMS.

4. Reliable transport setup (SCTP) completed and the HNB sets up a SCTP transport session to a well-defined port on the serving HNB-GW. HNB Registration procedure started.

5. The HNB attempts to register with the serving HNB-GW using a HNB-REGISTER-REQUEST message. This message may contains:
 - **HNB Location Information**: The HNB provides location information via use of one or more of the following mechanisms:
 - detected macro coverage information (e.g. GERAN and/or UMTS cell information)
 - geographical co-ordinates (e.g. via use of GPS, etc)
 - Internet connectivity information (e.g. IP address).
 - **HNB Identity**: the HNB has a globally unique and permanent identity.
 - **HNB Operating Parameters**: Such as the selected LAC, RAC, SAC, etc.

6. The HNB-GW uses the information from the HNB-REGISTER-REQUEST message to perform access control of the HNB (e.g. whether a particular HNB is allowed to operate in a given location, etc). If the HNB-GW accepts the registration attempt the PLMN-ID received in the request shall be used to lookup the PLMN to RNC id mapping table and corresponding RNC-ID shall be returned in the HNB-REGISTER-ACCEPT message else the HNB-GW may reject the registration request (e.g. due to network congestion, blacklisted HNB, unauthorized HNB location, etc). In reject case, the HNB-GW shall respond with a HNB-REGISTER-REJECT indicating the reject cause.

Important: The HNB shall start broadcasting only after successful registration with the HNB-GW.

UE Registration Procedure

This section describes the UE registration procedures for HNB provides means for the HNB to convey UE identification data to the HNB-GW in order to perform access control for the UE in the HNB GW. The UE Registration also informs the HNB-GW of the specific HNB where the UE is located.

The UE registration procedure generally triggers when the UE attempts to access the HNB through an initial NAS message and there is no context id in the HNB for specific UE.

UE Registration procedure is described for following scenarios:

- **UE Registration Procedure of Non-CSG UEs or Non-CSG HNBs**

UE Registration Procedure of Non-CSG UEs or Non-CSG HNBs

This procedure is applicable for non-CSG UEs or HNBs.

The following figure and the text that follows describe the message flow for UE registration procedure of Non-CSG UEs or Non-CSG HNBs:
How HNB-GW Works

1. Upon camping on the HNB, the UE initiates an initial NAS procedure (e.g. LU Procedure) by establishing an RRC connection with the HNB. UE capabilities are reported to the HNB as part of the RRC Connection establishment procedure.

2. The UE then transmits a RRC Initial Direct Transfer message carrying the initial NAS message (e.g. Location Updating Request message) with identity (IMSI or TMSI).

3. The HNB checks UE capabilities provided in step 1, if these indicate that CSG is not supported and if the identity of the UE (provided during RRC Connection Establishment) is unknown at the HNB being accessed, i.e. no Context id exists for the UE, the HNB initiates UE registration towards HNB-GW (step 6-8).

4. Before starting the UE Registration procedure, HNB optionally triggers the Identification procedure asking for the UE IMSI, if such identity is not provided during the RRC Connection Establishment. If the HNB has a context id for the UE, the UE registration procedure is not performed nor the Identification procedure.

5. The HNB may optionally perform access control based on IMSI and provided access control list.

Figure 10. UE Registration Call Flow for Non-CSG UEs or Non-CSG HNBs
6. The HNB attempts to register the UE on the HNB-GW by transmitting the UE-REGISTER-REQUEST. The message contains at a minimum:

- **UE Identity**: IMSI of the (U)SIM associated with the UE and the indication about UE capabilities provided in step 1.

Important: The UE IMSI provided in the UE-REGISTER message is unauthenticated.

7. The HNB-GW checks UE capabilities and if these indicate that CSG is not supported the HNB-GW shall perform access control for the particular UE attempting to utilize the specific HNB.

8. If the HNB-GW accepts the UE registration attempt it shall allocate a context-id for the UE and respond with a UE-REGISTER-ACCEPT message, including the context-id, to the HNB. If the HNB-GW chooses to not accept the incoming UE registration request then the HNB-GW shall respond with a UE-REGISTRATION-REJECT message.

9. The HNB then sends a RUA (RANAP User Adaptation) CONNECT message containing the RANAP Initial UE message to HNB-GW.

10. The reception of the RUA CONNECT message at the HNB-GW triggers the setup of SCCP connection by the HNB-GW towards the CN. HNB-GW forwards the Initial UE Message to CN.

11. The CN response with a SCCP Connection Confirm message to HNB-GW.

12. The UE then continue with the NAS procedure (e.g. Location Updating procedure) towards the CN, via HNB and the HNB-GW.

Iu Connection Procedures

This section describes call flow for Iu connection procedures on HNB-GW.

Following procedure call flows are described for Iu connection procedures between HNB, HNB-GW, and SGSN/MSC in core network:

- Iu Connection Establishment Procedure
- Network Initiated Iu Connection Release Procedure

Iu Connection Establishment Procedure

This procedure is applicable for establishment of IuH and IuPS/IuCS connection between HNB to HNB-GW and HNB-GW to SGSN/MSC in core network.

The following figure and the text that follows describe the message flow for an Iu connection establishment procedure.
1. Upon receiving of UE-REGISTER-ACCEPT message from HNB-GW, the HNB then sends a RUA CONNECT message to HNB-GW containing the RANAP Initial UE message.
2. The reception of the RUA CONNECT message at the HNB-GW triggers the setup of SCCP connection by the HNB-GW towards the CN (SGSN/MSC). HNB-GW forwards the Initial UE Message.
3. The CN responds with a SCCP Connection Confirm message.
4. The UE then continue with the authentication and security procedures towards the CN, via HNB and the HNB-GW.
5. The SGSN/MSC performs Direct Transfer procedure with HNB-GW and sends SCCP-DATA-FORM1 REQ to HNB-GW.
6. The HNB-GW uses the information received in Direct Transfer procedure from CN and forwards the same to HNB through RUA-DIRECT-TRANSFER message.
7. On successful acceptance of RUA-DIRECT-TRANSFER message the HNB responds to HNB-GW and sends RUA-DIRECT-TRANSFER Response message to HNB-GW.
8. On reception of successful acceptance of RUA-DIRECT-TRANSFER message from HNB, the HNB-GW sends SCCP-DATA-FORM1 (Direct Transfer) Response message to CN (SGSN/MSC). This completes the establishment of IuH and IuPS/IuCS connection through HNB, HNB-GW, and SGSN/MSC in core network.
Network Initiated Iu Connection Release Procedure

This procedure is applicable for release of IuH and IuPS/IuCS connection between HNB to HNB-GW and HNB-GW to SGSN/MSC in core network.

The following figure and the text that follows describe the message flow for an Iu connection release procedure initiated by CN (SGSN/MSC).

Figure 12. Network Initiated Iu Connection Release Call Flow

1. User session is established between UE and CN via HNB and HNB-GW over Iu interface and CN (SGSN/MSC) starts RANAP Iu Release procedure with HNB-GW and sends SCCP-DATA-FORM1 REQ with RANAP Iu Release command to HNB-GW.
2. The HNB-GW uses the information received in SCCP-DATA-FORM1 REQ with RANAP Iu Release procedure from CN and forwards the same to HNB through RUA-DIRECT-TRANSFER message with RANAP Iu Release command.
3. On reception of RANAP Iu Release command in RUA-DIRECT-TRANSFER message the HNB triggers the RCC Connection Release procedure and responds to HNB-GW with RANAP Iu Release Complete command in RUA-DISCONNECT Response message.
4. On reception of successful RANAP Iu Release Complete command in RUA-DISCONNECT Response message from HNB, the HNB-GW sends RANAP Iu Release Complete command in SCCP-DATA-FORM1 Response message to CN (SGSN/MSC).
5. On reception of RANAP Iu Release Complete command in SCCP-DATA-FORM1 Response message from HNB-GW, CN sends SCCP-RELEASED message to HNB-GW and triggers the associated SCCP connection. On reception of SCCP-RELEASED message from CN, the HNB-GW sends RUA-DISCCONNECT message to HNB and disconnect the IuH connection with HNB.

6. After successful completion of RUA-DISCCONNECT procedure and IuH connection release, HNB-GW sends SCCP-RELEASE-COMPLETE message to CN and HNB-GW confirms the IuPS/IuCS connection released between HNB-GW and CN.

Paging and Serving RNS Relocation Procedures

This section describes the call flow for network-initiated paging and SRNS relocation procedures on HNB-GW.

Following procedure call flows are described for Paging and SRNS relocation procedures between HNB, HNB-GW, and SGSN/MSC in core network:

- Paging Procedure
- SRNS Relocation Procedure

Paging Procedure

This procedure is applicable for establishment of IuH and IuPS/IuCS connection between HNB to HNB-GW and HNB-GW to SGSN/MSC in core network.

The following text describes the call flow for Paging procedure on HNB-GW:

1. HNB-GW receives Paging from SGSN/MSC. HNB-GW finds out if any UE is registered with that IMSI.
2. If a UE is registered then HNB-GW sends the Paging message to the HNB through which the UE is registered.
3. If no registered UE is found then HNB-GW finds out the list of HNBs which have IMSI received in the message in their respective Whitelist.
4. If one or more HNBs were found, and Paging message contained LAI, then HNB-GW compares the HNB’s PLMN-ID and LAC values against LAI received in the Paging. The HNB which do not have matching values is dropped from this list.
5. If one or more HNBs were found, and Paging message contained RAI, then HNB-GW compares the HNB’s PLMN-ID, LAC and RAC values against RAI received in the Paging. The HNB which do not have matching values is dropped from this list.
6. If Paging message did not have Paging-area then list of HNBs is same as what was found in step 1 otherwise list of HNBs is as found in step 2 or step 3.
 - If this list is empty then Paging message is dropped. Otherwise HNB-GW sends Paging message to these HNBs.

SRNS Relocation Procedure

This procedure is applicable for intra-CN or inter-CN handover procedure between HNB to HNB-GW and HNB-GW to SGSN/MSC in core network.

The following text describes the call flow for SRNS relocation procedure on HNB-GW:

1. HNB-GW receives Relocation-Request from SGSN/MSC in case subscriber moves from Macrocell to Femtocell in a connected mode.
2. If the request does not contain IMSI (i.e. for an emergency call), HNB-GW sends Relocation-Request-Reject with an appropriate cause.
3. If the request contains IMSI, HNB-GW finds the list of registered HNBs which have this IMSI in their whitelist. If there is no such HNB found, HNB-GW sends Relocation-Request-Reject with appropriate cause.
4. If there is only one such HNB found which has this IMSI in its white-list, HNB-GW sends Relocation-Request to this HNB.
5. If there are more than one such HNBs found which have this IMSI in their whitelist, then HNBGW looks for Home-HNB for this IMSI. If there are more than one Home-HNB found then HNB-GW sends Relocation-Request-Reject with appropriate cause.
6. If there are multiple HNBs registered which have this IMSI in their whitelist but only one Home-HNB found, HNBGW sends Relocation-Request to this HNB.

RANAP Reset Procedures

This section describes the call flow for various RANAP Reset procedures supported in HNB-GW.
Following procedure call flows are described for RANAP Reset procedures between HNB, HNB-GW, and SGSN/MSC in core network:

- HNB Initiated RANAP Reset Procedure
- CN Initiated RANAP Reset Procedure
- HNB-GW Initiated RANAP Reset Procedure

HNB Initiated RANAP Reset Procedure

This procedure is applicable for HNB-initiated RANAP Reset procedure between HNB, HNB-GW, and SGSN/MSC in core network.

The following text describes the call flow for HNB-initiated RANAP Reset procedure:

1. HNB sends RANAP-RESET command message to HNB-GW for a session.
2. HNB-GW identifies the all affected Iu connection for particular HNB and sends RESET-ACK message to HNB.
3. HNB-GW sends SCCP_Released (SCCP-RLSD) message to CN to release the SCCP connection for each affected Iu connection for particular HNB.
4. CN (SGSN/MSC) sends the SCCP_Release_Complete (SCCP-RLC) message to HNB-GW and release the SCCP connection for requested HNB.

CN Initiated RANAP Reset Procedure

This procedure is applicable for HNB-initiated RANAP Reset procedure between HNB, HNB-GW, and SGSN/MSC in core network.

The following text describes the call flow for HNB-initiated RANAP Reset procedure:

1. CN (SGSN/MSC) sends RANAP-RESET command message to HNB-GW for a session.
2. On receiving RANAP-RESET from CN, the HNB-GW starts Guard timer for configured timeout duration.
3. HNB-GW identifies the all affected Iu connections and sends RUA-DISCONNECT message to HNB.
4. On expiry of Guard timer the HNB-GW sends the RESET-ACK message to CN.

HNB-GW Initiated RANAP Reset Procedure

This procedure is applicable for HNB-GW-initiated RANAP Reset procedure between HNB, HNB-GW, and SGSN/MSC in core network.

The HNB-GW initiates RESET towards CN node in following scenarios:
The HNB-GW is reloaded or service restarted and SCCP Subsystem Number (SSN) allowed from CN (SGSN/MSC) node is received.

The received SSN Prohibited or Point-code Address Inaccessible indication comes for a CN node, HNB-GW start a configurable timer.

- If SSN allowed indication comes before timer expires, the timer is stopped.
- On timer expiry HNB-GW deletes all SCCP connections towards the CN node.
- If SSN Allowed indication comes after timer expiry, HNB-GW sends RANAP-RESET command message to the CN node.

The RANAP-RESET from HNB-GW is sent only if HNB-GW-initiated RANAP-RESET is configured in HNB-GW service.

CBS Call Procedures

This section describes the HNB/HNB-GW requirements for Cell Broadcasting Service (CBS) in addition to the network-initiated call procedures for CBS.

HNB Requirements for CBS

Following are the requirements from HNB side for CBS to take place:

- HNB includes “Service Area for Broadcast” information element (IE) in HNB REGISTRATION REQUEST message.
- “Service Area” in the SABP messages needs to be same as that of HNB Register request.
- HNB Processes SABP messages received from HNB-GW and responds back with success/failure to HNB-GW.
- HNB is responsible for storage and scheduling of CBS messages.
- HNB is responsible for initiating PAGING towards UE when HNB receives WRITE-REPLACE message with Paging-ETWS-Indicator.
- HNB responds with ERROR Indication procedure if it receives SABP messages from HNB-GW which can not be detected due to syntactic error. HNB also includes message identifier in the error indication messages for which error has been detected.
- After successful registration with HNB-GW, HNB is responsible for initiating RESTART procedure towards HNB-GW. HNB is also responsible to send RESTART message to HNB-GW when broadcast related restart situation occurs at HNB.
- Before initiating Deregistration request towards HNB-GW, HNB sends FAILURE indication towards HNB-GW to indicate broadcast related unavailability in this service area. HNB is also responsible for sending FAILURE towards HNB-GW when broadcast related failure is detected at HNB.

HNB-GW requirement for CBS

Following are the requirements from HNB-GW side for CBS to take place:

- HNB-GW supports one HNB per Broadcast Service Area.
- TCP Handling
 - HNB-GW supports TCP connection towards one Cell Broadcasting Center (CBC).
• HNB-GW supports two transport options for TCP connection: ATM Transport (TCP over IP over AAL5 over ATM) and IP Transport (TCP over IP).

Important: Currently, the ATM Transport support is not available.

• TCP Destination Port number for SABP messages is 3452.

• HNB-GW initiates TCP connection towards CBC when there is information (e.g. failure or restart indications) that needs to be sent from HNB-GW to the CBC and there is no existing TCP connection.

• If HNB-GW has established the connection then it will also be responsible to release the TCP connection.

• When the sending entity (HNB-GW/CBC) sends SABP messages on an existing TCP connection, it (HNB-GW or CBC) uses TCP destination port number either 3452 (if it was the initiator of this TCP connection), or the TCP source port number that was received from the peer entity that had initiated this existing TCP connection.

Important: HNB-GW’s support for IPv6 (IP dual stack support) and Differentiated Services Code Point (DSCP) for IuBC interface is not available as of now.

• SABP Handling

 • SABP Elementary procedures (EP) may be invoked independently of each other as standalone procedures, which can be active in parallel. HNB-GW supports Multiple SABP EPs active in parallel.

 • HNB-GW supports following Elementary Procedures (EP) divided into Class 1 and Class 2; and encoding and decoding of SABP messages:

 1. Class 1 EPs

<table>
<thead>
<tr>
<th>Elementary Procedure</th>
<th>Initiating Message</th>
<th>Successful Outcome Response Message</th>
<th>Unsuccessful Outcome Response Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write-Replace</td>
<td>WRITE-REPLACE</td>
<td>WRITE-REPLACE COMPLETE</td>
<td>WRITE-REPLACE FAILURE</td>
</tr>
<tr>
<td>Kill</td>
<td>KILL</td>
<td>KILL COMPLETE</td>
<td>KILL FAILURE</td>
</tr>
<tr>
<td>Load Status Enquiry</td>
<td>LOAD QUERY</td>
<td>LOAD QUERY COMPLETE</td>
<td>LOAD QUERY FAILURE</td>
</tr>
<tr>
<td>Message Status Query</td>
<td>MESSAGE QUERY</td>
<td>MESSAGE QUERY COMPLETE</td>
<td>MESSAGE QUERY FAILURE</td>
</tr>
<tr>
<td>Reset</td>
<td>RESET</td>
<td>RESET COMPLETE</td>
<td>RESET FAILURE</td>
</tr>
</tbody>
</table>

 2. Class 2 EPs

<table>
<thead>
<tr>
<th>Elementary Procedure</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart Indication</td>
<td>RESTART</td>
</tr>
<tr>
<td>Failure Indication</td>
<td>FAILURE</td>
</tr>
</tbody>
</table>
How HNB-GW Works

<table>
<thead>
<tr>
<th>Elementary Procedure</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Indication</td>
<td>ERROR INDICATION</td>
</tr>
</tbody>
</table>

- **Handling of Class 1 EPs**:
 - In case of Class 1 EPs, HNB-GW receives SABP messages from CBC, extracts Service Area List from SABP message and sends this message to corresponding HNBs in provided service areas.
 - While sending the SABP messages to HNB, HNB-GW modifies service area list and includes only that service area to which HNB belongs.
 - HNB-GW receives successful/failure responses from HNBs within service areas and sends collective response for these service areas to CBC.

 Important: HNB-GW supports maximum of 1000 service areas (SAs) per SABP message. If more than 1000 SAs need to be sent, then HNB-GW sends multiple SABP messages in chunks of 1000 SAs per SABP message.

- **Handling of Class 2 EPs**
 - In case of Class 2 EPs, HNB-GW receives SABP messages from HNB and sends it to CBC.
 - HNB initiates the RESTART and FAILURE procedures and HNB-GW transparently passes it to the CBC.
 - ERROR INDICATION is initiated by both HNB-GW and HNB.

Call Flows: Handling Class 2 Elementary Procedures

ERROR Indication

Following figure and text points describe the ERROR Indication procedure:
The ERROR Indication procedure is initiated by the HNB and HNB-GW to report detected errors in the incoming SABP message, provided they cannot be reported by an appropriate failure message.

Two types of ERROR Indication messages are possible:

3. **Case 1**: HNB-GW detects Error in the incoming message from CBC. HNB-GW sends ERROR indication to CBC. HNB-GW includes message identifier, for which error has been detected, in ERROR indication.

4. **Case 2**: Incoming SABP message from CBC is forwarded to HNB by HNB-GW. HNB detects error in this message which must have been detected at HNB-GW. In this case:
 - HNB sends ERROR indication with message identifier to HNB-GW.
 - HNB-GW takes no action, rather the SABP timeout for that message identifier takes care of sending the failure response towards the CBC from HNB-GW.

RESTART

Following figure and text points describe the RESTART call procedure:
How HNB-GW Works

Figure 14. RESTART Message Call Flow

1. After successful registration with HNB-GW, HNB initiates RESTART towards HNB-GW. HNB-GW transparently forwards this message to CBC.
2. The service area (SA) for broadcast in HNB Registration request is optional. If SA received in RESTART is different from the SA for broadcast in HNB Registration request then SA in RESTART is stored as the Broadcast SA at HNB-GW and the same is forwarded to CBC.
3. Class 1 SABP messages received from CBC are forwarded to HNB after receiving the HNB registration with SA for broadcast and RESTART from HNB.
4. While sending the RESTART towards the CBC, if TCP connection with CBC is not established, HNB-GW makes one attempt to initiate the TCP connection with CBC.

During the lifetime of Registered HNB, multiple RESTART requests can be received by HNB-GW. HNB-GW forwards these registration requests to the CBC. RESTART Indication may be triggered from the CBC by a RESET request also. This allows recovering from situations where a PDU may occasionally be lost.

FAILURE

Following figure and text points describe the FAILURE call procedure:
1. Before initiating Deregistration request towards HNB-GW, HNB sends FAILURE indication towards HNB-GW to indicate broadcast related failure/unavailability in this SA. In certain cases, like HNB power failure or abrupt shutdown, HNB might not send the failure. In such cases, HNB-GW tracks HNB failures and sends FAILURE to CBC on behalf of HNB.

2. If SA received in FAILURE is different from the SA in RESTART then Failure is dropped at HNB-GW. Appropriate Error log and Debug stats is updated in this case.

3. While sending the FAILURE towards the CBC, If TCP connection with CBC is not established, HNB-GW makes an attempt to initiate the TCP connection with CBC.

4. After Receiving the FAILURE for the HNB, HNB-GW forwards it to the CBC. Any SABP message received from CBC after this FAILURE is responded back with the FAILURE for this HNB/SA.

5. HNB-GW drops any FAILURE and ERROR indication message received from HNB after the Failure.

Call Flows: Handling Class 1 Elementary Procedures

WRITE-REPLACE
This procedure broadcasts the new information or replaces a message already broadcast to a selected service area or areas. Following figure and text points describe the WRITE-REPLACE call procedure:
1. The CBC uses the presence and content of the Old-Serial-Number and New-Serial-Number fields in this primitive to instruct the HNB-GW for WRITE and REPLACE procedures as follows:

 Write Operation - Old-Serial-Number not present/New-Serial-Number present

 Replace Operation - Old-Serial-Number present/New-Serial-Number present

2. HNB-GW receives WRITE-REPLACE message from CBC and forward this message to the corresponding HNBs in SERVICE AREA LIST provided in the WRITE-REPLACE message.

3. While forwarding message to HNB, HNB-GW modifies WRITE-REPLACE message SERVICE AREA LIST IE. This list only contains Service area to which that HNB belongs.

4. **Collision Cases**:
 - ASR5x00 allows multiple WRITE-REPLACE for particular service areas considering that these WRITE-REPLACE messages are different.
Important: Different message types are identified with different message keys which include message identifier and 12 leftmost bits of new serial number.

- If message key for two WRITE-REPLACE messages is same, then for those service areas, new WRITE-REPLACE gets forwarded to HNB and old WRITE-REPLACE transaction for this HNB/SA is removed locally.
- If TCP connection is down then the WRITE-REPLACE response to be sent to CBC can be dropped. RESET from CBC takes care of such situations.

KILL

This procedure stops the broadcasting of the indicated messages. Following figure and text points describe the KILL call procedure:

Figure 17. KILL Message Call Flow

1. Decode Msg and Get SERVICE-AREA LIST IE
2. Find out list of HNBs from SAIs
3. If HNB is not found for particular Service area then put that Service Area in fail list
4. Fwd the KILL msg to corresponding HNBs
5. Collect Responses from all HNBs for this Msg identifier
6. SABP WAIT TIMEIR
7. Consider failure for the HNBs for which response is not received within configured time value.
8. If (At least One service area failed), then the HNB-GW will send KILL FAILURE with list of both failed and completed Service Area
 Else
 Send KILL COMPLETE
1. HNB-GW receives KILL message from CBC and forwards this message to the corresponding HNBs in SERVICE AREA LIST provided in the KILL message.
2. While forwarding message to HNB, HNB-GW modifies KILL message SERVICE AREA LIST IE. This updated list contains only Service area to which that HNB belongs.
3. **Collision Cases**
 - ASR5x00 allows multiple KILL for a particular service area, considering that these KILL messages are different.

Important: Different message types are identified with different message keys which include message identifier and 12 leftmost bits of old serial number.

- If message key for two KILL messages is same, then for those service areas, new KILL is dropped.
- If TCP connection is down then the KILL response to be sent to CBC can be dropped. RESET from CBC takes care of such situations. Other collisions are either taken care by HNB or by SABP timeout.

MESSAGE STATUS QUERY

The MESSAGE STATUS QUERY procedure is used by the CBS to obtain the status of a broadcast message. Following figure and text points describe the MESSAGE STATUS QUERY call procedure:
1. CBC send the MESSAGE-STATUS-QUERY to HNB-GW.
2. HNB-GW forwards it to corresponding HNBs in SERVICE AREA LIST provided in the message.
3. Collision Cases:
 - ASR5x00 allows multiple KILL for a particular service area, considering that these KILL messages are different.

Important: Different message types are identified with different message keys which include message identifier and 12 leftmost bits of old serial number.
• If message key for two KILL messages is same, then for those service areas, new MESSAGE-STATUS-QUERY is dropped.
• If TCP connection is down then the Message Status Query Complete to be sent to CBC is dropped. RESET message from CBC takes care of such situations. Other collisions are either taken care by HNB or by SABP timeout.

LOAD QUERY

The LOAD-QUERY procedure is used to obtain the current permissible bandwidth available for broadcast within particular Service Area(s). Following figure and text points describe the LOAD-QUERY call procedure:
1. CBC sends LOAD-QUERY message to HNB-GW.
2. HNB-GW forwards the LOAD-QUERY enquiry message to corresponding HNBs in SERVICE AREA LIST provided in the message.
3. **Collision Case:**
 - At a Time, ASR5x00 allows One Load query for a particular service area. If one LOAD QUERY is in process then in that time frame other load queries are dropped for those service areas.
 - If TCP connection is down then the response to be sent to CBC can be dropped. RESET message from CBC takes care of such situation. Other collisions are either taken care by HNB or by SABP timeout.

RESET

The purpose of the Reset procedure is to end broadcasting in one or more Service Areas in the RNC. This procedure is also used by CBC in case of CBC recovery. Following figure and text points describe the RESET call procedure:
1. CBC sends RESET message to HNB-GW.
2. HNB-GW forwards it to the corresponding HNBs in the SERVICE AREA LIST provided in the message.
3. HNB either sends RESTART or Failure message in acknowledgement to the RESET msg received from CBC apart from sending the Reset response.
4. Collision Case:
 - At a Time, ASR5x00 allows One RESET for a particular service area. If One Reset is in process then in that timer frame other reset is dropped for those service areas.
 - If TCP connection is down then the response to be sent to CBC can be dropped. Other collisions are either taken care by HNB or by SABP timeout.
Supported Standards

The HNB-GW complies with the following standards for 3G UMTS Femto wireless data services.

- 3GPP References
- IETF References
- ITU-T Recommendations
- Object Management Group (OMG) Standards

3GPP References

- 3GPP TS 29.060 V9.0.0 (2009-09): 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface (Release 9)

IETF References

- RFC-768, User Datagram Protocol (UDP), August 1980
- RFC-791, Internet Protocol (IP), September 1982
- RFC-793, Transmission Control Protocol (TCP), September 1981
- RFC-894, A Standard for the Transmission of IP Datagrams over Ethernet Networks, April 1984
- RFC-1089, SNMP over Ethernet, February 1989
- RFC-1144, Compressing TCP/IP headers for low-speed serial links, February 1990
- RFC-1212, Concise MIB Definitions, March 1991
- RFC-1215, A Convention for Defining Traps for use with the SNMP, March 1991
- RFC-1224, Techniques for managing asynchronously generated alerts, May 1991
- RFC-1256, ICMP Router Discovery Messages, September 1991
- RFC-1398, Definitions of Managed Objects for the Ethernet-Like Interface Types, January 1993
- RFC-1418, SNMP over OSI, March 1993
- RFC-1570, PPP LCP Extensions, January 1994
- RFC-1643, Definitions of Managed Objects for the Ethernet-like Interface Types, July 1994
- RFC-1701, Generic Routing Encapsulation (GRE), October 1994
- RFC-1850, OSPF Version 2 Management Information Base, November 1995
- RFC-1901, Introduction to Community-based SNMPv2, January 1996
- RFC-1918, Address Allocation for Private Internets, February 1996
- RFC-1919, Classical versus Transparent IP Proxies, March 1996
- RFC-2003, IP Encapsulation within IP, October 1996
- RFC-2004, Minimal Encapsulation within IP, October 1996
- RFC-2005, Applicability Statement for IP Mobility Support, October 1996
- RFC-2118, Microsoft Point-to-Point Compression (MPPC) Protocol, March 1997
- RFC 2131, Dynamic Host Configuration Protocol
- RFC-2136, Dynamic Updates in the Domain Name System (DNS UPDATE)
- RFC-2211, Specification of the Controlled-Load Network Element Service
- RFC-2328, OSPF Version 2, April 1998
- RFC-2344, Reverse Tunneling for Mobile IP, May 1998
- RFC-2394, IP Payload Compression Using DEFLATE, December 1998
- RFC 2401, Security Architecture for the Internet Protocol
- RFC 2402, IP Authentication Header (AH)
- RFC 2406, IP Encapsulating Security Payload (ESP)
- RFC 2409, The Internet Key Exchange (IKE)
- RFC-2460, Internet Protocol Version 6 (IPv6)
- RFC-2461, Neighbor Discovery for IPv6
- RFC-2462, IPv6 Stateless Address Auto configuration
- RFC-2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
- RFC-2486, The Network Access Identifier (NAI), January 1999
- RFC-2571, An Architecture for Describing SNMP Management Frameworks, April 1999
- RFC-2572, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP), April 1999
- RFC-2573, SNMP Applications, April 1999
Supported Standards

- RFC-4594, Configuration Guidelines for DiffServ Service Classes
- RFC-2597, Assured Forwarding PHB Group, June 1999
- RFC-2598, Expedited Forwarding PHB, June 1999
- RFC-2618, RADIUS Authentication Client MIB, June 1999
- RFC-2620, RADIUS Accounting Client MIB, June 1999
- RFC-2661, Layer Two Tunneling Protocol “L2TP”, August 1999
- RFC-2697, A Single Rate Three Color Marker, September 1999
- RFC-2698, A Two Rate Three Color Marker, September 1999
- RFC-2784, Generic Routing Encapsulation (GRE) - March 2000, IETF
- RFC-2809, Implementation of L2TP Compulsory Tunneling via RADIUS, April 2000
- RFC-2845, Secret Key Transaction Authentication for DNS (TSIG), May 2000
- RFC-2865, Remote Authentication Dial In User Service (RADIUS), June 2000
- RFC-2866, RADIUS Accounting, June 2000
- RFC-2867, RADIUS Accounting Modifications for Tunnel Protocol Support, June 2000
- RFC-2868, RADIUS Attributes for Tunnel Protocol Support, June 2000
- RFC-2869, RADIUS Extensions, June 2000
- RFC-4960, Stream Control Transmission Protocol
- RFC-3007, Secure Domain Name System (DNS) Dynamic Update, November 2000
- RFC-3012, Mobile IPv4 Challenge/Response Extensions, November 2000
- RFC-3056, Connection of IPv6 Domains via IPv4 Clouds, February 2001
- RFC-3101 OSPF-NSSA Option, January 2003
- RFC-3143, Known HTTP Proxy/Caching Problems, June 2001
- RFC-3193, Securing L2TP using IPSEC, November 2001
- RFC-3706, A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers, February 2004
- RFC-3543, Registration Revocation in Mobile IPv4, August 2003
- RFC 3588, Diameter Base Protocol, September 2003
- RFC 4006, Diameter Credit-Control Application, August 2005
- RFC-4306, Internet Key Exchange (IKEv2) Protocol, December 2005

ITU-T Recommendations

- ITU-T Recommendation Q.2630.1 - AAL type2 signalling protocol (Capability Set 1)
- ITU-T Recommendation Q.2630.2 - AAL type2 signalling protocol (Capability Set 2)
- ITU-T Recommendation I.361 B-ISDN ATM layer specification
- ITU-T Recommendation I.363.2 B-ISDN ATM Adaptation Layer (AAL) Specification: Type 2 AAL
- ITU-T Recommendation I.366.1 Segmentation and Reassembly Service Specific Convergence Sub-layer for the AAL type 2
- ITU-T Recommendation Q.2150.1 AAL type 2 signaling transport converter on broadband MTP
- ITU-T Recommendation E.164 - The international public telecommunication numbering plan
- ITU-T Recommendation E.191 - B-ISDN addressing

Object Management Group (OMG) Standards

- CORBA 2.6 Specification 01-09-35, Object Management Group
Chapter 2
Understanding the Service Operation

The system provides wireless carriers with a flexible solution for providing Security Gateway (SeGW) and Home-NodeB Gateway (HNB-GW) functionality for 3G UMTS networks.

The system functioning as an HNB-GW is capable of supporting the following types of subscriber sessions:

- **CS Session over IuCS**: The subscriber is provided voice, video, and CS data service on circuit switch session through MSC in CS network.

- **PS Session over IuPS**: The subscriber is provided packet switch connection with different traffic class on PS session with GSN in PS.

- **Network-initiated Sessions**: Network-initiated session procedures include Paging, RANAP-Reset, Service RNS Relocation etc. from CN side on HNB-GW for a specific subscriber session and in turn HNB-GW initiates the required procedures with HNBs and CNs.

Prior to connecting to the command line interface (CLI) and beginning the system's configuration, there are important things to understand about how the system supports these applications. This chapter provides terminology and background information that must be considered before attempting to configure the system.
Terminology

This section defines some of the terms used in the chapters that follow.

Contexts

A context is a logical grouping or mapping of configuration parameters that pertain to various physical ports, logical IP interfaces, and services. A context can be thought of as a virtual private network (VPN).

The system supports the configuration of multiple contexts. Each is configured and operates independently from the others. Once a context has been created, administrative users can then configure services, logical IP interfaces, subscribers, etc. for that context. Administrative users would then bind the logical interfaces to physical ports.

Contexts can also be assigned domain aliases, wherein if a subscriber’s domain name matches one of the configured alias names for that context, then that context is used.

Contexts on the system can be categorized as follows:

- **Source context:** Also referred to as the “ingress” context, this context provides the subscriber’s point-of-entry in the system. It is also the context in which services are configured. For example, in a 3G UMTS network, the HNB access radio network containing the Home-NodeBs (HNBs) would communicate with the system via IuH interfaces configured within the source context as part of the HNB-GW service.

- **Destination context:** Also referred to as the “egress” context, this context is where a subscriber is provided connectivity to core network (such as access to the MSC, SGSN, GGSN etc.) as configured on HNB-GW service and related services. For example, the system’s destination context would be configured with the IuCS, IuPS, Gx, Gi or IP offload interfaces facilitating subscriber data traffic to/from the core network (MSC, SGSN, GGSN) or other PDN (Mobile Data Service or Internet).

- **AAA context:** This context provides AAA functionality for subscriber bearer contexts and/or administrative user sessions and contains the policies and logical interfaces for communication between Security Gateway (SeGW) and 3GPP AAA Server or 3GPP AAA proxy (OCS/CGF/AAA/HSS) over AAA interface for authentication and authorization procedures for Femto user.

 In the roaming case, the 3GPP AAA Proxy can act as a stateful proxy between SeGW and 3GPP AAA Server. The AAA server is responsible for transfer of subscription and authentication data for authenticating/authorizing user access and UE authentication. The SeGW communicates with the AAA on the PLMN using AAA interface.

 Important: To ensure scalability, authentication functionality for subscriber sessions should not be configured in the local context.

 For administrative users, authentication functionality can either be configured in the local context or be authenticated in the same context as subscribers.

- **Local context:** This is the default context on the system used to provide out-of-band management functionality.

Logical Interfaces

This section describes the logical interface supported on HNB-GW.
Prior to allowing the flow of user data, the port must be associated with a virtual circuit or tunnel called a logical interface. A logical interface within the system is defined as the logical assignment of a virtual router instance that provides higher-layer protocol transport, such as Layer 3 IP addressing. Interfaces are configured as part of the VPN context and are independent from the physical port that will be used to bridge the virtual interfaces to the network.

Logical interfaces are assigned to IP addresses and are bound to a specific port during the configuration process. Logical interfaces are also associated with services through bindings. Services are bound to an IP address that is configured for a particular logical interface. When associated, the interface takes on the characteristics of the functions enabled by the service. For example, if an interface is bound to an HNB-GW service, it will function as an IuH interface between the SeGW (HNB-GW) service and the HNB. Services are defined later in this section.

In support of both mobile and network originated subscriber UE contexts, the HNB-GW provides the following network interface support:

- **IuH Interface**: This interface is the reference point for the control plane protocol between Home NodeB and HNB-GW. IuH uses SCTP over IPSec IKEv2 tunnel as the transport layer protocol for guaranteed delivery of signaling messages between HNB-GW and Home NodeB.

 This is the interface used by the HNB-GW to communicate with HNB on the same Femtocell Access Network. This interface serves as path for establishing and maintaining subscriber UE contexts.

 One or more IuH interfaces can be configured per system context.

- **IuCS**: This interface is the reference point in UMTS which links the HNB-GW, which acts as an RNC (Radio Network Controller), with a Mobile Switching Centre (3G MSC) in the 3G UMTS Femtocell Access Network. This interface provides an IuCS over IP or IuCS over ATM (IP over AAL5 over ATM) interface between the MSC and the RNC (HNB-GW) in the 3G UMTS Femtocell Access Network. RAN Application Part (RANAP) is the control protocol that sets up the data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or QSAAL (MTP3B/QSAAL) handle IuCS (control) for the HNB-GW.

 This is the interface used by the HNB-GW to communicate with 3G MSC on the same Public Land Mobile Network (PLMN). This interface serves as path for establishing and maintaining the CS access for Femtocell UE to circuit switched UMTS core networks.

 One or more IuCS interfaces can be configured per system context.

- **IuPS**: This interface is the reference point between HNB-GW and SGSN. This interface provides an IuPS over IP or IuPS over ATM (IP over AAL5 over ATM) interface between the SGSN and the RNC (HNB-GW) in the 3G UMTS Femtocell Access Network. RAN Application Part (RANAP) is the control protocol that sets up the data plane (GTP-U) between these nodes. SIGTRAN (M3UA/SCTP) or QSAAL (MTP3B/QSAAL) handle IuPS-C (control) for the HNB-GW.

 This is the interface used by the HNB-GW to communicate with SGSN on the same Public Land Mobile Network (PLMN). This interface serves as path for establishing and maintaining the PS access for Femtocell UE to packet switched UMTS core networks.

 One or more IuPS interfaces can be configured per system context.

- **Gi**: This interface is the reference point between HNB-GW and IP Offload Gateway. It is used by the HNB-GW to communicate with Packet Data Networks (PDNs) through IP Offload Gateway in the H-PLMN/V-PLMN. Examples of PDNs are the Internet or corporate intranets.

 One or more Gi interfaces can be configured per system context.

- **Gn**: This interface is the reference point between HNB-GW and GGSN. It is used by the HNB-GW to communicate with GGSNs on the same GPRS/UMTS Public Land Mobile Network (PLMN).

 One or more Gn interfaces can be configured per system context.

- **RADIUS**: This interface is the reference point between a Security Gateway (SeGW) and a 3GPP AAA Server or 3GPP AAA proxy (OCS/CGF/AAA/HSS) over RADIUS protocol for AAA procedures for Femto user.
In the roaming case, the 3GPP AAA Proxy can act as a stateful proxy between the SeGW and 3GPP AAA Server.

The AAA server is responsible for transfer of subscription and authentication data for authenticating/authorizing user access and UE authentication. The SeGW communicates with the AAA on the PLMN using RADIUS protocol.

One or more RADIUS interfaces can be configured per system context.

- TR-069: This interface is an application layer protocol which is used for remote configuration of terminal devices, such as DSL modems, HNBs and STBs. TR-069 provides an auto configuration mechanism between the HNB and a remote node in the service provider network termed the Auto Configuration Server. The standard also uses a combination of security measures including IKEv2 (Internet Key Exchange v2) and IPsec (IP Security) protocols to authenticate the operator and subscriber and then guarantee the privacy of the data exchanged.

One TR-069 interface can be configured per HNB node.

- DHCP: This is the interface used by the HNB-GW to communicate with a Dynamic Host Control Protocol (DHCP) Server. The system can be configured to dynamically provide IP addresses for HNBs from the DHCP server in HMS.

One or more DHCP interface can be configured per system context.

Bindings

A binding is an association between “elements” within the system. There are two types of bindings: static and dynamic. Static binding is accomplished through the configuration of the system. Static bindings are used to associate:

- A specific logical interface (configured within a particular context) to a physical port. Once the interface is bound to the physical port, traffic can flow through the context just as if it were any physically defined circuit. Static bindings support any encapsulation method over any interface and port type.
- A service to an IP address assigned to a logical interface within the same context. This allows the interface to take on the characteristics (i.e., support the protocols) required by the service. For example, a GGSN service bound to a logical interface will cause the logical interface to take on the characteristics of a Gn interface within a GPRS/UMTS network.

Dynamic binding associates a subscriber to a specific egress context based on the configuration of their profile or system parameters. This provides a higher degree of deployment flexibility as it allows a wireless carrier to support multiple services and facilitates seamless connections to multiple networks.

Services and Networks

This section describes the services configured on HNB-GW to support various functionality.

Services are configured within a context and enable certain functionality. The following services can be configured on the system:

- **HNB-GW services**: HNB-GW services are configured in Context configuration mode to support both mobile-initiated and network-requested user contexts. The HNB-GW service must be bound to a logical interface within the same context. Once bound, the interface takes on the characteristics of an IuH interface. Multiple services can be bound to the same logical interface. Therefore, a single physical port can facilitate multiple IuH interfaces.
Radio Network PLMN: The Radio Network PLMN is configured in HNB-GW service to associate PLMNs with HNB-GW.

In StarOS 12.1 and earlier, the PLMN specific configuration e.g. RNC id and association of CS or PS network shall be configured under the HNB-Radio Network PLMN configuration mode.

In StarOS Release 14.0 and later, the PLMN specific configuration e.g. RNC id and association of CS or PS network shall be configured under the HNB-CS and HNB-PS configuration mode respectively.

CS Network: CS Network is a context independent configuration to define circuit switched networks. This circuit switched network configuration provides parameters for one or more MSCs where CS-domain Iu-connections shall be routed. In a typical deployment HNB-GW is connected to only one MSC.

In StarOS 12.1 and earlier, the CS network configured at the system level need to be associated with a Radio Network PLMN configured within HNB-GW service with desired granularity; PLMN level or location-area in that PLMN.

In StarOS Release 14.0 and later, the CS network configured at the system level need to be associated with a SCCP Network configured at Global Configuration mode.

PS Network: PS Network is a context independent configuration to define packet switched networks. This packet switched network configuration provides parameters for one or more SGSN where PS-domain Iu-connections shall be routed. In a typical deployment HNB-GW is connected to only one SGSN.

In StarOS Release 12.1 and earlier, the PS network configured at the system level need to be associated with a Radio Network PLMN configured within HNB-GW service with desired granularity.

In StarOS Release 14.0 and later, the PS network configured at the system level need to be associated with a SCCP Network configured at Global Configuration mode.

GTP-U services: GTP-U services are configured in Context configuration mode in pair of two services; one for GTP-U tunnel support towards HNB on IuH interface and another for GTP-U tunnel support towards the core network on IuPS interface to communicate with SGSN respectively.

The system supports multiple GTP-U interface connections over this service. Although this service can be configured in any independent context, but for IuH interface it must be configured in the same context as HNB-GW; i.e. source context.

Following figure illustrates the relationship between services, interfaces, and contexts within the HNB-GW system for HNB access 3G UMTS networks.
The source context used to service a subscriber session is the same as the context in which the HNB-GW service is configured. Each HNB-GW service is bound to an IP address in a source context. The HNBs select which IP address to use, typically by using DNS. Once a UE has established a bearer context with an HNB-GW, the HNBs continue to use the same context as the subscriber anchored to that HNB-GW.

The destination contexts used to service a subscriber session to connect with CN.

The system determines the configuration used in destination context based on the parameter contained within the information received from HNB and also the configuration in HNB-GW service. The AAA context or AAA configuration in source context uses that context for subscriber authentication.
Chapter 3
HNB-GW Service Configuration Procedures

This chapter is meant to be used in conjunction with the other chapters that describes the information needed to configure the system to support HNB-GW functionality for use in HNB access networks.

It is recommended that you identify the options from the previous chapters that are required for your specific deployment. You can then use the procedures in this chapter to configure those options.

This chapter describes following:

- Information Required to Configure the System as an HNB-GW
- RTP Pool Configuration
- HNB-GW Service Configuration
- DSCP Marking Configuration
- DHCP Configuration
- IuCS over ATM Configuration
- Iu-Flex Configuration
- Logging Facility Configuration
- Congestion Control Configuration
- Alarm and Alert Trap Configuration
- SNMP-MIB Traps for HNB-GW Service
- Event IDs for HNB-GW Service

Important: At least one packet card must be made active prior to service configuration. Information and instructions for configuring the packet cards to be active can be found in the Configuring System Settings chapter of the System Administration Guide.

Caution: While configuring any base-service or enhanced feature, it is highly recommended to take care of conflicting or blocked IP addresses and port numbers for binding or assigning. In association with some service steering or access control features, like Access Control List configuration, use of inappropriate port number may result in communication loss. Refer respective feature configuration document carefully before assigning any port number or IP address for communication with internal or external network.
Information Required to Configure the System as an HNB-GW

This section provides a high-level series of steps and the associated configuration file examples for configuring the system to perform as an HNB-GW node in a test environment. Information provided in this section includes the following:

- Required Local Context Configuration Information
- Required System-Level Configuration Information
- Required Source Context Configuration Information
- Required Destination Context Configuration Information

Required Local Context Configuration Information

The following table lists the information that is required to configure the local context on an HNB-GW.

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Interface Configuration</td>
<td></td>
</tr>
<tr>
<td>Interface name</td>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface will be recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>IP address and subnet</td>
<td>IPv4 addresses assigned to the interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
<tr>
<td>Gateway IP address</td>
<td>Used when configuring static IP routes from the management interface(s) to a specific network.</td>
</tr>
<tr>
<td>Security administrator name</td>
<td>The name or names of the security administrator with full rights to the system.</td>
</tr>
<tr>
<td>Security administrator password</td>
<td>Open or encrypted passwords can be used.</td>
</tr>
<tr>
<td>Remote access type(s)</td>
<td>The type of remote access that will be used to access the system such as telnetd, sshd, and/or ftpd.</td>
</tr>
</tbody>
</table>
Required System-Level Configuration Information

The following table lists the information that is required to configure at the system-level Global configuration mode (context independent) to support 3G UMTS Femto support.

Table 2. Required Information for System Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS7 Routing Domain Configuration</td>
<td>An identification for SS7 routing domain and must be an integer between 1 and 12 by which the SS7 routing domain will be identified and configured. A variant can be configured for the SS7 routing domain. Some of them are:</td>
</tr>
<tr>
<td></td>
<td>• ansi: American National Standards Institute (U.S.A.)</td>
</tr>
<tr>
<td></td>
<td>• bici: Broadband Intercarrier Interface standard</td>
</tr>
<tr>
<td></td>
<td>• china: Chinese standard</td>
</tr>
<tr>
<td></td>
<td>• itu: International Telecommunication Union (ITU-T) Telecommunication Standardization Sector</td>
</tr>
<tr>
<td></td>
<td>• ntt: Japanese standard</td>
</tr>
<tr>
<td></td>
<td>• ttc: Japanese standard</td>
</tr>
<tr>
<td>Sub Service Field (SSF)</td>
<td>A network indicator in the subservice field for SS7 message signal units (MSUs). It can be configured with any of the following indicators:</td>
</tr>
<tr>
<td></td>
<td>• International</td>
</tr>
<tr>
<td></td>
<td>• National</td>
</tr>
<tr>
<td></td>
<td>• Reserved</td>
</tr>
<tr>
<td></td>
<td>• Spare</td>
</tr>
<tr>
<td>Application Server Process (ASP)</td>
<td>An M3UA Application Server Process (ASP) instance identified from 1 through 4. This instance need to configure end point address as well.</td>
</tr>
<tr>
<td>instance</td>
<td></td>
</tr>
<tr>
<td>Peer server id</td>
<td>Specifies a peer server instance to setup a SIGTRAN peer for sending and receiving M3UA traffic. Up to 49 peer servers can be defined. A peer server id configuration may contain:</td>
</tr>
<tr>
<td></td>
<td>• Routing context for peer server to use</td>
</tr>
<tr>
<td></td>
<td>• Self point code in SS7 type address</td>
</tr>
<tr>
<td></td>
<td>• Operational Mode</td>
</tr>
<tr>
<td></td>
<td>• Peer Server Process (PSP) instance</td>
</tr>
</tbody>
</table>
Required Information | **Description**
--- | ---
Peer Server Process (PSP) instance | Specifies the peer server process instance in peer server id. The instance must be an integer from 1 to 4. A PSP instance configuration need to define:
- PSP mode: client or server
- Exchange mode: double ended or single ended
- End point address in SS7 address format
- Association of ASP instance

Signaling Connection Control Part (SCCP) Network Instance Configuration

| SCCP Network Instance and variant | An identification for SCCP network instance and must be an integer between 1 and 12 by which the SCCP network instance will be identified and configured. A variant can be configured for the SS7 routing domain. Some of them are:
- **ansi**: American National Standards Institute (U.S.A.)
- **china**: Chinese standard
- **itu**: International Telecommunication Union (ITU-T) Telecommunication Standardization Sector
- **ntt**: Japanese standard
- **ttc**: Japanese standard

| SS7 Routing Domain id and variant | An identification for SS7 routing domain and must be an integer between 1 and 12 by which the SS7 routing domain will be identified and associated with this SCCP network instance.

| Destination point code | Specifies the destination point code (DPC) in SS7 address format along with SSN and SCCP version.

Circuit Switched Network Configuration

| Circuit Switched Network instance | An identification string between 1 and 63 characters (alpha and/or numeric) by which the Circuit Switched Core Networks instance which needs to be associated with HNB Radio Network PLMN id. An HNB-CS network instance is required for Femto UMTS access over IuCS/Iu-Flex interface between HNB-GW service and CS networks elements; i.e. MSC/VLR. Multiple CS network instances (maximum 8) can be configured on a system.

| SCCP Network id | Specifies a predefined Signaling Connection Control Part (SCCP) network id in at system level in Global configuration mode to be associated with the CS network instance in order to route the messages towards MSC/VLR over IuCS interface.

| RTP IP Pool name | An identification string from 1 to 63 characters (alpha and/or numeric) by which the RTP pool is configured and associated with CS network configuration to allocate RTP IP address to session managers in HNB-GW service over IuCS towards CS core networks.

| Default MSC point code | Specifies the default MSC point-code with HNB-CS network instance. This MSC point code (SS7 address) is used when HNB-GW is to be connected to only one MSC with in a CS network or as default MSC for all HNBs connected through specific HNB-CS network instance.

Packet Switched Network Configuration
Information Required to Configure the System as an HNB-GW

Required Information to Configure the System as an HNB-GW

Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet Switched Network instance</td>
<td>An identification string between 1 and 63 characters (alpha and/or numeric) by which the Packet Switched Core Networks instance which needs to be associated with HNB Radio Network PLMN id. An HNB-CS network instance is required for Femto UMTS access over IuPS/Iu-Flex interface between HNB-GW service and PS networks elements; i.e. SGSN. Multiple PS network instances (maximum 8) can be configured on a system.</td>
</tr>
<tr>
<td>SCCP Network id</td>
<td>Specifies a predefined Signaling Connection Control Part (SCCP) network id in at system level in Global configuration mode to be associated with the PS network instance in order to route the messages towards SGSN over IuPS interface.</td>
</tr>
<tr>
<td>GTP-U service name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the GTP-U service can be associated with HNB-GW system in PS network instance for GTP-U tunnel towards core network. It is pre-configured in destination context. Multiple names are needed if multiple GTP services is used.</td>
</tr>
<tr>
<td>Default SGSN point code</td>
<td>Specifies the default SGSN point-code with HNB-CS network instance. This SGSN point code (SS7 address) is used when HNB-GW is to be connected to only one SGSN with in a PS network or as default SGSN for all HNBs connected through specific HNB-PS network instance.</td>
</tr>
</tbody>
</table>

Important: One GTP-U service can be associated in PS network instance to provide GTP-U tunnel over IuPS interface towards PS core network and another GTP-U service needs to be associated in HNB-GW service instance for GTP-U tunnel over Iuh interface towards HNB.

Required Source Context Configuration Information

The following table lists the information that is required to configure the Source context on an HNB-GW.

Table 3. Required Information for Source Context Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source context name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the Source context is recognized by the system. Generally it is identified as source context.</td>
</tr>
<tr>
<td>Interface name</td>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>IP address and subnet</td>
<td>IPv4 addresses assigned to the interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
<tr>
<td>Gateway IP address</td>
<td>Used when configuring static IP routes from the management interface(s) to a specific network.</td>
</tr>
<tr>
<td>Iuh Interface Configuration (To/from Home-NodeB)</td>
<td></td>
</tr>
<tr>
<td>Required Information</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HNB-GW service Name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the HNB-GW service can be identified on the system. It is configured in Context configuration mode. Multiple names are needed if multiple HNB-GW services will be configured.</td>
</tr>
</tbody>
</table>

HNB-GW Service Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iuh interface IP address</td>
<td>IPv4 addresses assigned to the Iuh interface as SCTP bond address. This address will be used for binding the SCTP (local bind address(es)) to communicate with the HNBs using GTP-U. The HNB-GW passes this IP address during setting up the SCTP association with the HNB. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Iuh SCTP Port</td>
<td>The physical port to which the Iuh interface will be bound. The local SCTP port used to communicate with the HNBs over Iuh interface.</td>
</tr>
<tr>
<td>RTP IP address</td>
<td>This is the IP address of HNB-GW which is configured as RTP address and sent to HNB to map the RTP streams with this IP address on HNB-GW. This configuration is required at HNB-GW to communicate with MSC/VLR over IuCS-over-IP tunnel.</td>
</tr>
<tr>
<td>RTP IP Pool name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the RTP pool is configured and associated with HNB-GW service to allocate RTP IP address to Session Manager instances over Iuh towards HNB.</td>
</tr>
</tbody>
</table>

Optional Security Gateway Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Gateway IP address</td>
<td>This is the IP Address where the SeGW service is bound and shall be provided to HNB during SeGW-Discovery. Only one SeGW IP address can be configured.</td>
</tr>
</tbody>
</table>

IPsec Crypto-map Template Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAP profile</td>
<td>This is the profile to be used to provide authenticator modes for incoming packets on Security Gateway. Only one EAP profile can be configured.</td>
</tr>
<tr>
<td>IP Pool for IPsec Tunnel</td>
<td>Specifies the IP pool to assign IP address for IPsec traffic to use.</td>
</tr>
<tr>
<td>IKEv2 Transform set</td>
<td>IKEv2 transform set for IKE security association.</td>
</tr>
<tr>
<td>IPsec Crypto-map Template</td>
<td>Specifies the Crypto-map template to be used for IPsec IKEv2 tunneling for the interface configured as an Iuh. This crypto-map template is to be associated with HNB-GW service if SeGW is enabled and bind with HNB-GW service. Only one IPsec Crypto-map Template can be configured.</td>
</tr>
<tr>
<td>AAA Server Group Context name</td>
<td>Specifies the name of the context in which a AAA server group is configured for association with SeGW for AAA parameters during subscriber authentication phases.</td>
</tr>
<tr>
<td>AAA Server Group name</td>
<td>Specifies the AAA server group already configured in a context and is to be used for first/second phase of authentication of subscriber while using SeGW functionality in an HNB-GW service.</td>
</tr>
</tbody>
</table>

RTP Pool Configuration

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTP IP Pool name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the RTP pool can be identified on the system to allocate RTP IP address to session manager instances over Iuh towards HNB. It is to be associated with HNB-GW service.</td>
</tr>
</tbody>
</table>

Radio Network PLMN Configuration
Information Required to Configure the System as an HNB-GW

Required Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Public Land Mobile Network (PLMN) Identifiers** | **Mobile Country Code (MCC)**: The MCC can be configured to any integer value from 0 to 999.
Mobile Network Code (MNC): The MNC can be configured to any integer value from 0 to 999. |
| **Radio Network Controller (RNC) identifier** | Specify the RNC id which shall be provided to HNB during HNB-REGISTRATION procedure. Depending upon the requirement the RNC-ID can be provided with the desired granularity in HNB-PS networks or HNB-CS Network Configuration. |
| **GTP-U service name** | An identification string from 1 to 63 characters (alpha and/or numeric) by which the GTP-U service can be associated with HNB-GW system in HNB-GW service for GTP-U tunnel towards HNB access network (HNB). It is pre-configured in Context configuration mode. Multiple names are needed if multiple GTP-U services is used. |

Important: One GTP-U service can be associated with HNB-GW service instance to provide GTP-U tunnel over Iuh interface towards HNB access network (HNB) and another GTP-U service needs to be associated with PS network instance for GTP-U tunnel over IuPS interface towards PS core network to GSNs.

GTP-U Tunnel Interfaces Configuration

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTP-U service name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the GTP-U service can be associated with HNB-GW system for GTP-U tunnel towards HNB access network (HNB). Various control parameters can be configured for GTP-U packet transmission. Multiple names are needed if multiple GTP services is used.</td>
</tr>
<tr>
<td>GTP-U Tunnel interface IP address</td>
<td>IPv4 addresses assigned to the interface as GTP-U bond address. This address will be used for binding the GTP-U service (local bind address(es)) for sending/receiving GTP-U packets from/to HNB using GTP-U tunnel. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>GTP-U Tunnel interface Port</td>
<td>The physical port to which the Iuh interface will be bound. The local GTP-U port used to communicate with the HNB over GTP-U tunnel interface.</td>
</tr>
</tbody>
</table>

Required Destination Context Configuration Information

The following table lists the information that is required to configure the destination context.

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination context name</td>
<td>An identification string from 1 to 79 characters (alpha and/or numeric) by which the destination context will be recognized by the system.</td>
</tr>
<tr>
<td>Interface name</td>
<td>An identification string between 1 and 79 characters (alpha and/or numeric) by which the interface is recognized by the system. Multiple names are needed if multiple interfaces will be configured.</td>
</tr>
</tbody>
</table>
Required Information

<table>
<thead>
<tr>
<th>Required Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet</td>
<td>IPv4 addresses assigned to the interface. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>Physical port number</td>
<td>The physical port to which the interface will be bound. Ports are identified by the chassis slot number where the line card resides followed by the number of the physical connector on the card. For example, port 17/1 identifies connector number 1 on the card in slot 17. A single physical port can facilitate multiple interfaces.</td>
</tr>
<tr>
<td>Gateway IP address</td>
<td>Used when configuring static IP routes from the management interface(s) to a specific network.</td>
</tr>
<tr>
<td>GTP-U Tunnel Interface</td>
<td></td>
</tr>
<tr>
<td>GTP-U service name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the GTP-U service can be associated with HNB-GW system in PS network instance for GTP-U tunnel towards core network. Various control parameters can be configured for GTP-U packet transmission. Multiple names are needed if multiple GTP services is used.</td>
</tr>
<tr>
<td>GTP-U Tunnel interface IP address</td>
<td>IPv4 addresses assigned to the interface as GTP-U bond address. This address will be used for binding the GTP-U service (local bind address(es)) for sending/receiving GTP-U packets from/to PS core network using GTP-U tunnel. Multiple addresses and subnets are needed if multiple interfaces will be configured.</td>
</tr>
<tr>
<td>GTP-U Tunnel interface Port</td>
<td>The physical port to which the Iuh interface will be bound. The local GTP-U port used to communicate with the PS core network over GTP-U tunnel interface.</td>
</tr>
<tr>
<td>RTP Pool Configuration</td>
<td></td>
</tr>
<tr>
<td>RTP IP Pool name</td>
<td>An identification string from 1 to 63 characters (alpha and/or numeric) by which the RTP pool can be identified on the system to allocate RTP IP address to session manager instances over IuCS towards CS core networks. It is to be associated with PS network configuration.</td>
</tr>
</tbody>
</table>
RTP Pool Configuration

This configuration sets the IP pools for assigning IP addresses per session manager. The session manager acts as a mediator between HNB and MSC, shielding the IP address details of either end-point from the other one. It works on both way of connection in establishing a RTP session between the HNB and HNB-GW over Iuh and between HNB-GW and the core network over IuCSoIP. Upon successful authentication of HNB, the session manager instances are assigned with a RTP IP addresses during HNB-GW service bringing up and similarly for CS-network connectivity in case of IuCSoIP.

IP addresses can be dynamically assigned from a single pool/a group of IP pools/a group of IP pool groups. The addresses/IP pools/IP pool groups are placed into a queue in each pool or pool group. An address is assigned from the head of the queue and, when released, returned to the end. This method is known as least recently used (LRU).

When a group of pools have the same priority, an algorithm is used to determine a probability for each pool based on the number of available addresses, then a pool is chosen based on the probability. This method, over time, allocates addresses evenly from the group of pools.

Important: Note that setting different priorities on each individual pool can cause addresses in some pools to be used more frequently.

To configure the RTP IP pool:

Step 1 Create the RTP IP pool for IPv4 addresses in source context for RTP pool allocation over Iuh interface by applying the example configuration in the IPv4 RTP Pool Creation Over IuCS section.

Step 2 Create the RTP IP pool for IPv4 addresses in destination context for RTP pool allocation over IuCS interface by applying the example configuration in the IPv4 RTP Pool Creation Over Iuh section.

Step 3 Verify your RTP IP pool configuration by applying the example configuration in the RTP IP Pool Configuration Verification section.

Step 4 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

IPv4 RTP Pool Creation Over IuCS

Use the following example to create the IPv4 address RTP pool for RTP address allocation over IuCS interface towards CS core network.

```bash
configure

context <dest_ctxt_name>

ip pool <cs_ip_pool_name> <ip_address/mask>

end
```

Notes:
• `<cs_ip_pool_name>` is name of the IP pool configured in destination context named `<dest_ctxt_name>` and to be associated with CS Network Configuration to allocate RTP end point address towards CS network over IuCS interface.

• IP pool size needs to be determined on the number of sessMgr instances on HNB-GW. It uses one IP address for each session manager instance of user.

• To ensure proper operation with CS network configuration, RTP IP pools should be configured within a destination context.

• For more information on commands/keywords that configure additional parameters and options, refer `ip pool` command section in `Context Configuration Mode Commands` chapter of `Command Line Interface Reference`.

IPv4 RTP Pool Creation Over Iuh

Use the following example to create the IPv4 address RTP pool for RTP address allocation over Iuh interface towards HNB.

```
configure
context <dest_ctxt_name>
ip pool <ip_pool_name> <ip_address/mask>
end
```

Notes:

• `<ip_pool_name>` is name of the IP pool configured in destination context named `<dest_ctxt_name>` and associated with HNB-GW service to allocate the RTP end point address in HNB-GW service over Iuh interface.

• To ensure proper operation with HNB-GW configuration, RTP IP pools must be configured within the same context as HNB-GW.

• IP pool size needs to be determined on the number of sessMgr instances on HNB-GW. It uses one IP address for each session manager instance of user.

• To ensure proper operation with CS network configuration, RTP IP pools should be configured within a destination context.

• Each address in the pool requires approximately 24 bytes of memory. Therefore, in order to conserve available memory, the number of pools may need to be limited depending on the number of addresses to be configured and the type and number of data processing cards installed.

• Setting different priorities on individual pools can cause addresses in some pools to be used more frequently.

• For more information on commands/keywords that configure additional parameters and options, refer `ip pool` command section in `Context Configuration Mode Commands` chapter of `Command Line Interface Reference`.

RTP IP Pool Configuration Verification

Step 1 Verify that your IPv4 address pool configured properly by entering the following command in Exec Mode:

```
show ip pool
```
The output from this command will look similar to the sample shown below. In this example all IP pools were configured in the ispl context.

```
context : ispl:

+----- Type: (P) - Public (R) - Private
|      (S) - Static (E) - Resource
|      
|+----- State: (G) - Good (D) - Pending Delete (R) - Resizing
||      
||+--- Priority: 0..10 (Highest (0) .. Lowest (10))
||      
||+--- Busyout: (B) - Busyout configured
||||      
||||      
vvvvv Pool Name   Start Address Mask/End Address Used Avail
----- ------- ----------------- ------------------ ------ ------
P000 ipsec      12.12.12.0   255.255.255.0   0          254
RG00 pool3      30.30.0.0    255.255.0.0    0            65534
SG00 pool2      20.20.0.0    255.255.0.0    10           65524
PG00 pool1      10.10.0.0    255.255.0.0    0            65534
SG00 vppool     192.168.1.250 192.168.1.254  0             5
Total Pool Count: 5
```
HNB-GW Service Configuration

HNB-GW services are configured within source contexts and allow the system to function as an HNB-GW in the 3G UMTS wireless data network.

Important: This section provides the minimum instruction set for configuring an HNB-GW service that allows the system to process bearer contexts with IPsec authentication on SeGW. Commands that configure additional HNB-GW service properties are provided in the different chapters of Command Line Interface Reference.

These instructions assume that you have already configured the system level configuration as described in System Administration Guide.

To configure the system to work as HNB-GW service with SeGW enabled:

Step 1 Optional. Configure threshold parameters by applying the example configuration in the Total HNB-GW Session Thresholds chapter in Thresholding Configuration Guide.

Step 2 Optional. Configure system to enable logging facilities for HNB-GW service session subscriber and protocols by applying the example configuration in the Logging Facility Configuration section.

Step 3 Optional. Configure congestion control parameters for HNB-GW service instance on system by applying the example configuration in the Congestion Control Policy Configuration section.

Step 4 Optional. Enable and configure the SNMP Traps to generate alarms and alerts from system for various events and thresholds for HNB-GW service instance by applying the example configuration in the Alarm and Alert Trap Configuration section.

Step 5 Configure system to use source Boxer Internal address (SBIA) in hashing function for ECMP-LAG distribution of RTP traffic over IuCS interface for by applying the example configuration in the Hashing Algorithm Configuration section.

Step 6 Create an interface in source context for Iuh interface by applying the example configuration in the Iuh Interface Configuration section.

Step 7 Configure SS7 routing domain by applying the example configuration in the SS7 Routing Domain Configuration section.

Step 8 Configure Peer Server identity for Circuit Switched (CS) core network in SS7 routing domain by applying the example configuration in the Peer Server Id Configuration for CS Core Network section.

Step 9 Configure Peer Server identity for Packet Switched (PS) core network in SS7 routing domain by applying the example configuration in the Peer Server Id Configuration for PS Core Network section.

Step 10 Configure SCCP network id with national variant by applying the example configuration in the SCCP Network Instance Configuration section.

Step 11 Configure CS network parameters by applying the example configuration in the HNB-CS Network Configuration section.

Step 12 Configure PS network parameters by applying the example configuration in the HNB-PS Network Configuration section.
Step 13 Configure GTP-U service parameters by applying the example configuration in the *GTP-U Service Configuration* section.

Step 14 Configure RTP pool parameters by applying the example configuration in the *RTP Pool Configuration* section.

Step 15 Create and configure the global parameters for HNB-GW service(s) configured on a single chassis by applying the example configuration in the *HNB-GW Global Configuration* section.

Step 16 Create and configure the HNB-GW service and associate related parameters with HNB-GW by applying the example configuration in the *HNB-GW Service Configuration* section.

Step 17 *Optional.* Configure Security Gateway parameters with Crypto-template and enable SeGW by associating it with HNB-GW to enabling SeGW by applying the example configuration in the *Security Gateway and Crypto Template Configuration* section.

Step 18 *Optional.* Configure x.509 security certificate for FAP with Crypto-template by applying the example configuration in the *x.509 Certificate Configuration* section.

Step 19 *Optional.* Modify the HNB-CS Network configuration to support multiple MSC selection without Iu-Flex by applying the example configuration in the *Multiple MSC Selection without Iu-Flex Configuration* section.

Step 20 *Optional.* Modify the HNB-GW service configuration to support the Open Access mode support for open HNBs and paging parameters by applying the example configuration in the *Open Access Mode Configuration* section.

Step 21 *Optional.* Modify the HNB-GW service configuration to support the Hybrid Access mode support for Hybrid HNBs and paging parameters by applying the example configuration in the *Hybrid Access Mode Configuration* section.

Step 22 *Optional.* Modify the HNB-GW service configuration to support the Cell Broadcasting Service (CBS) by applying the example configuration in the *CBS Configuration* section.

Step 23 Verify your HNB-GW configuration by following the steps in the *HNB-GW Service Configuration Verification* section.

Step 24 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the *System Administration Guide* and the *Command Line Interface Reference*.

Hashing Algorithm Configuration

Use the following example to configure the system to use SBIA for hashing algorithm in ECMP-LAG for even distribution of RTP packets over IuCS interface:

```
Caution: This configuration is mandatory for standalone HNB-GW deployment and highly recommended in other deployment scenarios where HNB-GW is used in combination with other services.
```

```
configure
ecmp-lag hash use-sbia-only
end
```

Notes:
- This is a global configuration level command and will apply to all services configured on chassis.
• This configuration provides the even distribution of RTP traffic seen over IuCS interface.
• If this option is not chosen, system uses IP Source Address, IP Destination Address, IP Protocol and Source Boxer Internal Address as inputs to the hashing algorithm for ECMP-LAG distribution.

Iuh Interface Configuration

Use the following example to configure the Iuh interfaces in source context:

```plaintext
configure
context <vpn_ctxt_name> -noconfirm
interface <intf_name>
ip address <ip_address>
end
```

Notes:
• `<vpn_ctxt_name>` is name of the source context in which HNB-GW service is to configure.
• `<intf_name>` is name of the interface which is to be used for Iuh reference between HNB-GW and HNB.

SS7 Routing Domain Configuration

Use the following example to configure the SS7 routing domain id for HNB-GW service on system:

```plaintext
configure
ss7-routing-domain <Ss7rd_id> variant <v_type> -noconfirm
ssf {international | national | reserved | spare}
asp instance <asp_instance>
end-point address <end_point_address> context <end_ctxt_name>
end-point bind
end
```

Notes:
• `<end_point_address>` is IP address of the end point associated with application server process for M3UA end-point parameters in a specific SS7 routing domain instance.
• `<end_ctxt_name>` is name of the context which is associated with end point IP address for application server process for M3UA end-point parameters in a specific SS7 routing domain instance.
Peer Server Id Configuration for PS Core Network

Use the following example to configure the Peer Server Id in SS7 routing domain for PS core network on system:

```
configure

ss7-routing-domain <ss7rd_id> variant <v_type>

peer-server id <peer_server_id>

name <sgsn_name>

mode {loadshare | standby}

routing-context <routing_ctxt_id>

self-point-code <sgsn_pointcode>

psp instance <psp_instance_id>

psp-mode {client | server}

exchange-mode [double-ended | single-ended]

end-point address <end_point_address>

associate asp instance<asp_instance>

end
```

Notes:
- `<ss7rd_id>` is SS7 Routing domain identity number already configured for SS7 routing domain instance.
- `<sgsn_pointcode>` is the address of SGSN configured in *HNB-PS Network Configuration* section and to be used for SCCP network instance.

Peer Server Id Configuration for CS Core Network

Use the following example to configure the Peer Server Id in SS7 routing domain for CS core network on system:

```
configure

ss7-routing-domain <ss7rd_id> variant <v_type>

peer-server id <peer_server_id>

name <msc_name>

mode {loadshare | standby}

routing-context <routing_ctxt_id>

self-point-code <msc_pointcode>
```
psp instance <psp_instance_id>
psp-mode {client | server}
exchange-mode [double-ended | single-ended]
end-point address <end_point_address>
associate asp instance <asp_instance>
end

Notes:
- `<ss7rd_id>` is SS7 Routing domain identity number already configured for SS7 routing domain instance.
- `<msc_pointcode>` is the address of MSC configured in HNB-CS Network Configuration section and to be used for SCCP network instance.

SCCP Network Instance Configuration

Use the following example to configure the SCCP network instance to be associated with HNB-GW service on system:

```bash
configure
  sccp-network <sccp_id> variant <v_type> -noconfirm
  self-point-code <ss7_pointcode>
associate ss7-routing-domain <ss7rd_id>
destination dpc <sgsn_pointcode> name <dpc_route_name>
destination dpc <sgsn_pointcode> version <sccp_variant>
destination dpc <sgsn_pointcode> ssn <dest_subsystem_num>
destination dpc <msc_pointcode> name <dpc_route_name>
destination dpc <msc_pointcode> version <sccp_variant>
destination dpc <msc_pointcode> ssn <dest_subsystem_num>
end
```

Notes:
- `<sccp_id>` is SCCP network identifier to be associated with HNB-GW.
- `<v_type>` is type of variant to be used for SCCP network instance.
- `<sgsn_pointcode>` is the address of SGSN configured in HNB-PS Network Configuration section and to be used for SCCP network instance.
- `<msc_pointcode>` is the address of MSC configured in HNB-CS Network Configuration section and to be used for SCCP network instance.
HNB-PS Network Configuration

Use following example to configure the packet switched network parameters at system level to support HNB-GW service on system:

```
configure

ps-network <ps_network_name> -noconfirm

    global-rnc-id mcc <mcc_num> mnc <mnc_num> id <rnc_id>

    ranap reset {ack-timeout <timer_value> | guard-timeout <g_timer> | hnbgw-initiated | max-retransmissions <retries>}

    associate sccp-network <sccp_network_id>

    associate gtpu-service <gtpu_ps_svc_name> context <dest_ctxt_name>

    sgsn point-code <sgsn_point_code>

    no sgsn deadtime

    map core-network-id cn_id point-code <sgsn_point_code>

end
```

Notes:

- `<ps_network_name>` is name of the packet switched network used with HNB-GW for IuPS session.
- `<sgsn_point_code>` is address of the SGSN in SS7 point code format to be used for packet switched traffic through HNB-GW.
- `<gtpu_svc_name>` is name of the GTP-U service configured in `<gtpu_ctxt_name>` to provide GTP-U tunnel over IuPS interface for packet switched traffic towards PS-CN.

HNB-CS Network Configuration

Use following example to configure the circuit switched network parameters at system level to support HNB-GW service on system:

```
configure

    cs-network <cs_network_name> -noconfirm

    global-rnc-id mcc <mcc_num> mnc <mnc_num> id <rnc_id>

    ranap reset {ack-timeout <timer_value> | guard-timeout <g_timer> | hnbgw-initiated | max-retransmissions <retries>}

    associate rtp-pool <cs_ip_pool_name> context <dest_ctxt_name>

    associate sccp-network <sccp_network_id>

    msc point-code <msc_point_code>
```
no msc deadtime

map core-network-id cn_id point-code <msc_point_code>

end

Notes:

- `<cs_network_name>` is name of the HNB-CS Network used with HNB-GW for IuPS session.
- `<msc_point_code>` is address of the MSC in SS7 point code format to be used for circuit switched call through HNB-GW.
- `<cs_ip_pool_name>` is name of the IP pool configured in destination context named `<dest_ctxt_name>` to allocate RTP end point address in this CS network over IuCS interface.

HNB-GW Global Configuration

Use the following example to configure the HNB-GW Global parameters on system to provide global parameters to all HNB-GW service on a single chassis.

```plaintext
configure

hnbgw-global

access-control-db { imsi-purge-timeout <purge_timeout> | immediate }

tnnsf-timer <timer_value>

sctp alpha-rto <alpha_rto_dur>

sctp beta-rto <beta_rto_dur>

sctp max-retx [init | path | assoc] <max_retry>

sctp max-in-strms <in_strms>

sctp max-out-strms <out_strms>

end
```

Notes:

- Global parameters for HNB-GW services on a chassis are provided through this configuration.

HNB-GW Service Configuration

Use the following example to configure a single of multiple HNB-GW service on system in source context to provide access to HNBs towards core networks:

```plaintext
configure

sgsn-global
```
aggregate-ipc-msg { linkmgr | sessmgr } { flush-frequency frequency | num-msgs number_msgs }

exit

context <vpn_ctxt_name>

hnbgw-service <hnbgw_svc_name> -noconfirm

sctp bind address <ip_address>

sctp bind port <sctp_port>

rtp mux

rtcp report interval <dur>

associate rtp-pool <ip_pool_name>

associate gtpu-service <gtpu_iuh_svc_name>

no handin cn-domain cs

radio-network-plmn mcc <mcc> mnc <mnc_code>

rnc-id <rnc_id>

end

Notes:

- `aggregate-ipc-msg` is an optional command supplied through `SGSN Global Configuration` mode and used to reduce the latency of IPC messages in SessMgr or LinkMgr towards CN. For more information, refer `Performance Improvement Commands` section in `Troubleshooting the Service` chapter of this guide.

- `<vpn_ctxt_name>` is name of the source context in which HNB-GW service is configured.

- `<hnbgw_svc_name>` is name of the HNB-GW service which is to be configured for used for Iuh reference between HNB-GW and HNB. Multiple HNB-GW service can be configured in a single or multiple context on a single chassis.

- `<ip_address>` is the SCTP IP address on which is HNB will communicate with HNB-GW and has characteristics of Iuh interface.

- `<gtpu_iuh_svc_name>` is name of the GTP-U service configured in `<vpn_ctxt_name>` to provide GTP-U tunnel over Iuh interface towards HNB.

- `<ip_pool_name>` is name of the IP pool configured in source context named `<vpn_ctxt_name>` to allocate RTP end point address to session manager instance in HNB-GW service over Iuh interface.

- `rtcp report interval <dur>` command configures the generation of RTCP packet/report types on a per HNB-GW service instance basis and sets the specified time interval `<dur>` in seconds between two consecutive RTCP reports.
GTP-U Service Configuration

Use the following example to configure the GTP-U service parameters to provide GTP-U tunnel over Iuh and IuPS interface. Separate instances of this service need to be configured for Iuh and IuPS interfaces.

configure

context <dest_ctxt_name> -noconfirm

gtpu-service <gtpu_ps_svc_name> -noconfirm

bind address {ipv4-address | ipv6-address} <ip_address>

path-failure detection-policy gtp echo

end

configure

context <vpn_ctxt_name> -noconfirm

gtpu-service <gtpu_iuh_svc_name> -noconfirm

bind address {ipv4-address | ipv6-address} <ip_address>

path-failure detection-policy gtp echo

end

Notes:

• <dest_ctxt_name> is name of the destination context in which GTP-U service configured to provide GTP-U tunnel over IuPS interface towards core network.

• <gtpu_ps_svc_name> is name of the GTP-U service configured to provide GTP-U tunnel over IuPS interface towards core network.

• <vpn_ctxt_name> is name of the source context in which HNB-GW service is to be configured. The same context must be used for GTP-U service configuration to provide GTP-U tunnel over Iuh interface towards HNB.

• <gtpu_iuh_svc_name> is name of the GTP-U service configured to provide GTP-U tunnel over Iuh interface towards HNB.

x.509 Certificate Configuration

Use the following example to configure the x.509 certificates on the system to provide security certification between FAP and SeGW on HNB-GW.

configure

certificate name <x.509_cert_name> pem { data <pem_data_string> | url <pem_data_url>} private-key pem { [encrypted] data <PKI_pem_data_string> | url <PKI_pem_data_url>
ca-certificate name <ca_root_cert_name> pem { data <pem_data_string> | url <pem_data_url> }
exit
crypto template <segw_crypto_template> ikev2-dynamic
 authentication local certificate
 authentication remote certificate
 keepalive interval <dur> timeout <dur_timeout>
 certificate <x.509_cert_name>
ca-certificate list ca-cert-name <ca_root_cert_name>
payload <crypto_payload_name> match childsa [match [ipv4 | ipv6]]
 ip-address-alloc dynamic
 ipsec transform-setlist <ipsec_trans_set>
end
configure
context <vpn_ctxt_name>
 subscriber default
 ip context-name <vpn_ctxt_name>
 ip address pool name <ip_pool_name>
end

Notes:
- <vpn_ctxt_name> is name of the source context in which HNB-GW service is configured.
- <x.509_cert_name> is name of the x.509 certificate where PEM data <pem_data_string> and PKI <PKI_pem_data_string> is configured.
- <ca_root_cert_name> is name of the CA root certificate where PEM data <pem_data_string> is configured for CPE.

Security Gateway and Crypto map Template Configuration

Use the following example to configure the IPsec profile and Crypto map template enabling SeGW on HNB-GW for IPsec tunneling.

configure

context <vpn_ctxt_name>
eap-profile <eap_prof_name>
 mode authentication-pass-through
 exit
ip pool ipsec <ip_address> <subnetmask>
ipsec transform-set <ipsec_trans_set>
 exit
ikev2 transform-set <ikev2_trans_set>
 exit
crypto template <crypto_template>
 authentication eap-profile <eap_prof_name>
 exit
ikev2-ikesa transform-set list <ikev2_trans_set>
payload <crypto_payload_name> match childsa [match {ipv4 | ipv6}]
 ip-address-alloc dynamic
 ipsec transform-setlist <ipsec_trans_set>
 exit
ikev2-ikesa keepalive-user-activity
end
configure
context <vpn_ctxt_name>
 hnbgw-service <hnbgw_svc_name>
 security-gateway bind address <segw_ip_address> crypto-template <crypto_template>
 context <segw_ctxt_name>
end

Notes:
- <vpn_ctxt_name> is name of the source context in which HNB-GW service is configured.
- <segw_ctxt_name> is name of the context in which Se-GW service is configured. By default it takes context where HNB-GW service is configured.
- <hnbgw_svc_name> is name of the HNB-GW service which is to be configured for used for Iuh reference between HNB-GW and HNB.
Multiple MSC Selection without Iu-Flex Configuration

Use the following example to configure the multiple MSC selection over IuCS interface for MSC pooling and sharing.

```
configure
cs-network <cs_network_name>
    associate sccp-network <sccp_network_id>
    map lac range <lac_start> to <lac_end> point-code <msc_point_code>
end
```

Notes:
- `<cs_network_name>` is name of the HNB-CS network which is already configured and associated with HNB-GW service.
- `<sccp_network_id>` is the identifier used for the SCCP network which is already configured and associated with HNB-CS Network `<cs_network_name>`.
- LAC value must be an integer between 0 and 65535.

Open Access Mode Configuration

Use the following example to configure the Open Access Mode for open HNBs in an HNB-GW service instance. It also includes the paging optimization configuration for open HNBs.

```
configure
context <vpn_ctxt_name>
    hnb-gw-service <hnbgw_svc_name> -noconfirm
        hnb-access-mode open max-registered-ue <reg_ue>
end
```

Notes:
- `<vpn_ctxt_name>` is name of the source context in which HNB-GW service is configured.
- `<hnbgw_svc_name>` is name of the HNB-GW service in which Open Access mode support is to be configured.
- `<reg_ue>` is number of the UEs allowed to be registered through any Open HNB in Open Access Mode support. By default 16 UEs are allowed.

Hybrid Access Mode Configuration

Use the following example to configure the Hybrid Access Mode for hybrid HNBs in an HNB-GW service instance. It also includes the paging optimization configuration for hybrid HNBs.

```
configure
```
context <vpn_ctxt_name>

hnbgw-service <hnbgw_svc_name> -noconfirm

hnb-access-mode hybrid max-non-access-controlled-ue <reg_ue_hyb>

hnb-access-mode mismatch-action { accept-aaa-value | hnb-reg-rej }

end

configure

hnbgw-global

paging open-hnb [hnb-where-ue-registered fallback] {always | never | only-if-with-paging-area}

end

Notes:

- <vpn_ctxt_name> is name of the source context in which HNB-GW service is configured.
- <hnbgw_svc_name> is name of the HNB-GW service in which Open Access mode support is to be configured.
- <reg_ue_hyb> is number of the UEs allowed to be registered through any Hybrid HNB in Hybrid Access Mode support. By default 16 UEs are allowed.

CBS Configuration

Use the following example to configure the cell broadcasting service for open, close, and hybrid HNBs in an HNB-GW service instance. Up to 16 HNB-GW services can be associated with a CBS service.

configure

context <ctxt_name>

cbs-service <cbs_svc_name>

bind address <ip_address>

cbc-server address <cbc_ip_address>

sabp timer <timer_in_secs>

end

configure

context <ctxt_name>
hnbgw-service <hnbgw_svc_name> -noconfirm
associate cbs-service <cbs_svc_name>
end

Notes:
- `<ctxt_name>` is name of the source context in which HNB-GW service is configured.
- `<hnbgw_svc_name>` is name of the HNB-GW service in which Open Access mode support is to be configured.
- `<ip_address>` is the IPv4 type IP address of CBS service.
- `<cbc_ip_address>` is the IPv4 type IP address of CBC server.
- `<timer_in_secs>` is the SABP timer which is the wait time for receiving the SABP response from a peer. It is an integer value between 1 and 300. If not configured, the default value for this timer is taken as 10 seconds.

Verifying HNB-GW Configuration

This section shows the configuration parameters configured for HNB-GW service.

Step 1
Verify that your HNB-GW services were created and configured properly by entering the following command in Exec Mode:

```
show hnbgw-service hnbgw-service <hnbgw_svc_name>
```

The output of this command displays concise listing of HNB-GW service parameter settings as configured on system.

Step 2
Verify configuration errors of your HNB-GW services by entering the following command in Exec Mode:

```
show configuration errors section hnbgw-service
```

The output of this command displays current configuration errors and warning information for the target configuration file as specified for HNB-GW service.
DSCP Marking Configuration

To configure DSCP marking for control and data packet over Iuh and Iu interface for HNB-GW service:

Step 1 Modify HNB-GW service to configure the DSCP marking for SCTP and UDP packets over Iuh interface by applying the example configuration in the Configuring DSCP Marking over Iuh Interface section.

Step 2 Modify HNB-GW service to configure the DSCP marking for UDP packets over Iu interface by applying the example configuration in the Configuring DSCP Marking for Data Packet over Iu Interface section.

Step 3 Modify SGSN-Global configuration to create the DSCP template for SCTP packets and modify PSP Instance to associate this DSCP template for downlink packets with particular PSP instance by applying the example configuration in the Creating and Associating DSCP Template for Control Packets over Iu Interface section.

Step 4 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Configuring DSCP Marking over Iuh Interface

To configure the DSCP marking over Iuh interface for SCTP and UDP packets modify the HNB-GW service by applying the following example configuration:

```plaintext
configure

context <vpn_ctxt_name>

hnbgw-service <hnbgw_svc_name> -noconfirm

   ip iuh-qos-dscp protocol { sctp | udp } payload { all | gtpu | rtcp | rtp } { af11 | af12 | af13 | af21 | af22 | af23 | af31 | af32 | af33 | af41 | af42 | af43 | be | cs1 | cs2 | cs3 | cs4 | cs5 | cs6 | cs7 | ef }

end
```

Notes:

- `<vpn_ctxt_name>` is name of the source context in which HNB-GW service is configured.
- `<hnbgw_svc_name>` is name of the HNB-GW service in which Open Access mode support is to be configured.
- For more commands and keyword options, refer Command Line Interface Reference.

Configuring DSCP Marking for Data Packet over Iu Interface

To configure the DSCP marking over Iu interface for UDP packets modify the HNB-GW service by applying the following example configuration:

```plaintext
configure

context <vpn_ctxt_name>
```
hnbgw-service <hnbgw_svc_name> -noconfirm

ip iu-qos-dscp protocol udp payload { all | gtpu | rtcp | rtp } { af11 | af12 | af13 | af21 | af22 | af23 | af31 | af32 | af33 | af41 | af42 | af43 | be | cs1 | cs2 | cs3 | cs4 | cs5 | cs6 | cs7 | ef }

dscp-template <sctp_dscp_template> -noconfirm

control-packet qos-dscp { af11 | af12 | af13 | af21 | af22 | af23 | af31 | af32 | af33 | af41 | af42 | af43 | be | cs1 | cs2 | cs3 | cs4 | cs5 | cs6 | cs7 | ef }

dscp-template <sctp_dscp_template> -noconfirm

Notes:
- <vpn_ctxt_name> is name of the source context in which HNB-GW service is configured.
- <hnbgw_svc_name> is name of the HNB-GW service in which Open Access mode support is to be configured.
- For more commands and keyword options, refer Command Line Interface Reference.

Creating and Associating DSCP Template for Control Packets over Iu Interface

To create a DSCP template and associating it with particular PSP instance for SCTP packets over Iu interface modify the SGSN Gloal and PSP instance Configuration mode by applying the following example configuration:

configure

sgsn-global

dscp-template <sctp_dscp_template> -noconfirm

control-packet qos-dscp { af11 | af12 | af13 | af21 | af22 | af23 | af31 | af32 | af33 | af41 | af42 | af43 | be | cs1 | cs2 | cs3 | cs4 | cs5 | cs6 | cs7 | ef }

dscp-template <sctp_dscp_template> -noconfirm

SS7-routing-domain <ss7rd_id> variant <v_type>

peer-server id <peer_server_id>

psp instance <psp_instance_id>

associate dscp-template downlink <sctp_dscp_template>

Notes:
- <ss7rd_id> is pre-configured SS7 Routing Domain instance for HNB-GW service.
- <peer_server_id> is pre-configured Peer server id configured in SS7 Routing Domain instance for HNB-GW service.
- <psp_instance_id> is pre-configured PSP instance id configured for Peer-Server id in SS7 Routing Domain instance for HNB-GW service.
- <sctp_dscp_template> is the DSCP template created in SGSN Global mode for SCTP DSCP marking and associated with PSP instance in SS7 Routing Domain instance for HNB-GW service.
DHCP Configuration

To configure DHCP Proxy interface support on chassis for HNB-GW service:

Step 1 Create a DHCP service specific to HNB-GW service by applying the example configuration in the *Configuring DHCP Service* section.

Step 2 Create a subscriber template for HNB clients session and associate the DHCP service with created subscriber template by applying the example configuration in the *Configuring Subscriber Template for HNB* section.

Step 3 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the *System Administration Guide* and the *Command Line Interface Reference*.

Configuring DHCP Service

Configure a DHCP service for DHCP interface support in the HNB-GW service by applying the following example configuration:

```plaintext
configure

context <vpn_ctxt_name>

dhcp-service <dhcp_svc_name> -noconfirm
  dhcp client-identifier ike-id
  dhcp server selection-algorithm use-all
  dhcp server <dhcp_server_ip>
  dhcp server port 61610
end
```

Notes:
- `<vpn_ctxt_name>` is name of the source context in which HNB-GW service is configured.
- `<dhcp_svc_name>` is name of the DHCP service configured in Context Configuration mode for DHCP interface support in HNB-GW service.
- `<dhcp_server_ip>` IP address of the DHCP server associated with DHCP service for DHCP interface support in HNB-GW service.
- For more commands and keyword options, refer *Command Line Interface Reference*.

Configuring Subscriber Template for HNB

Configure the subscriber template to associate the DHCP service for HNB clients by applying the following example configuration:
configure

context <vpn_ctxt_name>

subscriber default

dhcp service <dhcp_svc_name> context <vpn_ctxt_name>

end

Notes:

- `<vpn_ctxt_name>` is name of the source context in which DHCP service is configured.
- `<dhcp_svc_name>` is name of the pre-configured DHCP service configured in Context Configuration mode for DHCP interface support in HNB-GW service.
- For more commands and keyword options, refer Command Line Interface Reference.
IuCS over ATM Configuration

To configure IuCS-over-ATM on HNB-GW service:

Step 1 Configure and activate the SONET card by applying the example configuration in the Configuring the SONET Card section.

Step 2 Modify the configured SS7 Routing Domain configuration with Linkset Id and ATM parameters by applying the example configuration in the Configuring Linkset Id and ATM Parameters section.

Step 3 Configure ALCAP service and AAL2 node parameters by applying the example configuration in the Configuring ALCAP Service and AAL2 Node section.

Step 4 Configure the ATM port and PVC for AAL2 and AAL5 type of PVC by applying the example configuration in the Configuring the ATM Port section.

Step 5 Modify the configured HNB-CS Network service configuration to associate ALCAP service for IuCS-over-ATM support by applying the example configuration in the Associating ALCAP Service with HNB-CS Network Service section.

Step 6 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Configuring the SONET Card

To configure a SONET card for IuCS-over-ATM facility, apply the following example configuration:

```plaintext
configure
card <sonet_card_num>
  framing {sonet | SDH}
  no shutdown
end
```

Notes:
- For other configuration procedures of ATM card, refer Creating and Configuring ATM Interfaces and Ports section in System Administration Guide.
- For more commands and keyword options, refer Command Line Interface Reference.

Configuring Linkset Id and ATM Parameters

To configure the linkset id and ATM parameters you need to modify existing SS7 Routing domain configuration by applying the following example:

```plaintext
configure
```
IuCS over ATM Configuration

ss7-routing-domain <ss7rd_id> variant <v_type>

ssf {international | national | reserved | spare}

linkset id <linkset_id>

self-point-code <self_pointcode>

adjacent-point-code <adj_pointcode>

link id <link_id> link-type atm-broadband

priority <link_priority_value>

signaling-link-code <sig_link_code>

exit

exit

route destination-point-code <rd_pointcode> linkset-id <linkset_id>

end

Notes:

- <ss7rd_id> is pre-configured SS7 Routing Domain instance configured at the system level to provide IuCS-over-ATM support to HNB-GW service.

Configuring ALCAP Service and AAL2 Node

To configure the ALCAP service with AAL2 node and AAL2 path parameters apply the following example:

configure

context <alcap_ctxt_name>

alcap-service <alcap_svc_name> -noconfirm

associate ss7-routing-domain <ss7rd_id>

self-point-code <alcap_pointcode>

aal2-route endpoint <AESA_route_endpoint> aal2-node <aal2_node_name>

aal2-node <aal2_node_name>

 point-code <aal2_pointcode>

 aal2-path-id <aal2_path_id> [block]

end

Notes:
IuCS over ATM Configuration

- `<alcap_ctxt_name>` is name of the context in which ALCAP service is configured.
- `<alcap_svc_name>` is name of the ALCAP service which is to be configured for IuCS-over-ATM between HNB-GW and CS core network.
- `<ss7rd_id>` is a pre-configured SS7 routing domain instance.
- `<alcap_pointcode>` is address of the ALCAP node in SS7 point code notation.

Configuring the ATM Port

To configure ATM port for IuCS-over-ATM facility, apply the following example configuration:

```
configure

port atm <sonet_card_num>/<port_num>
    no shutdown
pvc vpi <vpi_num> vci <aal5_vci_num> type aal5
    no shutdown
    bind link ss7-routing-domain <ss7rd_id> linkset-id <linkset_id> link-id <link_id>
    exit
pvc vpi <vpi_num> vci <aal2_vci_num> type aal2 cps-payload-size <cps_payload_size>
    no shutdown
    bind alcap-service <alcap_svc_name> context <alcap_ctxt_name> aal2-node
        <aal2_node_name> aal2-path <aal2_path_id>
    end
```

Notes:
- `<alcap_ctxt_name>` is name of the context in which ALCAP service is configured.
- `<alcap_svc_name>` is name of the pre-configured ALCAP service which is bound to ATM port for IuCS-over-ATM between HNB-GW and CS core network.
- `<aal2_node_name>` is a pre-configured AAL2 node in ALCAP Service Configuration mode.
- `<aal2_path_id>` is a pre-configured identifier for AAL2 path in AAL2 Node Configuration mode.

Associating ALCAP Service with HNB-CS Network Service

To associate a pre-configured ALCAP service with HNB-CS Network Service for IuCS-over-ATM function, apply the following example configuration:

```
configure

cs-network <cs_network_name>
```

associate alcap-service <alcap_svc_name> context <alcap_ctxt_name>

end

Notes:

- `<cs_network_name>` is a pre-configured HNB-CS Network service associated with HNB-GW for CS session.
- `<alcap_svc_name>` is name of the ALCAP service configured in destination context named `<alcap_ctxt_name>` to provide IuCS over ATM support through this CS network.
Iu-Flex Configuration

To configure Iu-Flex support on HNB-GW service:

Step 1
Modify the configured HNB-CS Network configuration with Iu-Flex parameters by applying the example configuration in the *Iu-Flex over IuCS Interface Configuration* section.

Step 2
Modify the configured HNB-PS Network configuration with Iu-Flex parameters by applying the example configuration in the *Iu-Flex over IuPS Interface Configuration* section.

Step 3
Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command `save configuration`. For additional information on how to verify and save configuration files, refer to the *System Administration Guide* and the *Command Line Interface Reference*.

Iu-Flex over IuCS Interface Configuration

Use the following example to configure the Iu-Flex feature over IuCS interface for MSC pooling and sharing.

```plaintext
configure

cs-network <cs_network_name>

    map idnns range <idnns_start> to <idnns_end> point-code <msc_point_code> [ backup point-code <bkup_msc_point_code>]

    map nri range <nri_start> to <nri_end> point-code <msc_point_code>

    nri length <nri_value>

    null-nri <null_nri_value>

    offload-msc point-code <msc_point_code>

end
```

Notes:
- `<cs_network_name>` is name of the HNB-CS network which is already configured and associated with HNB-GW service.
- `<nri_value>` must be an integer between 1 and 10. A zero NRI length value disables the Iu-Flex feature on HNB-GW service.
- `offload-msc point-code <msc_point_code>` command enables the exclusion of specific primary MSC during NAS Node Selection Function (NNSF) procedure when it needs to be off-loaded while using Iu-Flex functionality on HNB-GW node.

Important: Offload check is only for the primary point code and NOT for the backup point code. This command can be used for planned maintenance as well.
Iu-Flex over IuPS Interface Configuration

Use the following example to configure the Iu-Flex feature over IuPS interface for SGSN pooling and sharing.

```
configure

ps-network <ps_network_name>

  map idnns range <idnns_start> to <idnns_end> point-code <sgsn_point_code> [ backup point-code <bkup_sgsn_point_code>]

  map nri range <nri_start> to <nri_end> point-code <sgsn_point_code>

  nri length <nri_value>

  null-nri <null_nri_value>

  offload-sgsn point-code <sgsn_point_code>

end
```

Notes:

- `<sgsn_network_name>` is name of the HNB-PS network which is already configured and associated with HNB-GW service.
- `<nri_value>` must be an integer between 1 and 10. A zero NRI length value disables the Iu-Flex feature on HNB-GW service.
- `offload-sgsn point-code <sgsn_point_code>` command enables the exclusion of specific primary SGSN during NAS Node Selection Function (NNSF) procedure when it needs to be off-loaded while using Iu-Flex functionality on HNB-GW node.

Important: Offload check is only for the primary point code and NOT for the backup point code. This command can be used for planned maintenance as well.
Logging Facility Configuration

Use the following example to configure the HNB-GW system to enable the logging and debug facilities for HNB-GW subscriber and related protocols.

```
configure

logging console

logging display event-verbosity {min | concise | full}

logging filter runtime facility aal2 { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility alcap { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility alcapmgr { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility diameter { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility hnb-gw { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility hnbmgr { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility sccp { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility sctp { critical | error | warning | unusual | info | trace | debug }

logging filter runtime facility threshold { critical | error | warning | unusual | info | trace | debug }
```

```
Important: Refer System Administration Guide for more information on logging facility configuration.
```

Displaying Logging Facility

This section shows the logging facility event logs for logging facilities enabled on HNB-GW node.
Step 1 Verify the logging facilities configured on HNB-GW system node by entering the following command in Exec Mode:

```
show logging [ active | verbose]
```

The output of this command provides the display of event logs for configured logging facilities.
Congestion Control Configuration

To configure Congestion Control functionality:

Step 1 Configure Congestion Control Threshold by applying the example configuration in the Configuring the Congestion Control Threshold section.

Step 2 Configure Service Congestion Policies by applying the example configuration in the Configuring Service Congestion Policies section.

Step 3 Optional. Operator can configure the system to reject all new incoming calls to specific or all HNB-GW service instance in a busy-out or planned maintenance or for troubleshooting by applying the example configuration in the Configuring New Call Policy section.

Step 4 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.

Configuring the Congestion Control Threshold

To configure congestion control threshold, apply the following example configuration:

```
configure

    congestion-control threshold max-sessions-per-service-utilization <percent>

    congestion-control threshold tolerance <percent>

end
```

Notes:
- There are several additional threshold parameters. See the Global Configuration Mode chapter of the Command Line Interface Reference for more information.
- The tolerance is the percentage under a configured threshold that dictates the point at which the condition is cleared.
- Repeat this configuration as needed for additional thresholds.

Configuring Service Congestion Policies

To create a congestion control policy, apply the following example configuration:

```
configure

    congestion-control policy hnbgw-service action { drop | none | reject }

end
```

Notes:
• For HNB-GW service sessions **reject** is the default action.

Configuring New Call Policy

To create a new call policy in a busy our or planned maintenance or other operator intervened scenario, apply the following example configuration:

```
newcall policy hnbgw-service [all | name <hnbgw_svc_name>] reject
```

Notes:

• For HNB-GW service sessions **reject** is the default action for all new calls coming on a specific or all HNB-GW service instance.
Alarm and Alert Trap Configuration

To enable and configure the SNMP Traps to generate alarms and alerts from system for various events and thresholds in HNB-GW service, apply the following example configuration:

```
configure

snmp trap { enable | suppress} [congestion] {ThreshTotalHNBGWHnbSess | ThreshTotalHNBGWUeSess} [ target <trap_collector>]

snmp trap { enable | suppress} {ThreshTotalHNBGWHnbSess | ThreshTotalHNBGWUeSess} [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWALCAPNodeReset [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWALCAPPathBlock [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWALCAPPathReset [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWALCAPPathUnBlock [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWMSCRanapReset [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWSGSNRanapReset [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWServiceStart [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWServiceStop [ target <trap_collector>]

snmp trap { enable | suppress} HNBGWServiceStop [ target <trap_collector>]

end

Notes:

- There are several additional SNMP Traps which can be configured. Refer Global Configuration Mode chapter of the Command Line Interface Reference for more information.
- For more information on SNMP Traps, refer System SNMP-MIB Reference.
- Repeat this configuration as needed for additional traps.
SNMP-MIB Traps for HNB-GW Service

SNMP traps are used to manage and monitor the service on HNB-GW node. Supported SNMP traps and its id are indicated in the following table.

<table>
<thead>
<tr>
<th>Traps</th>
<th>Object Id</th>
</tr>
</thead>
<tbody>
<tr>
<td>starThreshHNBGWHnbSess</td>
<td>starentTraps 484</td>
</tr>
<tr>
<td>starThreshClearHNBGWHnbSess</td>
<td>starentTraps 485</td>
</tr>
<tr>
<td>starThreshHNBGWuSess</td>
<td>starentTraps 486</td>
</tr>
<tr>
<td>starThreshClearHNBGWuSess</td>
<td>starentTraps 487</td>
</tr>
<tr>
<td>starThreshHNBGWiuSess</td>
<td>starentTraps 488</td>
</tr>
<tr>
<td>starThreshClearHNBGWiuSess</td>
<td>starentTraps 489</td>
</tr>
<tr>
<td>starHNBGWSGSNRanapReset</td>
<td>starentTraps 1155</td>
</tr>
<tr>
<td>starHNBGWMSCRanapReset</td>
<td>starentTraps 1156</td>
</tr>
<tr>
<td>starALCAPNodeReset</td>
<td>starentTraps 1157</td>
</tr>
<tr>
<td>starALCAPPathReset</td>
<td>starentTraps 1158</td>
</tr>
<tr>
<td>starALCAPBlock</td>
<td>starentTraps 1159</td>
</tr>
<tr>
<td>starALCAPUnBlock</td>
<td>starentTraps 1160</td>
</tr>
</tbody>
</table>

Important: For more information on SNMP trap configuration and supported object ids, refer System SNMP-MIB Reference.
Event IDs for HNB-GW Service

Identification numbers (IDs) are used to reference events as they occur when logging is enabled on the system. Logs are collected on a per facility basis.

Each facility possesses its own range of event IDs as indicated in the following table.

Important: Not all event IDs are used on all platforms. It depends on the platform type and the license(s) running.

For more information on logging facility configuration and event id, refer Configuring and Viewing System Logs chapter in System Administration Guide.

Table 6. System Event Facilities and ID Ranges

<table>
<thead>
<tr>
<th>Facility</th>
<th>Event ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNB-GW Facility Events</td>
<td>151000-151999</td>
</tr>
<tr>
<td>HNB Manager Facility Events</td>
<td>158000-158199</td>
</tr>
<tr>
<td>ALCAP Manager Facility Events</td>
<td>160500-160899</td>
</tr>
<tr>
<td>ALCAP Protocol Facility Events</td>
<td>160900-161399</td>
</tr>
<tr>
<td>SCTP Protocol Facility Events</td>
<td>87300-87499</td>
</tr>
<tr>
<td>AAL2 Protocol Facility Events</td>
<td>173200-173299</td>
</tr>
<tr>
<td>RANAP User Adaptation Protocol Facility Event</td>
<td>152000-152009</td>
</tr>
<tr>
<td>RANAP Protocol Facility Event</td>
<td>87700-87899</td>
</tr>
<tr>
<td>AAA Client Facility Events</td>
<td>6000-6999</td>
</tr>
<tr>
<td>Alarm Controller Facility Events</td>
<td>65000-65999</td>
</tr>
<tr>
<td>Card/Slot/Port (CSP) Facility Events</td>
<td>7000-7999</td>
</tr>
<tr>
<td>Command Line Interface Facility Events</td>
<td>30000-30999</td>
</tr>
<tr>
<td>Event Log Facility Events</td>
<td>2000-2999</td>
</tr>
<tr>
<td>Lawful Intercept Log Facility Events</td>
<td>69000-69999</td>
</tr>
<tr>
<td>Mobile IPv6 Facility Events</td>
<td>129000-129999</td>
</tr>
<tr>
<td>Network Access Signaling Facility Events</td>
<td>153000-153999</td>
</tr>
<tr>
<td>Statistics Facility Events</td>
<td>31000-31999</td>
</tr>
<tr>
<td>System Facility Events</td>
<td>1000-1999</td>
</tr>
<tr>
<td>System Initiation Task (SIT) Main Facility Events</td>
<td>4000-4999</td>
</tr>
<tr>
<td>Threshold Facility Events</td>
<td>61000-61999</td>
</tr>
<tr>
<td>Facility</td>
<td>Event ID Range</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Virtual Private Network Facility Events</td>
<td>5000-5999</td>
</tr>
</tbody>
</table>
Chapter 4
Monitoring the Service

This chapter provides information for monitoring service status and performance using the `show` commands found in the Command Line Interface (CLI). These commands have many related keywords that allow them to provide useful information on all aspects of the system ranging from current software configuration through call activity and status.

The selection of keywords described in this chapter is intended to provide the most useful and in-depth information for monitoring the system. For additional information on these and other `show` command keywords, refer to the Command Line Interface Reference.

In addition to the CLI, the system supports the sending of Simple Network Management Protocol (SNMP) traps that indicate status and alarm conditions. Refer to the `SNMP MIB Reference Guide` for a detailed listing of these traps.
Monitoring System Status and Performance

This section contains commands used to monitor the status of tasks, managers, applications and other software components in the system. Output descriptions for most of the commands are located in the Counters and Statistics Reference.

Table 7. System Status and Performance Monitoring Commands

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>View HNB-GW Service Information</td>
<td></td>
</tr>
<tr>
<td>View HNB-GW services running on chassis</td>
<td>show hnbgw session all</td>
</tr>
<tr>
<td>View summary of HNB-GW sessions running on chassis</td>
<td>show hnbgw session summary</td>
</tr>
<tr>
<td>View detailed information of HNB-GW sessions</td>
<td>show hnbgw session full</td>
</tr>
<tr>
<td>Monitor HNB-GW Subscriber Session Information</td>
<td></td>
</tr>
<tr>
<td>Monitor HNB-GW subscribers by call identifier</td>
<td>monitor subscriber callid call_id</td>
</tr>
<tr>
<td>Monitor HNB-GW subscribers by user name identifier</td>
<td>monitor subscriber username subscriber_name</td>
</tr>
<tr>
<td>Monitor HNB-GW subscribers by IMSI value</td>
<td>monitor subscriber imsi imsi</td>
</tr>
<tr>
<td>Monitor HNB-GW subscribers by IP address of UE</td>
<td>monitor subscriber ipaddr ipv4_address</td>
</tr>
<tr>
<td>Monitoring HNB and UE by Protocol Monitoring</td>
<td></td>
</tr>
<tr>
<td>Monitor HNB through Protocol Monitoring</td>
<td>monitor protocol</td>
</tr>
<tr>
<td>Use following protocol options for HNB monitoring:</td>
<td></td>
</tr>
<tr>
<td>• SCTP</td>
<td></td>
</tr>
<tr>
<td>• HNBAP</td>
<td></td>
</tr>
<tr>
<td>• RUA</td>
<td></td>
</tr>
<tr>
<td>• RADIUS-AUTH</td>
<td></td>
</tr>
<tr>
<td>• RADIUS-COA</td>
<td></td>
</tr>
</tbody>
</table>
### To do this: Enter this command:

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor UE through Protocol Monitoring</td>
<td><strong>monitor protocol</strong></td>
</tr>
<tr>
<td>Use following protocol options for HNB monitoring:</td>
<td></td>
</tr>
<tr>
<td>- HNBAP</td>
<td></td>
</tr>
<tr>
<td>- RUA</td>
<td></td>
</tr>
<tr>
<td>- RANAP</td>
<td></td>
</tr>
<tr>
<td>- SCCP</td>
<td></td>
</tr>
<tr>
<td>- ALCAP</td>
<td></td>
</tr>
<tr>
<td>- AAL2</td>
<td></td>
</tr>
<tr>
<td>- GTP-U</td>
<td></td>
</tr>
<tr>
<td>- RTP</td>
<td></td>
</tr>
</tbody>
</table>

### View Subscriber Information

- **Display Session Resource Status**
  - `show resources session`

- **Display Subscriber Configuration Information**
  - View locally configured subscriber profile settings (must be in context where subscriber resides) `show subscribers configuration username subscriber_name`
  - View remotely configured subscriber profile settings `show subscribers aaa-configuration username subscriber_name`

- **View Subscribers Currently Accessing the System**
  - View a listing of subscribers currently accessing the system `show subscribers hnbgw-only all`
  - View information for a specific subscriber `show subscribers hnbgw-only full username username`

- **View Subscriber Counters**
  - View counters for a specific subscriber `show subscribers counters username subscriber_name`

- **View Recovered Session Information**
  - View session state information and session recovery status `show subscriber debug-info { callid | msid | username }`

### View Session Statistics and Information

- **Display Historical Session Counter Information**
  - View all historical information for all sample intervals `show session counters historical`

- **Display Session Duration Statistics**
  - View session duration statistics `show session duration`
## Monitoring System Status and Performance

### To do this: Enter this command:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>View session state statistics</td>
<td><code>show session progress</code></td>
</tr>
<tr>
<td>Display Session Subsystem and Task Statistics</td>
<td>Refer to the System Software Task and Subsystem Descriptions appendix of the System Administration Guide for additional information on the Session subsystem and its various manager tasks.</td>
</tr>
<tr>
<td>View GTPU Manager statistics</td>
<td><code>show session subsystem facility gtpumgr all</code></td>
</tr>
<tr>
<td>View HNB-GW Manager statistics</td>
<td><code>show session subsystem facility hnbmgmgr all</code></td>
</tr>
<tr>
<td>View Session Manager statistics</td>
<td><code>show session subsystem facility sessmgr all</code></td>
</tr>
<tr>
<td>View AAL2 protocol facility statistics</td>
<td><code>show logs facility aal2</code></td>
</tr>
<tr>
<td>View ALCAP service facility statistics</td>
<td><code>show logs facility alcap</code></td>
</tr>
<tr>
<td>View ALCAP Manager facility statistics</td>
<td><code>show logs facility alcapmgr</code></td>
</tr>
<tr>
<td>View HNB-GW Manager facility statistics</td>
<td><code>show logs facility hnb-gw</code></td>
</tr>
<tr>
<td>View HNB Manager facility statistics</td>
<td><code>show logs facility hnbmgmgr</code></td>
</tr>
<tr>
<td>View GTPU Manager Instance statistics</td>
<td><code>show gtpu statistics gtpumgr-instance gtpu_instance</code></td>
</tr>
<tr>
<td>Display Session Disconnect Reasons</td>
<td></td>
</tr>
<tr>
<td>View session disconnect reasons specific to HNB-GW service</td>
<td><code>show hnbgw disconnect-reasons</code></td>
</tr>
<tr>
<td>View session disconnect reasons with verbose output</td>
<td><code>show session disconnect-reasons</code></td>
</tr>
<tr>
<td>View HNB-GW Service Configuration</td>
<td></td>
</tr>
<tr>
<td>Display a HNB-GW Service Status</td>
<td><code>show hnbgw-service all verbose</code></td>
</tr>
<tr>
<td>View all configured HNB-GW services configuration in detail</td>
<td><code>show hnbgw-service all verbose</code></td>
</tr>
<tr>
<td>View configuration errors in HNB-GW section in detail</td>
<td><code>show configuration errors section hnbgw-service verbose</code></td>
</tr>
<tr>
<td>View HNB-GW Related Statistics</td>
<td></td>
</tr>
<tr>
<td>View HNB-GW service counters filtered on an HNB-GW service</td>
<td><code>show hnbgw counters hnbgw-service hnb_gw_svc_name</code></td>
</tr>
<tr>
<td>View HNB-GW service counters filtered by an HNB id</td>
<td><code>show hnbgw counters hnbid hnb_identifier</code></td>
</tr>
<tr>
<td>View HNB-GW service statistics filtered on an HNB-GW service</td>
<td><code>show hnbgw statistics hnbgw-service hnb_gw_svc_name verbose</code></td>
</tr>
<tr>
<td>View HNB-GW service statistics filtered by an HNB id</td>
<td><code>show hnbgw statistics hnbid hnb_identifier</code></td>
</tr>
<tr>
<td>View GTP-U Service Statistics</td>
<td></td>
</tr>
<tr>
<td>View GTP-U peer information</td>
<td><code>show gtpu statistics peer-address ip_address</code></td>
</tr>
<tr>
<td>View GTP-U Service information</td>
<td><code>show gtpu statistics gtpu-service gtpu_svc_name</code></td>
</tr>
</tbody>
</table>
Monitoring Logging Facility

This section contains commands used to monitor the logging facility active for specific tasks, managers, applications and other software components in the system.

Table 8. Logging Facility Monitoring Commands

<table>
<thead>
<tr>
<th>To do this:</th>
<th>Enter this command:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor logging facility for specific session</td>
<td>logging trace callid call_id</td>
</tr>
<tr>
<td>based on Call-id on system</td>
<td></td>
</tr>
<tr>
<td>Monitor logging facility based on IP address</td>
<td>logging trace ipaddr ip_address</td>
</tr>
<tr>
<td>used in session on system</td>
<td></td>
</tr>
<tr>
<td>Monitor logging facility based on MS Identity</td>
<td>logging trace msid ms_identifier</td>
</tr>
<tr>
<td>used in session on system</td>
<td></td>
</tr>
<tr>
<td>Monitor logging facility based on user name</td>
<td>logging trace username name</td>
</tr>
<tr>
<td>used in session on system</td>
<td></td>
</tr>
<tr>
<td>Monitor AAL2 logging facility on HNB-GW system</td>
<td>logging filter active facility aal2 { critical</td>
</tr>
<tr>
<td>Monitor Diameter logging facility on HNB-GW</td>
<td>logging filter active facility diameter { critical</td>
</tr>
<tr>
<td>system</td>
<td></td>
</tr>
<tr>
<td>Monitor ALCAP logging facility on HNB-GW system</td>
<td>logging filter active facility alcap { critical</td>
</tr>
<tr>
<td>Monitor HNB-GW service logging facility on</td>
<td>logging filter active facility hnbgw { critical</td>
</tr>
<tr>
<td>HNB-GW system</td>
<td></td>
</tr>
<tr>
<td>Monitor HNBManager logging facility on HNB-GW</td>
<td>logging filter active facility hnbmgr { critical</td>
</tr>
<tr>
<td>system</td>
<td></td>
</tr>
<tr>
<td>Monitor SCCP logging facility on HNB-GW system</td>
<td>logging filter active facility sccp { critical</td>
</tr>
<tr>
<td>Monitor SCTP logging facility on HNB-GW system</td>
<td>logging filter active facility sctp { critical</td>
</tr>
<tr>
<td>Monitor threshold logging facility on HNB-GW</td>
<td>logging filter active facility threshold { critical</td>
</tr>
<tr>
<td>system</td>
<td></td>
</tr>
</tbody>
</table>
Clearing Statistics and Counters

It may be necessary to periodically clear statistics and counters in order to gather new information. The system provides the ability to clear statistics and counters based on their grouping (AAL2, ALCAP, HNB, HNB-GW, GTP-U, etc.).

Statistics and counters can be cleared using the CLI `clear` command. Refer to *Command Line Interface Reference* for detailed information on using this command.
Chapter 5
Troubleshooting the Service

This chapter provides information and instructions for using the system command line interface (CLI) for troubleshooting issues that may arise during service operation.
Test Commands

In the event that an issue was discovered with an installed application or line card, depending on the severity, it may be necessary to take corrective action.

The system provides several redundancy and fail-over mechanisms to address issues with application and line cards in order to minimize system downtime and data loss. These mechanisms are described in the sections that follow.

Using the GTPU Test Echo Command

This command tests the HNB-GW’s ability to exchange GPRS Tunneling Protocol user plane (GTP-U) packets with the specified peer nodes which can be useful in troubleshooting and/or monitoring.

The test is performed by the system sending GTP-U echo request messages to the specified node(s) and waiting for a response.

**Important:** This command must be executed from within the context in which at least one HNB-GW service is configured.

The command has the following syntax:

```
gtpu test echo src-address src_ip_address{ all | sgsn-address ip_address }
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| src-address      | Specifies the IP address of an interface configured on the system.  
| src_ip_address   | NOTE: The IP address of the system’s interface must be bound to a configured HNB-GW service prior to executing this command. |
| all              | Specifies that GTP-U echo requests will be sent to all Nodes that currently have sessions with the HNB-GW service. |
| sgsn-address     | |
| ip_address       | |

The following figure displays a sample of this command’s output showing a successful GTPU echo-test from an HNB-GW service bound to address 192.168.157.32 to an SGSN with an address of 192.168.157.2.

```
GTPU test echo

SGSN: 192.168.157.2 Tx/Rx: 1/1 RTT(ms): 24 (COMPLETE)
```

Using the GTPv0 Test Echo Command

This command tests the HNB-GW’s ability to exchange GPRS Tunneling Protocol version 0 (GTPv0) packets with the specified SGSNs which can be useful troubleshooting and/or monitoring.

The test is performed by the system sending GTPv0 echo request messages to the specified SGSN(s) and waiting for a response.
**Important:** This command must be executed from within the context in which at least one HNB-GW service is configured.

The command has the following syntax:

```
gtpv0 test echo src-address src_ip_address { all | sgsn-address ip_address }
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>src-address</strong></td>
<td>Specifies the IP address of an interface configured on the system.</td>
</tr>
<tr>
<td><strong>src_ip_address</strong></td>
<td><strong>NOTE:</strong> The IP address of the system’s interface must be bound to a configured HNB-GW service prior to executing this command.</td>
</tr>
<tr>
<td><strong>all</strong></td>
<td>Specifies that GTP-U echo requests will be sent to all Nodes that currently have sessions with the HNB-GW service.</td>
</tr>
<tr>
<td><strong>sgsn-address</strong></td>
<td>Specifies that GTPv0 echo requests will be sent to a specific SGSN.</td>
</tr>
<tr>
<td><strong>ip_address</strong></td>
<td><em>ip_address</em> is the address of the SGSN to receiving the requests.</td>
</tr>
</tbody>
</table>

The following figure displays a sample of this command’s output showing a successful GTPv0 echo-test from an HNB-GW service bound to address 192.168.157.32 to an SGSN with an address of 192.168.157.2.

```
GTPv0 test echo

SGSN: 192.168.157.2 Tx/Rx: 1/1 RTT(ms):14 (COMPLETE)Recovery: 210(0xD2)
```

**Using the IPsec Tunnel Test Command**

This command tests the system’s ability to communicate through an IPsec Tunnel. This functionality is useful for troubleshooting and/or monitoring.

The command has the following syntax:

```
test ipsec tunnel ip-pool ip_pool_name destination-ip des_ip_address source-ip src_ip_address
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ip_pool_name</strong></td>
<td>The name of the IP pool configured for IPsec Tunnel. <em>ip_pool_name</em> can be from 1 to 63 alpha and/or numeric characters in length and is case sensitive.</td>
</tr>
<tr>
<td><strong>des_ip_address</strong></td>
<td>The IP address of destination node of IPsec tunnel.</td>
</tr>
<tr>
<td><strong>src_ip_address</strong></td>
<td>The IP address of source node of IPsec tunnel.</td>
</tr>
</tbody>
</table>
Performance Improvement Commands

In the event that an issue of IPC message latency towards core network was discovered with HNB-GW service, it may be necessary to take corrective/preventive action.

The system provides a latency reduction mechanisms in *SGSN Global Service Configuration Mode* to address latency issues in order to minimize the latency towards core network. These mechanism is described in the section that follow.

**Turning off IPC Message Aggregation To Reduce Latency Towards Core Network**

This command enables/disables aggregation of IPC messages in the link manager (linkmgr) and session manager (sessmgr).

This command includes options to configure the frequency of aggregated message flushing and the number of packets to be buffered before the flush.

At the HNB-GW node, this command provides a solution to reduce latency while sending the IPC messages toward CN.

**Important:** This command must be executed from *SGSN Global Service Configuration Mode* within the context in which the HNB-GW service is configured. Refer Command Line Interface Reference for more information on this command.

The command has the following syntax:

```
aggregate-ipc-msg {linkmgr | sessmgr} {flush-frequency frequency | num-msgs number_msgs}
```

```
default aggregate-ipc-msg {linkmgr | sessmgr}
```

<table>
<thead>
<tr>
<th>Keyword/Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Resets the managers to default values for flushing; i.e. 1.</td>
</tr>
<tr>
<td>linkmgr</td>
<td>Selects the linkmgr to configure the number of IPC messages to be aggregated and frequency of flushing.</td>
</tr>
<tr>
<td>sessmgr</td>
<td>Selects the sessmgr to configure the number of IPC messages to be aggregated and frequency of flushing.</td>
</tr>
<tr>
<td>flush-frequency</td>
<td>Configure the frequency, in 100-millisecond intervals, that the aggregated IPC messages will be flushed.</td>
</tr>
<tr>
<td>frequency</td>
<td><em>frequency</em>: Enter an integer from 1 to 3. Default is 1.</td>
</tr>
<tr>
<td>num-msgs number_msgs</td>
<td>Configure the number of IPC messages to aggregate before flushing.</td>
</tr>
<tr>
<td>number_msgs</td>
<td><em>number_msgs</em>: Enter the integer 1 (to disable aggregation) or an integer from 2 to 164 to define the number of messages. Default is 10.</td>
</tr>
</tbody>
</table>
Chapter 6
Engineering Rules

This section provides engineering rules or guidelines that must be considered prior to configuring the system for your network deployment.

This appendix describes following engineering rules for HNB-GW service:

- DHCP Service Engineering Rules
- HNB-GW Engineering Rules
- Service Engineering Rules
DHCP Service Engineering Rules

The following engineering rule applies to the DHCP Service:

- Up to 8 DHCP servers may be configured per DHCP service.
- A maximum of 3 DHCP server can be tried for a call.
HNB-GW Engineering Rules

The following engineering rules apply when the system is configured as an HNB-GW:

- A maximum of 16 HNB-GW service can be configured on a system which is further limited to a maximum of 256 services (regardless of type) can be configured per system.
- A maximum of 16 CS-network instances can be configured on system for HNB-GW network function but multiple HNB-GW services can be associated with the same CS-network instance.
- A maximum of 16 PS-network instances can be configured on system for HNB-GW network function but multiple HNB-GW services can be associated with the same PS-network instance.
- A particular HNB-GW service can be associated with more than one CS/PS network entity.
- A maximum of 12 HNB-SCCP-network instance can be configured on system for HNB-GW network function.
- A maximum of 4 HNB-ALCAP service can be configured on system for HNB-GW network function.
- A maximum of 4 Radio Network PLMN ids can be configured in an HNB-GW service.
- A maximum of 4 unique RNC ids can be configured in a Radio Network PLMN.
- A maximum of 1 SeGW IP address can be associated with an HNB-GW service.
Interface and Port Engineering Rules

The rules discussed in this section pertain to both the Ethernet 10/100 and Ethernet 1000 Line Cards and the four-port Quad Gig-E Line Card and the type of interfaces they facilitate.

IuCS Interface Rules

When supporting CS networks, the system can be configured to provide IuCS interface support and connects to the MSC in a CS network in same the PLMN.

The following engineering rules apply to the IuCS interface between the HNB-GW and MSC:

- An IuCS interface is created once the IP address of a logical interface is bound to a ASP-IP defined in the SS7-RD-instance which is defined in SCCP Network instance which is defined in CS Network configuration based on destination point-code.
- The logical interface(s) that will be used to facilitate the IuCS interface(s) must be configured within the egress context.
- CS Network services must be configured within the local context.
- Multiple MSCs (maximum 25) can be configured through IuCS interfaces within the HNB-GW service instance.

IuPS Interface Rules

When supporting PS networks, the system can be configured to provide IuPS interface support and connects to the SGSN in a PS network in the same PLMN.

The following engineering rules apply to the IuPS interface between the HNB-GW and SGSN:

- An IuPS interface is created once the IP address of a logical interface is bound to a PS Network service.
- The logical interface(s) that will be used to facilitate the IuPS interface(s) must be configured within the egress context.
- PS Network services must be configured within the local context at the system level.
- Multiple SGSNs (maximum 25) can be configured through IuPS interfaces within the HNB-GW service instance.
Service Engineering Rules

The following engineering rules apply to services configured within the system:

- A maximum of 256 services (regardless of type) can be configured per system.

⚠️ **Caution:** Large numbers of services greatly increase the complexity of management and may impact overall system performance (i.e. resulting from such things as system handoffs). Therefore, it is recommended that a large number of services only be configured if your application absolutely requires it. Please contact your local service representative for more information.
Chapter 7
CoA, RADIUS DM, and Session Redirection (Hotlining)

This chapter describes Change of Authorization (CoA), Disconnect Message (DM), and Session Redirect (Hotlining) support in the system. RADIUS attributes, Access Control Lists (ACLs) and filters that are used to implement these features are discussed. The product administration guides provide examples and procedures for configuration of basic services on the system. It is recommended that you select the configuration example that best meets your service model, and configure the required elements for that model, as described in this Administration Guide, before using the procedures in this chapter.

Important: Not all functions, commands, and keywords/variables are available or supported for all network function or services. This depends on the platform type and the installed license(s).
RADIUS Change of Authorization and Disconnect Message

This section describes how the system implements CoA and DM RADIUS messages and how to configure the system to use and respond to CoA and DM messages.

CoA Overview

The system supports CoA messages from the AAA server to change data filters associated with a subscriber session. The CoA request message from the AAA server must contain attributes to identify NAS and the subscriber session and a data filter ID for the data filter to apply to the subscriber session. The filter-id attribute (attribute ID 11) contains the name of an Access Control List (ACL). For detailed information on configuring ACLs, refer to the IP Access Control Lists chapter in the System Administration Guide.

If the system successfully executes a CoA request, a CoA-ACK message is sent back to the RADIUS server and the data filter is applied to the subscriber session. Otherwise, a CoA-NAK message is sent with an error-cause attribute without making any changes to the subscriber session.

Important: Changing ACL and rulebase together in a single CoA is not supported. For this, two separate CoA requests can be sent through AAA server requesting for one attribute change per request.

DM Overview

The DM message is used to disconnect subscriber sessions in the system from a RADIUS server. The DM request message should contain necessary attributes to identify the subscriber session. If the system successfully disconnects the subscriber session, a DM-ACK message is sent back to the RADIUS server, otherwise, a DM-NAK message is sent with proper error reasons.

License Requirements

The RADIUS Change of Authorization (CoA) and Disconnect Message (DM) are licensed Cisco features. A separate feature license may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.

Enabling CoA and DM

To enable RADIUS Change of Authorization and Disconnect Message:

Step 1 Enable the system to listen for and respond to CoA and DM messages from the RADIUS server as described in the Enabling CoA and DM section.

Step 2 Save your configuration to flash memory, an external memory device, and/or a network location using the Exec mode command save configuration. For additional information on how to verify and save configuration files, refer to the System Administration Guide and the Command Line Interface Reference.
Step 3   View CoA and DM message statistics as described in the Viewing CoA and DM Statistics section.

**Important:** Commands used in the configuration examples in this section provide base functionality to the extent that the most common or likely commands and/or keyword options are presented. In many cases, other optional commands and/or keyword options are available. Refer to the Command Line Interface Reference for complete information regarding all commands. Not all commands and keywords/variables are available or supported. This depends on the platform type and the installed license(s).

### Enabling CoA and DM

Use the following example to enable the system to listen for and respond to CoA and DM messages from the RADIUS server:

```
configure
 context <context_name>
 radius change-authorize-nas-ip <ipv4/ipv6_address>
 end
```

Notes:
- `<context_name>` must be the name of the AAA context where you want to enable CoA and DM.
  - For more information on configuring the AAA context, if you are using StarOS 12.3 or an earlier release, refer to the Configuring Context-Level AAA Functionality section of the AAA and GTPP Interface Administration and Reference. If you are using StarOS 14.0 or a later release, refer to the AAA Interface Administration and Reference.
  - A number of optional keywords and variables are available for the `radius change-authorize-nas-ip` command. For more information regarding this command please refer to the Command Line Interface Reference.

### CoA and DM Attributes

For CoA and DM messages to be accepted and acted upon, the system and subscriber session to be affected must be identified correctly.

To identify the system, use any one of the following attributes:
- NAS-IP-Address: NAS IP address if present in the CoA/DM request should match with the NAS IP address.
- NAS-Identifier: If this attribute is present, its value should match to the `nas-identifier` generated for the subscriber session

To identify the subscriber session, use any one of the following attributes.
- If 3GPP2 service is configured the following attribute is used for correlation identifier:
  - 3GPP2-Correlation-ID: The values should exactly match the 3GPP2-correlation-id of the subscriber session. This is one of the preferred methods of subscriber session identification.
- If 3GPP service is configured the following attributes are used for different identifiers:
  - 3GPP-IMSI: International Mobile Subscriber Identification (IMSI) number should be validated and matched with the specified IMSI for specific PDP context.
- 3GPP-NSAPI: Network Service Access Point Identifier (NSAPI) should match to the NSAPI specified for specific PDP context.
- User-Name: The value should exactly match the subscriber name of the session. This is one of the preferred methods of subscriber session identification.
- Framed-IP-Address: The values should exactly match the framed IP address of the session.
- Calling-station-id: The value should match the Mobile Station ID.

To specify the ACL to apply to the subscriber session, use the following attribute:
- Filter-ID: CoA only. This must be the name of an existing Access Control List. If this is present in a CoA request, the specified ACL is immediately applied to the specified subscriber session. The Context Configuration mode command, `radius attribute filter-id direction`, controls in which direction filters are applied.

The following attributes are also supported:
- Event-Timestamp: This attribute is a timestamp of when the event being logged occurred.
- If 3GPP2 service is configured following additional attributes are supported:
  - 3GPP2-Disconnect-Reason: This attribute indicates the reason for disconnecting the user. This attribute may be present in the RADIUS Disconnect-request Message from the Home Radius server to the PDSN.
  - 3GPP2-Session-Termination-Capability: When CoA and DM are enabled by issuing the `radius change-authorize-nas-ip` command, this attribute is included in a RADIUS Access-request message to the Home RADIUS server and contains the value 3 to indicate that the system supports both Dynamic authorization with RADIUS and Registration Revocation for Mobile IPv4. The attribute is also included in the RADIUS Access-Accept message and contains the preferred resource management mechanism by the home network, which is used for the session and may include values 1 through 3.

CoA and DM Error-Cause Attribute

The Error-Cause attribute is used to convey the results of requests to the system. This attribute is present when a CoA or DM NACK or ACK message is sent back to the RADIUS server.

The value classes of error causes are as follows:
- 0-199, 300-399 reserved
- 200-299 - successful completion
- 400-499 - errors in RADIUS server
- 500-599 - errors in NAS/Proxy

The following error cause is sent in ACK messages upon successful completion of a CoA or DM request:
- 201 - Residual Session Context Removed

The following error causes are sent in NACK messages when a CoA or DM request fails:
- 401 - Unsupported Attribute
- 402 - Missing Attribute
- 403 - NAS Identification Mismatch
- 404 - Invalid Request
- 405 - Unsupported Service
- 406 - Unsupported Extension
- 501 - Administratively Prohibited
- 503 - Session Context Not Found
- 504 - Session Context Not Removable
- 506 - Resources Unavailable

**Viewing CoA and DM Statistics**

View CoA and DM message statistics by entering the following command:

```
show session subsystem facility aaamgr
```

The following is a sample output of this command.

```
1 AAA Managers
807 Total aaa requests 0 Current aaa requests
379 Total aaa auth requests 0 Current aaa auth requests
0 Total aaa auth probes 0 Current aaa auth probes
0 Total aaa auth keepalive 0 Current aaa auth keepalive
426 Total aaa acct requests 0 Current aaa acct requests
0 Total aaa acct keepalive 0 Current aaa acct keepalive
379 Total aaa auth success 0 Total aaa auth failure
0 Total aaa auth purged 0 Total aaa auth cancelled
0 Total auth keepalive success 0 Total auth keepalive failure
0 Total auth keepalive purged 0 Total auth keepalive cancelled
0 Total aaa auth DMU challenged 0 Total radius auth DMU challenged
367 Total radius auth requests 0 Current radius auth requests
2 Total radius auth requests retried 0 Total radius auth requests retried
0 Total radius auth responses dropped 0 Total radius auth responses dropped
0 Total local auth requests 0 Current local auth requests
12 Total pseudo auth requests 0 Current pseudo auth requests
0 Total null-username auth requests (rejected) 0 Total null-username auth requests (rejected)
0 Total aaa acct completed 0 Total aaa acct purged
0 Total acct keepalive success 0 Total acct keepalive success
```
0 Total acct keepalive purged
0 Total aaa acct cancelled
426 Total radius acct requests 0 Current radius acct requests
0 Total radius acct requests retried
0 Total radius acct responses dropped
0 Total gtpp acct requests 0 Current gtpp acct requests
0 Total gtpp acct cancelled 0 Total gtpp acct purged
0 Total null acct requests 0 Current null acct requests
54 Total aaa acct sessions 5 Current aaa acct sessions
3 Total aaa acct archived 0 Current aaa acct archived
0 Current recovery archives 0 Current valid recovery records
2 Total aaa sockets opened 2 Current aaa sockets open
0 Total aaa requests pend socket open
0 Current aaa requests pend socket open
0 Total radius requests pend server max-outstanding
0 Current radius requests pend server max-outstanding
0 Total aaa radius coa requests 0 Total aaa radius dm requests
0 Total aaa radius coa acks 0 Total aaa radius dm acks
0 Total aaa radius coa naks 0 Total aaa radius dm naks
2 Total radius charg auth 0 Current radius charg auth
0 Total radius charg auth succ 0 Total radius charg auth fail
0 Total radius charg auth purg 0 Total radius charg auth cancel
0 Total radius charg acct 0 Current radius charg acct
0 Total radius charg acct succ 0 Total radius charg acct purg
0 Total radius charg acct cancel
357 Total gtpp charg 0 Current gtpp charg
357 Total gtpp charg success 0 Total gtpp charg failure
0 Total gtpp charg cancel 0 Total gtpp charg purg
0 Total prepaid online requests 0 Current prepaid online requests
0 Total prepaid online success
0 Total prepaid online retried
0 Current prepaid online purged
0 Total aaamgr purged requests
0 SGSN: Total db records
0 SGSN: Total sub db records
0 SGSN: Total mm records
0 SGSN: Total pdp records
0 SGSN: Total auth records

0 Current prepaid online failure
0 Total prepaid online cancelled
Session Redirection (Hotlining)

**Important:** Functionality described for this feature in this segment is not applicable for HNB-GW sessions.

**Overview**

Session redirection provides a means to redirect subscriber traffic to an external server by applying ACL rules to the traffic of an existing or a new subscriber session. The destination address and optionally the destination port of TCP/IP or UDP/IP packets from the subscriber are rewritten so the packet is forwarded to the designated redirected address. Return traffic to the subscriber has the source address and port rewritten to the original values. The redirect ACL may be applied dynamically by means of the RADIUS Change of Authorization (CoA) feature.

Note that the session redirection feature is only intended to redirect a very small subset of subscribers at any given time. The data structures allocated for this feature are kept to the minimum to avoid large memory overhead in the session managers.

**License Requirements**

The Session Redirection (Hotlining) is a licensed Cisco feature. A separate feature license may be required. Contact your Cisco account representative for detailed information on specific licensing requirements. For information on installing and verifying licenses, refer to the Managing License Keys section of the Software Management Operations chapter in the System Administration Guide.

**Operation**

**ACL Rule**

An ACL rule named `readdress server` supports redirection of subscriber sessions. The ACL containing this rule must be configured in the destination context of the user. Only TCP and UDP protocol packets are supported. The ACL rule allows specifying the redirected address and an optional port. The source and destination address and ports (with respect to the traffic originating from the subscriber) may be wildcarded. If the redirected port is not specified, the traffic will be redirected to the same port as the original destination port in the datagrams. For detailed information on configuring ACLs, refer to the IP Access Control Lists chapter in the System Administration Guide. For more information on `readdress server`, refer to the ACL Configuration Mode Commands chapter of the Command Line Interface Reference.

**Redirecting Subscriber Sessions**

An ACL with the `readdress server` rule is applied to an existing subscriber session through CoA messages from the RADIUS server. The CoA message contains the 3GPP2-Correlation-ID, User-Name, Acct-Session-ID, or Framed-IP-Address attributes to identify the subscriber session. The CoA message also contains the Filter-Id attribute which specifies the name of the ACL with the `readdress server` rule. This enables applying the ACL dynamically to existing subscriber sessions. By default, the ACL is applied as both the input and output filter for the matching subscriber unless the Filter-Id in the CoA message bears the prefix `in:` or `out:`.

For information on CoA messages and how they are implemented in the system, refer to the RADIUS Change of Authorization and Disconnect Message section.
Important: Changing ACL and rulebase together in a single CoA is not supported. For this, two separate CoA requests can be sent through AAA server requesting for one attribute change per request.

Session Limits On Redirection

To limit the amount of memory consumed by a session manager a limit of 2000 redirected session entries per session manager is allocated. This limit is equally shared by the set of subscribers who are currently being redirected. Whenever a redirected session entry is subject to revocation from a subscriber due to an insufficient number of available session entries, the least recently used entry is revoked.

Stopping Redirection

The redirected session entries for a subscriber remain active until a CoA message issued from the RADIUS server specifies a filter that does not contain the readdress server ACL rule. When this happens, the redirected session entries for the subscriber are deleted.

All redirected session entries are also deleted when the subscriber disconnects.

Handling IP Fragments

Since TCP/UDP port numbers are part of the redirection mechanism, fragmented IP datagrams must be reassembled before being redirected. Reassembly is particularly necessary when fragments are sent out of order. The session manager performs reassembly of datagrams and reassembly is attempted only when a datagram matches the redirect server ACL rule. To limit memory usage, only up to 10 different datagrams may be concurrently reassembled for a subscriber. Any additional requests cause the oldest datagram being reassembled to be discarded. The reassembly timeout is set to 2 seconds. In addition, the limit on the total number of fragments being reassembled by a session manager is set to 1000. If this limit is reached, the oldest datagram being reassembled in the session manager and its fragment list are discarded. These limits are not configurable.

Recovery

When a session manager dies, the ACL rules are recovered. The session redirect entries have to be re-created when the MN initiates new traffic for the session. Therefore when a crash occurs, traffic from the Internet side is not redirected to the MN.

AAA Accounting

Where destination-based accounting is implemented, traffic from the subscriber is accounted for using the original destination address and not the redirected address.

Viewing the Redirected Session Entries for a Subscriber

View the redirected session entries for a subscriber by entering the following command:

```
show subscribers debug-info { callid <id> | msid <id> | username <name> }
```

The following command displays debug information for a subscriber with the MSID 0000012345:
show subscribers debug-info msid 0000012345

The following is a sample output of this command:

username: user1 callid: 01callb1 msid: 0000100003
Card/Cpu: 4/2
Sessmgr Instance: 7
Primary callline:
Redundancy Status: Original Session
Checkpoints Attempts Success Last-Attempt Last-Success
Full: 27 26 15700ms 15700ms
Micro: 76 76 4200ms 4200ms
Current state: SMGR_STATE_CONNECTED
FSM Event trace:
State Event
SMGR_STATE_OPEN SMGR_EVT_NEWCALL SMGR_STATE_NEWCALL_ARRIVED SMGR_EVT_ANSWER_CALL
SMGR_STATE_NEWCALL_ANSWERED SMGR_EVT_LINE_CONNECTED SMGR_STATE_LINE_CONNECTED
SMGR_EVT_LINK_CONTROL_UP SMGR_STATE_LINE_CONNECTED SMGR_EVT_AUTH_REQ
SMGR_STATE_LINE_CONNECTED SMGR_EVT_IPADDR_ALLOC_SUCCESS
SMGR_STATE_LINE_CONNECTED SMGR_EVT_AUTH_SUCCESS
SMGR_STATE_LINE_CONNECTED SMGR_EVT_UPDATE_SESS_CONFIG
SMGR_STATE_LINE_CONNECTED SMGR_EVT_LOWER_LAYER_UP
Data Reorder statistics
Total timer expiry: 0 Total flush (tmr expiry): 0
Total no buffers: 0 Total flush (no buffers): 0
Total flush (queue full): 0 Total flush (out of range): 0
Total flush (svc change): 0 Total out-of-seq pkt drop: 0
Total out-of-seq arrived: 0
IPv4 Reassembly Statistics:
Success: 0 In Progress: 0
Failure (timeout): 0 Failure (no buffers): 0
Failure (other reasons): 0
Redirected Session Entries:

Allowed: 2000 Current: 0

Added: 0 Deleted: 0

Revoked for use by different subscriber: 0

Peer callline:

Redundancy Status: Original Session

Checkpoints Attempts Success Last-Attempt Last-Success

Full: 0 0 0ms 0ms

Micro: 0 0 0ms 0ms

Current state: SMGR_STATE_CONNECTED

FSM Event trace:

State Event

SMGR_STATE_OPEN SMGR_EVT_MAKECALL

SMGR_STATE_MAKECALL_PENDING SMGR_EVT_LINE_CONNECTED

SMGR_STATE_LINE_CONNECTED SMGR_EVT_LOWER_LAYER_UP

SMGR_STATE_CONNECTED SMGR_EVT_AUTH_REQ

SMGR_STATE_CONNECTED SMGR_EVT_AUTH_SUCCESS

SMGR_STATE_CONNECTED SMGR_EVT_REQ_SUB_SESSION

SMGR_STATE_CONNECTED SMGR_EVT_RSP_SUB_SESSION

username: user1 callid: 01callb1 msid: 0000100003

Card/Cpu: 4/2

Sessmgr Instance: 7

Primary callline:

Redundancy Status: Original Session

Checkpoints Attempts Success Last-Attempt Last-Success

Full: 27 26 15700ms 15700ms

Micro: 76 76 4200ms 4200ms

Current state: SMGR_STATE_CONNECTED

FSM Event trace:
State Event

SMGR_STATE_OPEN SMGR_EVT_NEWCALL
SMGR_STATE_NEWCALL_ARRIVED SMGR_EVT_ANSWER_CALL
SMGR_STATE_NEWCALL_ANSWERED SMGR_EVT_LINE_CONNECTED
SMGR_STATE_LINE_CONNECTED SMGR_EVT_LINK_CONTROL_UP
SMGR_STATE_LINE_CONNECTED SMGR_EVT_AUTH_REQ
SMGR_STATE_LINE_CONNECTED SMGR_EVT_IPADDR_ALLOC_SUCCESS
SMGR_STATE_LINE_CONNECTED SMGR_EVT_AUTH_SUCCESS
SMGR_STATE_LINE_CONNECTED SMGR_EVT_UPDATE_SESS_CONFIG
SMGR_STATE_LINE_CONNECTED SMGR_EVT_LOWER_LAYER_UP

Data Reorder statistics

Total timer expiry: 0 Total flush (tmr expiry): 0
Total no buffers: 0 Total flush (no buffers): 0
Total flush (queue full): 0 Total flush (out of range): 0
Total flush (svc change): 0 Total out-of-seq pkt drop: 0
Total out-of-seq arrived: 0

IPv4 Reassembly Statistics:

Success: 0 In Progress: 0
Failure (timeout): 0 Failure (no buffers): 0
Failure (other reasons): 0

Redirected Session Entries:

Allowed: 2000 Current: 0
Added: 0 Deleted: 0
Revoked for use by different subscriber: 0

Peer callline:

Redundancy Status: Original Session

Checkpoints Attempts Success Last-Attempt Last-Success

Full: 0 0 0ms 0ms
Micro: 0 0 0ms 0ms
Current state: SMGR_STATE_CONNECTED

FSM Event trace:

State Event

SMGR_STATE_OPEN SMGR_EVT_MAKECALL
SMGR_STATE_MAKECALL_PENDING SMGR_EVT_LINE_CONNECTED
SMGR_STATE_LINE_CONNECTED SMGR_EVT_LOWER_LAYER_UP
SMGR_STATE_CONNECTED SMGR_EVT_AUTH_REQ
SMGR_STATE_CONNECTED SMGR_EVT_AUTH_SUCCESS
SMGR_STATE_CONNECTED SMGR_EVT_REQ_SUB_SESSION
SMGR_STATE_CONNECTED SMGR_EVT_RSP_SUB_SESSION
SMGR_STATE_CONNECTED SMGR_EVT_ADD_SUB_SESSION
SMGR_STATE_CONNECTED SMGR_EVT_AUTH_REQ
SMGR_STATE_CONNECTED SMGR_EVT_AUTH_SUCCESS

Data Reorder statistics

Total timer expiry: 0 Total flush (tmr expiry): 0
Total no buffers: 0 Total flush (no buffers): 0
Total flush (queue full): 0 Total flush (out of range): 0
Total flush (svc change): 0 Total out-of-seq pkt drop: 0
Total out-of-seq arrived: 0
IPv4 Reassembly Statistics:
Success: 0 In Progress: 0
Failure (timeout): 0 Failure (no buffers): 0
Failure (other reasons): 0
Redirected Session Entries:
Allowed: 2000 Current: 0
Added: 0 Deleted: 0
Revoked for use by different subscriber: 0