

Cisco Expo 2010

Обзор и компоненты архитектуры Cisco Unified Wireless Network

Игорь Лактионов Системный инженер Cisco ilaktion@cisco.com

- 1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN

Архитектура Cisco Unified Wireless Network (CUWN)

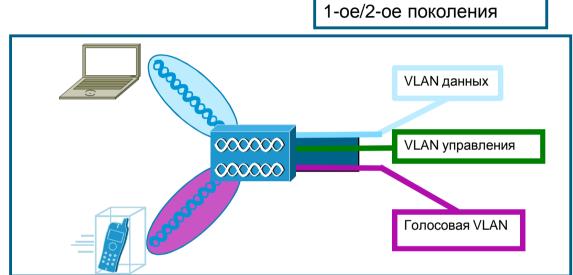
1. Apхитектура Cisco Unified Wireless Network (CUWN)

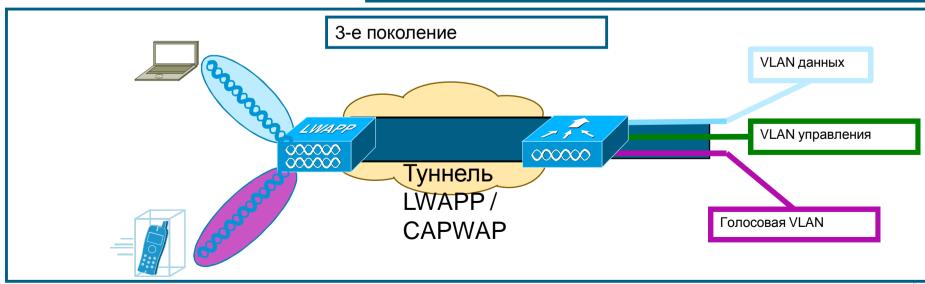
Общий обзор

Протокол Control and Provisioning of Wireless Access Points (CAPWAP)

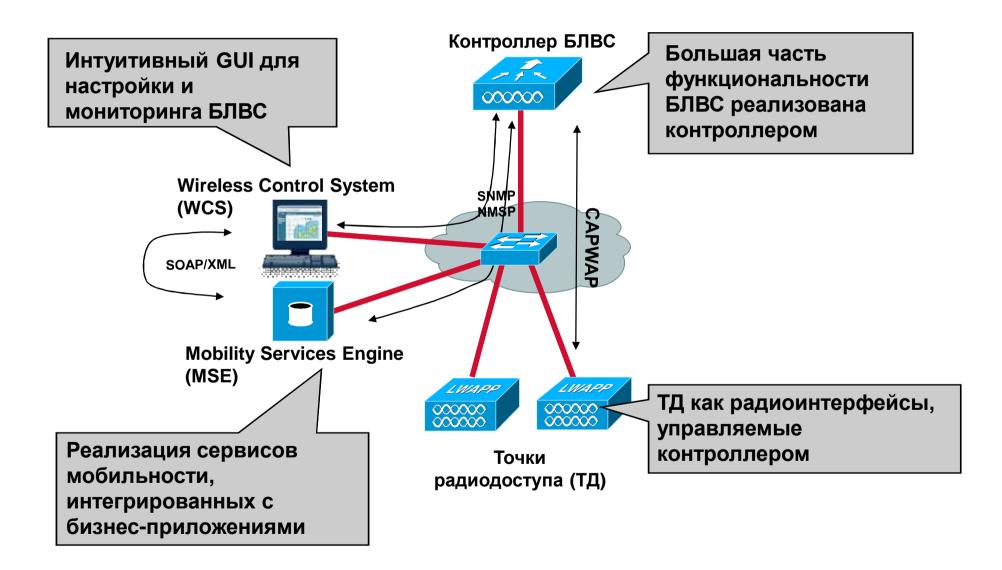
Обеспечение мобильности

RRM: управление радиочастотными ресурсами


Реализация QoS


Обработка трафика multicast

- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы


Эволюция архитектур беспроводных ЛВС

- 1. 1-ое/2-ое поколения точки радиодоступа (ТД) как автономные устройства
- 2. 3-е поколение ТД как радиоинтерфейсы контроллера

Централизованная архитектура БЛВС

1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)

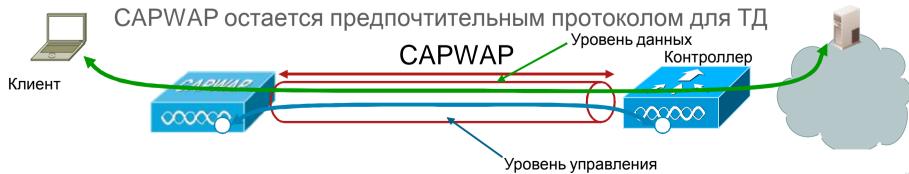
Общий обзор

Протокол Control and Provisioning of Wireless Access Points (CAPWAP)

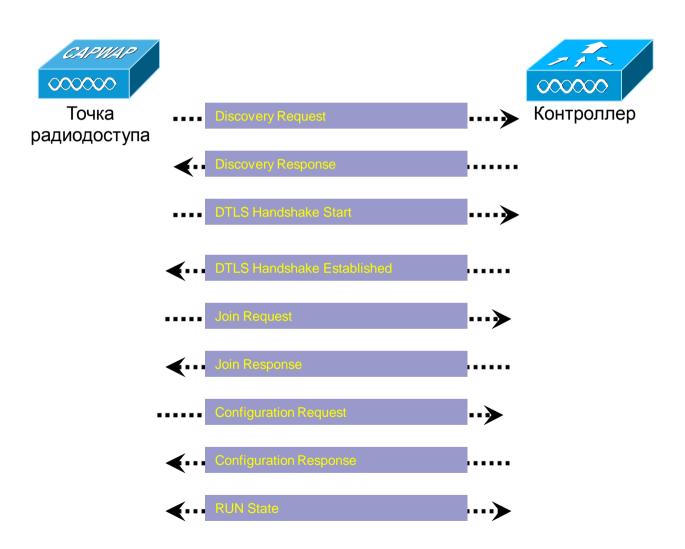
Обеспечение мобильности

RRM: управление радиочастотными ресурсами

Реализация QoS


Обработка трафика multicast

- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы


Централизованная архитектура БЛВС

Что такое CAPWAP?

- 1. CAPWAP (Control And Provisioning of Wireless Access Points)— туннельный протокол, используемый для взаимодействия контроллера и точек радиодоступа. Основан на LWAPP.
- САРWAP передает трафик управления и данных
 Трафик управления шифруется по протоколу DTLS (RFC 4347)
 Трафик данных опционально шифруется по протоколу DTLS
- 3. Обратная совместимость CAPWAP и LWAPP
 - САРWAP-контроллеры допускают подключение к ним ТД LWAPP; миграция ТД в режим CAPWAP производится прозрачно для пользователя и автоматически

Процесс CAPWAP AP Discover / Join

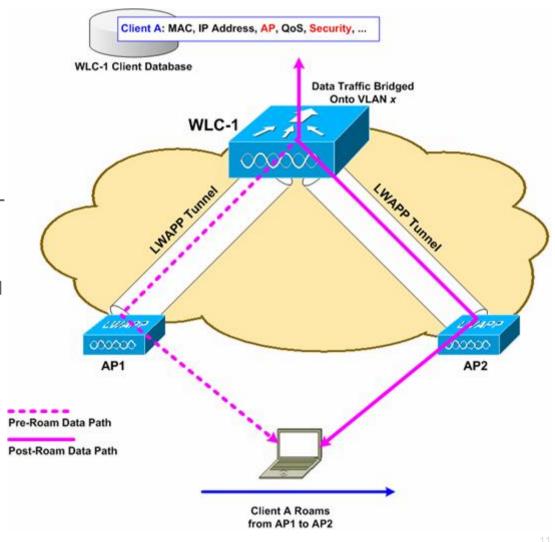
1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)

Общий обзор

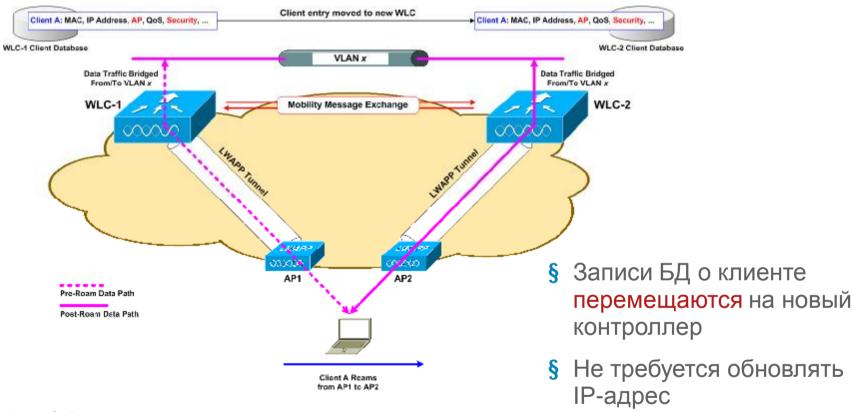
Протокол Control and Provisioning of Wireless Access Points (CAPWAP)

Обеспечение мобильности

RRM: управление радиочастотными ресурсами

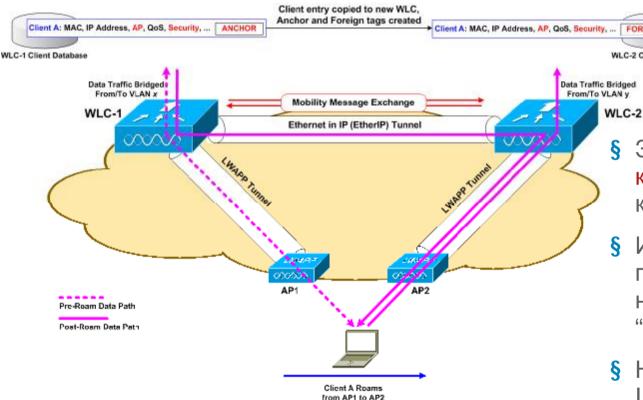

Реализация QoS

Обработка трафика multicast


- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Роуминг в пределах контроллера

- Происходит при перемещении абонента между точками доступа, подключенными к одному контроллеру
- Контроллер обновляет в базе данных клиентов запись о соответствующих ТД и контексте безопасности
- Не требуется обновление ІР-адреса



Роуминг между контроллерами (L2)

1. L2-роуминг между контроллерами происходит, когда клиент перемещается между ТД, подключенными к разными контроллерам, а трафик клиента коммутируется в одну и ту же подсеть

Роуминг между контроллерами (L3)

1. L2-роуминг между контроллерами происходит, когда клиент перемещается между ТД, подключенными к разными контроллерам, а трафик клиента коммутируется в другую подсеть

Записи о клиенте копируются на новый контроллер

FOREIGN

WLC-2 Client Database

- Исходный контроллер помечается как "anchor", новый контроллер — как "foreign"
- § Не требуется обновление ІР-адреса
- Возможны ассиметричный и симметричный пути прохождения трафика

1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)

Общий обзор

Протокол Control and Provisioning of Wireless Access Points (CAPWAP)

Обеспечение мобильности

RRM: управление радиочастотными ресурсами

Реализация QoS

Обработка трафика multicast

- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Radio Resource Management (RRM)

Управление радиочастотными ресурсами, реализованное в программном обеспечении контроллера

Контроллер

Мониторинг РЧ-ресурсов

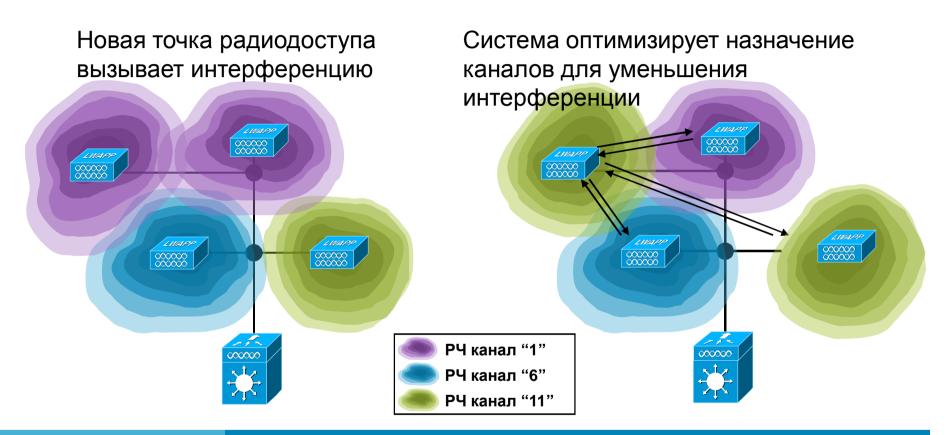
Динамическое назначение частотных каналов (DCA)

Управление мощностью передатчиков ТД (ТРС)

Обнаружение и коррекция пробелов в радиопокрытии (CHDC)

Утилизация

Интерференция


Шум

Покрытие

Соседние точки радиодоступа

Частотные каналы сканируются в процессе работы
Все фреймы 802.11 собираются и анализируются
Точка доступа
Точки радиодоступа проводят только 0,2% времени за пределами рабочего канала

RRM—Dynamic Channel Assignment (DCA)

Что делает

1. Обеспечивает оптимальное использование спектра

Достигается наилучшая пропускная способность

DCA подробнее

1. Кто рассчитывает DCA

DCA рассчитывается на RF Group Leader WLC

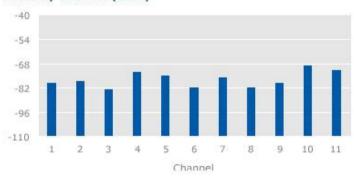
Решения о смене частотного канала принимаются индивидуально для ТД/радио

2. DCA управляет назначением каналов каждой ТД

При необходимости меняет существующую конфигурацию

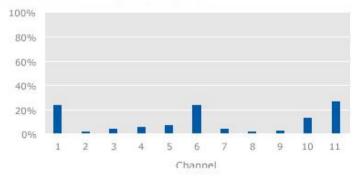
3. Критерий назначения каналов

Cost Metric

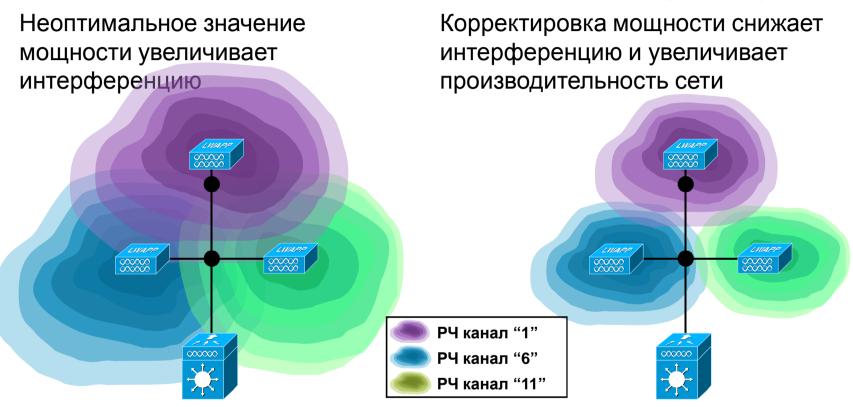

CM = f(RSSI, Noise, Interference, a constant [threshold], load [if enabled])

ΔCM > RSSI DCA Threshold?

Profile Information


Noise Profile	Okay		
Interference Profile	Issue		

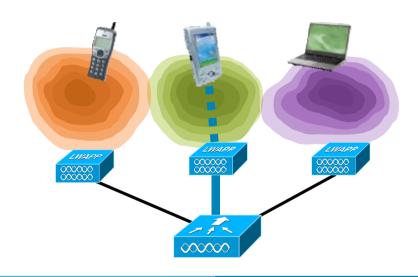
Noise by Channel (dBm)

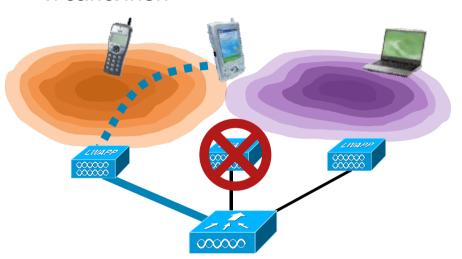


Load Profile	Okay	
Coverage Profile	Okay	

Interference by Channel (% busy)

RRM—Transmit Power Control (TPC)


Что делает


- 1. Назначает мощность передатчика на основе величины потерь
- 2. ТРС, как правило, уменьшает Тх на точках радиодоступа

RRM—Coverage Hole Detection and Mitigation (CHDM)

Нормальная работа

Сбой точки радиодоступа Пробел в радиопокрытии обнаружен и заполнен

Что делает

- 1. Устраняет единые точки отказа
- 2. Автоматизирует реагирование на отказы ТД, снижает эксплуатационные расходы и стоимость простоев
- 3. Приближает доступность беспроводных соединений к проводным

1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)

Общий обзор

Протокол Control and Provisioning of Wireless Access Points (CAPWAP)

Обеспечение мобильности

RRM: управление радиочастотными ресурсами

Реализация QoS

Обработка трафика multicast

- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Обзор QoS

- 1. Обеспечивает надлежащую обработку трафика механизмами QoS end-to-end
- 2. QoS должен обеспечиваться в беспроводной и проводной средах, в обоих направлениях

Беспроводная среда: 802.11e (WMM)

Проводная среда: 802.1p (Уровень 2), DSCP (Уровень 3)

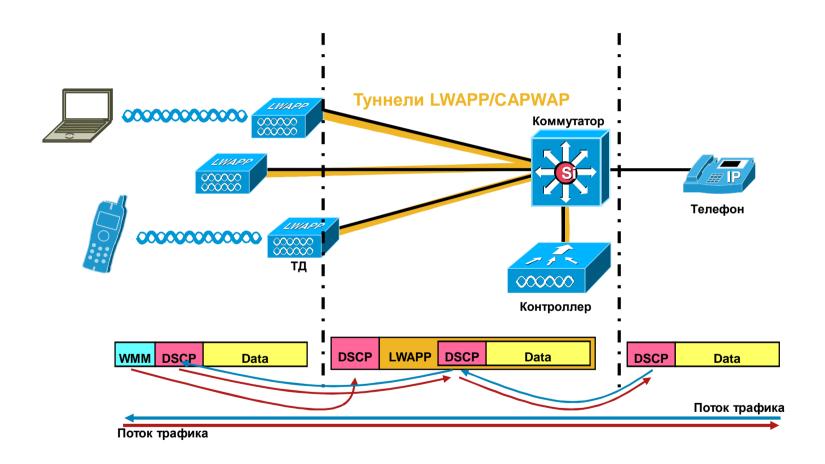
3. Профили QoS (Platinum, Gold, Silver, Bronze)

Возможность задания пользователям макс. полосы пропускания (абсолютно и относительно)

4. Call Admission Control (CAC)

CCXv3, CCXv4

Hастраиваемые профили QoS


1. Профили QoS позволяют ограничить полосу, доступную клиентским устройствам

TCP

UDP

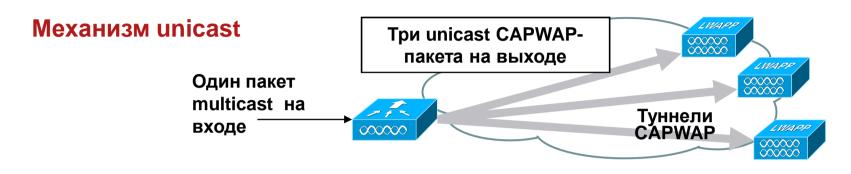
QoS из конца в конец

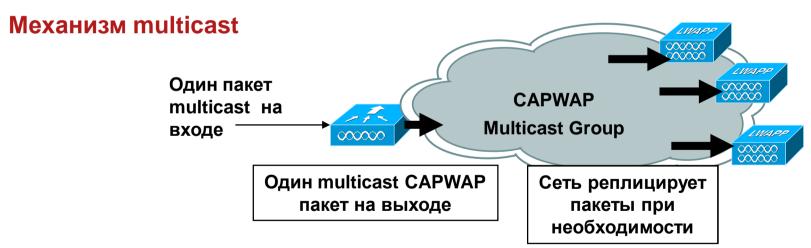
1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)

Общий обзор

Протокол Control and Provisioning of Wireless Access Points (CAPWAP)

Обеспечение мобильности


RRM: управление радиочастотными ресурсами


Реализация QoS

Обработка трафика multicast

- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Методы передачи трафика multicast

1. Репликация пакетов multicast происходит только в тех местах сети, где это необходимо, снижая загрузку проводной сети и контроллера

Обзор аппаратных и программных компонентов архитектуры CUWN

- 1. Apхитектура Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN

Cisco Mobility Services Engine

Контроллеры Cisco 5500 Series Wireless Controllers

Точки радиодоступа Cisco Aironet нового поколения

- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Cisco Mobility Services Engine Централизованные, масштабируемые сервисы

3300 Series Mobility Services Engine

Платформа сервисов и приложений

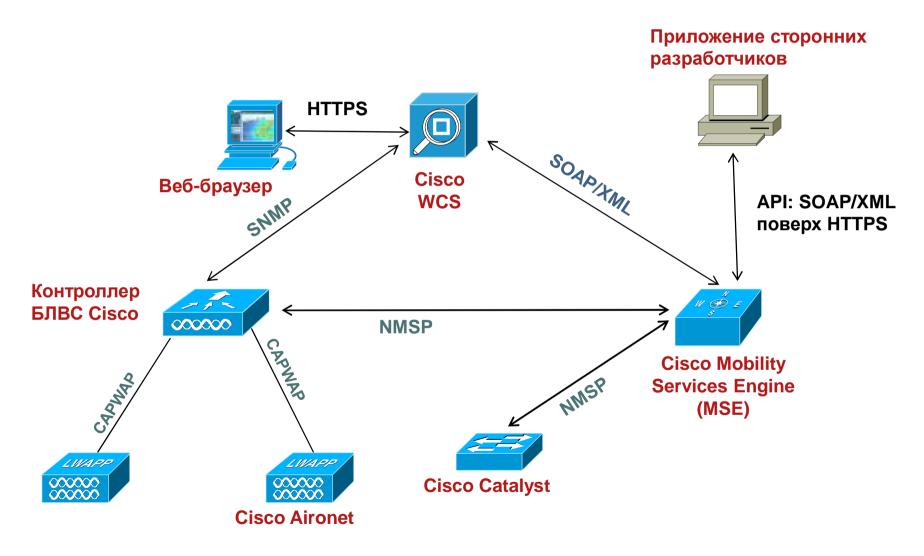
§ Открытый АРІ для создания приложений нового поколения

Общая архитектура для различных сервисов

§ Простота внедрения и оптимизация капитальных затрат

Уровень абстракции с CAPWAP/NMSP

§ Обеспечивает гибкость эволюции транспортной и прикладной платформ


Экосистема партнеров-разработчиков

§ Ускорение разработки и внедрения специализированных решений

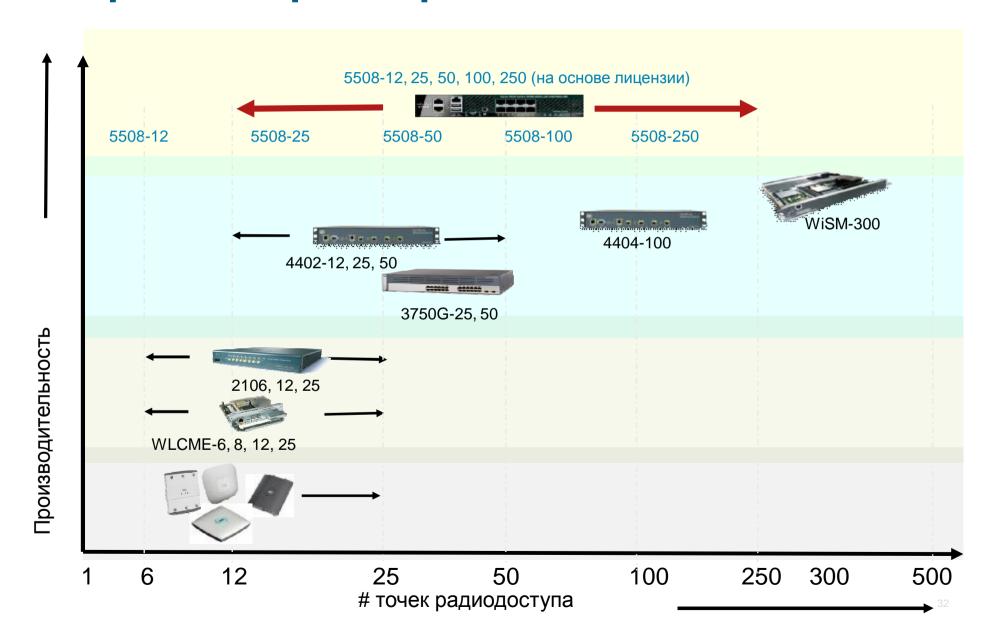
Cisco MSE – аппаратные спецификации

	MSE 3310	MSE 3350	
Исполнение	1U Rack Form Factor	1U Rack Form Factor	
Центральный процессор	Intel Core2 Duo (1.8 GHz)	Quad-Core Intel Xeon (2.33 GHz)	
Память	4 GB (PC2-5300)	8 GB PC2-5300	
Жесткий диск	2 x 250 GB (SATA), RAID 1 (in software)	Hot Plug SAS drives: 2x146 GB (10K RPM)	
Кол-во клиент- ских устройств	2000: до 1000 клиентов + до 1000 меток	18000: любая комбинация клиентов/меток	

Взаимодействие компонентов архитектуры

NMSP – Network Mobility Services Protocol

- 1. Apхитектура Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN


Cisco Mobility Services Engine

Контроллеры Cisco 5500 Series Wireless Controllers

Точки радиодоступа Cisco Aironet нового поколения

- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Серия контроллеров БЛВС Cisco

Cisco 5500 Series Wireless Controller

Оптимизирован для 802.11n

- 1. Идеален для создания ведущего в отрасли решения 802.11n с точками радиодоступа Aironet 1140 и 1250 Series
- 2. Прозрачно интегрируется в Cisco Unified Wireless Network
- 3. Новая схема лицензирования обеспечивает масштабируемость без физической замены контроллера
- 4. Масштабируемость подсистемы управления
- 5. Поддерживает решение OfficeExtend Solution и шифрование DTLS

Ключевые характеристика

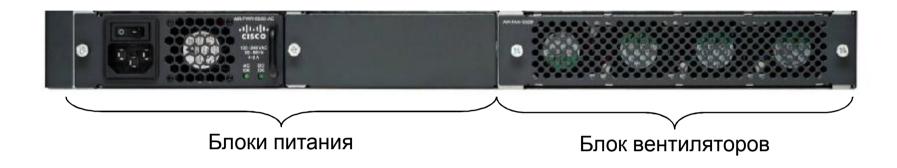
Точек доступа12 – 250Клиентов> 7,000МобильностьДо 18,000 ТД в группе мобильностиИсполнениеУстройство 1 RUИнтерфейсы8 портов GigE SFP

Cisco 5500 Series (фронтальный вид)

1. Сервисный порт

Интерфейс управления Out-of-theband, 10/100/1000 Ethernet

2. Последовательные консольные порты


Доступ к CLI RJ45 и mini USB

8 портов Gigabit Ethernet

Слоты SFP (mini-GBIC) дают гибкость в выборе физического уровня

Точки радиодоступа автоматически распределяются между интерфейсами

Cisco 5500 Series (вид сзади)

Блоки питания

Один по умолчанию, второй-

С возможностью «горячей» замены

Блок вентиляторов

С возможностью замены

Сравнение контроллеров

	5500 + = =	4400	WiSM
# точек радиодоступа	12, 25, 50, 100, 250	12, 25, 50, 100	300
Пропускная способность	До 8 Гбит/с	До 4 Гбит/с	До 8 Гбит/с
Клиентов	До 7,000	До 5,000	До 10,000
Одновременных подключений ТД	До 100	До 10	До 20
Интерфейсы ввода/вывода	До 8 Gigabit Ethernet (SFP)	До 4 Gigabit Ethernet (SFP)	Интерфейсы Catalyst 6500
Размер группы мобильности	До 18,000 ТД	До 7,200 ТД	До 10,800 ТД
# контроллеров на физическое устройство	1	1	2
Потребляемая мощность	125 Вт	47 Вт	164 Вт
Лицензии: возможность модернизации	Да	Нет	Нет
Шифрование данных между ТД и контроллером	Да	Нет	Нет
Решение OfficeExtend	Да	Нет	Нет

- 1. Apхитектура Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN

Cisco Mobility Services Engine

Контроллеры Cisco 5500 Series Wireless Controllers

Точки радиодоступа Cisco Aironet нового поколения

- 3. Дизайн сетей CUWN
- 4. Заключение, вопросы и ответы

Точки радиодоступа Cisco

Для помещений

1140

Для помещений со сложными условиями инсталляции

1240AG

1250

За пределами помещений

1520

1400

1300

Точки радиодоступа

Функциональность

- § Лучшие в отрасли дальность действия и производительность
- § Безопасность корпоративного класса
- § Гибкие опции внедрения
- § Одновременный мониторинг радиосреды и передача трафика

Преимущества

- § Автоматическое управление
- § Не требуются выделенные ТД для мониторинга радиосреды
- § Поддержка сценариев внедрения в помещениях и за их пределами
- § От безопасного радиопокрытия до расширенной функциональности

Точки доступа нового поколения

1. Cisco Aironet 1140 Series

Для помещений

Интегрированные антенны

802.11n при работе со стандартом 802.3af

Удобство интеграции в офисный интерьер

2. Cisco Aironet 1250 Series

Для помещений со сложными условиями инсталляции

Гибкость радиопокрытия со внешними антеннами

Гибкие опции питания

Позиционирование Aironet 1140 и 1250

	1140	1250
Внедрение	В помещениях	В помещениях со сложными условиями инсталляции
Антенны	Интегрированные	Внешние (RP-TNC)
Порт ЛВС	Gigabit Ethernet	Gigabit Ethernet
Опции питания	PoE, AC, Pwr Injector	PoE*, ePoE, AC, Pwr Injector

^{*} Для работы 1250 с макс. скоростью мощности РоЕ недостаточно

Электропитание Cisco Aironet 1250

Aironet® 1250

Макс. производительность в режиме 802.11n требует больше мощности, чем обеспечивает 802.3af

Стандартный 802.3af PoE

Производительность с двуми модулями ниже максимальной

Cisco Enhanced PoE

Максимальная производительность

Инжектор питания

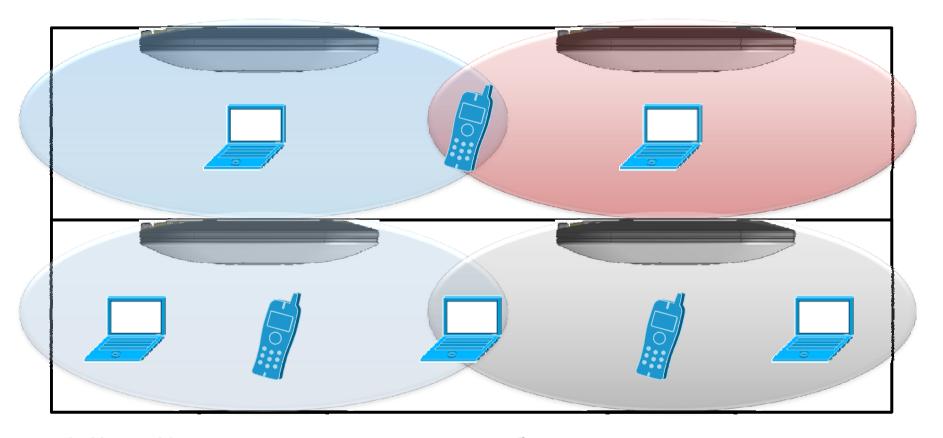
Максимальная производительность

Питание от локальной электросети

Максимальная производительность

Точка радиодоступа Cisco Aironet 1140

1. Интегрированные радио


2.4 ГГц (b/g/n)5 ГГц (a/n)

- 2. Πορτ Ethernet 10/100/1000
- 3. Консольный порт
- 4. Работает только в режиме САР ТРАНТИГЕ В ТОЛЬКО В РЕЖИМЕ САРТИТЕ В ТОЛЬКО В РЕЖИМЕ В ТОЛЬКО В ТОЛЬКО В РЕЖИМЕ В ТОЛЬКО В ТОЛЬКО В РЕЖИМЕ В ТОЛЬКО В РЕЖИМЕ В ТОЛЬКО В РЕЖИМЕ В ТОЛЬКО В РЕЖИМЕ В ТОЛЬКО В ТОЛЬКО
- 5. Питание от коммутатора: 802.3af PoE CERTIFIED®

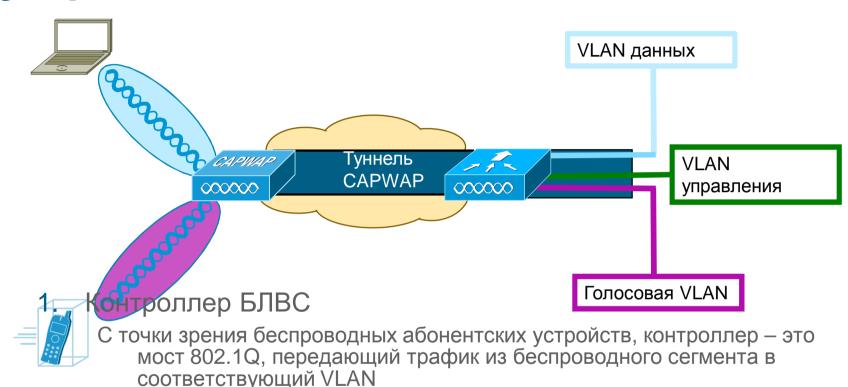
Точка радиодоступа Cisco Aironet 1140

Разработана для горизонтального монтажа

- § Как и Aironet 1130, модель 1140 разработана для горизонтального монтажа
- § Вертикальный монтаж работает, но рекомендуется горизонтальный

Дизайн сетей CUWN

- 1. Apxuteкtypa Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN


Интеграция контроллеров в проводную сеть

Обеспечение высокой доступности

Внедрение беспроводных ЛВС Cisco в филиалах

4. Заключение, вопросы и ответы

Контроллер БЛВС как сетевое устройство

Для точки радиодоступа контроллер – это устройство с IP-адресом, терминирующее туннель CAPWAP

- С точки зрения проводной сети это устройство Уровня 2, подключенное к сети транковыми интерфейсами 802.1Q
- 2. Точкам радиодоступа (режим split MAC) концепция VLAN не требуется

Контроллер БЛВС как сетевое устройство — порты и интерфейсы

- 1. Порт физическая сущность, обеспечивает физическое подключение к проводной сети
- 2. Интерфейс логическая сущность, обеспечивает доступ к функциональным подсистемам контроллера

Management interface

AP Manager interface(s)

Dynamic interface(s)

Virtual interface

Service interface

3. WLAN — логическая сущность, устанавливающая соответствие SSID интерфейсу контроллера, а также политик безопасности, QoS, проч.

Интеграция контроллера в ЛВС

- 1. Возможно применение Link aggregation (LAG)

 LAG поддерживается на 5508, 440х, WiSM, Cisco 3750G WLC

 LAG единственная опция для WiSM, Cisco 3750G WLC
- 2. Контроллеры серии 4400 поддерживают до 48 ТД на порт без LAG
 - Для поддержки свыше 48 ТД без использования LAG можно использовать несколько интерфейсов "AP Manager"—алгоритм LWAPP будет балансировать нагрузку между ними
- 3. LAG позволяет использовать 1 интерфейс "AP Manager" путем балансировки трафика между портами, объединенными в EtherChannel
- 4. При использовании LAG необходимо подключение к одному и тому же коммутатору

- 1. Apхитектура Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN

Интеграция контроллеров в проводную сеть

Обеспечение высокой доступности

Внедрение беспроводных ЛВС Cisco в филиалах

4. Заключение, вопросы и ответы

Резервирование контроллеров и балансировка нагрузки между ними

- 1. ТД принимает решение о подключении к тому или иному контроллеру на основании следующей информации:
 - 1. Если ТД уже имела настройки primary, secondary, и/или tertiary контроллеров, ТД попробует сначала подключиться к ним
 - 2. Попробует подключиться к "Master" контроллеру
 - Попробует подключиться к контроллеру с наибольшей свободной емкостью ТД, используя наименее загруженный интерфейс АР manager
- 2.#1 и #3 позволяют применить два подхода к резервированию контроллеров и балансировке нагрузки между ними динамический и детерминированный

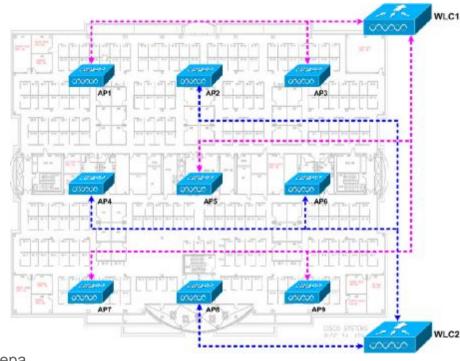
Динамическое резервирование

- 1. Полагается на LWAPP/CAPWAP для балансировки ТД между контроллерами
- 2. Приводит к динамическому «шахматному» порядку распределения ТД
- 3. Дизайн работает лучше, когда контроллеры сосредосточены
- 4. Преимущества:

Проще во внедрении и настройке — меньше первоначальной работы

ТД динамически распределяются между контроллерами

5. Недостатки:


Больше роуминга между контроллерами

Сложнее в эксплуатации из-за непредсказуемости

Дольше переключение

Нет опции "Fallback" в случае сбоя контроллера

- 6. Общая рекомендация Cisco: только для роуминга на Уровне 2
- 7. Используйте дерминированное резервирование вместо динамического резервирования

- 1. Apхитектура Cisco Unified Wireless Network (CUWN)
- 2. Обзор аппаратных и программных компонентов архитектуры CUWN
- 3. Дизайн сетей CUWN

Интеграция контроллеров в проводную сеть

Обеспечение высокой доступности

Внедрение беспроводных ЛВС Cisco в филиалах

4. Заключение, вопросы и ответы

Обзор Hybrid Remote Edge AP (HREAP)

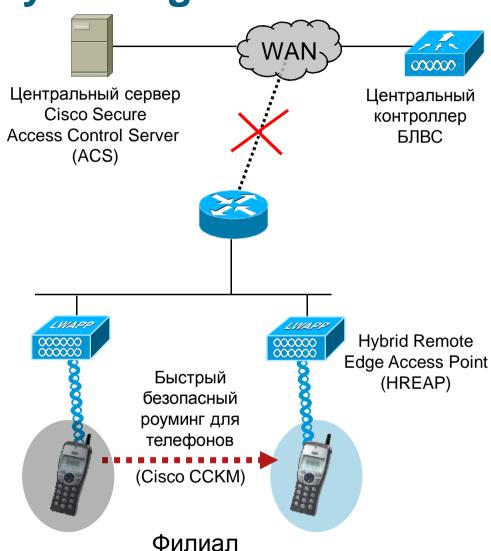
- Гибридная архитектура
- 2. Единое управление и контроль
- 3. Обработка трафика БЛВС:

Централизованная (Split MAC)

или

Локальная (Local MAC)

Cisco Centralized Key Management


 H-REAP поддерживает быстрый роуминг на Уровне 2

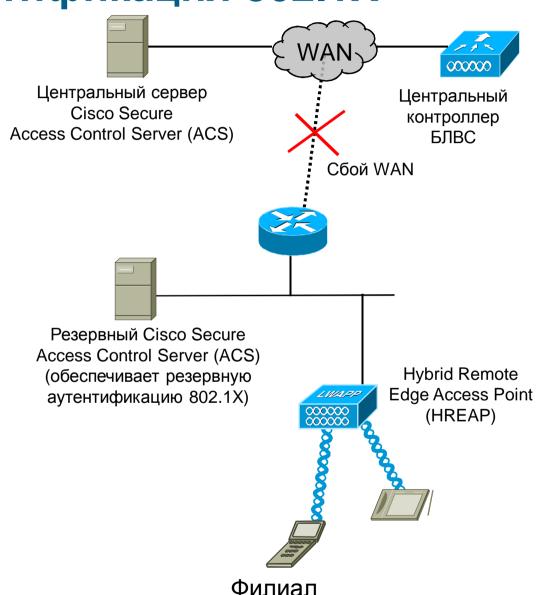
> Кэш Cisco Centralized Key Management (CCKM)

Быстрый роуминг работает с ТД HREAP как при наличии, так при отсутствии соединения с контроллером

2. Преимущества

Беспроводные IPтелефоны в удаленных офисах смогут продолжать перемещаться между ТД даже после сбоя канала WAN

Локальная аутентификация 802.1Х


1. H-REAP поддерживает аутентификацию 802.1X на локальном "резервном" сервере AAA/RADIUS

Если отказывает канал WAN к центральному RADIUS-серверу, проводится локальная аутентификация

2. Преимущества

Поддержка локальной аутентификации клиентов резервным RADIUS-сервером

Как новые, так и существующие клиенты БЛВС смогут пройти аутентификацию локально

Заключение

- 1. Решение Cisco Unified Wireless Network обеспечивает гибкие и мощные возможности для создания современных мультисервисных БЛВС
- 2. Современное оборудование Cisco закладывает надежную основу для создания корпоративных беспроводных ЛВС
- 3. Cisco Mobility Services дают возможность интеграции сетевой инфраструктуры с интеллектуальными бизнес-приложениями
- 4. Существуют гибкие опции дизайна сетей CUWN для главного офиса и филиалов компании

