本文包含常见问题(常见问题) Cisco WT-2750多点宽带无线系统。关于多点宽带无线网络的组件图表,请参阅什么是子信道?在本文的问题。
有关文档规则的详细信息,请参阅 Cisco 技术提示规则。
A. 数据转发器(HE) :
Cisco uBR7223/7246/7246VXR通用宽带路由器
WT-2751 Multipoint数据转发器线卡-四每个HE的;支持1024个同步用户
WT-2781 Multipoint quad power feed panel -一个两线卡的
电源(-48VDC)
HE换流器(室外单元(ODU))-一两每线卡的,根据是否分集被使用
HE双工机-一个每个ODU的
注意: 安装的双工机的方向确定transmit (TX)高或接受(在配置的RX)高频。
天线-全向或sectorized
避雷器
用户单元(SU) :
Cisco 2600/3600系列路由器(2610, 2611, 2612, 2613, 2620, 2621, 3620, 3640, 3661, 3662)
WT-2755多点订户网络模块
注意: 必须安装NMs,当路由器被断电时,除了在Cisco 3660路由器上。
DC电源注射器(大功率ODU或+24VDC的-48VDC标准的功率ODU的)与电源
SU转换器(ODU) -需要的两,如果曾经分集;可用集成用天线或非完整和任一提供高或标准的功率
注意: 分集式天线是仅RX。
SU定向天线(使用集成ODU,如果不)
避雷器
超级单体:
直径(10英里半径)的20英里
单个HE
微细胞:
直径的四到10英里(两到五英里半径)
能使用频率复用
Microcell :
直径(一条英里半径)的两英里
SU能使用更低的TX功率
允许SU的最大数量在特定区域内的
允许频率复用
MMDS :2.500 - 2.690千兆赫
MD :2.150 - 2.162千兆赫(使用上行只)
ETSI :3.400 - 3.600千兆赫(ODU将是2001可用的下半年)
U-NII :5.725 - 5.825千兆赫(ODU将是可用的第一季度2001)
A. 在载体正交频分复用(VOFDM)的64QAM
A. VOFDM活用多重通道的现象–在微波传输的关键威慑–到真实生活配置优点。VOFDM技术通过多个信号的组合增加发射信号强度在接收端。VOFDM增加整体无线系统性能、链路质量和可用性。VOFDM通过非视线传输巨大也增加服务提供商市场述评。
A. 您能根据不同的现货天线设计有3, 4和6部门设计。
A. 非视线传输的覆盖范围取决于这些参数:
路经损耗假定—多少信号沿传输路径丢失。
链路可靠性和可用性需求—多少个9s服务提供商必须在无线链路保证。
客户端前置设备(CPE) ODU发射电源的标准的功率ODU或大功率ODU在CPE端。
天线增益—天线的种类使用在CPE端。
管道化和性能要求—什么类型的管道化和性能为每个部门要求了。
接收天线的编号—一两.
使用一个标准功率ODU用高赢利天线, WT-2750多点宽带无线系统能达到在信号(LOS)发射非LOS的六英里用两个天线/每个CPE的ODUs和与单个antenna/ODU的三英里,当满足99.9%链路可用性需求时,并且使用6兆赫信道下行和3兆赫信道上行每个部门在正常路经损耗。
HE :324兆赫TX, 420个兆赫RX
CPE :330兆赫TX, 426个兆赫RX
12.1(3)XQ1
12.1(3)XQ2
12.1(5)XM
12.2(1)T (可用的2月/2001 3月)
相关的微码
A. 6兆赫带宽, 3兆赫, 1.5兆赫允许。配置HE线卡使用宽的单个信道6兆赫,除非有不允许此配置的无线电频率(RF)变量。
A. 带宽是6兆赫、3兆赫和1.5兆赫。由于subchannelization是可能的,您能使用这些管道化机制中的每一个的组合。例如,如果使用三个上行端口,您能有3兆赫的一上行集,并且另外两个为1.5兆赫设置。您不可以超出与这些组合的6兆赫总数。
下行
带宽(兆赫) 吞吐量(Mbps) 多路径抗错性 突发传输长度 1.5 4.2 标准 媒体 1.5 3.2 标准 媒体 1.5 1.6 标准 媒体 3.0 10.0 标准 媒体 3.0 7.6 标准 媒体 3.0 5.1 标准 媒体 3.0 8.6 高 媒体 3.0 6.6 高 媒体 3.0 4.4 高 媒体 6.0 22.0 标准 媒体 6.0 17.0 标准 媒体 6.0 12.0 标准 媒体 6.0 19.0 高 媒体 6.0 14.0 高 媒体 6.0 11.0 高 媒体
上行
带宽(兆赫) 吞吐量(Mbps) 多路径抗错性 突发传输长度 1.5 4.2 标准 媒体 1.5 3.2 标准 媒体 1.5 1.4 标准 媒体 3.0 8.1 高 媒体 3.0 6.3 高 媒体 3.0 4.4 高 媒体 6.0 19.0 高 媒体 6.0 15.0 高 媒体 6.0 11.0 高 媒体
A. 子信道是6兆赫宽信道的6兆赫、3兆赫或者1.5兆赫块。子信道允许您使用无线调制解调器卡的多个上行端口。一条特定的子信道在6兆赫波段内被安置允许为使用。所有子信道使用不可以超出该信道的6兆赫的总带宽。例如,如果使用仅子信道1,是6兆赫,您能只使用一个上行端口。如果要使用多个上行端口,子信道2至7允许3兆赫或1.5兆赫带宽分配。使用子信道2至7.,配置调制配置文件。
图1 –子信道映射图表
![]()
A. 配置示例如下所示:
radio modulation-profile 1 bandwidth 6.0 throughput 22.0 multipath-robustness standard burst-length medium radio modulation-profile 2 bandwidth 6.0 throughput 19.0 multipath-robustness high burst-length medium ! !--- To view acceptable inputs for these modulation profiles, use the !--- show radio capability modulation-profile command. !--- Change the throughput setting from high to medium to employ more !--- multipath-robustness, and change the throughput setting from medium ! --- to low to employ more forward error correction (FEC) coding. interface Radio4/0 point-to-multipoint ip address 191.20.1.1 255.255.255.0 secondary !--- IP address network used for hosts behind SUs. ip address 10.1.1.1 255.255.255.0 !--- IP address network used for the SUs. no keepalive radio alc interval 96 !--- Airline Control (ALC) ensures the TRP at the HE is maintained !--- over time, through power measurements of all subscribers !--- several times each second. radio cable-loss auto !--- Usually set to "auto." radio transmit-power 20 !--- Acceptable range for Multichannel Multipoint Distribution Service (MMDS) !--- is 15 to 38 dBm. For Unlicensed National Information Infrastructure !--- (UNII), it is -5 to 15 dBm. radio upstream frequency 2677000 width 6.0 radio upstream 0 subchannel 1 modulation-profile 2 !--- Refer to modulation-profile and sub-channel chart above. radio upstream 0 target-receive-power -65 no radio upstream 0 shutdown no radio upstream 1 target-receive-power radio upstream 1 shutdown no radio upstream 2 target-receive-power radio upstream 2 shutdown no radio upstream 3 target-receive-power radio upstream 3 shutdown radio downstream frequency 2521000 width 6.0 !--- Default width is 6 MHz. radio downstream subchannel 1 modulation-profile 1 !--- Refer to the modulation-profile and sub-channel chart. radio dhcp-giaddr policy radio helper-address 10.1.1.5 !--- IP address of the DHCP server, if you do not use DHCP on HE router !--- (see the next question). radio su-onoff-trap interval 600
A. 切记您有最新的“T”代码,当您使用此配置。在HE不enable (event) radio helper address命令在您的配置,因为DISCOVER信息包不需要“被帮助”到另一台机器,信息包驻留。
service udp-small-servers max-servers no-limit ! radio time-server ! ip dhcp pool modems-c3 !--- Modems-c3 is just a string. ! network 10.30.128.0 255.255.240.0 bootfile p2mp.cm next-server 10.30.128.1 !--- Radio interface. ! default-router 10.30.128.1 option 7 ip 10.30.128.1 option 4 ip 10.30.128.1 option 2 hex 0000.0000 ! interface Radio3/0 point-to-multipoint ip address 10.30.128.1 255.255.240.0 ! tftp server slot0:p2mp.cm alias p2mp.cm !--- Use this statement when .cm file is stored in "flash," !--- not in the TFTP server.完成这些步骤放置.cm文件在闪存:
- Copy tftp slot:0,和按Enter。
- 当一台远端主机的名字的分析程序查询,键入TFTP server的地址。
- 当源文件名的分析程序查询,键入.cm文件名,并且按Enter。
您能也配置在HE驻留而不是TFTP server的DOCSIS配置文件:
radio config-file p2mp.cm cpe max 4 service-class 1 priority 2 service-class 1 max-upstream 128 service-class 1 max-downstream 1000 timestamp注意: 因为没有.cm文件,您不需要语句“TFTP server slot0:p2mp.cm别名p2mp.cm”。它在配置内驻留。
A. 完成这些步骤配置基本保密性:
- 装载K1镜像在HE和SU。
- 请使用一个配置文件编辑器打开DOCSIS配置文件。
- 点击扩展在业务类别组选项。
- Enable (event)一1在服务等级保密性Enable (event) (0/1)下:1个字段。默认情况下这是0,因此请更改值到1。
- 保存DOCSIS配置文件TFTP启动文件,在TFTP server驻留被连接到HE的快速以太网(FE)端口。在重新启动, SU用上述参数后装载您新的DOCSIS配置文件。
- SU与HE协商保密性基准接口(BPI)。请使用show radio subscriber命令发现SU注册作为“online(pt)”而不是作为“联机”。如果看不到“(PT)”检查发现是否有K1在SU和HE的镜像,并且检查发现,如果允许“服务等级保密性”等于1在.cm文件。
A. DOCSIS配置文件是二进制文件,并且有无线电的SU参数来联机在符合到什么ISP设置,例如,最大数量下行和上行速率、最大上行突发传输费率、业务类别或者基本保密性、MIB和许多其他参数。
Cisco IOS配置文件是能包含特定配置,例如访问列表,密码的文本文件和NAT配置,您能在DOCSIS配置文件内下载。
show radio interface插槽编号/端口编号[{如果|rf}]
show radio subscribers —显示所有无线用户和当前状态。
show radio flap-list —显示无线调制解调器卡的无线电标志列表。
show interfaces radio slot number/port number hist-data —显示信噪比(SNR)。您必须有在无线接口配置的直方图发现所有输出。这是显示SNR的唯一的命令。
show interfaces radio slot number/port number link-metrics —显示在一条链路的所有代码字错误在一个特定周期。
show controllers radio slot number/port number [{如果|rf}] —显示所有或一个特定调制解调器卡的一个子集属性。
show controllers radio slot/downstream-port downstream —显示无线调制解调器卡下行端口信息。
show controllers radio slot/upstream-port upstream —显示无线调制解调器卡上行端口信息。
radio loopback local main if —显示线卡是否是有故障的。
radio loopback local main rf —显示是否有在卡和ODU之间的一个电缆问题。
Headend# show radio flap-list MAC Address Upstream Ins Hit Miss CRC P-Adj Flap Time 0003.6b4f.bf90 Radio4/0/U0 0 21180 148 10 0 9 Oct 3 17:34:23A. 这是在HE的show radio flap-list命令输出。Flap List是事件探测器和这是造成一个事件计数的三个情况:
插入
命中
小姐
注意: 忽视功率调整(p adj)列在此输出中。P-Adj列仅适用于show cable flap-list命令的有线网络
插入
首先,如果SU有一个注册问题和重复设法迅速再注册,您能与插入一起看到飘荡。P-Adj列可以是低的。当两个初始维护再登记之间的时间由SU少于180秒时是,您取得进展“飘荡”在“插入上”,并且飘荡探测器计数它。如果希望,您能更改此DEFAULT值180秒:
Headend(config)# radio flap-list insertion-time ? <60-86400> Insertion time interval in seconds
命中/错过
其次,飘荡探测器计数飘荡,当您看到“命中时跟随的" miss "”。事件检测在仅飘荡列计数。这些轮询是发送每30秒的hello信息包。如果获得" miss "跟随由“错过”,然后轮询被发送每秒钟16秒。如果在16秒前获得" hit "是UP,您获得飘荡,但是,如果没获得16次轮询的一" hit ",调制解调器脱机为了再开始最初的维护。如果SU终于返回线上,您将获得“插入”,因为SU插入了自己回到激活状态。如果有六连续缺失,飘荡计数增加。可以更改如果需要此DEFAULT值:
Headend(config)# radio flap miss-threshold ? <1-12> missing consecutive polling messages注意: 目前P-Adj列没有使用点对多点系统。
A. show controller r4/0 rf命令显示配置什么TX和RX频率。下列是查看在此输出中的输出示例:和某些重要事情:
Headend# show controller r4/0 rf RF ODU# 1 Hardware Identification Info: PIC code version: 0.15 !--- This shows the point in call (PIC) code version that is !--- currently on the ODU. !--- This is important if you encounter problems with the ODU. NVS checksum 0x69 NVS version: 0.0 Card type: 0x10 Vendor name: cisco Part number: 800-05805-03 Board number: 73-4352-03 HW rev code: 03 Serial number: JAB041904BZ Date code: 05112000 RF ODU# 1 Hardware Capability Info: Capability flag1: 0x9F Capability flag2: 0x2C RF Diversity Head: Tx/Rx Tx Blanking Capable: Yes RF Power Level Mode Capable: Yes RF Power Gain Mode Capable: Yes RF Loopback Capable: Yes Tx Predistortor Capable: No Antenna Alignment Capable: No PA Temp Sensor Capable: Yes Tx Spectral Inversion: No Rx Spectral Inversion: No Rx Blanking Capable: Yes Rx Gain Cal. Capable: Yes Variable Gain Info Available: No Duplexor Field Replaceble: Yes Max chan. BW: 6 Mhz Tx frequency bands: 1, step: 600 Khz min: 2500000 Khz, max: 2686000 Khz !--- These TX and RX values show the ODU bandpass. !--- With this information, you will know what center !--- frequencies are available for use. Rx frequency bands: 2, step: 600 Khz min1: 2150000 Khz, max1: 2162000 Khz min2: 2500000 Khz, max2: 2686000 Khz IF Tx freq: 330000 Khz !--- These are the IF, TX, and RX frequencies that you can measure !--- for verification purposes from the front of the board out of !--- the monitor port. IF Rx freq: 426000 Khz Freq reference: 24 Mhz Tx power range min: 15 dbm, max: 41 dbm, step: 1 dbm Tx fixed gain min: 0 db, max: 0 db, step: 0 db Rx fixed gain min: 0 db, max: 0 db, step: 0 db Tx var gain min: 48 db, max: 56 db, step: 1 * 0.125 db Rx var gain min: 30 db, max: 36 db, step: 1 * 0.125 db Temp. threshold low: 95 deg. C, high: 98 deg. C BW adjusted max tx pwr: full:0 dbm half:0 dbm quarter:0 dbm RF ODU# 1 Status: TX Frequency: 2521000 Khz !--- These are the TX and RX frequencies that are actually !--- configured on the HE. RX Frequency: 2677000 Khz TX Output Power: 20 dbm !--- As well as the output power that is configured on the HE. TX Cable Loss: 15 db
A. 直方图在无线接口被配置。有配置的几不同种类的直方图;最常用部分是那个为signal-to-interference plus noise ratio (SINR)和RF RX功率。一些可用的直方图如下是列出的:
radio histogram sinr-ant1 0 bin-range 10 50 duration 5 tone average update 5 sum false width coarse radio histogram timing-offset 0 bin-range -10 10 duration 5 update 5 sum false width coarse radio histogram rf-rx-power-ant1 0 bin-range -100 0 duration 5 update 5 sum false width coarse radio histogram chan-delay-spread-ant1 0 bin-range 0 22 duration 5 update 5 sum false width coarse radio histogram power-amb 0 bin-range -101 -21 duration 5 update 5 sum false width coarse当直方图在无线接口时被配置,您能查看从它的数据与global命令show interface slot number/port number hist-data <particular的histogram>。请参阅下一个问题关于示例。
注意: 当您查看柱状图输出时,请注意密切注意最小数量、平均值和最大值。
Headend# show interface r4/0 hist-data sinr-ant1 0 % Radio4/0 Histogram captured at 17:42:58 UTC Mon Jan 3 2000 % radio histogram sinr-ant1 0 % bin 10 50 dur 5 tone ave up 5 sum f width c % min=29.250 avg=30.000 max=30.500 !--- This is the SNR value for the wireless modem card. % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<10 | % 0 10<=x<14 | % 0 14<=x<18 | % 0 18<=x<22 | % 0 22<=x<26 | % 2 26<=x<30 |* % 3 30<=x<34 |* % 0 34<=x<38 | % 0 38<=x<42 | % 0 42<=x<46 | % 0 46<=x<50 | % 0 50<=x<MAXINT | Headend# show interface r4/0 hist-data chan 0 % Radio4/0 Histogram captured at 17:58:21 UTC Mon Jan 3 2000 % radio histogram chan-delay-spread-ant1 0 % bin 0 22 dur 5 up 5 sum f width c % min=2.500 avg=2.500 max=2.500 !--- You want channel delay spread to be minimal. % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<0 | % 5 0<=x<4 |* % 0 4<=x<8 | % 0 8<=x<12 | % 0 12<=x<16 | % 0 16<=x<20 | % 0 20<=x<24 | % 0 24<=x<28 | % 0 28<=x<32 | % 0 32<=x<36 | % 0 36<=x<40 | % 0 40<=x<MAXINT | Headend# show interface r4/0 hist-data power-amb 0 % Radio4/0 Histogram captured at 17:59:16 UTC Mon Jan 3 2000 % radio histogram power-amb 0 % bin -101 -21 dur 5 up 5 sum f width c % min=-96.000 avg=-96.000 max=-96.000 % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<-101 | % 1 -101<=x<-93 |* % 0 -93<=x<-85 | % 0 -85<=x<-77 | % 0 -77<=x<-69 | % 0 -69<=x<-61 | % 0 -61<=x<-53 | % 0 -53<=x<-45 | % 0 -45<=x<-37 | % 0 -37<=x<-29 | % 0 -29<=x<-21 | % 0 -21<=x<MAXINT | Headend# show interface r4/0 hist-data rf-rx-power-ant1 0 % Radio4/0 Histogram captured at 17:58:37 UTC Mon Jan 3 2000 % radio histogram rf-rx-power-ant1 0 % bin -100 0 dur 5 up 5 sum f width c % min=-65.000 avg=-65.000 max=-65.000 !--- These are good values. % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<-100 | % 0 -100<=x<-84 | % 0 -84<=x<-68 | % 5 -68<=x<-52 |* % 0 -52<=x<-36 | % 0 -36<=x<-20 | % 0 -20<=x<-4 | % 0 -4<=x<12 | % 0 12<=x<28 | % 0 28<=x<44 | % 0 44<=x<60 | % 0 60<=x<MAXINT | Headend# show interfaces r4/0 hist-data timing-offset 0 % Radio4/0 Histogram captured at 17:58:48 UTC Mon Jan 3 2000 % radio histogram timing-offset 0 % bin -10 10 dur 5 up 5 sum f width c % min=-1 avg=0 max=0 % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<-10 | % 0 -10<=x<-8 | % 0 -8<=x<-6 | % 0 -6<=x<-4 | % 0 -4<=x<-2 | % 4 -2<=x<0 |* % 1 0<=x<2 |* % 0 2<=x<4 | % 0 4<=x<6 | % 0 6<=x<8 | % 0 8<=x<10 | % 0 10<=x<MAXINT |
A. debug radio p2mp phy cwrlog radio —请使用此命令查看用户单元调制解调器卡的数字式的信号处理(DSP)同步。
interface Radio1/0 point-to-multipoint ip address docsis docsis boot admin 2 docsis boot oper 5 docsis mac-timer t2 40000 radio cable-loss 1 2 1 radio downstream saved channel 2521000 subchannel 0 !--- This is an optional parameter that can be added to save !--- the SU time from scanning the digital signal DS upon initialization.
show interfaces radio slot number/port number link-metrics —显示在链路的所有代码字错误在一段特定时期。
show interfaces radio slot number/port number hist-data —您必须有在接口配置的直方图发现输出。
show controllers radio slot number/port number —显示所有或一个特定调制解调器卡的一个子集属性。
show controllers radio slot number/port number if —显示指定的无线接口IF硬件信息。
radio loopback local main if —,如果NM是有故障的,显示。
radio loopback local main rf —,如果有在卡和ODU之间的一个电缆问题显示。
注意: 要运行此命令,有子板是必要的。
------------------ show interface radio 1/0 link-metrics ------------------ Radio link metrics. Collected from: 00:12:00 - Fri Dec 1 2000 to: 00:12:00 - Fri Dec 1 2000 Availability of the physical link: Available seconds (EFS+ES-SES): 00:00:00: 0.000999% Unavailable seconds (SES+SLS): 00:00:00: 99.99900% Total : 00:00:00: 100.0000% Error characteristics of the physical link: Error free seconds (EFS): 00:00:00: 0.00000% Errored seconds (CWerr>=1) (ES): 00:00:00: 0.00000% Degraded seconds (5.00000>CWerr>= 1.00000%)(DS): 00:00:00: 0.00000% Severely errored seconds (CWerr>= 5.00000%)(SES): 00:00:00: 0.00000% Sync Loss seconds SLS): 00:00:00: 0.00000% Synchronization event counters: Initial Synchronization seconds : 00:00:19 Time since last successful synchronization : 00:00:00 Time since last synchronization failure : 00:00:00 Synchronization attempts - Successful : 1 : Unsuccessful : 0 Recovery attempts - Medium effort : 0 : High effort : 0 Physical link data rates: Effective data rate (PHY payload bits/sec) : 0 Efficiency (PHY payload bits/total bits) : 0.00000%
注意: 当您查看柱状图输出时,请注意密切注意最小数量、平均值和最大值。
Subscriber# show interfaces r1/0 hist-spec data sinr-ant1 % Radio1/0 Histogram captured at 02:01:59 UTC Mon Mar 1 1993 % radio histogram sinr-ant1 % bin 10 50 dur 5 tone ave up 5 sum f width c % min=28.750 avg=29.875 max=30.875 % [1*=1100events] captured 0 seconds remain % 0 MININT<=x<10 | % 0 10<=x<14 | % 0 14<=x<18 | % 0 18<=x<22 | % 0 22<=x<26 | % 22632 26<=x<30 |********************* % 31717 30<=x<34 |***************************** % 0 34<=x<38 | % 0 38<=x<42 | % 0 42<=x<46 | % 0 46<=x<50 | % 0 50<=x<MAXINT | Subscriber# sh int r1/0 hist-data timing-offset % Radio1/0 Histogram captured at 02:01:59 UTC Mon Mar 1 1993 % radio histogram timing-offset % bin -10 10 dur 5 up 5 sum f width c % min=-1 avg=0 max=1 % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<-10 | % 0 -10<=x<-8 | % 0 -8<=x<-6 | % 0 -6<=x<-4 | % 0 -4<=x<-2 | % 287 -2<=x<0 |*** % 1223 0<=x<2 |************* % 0 2<=x<4 | % 0 4<=x<6 | % 0 6<=x<8 | % 0 8<=x<10 | % 0 10<=x<MAXINT | Subscriber# sh int r1/0 hist-data rf-rx-power-ant1 % Radio1/0 Histogram captured at 02:01:59 UTC Mon Mar 1 1993 % radio histogram rf-rx-power-ant1 % bin -100 0 dur 5 up 5 sum f width c % min=-44.625 avg=-42.000 max=-39.125 % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<-100 | % 0 -100<=x<-84 | % 0 -84<=x<-68 | % 0 -68<=x<-52 | % 4529 -52<=x<-36 |********************************************** % 0 -36<=x<-20 | % 0 -20<=x<-4 | % 0 -4<=x<12 | % 0 12<=x<28 | % 0 28<=x<44 | % 0 44<=x<60 | % 0 60<=x<MAXINT | Subscriber# sh int r1/0 hist-data chan-delay-spread-ant1 % Radio1/0 Histogram captured at 02:01:59 UTC Mon Mar 1 1993 % radio histogram chan-delay-spread-ant1 % bin 0 22 dur 5 up 5 sum f width c % min=2.500 avg=2.500 max=2.500 % [1*=100 events] captured 0 seconds remain % 0 MININT<=x<0 | % 4529 0<=x<4 |********************************************** % 0 4<=x<8 | % 0 8<=x<12 | % 0 12<=x<16 | % 0 16<=x<20 | % 0 20<=x<24 | % 0 24<=x<28 | % 0 28<=x<32 | % 0 32<=x<36 | % 0 36<=x<40 | % 0 40<=x<MAXINT |
debug radio p2mp phy cwrlog radio —请使用此命令查看用户单元调制解调器卡的数字式的信号处理(DSP)同步。
调试docsis mac [log] —显示DOCSIS MAC实时日志生成的调试消息。
Subscriber Unit# 01:48:27: SU RFSM: STATE CHANGE standby_state ====> if_hw_reset_state 01:48:27: SU RFSM: Debug PIC Timeouts occurred=0 01:48:27: SU RFSM: Debug PIC NAKs occurred=0 01:48:28: SU RFSM: Resetting IF HW 01:48:28: SU RFSM: STATE CHANGE if_hw_reset_state ====> if_hw_read_version_state 01:48:28: SU RFSM: Default IF Unsolicited Msg Processing 01:48:28: IFHW: PIC unsolicited msg received - IDU PIC Reset Event 01:48:28: IFHW: PIC boot loader version=1, vendor ID=0 01:48:28: IFHW: IF PIC code version=0.10, eeprom version=0 01:48:28: IFHW: IF EEPROM Checksum=0x87 01:48:28 : SU RFSM: STATE CHANGE if_hw_read_version_state ====> if_hw_read_eeprom_state 01:48:28: SU RFSM: Reading IF HW EEPROM 01:48:28: SU RFSM: IF Hardware Cached EEPROM okay 01:48:28: SU RFSM: STATE CHANGE if_hw_read_eeprom_state ====> rf_hw_reset_state 01:48:28: SU RFSM: Default RF Resp. Processing 01:48:28: SU RFSM: Default DSP Resp Processing 01:48:28: SU RFSM: Default DSP Ind Processing 01:48:28: SU RFSM: Default DSP Ind Processing 01:48:28: SU RFSM: Resetting RF/ODU1 01:48:28: %LINK-3-UPDOWN: Interface Radio1/0, changed state to up !--- The line above is out of place. This line often appears here. !--- You can ignore this line. You can get stuck in this state !--- if for some reason the SU cannot communicate with the ODU. 01:48:29: SU RFSM: STATE CHANGE if_hw_reset_state ====> if_hw_read_version_state 01:48:29: IFHW: IF PIC code version=0.11, NVS major version=0 01:48:29: IFHW: PIC boot loader version=1, vendor ID=0 01:48:29: IFHW: IF NVS Checksum=0x9D 01:48:29: SU RFSM: STATE CHANGE if_hw_read_version_state ====> if_hw_read_eeprom_state 01:48:29: SU RFSM: Re-using cached IF NVS data 01:48:29: SU RFSM: STATE CHANGE if_hw_read_eeprom_state ====> rf_hw_reset_state 01:48:29: RFHW: Unsolicited PIC msg - ODU PIC Reset Event (opcode=0x1A state=0x0) 01:48:29: SU RFSM: STATE CHANGE rf_hw_reset_state ====> rf_hw_read_version_state 01:48:29: RFHW: RF/ODU1 PIC code version=0.30, NVS major version=0 01:48:29: RFHW: RF/ODU1 PIC boot loader version=255, vendor ID=0 01:48:29: RFHW: RF/ODU1 NVS Checksum=0x48 01:48:29: SU RFSM: STATE CHANGE rf_hw_read_version_state ====> rf_hw_read_eeprom_state 01:48:30: SU RFSM: Re-using cached RF/ODU1 NVS data 01:48:30: SU RFSM: STATE CHANGE rf_hw_read_eeprom_state ====> rf_hw_reset_state 01:48:35: SU RFSM: RF/ODU2 not detected/operational 01:48:35: SU RFSM: STATE CHANGE rf_hw_reset_state ====> if_hw_cable_comp_state 01:48:35: IFHW: Rx1 cable loss=1 db compensation=12 db 01:48:35: SU RFSM: STATE CHANGE if_hw_cable_comp_state ====> rf_hw_cable_comp_state 01:48:35: RFHW: Tx cable loss=2 db compensation=11 db 01:48:35: SU RFSM: STATE CHANGE rf_hw_cable_comp_state ====> if_hw_config_state 01:48:35: IFHW: IF Tx Gain=16 db 01:48:35: SU RFSM: STATE CHANGE if_hw_config_state ====> rf_hw_config_state 01:48:35: RFHW: RF/ODU1 Rx Fixed Gain=0 db, Rx Var Gain=15 db 01:48:35: RFHW: RF/ODU1 Tx Fixed Gain=0 db, Tx Var Gain=20 db 01:48:35: RFHW: RF/ODU1 Auto updating cached NVS (Max Tx Pwr) for Standard Power ODU 01:48:35: SU RFSM: STATE CHANGE rf_hw_config_state ====> loopback_state 01:48:35: SU RFSM: STATE CHANGE loopback_state ====> ds_candidate_selection_state 01:48:35: SU RFSM: STATE CHANGE ds_candidate_selection_state ====> ds_hardware_init_state 01:48:35: SU RFSM: STATE CHANGE ds_hardware_init_state ====> dspinit_powerup_state 01:48:35: SU RFSM: STATE CHANGE dspinit_powerup_state ====> dspinit_ping_state 01:48:35: SU RFSM: STATE CHANGE dspinit_ping_state ====> dspinit_config_state 01:48:35: SU RFSM: STATE CHANGE dspinit_config_state ====> dspinit_agc_config_state 01:48:35: SU RFSM: STATE CHANGE dspinit_agc_config_state ====> dspinit_ifrf_config_state 01:48:35: SU RFSM: STATE CHANGE dspinit_ifrf_config_state ====> dspinit_down_sync_config_state 01:48:35: SU RFSM: DS RF Freq = 2521000 Down sync carrier for DSP = 50420 01:48:35: SU RFSM: DS RF Freq = 2521000 Down sync carrier for DSP = 50420 01:48:35: SU RFSM: STATE CHANGE dspinit_down_sync_config_state ====> dspinit_down_sync_state_config_state 01:48:35: SU RFSM: STATE CHANGE dspinit_down_sync_state_config_state ====> dsp_sync_state 01:48:36: SU RFSM: Received DSP SYNC IND (0) 01:48:36: SU RFSM: Received DSP SYNC IND (2) 01:48:36: SU RFSM: Received DSP SYNC IND (4) 01:48:36: SU RFSM: Received DSP SYNC IND (5) 01:48:36: SU RFSM: Received DSP SYNC IND (7) 01:48:37: SU RFSM: Received DSP SYNC IND (4) 01:48:37: SU RFSM: Received DSP SYNC IND (5) 01:48:37: SU RFSM: Received DSP SYNC IND (8) 01:48:37: SU RFSM: DSP SYNC PASSED 01:48:37: SU RFSM: STATE CHANGE dsp_sync_state ====> fec_sync_state !--- You have found a valid downstream signal at this state. 01:48:37: SU RFSM: SYNC Timer 01:48:37: SU RFSM: FEC Sync State, Viterbi Sync SUCCESS !--- If you get stuck here, try a shut command and then a no shut command !--- on the SU first. Sometimes this state has intermittent failures. !--- Try again if you receive a failure response. 01:48:37: SU RFSM: STATE CHANGE fec_sync_state ====> trc_sync_state 01:48:38: SU RFSM: TRC Sync State, Successful TRC LOCK 01:48:38: SU RFSM: STATE CHANGE trc_sync_state ====> maintenance_state !--- This is where the SU MAC chip starts to communicate with the HE MAC chip. 01:48:38: SU RFSM: Received Advance DS Channel Msg 01:48:43: SU RFSM: Default RF Resp. Processing 01:48:43: SU RFSM: UCD US bw is Full, adjusted max RF tx gain is 37 01:48:43: SU RFSM: Default RF Resp. Processing 01:48:43: SU RFSM: Default RF Resp. Processing 01:48:43: SU RFSM: DSPMSG_TX_POWER_ADJ [-128 db], IF[-4 db], RF[-13 db] 01:48:45: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[-1 db], RF[-13 db] !--- Lines like the one above appear often in the debug messages. !--- This line says that the transmit power is being adjusted up 3 dB, !--- and after the adjustment, the IF gain is -1 dB, and the RF gain !--- is -13 dB. 01:48:48: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[02 db], RF[-13 db] 01:48:49: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[05 db], RF[-13 db] 01:48:50: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[-11 db] 01:48:51: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[-8 db] 01:48:52: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[-5 db] 01:48:53: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[-2 db] 01:48:54: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[01 db] 01:48:55: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[04 db] 01:48:56: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[07 db] 01:48:57: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[10 db] 01:48:58: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[13 db] 01:48:59: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[16 db] 01:49:00: SU RFSM: DSPMSG_TX_POWER_ADJ [3 db], IF[06 db], RF[19 db] 01:49:01: SU RFSM: DSPMSG_TX_POWER_ADJ [2 db], IF[06 db], RF[21 db] 01:49:02: SU RFSM: Set ALC State Resp: alcState 1, IFloopMode 0, RFloopMode 1, Tmin_IF 35 01:49:16: %LINEPROTO-5-UPDOWN: Line protocol on Interface Radio1/0, changed state to up
Subscriber Unit# 01:24:34: 5074.432 CMAC_LOG_LINK_DOWN 01:24:34: 5074.432 CMAC_LOG_LINK_UP 01:24:34: 5074.432 CMAC_LOG_STATE_CHANGE ds_channel_scanning_state 01:24:35: %LINEPROTO-5-UPDOWN: Line protocol on Interface Radio1/0, changed state to down 01:24:42: 5082.264 CMAC_LOG_DS_TUNER_KEEPALIVE 01:24:45: 5085.392 CMAC_LOG_UCD_MSG_RCVD 1 01:24:45: 5085.664 CMAC_LOG_DS_CHANNEL_SCAN_COMPLETED 01:24:45: 5085.664 CMAC_LOG_STATE_CHANGE wait_ucd_state !--- This is where the SU mac chip starts to communicate with the HE MAC chip. 01:24:47: 5087.392 CMAC_LOG_UCD_MSG_RCVD 1 01:24:49: 5089.392 CMAC_LOG_UCD_MSG_RCVD 1 01:24:49: 5089.392 CMAC_LOG_ALL_UCDS_FOUND 01:24:49: 5089.396 CMAC_LOG_STATE_CHANGE wait_map_state 01:24:49: 5089.396 CMAC_LOG_FOUND_US_CHANNEL 1 01:24:51: 5091.392 CMAC_LOG_UCD_MSG_RCVD 1 01:24:51: 5091.592 CMAC_LOG_UCD_NEW_US_FREQUENCY 2677000 01:24:51: 5091.592 CMAC_LOG_SLOT_SIZE_CHANGED 8 01:24:51: 5091.604 CMAC_LOG_UCD_UPDATED 01:24:51: 5091.632 CMAC_LOG_MAP_MSG_RCVD 01:24:51: 5091.632 CMAC_LOG_INITIAL_RANGING_MINISLOTS 18 01:24:51: 5091.636 CMAC_LOG_STATE_CHANGE ranging_1_state !--- In ranging 1 state, the SU sends a message to the HE, and then waits !--- for a response. If it doesn't get a response, it tries again a little !--- louder (3 dB more transmit power each attempt). This continues until !--- there is a response, or until the SU has used up its tries. 01:24:51: 5091.636 CMAC_LOG_RANGING_OFFSET_SET_TO 21368 01:24:52: 5092.836 CMAC_LOG_POWER_LEVEL_IS 0.0 dBmV(commanded) 01:24:52: 5092.836 CMAC_LOG_STARTING_RANGING 01:24:52: 5092.836 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:52: 5092.936 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:52: 5092.956 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:53: 5093.156 CMAC_LOG_T3_TIMER !--- The T3 timer sets how long the SU waits before it decides that the HE !--- didn't hear the last message. The line above indicates that this timer !--- has expired, and now the SU will try retransmitting. The T3 timer can be set to a !--- very large value, so if you want the SU to receive downstream but never transmit anything, !--- use the docsis mac-timer t3 3600000 command. 01:24:53: 5093.156 CMAC_LOG_POWER_LEVEL_IS 0.25 dBmV(commanded) 01:24:53: 5093.156 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:53: 5093.256 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:53: 5093.316 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:53: 5093.516 CMAC_LOG_T3_TIMER 01:24:53: 5093.516 CMAC_LOG_POWER_LEVEL_IS 0.50 dBmV(commanded) 01:24:53: 5093.516 CMAC_LOG_RANGING_BACKOFF_SET 2 01:24:53: 5093.616 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:53: 5093.796 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:53: 5093.996 CMAC_LOG_T3_TIMER 01:24:53: 5093.996 CMAC_LOG_POWER_LEVEL_IS 0.75 dBmV(commanded) 01:24:53: 5093.996 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:54: 5094.096 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:54: 5094.156 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:54: 5094.356 CMAC_LOG_T3_TIMER 01:24:54: 5094.356 CMAC_LOG_POWER_LEVEL_IS 1.0 dBmV(commanded) 01:24:54: 5094.356 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:54: 5094.456 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:54: 5094.516 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:54: 5094.716 CMAC_LOG_T3_TIMER 01:24:54: 5094.716 CMAC_LOG_POWER_LEVEL_IS 1.25 dBmV(commanded) 01:24:54: 5094.716 CMAC_LOG_RANGING_BACKOFF_SET 3 01:24:54: 5094.816 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:55: 5095.056 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:55: 5095.260 CMAC_LOG_T3_TIMER 01:24:55: 5095.260 CMAC_LOG_POWER_LEVEL_IS 1.50 dBmV(commanded) 01:24:55: 5095.260 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:55: 5095.360 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:55: 5095.416 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:55: 5095.620 CMAC_LOG_T3_TIMER 01:24:55: 5095.620 CMAC_LOG_POWER_LEVEL_IS 1.75 dBmV(commanded) 01:24:55: 5095.620 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:55: 5095.720 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:55: 5095.776 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:55: 5095.980 CMAC_LOG_T3_TIMER 01:24:55: 5095.980 CMAC_LOG_POWER_LEVEL_IS 2.0 dBmV(commanded) 01:24:55: 5095.980 CMAC_LOG_RANGING_BACKOFF_SET 0 01:24:56: 5096.080 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:56: 5096.136 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:56: 5096.340 CMAC_LOG_T3_TIMER 01:24:56: 5096.340 CMAC_LOG_POWER_LEVEL_IS 2.25 dBmV(commanded) 01:24:56: 5096.340 CMAC_LOG_RANGING_BACKOFF_SET 7 01:24:56: 5096.440 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:56: 5096.916 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:57: 5097.116 CMAC_LOG_T3_TIMER 01:24:57: 5097.116 CMAC_LOG_POWER_LEVEL_IS 2.50 dBmV(commanded) 01:24:57: 5097.116 CMAC_LOG_RANGING_BACKOFF_SET 1 01:24:57: 5097.216 CMAC_LOG_RNG_REQ_QUEUED 0 01:24:57: 5097.336 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:57: 5097.340 CMAC_LOG_RNG_RSP_MSG_RCVD 01:24:57: 5097.344 CMAC_LOG_RNG_RSP_SID_ASSIGNED 138 01:24:57: 5097.344 CMAC_LOG_ADJUST_RANGING_OFFSET 61 01:24:57: 5097.344 CMAC_LOG_RANGING_OFFSET_SET_TO 21429 01:24:57: 5097.344 CMAC_LOG_ADJUST_TX_POWER 20 01:24:57: 5097.344 CMAC_LOG_STATE_CHANGE ranging_2_state !--- The HE got the ranging message from the SU, and sent a response. !--- Now the SU enters the ranging 2 state. In this state, it sends !--- messages to the HE, and the HE sends back messages !--- that instruct the SU on how to adjust its transmit power. !--- The distance between the HE and SU is also measured, and the !--- SU is given a ranging offset to account for propagation delay. 01:24:57: 5097.448 CMAC_LOG_RNG_REQ_QUEUED 138 01:24:58: 5098.348 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:58: 5098.352 CMAC_LOG_RNG_RSP_MSG_RCVD 01:24:58: 5098.356 CMAC_LOG_ADJUST_TX_POWER 20 01:24:58: 5098.356 CMAC_LOG_RANGING_CONTINUE 01:24:59: 5099.364 CMAC_LOG_RNG_REQ_TRANSMITTED 01:24:59: 5099.368 CMAC_LOG_RNG_RSP_MSG_RCVD 01:24:59: 5099.368 CMAC_LOG_ADJUST_TX_POWER 20 01:24:59: 5099.368 CMAC_LOG_RANGING_CONTINUE 01:25:00: 5100.376 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:00: 5100.380 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:00: 5100.380 CMAC_LOG_ADJUST_TX_POWER 20 01:25:00: 5100.384 CMAC_LOG_RANGING_CONTINUE 01:25:01: 5101.388 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:01: 5101.396 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:01: 5101.396 CMAC_LOG_ADJUST_TX_POWER 16 01:25:01: 5101.396 CMAC_LOG_RANGING_CONTINUE 01:25:02: 5102.404 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:02: 5102.408 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:02: 5102.408 CMAC_LOG_RANGING_SUCCESS 01:25:02: 5102.408 CMAC_LOG_STATE_CHANGE dhcp_state !--- In this example, the SU was told to increase its power in the !--- ranging 2 state. In total, the SU increased its gain by 20 dB !--- during this state. This is an indication that the channel is !--- very clean - the HE was able to demodulate the signal from the SU, !--- even when it was 20 dB below the optimal signal level. If the !--- opposite occurs, and the SU is told to decrease the power in this !--- state, then that is an indication that the upstream !--- channel is not very clean. At this point, the state machine has !--- reached the dhcp_state. The SU sends an IP broadcast request !--- looking for a DHCP server. 01:25:02: 5102.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:02: 5102.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:03: 5103.424 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:03: 5103.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:04: 5104.424 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:04: 5104.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:05: 5105.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:05: 5105.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:06: 5106.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:06: 5106.424 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:07: 5107.424 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:07: 5107.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:08: 5108.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:08: 5108.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:09: 5109.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:09: 5109.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:10: 5110.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:10: 5110.424 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:11: 5111.424 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:11: 5111.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:12: 5112.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:12: 5112.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:13: 5113.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:13: 5113.424 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:14: 5114.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:14: 5114.424 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:15: 5115.292 CMAC_LOG_DHCP_ASSIGNED_IP_ADDRESS 10.1.1.3 01:25:15: 5115.292 CMAC_LOG_DHCP_TFTP_SERVER_ADDRESS 10.1.1.1 01:25:15: 5115.292 CMAC_LOG_DHCP_ERROR_ACQUIRING_TOD_ADDRESS 01:25:15: 5115.292 CMAC_LOG_DHCP_SET_GATEWAY_ADDRESS 01:25:15: 5115.292 CMAC_LOG_DHCP_TZ_OFFSET 0 01:25:15: 5115.296 CMAC_LOG_DHCP_CONFIG_FILE_NAME p2mp.cm 01:25:15: 5115.296 CMAC_LOG_DHCP_ERROR_ACQUIRING_SEC_SVR_ADDR 01:25:15: 5115.296 CMAC_LOG_DHCP_ERROR_ACQUIRING_LOG_ADDRESS 01:25:15: 5115.300 CMAC_LOG_DHCP_COMPLETE !--- Other parameters that are required by the SU are the TFTP server !--- address, the Time of Day (TOD) server address, the Time Zone (TX) !--- offset value and DHCP config file name (also known as the DOCSIS !--- config file). These parameters must all be present !--- in the DHCP response from the DHCP server. 01:25:15: 5115.312 CMAC_LOG_STATE_CHANGE establish_tod_state 01:25:15: 5115.316 CMAC_LOG_TOD_NOT_REQUESTED_NO_TIME_ADDR 01:25:15: 5115.316 CMAC_LOG_STATE_CHANGE security_association_state 01:25:15: 5115.316 CMAC_LOG_SECURITY_BYPASSED 01:25:15: 5115.316 CMAC_LOG_STATE_CHANGE configuration_file_state 01:25:15: 5115.316 CMAC_LOG_LOADING_CONFIG_FILE p2mp.cm !--- The establish_tod_state is the point in which the SU tries to retrieve !--- the time of day from the TOD server. This is used to synchronize clocks !--- for alarms and logs, among other reasons. The security_association_state !--- is a placeholder for a state yet to be defined. In the future, !--- a security association with a security server would provide !--- IPsec-like security for the SUs. This is NOT the baseline privacy state. !--- The configuration_file_state is the main configuration and !--- administration interface to the SU DOCSIS subsystem. !--- The name of this file and the TFTP server address in which !--- this could be downloaded was originally provided in the DHCP state. !--- This configuration file contains downstream channel and upstream !--- channel identification, characteristics, Class of Service settings, !--- Baseline Privacy settings, and general operational settings. 01:25:15: 5115.424 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:15: 5115.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:16: %LINEPROTO-5-UPDOWN: Line protocol on Interface Radio1/0, changed state to up 01:25:16: 5116.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:16: 5116.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:17: 5117.420 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:17: 5117.424 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:18: 5118.424 CMAC_LOG_RNG_REQ_TRANSMITTED 01:25:18: 5118.428 CMAC_LOG_RNG_RSP_MSG_RCVD 01:25:19: 5119.352 CMAC_LOG_CONFIG_FILE_PROCESS_COMPLETE 01:25:19: 5119.352 CMAC_LOG_STATE_CHANGE registration_state 01:25:19: 5119.352 CMAC_LOG_REG_REQ_MSG_QUEUED 01:25:19: 5119.356 CMAC_LOG_REG_REQ_TRANSMITTED 01:25:19: 5119.368 CMAC_LOG_REG_RSP_MSG_RCVD !--- The link is now up. !--- The link comes up and then the SU tries to register with the HE !--- through the registration_state. After configuration, the modem sends !--- a registration request (REG-REQ) with a required subset !--- of the configuration settings received in the DOCSIS config file. 01:25:19: 5119.368 CMAC_LOG_COS_ASSIGNED_SID 1/138 01:25:19: 5119.372 CMAC_LOG_COS_ASSIGNED_SID 2/139 01:25:19: 5119.472 CMAC_LOG_RNG_REQ_QUEUED 138 01:25:19: 5119.472 CMAC_LOG_REGISTRATION_OK 01:25:19: 5119.472 CMAC_LOG_STATE_CHANGE establish_privacy_state 01:25:19: 5119.472 CMAC_LOG_PRIVACY_NOT_CONFIGURED 01:25:19: 5119.476 CMAC_LOG_STATE_CHANGE maintenance_state !--- At this point, the service identifier (SID), which designates the !--- MAP grants on which the SU is allowed to speak, !--- is assigned. The establish_privacy_state only comes into effect !--- if baseline privacy is turned on. At the current time, !--- this is not supported, but it will be in the future.
A. 这很可能意味着微码未曾装载。如果微码下载发生故障,此消息出现:
00:00:38: %CWRMP-3-UCODEFAIL: Radio 1/0: Loading slot1:/cod.001 failed此消息出现立候你启动程序,因此您能容易地错过此消息。您能通过no shut命令也看到问题:
SU1(config-if)# no shut SU1(config-if)# 00:02:26: 146.628 CMAC_LOG_LINK_DOWN 00:02:26: 146.628 CMAC_LOG_LINK_UP 00:02:26: 146.628 CMAC_LOG_STATE_CHANGE ds_channel_scanning_state 00:02:27: 147.628 CMAC_LOG_RESET_CANT_START_DS_TUNER_PRCESS 00:02:27: 147.628 CMAC_LOG_STATE_CHANGE reset_interface_state 00:02:27: SU RFSM: MAC FSM Stop Cmd 00:02:27: 147.628 CMAC_LOG_STATE_CHANGE reset_hardware_state 00:02:27: 147.628 CMAC_LOG_STATE_CHANGE wait_for_link_up_state 00:02:27: 147.628 CMAC_LOG_LINK_DOWN为了修理问题类型:
end conf t microcode cwrsu [path to microcode] microcode reload微编码的路径典型地是slot1 :如此命令如下所示:
microcode cwrsu slot1:当代码成功负载时,您收到此消息:
00:06:06: %CWRMP-5-UCODE: Radio 1/0: Loaded slot1:如果这仍然不运作,检查确信,闪存卡适当地插入到slot 1。从exec提示(类型达到的末端exec提示),您能查看什么的目录在卡在slot 0或1或者在闪存。类型:
dir flash: dir slot0: dir slot1:
A. 这是此问题的可能的原因:
ODU没有打开。这是容易俯视,因为ODU有其自己的电源,您必须分开打开与路由器。
ODU没有正确地被连接到无线卡。切记电缆全部连接并且紧密地被拧紧。请参阅安装指南关于布线图。
PIC,一个处理器在ODU里面,查寻。为了调整此问题,请关闭ODU,等一些秒钟,并且翻回ODU。
路由器为两ODUs被配置,但是仅一个被连接。
如果SU不能超过rf_hw_reset_state,日志表示,软件设法重置秒钟ODU :
10:26:43: SU RFSM: STATE CHANGE if_hw_read_eeprom_state ====> rf_hw_reset_state 10:26:43: SU RFSM: Resetting RF/ODU1 10:26:44: %LINK-3-UPDOWN: Interface Radio1/0, changed state to up 10:26:48: SU RFSM: STATE CHANGE rf_hw_reset_state ====> rf_hw_read_version_state 10:26:48: RFHW: RF/ODU1 PIC boot loader version=255, vendor ID=0 10:26:48: RFHW: RF/ODU1 PIC code version=0.5, eeprom version=0 10:26:48: RFHW: Error: RF/ODU1 EEPROM Checksum failed! 10:26:48: RFHW: RF/ODU1 EEPROM Checksum=0x61 10:26:48: SU RFSM: STATE CHANGE rf_hw_read_version_state ====> rf_hw_read_eeprom_state 10:26:48: SU RFSM: Reading RF HW EEPROM 10:26:48: SU RFSM: Loading RF/ODU1 HW EEPROM data... 10:26:52: SU RFSM: Re-using RF/ODU1 HW EEPROM cached data 10:26:52: SU RFSM: RF/ODU1 HW EEPROM load complete 10:26:52: SU RFSM: STATE CHANGE rf_hw_read_eeprom_state ====> rf_hw_reset_state 10:26:52: SU RFSM: Resetting RF/ODU2 10:27:00: SU RFSM: PIC RESP Timeout 10:27:00: SU RFSM: Error: PIC msg timeout during SU RFSM rf_hw_reset_state 10:27:00: %CWRMP-4-RF_IF_COMM: Radio1/0, IF-to-RF/ODU2 comm error (ODU Controller Reset cmd) 10:27:00: SU RFSM: STATE CHANGE rf_hw_reset_state ====> standby_state为了解决此问题,只连接秒钟ODU或者配置系统使用一。为了为一个ODU配置,请键入radio receive-antennas 1命令从无线接口提示。
A. 在此状态下, DSP尝试查找一个有效下行信号,锁定对频率该信号,并且开始解调信号。如果错误有任何到达的下行信号,则问题可能出现这里。当通过同步进程,进步为了帮助您排除故障, DSP传送信息。如果一切工作,则传送这些信息:
09:55:54: SU RFSM: STATE CHANGE dspinit_down_sync_state_config_state ====> dsp_sync_state 09:55:54: SU RFSM: Received DSP SYNC IND (0) 09:55:54: SU RFSM: Received DSP SYNC IND (2) 09:55:54: SU RFSM: Received DSP SYNC IND (4) 09:55:54: SU RFSM: Received DSP SYNC IND (5) 09:55:54: SU RFSM: Received DSP SYNC IND (8) 09:55:54: SU RFSM: DSP SYNC PASSED或
09:55:54: SU RFSM: STATE CHANGE dspinit_down_sync_state_config_state ====> dsp_sync_state 09:55:54: SU RFSM: Received DSP SYNC IND (0) 09:55:54: SU RFSM: Received DSP SYNC IND (2) 09:55:54: SU RFSM: Received DSP SYNC IND (4) 09:55:54: SU RFSM: Received DSP SYNC IND (5) 09:55:54: SU RFSM: Received DSP SYNC IND (7) 09:55:54: SU RFSM: Received DSP SYNC IND (4) 09:55:54: SU RFSM: Received DSP SYNC IND (5) 09:55:54: SU RFSM: Received DSP SYNC IND (8) 09:55:54: SU RFSM: DSP SYNC PASSED可能的DSP同步指示器是:
0个AGC_PASS — DSP看到在收到的信号的若干功率。
1个AGC_FAIL — DSP看不到在收到的信号的功率。此指示器是难获得。确定正确地设置下行频率。
2个BURST_SIZE_PASS — DSP假设一个有效下行信号的出现。如果这是您接受的最后DSP指示器, DSP不能锁定到频率下行。功率循环一切和尝试再。如果那不工作,请替换SU IF卡。
3个BURST_SIZE_FAIL — DSP无法查找一个有效下行信号。此问题能发生由于太弱或太严格的信号。确定HE打开并且适当地传输,天线在正确的方向指向,并且正确地设置下行频率。的问题任何这些设置意味着没有信号或者一非常微弱的信号,接受。另一种可能性是有许多个信号。如果这是实际情形,在ODU的放大器能饱和。请使用光谱分析程序和一台分离器查看在ODU和线卡之间的信号。下行信号必须在423和429兆赫之间,并且信号功率必须在64和15 dbm之间。如果信号查找太严格,请检查饱和。考虑有更低的增益的一个天线。另一种可能性是cable-comp不正确设置。
4个TIME_D_PASS — DSP同步对收到的信号的定时。
5个COARSE_FREQ_PASS —此指示器总是跟随指示器号4。这是完全无意义的。
6 —此编号是未使用的。
7个OSC_ADJ_PASS — DSP需要做一个大频率调整。在一个大频率调整以后, DSP回到TIME_D状态,如此能跟随这一个是指示器号4.的唯一的消息。如果看到此消息许多次,很可能IF模块miscalibrated。替换IF卡。
8个DEMOD_TT_PASS — DSP找到下行信号的所有调制参数,并且准备开始数据解调。
如果进入dsp_sync_state,但是看不到其中任一个从DSP的指示器消息,微码没有正确地很可能下载。键入这些命令:
shut end configure terminal microcode reload
A. 此问题通常发生由于低SNR。DSP在一个更低的SNR信号比可以被解调能同步。为了解决此问题,您需要让一个更加干净的信号进入订户。切记正确地设置cable-comp值,并且所有电缆紧密地连接。重定向天线。
注意: 此状态没有明显的原因有时发生故障。在您寻找错误前,请再试一次并且检查是否第二次运作。
A. 此问题经常指示HE的一个问题,而不是有订户的。再供给循环动力订户和尝试,是肯定的。如果遇到同一个问题,请证实任何其他订户是否成功连接到此HE卡。否则,请尝试一shut/no shut命令在HE。如果那不工作,供给循环动力HE。问题是HE有时看上去有no shut,但是实际上从未开始的MAC芯片。因此,有传输的一个下行信号,但是没有关于信号的数据。
A. 有两种可能性在这里。第一是initial-ranging-offset不正确设置DOCSIS。这是存在运行的配置,您能从exec提示查看用show run命令。为了调整此问题,请进入接口提示并且键入docsis initial-ranging-offset 27000。第二种可能性是HE有问题。请参阅“SU若不能超过trc_sync_state ?”问题欲知更多信息。
A. initial-ranging-offset能不正确设置。请参阅上述问与答。另一种可能性是某事在上行信号是错误的。检查正确地设置上行频率。切记ALC打开。这DEFAULT模式,但是您能手工也设置传输增益,禁用ALC。一般来说,您不能禁用ALC。为了确保ALC打开,请键入no radio diag transmit-gain命令从接口提示。
A. 这很可能意味着HE看到太多或从SU的太少功率,或者从订户的信号太差以至于不能一致解调。有告诉您对的消息什么设置传输增益。这是命令,因此意味着SU由3个dB [-3 db告诉减少增益],和,因此SU设置IF增益为-4 dB和RF增益为0个dB :
10:54:26: SU RFSM: DSPMSG_TX_POWER_ADJ [-3 db], IF[-4 db], RF[00 db]为了看到传输增益设置的合法范围,请键入从exec提示的这些命令:
show cont r1/0 rf show cont r1/0 if他们显示的这些show命令关于IF和RF卡的很多信息和其中一个字段是时间区域(TX)可变的增益的范围。如果订户在范围的底部附近只使用收益, HE很可能接受许多个功率。换成一个低功率ODU,不同地调整天线或者放置衰减器在ODU和天线之间。
另一方面,如果SU设置为充分的增益,并且HE继续指示SU增加功率,这是HE不接受足够的功率的征兆。检查对RF接受HE的功率的什么值设置,并且检查天线的对准线。一个更加高赢利的天线可帮助。或者,请移动天线或者安放它更高。
A. 如果看到dhcp_state消息和从未看到IP地址得到分配到SU,这通常指向DHCP服务器的不正确的配置或者缺乏IP路径DHCP服务器。请验证DHCP服务器的配置和,如果运行外部DHCP服务器,验证正确radio helper-address命令被配置在无线接口下通过show running命令。
A. SU要求的其他参数是TFTP服务器地址、每日定时(ToD)服务器地址、时间区域(TX)偏移值和DHCP设置文件名(也称为DOCSIS配置文件)。这些参数一定全部是存在自DHCP服务器的DHCP响应。
注意: 您能配置HE起DHCP/TFTP服务器的作用。如果没有配置HE是DHCP/TFTP服务器,请切记radio helper-address命令被配置在HE无线接口下。这保证DHCP广播被转送到正确的服务器。如果使用一个外部DHCP/TFTP服务器,服务器必须也包含提示如何发送信息包回到SU网络的路由或默认网关。
这些错误信息指向缺乏在DHCP响应的可选参数:
DHCP_ERROR_ACQUIRING_SEC_SVR_ADDR DHCP_ERROR_ACQUIRING_LOG_ADDRESS配置在DHCP服务器的附属服务器和日志服务器地址排除这些错误。
A. 故障的一常见原因在此状态是TOD服务器不是存在外部或在HE。您能配置HE作为TOD服务器。发出radio time-server命令从全局配置模式。再次,使用外部TOD服务器,路由一定是存在为了TOD服务器能发送回应回到SU。
A. configuration_file_state是主要配置和管理界面对SU DOCSIS子系统。这可以下载此文件的名字和TFTP服务器地址在DHCP状态最初提供了。此配置文件包含:
下行信道和上行信道认证
特性
服务等级设置
基础线保密性设置
一般操作设置
故障的常见原因在此状态是缺少文件,错误文件权限,一不可得到的TFTP server,格式错误的文件,与缺少所需的选项、不正确地被配置的所需的选项或者不正确选项(未知或无效类型长度值(TLVs)的)文件。
A. 注册的问题几乎总是陈述点对file错误的配置。确定SU和HE两个支持在配置文件的设置。确定HE允许业务类别配置文件的创建或请使用HE创建的一个配置文件。检查认证字符串在HE无线接口配置和在DOCSIS配置文件。
A. 此情况很可能意味着HE或SU设法设立保密性基准(BPI),并且人一个不是。验证DOCSIS配置文件是否有打开的BPI。在HE,请验证QoS配置文件是否也显示打开的BPI。请使用show radio qos profile命令。并且,请确定HE和SU使用K镜像。
A. 检查SU无线电线卡有一个有效IP地址。如果必须尝试几次超过ranging_2_state,这是符号其他是错误的。这意味着莫名其妙地SNR是太低的。如果在SU的单播重试次数计数器设置对非零,这是低SNR的征兆。为了看到SNR值,请使用show controller r1/0 mac命令。