IPv6 Security Best Practices

Eric Vyncke
evyncke@cisco.com
Distinguished System Engineer
Agenda

- Shared Issues by IPv4 and IPv6
- Specific Issues for IPv6
 - IPsec everywhere, dual-stack, tunnels
- Cisco IPv6 Security Solutions
 - ACL and Firewalls
 - Secure IPv6 transport over public network
Shared Issues

Security Issues Shared by IPv4 and IPv6
Reconnaissance in IPv6
Scanning Methods Are Likely to Change

- Default subnets in IPv6 have 2^{64} addresses
 10 Mpps = more than 50 000 years
- Public servers will still need to be DNS reachable
- Administrators may adopt easy-to-remember addresses
 (::10, ::20, ::F00D, ::C5C0 or simply IPv4 last octet for
dual stack)

- See also draft-ietf-v6ops-scanning-implications-03.txt
Viruses and Worms in IPv6

- Viruses and email worms: IPv6 brings no change
- Other worms:
 - IPv4: reliance on network scanning
 - IPv6: not so easy (see reconnaissance) => will use alternative techniques

Worm developers will adapt to IPv6
IPv6 Privacy Extensions (RFC 3041)

- Temporary addresses for IPv6 host client application
 - Inhibit device/user tracking
 - Random 64 bit interface ID

Recommendation: Use Privacy Extensions for External Communication but not for Internal Networks (Troubleshooting and Attack Trace Back)
L3 Spoofing in IPv6

uRPF Remains the Primary Tool for Protecting Against L3 Spoofing

- **uRPF Loose Mode**
 - Inter-Networking Device with uRPF Enabled
 - No Route to Src Addr prefix => Drop

- **Spoofed IPv6 Source Address**

- **Intranet/Internet**

- **Access Layer**

- **IPv6**

- **uRPF Strict Mode**
 - Inter-Networking Device with uRPF Enabled
 - No Route to Src Addr prefix out the packet inbound interface => Drop

- **Spoofed IPv6 Source Address**

- **Intranet/Internet**

- **Access Layer**

- **IPv6**
ICMPv4 vs. ICMPv6

- Significant changes
- More relied upon

<table>
<thead>
<tr>
<th>ICMP Message Type</th>
<th>ICMPv4</th>
<th>ICMPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity Checks</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Informational/Error Messaging</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fragmentation Needed Notification</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Address Assignment</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Address Resolution</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Multicast Group Management</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mobile IPv6 Support</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

- => ICMP policy on firewalls needs to change
- See RFC 4890
Potential Additional ICMPv6 Border Firewall Policy

<table>
<thead>
<tr>
<th>Action</th>
<th>Src</th>
<th>Dst</th>
<th>ICMPv6 Type</th>
<th>ICMPv6 Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit</td>
<td>Any</td>
<td>A, B</td>
<td>4</td>
<td>1, 2</td>
<td>Parameter Problem</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>B</td>
<td>130–132</td>
<td>0</td>
<td>Multicast Listener</td>
</tr>
<tr>
<td>Permit</td>
<td>Any</td>
<td>B</td>
<td>133/134</td>
<td>0</td>
<td>Neighbor Solicitation and Advertisement</td>
</tr>
</tbody>
</table>
Routing Header Attacks

- CanSecWest Vancouver 2007:
 Fun with IPv6 routing headers – P. Biondi & A. Ebalard
 Good old Ipv4 tricks (rebound to bypass firewall + amplification)

- Solution:
 Apply same policy for IPv6 as for Ipv4: Block Routing Header type 0

- At the intermediate nodes
 no ipv6 source-route
Neighbor Discovery

Src = A
Dst = Solicited-node multicast of B
ICMP type = 135
Data = link-layer address of A
Query: what is your link address?

Src = B
Dst = A
ICMP type = 136
Data = link-layer address of B

A and B Can Now Exchange Packets on This Link

Security Mechanisms Built into Discovery Protocol = None

Attack Tool: Parasite6
Secure Neighbor Discovery (SEND) RFC 3971

- Use cryptography to secure the IPv6 <-> MAC
- Can also be used to secure stateless autoconfiguration
- IOS availability in 2008
- Some impact on performance (RSA signatures)

Still requires *port security* to secure MAC <-> port
IPv6 Attacks with Strong IPv4 Similarities

- **Sniffing**

 Without IPSec, IPv6 is no more or less likely to fall victim to a sniffing attack than IPv4.

- **Application layer attacks**

 Even with IPSec, the majority of vulnerabilities on the Internet today are at the application layer, something that IPSec will do nothing to prevent.

- **Flooding**

 Flooding attacks are identical between IPv4 and IPv6.
IPv6 Stacks Vulnerabilities

- IPv6 stack are new and could be buggy
- IPv6 enabled application can have bugs
- Some examples
 - Python getaddreinfo() remote IPv6 buffer overflow
 - Apache remote IPv6 buffer overflow
 - Postfix IPv6 unauthorized mail relay vulnerability
 - Linux kernel IPv6 DoS
 - OpenBSD remote code execution in IPv6 stack (March 07)
By the Way: It Is Real 😞
IPv6 Hacking Tools

Let the Games Begin

- Sniffers
 - Sniffers
 - TCPdump
 - Sun Solaris snoop
 - COLD Ethereal Analyzer
 - Windump
 - WinPcap
 - Sniffer Pro

- Scanners
 - IPv6 security scanner
 - Netcat

- DoS Tools
 - 6tunneldos
 - 4to6ddos
 - Imps6-tools

- Packet forgers
 - SendIP
 - Packit
 - Spak6

Complete tool
http://www.thc.org/thc-ipv6/

Let the Games Begin

van Hauser, THC
vh@thc.org
http://www.thc.org
Specific IPv6 Issues

Issues Applicable only to IPv6
The IPsec Myth: IPsec End-to-End will Save the World

- IPv6 mandates the implementation of IPsec
- IPv6 does not require the use of IPsec
- Some organizations believe that IPsec should be used to secure all flows...

 Interesting **scalability** issue (n^2 issue with IPsec)

 Need to **trust endpoints and end-users** because the network cannot secure the traffic: no IPS, no ACL, no firewall

 Network **telemetry is blinded**: NetFlow of little use

 Network **services hindered**: what about QoS?

Recommendation: do not use IPsec end to end within an administrative domain. Residential use is probably recommended
Dual Stack Host Considerations

- Host security on a dual-stack device
 Applications can be subject to attack on both IPv6 and IPv4
- Host security controls should block and inspect traffic from both IP versions
 Host intrusion prevention, personal firewalls, VPN clients, etc.

IPv4 IPsecVPN with No Split Tunneling

Dual Stack Client

IPv6 HDR IPv6 Exploit

Does the IPsec Client Stop an Inbound IPv6 Exploit?
Dual Stack with Enabled IPv6 by Default

- Your host:
 - IPv4 is protected by your favorite personal firewall...
 - IPv6 is enabled by default (Vista, Linux, MacOS, ...)
- Your network:
 - Does not run IPv6
- Your assumption:
 - I’m safe
- Reality
 - You are **not** safe
 - Attacker sends Router Advertisements
 - Your host configures silently to IPv6
 - You are now under IPv6 attack
- => Probably time to configure IPv6 on your network
IPv6 Tunneling Summary

- RFC 1933/2893 configured and automatic tunnels
- RFC 2401 IPSec tunnel
- RFC 2473 IPv6 generic packet tunnel
- RFC 2529 6over4 tunnel
- RFC 3056 6to4 tunnel
- ISATAP tunnel
- MobileIPv6 (uses RFC2473)
- Teredo tunnels

- Multiple solutions...
- No authentication but for IPsec
Issues with Tunnels

- Explicitly configured tunnels

 E.g. ISATAP protocol 41

 Under network administrator control

 No authentication => threat limited to traffic injection

- Implicitly configured tunnels

 E.g. Teredo on Windows Vista UDP/3544

 Preconfigured

 No control by network administrator

 Can bypass corporate firewall...

 ... And drill a hole in the firewall...
Cisco IOS IPv6 ACL
Cisco IOS Firewall IPv6 Support

- Standard/Extended IPv6 ACL
- IOS firewall since March 2004/12.3(7)T
- Stateful protocol inspection of IPv6: fragmented packets, TCP, UDP, ICMP and FTP traffic
- IPv4/v6 coexistence, no need for new hardware, just software
- Recognizes IPv6 extension header information such as routing header, hop-by-hop options header, fragment header, etc.
ASA and PIX Firewall IPv6 Support

- Since ASA 7.0 (April 05)
- IPv4/IPv6 coexistence
- Application awareness
 - HTTP, FTP, telnet, SMTP, TCP, SSH, UDP
- uRPF and v6 Frag guard
- Management access via IPv6
 - Telnet, SSH, HTTPS
- Caveat: no fail-over support
Secure IPv6 over IPv4/6 Public Internet

- No traffic sniffing
- No traffic injection

<table>
<thead>
<tr>
<th>Public Network</th>
<th>Site 2 Site</th>
<th>Remote Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>6in4/GRE tunnels protected by IPsec</td>
<td>ISATAP protected by IPsec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSL VPN Client AnyConnect 2.0</td>
</tr>
<tr>
<td>IPv6</td>
<td>IPsec VTI 12.4(6)T</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Secure RA IPv6 Traffic over IPv4 Public Network: ISATAP in IPsec

IPsec protects IPv4 unicast traffic... The encapsulated IPv6 packets
Conclusion
Key Take Away

- So, nothing really new in IPv6

 Lack of operation experience may hinder security for a while

- Security enforcement is possible

 Control your IPv6 traffic as you do for IPv4

- Leverage IPsec and SSL to secure IPv6 when possible

- Beware of the IPv6 latent threat: your network may ALREADY be vulnerable to IPv6 attacks