Cisco Expo 2012

Co vše umí dnešní přístupová vrstva sítě

T-NET1, T-NET2 / L3

Radek Boch, Systems Engineer Cisco rboch@cisco.com
CCIE #7095

Prosíme, ptejte se nás

- Twitter www.twitter.com/CiscoCZ
- Talk2cisco www.talk2cisco.cz/dotazy
- SMS 721 994 600

What is an intelligent Access Switch?

Traditional Switch

When the Network Access Knows

When the Network Access Knows

Intelligent Access – Emerging Requirements

Mobility

Convergence of wired and wireless

Green

Rising energy costs, corporate sustainability mandates

Security

Provide secure
access while
managing explosive
growth in number of
devices accessing
the network

Application Performance

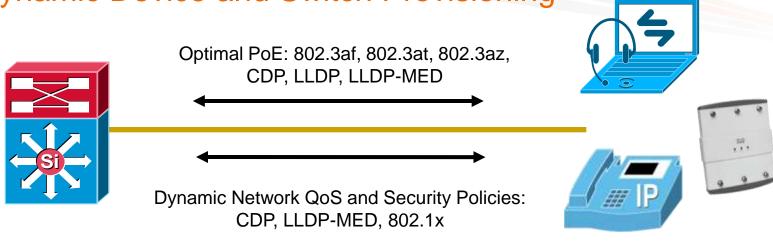
Need to closely manage applications for optimum performance

Voice/Video

Growth of video outstripping growth of access network resources

Simplify Operations, reduce management complexity

Where are we evolving from


Today's Connectivity Model

- What have we built our network access to do?
- Provide Connectivity
- Be Highly Available (spanning tree best practices)
- Implement VLAN's to isolate traffic (e.g. voice vs. data)
- Implement QoS to support phones
- Security (where we can)

```
interface FastEthernet0/24
switchport access vlan 100
                                      Voice and Data VLAN's
switchport mode access
switchport voice vlan 200
switchport port-security maximum 2
switchport port-security
                                                    L2 DoS
switchport port-security aging time 2
                                                  Mitigation
switchport port-security violation restrict
switchport port-security aging type inactivity
srr-queue bandwidth share 10 10 60 20
                                               QoS - Trust
queue-set 2
                                              traffic coming
priority-queue out
mls qos trust device cisco-phone
                                                 from the
mls gos trust cos
                                                  phone
auto qosvoipcisco-phone
macro description cisco-phone
                                          Smartports
 spanning-tree portfast
                                      Spanning Tree Tuning
spanning-tree bpduguard enable
service-policy input AutoQoS-Police-CiscoPhone
                                                      QoS
```

Evolving Network Services

Plug and play provisioning of edge devices (phones, UC applications and APs) necessary to manage operational overhead

Power negotiation / mgmt

VLAN configuration

802.1x interoperation

QoS configuration

Security configuration

The end devices relationship to the network is changing and we need an Intelligence at the edge of the network to be able to support the evolving requirements

Agenda

The Evolving Network Edge

Power Technologies & Management

PoE - 802.3af, 802.3at and beyond

Energy Efficient Ethernet EnergyWise

StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

Auto-Smartports & Smartinstall Netflow / Flexible Netflow **GOLD**

Why PoE in the access layer

Ease of deployment

Using a single cable for data and power

Centralized Power Management

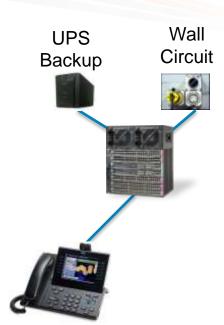
EnergyWise, Energy Efficient Ethernet

High availability

Centralized power backup, continous operations

Power supply redundancy is built into most network architectures

Backup UPS power is used in most enterprise campus



Power efficiency

Bulk power supply is more efficient that cheaper power bricks

Bulk power supply efficiency curve is optimized for avg. utilization

Bulk power supply is less expensive compared to individual power brick per end device

Power Over Ethernet

The state of the s

Cisco Pre-Standard and 802.3af-2003

- Cisco pre-standard devices initially receive 6.3W and then optionally negotiate via CDP
- IEEE 802.3af ratified 2003
- Specifications

Cable Guidelines: Cat3 and Cat5/5e/6

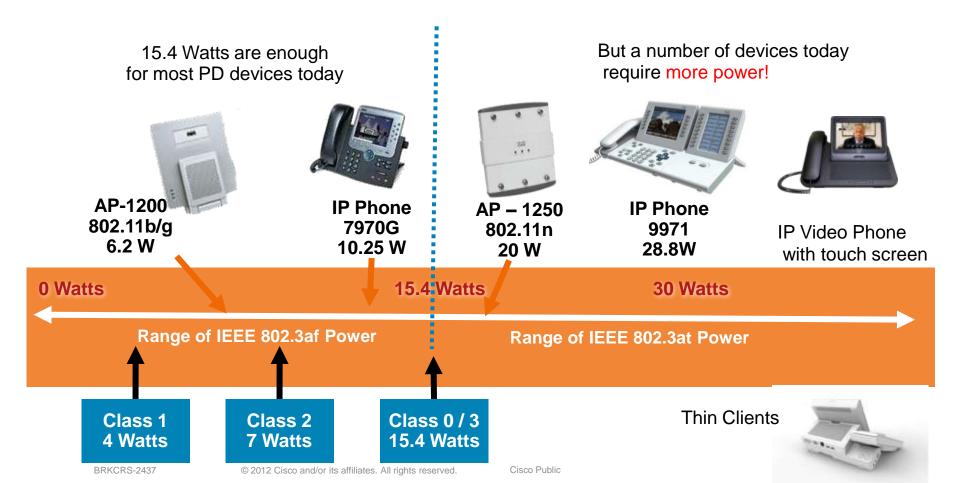
Current level: 350mA

Voltage: PSE from 44-57 DC

Maximum power output: PSE 15.40W output

Maximum power input: PD is 12.95W input

Supported Modes: Mode A (data-pairs), Mode B (spare-pairs)


Power negotiation is 'optional' behavior for 802.3af devices

Evolving Layer 1 Services

Why do we need 802.3at (PoE+)

- Endpoint power requirements are increasing
- Green initiatives
- Need for Granular power negotiation 'and' increased power

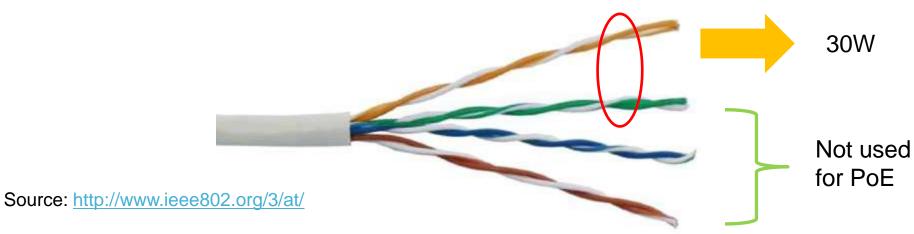
Power Over Ethernet

IEEE 802.3at (PoE+)

IEEE

- IEEE 802.3at ratified Sep.2009
- Specifications

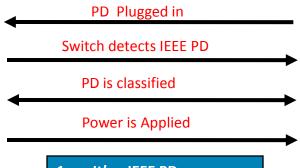
Cable Guidelines: Cat5e or beyond


Current level: 600mA assuming cable 50° C or lower

Voltage: PSE from 50V to 57V

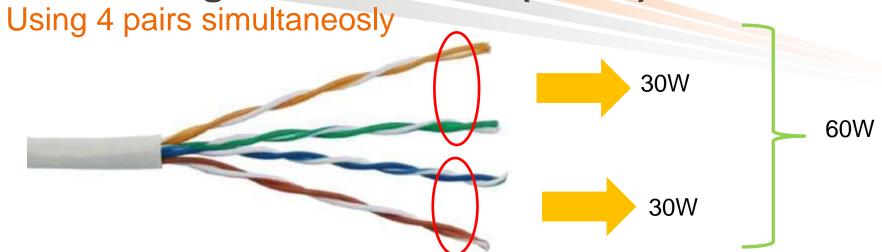
2-pair medium power output: PSE 30W output

Maximum power input: PD is 25.5W input


Supported Modes: Mode A (data-pairs) or Mode B (spare-pairs)

Power over Ethernet

Detect, Classification & Power Up



- 1. It's a IEEE PD
- 2. PD Classified
- 3. Power Up

Class	Usage of class	Minimum Power Levels Output at the PSE	Maximum Power Levels at the Powered Device	Class description
0	Default	15.4W	0.44 to 12.95W	Classification unimplemented
1	Optional	4.0W	0.44 to 3.84W	Very Low Power
2	Optional	7.0W	3.84 to 6.49W	Low Power
3	Optional	15.4W	6.49 to 12.95W	Mid Power
4	Reserved in 802.3af	Treat as Class 0		
4	802.3at	30W	12.95W – 25.5W	High Power

Introducing Universal PoE (UPoE)

- Does not violate any safety specifications from cabling standards
- As simple as two independent PoE+ connections
- Specifications

Cable Guidelines: Cat5e or beyond

Current level: 600mA assuming cable 50° C or lower

Voltage: PSE from 50V to 57V

2-pair medium power output: PSE 30W output

Maximum power input: PD is 51W input

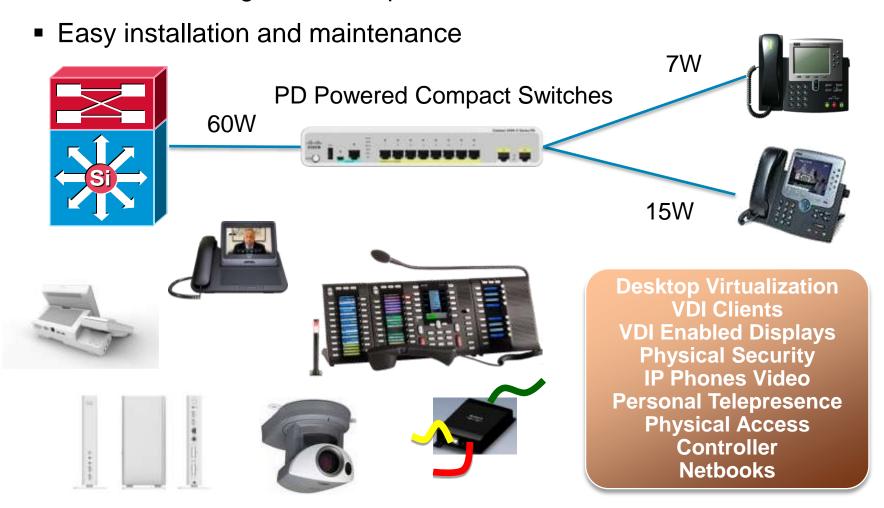
Mode: Combines Mode A (data-pairs) and Mode B (spare-pairs)

Cabling and Heating

- TIA TR42 and ISO IEC are the two standards followed for structured cabling in enterprise
- Both committees studied temperature rise on PoE powered cables
 - Used a cable bundle of 100 cables, standard Cat5e
 - Used worst case scenario of cable passing through conduits
 - All study was done with all conductors in the cable powered

TIA TR-42 Recommendation

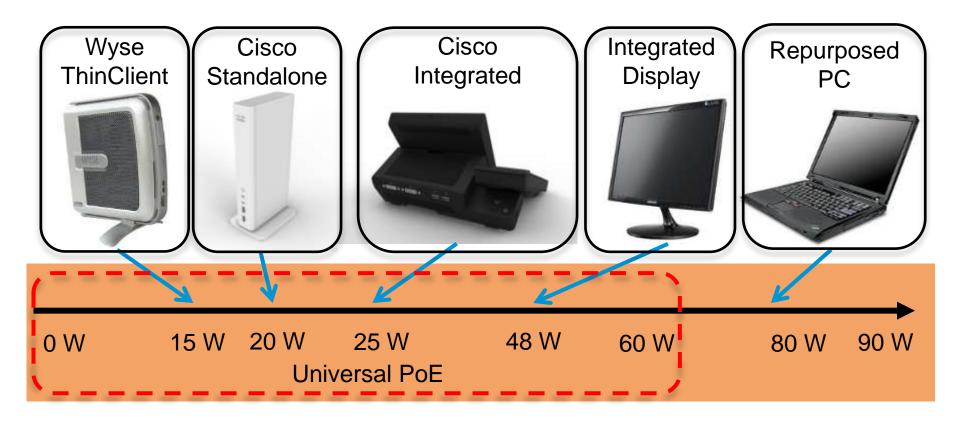
ISO/IEC Recommendation


Temperatur e Rise	Max Current per twisted Pair	Max Power @ 50V	Temperatur e Rise	Max Current per twisted Pair	Max Power @ 50V
5	420mA	37.5W	5	420mA	37.5W
7.5	520mA	45.2W	7.5	550mA	47.4W
10	600mA	51.0W	10	600mA	51.0W
12.5	670mA	55.8W	12.5	680mA	56.4W
15	720mA	59.0W	15	720mA	59.0W

Standard cables are rated to 60C and ambient temperature for cables are not expected to exceed 50C

Universal PoE (UPOE)

Applications


- Support applications that require high availability, e.g. 911 calls
- Minimize cabling into Workspace

Use case for UPoE

VDI Clients

- Clients consume lower power. Thin clients consume less then thick clients
- Amendable to Power Management

PoE Supported Products

Products	802.3af (15W)	EPoE (20W)	802.3at (30W)	UPOE (60W)
Catalyst 2960	Yes	No	No	No
Catalyst 2960S	Yes	Yes	Yes	No
Catalyst 3560E/3750E	Yes	Yes	No	No
Catalyst 3560X/3750X	Yes	Yes	Yes	No
Catalyst 4500	Yes	4648-RJ45V+E	4748-RJ45V+E	4748-UPOE+E
Catalyst 6500	Yes	6148-GE-AF 6548-GE-AF 6148E-GE-45AT		No

Agenda

The Evolving Network Edge

Power Technologies & Management

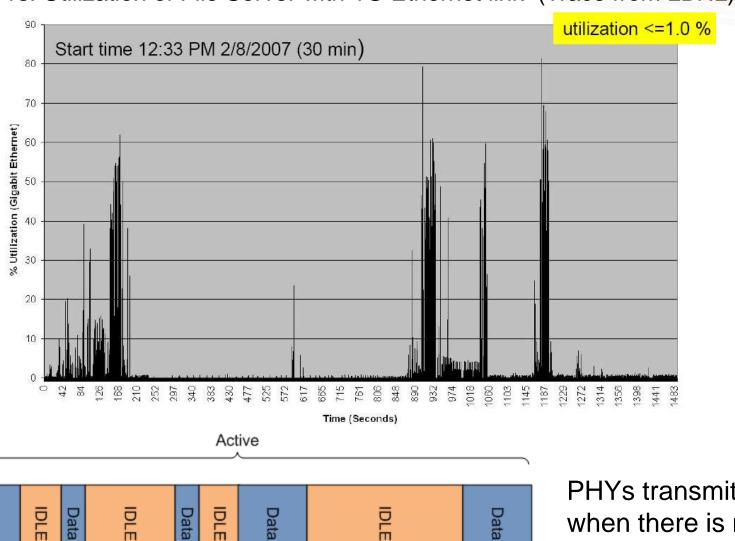
PoE - 802.3af, 802.3at and beyond

Energy Efficient Ethernet

EnergyWise StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

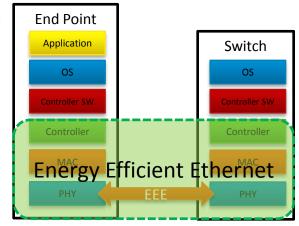
Auto-Smartports & Smartinstall Netflow / Flexible Netflow **GOLD**

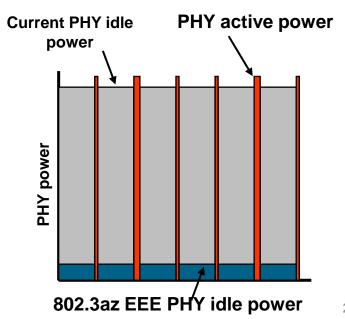


Why Energy Efficient Ethernet?

Time vs. Utilization of File Server with 1G Ethernet link (Trace from LBNL)

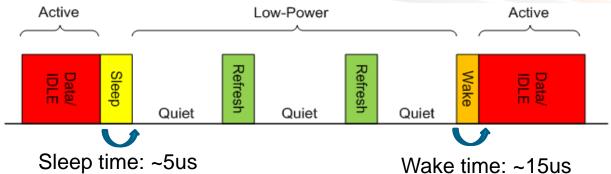
PHYs transmit Idles when there is no Data to send


Data


Evolving Power Optimizations

802.3az: Energy Efficient Ethernet (EEE)

- IEEE 802.3az Timeline
 Working Group Ballot July 2009
 Sponsor Ballot March 2010
 Standard Nov 2010
- Power down the PHYs during when there is no data to send
- During power-down, maintain coefficients and synchronization to allow rapid return to active state
- Asymmetric mode of operation
 - Transmit and receive circuits function independently



Operating States and MDI Signaling

Term	Description
Active State	Existing state used for data transmission when either data packets or Idle symbols are transmitted
Low Power state	New state used during periods of no data transmission to allow system power reduction between data packet bursts.

Term	Description
Sleep	Signal to inform link partner of entry into low power state
Quiet	No signal transmitted
Refresh	Periodic signal during low power state for PHY to maintain timing recovery and/or filter coefficients
Wake	Signal to inform link partner of entry back into active state

Linecard to support UPoE and EEE

WS-X4748-UPOE-RJ45V+E

- 60W PoE with max. line card budget of 1500W
- LLDP enhancement to negotiate beyond 30W
- Compliant with IEEE 802.3az for: 100/1000 Base-T
- Power consumption is based on link utilization
- Power down the PHYs during when there is no data to send
- During power-down, maintain coefficients and synchronization to allow rapid return to active state
- Asymmetric mode of operation
 - Transmit and receive circuits function independently

1 Gbps Port Power Consumption

No EEE	EEE
1.0 W	0.47W

50% Power Savings

Energy Efficient Ethernet - Configuration

Determine EEE Capability

```
Switch# show interface gi 1/2 capabilities

GigabitEthernet1/2

Model: WS-X4748-UPOE+E-RJ-45

Type: 10/100/1000-TX

Speed: 10,100,1000,auto

Duplex: half,full,auto

Auto-MDIX: yes

EEE: yes ( 100-Tx and 1000-T auto mode )
```

Configure EEE

```
Switch#conf t
Switch(config)#int gi 1/2
Switch(config-if)#power efficient-ethernet auto
```

Verify EEE

```
Switch#show platform software interface gi 1/2 status
Switch Phyport Gi1/2 Software Status
EEE: Operational
```

Agenda

The Evolving Network Edge

Power Technologies & Management

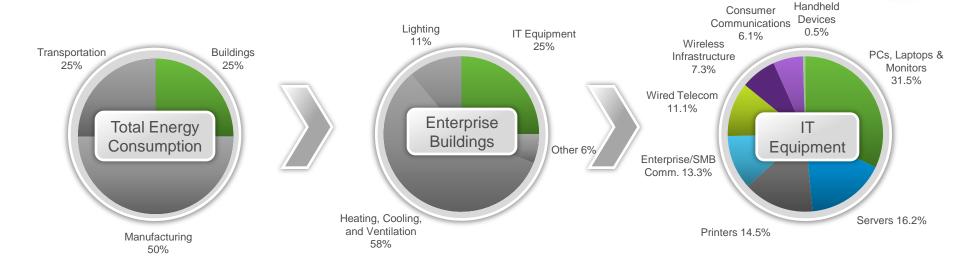
PoE - 802.3af, 802.3at and beyond **Energy Efficient Ethernet**

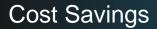
EnergyWise

StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

Auto-Smartports & Smartinstall Netflow / Flexible Netflow **GOLD**





Energy Operational CostsOpportunity in Enterprise IT

- Rising energy costs
- IT device proliferation
- Video applications

Sustainability Mandates

- Regulatory compliance
- Government mandates
- Company requirements

Source: BOMA 2006, EIA 2006, AIA 2006

Source: UK Energy Efficiency Best Practice Program; Energy Consumption Guide 19: Energy Use in Offices

Source: Gartner Dataquest, Forecast of IT Hardware Energy Consumption, Worldwide, 2005-2012.

Cisco EnergyWise Architecture

Unifies Device Energy Management

MANAGEMENT APPLICATIONS

Energy Management Applications

Network Management Applications Building Management Systems

EnergyWise Management API

EnergyWise SDK / APIs

POE / POE+ / UPOE

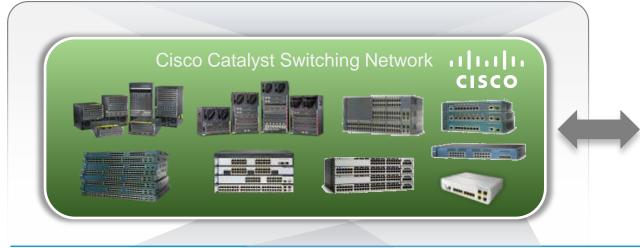
Building Protocols

IT DEVICES

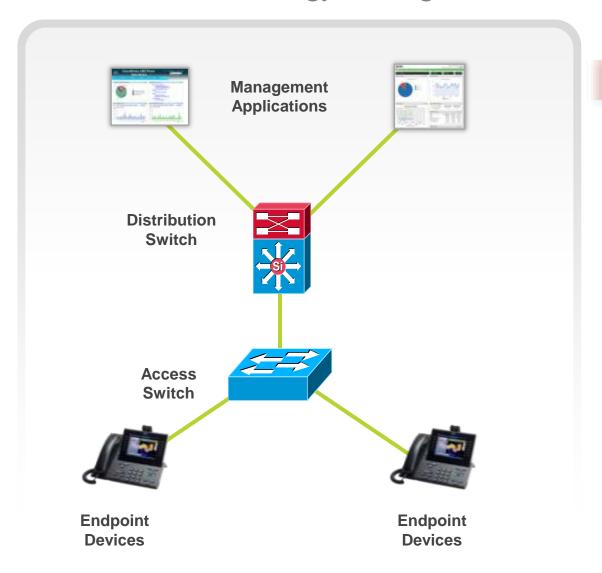
BUILDING FACILITIES

Cisco EnergyWise Architecture

Unifies Device Energy Management



MANAGEMENT APPLICATIONS

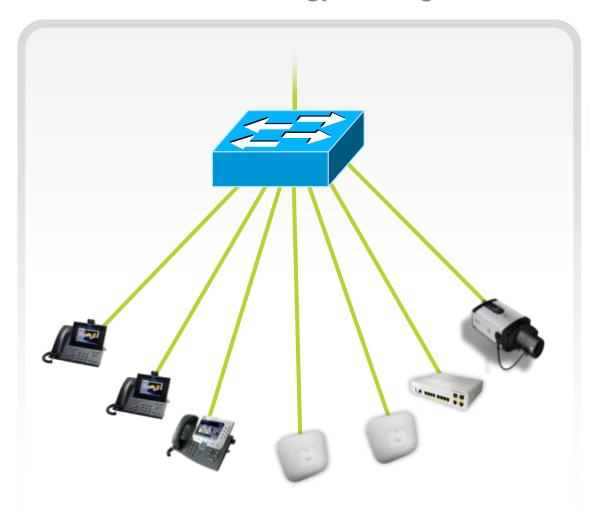

BRKCRS-2437

BUILDING DEVICES

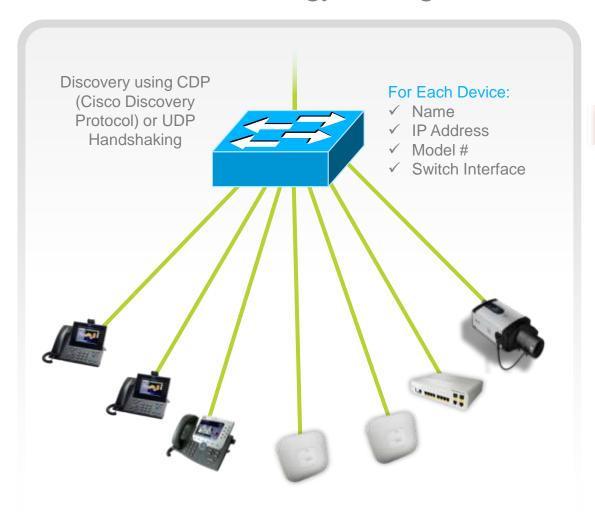
Network-Based Energy Management

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

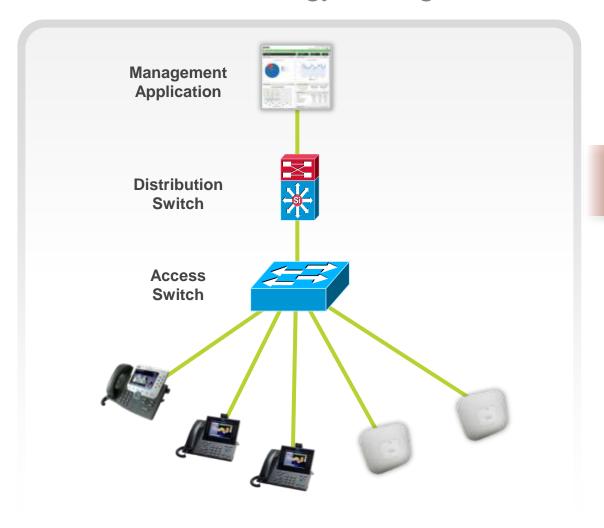
Network-Based Energy Management


- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

Network-Based Energy Management


- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

Network-Based Energy Management


- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

Network-Based Energy Management

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies


Network-Based Energy Management

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

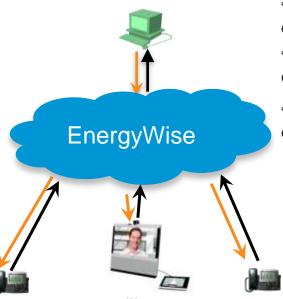
IP Phones and Access Points

Network-Based Energy Management

IP Phones and Access Points

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

ICT Energy Management Cisco EnergyWise


Services:

keywords: bldg3, Paris

Role: ip.phone

Importance: 100

- Finely Measure (per device, per type of device, per location)
- Control (per device, or group of devices, granular power level 0-10)
- Organize (keywords, name, role, importance, business impact)
- Optimize and Report

"What is the total power usage in Paris?" energywise query importance 100 keyword paris name * sum usage

"What is the power usage of all video endpoints?" energywise query importance 100 keyword ip.video name * sum usage

"Shut down non-critical equipment in Paris" energywise query importance 60 keyword paris name * set level 0

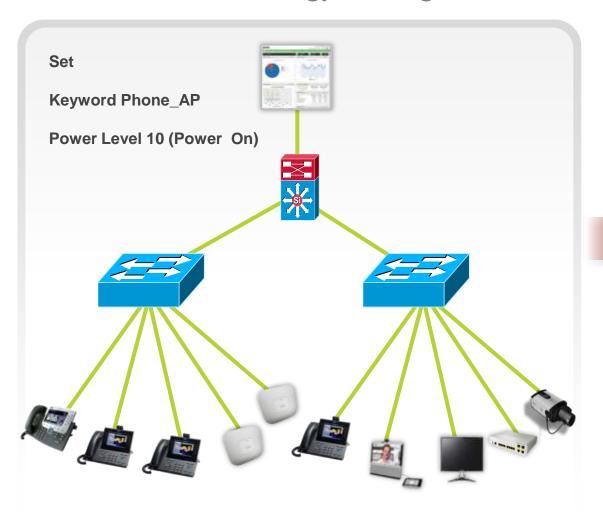
A new paradigm in Energy Management!

60 W keywords: bldg3, Paris Role: ip.video Importance: 60

7 W keywords: bldg3, Paris Role: ip.phone Importance: 60

Displaying Usage

c2960S-1#show energywise usage

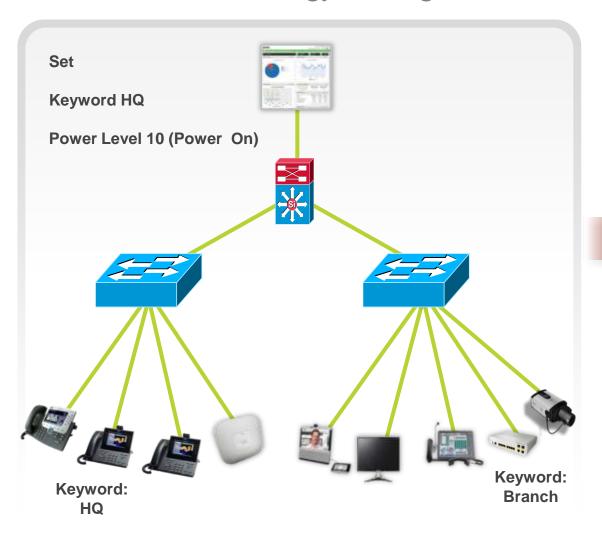

Interface	Name	Usage	Category	Caliber
	c2960S-1-1	81.0 (W)	consumer	max
Gi1/0/4	SEP000E84C063C1	1.9 (W)	consumer	actual
Gi1/0/5	PVC300-1	4.4 (W)	consumer	actual
G11/0/6	Gil.0.6	2.1 (W)	meter	actual
	SEP5475D02B3F46	6.0 (W)	consumer	presumed
Gi1/0/7	Gi1.0.7	6.0 (W)	meter	actual
	SEP8CB64FF6723F	8.8 (W)	consumer	presumed
Gi1/0/8	Gi1.0.8	2.2 (W)	meter	actual
	SEP5475D02B40BE	6.0 (W)	consumer	presumed
Gi1/0/10	Gi1.0.10	6.1 (W)	meter	actual
	SEPC0626B62AE93	8.8 (W)	consumer	presumed

Total Displayed: 11 Usage: 116.9

© 2011 Cisco and/or its affiliates. All rights reserved.

EnergyWise Technology

Network-Based Energy Management

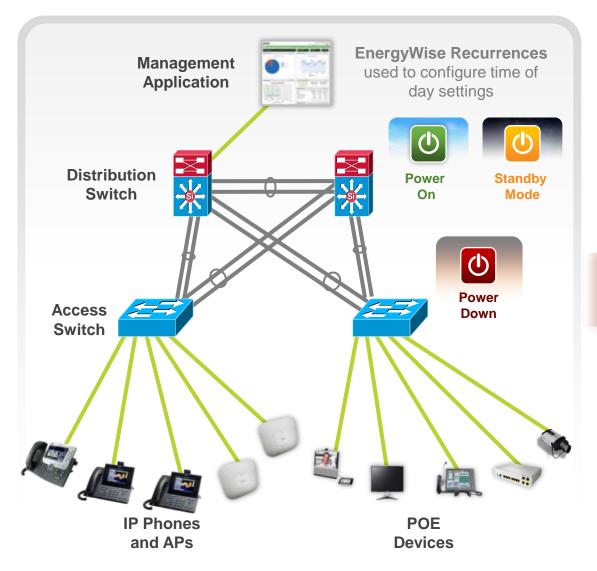


Process:

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

EnergyWise Technology

Network-Based Energy Management



Process:

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

EnergyWise Technology

Network-Based Energy Management

Process:

- 1. Secure Authentication
- 2. Auto-discover devices
- 3. Collect energy consumption
- 4. Set power level modes
- 5. Configure Time of Day Policies

IP Phone Power States

Function	Full Power	Power Save	Power Save Plus (PSP)
Screen Backlight	On	Off	Off
CPU, Memory, interface	On	On [Off
Daisy Chained PC	Connected	Connected [Disconnected
Can receive calls?	Yes	Yes [No
Time before call can be placed	Instantaneous	> 250 milliseconds	> 60 seconds
Seen as a domain member?	Yes	Yes [No

Basic Configuration

Begin by creating an EnergyWise domain. This activates EnergyWise on the switch:

```
Switch# config t

Switch(config)# energywise domain myDomain secret 0 mySecret protocol udp port 43440 ip 2.2.4.30
```

Verify that EnergyWise is active, and report total available power

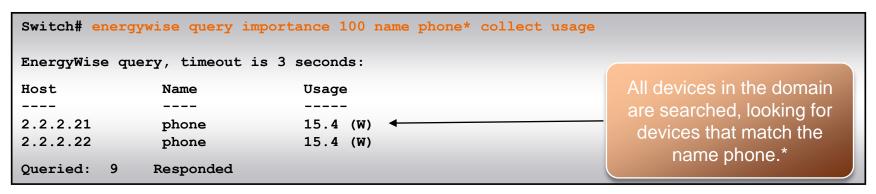
```
Switch# show energywise domain
```

Name : C3750-48P-149

Domain : myDomain

Protocol : udp

IP : 2.2.4.30 Port : 43440


EnergyWise Neighbors in Domain & Example

Neighbors are EnergyWise-aware switches and powered devices.

```
Switch# show energywise neighbors
Capability Codes: R-Router, T-Trans Bridge, B-Source Route Bridge S-Switch, H-Host, I-IGMP, r-
Repeater, P-Phone
     Neighbor Name
Id
                        Ip:Port
                                            Prot
                                                   Capability
     TG3560G-21
                        2.2.2.21:43440
                                                    SI
                                            udp
2
     TG3560G-31
                        2.2.4.31:43440
                                            static S I
     TG3560G-22
                        2.2.2.22:43440
                                            cdp
                                                    SI
```

EnergyWise collects power usage within EnergyWise domain based on queries with very granular controls

Example: This command collects present power used by all devices in the domain which have the name "phone" (The wildcard "*" is permitted, and finds "phone.1", "phone.lobby", etc.)

Cisco EnergyWise Product Portfolio

Catalyst 6500

Catalyst 4500 & 4900

Catalyst 2960-S

Catalyst 2960 and 2975

Catalyst 3560-E and 3560

Catalyst 3750-E and 3750

Catalyst 3750-X and 3560-X

Integrated Services Routers (ISR i.e. 1900/2900/3900) G2

CiscoWorks LMS

Cisco IP Phones

VDI Phone Backpack and Tower

Software Support

- Catalyst 2960/2975/3560/3750/3560E/3750E from 12.2(50)SE
- Catalyst 2960S/3560X/3750X from 12.2(53)SE2
- Catalyst 4500 from 12.2(52)SG, Catalyst 6500 from 12.2(33)SXI4
- Cisco Routers 1900/2900/3900 Cisco IOS Software 15.0(1)M3

Agenda

The Evolving Network Edge

Power Technologies & Management

PoE – 802.3af, 802.3at and beyond Energy Efficient Ethernet EnergyWise

StackPower + PoE-Passthrough

Neighboring Services & QoS
 CDP, LLDP, LLDP-MED
 Dynamic Quality of Service

Auto-Smartports & Smartinstall Netflow / Flexible Netflow GOLD

Evolving Power Technologies

StackPower

Innovative power interconnect system

- Share power supplies among all switches
- Power no longer confined to a particular switch, power goes where it is needed
- Pay as you grow

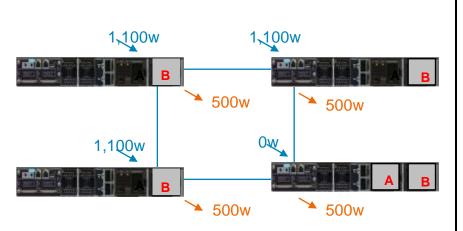
Flexible

- From no-power supply to up to 2.2KW per switch
- Can mix different sizes or different types (AC & DC) power supply

Highly resilient

- Enable "zero-footprint" RPS
- Unused power from one power supply can back up an other one

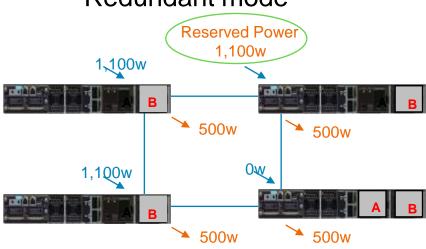
Intelligent load shedding


 Preserve the most critical part of your network in case of power supply failure

StackPower Modes

Power share, Redundant, RPS modes

Power Sharing mode



Available Pwr	Allocated Pwr	Unused Pwr
3,300 W	2,000 W	1,300 W

Entire available power of 3,300w is available to the system.

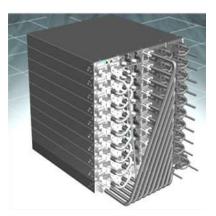
Switch and PD requests for more power is granted until all 3,300w are used. No redundancy

Redundant mode

Available	Allocated	Unused	RESERVED
3,300 W	2,000 W	200W	1,100 W

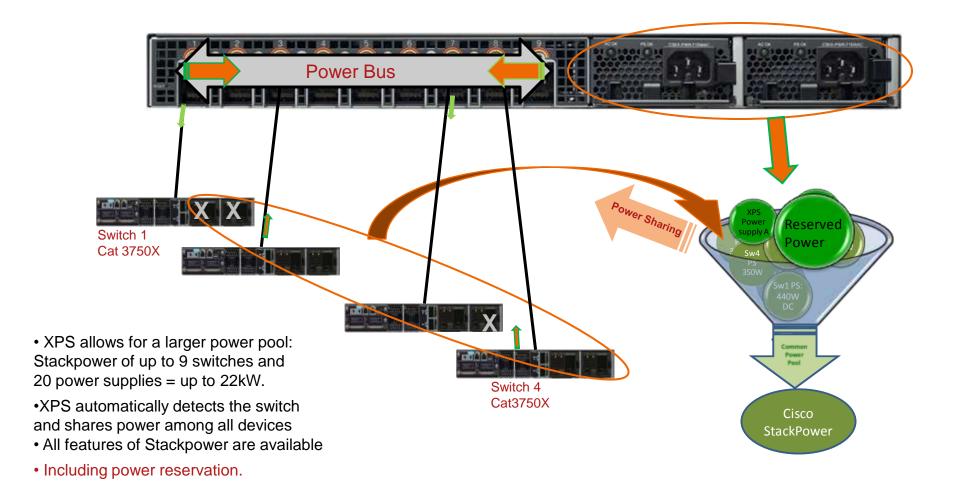
Overall capacity is 3,300w –1,100w is reserved for redundancy.

Available Power to share is 2,200w and there is an extra 200 W available for allocation.


Should a PS fail, then the reserved power is made available for the stack.

eXpandable Power System - XPS 2200

StackPower & RPS Functionality

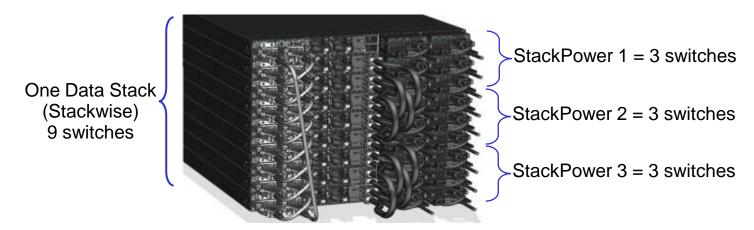


- Provides Power-sharing and RPS functionality concurrently
 When used with the 3750-X it provides StackPower functionality
 to all the stack members including power supply redundancy
 When used with the 3560-X it provides RPS functionality
- Protects up to 9 switches stackable, standalone, or mixed
- XPS supports up to two power supplies and redundant fans
- Cat3560X/3750X 48x 30W in 1RU futureproof
 - That is 30W each on all 48 ports or 1440W of PoE+ plus system power.
- XPS offers full PoE+ redundancy to a 48-port switch
 - That is 30W each on all 48 ports or 1440W of PoE+ plus system power.

XPS – Power-Sharing Functionality

StackPower – Power-share & Redundant modes Catalyst 3750X ONLY

Valid Stackpower deployments

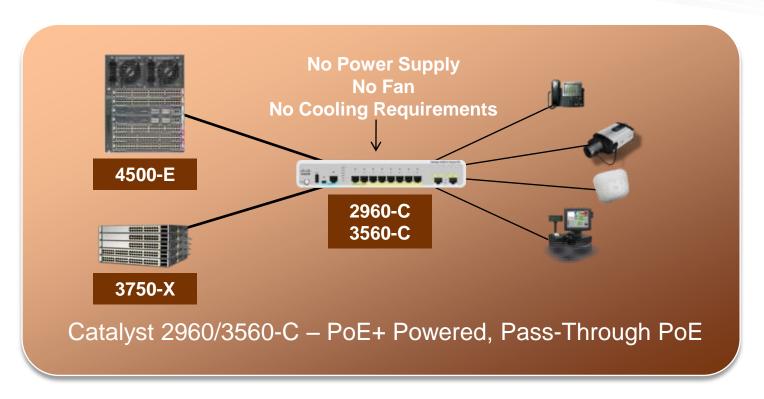


Either a Ring or a Star topology – that is 4 or 9 switches!

Ring – a maximum of 4 switches in a Stackpower

Star – up to 9 switches, attached to an XPS 2200

 A Data stack (Stackwise) can span over two or more power stacks regardless of the topology:



Note:

A power stack can span over two or data stacks but it is not recommended!

Cisco Catalyst Compact Switches

New PD / PSE Device

- Reduce Infrastructure and Energy Demands
- PoE/PoE+ (Input and Output) diminish power infrastructure
- Quiet, cool, compact design ideal for co-location

PassThrough power for a Catalyst 2960CPD-8PT-L

Switch Model	Powering Options	Available PoE Power (W)
	1 PoE Uplink	OW
	2 PoE Uplinks	7W
WS-C2960CPD-8PT-L	1 PoE+ Uplinks	7W
W3-C2900CPD-6P1-L	1 PoE+ and 1 PoE Uplinks	15.4W
	2 PoE+ Uplinks	22.4W
	Auxiliary Input	22.4W
1.0 0000 000 p.p.	1 PoE+	OW
WS-C3560CPD-8PT-S	2 PoE+	15.4W
	Auxiliary Input	15.4W

Power Numbers Assume CAT5 or Better Cabling Universal PoE powering option support (roadmap)

Agenda

The Evolving Network Edge

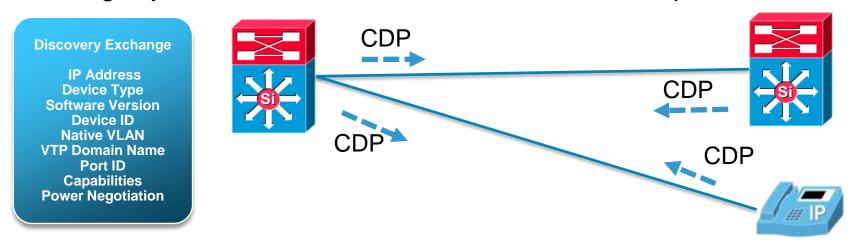
Power Technologies & Management

PoE - 802.3af, 802.3at and beyond **Energy Efficient Ethernet** EnergyWise StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

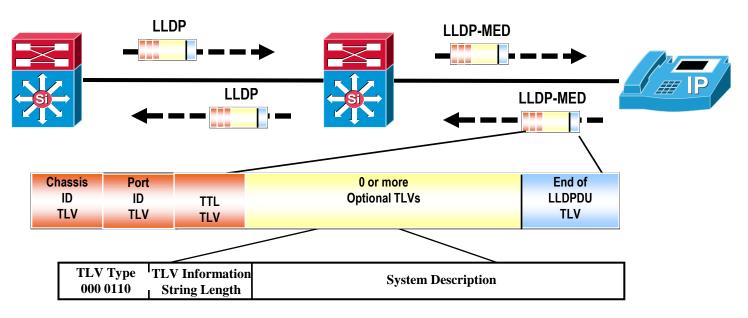
Intelligent Operations & Monitoring

Auto-Smartports & Smartinstall Netflow / Flexible Netflow **GOLD**



CDP - Cisco Discovery Protocol

Cisco Discovery Protocol is a Layer 2 advertisement protocol enabling adjacent devices to learn about each others capabilities



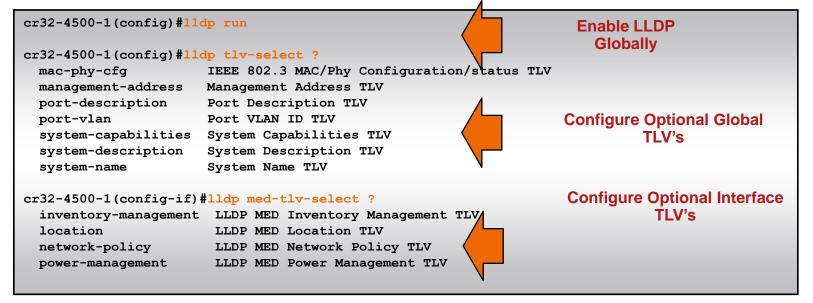
CDP messages are sent periodically (default every 60 seconds)
Each switch maintains its own CDP state table - when CDP message is sent an included TTL value tells destination device how long to keep CDP information

```
C4507R-E#sh cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
                  S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID
                 Local Intrfce
                                   Holdtme
                                              Capability Platform
                                                                         Port ID
                 TenGiq 1/1
                                                                       TenGiq 1/1
C4510R-E
                                     161
                                                  R S
                                                           WS-C4510R
IP Phone 7961
                 Gig 1/1
                                     159
                                                           CP-7961G
                                                                       Fas 0/1
```

LLDP, LLDP-MED

- LLDP (802.1AB) IEEE-SA Standards Board approved March 2005
- LLDP-MED (TR 41.4) Adjunct TIA standards for Media Endpoint Discovery (specific to Unified Communications endpoints)
- Ports initialized with LLDP can transition to running the LLDP-MED after an LLDP-MED Capabilities TLV is received on a port

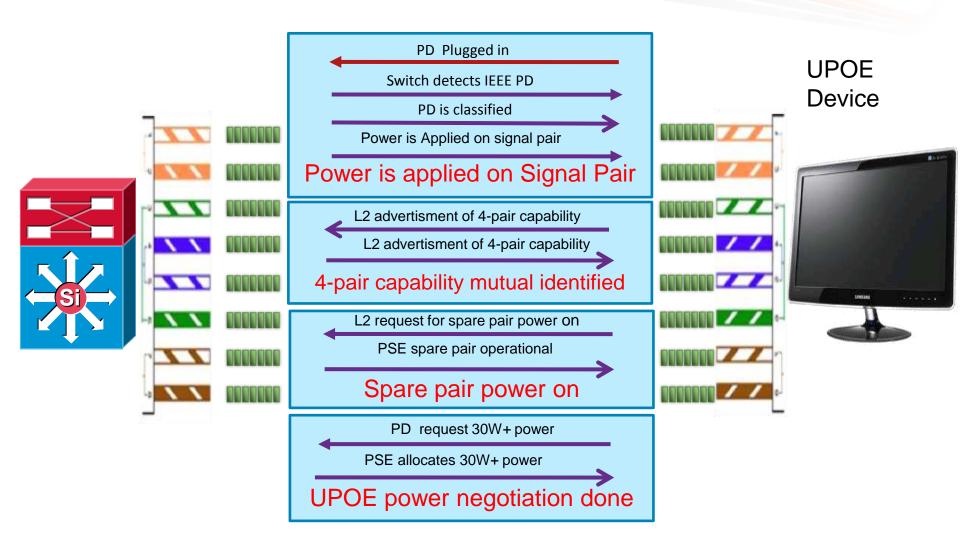
Configuring LLDP, LLDP-MED


- LLDP is disabled by default, you need to explicitly configure which optional TLV's to send
- LLDP and CDP can coexist on same interface
- LLDP, LLDP-MED support

Catalyst 6500 – 12.2(33)SXH

Catalyst 4500 and 4900 – 12.2(44)SG

Catalyst 3750, 3560, 2970, 2960 - 12.2(37)SE*


* Support for Protocol Media Extension (3750, 3560, 2960) - 12.2(40)SE

LLDP-MED and Cisco Discovery Protocol,

UPOE Power Negotiation

Example: Evolving LLDP-MED Capabilities

Supported with CDP & LLDP-PoE+ from IEEE 802.3at

Agenda

The Evolving Network Edge

Power Technologies & Management

PoE - 802.3af, 802.3at and beyond **Energy Efficient Ethernet** EnergyWise StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED **Dynamic Quality of Service**

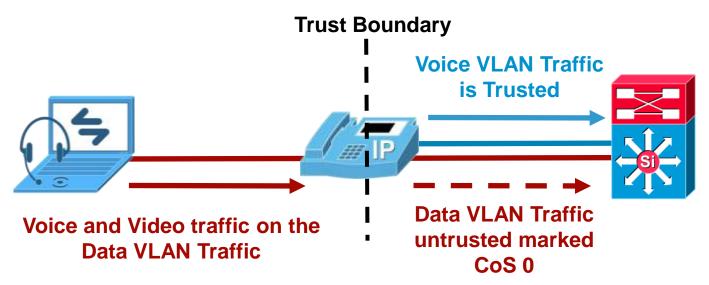
Intelligent Operations & Monitoring

Auto-Smartports & Smartinstall Netflow / Flexible Netflow **GOLD**

Campus QoS Design

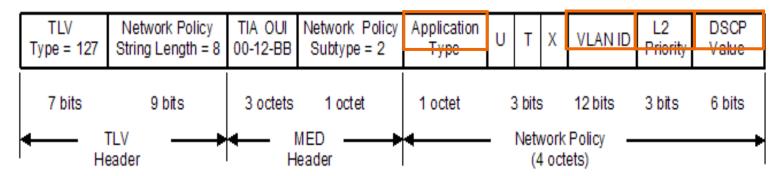
Strategic QoS Design Principles

- Always perform QoS in hardware rather than software when a choice exists
- Classify and mark applications as close to their sources as technically and administratively feasible
- Police unwanted traffic flows as close to their sources as possible
- Enable queuing policies at every node where the potential for congestion exists
- Protect the control plane and data plane


Enterprise QoS Solution Reference Network Design Guide

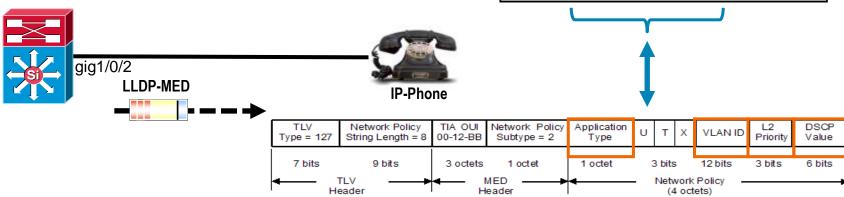
http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN and MAN/QoS SRND/QoS-SRND-Book.html

Intelligent Voice QoS


Trust Boundary with CDP

- Question: To Trust or not to Trust?
- Use Trust Boundary to prevent abuse of COS/DSCP priority.
- With existing auto-qos configuration the default switch behaviour is to not trust edge ports and remark all traffic to configured CoS/DSCP
- When switch and phone exchange CDP the trust boundary is extended to IP phone
- Phone rewrites CoS from PC port to '0', switch rewrites DSCP

Configuring Voice QoS for 3rd party phones LLDP–MED Network Policy TLV


- The Network Policy Discovery TLV allows both Network Devices and Endpoints to advertise VLAN configuration and associated Layer 2 and Layer 3 attributes that apply for a set of specific applications on a port
- Application Type: Identifies the the application(s) which should use this network policy (Voice, Control / Signaling, ...)
- VLAN ID: VLAN used to carry for the identified application
- L2 Priority: CoS value to be used on the identified application packets
- DSCP Value: Diffserv value to be used on the identified application packets (64 code points values)

LLDP-MED Network Policy TLV

- Configuration is done using "networkpolicy" profile in Global Configuration Mode (MQC like syntax)
- Significantly speeds up bootup time of 3rd party phones
- Currently Network Policy supports configuration for voice & voice-signaling capabilities
 - vlan
 - cos and dscp,
 - tagging mode (dot1p/ untagged/ none)

Campus QoS Designs are evolving Business and Technical Drivers

64% of communication is non-verbal¹

One third of the human cortex is dedicated to vision²

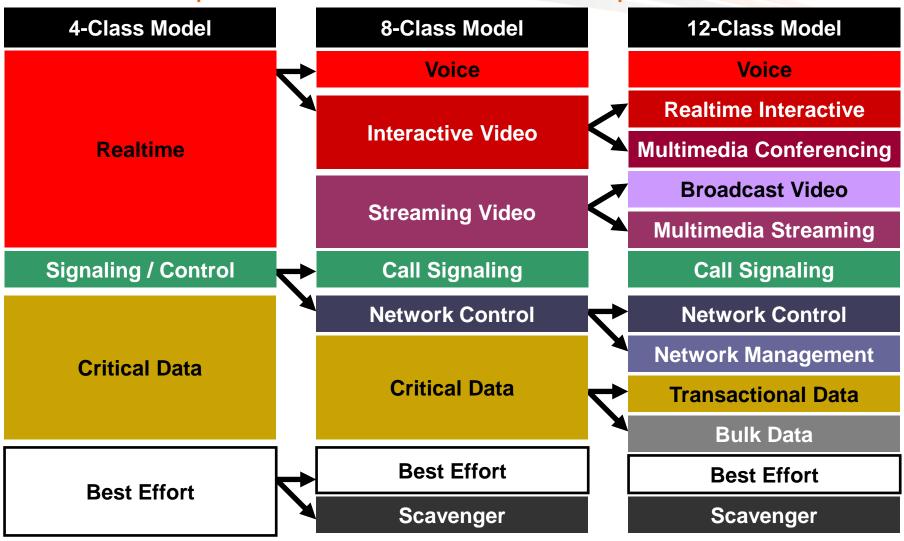
New Applications and Business Requirements

Explosion of Video Apps

Impact of HD (Impact of 1 packet drop?)

Blurring of Voice/Video/Data application boundaries

New Standards and RFCs


RFC 4594

New Platforms and Technologies

New Switches, Supervisors, Linecards, features, syntax

Evolving Business Requirements

Business Requirements Will Evolve and Expand over Time

Enterprise Medianet Quality of Service Design 4.0

http://www.cisco.com/en/US/docs/solutions/Enterprise/WAN_and_MAN/QoS_SRND_40/QoSIntro_40.html#wp61135

Auto QoS VoIP - Making It Easy

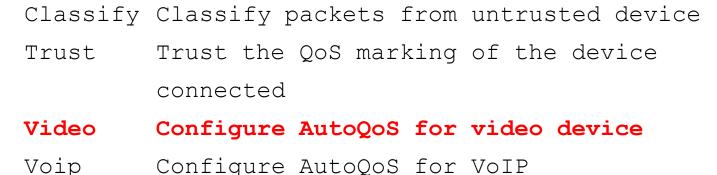
Configures QoS for VoIP on Campus Switches

Options:

auto qos voip cisco-phone auto qos voip cisco-softphone auto qos voip trust

Access-Switch(config-if)#auto qos voip?
cisco-phone Trust the QoS marking of Cisco IP Phone
cisco-softphone Trust the QoS marking of Cisco IP SoftPhone
trust Trust the DSCP/CoS marking

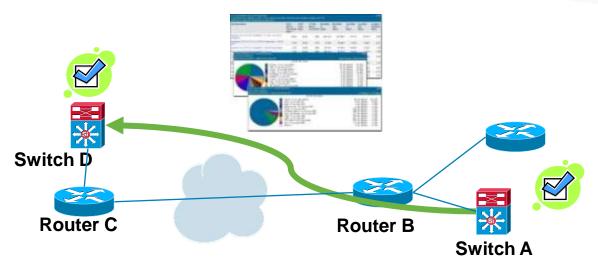
Access-Switch(config-if)#auto qos voip cisco-phone Access-Switch(config-if)#exit


interface FastEthernet1/0/21 srr-queue bandwidth share 10 10 60 20 srr-queue bandwidth shape 10 0 0 0 mls qos trust device cisco-phone mls qos trust cos auto qos voip cisco-phone end

Auto QOS for Media

Auto QOS not just for voice anymore

New Auto QOS video



- Driven by Proliferation of video in the campus
- New AutoQoS functionality available since 2HCY2010

Intelligent Operational Management

IP SLA Video - Embedded Traffic Simulator

- IPSLA known in industry for jitter, ICMP, etc. probes
- Most probes measure experience without affecting user traffic (hopefully)
- Need traffic to stress test network
- IPSLA VO provides
 - Realistic representation of arbitrary video (RTP) traffic
 - Packet sizes, burstiness, traffic rate, etc.
 - Pre-packaged profiles: IPTV, Video Surv, CTS, Custom profile from packet capture

Dynamic Monitoring with Mediatrace

- Mediatrace discovers and queries L2 and L3 nodes along a flow's path
- Gathers system resource, interface and flow specific (perf-mon) stats
- Consolidates information into a single screen
- Allows for easy comparisons of device behavior
 Which interface dropping packets?
 Where is DSCP getting reset?
- Can be requested by remote device
- Automatically (based on thresholds) via EEM script

```
initiator#show mediatrace session stats 1
Session Index: 1
Mediatrace Hop: 2 (host=responder2, ttl=253)
   Metrics Collection Status: Success
   Reachability Address: 10.10.34.3
   Ingress Interface: Gi0/1
   Egress Interface: Gi0/2
   Metrics Collected:
    Flow Sampling Start Timestamp: 23:45:56
    Loss of measurement confidence: FALSE
    Media Stop Event Occurred: FALSE
    IP Packet Drop Count (pkts): 0
    IP Byte Count (Bytes): 6240
    IP Packet Count (pkts): 60
    IP Byte Rate (Bps): 208
    Packet Drop Reason: 0
    IP DSCP: 0
     IP TTL: 57
    IP Protocol: 17
    Media Byte Rate Average (Bps): 168
    Media Byte Count (Bytes): 5040
    Media Packet Count (pkts): 60
    RTP Jitter Average (usec): 3911
    RTP Packets Lost (pkts): 0
    RTP Packets Expected (pkts): 60
```

RTP Packet Lost Event Count: 0 RTP Loss Percent (%): 0.00

Agenda

The Evolving Network Edge

Power Technologies & Management

PoE – 802.3af, 802.3at and beyond Energy Efficient Ethernet EnergyWise StackPower + PoE-Passthrough

Neighboring Services & QoS
 CDP, LLDP, LLDP-MED
 Dynamic Quality of Service

Auto-Smartports & Smartinstall
Netflow / Flexible Netflow
GOLD

Smart Operations – What is it?

Overview and Benefits

Smart Install

- New Switches Automatic image and configuration download
 - Saves Opex
- Zero-touch deployment and switch replacement
 - Reduces Network downtime and the need for technical IT staff
- Centralized management for image and configuration
 - Single point of management

Auto Smart Ports

- Plug and Play of new devices
- End-points Device-based dynamic configuration management
 - Cisco recommended interface configuration for every device type

Intelligent Operations

AutoSmartPorts

- Built-in Switch intelligence for Device Identification-based interface configuration
- Automatic & Cisco-recommended per port configuration
- Plug and Play for end-devices
- Supported Devices:

Switches

Routers

Access Points

Digital Media Player

IP-Phones

IP-Cameras

Other (MAC OUI, custom trigger) ...

Auto Smartports

Modes of operation

Device UP trigger detected

Device Anti-Macro applied

function CISCO_DMP_AUTO_SMARTPORT () { if [[\$LINKUP -eq YES]]; then conf t interface \$INTERFACE macro description \$TRIGGER switchport access vlan \$ACCESS_VLAN switchport mode access switchport block unicast mls gos trust dscp spanning-tree portfast switchport port-security switchport port-security maximum 1 switchport port-security violation shutdown spanning-tree bpduguard enable priority-queue out exit end

Trigger - Event that detects the presence or removal of a device in the network (link up)

Macro - Set of configuration commands referred to as a single unit.

Anti- macro: List of config steps that gets applied to a port when a device is removed

```
function CISCO_DMP_AUTO_SMARTPORT () (

if [[ $LINKDOWN -eq YES ]]; then

conf t

interface $INTERFACE

no macro description $TRIGGER

no switchport access vian $ACCESS_VLAN

no switchport mode access

no switchport block unicast

no mis qos trust dacp

no spanning-tree portfast

no switchport port-security

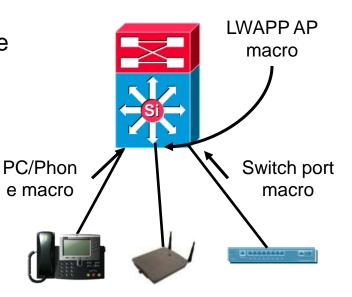
no switchport port-security

no switchport port-security violation shutdown

no spanning-tree bpduguard enable

no priority-queue out

exit


end

fi
```

Auto Smartports

Recommendations

- Auto smartports can be enabled on a global or per interface basis
- By default auto smartports will utilize CDP as the device identification method
- If 802.1x is enabled then macro is controlled by 802.1x
- 802.1x allows for fallback to CDP trigger events e macro
- Decide which ports will be managed via ASP
- Supported in:
 12.2(55)SE 2960, 3560, 3750
 12.2(54)SG 4500
- Custom trigger, Custom macro

Automatic configuration of the access port as devices connect

Auto Smartports

Configuration Example

1) Define a stub configuration for the access ports

```
2960s(config) #int range GigabitEthernet 1/0/1 - 48
2960s(config-if-range) #switchport access vlan 10
2960s(config-if-range) #switchport mode access
```

2) In this example, ASP is enabled for only Lightweight Access Points and IP Phones

2960s (config) #macro auto global control device phone lightweight-ap

3) Set vian parameters for the AP and IP phone

```
2960s(config) #macro auto device phone ACCESS_VLAN=11 VOICE_VLAN=10
2960s(config) #macro auto device lightweight-ap ACCESS_VLAN=11
```

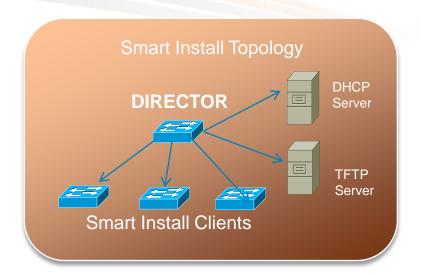
4) Enable ASP

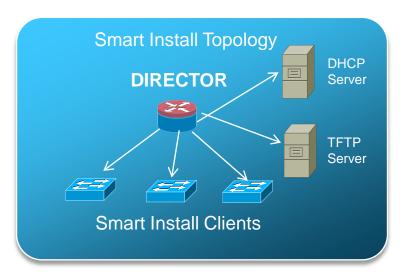
2960s(config) #macro auto global processing

Introduction to Smart Install

- Easy Deployment, Easy Maintenanace, Cost Savings
- A network using Smart Install includes a group of networking devices, known as clients, that are served by a common Layer 3 switch or router that acts as a director. The director provides a single management point for images and configuration of client switches
- How it works:

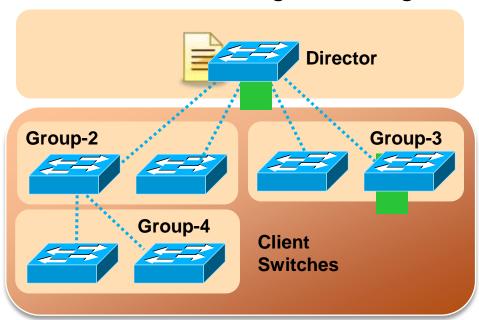
Director snoops dhcp requests from clients.


The information used to determine the image and config that will be loaded is:


PID

MAC

STACK


Connectivity

Deploying a New Switch with Smart Install

- New switch is connected
- 2. DHCP request
- DHCP Snooping Mgmt VLAN
- 4. Switch assigned to Group 3
- 5. Hostname/IP assigned
- 6. Download config and image

Guidelines for the Director

- Total flash memory space (used and free) must be large enough for Clients
- Flash must be large enough to contain Director configuration and image also
- IOS images vary in size depending on Client type, flash memory is limited
- If more than one product ID on the network, best to use separate TFTP server

SmartInstall – Configuration Guidelines

Enabling the Director & DHCP Server & Copying an Image

Step #1 – execute the 'vstack enable', 'director', 'basic' commands

```
Switch(config) #vstack director 10.10.0.1
Switch(config) #vstack basic
Switch(config) #vstack vlan 10
```

Step #2 – execute the 'vstack dhcp local-server 'command

```
Switch(config) #vstack dhcp local-server smart-install-switches
Switch(config-vstack-dhcp) #address-pool 10.10.0.0 255.255.255.0
Switch(config-vstack-dhcp) #default-router 10.10.0.1
Switch(config-vstack-dhcp) #file-server 10.10.0.1
Switch(config-vstack-dhcp) #exit
Switch(config) #ip dhcp remember
```

Step #3 – copy image and config file to director with 'copy tftp flash'

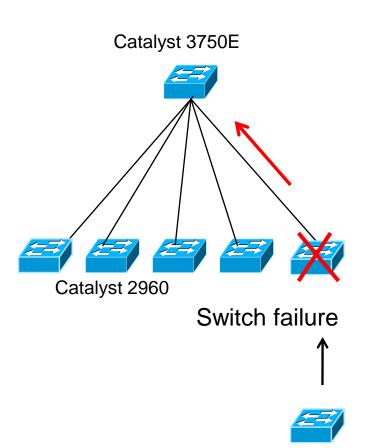
```
Switch#copy tftp flash
...
Accessing tftp://10.10.0.100/c3750-image.tar...
...
Accessing tftp://10.10.0.100/smart-install.txt...
```

Step #4 – assign default image and config with 'vstack' command

```
Switch(config) #vstack image flash:c3750-image.tar
Switch(config) #vstack config flash:smart-install.txt
```

 Optional Step #5 – configure groups & assign image and config with 'vstack group' product-id/connectivity/mac/stack/. command... Public

Addition of a new Client Switch


To verify the download status:

To see new switch:

```
Switch#show vstack status
Code :
 HOP 0 : Director
                      HOP N : Nth Hop in the Network
 HOP ** : Reachability Unknown / Unreachable
Director Database :
MAC Address
              Product-ID
                               IP addr
                                               DevID
                                                              HOP
===========
0018.b995.0600 WS-C3750G-24PS
                              10.10.0.1
                                             3750 switch
0011.2123.5e00 WS-C3550-24-PWR
                              35.1.1.1
                                             3550 switch
0019.554f.c300 2851
                              11.1.1.2
                                             top 2821
000f.349a.e000 WS-C3750G-24TS
                              10.10.0.2
                                             smart-install-s
```

Zero Touch Switch Replacement

- Client Switch goes bad
- Director gets an update
- Network personnel replaces the bad switch with a new switch of the exact same model and on the same switch port
- New client switch downloads image and most recent configuration of the failed switch
- Client switch reboots and is ready for use

Smart Install also provide

- Zero Touch Switch Installation/Replacement
- Configuration Protection Constant client switch configuration backup
- Secured Switch Upgrade Join Window
- On Demand (Group) Upgrades
- Use Cases Campus and Branch topologies:
 - With different switch models
 - Different software images
 - Different configurations
 - Managed via an ISR Router or a Catalyst 3560/3750 switch

Supported Hardware Platforms

Director Switches:

- 3750, 3750v2, 3750E, 3560, 3560v2, 3560E Software version : 12.2.(55)SE
 & above
- 3750X, 3560X Software version : 12.2.(55)SE2 & above
- Catalyst 4k series Will support SmartInstall Director functionality in the future
- •Recommended version for switches: 12.2.(55)SE3 because of enhancements

Director Routers:

- G1: 1841, 2801, 2811, 2821, 2851, 3825, 3845
- G2: 1921, 1941, 2901, 2911, 2921, 2951, 3925, 3945, 3925E, 3945E, NM-16-ESW
- Minimum Software version : 15.1.(3)T

Client Switches

- 3k 3750, 3750E, 3750X, 3560, 3560E, 3560X, 3560C
- 2k 2960, 2960C, 2960S, 2975, 2960G.
- NME-16ES-1G-P, SM-ES3SM-ES2-16-P
- **Special Cases**: 3560v2, 3750v2, Industrial Ethernet series switches (custom groups)

Agenda

The Evolving Network Edge

Power Technologies & Management

PoE - 802.3af, 802.3at and beyond **Energy Efficient Ethernet** EnergyWise StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

Auto-Smartports & Smartinstall Netflow / Flexible Netflow GOLD

Service Planning Flexible NetFlow (FNF)

- Traditional NetFlow with the v5, v7, or v8 NetFlow export
- NetFlow Version 9 (RFC3954)

Advantages: extensibility

Integrate new technologies/data types quicker (MPLS, IPv6, BGP next hop, etc.)

Integrate new aggregations quicker

Basis for IETF IPFIX Standard (RFC5101 & RFC5102)

Exporting Process

Flexible NetFlow

Advantages: cache and export content flexibility

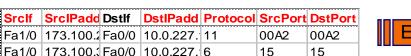
User selection of flow keys

User definition of the records

Metering Process

Traditional NetFlow vs. Flexible NetFlow

IT team#1


Security focused

Traditional NetFlow

Fixed 7 keys

Fixed definition of flow record globally

Export only to one collector

Flexible NetFlow

Flow Monitor 1

Flow Monitor 2

Flow Monitor 3

Flow cache 1

Fa1/0 173.100.1Fa0/0 10.0.227. 11

Fa1/0 173.100. Fa0/0 10.0.227. 6

NetFlow Cache

DstlPadd	Protocol	TOS
10.0.227.12	11	80
10.0.227.12	6	40
10.0.227.12	11	80
10.0.227.12	6	40

Flow cache 2

Protocol	TOS	Flgs
11	80	10
6	40	0
11	80	10
6	40	0

Flow cache 3

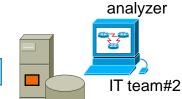
Srclf	SrcIPadd	Dstlf	
Fa1/0	173.100.21.2	Fa0/0	
Fa1/0	173.100.3.2	Fa0/0	
Fa1/0	173.100.20.2	Fa0/0	
Fa1/0	173.100.6.2	Fa0/0	

00A1

19

00A1

19



Destination 1

Destination 2

Flexible definition of flow records applied to selected interface or VLAN

Ability to export flow information to multiple collectors/analyzers

Flexible NetFlow (FNF)

Use cases

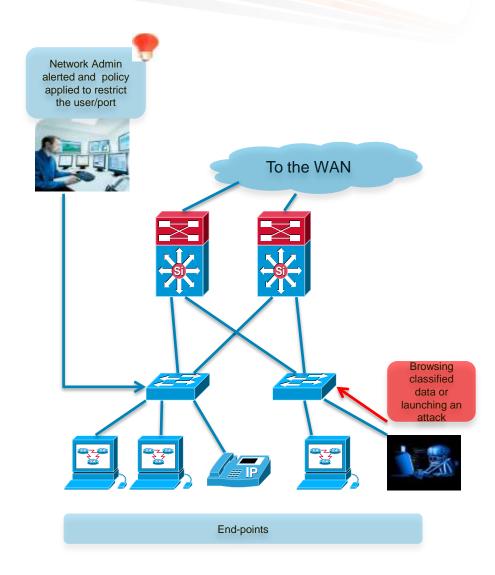
Monitoring Security

- Detect network anomalies Identify and mitigate network attacks
- Forensics and Incident investigation
- Network Acceptable Use

Usage/Billing

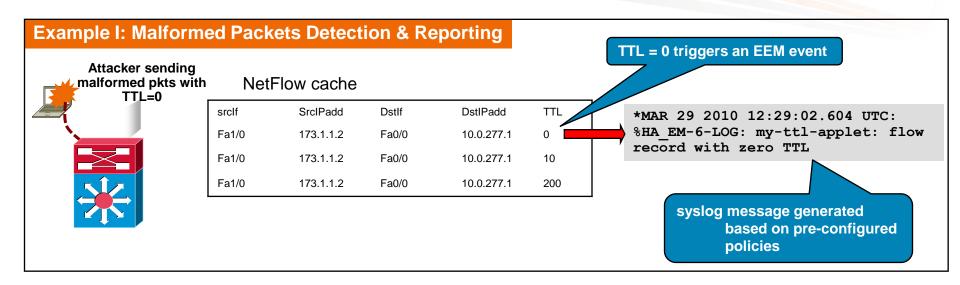
- Develop billing strategies based on data, video and voice usage per port.
- •Bill users for data usage on a per port basis
- Enforce policies to limit usage

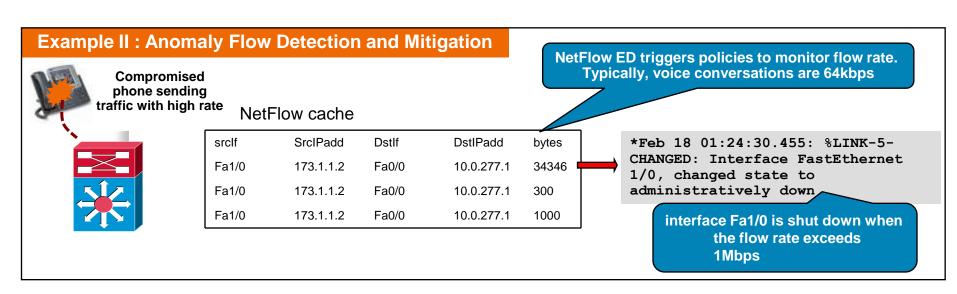
Capacity planning


- Identify the top talkers in the LAN
- Identify traffic patterns and data usage trends over a time period
- Identify types of applications in different parts of the network

Monitoring and Security at the Access

- Security a key concern for IT admins.
- Problem:
 Lack of visibility into user at the access


Questions asked by the IT admin:


- Which end-point visited which site?
- For how long?
- Is a user allowed to access that information?
- Is a user expected to be online at this time?
- Why is the volume of traffic sent by the user abnormally high?

Flexible NetFlow Automation with EEM

Embedded Event Manager

Flexible NetFlow (FNF) – Configuration Example

1. Configure the Exporter

2. Configure the Flow Record

3. Configure the Flow Monitor

```
Router(config)# flow monitor my-monitor

Router(config-flow-monitor)# exporter my-exporter

Router(config-flow-monitor)# record my-record
```

4. Apply to an Interface

```
Router(config) # interface s3/0

Router(config-if) # ip flow monitor my-monitor input
```

Flexible NetFlow (FNF) – Key Fields – 1/2

OW
UVV

Sampler ID

Direction

Interface

Input

Output

Layer 2

Source VLAN

Dest VLAN

Dot1q VLAN

Dot1q priority

Source MAC address

Destination MAC address

IPv4	
IP (Source or Destination)	Payload Size
Prefix (Source or Destination)	Packet Section (Header)
Mask (Source or Destination)	Packet Section (Payload)
Minimum-Mask (Source or Destination)	TTL
Protocol	Options bitmap
Fragmentation Flags	Version
Fragmentation Offset	Precedence
Identification	DSCP
Header Length	TOS
Total Length	

IPv6	
IP (Source or Destination)	Payload Size
Prefix (Source or Destination)	Packet Section (Header)
Mask (Source or Destination)	Packet Section (Payload)
Minimum-Mask (Source or Destination)	DSCP
Protocol	Extension Headers
Traffic Class	Hop-Limit
Flow Label	Length
Option Header	Next-header
Header Length	Version
Payload Length	

Flexible NetFlow (FNF) – Key Fields – 2/2

Routing

src or dest AS

Peer AS

Traffic Index

Forwarding Status

IGP Next Hop

BGP Next Hop

Input VRF Name

Transport	
Destination Port	TCP Flag: ACK
Source Port	TCP Flag: CWR
ICMP Code	TCP Flag: ECE
ICMP Type	TCP Flag: FIN
IGMP Type*	TCP Flag: PSH
TCP ACK Number	TCP Flag: RST
TCP Header Length	TCP Flag: SYN
TCP Sequence Number	TCP Flag: URG
TCP Window-Size	UDP Message Length
TCP Source Port	UDP Source Port
TCP Destination Port	UDP Destination Port
TCP Urgent Pointer	

Application

Application ID*

Multicast

Replication Factor*

RPF Check Drop*

Is-Multicast

*: IPv4 Flow only

Flexible NetFlow (FNF) – Non-Key Fields

Counters **Bytes** Bytes Long Bytes Square Sum Bytes Square Sum Long **Packets** Packets Long

Timestamp

sysUpTime First Packet

sysUpTime First Packet

IPv4

Total Length Minimum (*)

Total Length Maximum (*)

TTL Minimum

TTL Maximum

IPv4 and IPv6

Total Length Minimum (**)

Total Length Maximum (**)

 Plus any of the potential "key" fields: will be the value from the first packet in the flow

(*) IPV4_TOTAL_LEN_MIN, IPV4_TOTAL_LEN_MAX (**)IP_LENGTH_TOTAL_MIN, IP_LENGTH_TOTAL_MAX

Three Types of NetFlow Caches

- Normal cache (traditional NetFlow)
 - More flexible active and inactive timers: one second minimum
- Immediate cache
 - Flow accounts for a single packet
 - Desirable for real-time traffic monitoring, DDoS detection, logging
 - Desirable when only very small flows are expected (ex: sampling)
 - Caution: may result in a large amount of export data
- Permanent cache
 - To track a set of flows without expiring the flows from the cache
 - Entire cache is periodically exported (update timer)
 - After the cache is full (size configurable), new flows will not be monitored
 - Uses update counters rather than delta counters

Flexible NetFlow (FNF) – Top Talkers Example

Top ten IP addresses that are sending the most packets

```
Router# show flow monitor <monitor> cache aggregate ipv4 source address sort highest counter bytes top 10
```

 Top five destination addresses to which we're routing most traffic from the 10.10.10.0/24 prefix

```
Router# show flow monitor <monitor> cache filter ipv4 destination address 10.10.10.0/24 aggregate ipv4 destination address sort highest counter bytes top 5
```

5 VLAN's that we're sending the least bytes to:

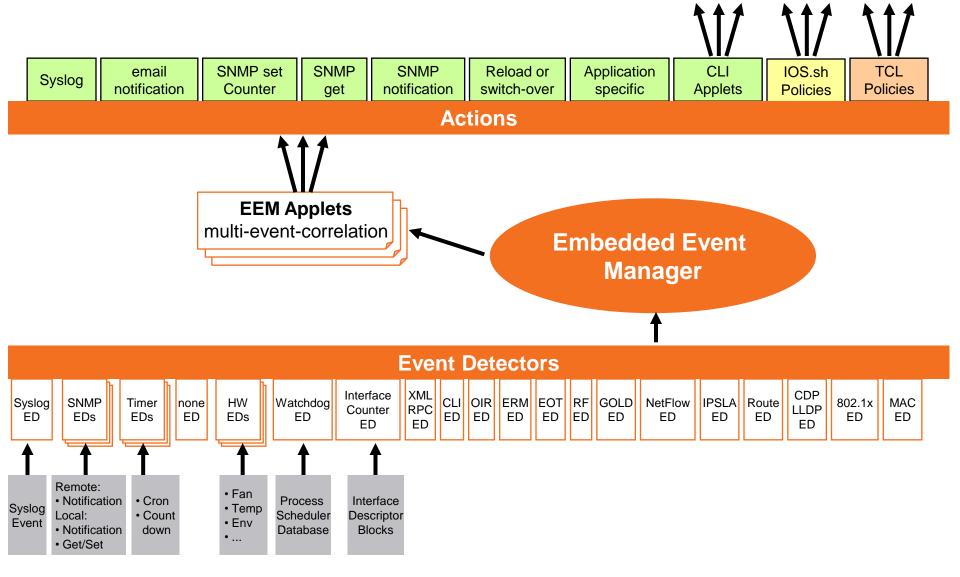
```
Router# show flow monitor <monitor> cache aggregate datalink dot1q vlan output sort lowest counter bytes top 5
```

Top 20 sources of 1-packet flows:

```
Router# show flow monitor <monitor> cache filter counter packet 1 aggregate ipv4 source address sort highest flow packet top 20
```

Flexible NetFlow (FNF) and EEM – Low-TTL Detection

Problem: We want to know about low-TTL traffic


Solution: Use Flexible Netflow and Embedded Event Manager 3.0 to detect traffic flows with TTL < 5

1. Configure flexible Netflow to match on TTL, Source- and Destination Address

2. Configure the Netflow Event Detector in EEM to notify upon a new flow record

3. Syslog message and/or use show flow monitor <my-monitor> cache command *Dec 2 17:39:31.221: %HA EM-6-LOG: my-ttl-applet: Low-TTL flow from 192.168.2.248

Service Planning **EEM Architecture**

Access platforms supporting Flexible Netflow

SUPERVISOR ENGINE 7-E

- Optimized for Large Campus
- 848 Gbps Switching Capacity
- 250 MPPS, 256K Routes
- Flexible Netflow
- Wireshark Services
- TrustSec, VSS*

SUPERVISOR ENGINE 7L-E

- Optimized for Small/Mid Size Campus
- 520 Gbps (48G/slot)
- 225 MPPS, 64K Routes
- Flexible Netflow
- Wireshark Services

New Module: 3KX-SM-10G

- Services module for the Catalyst 3750X and 3560X models
- Capable of Flexible Network in HW
- Line rate 40 Gbps
- Supports Netflow version 9
- Available in the IP Base and above
- Capable of Switch-to-Switch MACSec (802.1ae)

* Roadmap

*** STOP: 0×0000007B (0×E201B84C,0×C0000034,0×000000000,0×000000000) INACCESSIBLE BOOT DEVICE

If this is the first time your computer. If the thing the things in the se steps:

ou've seen this Stop error screen, is screen appears again, follow

Check for viruses on your contained drive contained drive contained drive contained drive contained to the contained drive has been as the contained driver and contained driver.

ter. Remove any newly installed llers. Check your hard drive gured and terminated. ive corruption, and then

Refer to your Getting Started troubleshooting Stop errors.

for more information on

POST (Power-On Self-Test) is a great thing ...

... but some errors you prefer to know while the system is still running ...

... and: can you afford to power-cycle a box after OIR just for POST to run?

Agenda

The Evolving Network Edge

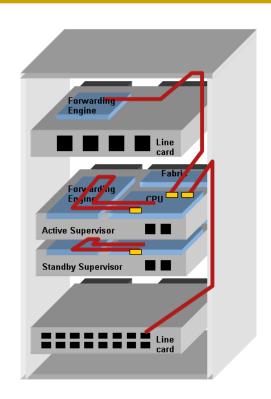
Power Technologies & Management

PoE - 802.3af, 802.3at and beyond **Energy Efficient Ethernet** EnergyWise StackPower + PoE-Passthrough

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

Intelligent Operations & Monitoring

Auto-Smartports & Smartinstall Netflow / Flexible Netflow **GOLD**



Troubleshooting & Optimization Generic OnLine Diagnostics (GOLD)

CLI and scheduling for Functional Runtime Diagnostics

- Bootup Diagnostics (upon bootup and OIR)
- Periodic Health Monitoring (during operation)
- OnDemand (from CLI)
- Scheduled Testing (from CLI)
- Test Types include:
 - Packet switching tests
 - Are supervisor control plane & forwarding plane functioning properly?
 - Is the standby supervisor ready to take over?
 - Are linecards forwarding packets properly?
 - Are all ports working?
 - Is the backplane connection working?
 - Memory Tests
 - Error Correlation Tests
- Complementary to POST

Good Practice: schedule all non-disruptive tests periodically

Available from: CatOS 8.5(1), IOS 12.2(14)SX

Summary

The Evolving Network Edge

Power Technologies & Management

PoE - 802.3af, 802.3at and beyond **Energy Efficient Ethernet** StackPower + PoE-Passthrough EnergyWise

Neighboring Services & QoS CDP, LLDP, LLDP-MED Dynamic Quality of Service

Auto-Smartports & Smartinstall Netflow / Flexible Netflow

Security Mechanisms

Přednáška T-NET3

IEEE 802.1X Authentication TrustSec, MacSec - IEEE 802.1AE

Přednáška T-NET5

IPv6

Cisco Public

99

BRKCRS-2437

Incorporating the intelligent Access Layer

Mobility

Convergence of wired and wireless

Green

Rising energy costs, corporate sustainability mandates

Security

Provide secure
access while
managing explosive
growth in number of
devices accessing
the network

Application Performance

Need to closely manage applications for optimum performance

Voice/Video

Growth of video outstripping growth of access network resources

Simplify Operations, reduce management complexity

When the Network Access Knows

Otázky a odpovědi

- Twitter <u>www.twitter.com/CiscoCZ</u>
- Talk2Cisco <u>www.talk2cisco.cz/dotazy</u>
- SMS 721 994 600

- Zveme Vás na Ptali jste se... v sále LEO
 - 1.den 17:45 18:30
 - 2.den 16:30 17:00

Prosíme, ohodnoť te tuto přednášku.

cisco