Tunnel-less VPN with Cisco Group Encrypted Transport (GET)

December 2006
Agenda

- Trends in Enterprise Branch Communications
- Need for Tunnel-less VPNs
- Announcing Group Encrypted Transport (GET) VPN
- How Group Encrypted Transport (GET) VPN works
- Cisco GET VPN Use Cases
New Business Realities
Empowered Branch

Technology Innovation

- Multipoint, Collaborative Branch Communications
- Surveys show >35% of all employees are in branches, and growing
- Branches consume 70-90% of resources

Most employees can NOT take full advantage of these today, unless network infrastructure keeps up
Today's enterprise WAN technologies force a trade-off between collaborative branch applications and security.
Tunnel-less VPN - A New Security Model

Any-to-Any encryption

IPsec Point-to-Point Tunnels

- Scalability—an issue (N^2 problem)
- Any-to-any instant connectivity can’t be done to scale
- Overlay routing
- Limited advanced QoS
- Multicast replication inefficient

Tunnel-less VPN

- Scalable architecture
- Any-to-any instant connectivity to high-scale
- No overlays – native routing
- Advanced QoS
- Efficient Multicast replication
Announcing Cisco Group Encrypted Transport (GET) VPN – Solution for Tunnel-less VPNs

Cisco GET VPN delivers a revolutionary solution for tunnel-less, any-to-any branch confidential communications

- Large-scale any-to-any encrypted communications
- Native routing without tunnel overlay
- Optimal for QoS and Multicast support - improves application performance
- Transport agnostic - private LAN/WAN, FR/AATM, IP, MPLS
- Offers flexible span of control among subscribers and providers
- Available on Cisco Integrated Services Routers; Cisco 7200 and Cisco 7301 with Cisco IOS 12.4(11)T
Managed Tunnel-less VPN Services

- Service integration delivers greater value, stronger branding
- Increased security
 - Helps businesses comply with regulations viz. HIPAA, PCI
- Operational simplicity
 - Centralized key-server reduces complexity
 - Easy service rollout
- Optimized network utilization
- Service innovation, unique offering
- Services Upsell

- Encrypted traffic is demand-driven
- ISR can have “VRF-aware contexts”
- Centrally managed key servers enable Group encryption
How Cisco GET VPN Works

GET simplifies security policy and key distribution by using Group Domain of Interpretation (GDOI)

- **GDOI:**
 - A key distribution mechanism
 - Group Key Model
 - Standards-based (RFC 3547)

- **GET uses GDOI and adds:**
 - Cooperative Key Servers for high availability & geographic distribution
 - Secure Unicast/Multicast control/data plane via encryption
 - Unicast/Multicast key distribution

Key Server: Authenticates group members, distributes keys and policies; group member provisioning is minimized. Application traffic is encrypted by group members
How GET VPN Prevents Overlay Routing

Cisco GET VPN uses IP header preservation to mitigate routing overlay and to preserve QoS and multicast capabilities.

Original IP Packet

IP Header

IP Payload

IPSec Tunnel Mode

New IP Header

ESP Header

Original IP Header

IP Payload

GET

Original IP Header Preserved

ESP Header

Original IP Header

IP Payload

IP Header Preservation
Cisco IOS VPN Solution Evolution
Innovations in Confidential Communications

Cisco Advanced Site-to-Site VPNs

1. **Hub-and-Spoke VPNs**
 - IPSec+GRE: (Static Tunnels with Routing)
 - Easy VPN (Dynamic Policy/Config Push)
 - DMVPN (Zero Touch with Dynamic Routing)

2. **Dynamic Spoke-to-Spoke VPNs**
 - DMVPN (On-Demand Partial-Mesh)

3. **Tunnel-Less Any-to-Any VPNs**
 - Group Encrypted Transport (GET) VPN
Cisco GET VPN Use Cases

<table>
<thead>
<tr>
<th>Key Use Case</th>
<th>Customer</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption of IP packets sent over Satellite Links</td>
<td>Organizations who wish to secure video communications through use of BB satellite</td>
<td>Hardware Acceleration support Native Multicast Encryption</td>
</tr>
<tr>
<td>Reduce delays in Spoke-Spoke DMVPN network</td>
<td>DMVPN Enterprise customers who are deploying voice and wish to reduce the delays in setting up voice calls between spokes</td>
<td>GDOI with DMVPN Instant spoke-spoke connectivity</td>
</tr>
<tr>
<td>Control Plane Updates protection</td>
<td>Enterprise financial customers who wish to secure PIM/IGP/BGP to control traffic in their network</td>
<td>IGP/BGP/PIM control packets encryption</td>
</tr>
</tbody>
</table>
Example Customer #1 — Manufacturing

Technology Manufacturer

- More branch offices in other countries than in the United States
- Currently implementing VoIP
- QoS issues in dealing with International carriers are forcing a move to Multiprotocol Label Switching (MPLS)
- Concerned about security:

 Compliance: Company is compliant with MPLS today, but wants to stay ahead of the auditors without having to redeploy equipment at branch locations

 Concern about provisioning errors: confidential data can be leaked

 Management: Not encrypting WAN links today because of trade-off between QoS and security on MPLS—“a nightmare”
Example Customer #2—Banking

Large, National U.S. Bank with MPLS Network

Concerned about security:

- **Compliance**: Need to comply with SOX, payment card industry (PCI) regulations—if more than one carrier is used for MPLS, bank must encrypt
- **Concern for provisioning errors**: Confidential customer data can be leaked; in that case, customers would have to be notified, and fines would be levied
- **Management**: Not encrypting WAN links today because of management complexity
Example Customer #3—Retail

Large U.S. retailer has MPLS Network with plans for Unified Communications, Call Center

Concerned about security:

- **Compliance:** Payment card industry (PCI) regulations—states that if more than one carrier is used for MPLS, retailer must encrypt

- **Concern for provisioning errors:** Confidential customer data can be leaked; in that case, customers would have to be notified, and fines would be levied

- **Management:** Not encrypting WAN links today because of trade-off between QoS and security on MPLS
Cisco GET VPN Ordering Guide

<table>
<thead>
<tr>
<th>Router Platforms</th>
<th>SKUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 870, 1800, 2800, 3700 and 3800 Series Routers</td>
<td>All Security Bundles with 12.4(11)T or later</td>
</tr>
<tr>
<td>Cisco 7301 and 7200 Series Routers</td>
<td></td>
</tr>
<tr>
<td>Cisco 870, 1800, 2800, 3700 and 3800 Series Routers</td>
<td>Non Security SKUs upgraded with Cisco IOS</td>
</tr>
<tr>
<td>Cisco 7301 and 7200 Series Routers</td>
<td>Advanced Security or higher image</td>
</tr>
</tbody>
</table>
Summary

- Enterprise WAN technologies previously forced a trade-off between QoS-enabled branch interconnectivity and security.

- Cisco introduces Group Encrypted Transport (GET) VPN, a next-generation WAN security technology:
 - Easy-to-manage, high-scale, any-to-any encrypted communications.
 - Secured packets use existing WAN-agnostic routing infrastructure without tunnels.
 - Networkwide QoS and Multicast capabilities preserved; improves application performance.
 - Offers flexible span of control among subscribers and providers.

- GET VPN’s group-key mechanism simplifies key management and reduces latency, improving any-to-any connectivity capabilities.

- IP header preservation prevents overlay routing.