

Multicast "primer"

Per Jensen, per@cisco.com

December 2006

© 2005 Cisco Systems, Inc. All rights reserved.

Agenda

- IP multicast why SSM
- Resiliency
- Channel changing
- Admission control / CAC

IP multicast primer (SSM) *... as required for IPTV...*

The key IP multicast services

Network level Modes/Services:

ASM – The well known IP Multicast

• Since 1995, lots of innovations, PIM-SM -> Bidir-PIM

SSM – Source Specific Multicast

- Easier to deploy/manage, provides implicit protection.
- Cisco has set of transition solutions for this!
- Requires server/receiver applications support

Standard protocol model for SSM

•IETF

Receiver host to router (eg: IP-STB)

- •IGMPv3(IPv4) / MLDv2(IPv6) with (S,G) signaling
- MUST be supported in host stack and host middleware (app)

Between routers

- PIM-SSM == subset of PIM-SM for SSM (nothing new!)
- Simple point to multipoint tree building == (S,G) SPTs only

• Cisco, (IETF ?)

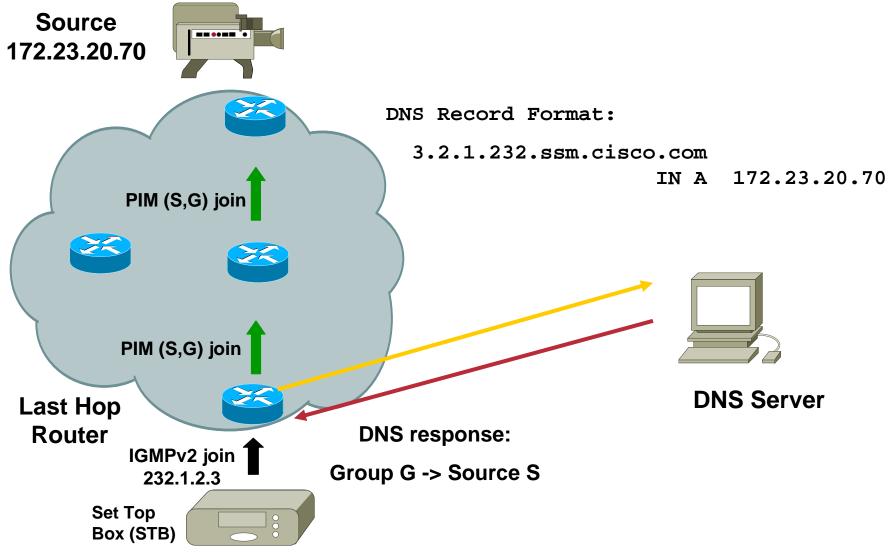
Source redundancy (option – other options too)

Anycast/Prioritycast source addresses with RIPv2 signaling

Host-to-router signalling The issue with IGMPv3 / SSM ?

- •While SSM was "invented" in 1999/2000 and has been available in routers since end of 2000, support on receiver hosts has been lagging
 - Windows XP and Linux started to support it in 2001 – 2003
 - Set Top Box Vendors need to be pushed by the SP customers, and those had in the past issues recognizing the importance of SSM.
 - L2 IGMP snooping devices similar story

SSM Mapping


One of three Cisco SSM transition solutions

- URD: If application is started from browser
- IGMPv3lite: Application can support SSM, but OS not
- SSM mapping: Host can not do SSM at all

Last Hop Router maps group to source(s)

- More than one sources when redundancy is needed
- Static mapping for quick deployment / testing
- Mapping via DNS for operational separation
 - Network operator of last hop router only needs to configure the feature (3 CLI lines)
 - Application operator (TV Broadcast etc..) operates DNS server that provides the mapping
 - Delivers simplification benefit to network operator

SSM Mapping – DNS Example

© 2005 Cisco Systems, Inc. All rights reserved.

Configuration

Enabling SSM mapping on the router

ip igmp ssm-map enable

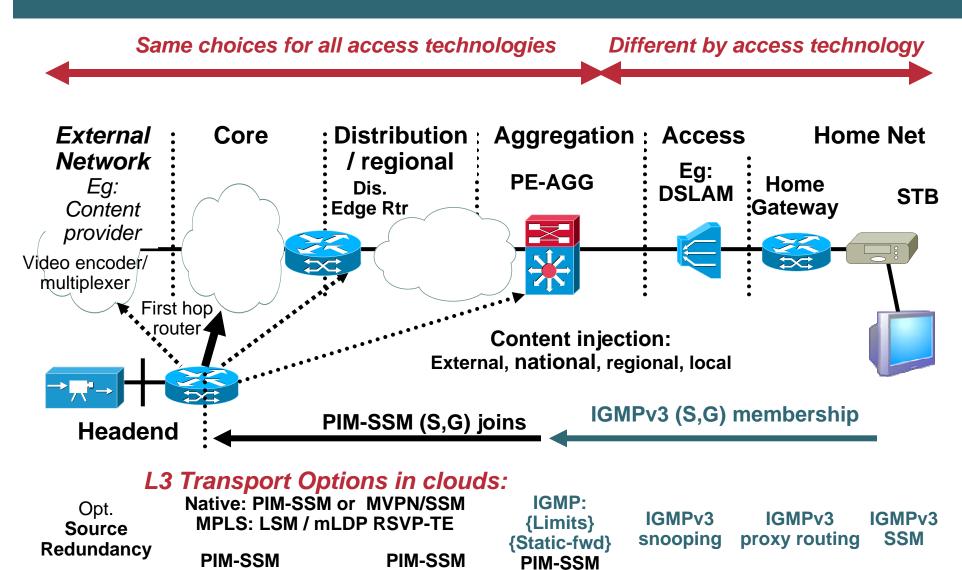
For static mapping:

ip igmp ssm-map static <acl-1> <source-1 IP address>

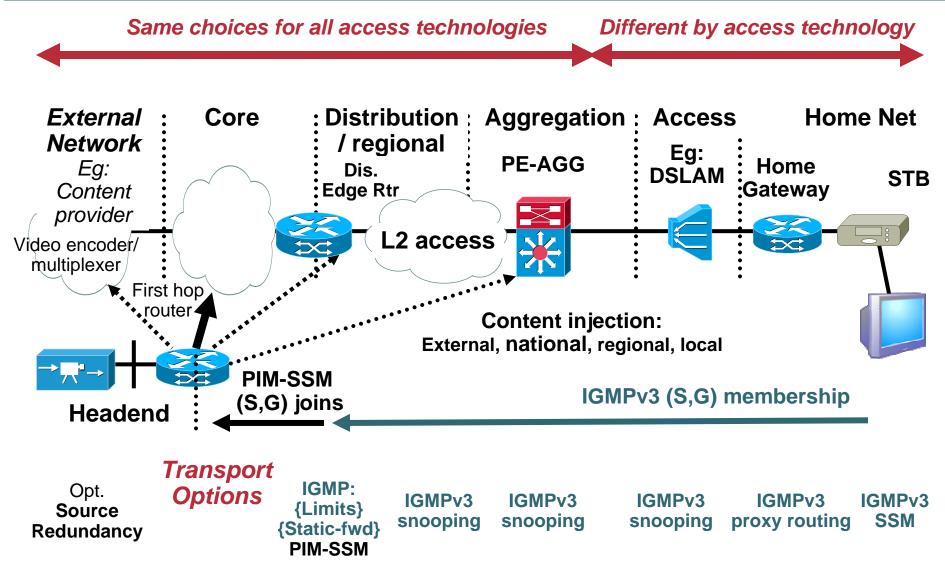
ip igmp ssm-map static <acl-2> <source-2 IP address>

For DNS mapping (existing commands):

ip domain-server <ip address>


ip domain-name <domain.com>

To disable DNS mapping


no ip igmp ssm-map query dns

DNS Record Format: 3.2.1.232 IN A 172.23.20.70

End-to-end protocol view

End-to-end protocol view with L2 distribution

Resiliency

© 2005 Cisco Systems, Inc. All rights reserved.

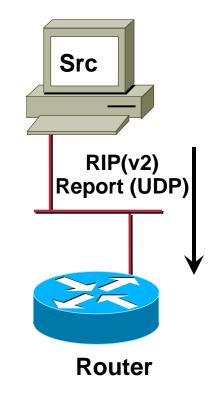
Redundancy models

- Dual streams (1+1 RTP sessions)
 - Let the receiver decide which one to take

Heartbeat

• Active sends periodic hello to standby (muted) source

Receiver driven


 Same group with two sources. STB decides which one to join using IGMPv3

Anycast-Source

- Two (or more) sources actively sending with same origin IP address
- Network decides which one to use using its metrics
- Disaster-recovery and redundant headend applications

Source Redundancy Anycast/Prioritycast signaling

- Redundant sources announce Source Address via RIPv2
- Routers redistribute (with policy) into actual IGP
 - Easily done from IPTV middleware (UDP)
 - No protocol machinery required only periodic announce packets.
 - Small periodicy for fast failure detection
 - All routers support RIPv2, but not often used as real IGP:
 - Allows secure constrained config on routers

Source Redundancy Anycast/Prioritycast policies

Policies

- Anycast: clients connect to the closest instance of redundant IP address
- **PriorityCast**: clients connect to the highest-priority instance of the redundant IP address
- Also used in other places
 - Eg: PIM-SM and Bidir-PIM RP redundancy, DNS
- Policy simply determined by routing announcement and routing config
 - Anycast well understood
 - Prioritycast: engineer metrics of announcements or use different prefix length.

Rcvr 1 Rcvr 2 Example: prioritycast with Prefixlength annuncement

Src A

primary

10.2.3.4/32

Src B

secondary

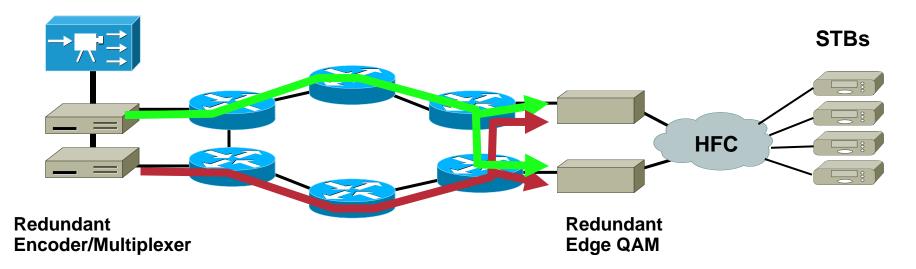
10.2.3.4/31

Source Redundancy Anycast/Prioritycast benefits

- Subsecond failover possible
- Represent program channel as single (S,G)
 - SSM: single tree, no signaling
- Move source instances "freely" around the network
 - Runs within IGP area
 - Not good for regional to national encoder failover (BGP)
- No vendor proprietary source sync protocol required

Multicast Fast Convergence

IP multicast


- Failures / topology changes are compensated for by reconverging the trees
- Reconvergence time is sum of:
 - •Failure detection time (only for failure cases)
 - Unicast reconvergence time
 - ~ No. Multicast-trees (PIM reconvergence time)
- Possible
 - ~ 300 msec ... 400 msec for few hundred trees
 - >= 1 sec for >= 1000 trees ?

Stream redundancy with path separation

Only solution that can guarantee 0 loss upon single network outages without adding latency

- Duplicate copies of multicast data
- Long-time use in finance market data feeds
 - Source and receiver hosts handle creation and elimination of duplicates
 - Two networks built:
 - No single network failure will impact both flows

Stream redundancy with path separation Candidate example from broadcast-TV in cable

- Encoder/Multiplexers generate two copies of IP multicast flows
- Network uses methods of path separation
 - Multiple IGP instances, topologies, two networks, VRF-lite, RSVP-TE, ...
- Each receiver consumes both copies
 - Remove duplicates by sequence numbers (eg: MPEG timestamp).
 - Any single failure in network: 0 packet loss. 0 added latency
- Same bandwidth allocation needed as in traditional SONET rings, but solution even better: 0 loss instead of <= 50 msec.

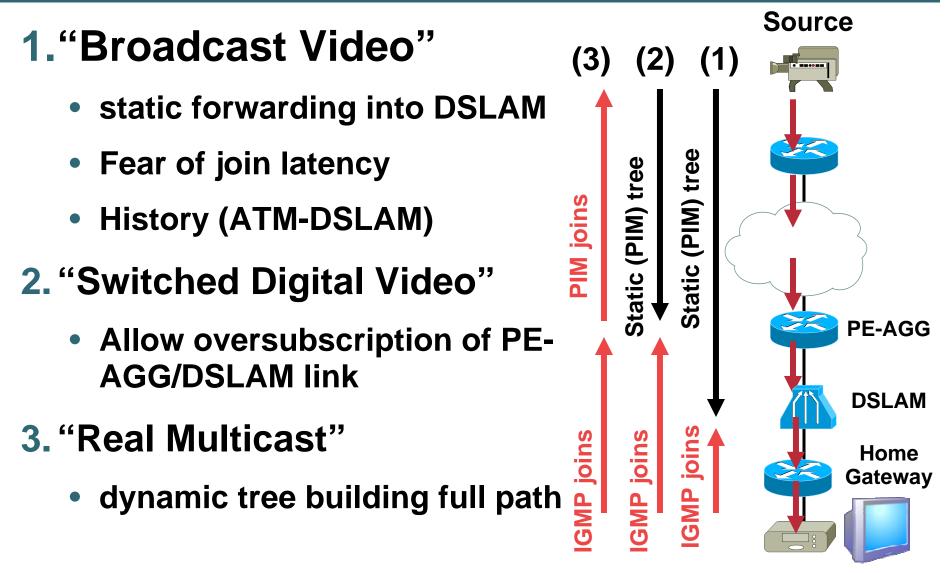
GOP and network failures

 Group Of Pictures (GOP) and frame relevance

- MPEG-2 GOP of size 12 => 480 msec (25 fps)
 - Hitting an I-frame (> 20% probability) affects the whole GOP
 - < 300 msec should cause a single-GOP loss, i.e. minor glitch
 - STB vendor dependencies

Failure impact upon viewer experience

- Very hard to measure and quantify
- If I frames or frame-information is lost, impact will be for a whole GOP
 - GOP can be 250 msec (MPEG2) .. 10 sec (WM9)
- Encoding and intelligence of decoder to "hide" loss impact quality as well
- IPTV STB typically larger playout buffer than traditional non-IP STBs:
 - Loss can cause catch-up: no black picture, but just a jump in the motion.


Channel changing

The (should be) obsolete problem

- IGMPv2 leave latency !
- Example:
 - 4Mbps DSL link, 3.5 Mbps MPEG2
 - Can only receive one TV channel at a time
 - Leave latency on channel change complex Resolved with IGMPv3/MLDv2
 - Ability for explicit tracking (vendor specific)
 - Can immediately stop forwarding upon leaves

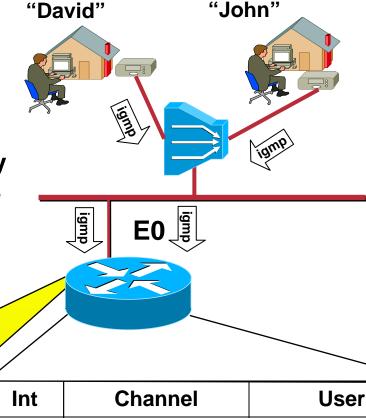
Static vs. dynamic trees

Fast Join/Leave for Faster Channel Change

Problem Description:

In networks where bandwidth is constrained between multicast routers and hosts (like in xDSL deployments), fast channel changes can easily lead to <u>bandwidth oversubscription</u>, resulting in a temporary degradation of traffic flow for all users.

Solution:


Reduce the leave latency during a channel change by extending the IGMPv3 protocol.

Benefits:

- Faster channel changing without BW oversubscription
- Improved diagnostics capabilities

Multicast Fast Join/Leave for Faster Channel Change

- Relies on IGMPv3
- Router tracks both User and Channel(s) being watched
- When user leaves channel no one else is watching, router immediately prunes the channel off the interface compared to IGMPv2 (up to 3 seconds) and IGMPv1 (up to 180 seconds)!

Configuration:

interface Ethernet 0 ip pim sparse-mode ip igmp version 3 ip igmp explicit-tracking

Int	Channel	User
E0	10.0.0.1, 239.1.1.1	"David"
E0	10.0.0.1, 239.2.2.2	"John"
E0	10.0.0.1, 239.3.3.3	"David"

Admission control

- Oversubscription (eg: PE-AGG/DSLAM link) raises question of admission control
 - Real-time !
 One flow too many messes up everything
 - Vendor-specific: Router/L2-Device local config for perinterface maximum# multicast flows
 - With more varying bandwidth (2.. 20Mbps) of TV programming, this may need to become bandwidth aware
 - Vendor specific: Local router CLI
 - RSVP for multicast admission control (Unicast/VoD)

Join Latency

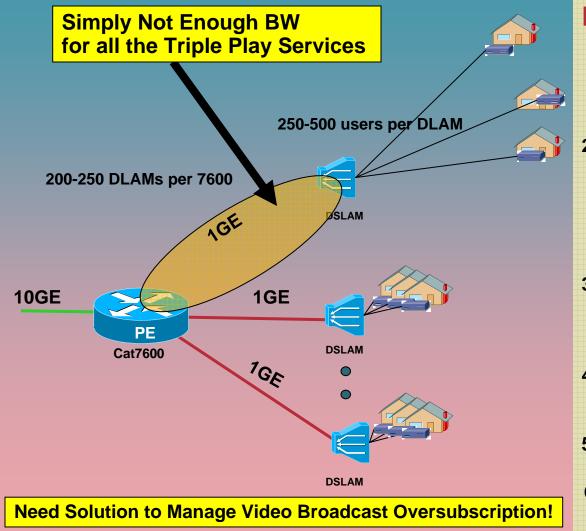
- Static forwarding (to PE-AGG, or DSLAM) often done to avoid join latency
 - But other reasons too (policy, ...)
- Bogus ?
 - Join latency (PIM/IGMP) very low, eg: individual < 100 msec
 - Relevant: worst-case zapping performance
 - Joins stop at first router/switch in tree that already forwards tree
 - Probability for joins to go beyond PE-AGG very low !
 - If you zap to a channel and it takes ¼ sec more: You are the first guy watching this channel in a vicinity of eg: 50,000 people. Are you sure you want to watch this lame program ?

GOP size and channel changing

- GOP size of N seconds causes channel change latency >= N seconds
 - Can not start decoding before next I-frame
- Need/should-have channel change acceleration for GOP sizes > 0.5 sec ?
- Unclear
 - How much bandwidth is saved in different codecs by raising GOP size (same quality)
 - Eg: WM9/AV ~ 2.5 Mbps -> GOP size 3 sec
 - What bandwidth with 0.5 sec GOP size ??

Multicast CAC

© 2005 Cisco Systems, Inc. All rights reserved.


Local policy CAC in IOS

- Branch ("interface") access control for flows
 - Ip igmp access-group <flows-acl>
 - Ip multicast boundary <flows-acl> [in | out]

Branch ("interface") limits for #flows

- Ip igmp limit <n> [except <flows-acl>]
 - •Output side only, IGMP only
- Ip multicast limit <flows-acl> <n> [in | out]
- Cost factor to multicast limit
 - Driven by customer requirements to provide fair share of bandwidth for flows from multiple content providers (See example)

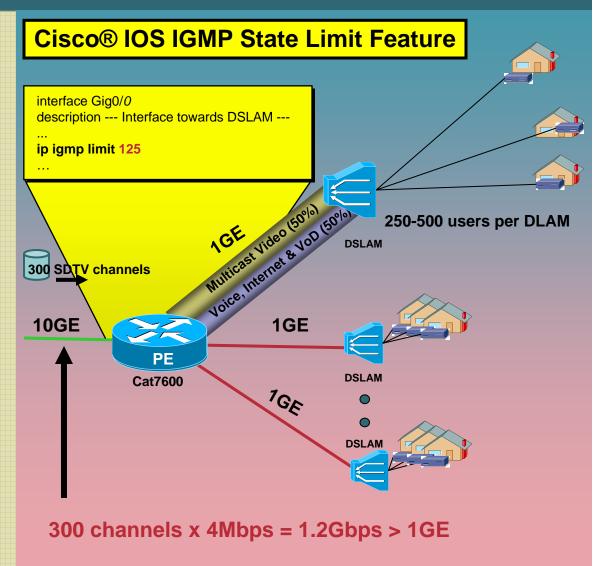
Oversubscription on aggregation link to DSLAM

Problem statement

- 1. 250 500 end users need to be supported on a 1 Gbps DSLAM uplink.
- 2. Triple Play Services need to support 250 – 500 users - Voice : 2 IP phone connections
 - per home
 - Video : 200 500 cable channels
 - Data : Internet
 - VOD : 10 % users using VOD
- 3. If 500 homes on a single DSLAM are all watching a different channel, the total BW required for video alone would be 500 x 4Mbps = 2Gbps!!!
- 4. This is NOT enough BW for a good user experience in the worst case scenario.
- 5. And don't forget, we still need BW to accomodate Voice, VoD & Data!
- 6. CONCLUSION...

Multicast Call Admission Control (CAC) phases

	Phases	Description	12.4T/12.2S Availability
1	Single per interface mroute state limit	Limits mroute state per interface. Introduced by Cisco [®] IOS IGMP State Limit feature.	CSC <i>dt860</i> 93 12.2(15)T, 12.2(14)S
2	multiple per interface mroute state limits	Limits mroute state for different ACL-classified sets multicast traffic individually on an interface. Introduced by Cisco [®] IOS "Per Interface Mroute State Limit" feature.	CSCdz51630 12.3(14)T Future: Cisco-7600
3	Cost-factor addition to per interface mroute state limits	Allows for bandwidth based admission control on a per- interface bassis (ingress or egress).	CSCej51837 Future: Cisco-7600

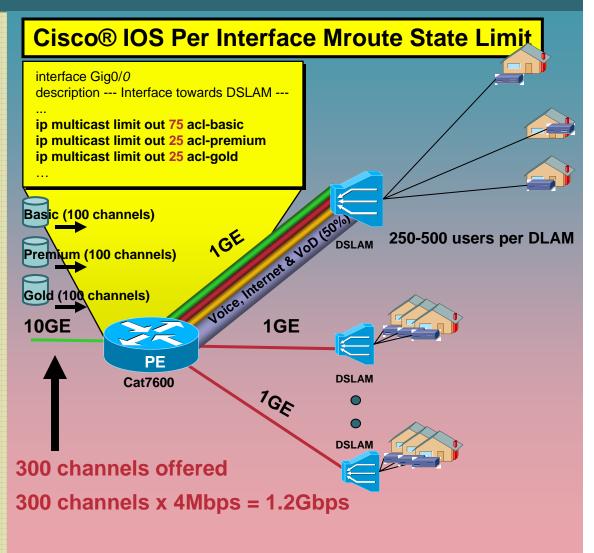

Phase 1 – Feature: (Single) Per Interface Mroute State Limit

Example CAC use:

- 1. Say the total number of SDTV channels offered by a Service Provider is 300.
- 2. Each SDTV channel is approximately 4Mbps.
- 3. 50% of each outgoing 1Gbps link (500Mbps) needs to be provisioned for multicast video leaving the remaining 50% for Voice, Internet & VoD.
- 4. The required CAC needed per interface comes out to:

500Mbps/4Mbps = 125 mroutes

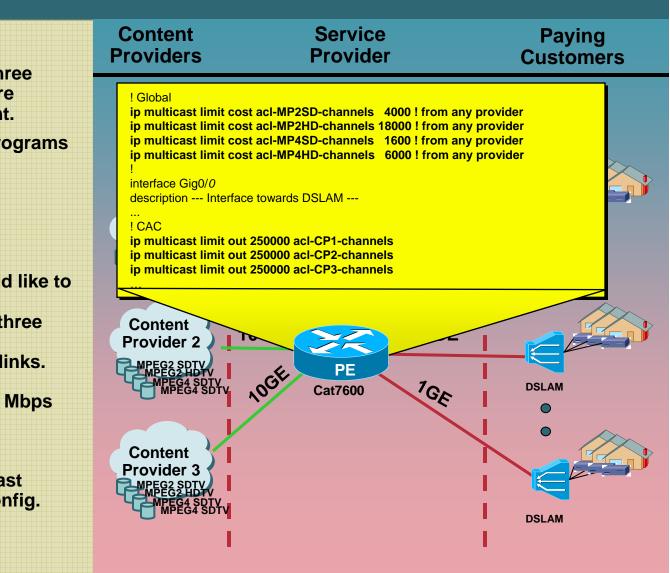
Supports ASM and SSM IGMPv2/v3, but not PIM. Receiver side only.



Phase 2 – Feature: (multiple) Per Interface Mroute State Limit

Generic interface multicast route limit feature with support for Ingress, egress, PIM/IGMP, ASM/SSM. Example CAC use:

- 1. Say the total number of SDTV channels offered by a Service Provider is 300.
- 2. Each SDTV channel is ~ 4Mbps.
- 3. Service Provider will offer three TV bundles (Basic, Premium, Gold). Each bundle will have 100 channels.
- 4. 50% of 1Gbps link for mcast video Rest for Voice, Internet & VoD.
- 5. Within this provisioned 50%: 60% will be for Basic (300Mbps) 20% will be for Premium (100Mbps) 20% will be for Gold (100Mbps)
- 6. The required CAC needed per interface comes out to:


Basicmroute limit = 300/4 = 75Premium mroute limit = 100/4 = 25Goldmroute limit = 100/4 = 25

Phase 3 – Cost factor for per-interface Mroute State Limits

Example CAC use:

- 1. Consider the following. Three Content Providers (CPs) are providing multicast content.
- 2. Multiple CP will have TV programs w/ different BW:
 - MPEG2 SDTV: 4 Mbps
 - MPEG2 HDTV: 18 Mbps
 - MPEG4 SDTV: 1.6 Mbps
 - MPEG4 HDTV: 6 Mbps
- 3. Service Provider (SP) would like to provision fair sharing of bandwidth between these three content providers to its consumers across 1Gbps links.
- 4. 250Mbps for each CP, 250 Mbps for Voice/Internet/VoD.
- 5. Simple extension of multicast limits: global cost factor config.

CISCO SYSTEMS