Guest

Global Cloud Index (GCI)

Cisco Global Cloud Index Q&A

  • Viewing Options

  • PDF (334.0 KB)
  • Feedback
Q. What is the Cisco ® Global Cloud Index (GCI) and how is it different from other Cisco IP traffic forecasts?
A. Data center virtualization and cloud computing are evolving as essential elements of business, education, government, and home communications and networking. Cisco conducts this study as an industry resource toprovide IT professionals with new data to help them address increasingly complex data center operations and service delivery requirements. Understanding macro-level data center and cloud traffic trends can help organizations make strategic networking and business decisions. The Cisco GCI also measures and forecasts private network traffic—investigating trends within data centers, between data centers, and what ultimately travels from data centers toend users.

While the Cisco GCI and the other Cisco IP network traffic forecast (the Cisco Visual Networking Index [Cisco VNI]) are distinct forecasts, there is some overlap (Figure 1). The Cisco VNI forecasts the amount of traffic crossing the Internet and IP WAN networks, while the Cisco GCI forecasts traffic within the data center, from data center to data center, and from data center to user. The Cisco VNI forecast consists of data center-to-user traffic, along with non-data center traffic not included in the Cisco GCI (various types of peer-to-peer traffic). The Cisco GCI includes data center-to-user traffic (this is the overlap with the Cisco VNI), data center-to-data center traffic, and traffic within the data center. For more details on the Cisco VNI, please see the Cisco Visual Networking Index: Forecast and Methodology, 2013–2018.

Figure 1. Cisco VNI and Cisco GCI

Q. How is “Cloud” defined in the Cisco GCI?
A. The Cisco GCI aligns with the industry-standard cloud computing definition from the National Institute of Technology (NIST). The NIST definition lists five essential characteristics of cloud computing: on-demand self‑service, broad network access, resource pooling, rapid elasticity or expansion, and measured service. Deployment models include private, public, and hybrid clouds (or a combination of these). These distinct formsof cloud computing enable a variety of software, platform, and infrastructure services. Cloud data centers can be operated by service providers as well asprivate enterprises.

However, there is a slight variation from the NIST definition in how we define private and public cloud. A cloud service could be public or private depending upon the demarcation line—the physical or virtual demarcation—between the public telecommunications network and the private network of an organization.

If the cloud assets lie on the service provider side of the demarcation line, then it would be considered a public cloud service. Virtual Private Cloud (VPC) falls into this category. Also multitenant, consumer cloud services would be included in this category. If the cloud assets lie on the organization side of the demarcation line, then it would be considered a private cloud service. In general, a dedicated cloud, owned and managed by an organization’s IT, would be considered a private cloud.

Q. Does Cisco GCI consider any cloud service models and how are they defined?
A. The Cisco GCI forecasts cloud workload splits across the three main cloud services models—software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). They are defined in line with NIST’s definitions.

SaaS: The capability provided to the consumer is to use the provider’s applications running on a cloud infrastructure. The applications are accessible from various client devices through either a thin client interface, such as a web browser (for example, web-based email), or a program interface. The consumer does not manage or control the underlying cloud infrastructure including networks, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.

PaaS: The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages, libraries, services, and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure, including network, servers, operating systems, or storage, but does have control over the deployed applications and possibly configuration settings for the application-hosting environment.

IaaS: The capability provided to the consumer is to provision processing, storage, networks, and other fundamental computing resources where the consumer is able to deploy and run diverse software, which can include operating systems and applications. The consumer does not manage or control the underlying cloud infrastructure but has control over operating systems, storage, and deployed applications—and possibly limited control of select networking components, such as host firewalls.

GCI categorizes a cloud application (IaaS, PaaS, SaaS) based on how the service is ultimately used by the user, regardless of other cloud services types that may be involved in the final delivery of the service. For example, if an SaaS cloud service also depends on some aspects of other cloud services, such as PaaS or IaaS, such a workload is counted as SaaS only. Or if a PaaS workload operates on top of an IaaS Service, such a workload is counted as PaaS only.

Q. What is a “workload,” and why is this important to understanding data center and cloud traffic?
A. A server workload is defined as a virtual or physical set of computer resources that is assigned to run a specific application or provide computing services for one or many users. A workload is a general measurement used to describe many different applications, from a small, lightweight SaaS application to a large computational private cloud database application. For the purposes of this study, if a server is not virtualized, then one workload is equivalent to one physical server. When there is virtualization, one virtual machine (VM) is counted as one workload. The number of VMs per server will vary depending on a variety of factors, which include processing and storage requirements of a workload as well as the type of hypervisor being deployed. In cloud environments, a variety of servers are deployed, including both nonvirtualized servers and virtualized servers, with many virtual machines on a single virtualized server. The increasing migration of workloads from end-user devices to remotely located servers, and from premises-based networks to cloud networks, creates new network requirements for operators of both traditional and cloud data center environments.
Q. What is a hybrid cloud?
A. Hybrid cloud is defined as a combination of private and public clouds. In a hybrid cloud environment, some of the cloud computing resources are managed in-house by an enterprise, and some are provided by an external provider. Cloud bursting is an example of hybrid cloud where daily computing requirements are handled by a private cloud, but in case of sudden spurts of demand, the additional traffic demand (bursting) is handled by a public cloud.
Q. What is the methodology behind the Cisco GCI?
A. The Cisco GCI incorporates a bottom-up and top-down approach to derive global and regional results. Themethodology begins with the server shipments to different types of data centers (traditional, private cloud, and public cloud), calculating the installed base of workloads. Then it applies the volume of bytes per workload per month to obtain the traffic for current and future years within the forecast period. We have used a variety ofdata sources, such as Gartner, IDC, Synergy, Juniper Research and Ookla, etc. for GCI analysis. Fortrafficmodeling and verification of data center traffic types and volumes, network data was collected from10enterprise and Internet data centers (more than 40 terabytes per month for 12 months). A global cloud traffic forecast is provided, as well as six regional forecasts (Asia Pacific, Central and Eastern Europe, Western Europe, Middle East and Africa, North America, and Latin America). For specific details of our forecast methodology, please see the Cisco Global Cloud Index: Forecast and Methodology, 2013–2018.
Q. What is the difference between a traditional data center and a cloud data center?
A. The main differences are in levels of virtualization, standardization, automation, and security. Cloud data centers offer increased performance, higher capacity, and greater ease of management compared with traditional data centers. Virtualization serves as a catalyst for hardware and software consolidation, greaterautomation, and an integrated security approach.
Q. How does the Cisco Global Cloud Index differentiate between cloud traffic and noncloud traffic?
A. Cloud traffic can be identified as the traffic generated from cloud servers and workloads. Cloud traffic is generated as a result of cloud services—easily deployed services that are accessible throughthe Internet, have elastic and scalable provisioning and usage-based pricing, and can be delivered ondemand. Cloud traffic is measured and then subtracted from total data center traffic to obtain noncloud traffic estimates.
Q. What is meant by “cloud readiness,” and what characteristics are used to assess regions’ ability to support cloud services?
A. The cloud readiness segment of the Cisco GCI study offers regional and some country-level views of the fundamental performance factors required for broadband and mobile networks to deliver next-generation cloud services. The enhancements and reliability of these performance factors will support the increased adoption ofbusiness-grade and consumer-grade cloud computing. For instance, it is important for consumers to be ableto download music and videos on the road as well as for business users to have continuous access to videoconferencing and mission-critical customer relationship management (CRM) and enterprise resource planning (ERP) systems. Download and upload speeds as well as latencies are vital measures to assess the network capabilities of cloud readiness.

Over 90 million records from Ookla, Cisco’s GIST application, and the International Telecommunication Union(ITU) were analyzed from 150 countries. Regional cloud readiness values (calculated as an average ofcountry-level values within a particular region) are included in the primary Cisco GCI report. Individual countries may have slightly or significantly higher or lower averages compared to the regional averages for download speed, upload speed, and network latency. For country-level data, please refer to the Cisco GCI Supplement: Cloud Readiness Regional Details. The major cloud readiness broadband characteristics and performance factors included in this study are as follows.

Broadband ubiquity: This indicator measures fixed and mobile broadband penetration while considering population demographics to assess the pervasiveness and expected connectivity in various regions.

Download speed: With increased adoption of mobile and fixed bandwidth-intensive applications, end user download speed is an important characteristic. This indicator will continue to be critical for the quality of service delivered to virtual machines, CRM and ERP cloud platforms for businesses, and video download and content retrieval cloud services for consumers.

Upload speed: With the increased adoption of virtual machines, tablets, and videoconferencing in enterprises, as well as by consumers on both fixed and mobile networks, upload speeds are especially critical for delivery of content to the cloud.

Network latency: Delays experienced with voice over IP (VoIP), viewing and uploading videos, online banking on mobile broadband, or viewing hospital records in a healthcare setting are due to high latencies (usually reported in milliseconds). Reducing delay in delivering packets to and from the cloud is crucial todelivering today’s advanced services.

The study has traditionally focused on average or mean download, upload, and latency characteristics. However, to better understand the distribution of speeds within a country, the median download speed, median upload speed, and median latency are being introduced to the study. In most countries median speeds are lower than mean or average speeds. This is due to the higher occurrence of lower speeds in the lower 50th percentile, compared to the longer tail of distribution of the higher speeds.

For any set of numbers, the median is the midpoint, where half the numbers are lower and half the numbers are higher. The average of a set of numbers is the total of all the numbers in the set, divided by the number of items in that set. For further details, please see the sample speed distribution curve in Cisco GCI Supplement: Cloud Readiness Regional Details.

Q. Are there any other factors, besides those listed above, that might impact the end-user cloud experience?
A. Yes, besides the upload and download speeds and latency of the ISP network, the location of the content providers’ servers or content distribution network (CDN) and their distance from the Internet service provider (ISP) network are factors. It is estimated that latency increases by 1 millisecond for every additional 150 miles travelled by a video stream.
Q. May I or my organization or company use or publish Cisco GCI forecast data?
A. Yes. Cisco welcomes and encourages press, analysts, service providers, and other interested industry parties(business, regulatory, or academic) to use or publish the data. We do require that proper Cisco attribution be given for any and all Cisco GCI data that is published or shared in private or public, print andelectronic forms (for example, “Source: Cisco Global Cloud Index [or GCI], 2012–2017”). Nofurther signatures or consent are required to reference our publicly available white papers and reports. Weare alwaysinterested in the context in which our data is used and would appreciate it if parties that use ourcontent would share copies of their completed work containing Cisco GCI insertions. Please send these to traffic‑inquiries@cisco.com.
Q. Can you share the data center and cloud data you used to construct the Cisco GCI traffic projections?
A. We are not able to share the specific source data that serves as a primary input to our forecast methodology.
Q. Where can I direct questions about the Cisco GCI?
A. Please send questions about the Cisco GCI study to traffic-inquiries@cisco.com.