

CWDM/DWDM designs for DC interconnect

Jaromír Pilař (<u>ipilar@cisco.com</u>)
Consulting Systems Engineer, CCIE 2910

Enable Your Network Empower Your Business

Agenda

- DR solutions motivation, parameters, components
- Options for DC interconnection
- WDM system anatomy
- Design scenarios and examples
- Protocol and applications interactions with transport systems
- Certifications

Disaster recovery and business continuance solutions

Motivation, components and parameters

Business continuance solutions

Motivation for BC/DR solutions

Protect operation of enterprise or organization during unexpected event ('disaster')

Sometimes enforced by law or other regulation (Basel II etc.)

What have to be done to create BC/DR policy

Identification of Critical Applications

Distance between disaster and recovery zone

Mode of operation (active-active, active-stanby)

Tolerable Application down time

What parameters should BC/DR policy have

Must be measurable

RTO, RPO, RAO

Disaster recovery parameters

Recovery Time Objective and Recovery Point Objective

How current or fresh is the data after recovery? How quickly can systems and data be recovered?

Disaster recovery parameters

Recovery Access Objective

 $(t_2) \rightarrow \text{Recovery Time Objective}$ $(t_3 - t_2) \rightarrow \text{Recovery Access Objective}$

Time taken by network to converge and provide a path for clients to access the applications and data

Note: RAO can be +ve or -ve w.r.t. Recovery time (t2)

Business Continuance / Disaster Recovery

Logical solution components

Front end: Site selection

- pointing users to operational site
 - DNS based solutions
 - solutions based on routing protocols (RHI)
 - HTTP redirection

Application: Content switching

- selecting the appropriate server to perform requested operation
 - load balancing
 - · load and health monitoring

Back end: Data replication and inter datacenter transport

- ensuring data availability in case of disaster or failure
 - solutions for storage array based mirroring
 - CDP solutions
 - optical solutions (DWDM, CWDM, SDH)
 - FCIP

Disaster recovery and business continuance solutions

Options for datacenter interconnect

Inter datacenter channels

- Data network (LAN/MAN)
 - √ Gigabit Ethernet
 - ✓10 Gigabit Ethernet
- Storage Area Network (SAN)
 - ✓ Fiber Channel (1, 2, 4 and 10 Gbps)
 - ✓ FICON (1, 2, 4 and 10 Gbps)
 - **✓ESCON**
- Channels for cluster applications
 - √ Heartbeat signals (GE, FE)
 - ✓GDPS/GDPS 2 (Sysplex ETR/CLO, ISC-1, ISC-2, ISC-3, STP)
- Others
 - ✓E1 or E3 for voice
 - ✓STM-x for ATM
 - ✓FDDI

Datacenter interconnect options

DWDM/CWDM

- most often short distance
- dark fiber must be available
- dedicated channels for LAN, SAN and other signals

SONET/SDH

- most often short intermediate distance
- dark fiber not avail. distance, cost, exhaust
- · links may be shared
- EoSDH and FCoSDH

IP, IP/MPLS, Metro Ethernet

- short long distance
- dark fiber not available
- links may be shared
- FCIP for FC and/or FICON

Single lambda vs. multiple lambdas

Single lambda

- One channel only (e.g. 1000BaseZX, 10GBaseZR etc.)
- More 'channels' using TDM (SDH, EoSDH, FCoSDH) or IP (FCIP, CEoIP)
- Multiple lambdas (grids defined by ITU standard)
 - CWDM 20 nm grid (usually 8 or 16 channels)
 - DWDM 200 GHz, 100 GHz or 50 Ghz grid
 - WWDM

In ITU terminology

- DWDM: channel spacing is less than 1000 GHz (8 nm at 1550 nm)
- CWDM: channel spacing is greater than 1000 GHz (8 nm at 1550 nm) but less than 50 nm
- WWDM: channel spacing is greater than 50 nm (for example joint 1310-1550 dual bands)

Transmission Bands

- Optical transmission is conducted in wavelength regions, called "bands".
- Commercial DWDM systems typically transmit at the C-band

Mainly because of the Erbium-Doped Fiber Amplifiers (EDFA).

Commercial CWDM	systems typically
transmit at the S, C a	and L bands.

Band	Wavelength (nm)
0	1260 – 1360
E	1360 – 1460
S	1460 – 1530
C	1530 – 1565
L	1565 – 1625
U	1625 – 1675

 ITU-T has defined the wavelength grid for xWDM transmission

G.694.1 recommendation for DWDM transmission, covering S, C and L bands.

G.694.2 recommendation for CWDM transmission, covering O, E, S, C and L bands.

CWDM/DWDM designs for DC interconnect

WDM system anatomy

WDM system anatomy - colored clients

WDM system anatomy - transponders

WDM system components - Transponder

- 2R—Regenerate and Reshape
- 3R—Regenerate, Reshape and Retime

Fiber attenuation

- The decrease in optical level along a fiber optic waveguide
- Two main components:

Absorption: portion of optical attenuation in optical fiber resulting from the conversion of optical power to heat. Caused by impurities in the fiber such as hydroxyl ions.

Scattering: change of direction of light rays or photons after striking small particles. It may also be regarded as the diffusion of a light beam caused by the non-homogeneity of the transmitting material.

Different for different wavelength (lowest in C-band)

Chromatic Dispersion (CD)

- The optical pulse tend to spread as it propagates down the fiber, limiting either the bit rate or the maximum achievable distance at a specific bit rate
- Chromatic Dispersion = Material Dispersion + Waveguide Dispersion
- Chromatic Dispersion is a fiber characteristic (D=17 ps/nm.km), but also depends on the light source
- Physics background: The refractive index has a wavelength dependent factor

Fiber Classification

Normal Single Mode Fiber (SMF-28, G.652) >95% of Deployed Plant (new SMF-28e. G.652.C, ZWPF)

CWDM/DWDM designs for DC interconnect

Design scenarios

DR solution with integrated WDM optics

- Uses colored interfaces (GBIC, SFP, XENPAK, X2, XFP etc.) in CWDM or DWDM wavelength grid plugged directly in communication devices (ethernet or FC switches) and passive DWDM or CWDM filters
- Lower cost than transponder based system but less functionality
- Can be combined with transponder based solution

Cisco CWDM filters and pluggable modules

Passive CWDM solution

- √8 channels (20nm spacing, 1470nm-1610nm)
- ✓ low insertion loss for new generation modules
- ✓ring, bus, p-t-p
- ✓ GBICs, SFPs and passive filters
- √GE, FC (1G, 2G and 4G)
- ✓Optical budget

min. 30 dB for CWDM GBICs (GE)

min. 28 dB for CWDM SFPs (2G FC)

min. 16 dB for CWDM SFPs) (4G FC)

- ✓ Single fibre solution 4 channels
- ✓ Standalone 2 channel transponder for cases where colored interface is not directly supported in device

ITU-T G.652.C Zero Water Peak Fiber (ZWPF)

- Designed to support CWDM application with more than 8 channels, the ZWPF removes the absorption peak around 1383 nm
- From a Chromatic Dispersion standpoint it behaves as a standard G.652 fiber

Source: Corning data sheets for SMF28™ and SMF28e™

Cisco DWDM filters and pluggable modules

Passive DWDM solution

- √32 channels (100GHz spacing)
- ✓ Cisco ONS 15216 Flexlayer family
- ✓ring, bus, p-t-p
- ✓ GBICs, SFPs, XENPAKs and passive filters
- √GE, FC (1g and 2g) and 10GE
- ✓ other colored interfaces in DWDM grid
- ✓ Optical budget

min. 28 dB for DWDM GBICs

min. 23 dB for DWDM XENPAKs

- ✓ Single fibre solution 16 channels
- ✓ Standalone 2 channel transponder for cases where colored interface is not directly supported in device

Cisco eWDM filters

Combination of CWDM and DWDM

- √16 channels (8 CWDM + 8 DWDM)
- ✓ upgrade of existing CWDM networks to 16 channels
- ✓upgrade to 10Gbps
- ✓ mux/demux, OADM (2 and 4 channels)
- ✓ EDFA for DWDM channels
- √CWDM and DWDM pluggable modules
- ✓ Standalone 2 channel transponder for cases where colored interface is not directly supported in device

Design with 1310/1550 nm splitter cable

- Two unprotected clients, one using 1310nm and second 1550nm
- Simplest WDM 'device' falls into WWDM category
- Low insertion loss, Simplex cable two needed per site
- Can be combined with CWDM/DWDM filters connected to 1550nm port

Parameter	Path	Minimum	Maximum	Unit
1310 Insertion Loss	ADD/DROP	-	1.2	dB
1550 Insertion Loss	ADD/DROP	-	0.8	dB

Design with passive CWDM filters

 Support for 8 unprotected channels over fiber pair or 4 unprotected channels over single fiber strand

Insertion loss	Add	Drop	Pass
MUX 8	2.2	2.2	-
OADM 4	1.8	1.8	2.1
OADM 1	1.5	1.5	1.5
Single fiber	3.0	3.0	-

ssion ID esentation ID © 2007 Cisco Systems.

Design with passive DWDM filter

 Support for up to 32 unprotected channels over fiber pair or up to 16 unprotected channels over single fiber strand

Available modules

- 8 and 2 channel OADM (two required per site)
- 4 band splitter/combiner (two required per site)
- 2,3,4 way splitter/combiner
- VOA module

Design with 1310/1550 nm splitter cable in combination with C/DWDM filter

- Combination of one client using 1310nm and others using CWDM or DWDM wavelengths (up to 8 channels with CWDM, up to 32 channels with DWDM)
- Allows support of 'legacy' 1310nm channel, combine 10GE with CWDM, etc.
- Fiber pair only, no single strand

Design using eWDM solution

- Combination of 8 channels in CWDM grid and 8 channels in DWDM grid
- Cost effective upgrade of CWDM networks
- Cost effective option for small (approx. 40%less for 8 channel DWDM network comparing to 15216 Flexlayer)

Complementing designs with standalone transponder unit

• When CWDM or DWDM interface is not directly available at client than WDM-SFP-2CH-CONV= can be used to convert signal from 850 nm or 1310 nm to CWDM or DWDM grid on both sides. One WDM-SFP-2CH-CONV= can handle two channels

 WDM-SFP-2CH-CONV= requires 'grey' SFP in client port and C/DWDM SFP in network port and supports STM-1, STM-4, STM-16, GE, 1G FC

DR solution with transponder based DWDM

- Support of many different channel types: GE, 10GE, FC/FICON (1/2/4/10G), SDH (STM-1/4/16/64/256), ESCON, IBM solution specific interfaces (CLO, ETR, ISC), video interfaces, 2R transparent signal etc.
- Cost-effectively aggregates data and storage services into 2.5 or 10 Gbps lambda
- Buffer-to-buffer credits for distance extension
- Optical performance and comprehensive protocol (payload) monitoring

Cisco universal optical platform

Cisco ONS 15454E MSTP

- √ 32/40/80 wavelengths (expandable to 112)
- √ring, bus, p-t-p, mesh
- √ 50/100GHz spacing, C-band/L-band
- √ fixed OADMs and ROADMs
- ✓ various traffic protection schemes
- ✓ Transponders:

8Mbps-2.5Gbps *10GE,STM64,10GFC* STM-256 support CLO/ETR

- ✓ Service aggregation (muxponding): 1/2/4G FC/FICON, ISC1/ISC3: GE, ESCON, 1G FC/FICON; STM-16
- ✓ Integrated EDFAs with DCU support
- ✓ support for FEC and EFEC
- ✓ more than 2000 km without regeneration
- ✓ enterprise/regional/SP
- ✓ certified by major storage vendors

Cisco ONS 15454 MSTP 2.5Gbps Service Cards

- Simple planning, sparing, and ordering with multi-rate, multiprotocol and pluggable optics
- Optical and payload monitoring
- FEC support at 2.5Gbps transponder
- G.709 support
- Client 1+1, Y-cable and splitter protection

Cisco ONS 15454 MSTP 10Gbps Service Cards

- All 10G applications covered by 1 transponder,
- Aggregation cards reduce the cost of service delivery
- Full C-band or L-band tunability 80 channels @ 50GHz spacing (except crossponders)
- FEC and EFEC support (G.975, G.975.1), G.709 support
- Optical and payload monitoring, Client 1+1, Y-cable protection and 'splitter' (XP)

Cisco ONS 15454 - example 1 (bank)

Cisco ONS 15454 - example 2 (insurance)

Two identical systems

59km @ 0.25dB/km

Cisco ONS 15454 interfaces

TDM

- •STM-1
- **•STM-4**
- •STM-16
- •STM-64
- •STM-256
- •E1, E3 (MSPP integration)

Data

- •FE
- •GE
- •10GE LAN PHY
- •10GE WAN PHY

Storage

- •1G FC/FICON
- •2G FC/FICON •HDTV
- •4G FC/FICON •SDI
- •10G FC
- •ESCON
- ·ISC 1
- ·ISC 3
- Sysplex CLO
- Sysplex ETR

Video

- •DV-6000

- •D1 video
- DVB ASI

2R

- Any rate from 100 Mbps to
- **2.5 Gbps**

- High flexibility in system deployment, most of applications covered
- Broad range of potential service offerings
- 40Gbps support allows for further bandwidth scaling

Pluggable client interfaces

Type/category	Example
Grey optics 850 nm SFP	1000BaseSX, MMF FC clients
Grey optics 1310 nm SFP	1000BaseLX, SDH SR/IR clients, FC SMF clients
Grey optics 1550 nm SFP	1000BaseZX, SDH LR clients
Grey optics 1310 nm XFP	10GBaseLR, 10G FC, STM-64
Grey optics 1550 nm XFP	10GBaseER/EW, STM-64 LR
CWDM client optics	GE, 1/2G FC, STM-16 (release 8.5)
DWDM client optics	GE, 1/2G FC, STM-16 (release 8.5)
Metalic client SFP	10/100/1000BaseT for GE Xponder

- Lower opex through common sparing with other Cisco products
- Per port reach and rate selection
- Tight integration of CWDM and DWDM from network perimeter
- High transponder reusability for different services

Cisco Transport Planner

- GUI-based Network Design Entry
- Traffic requirements:
 - Any-to-Any Demand provided by ROADM
 - Point-to-point demands
- Comprehensive Analysis checks for:
 - wavelength routing and selection
 - optical budget and OSNR
 - CD, PMD, amplifier tilt etc.
- Smooth Transition from Design to Implementation
 - Bill of Materials
 - Rack Diagrams
 - Step-by-Step Interconnect

Channel protection mechanisms

Protection mechanisms

Splitter based protection

Y-cable based protection

Client based protection

Protection signalling

Optical/analogue parameters—LOS/LOL

Digital performance monitoring parameters— application-specific

Client-side/trunk-side

Path switching

Uni-directional

Bi-directional

Cisco ONS 15454MSTP Protection Schemes

CWDM/DWDM designs for DC interconnect

Solution examples

CWDM design example

- GE and 2G FC ports, 8 channel mux/demux insertion loss 2.2 dB
- TX (min): 0 dBm, TX (max): +5 dBm
- RX (min): -29dBm@1Gbps, -28dBm@2Gbps
- Dispersion penalty: 2dB@1Gbps, 3dB@2Gbps
- Connector margin: 0.5 dB, Aging margin: 1dB
- Worst case budget: 0 (-28) -2*2.2 3 2*0.5 1 = 18.6 dB
- Span attenuation: 30*0.35 = 10.5 dB => design is OK

Cisco ONS 15454 - example 1 (bank)

Cisco ONS 15454 - example 2 (insurance)

Two identical systems

BLANK-FMEC MXP_MR_10DME_C (60.61) - A

BLANK-FMEC MXP_MR_10DME_C (59.79) - A

BLANK-FMEC MXP_MR_10DME_C (58.98) - A

BLANK-FMEC MXP_MR_10DME_C (56.55) - A

BLANK-FMEC BLANK

BLANK-FMEC BLANK

BLANK-FMEC Reserved for TXP_MR_10E_C (56.75) - A

BLANK-FMEC BLANK

BLANK-FMEC Reserved for TXP_MR_10E_C (56.75) - A

BLANK-FMEC RESERVED FOR TAXELER FOR TA

Cisco ONS 15454 MSTP

DCU-950 - A

59km @ 0.25dB/km

Cisco ONS 15454/15216 Hybrid examples

- Unidirectional
- Bidirectional

CWDM/DWDM designs for DC interconnect

Protocol and application interaction with transport systems

Why the distance is important and where it matters

✓ Optical transport network

✓ usually not limit – up to 2000 km without regeneration for 10GE or 10G FC

✓ Data network

- ✓ latency itself is usually not serious problem
- √ too small default TCP window will cause performance degradation must be increased

✓ Application

- ✓ for 'chatty' application protocols (like CIFS) cumulative latency is usually serious issue
- √WAAS technology can be used to optimize even traffic between datacenters

√SAN

- √ latency is serious problem when synchronous replication is used
- ✓ skew can be an issue for some load balancing schemes (frame based)
- ✓ buffer-to-buffer flow control can limit performance for long distance (use switches with large BB count or DWDM with BB spoofing)
- √FEC/EFEC cause additional latency switch it off if not needed

TCP/IP in Long Fat Networks

Bandwidth*Delay product

· capacity of the channel is 32 KB

• 1 KB segments

- window size is 10 KB
- every segment is 1 KB,
- · capacity of the channel is 8 KB

	5 km LAN	100 km MAN	2000 km WAN		
Bytes in the Pipe:					
10 Mbit/s Ethernet	52	1040	20800		
155 MBit/s ATM	703	14062	281250		
1000 MBit/s GE	5208	104167	2083330		
Typical Windows TCP/IP window size:					
<pre>bellow 1 Mbps = 8kB, 1 Mbps-100 Mbps = 17kB, greater than 100Mbps = 64kB</pre>					
if larger is needed use window scaling option					

Slow Network

Flow control in FC SAN How many BB credits do I need?

Credits = (Round_Trip_Time + Processing_Time) / Serialization_Time

Step 1: Serialization
Link rate is 1.0625 Gbps => 9.41ns/byte
1byte = 10 bits because of 8b/10b coding
Max. frame size = 2148 bytes
Serialization Time ≈ 20 µs

Step 2: Transmission and deserialization Propagation delay $\approx 5 \,\mu\text{s/km}$ Caused by speed of light in optical fibre Time to transmit frame over 10 km $\approx 50 \,\mu\text{s}$ Deserialization Time $\approx 20 \,\mu\text{s}$

Step 3: Processing and confirmation Processing is neglected in this example R_RDY generated and sent back Time to transmit frame over 10 km \approx 50 µs Deserialization Time \approx 20 µs

Step 4: Calculation of required BB credits Total RTT = $50+20+50=120 \mu s$ Credits (10km) $\approx 120 / 20 = 6$ (for 1 Gbps FC) Credits (10km) $\approx 110 / 10 = 11$ (for 2 Gbps FC) Credits (10km) $\approx 105 / 5 = 21$ (for 4 Gbps FC)

Fiber channel flow control How many BB credits do we need?

- 1G FC: 1 BB for 2 km at max frame size (2148 Bytes)
- 2G FC: 1 BB for 1 km at max frame size (2148 Bytes)
- 4G FC: 2 BB for 1 km at max frame size (2148 Bytes)
- 10G FC: 6 BB for 1 km at max frame size (2148 Bytes)

Example: 255 B2B credits available per port:

Maximum distance of 127 Km at 4 Gbps with maximum frame size packets (2,148B)

$$\frac{255}{2} \frac{credits}{credits} \approx 127 \text{ Km}$$

$$\frac{255}{credits} \otimes 4 \text{ Gbps}$$

Fiber channel flow control What if I do not have enough credits?

What to do if I need more BB credits
 Buy switch with more credits (Cisco MDS 9500)
 Use Distance extension (aka. BB credit spoofing)

Distance extension solution

Useful when switch does not have enough BB credits

Synchronous ReplicationI/O Detail and latency consequences

Synchronous Replication: How Far?

 Tolerable latency is up to the application (and Enterprise)

Case-by-case basis

Databases are very sensitive to latency

Speed of light in fiber introduces delay of 5µs/km

- Only Write I/Os are affected Increased "service (Response) time"
- Maximum tolerable distance ascertained by assessing each application

Asynchronous Replication I/O Detail and latency consequences

CWDM/DWDM designs for DC interconnect

Certifications

ONS 15454 SAN Qualification Summary June, 2007

Certification	15454-DM-L1-xx.x= 15454-DMP-L1-xx.x=	15454-MR-L1-xx.x= 15454-MRP-L1-xx.x=	15454-10DME-C= 15454-10DME-L=	15454-10E-L1-C= 15454-10E-L1-xx.x=
EMC SRDF / Mirrorview				
1G/2G/4G FC	√ (1/2)	√ (1/2)	✓	-
10G FC	-	-	-	✓
IBM GDPS/PPRC/XRC				
1G/2G/4G FC/FICON	√ (1/2)	√ (1/2)	✓	-
10G FC/FICON	-	-	-	✓
ESCON	✓	✓	-	-
ISC	-	√	✓	-
STP (ISC)	-	√ (MR only)	TBD	-

ONS 15454 SAN Qualification Summary June, 2007

Certification	15454-DM-L1-xx.x= 15454-DMP-L1-xx.x=	15454-MR-L1-xx.x= 15454-MRP-L1-xx.x=	15454-10DME-C= 15454-10DME-L=	15454-10E-L1-C= 15454-10E-L1-xx.x=
HP CA-EVA / DRM				
1G/2G/4G FC	√ (1/2)	√ (1/2)	✓	-
10G FC	-	-	-	✓
HDS TrueCopy				
1G/2G/4G FC	√ (1/2)	√ (1/2)	√	-
10G FC	-	-	-	✓

CWDM/DWDM designs for DC interconnect

Summary

CWDM/DWDM - ideal solution for DC interconnect

- High bandwidth
- High scalability
- Traffic separation at Layer 1
- Optimise RPO
- Several options for different requirements/environments
- Cost savings by sharing one fiber pair (or even single fibre strand)

Cisco Product Portfolio for Data Center

Unified Fabric Networking

Nexus 7000 Modular Switch

Nexus 5000 Switch

Ethernet Networking

Series
Catalyst 4900M
Top-of-Rack
Catalyst Blade
Server Switches

Catalyst 6500

Storage Networking

Storage
Directors
SSM
MDS Fabric
Switches

MDS 9500

Blade Switches

Optical Networking

MSTP
ONS 15216
CWDM filters
CWDM/DWDM
pluggables

ONS 15454

Application Network Services

ACE
Application
Delivery –
Module and
Appliance

Wide-Area Application Services

ACE XML Gateway

Infiniband Clustering

SFS 7000 Infiniband Switch SFS 3000

Gateway

SFS 3000 Infiniband

Data Center Security

Firewall Services Module

Data Center Provisioning

VFrame Server/Service Provisioning System

Data Center Management

Data Center Network Manager

Topology
Visualization and Provisioning

ANM- Advanced L4-7 Services Module Management

Q and A

