PA-A2 ATM CES Port Adapter Installation and Configuration
Configuring the PA-A2 ATM CES Port Adapter
Downloads: This chapterpdf (PDF - 430.0KB) The complete bookPDF (PDF - 1.18MB) | Feedback

Configuring the PA-A2 ATM CES Port Adapter

Table Of Contents

Configuring the PA-A2 ATM CES Port Adapter

Using the EXEC Command Interpreter

PA-A2 ATM CES Configurations

Shutting Down an Interface

Performing a Basic Interface Configuration

Configuring the PA-A2 ATM CES Port Adapter for T3

Configuring the PA-A2 ATM CES Port Adapter for E3

Configuring the PA-A2 ATM CES Port Adapter for OC-3

Configuring VCs

Configuring PVCs

Configuring a PVC on a Point-to-Point Subinterface

Configuring a PVC on a Multipoint Subinterface

Configuring SVCs

Configuring the PVC That Performs SVC Call Setup

Configuring the Network Service Access Point Address

Configuring Classical IP and ARP over ATM

Classes of Service and Transmit Priority on the PA-A2 ATM CES Port Adapter

Customizing the PA-A2 ATM CES Port Adapter

Setting the MTU Size

Configuring an ATM Interface for Local Loopback

Configuring an ATM Interface for External Loopback

Checking the Configuration

Using show Commands to Verify the New Interface Status

Using the show version or show hardware Commands

Using the show diag Command

Using the show interfaces Command

Using the ping Command to Verify Network Connectivity

Using loopback Commands

Traffic Management

Troubleshooting the PA-A2 ATM CES Port Adapter Installation and Configuration

PA-A2 ATM CES Port Adapter Statistics

Using the debug atm Commands

Displaying ATM Information

ATM Configuration

Upgrading Your Boot Flash Image

Port Adapter Error Messages


Configuring the PA-A2 ATM CES Port Adapter


To continue your port adapter installation, you must configure the ATM interfaces.

The instructions that follow apply to all supported platforms. Minor differences between the platforms—with Cisco IOS software commands—are noted.

This chapter contains the following sections:

Using the EXEC Command Interpreter

PA-A2 ATM CES Configurations

Customizing the PA-A2 ATM CES Port Adapter

Checking the Configuration

Traffic Management

Troubleshooting the PA-A2 ATM CES Port Adapter Installation and Configuration

ATM Configuration

Upgrading Your Boot Flash Image

Port Adapter Error Messages

Using the EXEC Command Interpreter

You modify the configuration of your router through the software command interpreter called the EXEC (also called enable mode). You must enter the privileged level of the EXEC command interpreter with the enable command before you can use the configure command to configure a new interface or change the existing configuration of an interface. The system prompts you for a password if one has been set.

The system prompt for the privileged level ends with a pound sign (#) instead of an angle bracket (>). At the console terminal, use the following procedure to enter the privileged level:


Step 1 At the user-level EXEC prompt, enter the enable command. The EXEC prompts you for a privileged-level password as follows:

Router> enable 

Password: 

Step 2 Enter the password (the password is case sensitive). For security purposes, the password is not displayed.

When you enter the correct password, the system displays the privileged-level system prompt (#):

Router#


PA-A2 ATM CES Configurations

After you verify that the new port adapter is installed correctly (the ENABLED LED goes on), use the privileged-level configure command to configure the new interfaces. Have the following information available:

Protocols you plan to route on each new interface

IP addresses, if you plan to configure the interfaces for IP routing

Bridging protocols you plan to use

If you installed a new port adapter or if you want to change the configuration of an existing interface, you must enter configuration mode to configure the new interfaces. If you replaced a port adapter that was previously configured, the system recognizes the new interfaces and brings each of them up in their existing configuration.

For a summary of the configuration options available and instructions for configuring interfaces on a port adapter, refer to the appropriate configuration publications listed in the "Related Documentation" section on page viii.

When an interface is enabled (taken out of shutdown mode) with no additional arguments, the default interface configuration file parameters are functional.

You execute configuration commands from the privileged level of the EXEC command interpreter, which usually requires password access. Contact your system administrator, if necessary, to obtain password access. (See the "Using the EXEC Command Interpreter" section for an explanation of the privileged level of the EXEC.)

This section contains the following configuration subsections for the standard configuration tasks:

Shutting Down an Interface

Performing a Basic Interface Configuration

Configuring the PA-A2 ATM CES Port Adapter for T3

Configuring the PA-A2 ATM CES Port Adapter for E3

Configuring the PA-A2 ATM CES Port Adapter for OC-3

Configuring VCs

Configuring PVCs

Configuring SVCs

Configuring Classical IP and ARP over ATM

Classes of Service and Transmit Priority on the PA-A2 ATM CES Port Adapter

Shutting Down an Interface

Before you remove an interface that you will not replace, replace interface cables, or replace port adapters, use the shutdown command to shut down (disable) the interfaces to prevent anomalies when you reinstall the new port adapter or reconfigured port adapter. When you shut down an interface, it is designated administratively down in the show command displays.

Follow these steps to shut down an interface:


Step 1 Enter the privileged level of the EXEC command interpreter (also called enable mode). (See the "Using the EXEC Command Interpreter" section for instructions.)

Step 2 At the privileged-level prompt, enter configuration mode and specify that the console terminal is the source of the configuration subcommands, as follows:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#

Step 3 Shut down interfaces by entering the interface command (followed by the interface type and the interface address of the interface), and then enter the shutdown command. See "Using the show interfaces Command" section for the command syntax.

When you have finished, press Ctrl-Z—hold down the Control key while you press Z—or enter end or exit to exit configuration mode and return to the EXEC command interpreter.


Note If you need to shut down additional interfaces, enter the interface command (followed by the interface type and the interface address of the interface) for each of the interfaces on your port adapter. Use the no shutdown command to enable the interface.


Step 4 Write the new configuration to NVRAM as follows:

Router# copy running-config startup-config
[OK]
Router#

The system displays an OK message when the configuration has been stored in NVRAM.

Step 5 Verify that new interfaces are now in the correct state (shut down) using the show interfaces command (followed by the interface type and the interface address of the interface) to display the specific interface. The "Using the show interfaces Command" section provides examples.

Step 6 Reenable interfaces by doing the following:

a. Repeat Step 3 to reenable an interface. Substitute the no shutdown command for the shutdown command.

b. Repeat Step 4 to write the new configuration to memory.
Use the copy running-config startup-config command.

c. Repeat Step 5 to verify that the interfaces are in the correct state. Use the show interfaces command followed by the interface type and interface address of the interface.


For complete descriptions of software configuration commands, refer to the publications listed in the "Related Documentation" section on page viii.

Performing a Basic Interface Configuration

Following are instructions for a basic configuration, which includes enabling an interface and specifying IP routing. You might also need to enter other configuration subcommands, depending on the requirements for your system configuration and the protocols you plan to route on the interface. For complete descriptions of configuration subcommands and the configuration options available for the interfaces of your port adapter, refer to the appropriate software documentation.

In the following procedure, press the Return key after each step unless otherwise noted. At any time you can exit the privileged level and return to the user level by entering disable at the prompt as follows:

Router# disable

Router> 

Step 1 Enter configuration mode and specify that the console terminal is the source of the configuration subcommands, as follows:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#

Step 2 Specify the first interface to configure by entering the interface command, followed by the type of interface and the interface address of the interface you plan to configure. (The command for your port adapter will be specific to the technology of your interface.) The "Using the show interfaces Command" section provides examples.

Step 3 Assign an IP address and subnet mask to the interface (if IP routing is enabled on the system) by using the ip address subcommand, as in the following example:

Router(config-if)# ip address 10.0.0.0 10.255.255.255 

Step 4 Add any additional configuration subcommands required to enable routing protocols and set the interface characteristics.

Step 5 Reenable the interfaces using the no shutdown command. (See the "Shutting Down an Interface" section.)

Step 6 After including all of the configuration subcommands to complete your configuration, press Ctrl-Z—hold down the Control key while you press Z—or enter end or exit to exit configuration mode and return to the EXEC command interpreter prompt.

Step 7 Write the new configuration to NVRAM as follows:

Router# copy running-config startup-config
[OK]
Router#

The system displays an OK message when the configuration has been stored in NVRAM.


Note If you are going to disconnect or reconfigure the ATM interface cable, use the shutdown command before doing so. After reattaching the ATM interface cable, use the no shutdown command to bring up the ATM interface.


Configuring the PA-A2 ATM CES Port Adapter for T3

To configure the PA-A2 ATM CES port adapter for T3, perform the following tasks in interface configuration mode:


Step 1 Specify an ATM interface to configure. For the appropriate interface address to use for your system, refer to the "Identifying Interface Addresses" section on page 1-15.

Router# interface atm slot/port or slot/port-adapter/port

Step 2 Set the line build-out length (0 to 50 feet is short and greater than 50 feet is long). Use the no form of this command to return to the default, which is short.

Router(config-if)# lbo {short | long}

Step 3 Select the transmit clock source. This can be internal or derived from the receive clock through use of the no form of the command. By default, the receive clock source is used for the transmit clock.

Router(config-if)# clock internal

Step 4 Enable DS-3 scrambling. Use the no form of the command to restore the default value.

Router (config-if)# DS3-scramble

Step 5 Specify DS-3 framing: m23plcp, cbitplcp, m23adm, or cbitadm. Use the no form of the command to return to the default, which is cbitadm.

Router(config-if)# framing {m23plcp | cbitplcp | m23adm | cbitadm}

Configuring the PA-A2 ATM CES Port Adapter for E3

To configure the PA-A2 ATM CES port adapter for E3, perform the following tasks in interface configuration mode:


Step 1 Specify an ATM interface to configure. For the appropriate interface address to use for your system, refer to the "Identifying Interface Addresses" section on page 1-15.

Router# interface atm slot/port or slot/port-adapter/port

Step 2 Select the transmit clock source. This can be internal or derived from the receive clock through use of the no form of this command. By default, the source is used for the transmit clock.

Router (config-if)# clock internal

Step 3 Enable E3 scrambling. Use the no form of the command to restore the default value.

Router (config-if)# e3-scramble

Step 4 Specify DS-3 framing: g832adm, g751adm, or g751plcp. Use the no form of the command to return to the default, which is g832adm.

Router(config-if)# framing {g832adm | g751adm | g751plcp}

Configuring the PA-A2 ATM CES Port Adapter for OC-3

To configure the PA-A2 ATM CES port adapter for OC-3, perform the following tasks in interface configuration mode:


Step 1 Specify an ATM interface to configure. For the appropriate interface address to use for your system, refer to the "Identifying Interface Addresses" section on page 1-15.

Router# interface atm slot/port or slot/port-adapter/port

Step 2 Select the transmit clock source. This can be internal or derived from the receive clock through use of the no form of this command. By default, the source is used for the transmit clock.

Router (config-if)# clock internal

Step 3 Specify SONET framing by using the sonet stm-1 command. Use the no form of this command to return to the default, sts-3c framing.

Router (config-if)# sonet stm-1


Note In ATM environments, the key difference between SONET and SDH framing modes is the type of cell transmitted when no user or data cells are available. The ATM forum specifies use of idle cells if unassigned cells are not generated. More specifically, in Synchronous Transport Module-X (STM-X) mode, an ATM interface sends idle cells for cell-rate decoupling. In Synchronous Transport Signal-Xc (STS-Xc) mode, the ATM interface sends unassigned cells for cell-rate decoupling.


Configuring VCs

A virtual circuit (VC) is a point-to-point connection between remote hosts and routers. A VC is established for each ATM end node with which the router communicates. The characteristics of the VC are established when the VC is created and include the following:

Class of service category:

Constant bit rate (CBR)

Variable bit rate non-real-time (VBR-nrt)

Variable bit rate real-time (VBR-rt)

Available bit rate (ABR)

Unspecified bit rate (UBR)

ATM adaptation layer 5 (AAL5)

Encapsulation type:

Logical link control Subnetwork Address Protocol (AAL5SNAP)

Multiplexer (AAL5MUX)

Network Layer Protocol ID (AAL5NLPID)

Integrated Local Management Interface (ILMI)

Switched Multimegabit Data Service (SMDS)

ITU/Q.2931 Signaling ATM Adaptation Layer (QSAAL)

Cisco AUTO PPP over AAL5 (aal5autoppp)

Cisco PPP over AAL5 (aal5ciscoppp)


Note See the ATM virtual circuit configuration commands in the example output of the "Classes of Service and Transmit Priority on the PA-A2 ATM CES Port Adapter" section.


Each VC supports the following router functions:

Multiprotocol

Fast switching of IP packets

Flow, and Cisco Express Forwarding (CEF) switching of IP packets

Pseudobroadcast support for multicast packets

By default, CEF switching is enabled on all PA-A2 ATM CES interfaces. These switching features can be turned off with interface configuration commands. Flow must be explicitly enabled for each interface.

Configuring PVCs

To use a permanent virtual circuit (PVC), configure the PVC in both the router and the ATM switch. PVCs remain active until the circuit is removed from either configuration. When a PVC is configured, all of the configuration options are passed on to the PA-A2 ATM CES port adapter. You can write these PVCs into nonvolatile RAM (NVRAM); they are used when the system image is reloaded.

Some ATM switches might have point-to-multipoint PVCs that do the equivalent of broadcasting. If a point-to-multipoint PVC exists, it can be used as the sole broadcast PVC for all multicast requests.

Like Frame Relay, ATM supports twp types of interface: point-to-point and multipoint. The one you choose determines whether you need to use the configuration commands that ensure IP to ATM mappings.

To configure a PVC, refer to the following sections:

Configuring a PVC on a Point-to-Point Subinterface

Configuring a PVC on a Multipoint Subinterface

Configuring a PVC on a Point-to-Point Subinterface

With point-to-point subinterfaces, each pair of routers has its own subnet. If you put the PVC on a point-to-point subinterface, the router assumes that there is only one point-to-point PVC configured on the subinterface. Therefore, any IP packets with a destination IP address in the same subnet are forwarded on this VC.

To configure a point-to-point PVC, perform the following tasks from configuration mode:


Step 1 Enter interface configuration mode and specify an ATM interface using the interface atm command. Specify the creation of a point-to-point interface by using the point command.

Router(config)# interface atm5/0.200 point

Step 2 You can list the VPI and VCI values using the pvc ? command.

Router(config-if)#pvc ?
  <0-255>    Enter VPI/VCI value(slash required)
  <1-65535>  Enter VCI value
  WORD       Optional handle to refer to this connection

Step 3 Create the PVC. Notice the output telling you that circuit has been configured on a specific interface.

Router(config-if)#pvc x/32
Configuring vc 1/1 on interface ATM5/0.200 

Router(config-if-atm-vc)#


Note Static map statements are not required for point-to-point subinterfaces.


Configuring a PVC on a Multipoint Subinterface

Multipoint networks generally have three or more routers in the same subnet. If you put the PVC in a point-to-multipoint subinterface or in the main interface (which is multipoint by default), you need to either configure a static mapping or enable inverse Address Resolution Protocol (InARP) for dynamic mapping.

The following output example shows a PVC 2/200 on ATM interface 1/1/0.200. It uses the global default AAL5SNAP encapsulation. The local interface IP address is 2.2.2.1, and the remote interface IP address is 2.2.2.2.

Router# show interfaces atm 1/1/0.200
interface ATM1/1/0.200 multipoint 
ip address 2.2.2.1 255.255.255.0 
no ip directed-broadcast 
pvc 2/200 
protocol ip 2.2.2.2 broadcast 

InARP is enabled on multipoint links by default. The following example, creates a multipoint subinterface. By using the show atm map command, you can see that InARP builds a dynamic mapping between the Layer 3 IP address and the Layer 2 VPI/VCI:

Router#show atm map 
   Map list ATM1/1/0.100_ATM_INARP : DYNAMIC 
   ip 1.1.1.2 maps to VC 19, VPI 2, VCI 100, ATM1/1/0.100
   Map list ATM1/1/0.200_ATM_INARP : DYNAMIC 
   ip 2.2.2.2 maps to VC 20, VPI 2, VCI 200, ATM1/1/0.200

You can check the mapping using the show atm map command. In the following example, you can see the mapping of Layer 3 to Layer 2 addresses is dynamic. Such mapping is dynamic using inverse ARP as illustrated in the previous show atm map command example.

Router#show atm map 
Map list ATM1/1/0.100_ATM_INARP : DYNAMIC 
ip 1.1.1.2 maps to VC 19, VPI 2, VCI 100, ATM1/1/0.100 
Map list ATM1/1/0.200pvc20 : PERMANENT 
ip 2.2.2.2 maps to VC 20, VPI 2, VCI 200, ATM1/1/0.200, broadcast 

You can use the inarp command to change the frequency of transmitting a new ATM InARP packet in order to reconfirm the mapping:

Router(config-subif)#pvc 2/200 
Router(config-if-atm-vc)#inarp ? 
     <1-60>  InARP Frequency in minutes 
     <cr>
Router(config-if-atm-vc)#inarp 5 
Router(config-if-atm-vc)#end 

Use the show atm vc command to confirm your configured value:

Router#show atm vc 
   5d10h: ATMARP:Sending first PVC INARP 
   5d10h: ATMARP(ATM1/1/0.200)O: INARP_REQ to VCD#20 2/200 for link 7(IP)    
   5d10h: ATMARP(ATM1/1/0.200)I: INARP Reply VCD#20 2/200 from 2.2.2.2    
   ATM1/1/0.200: VCD: 20, VPI: 2, VCI: 200 
   UBR, PeakRate: 44209 
   AAL5-LLC/SNAP, etype:0x0, Flags: 0xC20, VCmode: 0x0 
   OAM frequency: 0 second(s) 
   InARP frequency: 5 minutes(s) 
   Transmit priority 4 
   InPkts: 10, OutPkts: 11, InBytes: 680, OutBytes: 708 
   InPRoc: 10, OutPRoc: 5, Broadcasts: 0 
   InFast: 0, OutFast: 0, InAS: 0, OutAS: 6 
   InPktDrops: 0, OutPktDrops: 0 
   CrcErrors: 0, SarTimeOuts: 0, OverSizedSDUs: 0 
   OAM cells received: 0 
   OAM cells sent: 0 
   Status: UP

Configuring SVCs

ATM switched virtual circuits (SVCs) are created and released dynamically, providing user bandwidth on demand. This service requires a signaling protocol between the router and the switch.

The ATM signaling software provides a method of dynamically establishing, maintaining, and clearing ATM connections at the User-Network Interface (UNI). The ATM signaling software conforms to the ATM Forum UNI 4.0 specification.

In UNI mode, the user is the router, and the network is an ATM switch. This is an important distinction. The Cisco router does not perform ATM-level call routing. Instead, the ATM switch does the ATM call routing, and the router routes packets through the resulting circuit. The router is viewed as the user and the LAN interconnection device at the end of the circuit, and the ATM switch is viewed as the network.

Figure 4-1 illustrates the router position in a basic ATM environment. The router is used primarily to interconnect LANs through an ATM network. Workstation C in Figure 4-1 is connected directly to the destination ATM switch. You can connect not only routers to ATM switches, but also any network device with an ATM interface that conforms to the ATM Forum UNI specification.

Figure 4-1 Basic ATM Environment

To use SVCs, complete the required tasks in the following sections:

Configuring the PVC That Performs SVC Call Setup

Configuring the Network Service Access Point Address

For further information on configuring the PA-A2 ATM CES port adapter for SVCs, see the Wide-Area Networking Configuration Guide.

Configuring the PVC That Performs SVC Call Setup

ATM uses out-of-band signaling. One dedicated PVC exists between the router and the ATM switch, over which all SVC call establishment and call termination requests flow. After the call is established, data transfer occurs over the SVC, from router to router. The signaling that accomplishes the call setup and teardown is called Layer 3 signaling or the Q.2931 protocol.

For out-of-band signaling, a signaling PVC must be configured before any SVCs can be set up. In Figure 4-2, a signaling PVC from the source router to the ATM switch is used to set up two SVCs. This is a fully meshed network; workstations A, B, and C can all communicate with one another.

Figure 4-2 One or More SVCs Require a Signaling PVC

To configure the signaling PVC for all SVC connections, enter the following command in interface configuration mode:

pvc vcd vpi vci qsaal


Note This signaling PVC can be set up on a major interface only, not on the subinterfaces.


The VPI and VCI values must be configured consistently with the local switch. The standard value of VPI is 0, and the range of VPI values is 0 through 255. The standard value of VCI is 5, the range of VCI values is 0 through 65535.


Note VCI values 0 through 31 are reserved and do not carry data traffic.


Configuring the Network Service Access Point Address

Every ATM interface involved with signaling must be configured with a network service access point (NSAP) address. The NSAP address is the ATM address of the interface and must be unique across the network.

To configure an NSAP address, complete the tasks in the following sections:

Configuring the Complete NSAP Address Manually

Configuring the ESI and Selector Fields

To configure the ESI and Selector fields, you must also configure a PVC to communicate with the switch through ILMI:

Router(config-if)# pvc 0/16 ilmi

The switch then provides the Prefix field of the NSAP address.

Configuring the Complete NSAP Address Manually

When you configure the NSAP address manually, you must enter the entire address in hexadecimal format; that is, each digit entered represents a hexadecimal digit. To represent the complete NSAP address, you must enter 40 hexadecimal digits in the following format:

XX.XXXX.XX.XXXXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XXXX.XX

Note All NSAP addresses must be entered in the dotted hexadecimal format shown, which conforms to the UNI specification.


Because the interface has no default NSAP address, you must configure the NSAP address for SVCs. To set the ATM interface source NSAP address, enter the following command in interface configuration mode:

nsap-address nsap-address

The following is an example of an NSAP address assigned to ATM interface 4/0 on a Cisco 7200 series, Cisco uBR7200 series, or Cisco 7100 series router:

Router (config)# interface atm 4/0
Router (config-if)# nsap-address AB.CDEF.01.234567.890A.BCDE.F012.3456.7890.1234.12

You can display the ATM address for the interface by executing the show interfaces atm command.

Configuring the ESI and Selector Fields

You can configure the router to get the NSAP address prefix from the switch; however, the switch must be capable of delivering the NSAP address prefix to the router through ILMI, and the router must be configured with a PVC for communication with the switch through ILMI.

To configure the router to get the NSAP prefix from the switch and use locally entered values for the remaining fields of the address, complete the following tasks in interface configuration mode:


Step 1 Specify an ATM interface to configure.

Router(config)# interface atm slot/port or slot/port-adapter/port

Step 2 Enter the ESI and Selector fields of the NSAP address.

Router(config-if)# esi-address esi.selector

In the esi-address command, the esi argument is 6 hexadecimal bytes long (12 digits), and the selector argument is 1 hexadecimal byte long (2 digits).

In the following example on a Cisco 7200 series router, the ESI and Selector field values are assigned, and the ILMI PVC is set up:

Router(config)# interface atm 4/0
Router(config-if)# esi-address 345678901234.12

Configuring Classical IP and ARP over ATM

Cisco implements both the ATM Address Resolution Protocol (ARP) server and ATM ARP client functions described in RFC 1577. RFC 1577 models an ATM network as a logical IP subnetwork on a LAN.

The tasks required to configure classical IP and ARP over ATM depend on whether there are SVCs or PVCs present in the environment. For further information, refer to the Wide-Area Networking Configuration Guide.

Classes of Service and Transmit Priority on the PA-A2 ATM CES Port Adapter

The transmit priority determines which queued cell is chosen to be transmitted out an interface during a cell time slot and ensures that real-time ATM service classes, which typically offer more robust QoS and traffic guarantees, have a higher likelihood of access to the next cell time slot. Table 4-1 lists the ATM service classes and their default transmit priorities on the PA-A2 ATM CES port adapter.


Note Refer to the Feature Module documentation and Technical Tips on Cisco.com for detailed information about classes of service, configuration features, and the Cisco IOS releases that the support specific features.


Table 4-1 ATM Classes of Service and Default Transmit Priorities on the PA-A2 ATM CES Port Adapter

Service Category
Transmit Priority

CBR, OAM cells and signaling

0

AAL5 or AAL2 VoATM VC (any service category)

1

rt-VBR

2

nrt-VBR

3

ABR

4

UBR

5


You can use the transmit priority command in VC configuration mode to change the priority value. The following example shows a customized prioritization scheme with the transmit priority value of a VC changed from four to two.


Caution Transmit priority 0 is reserved for control traffic like OAM and signaling.


Step 1 First, view the characteristics of the existing configuration using the show atm vc {vcd#} command. Note how the router has assigned a default transmit priority value of 5 to the UBR PVC:

Router# show atm vc 2
ATM5/0: VCD: 2, VPI: 1, VCI: 100
UBR, PeakRate: 10000
AAL5-LLC/SNAP, etype:0x0, Flags: 0x20, VCmode: 0x0
OAM frequency: 0 second(s)
PA TxRingLimit: 0 paritcles
PA Rx Limit: 0 particles
InARP frequency: 15 minute(s)
Transmit priority 5
InPkts: 0, OutPkts: 0, InBytes: 0, OutBytes: 0
InPRoc: 0, OutPRoc: 0, Broadcasts: 0
InPktsDrops: 0, OutPktDrops: 0
CrcErrors: 0, SarTimeOuts: 0. OverSizedSDUs: 0
OAM cells received: 0
OAM cells sent:0
Status: ACTIVE

Step 2 Next, customize the transmit priority value from VC configuration mode.

Router(config)# interface atm 5/0
Router(config-if)# pvc x/100
Router(config-if-atm-vc)# transmit-priority 2

Step 3 The final action is to confirm your settings. Note how the router indicates the changed transmit priority level. It is now at level 2.

Router# show atm vc 2
VC 2 doesn't exist on interface ATM2/0
ATM5/0: VCD: 2, VPI: 1, VCI: 100
UBR, PeakRate: 10000
AAL5-LLC/SNAP, etype:0x0, Flags: 0x20, VCmode: 0x0
OAM frequency: 0 second(s)
PA TxRingLimit: 0 paritcles
PA Rx Limit: 0 particles
InARP frequency: 15 minute(s)
Transmit priority 2
InPkts: 0, OutPkts: 0, InBytes: 0, OutBytes: 0
InPRoc: 0, OutPRoc: 0, Broadcasts: 0
InPktsDrops: 0, OutPktDrops: 0
CrcErrors: 0, SarTimeOuts: 0. OverSizedSDUs: 0
OAM cells received: 0
OAM cells sent:0
Status: ACTIVE

Customizing the PA-A2 ATM CES Port Adapter

You can customize the PA-A2 ATM CES port adapter. The features you can customize have default values that will probably suit your environment and not need to be changed. However, you might need to enter configuration commands, depending on the requirements for your system configuration and the protocols you plan to route on the interface. Perform the tasks in the following sections if you need to customize the PA-A2 ATM CES port adapter:

Setting the MTU Size

Configuring an ATM Interface for Local Loopback

Configuring an ATM Interface for External Loopback


Note For the commands that follow, you need to be in interface configuration mode. To enter interface configuration mode, use the interface atm command, followed by the interface address of the ATM interface you plan to configure.


Setting the MTU Size

Each ATM interface has a default maximum packet size or maximum transmission unit (MTU) size. On the PA-A2 ATM CES port adapter, this number defaults to 4470 bytes, the range being 64 through 9188 bytes. To set the maximum MTU size, enter the following command in interface configuration mode:

Router(config-if)# mtu bytes 

Note This command is documented in the Configuration Fundamentals Command Reference.


Configuring an ATM Interface for Local Loopback

To configure an ATM interface for local loopback (useful for checking that the PA-A2 ATM CES port adapter is working by looping the transmit data back to the receive data), use the following command:

Router(config-if)# loopback diagnostic
Router(config-if)# no loopback diagnostic

The no form of the command turns off local loopback.

Configuring an ATM Interface for External Loopback

To configure an ATM interface for external loopback (useful for checking that the PA-A2 ATM CES port adapter is working by looping the receive data back to the transmit data), use the following command:

Router(config-if)# loopback line
Router(config-if)# no loopback line

The no form of the command turns off external loopback.

Checking the Configuration

After configuring the new interface, use the show commands to display the status of the new interface or all interfaces, and use the ping and loopback commands to check connectivity. This section includes the following subsections:

Using show Commands to Verify the New Interface Status

Using the ping Command to Verify Network Connectivity

Using loopback Commands

Using show Commands to Verify the New Interface Status

This section demonstrates how you can use the show commands to verify that new interfaces are configured and operating correctly and that the port adapter appears in them correctly. Sample displays of the output of selected show commands appear in the sections that follow. For complete command descriptions and examples, refer to the publications listed in the "Related Documentation" section on page viii.

If an interface is shut down and you configured it as up, or if the displays indicate that the hardware is not functioning properly, ensure that the interface is properly connected and terminated. If you still have problems bringing up the interface, contact a service representative for assistance. This section includes the following subsections:

Using the show version or show hardware Commands

Using the show diag Command

Using the show interfaces Command

Using the show version or show hardware Commands

Display the configuration of the system hardware, the number of each interface type installed, the Cisco IOS software version, the names and sources of configuration files, and the boot images using the show version (or show hardware) command.


Note The outputs that appear in this document may not match the output you receive when running these commands. The outputs in this document are examples only.


Cisco 7200 Series Routers—Example Output of the show version Command

Following is an example of the show version command from a Cisco 7200 series router:

Router# show version

Cisco Internetwork Operating System Software 
IOS (tm) 7200 Software (C7200-IS-M), Version 12.2(8)B,  RELEASE SOFTWARE (fc1)
TAC Support: http://www.cisco.com/tac
Copyright (c) 1986-2002 by cisco Systems, Inc.
Compiled Fri 02-Aug-02 10:51 by ccai
Image text-base: 0x60008940, data-base: 0x61850000

ROM: System Bootstrap, Version 11.1(13)CA, EARLY DEPLOYMENT RELEASE SOFTWARE (f)
BOOTLDR: 7200 Software (C7200-BOOT-M), Version 11.1(16)CA, EARLY DEPLOYMENT REL 

d11-5-7206-15 uptime is 1 week, 31 minutes
System returned to ROM by reload at 14:08:34 UTC Tue Aug 20 2002
System image file is "slot0:c7200-is-mz.122-11.T"

cisco 7206 (NPE200) processor (revision B) with 114688K/16384K bytes of memory.
Processor board ID 15455885
R5000 CPU at 200Mhz, Implementation 35, Rev 2.1, 512KB L2 Cache
6 slot midplane, Version 1.3

Last reset from power-on
Bridging software.
X.25 software, Version 3.0.0.
Primary Rate ISDN software, Version 1.1.
1 FastEthernet/IEEE 802.3 interface(s)
2 Serial network interface(s)
2 HSSI network interface(s)
11 ATM network interface(s)
4 Channelized T1/PRI port(s)
125K bytes of non-volatile configuration memory.
4096K bytes of packet SRAM memory.

20480K bytes of Flash PCMCIA card at slot 0 (Sector size 128K).
4096K bytes of Flash internal SIMM (Sector size 256K).
Configuration register is 0x2102

Using the show diag Command

Display the types of port adapters installed in your system (and specific information about each) using the show diag slot command, where slot is the module slot.


Note The outputs that appear in this document may not match the output you receive when running these commands. The outputs in this document are examples only.


Following is an example of the show diag slot command on a Cisco 7200 series router:

Router# show diag 6
Slot 6:
        ATM WAN OC3+ (MM) Port adapter, 1 port
        Port adapter is analyzed 
        Port adapter insertion time 00:44:57 ago
        EEPROM contents at hardware discovery:
        Hardware Revision: 1.0 
        PCB Serial Number:-----H
        Part Number:  73-7981-0
		Board Revision: 1A
		RMA Test History: 00
        RMA Number: 00-00-00
		RMA History: 00
		Unknown Field (type 0088): 00 00 00 01
		Product Number: PA-ATM-DBL-DLX-OC3MM
		Top Assy. Part Number: 800-20782-01
        EEPROM format version 4
        EEPROM contents (hex):
		0x00: 04 FF 40 03 A7 41 01 00 C1 8B 2D 20 2D 20 2D 20
		0x10: 2D 20 2D 20 48 82 49 1F 2D 01 42 31 41 03 00 81
		0x20: 00 00 00 00 04 00 88 00 00 00 01 CB 94 50 41 2D
		0x30: 41 54 4D 2D 44 42 4C 2D 44 4C 58 2D 4F 43 33 4D
		0x40: 4D C0 46 03 20 00 51 2E 01 FF FF FF FF FF FF FF
		0x50: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
		0x60: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
		0x70: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Using the show interfaces Command

The show interfaces command displays status information (including the physical slot and interface address) for the interfaces you specify.

For complete descriptions of interface subcommands and the configuration options available for specific interfaces, refer to the publications listed in the "Related Documentation" section on page viii.


Note The outputs that appear in this document may not match the output you receive when running these commands. The outputs in this document are examples only.


Using the show interfaces type module-slot-number/interface-port-number command displays the status information about a specific type of interface—in these examples, an ATM interface.

Following is an example of the show interfaces command for the Cisco 7200 series routers:

Router# show interfaces atm 6/0
ATM6/0 is up, line protocol is up
Hardware is ENHANCED ATM PA Plus 
MTU 4470 bytes, sub MTU 4470, BW 149760 Kbit, DLY 80 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
Encapsulation(s): AAL5
8191 maximum active VCs, 1 current VCCs
VC idle disconnect time: 300 seconds
8 carrier transitions
Last input 00:37:33, output 00:26:16, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: None
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
54033 packets input, 81670740 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
8763526 packets output, 296268354 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out

Using the ping Command to Verify Network Connectivity

Using the ping command, you can verify that an interface port is functioning properly. This section provides a brief description of this command. Refer to the publications listed in the "Related Documentation" section on page viii for detailed command descriptions and examples.

The ping command sends echo request packets out to a remote device at an IP address that you specify. After sending an echo request, the system waits a specified time for the remote device to reply. Each echo reply is displayed as an exclamation point (!) on the console terminal; each request that is not returned before the specified timeout is displayed as a period (.). A series of exclamation points (!!!!!) indicates a good connection; a series of periods (.....) or the messages [timed out] or [failed] indicate a bad connection.

Following is an example of a successful ping command to a remote server with the address 10.0.0.10:

Router# ping 10.0.0.10 <Return>
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoes to 10.0.0.10, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/15/64 ms
Router#

If the connection fails, verify that you have the correct IP address for the destination and that the device is active (powered on), and repeat the ping command.

Using loopback Commands

The loopback command places an interface in loopback mode, which enables test packets that are generated from the ping command to loop through a remote device. If the packets complete the loop, the connection is good. If not, you can isolate a fault to the remote device in the path of the loopback test.

The loopback diagnostic command on an ATM interface of a Cisco router causes traffic going out of the interface to come back to the router.

If loopback is not set on the ATM interface, traffic will not be looped back. Traffic will go out but will not return. Apply the loopback diagnostic command, and then use the show interface command to show that loopback is indeed set:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# interface a1/0
Router(config-if)# loopback diagnostic
Router(config-if)# atm clock internal
Router(config-if)# ^Z

Router# show interface a1/0
ATM1/0 is up, line protocol is up 
Hardware is A6 ATM 
MTU 4470 bytes, sub MTU 4470, BW 155520 Kbit, DLY 80 usec, 
reliability 255/255, txload 1/255, rxload 1/255 
Encapsulation ATM, loopback set 
Keepalive not supported 
Encapsulation(s): AAL5, PVC mode 
256 TX buffers, 256 RX buffers, 
2048 maximum active VCs, 1024 VCs per VP, 1 current VCCs 
VC idle disconnect time: 300 seconds 
Last input 00:03:16, output 00:03:16, output hang never 
Last clearing of "show interface" counters never 
Queueing strategy: fifo 
Output queue 0/40, 0 drops; input queue 0/75, 0 drops 
5 minute input rate 0 bits/sec, 0 packets/sec 
5 minute output rate 0 bits/sec, 0 packets/sec 
163861 packets input, 3164940 bytes, 0 no buffer 
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 
33 input errors, 33 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort 
144191 packets output, 2138298 bytes, 0 underruns 
0 output errors, 0 collisions, 1 interface resets 
0 output buffer failures, 0 output buffers swapped out

Note To ensure proper clocking, set the router as the clock source by specifying the atm clock internal setting in the main interface configuration.


The loopback line command on an ATM interface of a Cisco router causes incoming traffic to be sent back to the network.

Router# config show interface a2/0
ATM2.0 is up, line protocol is up
Hardware is A6 ATM
MTU 4470 bytes, sub MTU 4470, BW 155520 kbit, DLY 80 usec,
reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ATM, loopback set
Keepalive not supported
Encapsulation(s): AAL5, PVC mode
2048 maximum active VCs, 1024 VCs per VP, 1 current VCCs
VC idle disconnect time: 300 seconds
Last input 00:02:45, output 00:02:45, output hang never
Last clearing of "show interface" counter never
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
94917 packets input, 1638383 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
102898 packets output, 2042785 bytes, 0 underruns
0 output errors, 0 collisions, 5 interface resets
0 ouput buffer failures, 0 output buffers swapped out

Tip For more information on understanding loopback modes on Cisco routers, refer to the ATM Technical Tips on Cisco.com.


Traffic Management

The PA-A2 ATM CES port adapter supports the traffic-shaping parameters defined in Table 4-2. This ensures that generated traffic conforms to the ATM Forum Traffic Management Specification Version 4.0. Shaping values are configured using the vbr-nrt command in VC configuration mode.

Table 4-2 Traffic-Shaping Parameters and Ranges

Traffic Parameter
Range
Default

T3

56 kbps to 45 Mbps

If the peak rate is not defined, each new VC is set to the maximum physical layer rate. The VC is assigned to the UBR service category.

E3

56 kbps to 34 Mbps

If the peak rate is not defined, each new VC is set to the maximum physical layer rate. The VC is assigned to the UBR service category.

OC-3c Peak Rate

56 kbps to 155 Mbps

If the peak rate is not defined, each new VC is set to the maximum physical layer rate. The VC is assigned to the UBR service category.

Average Rate

0 < average < peak rate

Average = peak rate at the maximum physical layer rate.

Maximum Burst Size

1 to 64,000 cells

Equal to the PA-A2 ATM CES port adapter MTU size.



Note For more information about traffic management specific to the various class of service categories, refer to the ATM Technical Tips on Cisco.com.


Troubleshooting the PA-A2 ATM CES Port Adapter Installation and Configuration

The following sections provide suggested guidelines for troubleshooting the PA-A2 ATM CES port adapter. Use the ping command to verify network connectivity, the debug commands to help solve network problems, and the show commands to display the current state of the network.


Tip For more information about troubleshooting ATM port adapters and understanding the output from the debug commands, refer to ATM Technical Tips on Cisco.com.


The following topics are covered within this section:

PA-A2 ATM CES Port Adapter Statistics

Using the debug atm Commands

Displaying ATM Information

PA-A2 ATM CES Port Adapter Statistics

The PA-A2 ATM CES port adapter maintains a count of certain errors and tracks the ATM controller facility performance. In addition to keeping a count of these errors, the PA-A2 ATM CES port adapter also takes snapshots of the last VCI/VPI that caused the error. Each PA-A2 ATM CES port adapter error counter is made up of 16 bits. Errors counted include the following:

CRC errors

Giants received

No buffers available

Framing errors

Application layer or physical layer errors

Packet timeout errors on receive

The PA-A2 ATM CES port adapter provides port adapter-specific error statistics through the show interfaces atm command.


Note For examples of the show interfaces atm command for all supported platforms, see the "Using the show interfaces Command" section.


The show controllers atm command displays the ATM framing information and ATM facility performance statistics. The statistics report section includes up to 96 15-minute interval reports, as well as the current interval level. Only those intervals with non-zero data are displayed.

The following is an example of the show controllers atm command from a Cisco 7200 series router:

Router# show controllers atm 6/0
Interface ATM6/0 is up
Hardware is ENHANCED ATM PA Plus - OC3 (155000Kbps)
Framer is PMC PM5346 S/UNI-155-LITE, SAR is LSI ATMIZER II
Firmware rev: X101, Framer rev: 0, ATMIZER II rev: 4 
 idb=0x62EB7C74, ds=0x62EBF0A0, vc=0x62F41080
 slot 6, unit 1, subunit 0, fci_type 0x03A7, ticks 9790
 5200 rx buffers: size=512, encap=64, trailer=28, magic=4
Curr Stats:
 VCC count: current=1, peak=1
 AAL2 VCC count: 0
 AAL2 TX no buffer count: 0
 AAL2 RX no buffer count: 0
 SAR crashes: Rx SAR=0, Tx SAR=0
 rx_cell_lost=0, rx_no_buffer=0, rx_crc_10=0, rx_no_mem=0
 rx_cell_len=0, rx_no_vcd=0, rx_cell_throttle=0, tx_aci_err=0
Rx Free Ring status:
 base=0x3F2EE040, size=8192, write=40
Rx Compl Ring status:
 base=0x7E6AFF80, size=8192, read=3083
Tx Ring status:
 base=0x3F723A00, size=12288, write=255
Tx Compl Ring status:
 base=0x0E6BFFC0, size=8192, read=6271
BFD Cache status:
 base=0x62F35000, size=12288, read=12286
Rx Cache status:
 base=0x62F265C0, size=16, write=11
Tx Shadow status:
 base=0x62F28F80, size=12288, read=239, write=255
Control data:
 rx_max_spins=9, max_tx_count=50, tx_count=16
 rx_threshold=3467, rx_count=11, tx_threshold=9216
 tx bfd write indx=0x451, rx_pool_info=0x62F26660
Control data base address:
 rx_buf_base = 0x0E3ABEE0 rx_p_base = 0x62ECAD80
    rx_pak = 0x62DDE7F8 cmd = 0x62ECA7A0
    framer = 0x603F75C0 framer_cb = 0x62ECABA0
 framer_base = 0x3F100000 pci_pa_stats = 0x7E1B6840
 device_base[0] = 0x3F000000 device_base[1] = 0x3F400000
 ssram_base[0] = 0x3F200000 ssram_base[1] = 0x3F600000
 sdram_base[0] = 0x3F300000 sdram_base[1] = 0x3F700000
 pa_cmd_buf[0] = 0x3F2FFC00 pa_cmd_buf[1] = 0x3F6FFC00
   vcd_base[0] = 0x3F200000 vcd_base[1] = 0x3F630000
   chip_dump[0] = 0x0E1B6868 chip_dump[1] = 0x0E1B6958
 sar_buf_base[0] = 0x3F334000 sar_buf_base[1] = 0x3F730000
   bfd_base[0] = 0x3F2BE000 bfd_base[1] = 0x3F600000
   acd_base[0] = 0x3F240080 acd_base[1] = 0x3F670240
Framer Information:
 Framing mode: SONET OC3 STM-1
 No alarm detected


Note For more information about CRC errors, using the show interfaces command, and using the show controllers command, refer to Technical Assistance Center (TAC) documentation on Cisco.com.


Using the debug atm Commands

The following debug commands help to solve ATM network problems.

Use the debug atm packet command to create a dump of all protocol packets. The command displays the contents of the SNAP/NLPID/SMDS header followed by the first 40 bytes of a packet in hexadecimal format.

Router# debug atm packet

Use the debug atm errors command to display errors. The command displays information from all detected ATM errors. This includes such errors as encapsulation failures and errors during ATM configuration.

Router# debug atm errors

Use the debug atm events command to display ATM events. The command displays event changes to the PA-A2 ATM CES port adapter; reset, VC configurations, and PA-A2 ATM CES port adapter configurations are displayed.

Router# debug atm events

Use the debug atm oam command to display information about OAM cells. The command displays the contents of OAM cells as they arrive from the network.

Router# debug atm oam

Use the no debug command to turn off debugging after using a debug command.

Displaying ATM Information

You can use atm show commands to display the current state of the ATM network and the connected VCs.

Use the show atm vc [vcd] command to show current VCs and traffic information. Specifying a VCD displays specific information about that VCD.

Router# show atm vc [vcd]

Use the show atm interfaces command to show current information about an ATM interface. The command displays ATM-specific information about an interface.

Router# show atm interfaces

Use the show atm traffic command to show current ATM traffic. The command displays global information about traffic to and from all ATM networks connected to the router.

Router# show atm traffic

Use the show atm map command to show the current ATM mapping. The command displays the active list of ATM static maps to remote hosts on an ATM network.

Router# show atm map

Use the show atm vc command to display the following types of statistics for all PVCs:

Router# show atm vc
         VCD/                                  Peak Avg/Min Burst
Interface Name      VPI   VCI Type  Encaps    SC     Kbps   Kbps  Cells Status
6/0        1         10   100  PVC  SNAP      VBR    33920   0     0     UP 
6/0.300    4          8    88  PVC  SNAP      VBR    30000  30000 20000  UP 

Use the show atm vc n command, where n is the VCD unique index value, to display statistics for a given PVC:

Router# show atm vc 4
ATM6/0.300: VCD:4, VPI:8, VCI:88
VBR-NRT, PeakRate:30000, Average Rate:30000, Burst Cells:20000
AAL5-LLC/SNAP, etype:0x0, Flags:0x20, VCmode:0x0
OAM frequency: 0 second(s)
VC TxRingLimit: 1179 particles
InARP frequency: 15 minute(s)
Transmit priority: 4
InPkts: 0, OutPkts: 0, InBytes: 0, OutBytes: 0
InPRoc: 0, OutPRoc: 0, Broadcasts: 0
InFast: 0, OutPktDrops: 0/0/0 (holdq/outputq/total)
CrcErrors: 0, SarTimeOuts: 0, OverSizedSDUs: 0, Length Violation: 0, CPIErrors: 0
Out CLP=1 Pkts: 0
OAM cells received: 0
OAM cells sent: 0
Status: UP

Use the show interfaces atm command to display statistics for the ATM interface you specify by its interface address. Use the show interfaces atm command to display the currently running PA-A2 ATM CES port adapter configuration in RAM:

Router# show interfaces atm 3/0
interface ATM 3/0
 ip address 10.10.10.2 255.255.255.0
 map-group atm1
pvc 1 0 1 aal5snap


Note For examples of the show interfaces atm command for all supported platforms, see the "Using the show interfaces Command" section.


Use the show sscop command to display SSCOP details for the ATM interface.

Use the show version command to display the configuration of the system hardware (the number of each interface processor type installed), the software version, the names and sources of configuration files, and the boot images.


Note For examples of the show version command for all supported platforms, see the "Using the show version or show hardware Commands" section.


ATM Configuration

Cisco IOS Release 11.3 T introduced the ATM VC command mode, which, in turn, introduced several new ATM commands that allow you to configure ATM parameters more easily. The new VC configuration mode uses protocol ip and other statements (replace ip with ipx, decnet, and so on) to configure static mappings. The protocol statement takes the place of the map-list and map-group statements used in versions prior to Cisco IOS Release 11.3 T.

For detailed configuration examples, refer to the router software publications listed in the "Related Documentation" section on page viii.

The following example shows how to create a PVC AAL5SNAP. The interface is at IP address 2.2.2.1, with 2.2.2.2 at the other end of the connection.

First Router:

interface ATM 3/0
ip address 10.0.0.1 255.0.0.0
no keepalive
map-group atm-in
atm clock internal
atm pvc 1 1 5 aal5snap
!
map-list atm-in
ip 10.0.0.2 atm-vc 1 broadcast

Second Router:

interface ATM 3/0
ip address 10.0.0.2 255.0.0.0
no keepalive
map-group atm-in
atm pvc 1 1 5 aal5snap
!
map-list atm-in
ip 10.0.0.1 atm-vc 1 broadcast

Upgrading Your Boot Flash Image

The boot image contains a subset of the Cisco IOS software. This image is used to perform network booting or to load Cisco IOS images onto the router. This image is also used if the system cannot find a valid system image.

When you upgrade your Cisco IOS software to the minimum required software release, we recommend that you also upgrade your boot image. To upgrade your boot image, you can copy the new boot image from a network server to Flash memory on your router.

To copy a boot image from a Trivial File Transfer Protocol (TFTP) server to Flash memory, complete the following procedure:


Step 1 Enter configuration mode.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#

Step 2 Display and note the exact spelling of the system image filename in Flash memory.

Router(config)# show flash all

Step 3 Make a backup copy of the current boot image.

Router(config)# copy flash tftp

Step 4 Copy a boot image to Flash memory.

Router(config)# copy tftp flash

Step 5 When prompted, enter the IP address or domain name of the server.

Router(config)# ip-address or name

For further information, such as how to set up the TFTP server, refer to the Configuration Fundamentals Configuration Guide.

Port Adapter Error Messages

All of the PA-A2 ATM CES port adapter receive buffers are allocated from static random-access memory (SRAM). As a result, during bootup, if the PA-A2 ATM CES port adapter cannot find enough contiguous SRAM for its use, the system stops bringing up the PA-A2 ATM CES port adapter and displays an error message such as the following:

%ATMPA-A2-PCIMEMNOTENOUGH: Not Enough PCI memory (0x19874) to support ATM PA on bay 5