Cisco – Cisco 2600 Series Router Architecture
Table of Contents

Cisco 2600 Series Router Architecture ... 1
 Introduction ... 1
 Hardware Overview ... 1
 Block Diagram ... 2
 Memory Details ... 3
 Boot Sequence ... 5
 Basic Operation ... 7
 Performance ... 10
 Related Information ... 10
 Related Topics ... 10
 Additional Documentation .. 10
Introduction
This document is an overview of the hardware and software architecture of the 2600 series routers.

Note: To use the troubleshooting tools described in this document, you must be a registered user and you must be logged in.

Hardware Overview
Cisco 2600 series routers are composed of the following models:

- Cisco 2610
- Cisco 2610XM
- Cisco 2611
- Cisco 2611XM
- Cisco 2612
- Cisco 2613
- Cisco 2620
- Cisco 2620XM
- Cisco 2621
- Cisco 2621XM
- Cisco 2650
- Cisco 2650XM
- Cisco 2651
- Cisco 2651XM
- Cisco 2691

For more information, refer to Cisco 2600 Series Modular Access Router Family.
CPU:
Type: Motorola PowerQUICC MPC860; the 2691 uses the RM7061A.
Function: Executes instructions coded in operating system (and its subsystems) to perform the basic
operations necessary to accomplish the router's functionality (for example, all of the routing functions,
etwork module high−level control, and system initialization).

WIC SLOTS:
There are two (three on the 2691) fixed WAN Interface Card (WIC) slots to support fully−functional WICs,
some of which are compatible across the different modular access router platforms such as the Cisco 1600,
1700, 3600 and 3700 Series routers. See Overview of Cisco Interface Cards and the Software Advisor for
information on platform and Cisco IOS® software support.

The communications controller has four (six for the 2691) on−chip Serial Communication Channels (SCCs)
with dedicated individual links to the WIC slots.

NM EXPANSION SLOT:
There is one expansion slot to install a WAN or LAN network module (NM). Some NMs can be used with the
Cisco 3600 Series routers. See Overview of Cisco Network Modules and the Software Advisor for
information on platform and Cisco IOS software support.

Online insertion and removal (OIR) is not supported.
LAN 0 / LAN 1:

These are the integrated LAN controllers on the motherboard. There are three different types: Ethernet, Fast Ethernet, and Token Ring. Availability depends on the specific model of the 2600 router.

AIM SOCKET:

This socket can accommodate the Advanced Interface Module (AIM) cards. This is an internal 100-pin socket which allows functions that do not require an external connection (such as compression, encryption, and so on). The 2691 has two AIM sockets.

HOST PCI BRIDGE:

This is the bridge interface between the CPU bus and the system bus (PCI bus, where the Network Modules and other interface boards are connected).

SYSTEM BUS:

This is used for communication between the CPU Board and the interface boards (among others). On the 2600 platform, this is a PCI bus.

CPU BUS:

This is used by the CPU for accessing various components of the system and transferring instructions and data to or from specified memory addresses.

MEMORY:

The memory is used in various forms for several storage purposes such as storing the operating system (Cisco IOS software), the configuration, the bootstrap, packets, and so on. You can find different kinds of memory on the 2600 platforms such as Flash, Dynamic RAM (DRAM), nonvolatile RAM (NVRAM), and BootROM. For more information, see the Memory Details section.

POWER SUPPLY:

See Cisco 2600 Series Modular Access Router Family for the power supply specifications.

The 2600 series can also operate from Redundant Power Supply (RPS). The PWR600–AC–RPS is a Cisco RPS for the 2500, 2600, 3600, and 4000 series routers.

Memory Details

There are four kinds of memory in the 2600 series router:
BootROM:

BootROM is used for permanently storing startup diagnostic code (ROM Monitor).

The main task for the BootROM is to perform some hardware diagnostics during bootup on the router (Power On Self Test – POST), and to load the Cisco IOS software from the Flash to the Memory.

The BootROM is not erasable; it is socketed so it can be replaced.

On the 2691, the boot code and non–volatile data are loaded in the Flash device described below.

Flash:

Flash is used for permanent storage of a full Cisco IOS software image in compressed form. On the 2691, the Flash is also used to store the boot image and the NVRAM data.

- The 2610 and 2651 have one Flash SIMM socket supporting the Cisco 80–pin Flash SIMMs (4MB, 8MB, and 16MB). 8MB and 16MB Flash SIMMs are dual bank (they can be partitioned into two banks).

- The 2600XM has 16MB Flash soldered to the motherboard plus one Flash SIMM socket.

- The 2691 has the same Flash memory architecture as the 3700 series; that is, there is a compact Flash card on the motherboard plus an external compact Flash slot. The compact flash can use the DOS file system, but it must be formatted on the 2691 or 3700 in order to write the proper code in the boot.

Cisco – Cisco 2600 Series Router Architecture
sectors. Once the compact flash is formatted in the 3700, you can use a 2691, 3631, 3700, 7400, 7300, or PC to write to the compact Flash.

The 2600 series uses a Class B file system. Note that when you replace the Flash SIMM, you must use the ROMMON to copy a Cisco IOS software image onto that SIMM.

DRAM:

DRAM is used at run time for executable Cisco IOS software (and its subsystems), routing tables, Fast Switching cache, running configuration, packets, and so on.

The 2600 has two DRAM sockets and uses **non−parity** DRAM.

The 2610–2621 uses 100−pin EDO DRAM DIMMs. The 265x and the 2600XM use 100−pin SDRAM DIMMs which are NOT COMPATIBLE with the existing 2610–2621 DIMMs. The 2691 uses 168−pin SDRAM DIMMs (two sockets).

DRAM is logically divided in Main Processor Memory and Shared Input/Output (I/O) Memory. Shared I/O Memory is shared among interfaces for temporary storage of packets. The 2600 can reallocate the split between processor and I/O memory (as can the 3600 series) with the **memory−size iomem <percent>** command.

NVRAM:

NVRAM is used for writable permanent storage of the startup configuration. It is an EPROM, except in the 2691, where the startup configuration is stored in the same Flash device where the boot code is loaded.

Boot Sequence

Step 1: After powering on the router, the ROM monitor starts first. ROMMON/BOOTSTRAP functions are important at router boot, and perform the following operations at bootup:

- Configure power−on register settings – Setting of the processor's Control Registers and of other devices (such as Dual Universal Asynchronous Receiver Transmitter (DUART) for console access), as well as the configuration register.

- Perform power−on diagnostics – Tests are performed on NVRAM and DRAM (writing and reading various data patterns).

- Initialize the hardware – Initialization of the interrupt vector and other hardware is performed, and memory (DRAM, SRAM, and so on) is sized.

- Initialize software structures – Initialization of the NVRAM data structure so that information about the boot sequence, stack trace, and environment variables can be read. Also, information about accessible devices is collected in the initial device table.

Step 2: Next, the ROMmon looks for the Cisco IOS software image in the Flash. Since the 2600 router has no separate BOOT–HELPER image, it needs to have a valid image in the Flash.

If the router does not find a valid image in the Flash, it is not able to come up. Use the **tftpdnld** or **xmodem** command described in ROMmon Recovery for the Cisco 2600 Series Router and the VG200 if there is no valid image in Flash.

Cisco – Cisco 2600 Series Router Architecture
Even if you want to boot the router using Trivial File Transfer Protocol (TFTP), you need a valid image in the Flash to boot that image first, and to use that image as a boot-helper image to initialize the system, and bring up the interfaces in order to load the main image from the TFTP server.

Step 3: After finding the image, the router decompresses it and loads it into the DRAM. Then the Cisco IOS software image starts to run.

Cisco IOS software performs important functions during bootup, such as:

- Recognizing and analyzing interfaces and other hardware
- Setting up proper data structures such as Interface Descriptor Blocks (IDBs)
- Allocating buffers
- Reading the configuration from NVRAM to RAM (running-config) and configuring the system

Here is an example of a boot sequence from a 2600 router:

```
System Bootstrap, Version 11.3(2)XA4, RELEASE SOFTWARE (fc1)
Copyright (c) 1999 by cisco Systems, Inc.
TAC:Home:SW:IOS:Specials for info
C2600 platform with 65536 Kbytes of main memory

program load complete, entry point: 0x80008000, size: 0x43b7fc

Self decompressing the image:
###############################################################
###############################################################
###############################################################
###############################################################
###############################################################
###############################################################
[OK]

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

Cisco Internetwork Operating System Software
IOS (tm) C2600 Software (C2600-I-M), Version 12.1(8), RELEASE SOFTWARE (fc1)
Copyright (c) 1986-2001 by cisco Systems, Inc.
Compiled Tue 17-Apr-01 04:55 by kellythw
Image text-base: 0x80008088, data-base: 0x8080853C

cisco 2611 (MPC860) processor (revision 0x203) with 56320K/9216K bytes of memory.
Processor board ID JAD05020BV5 (1587666027)
M860 processor: part number 0, mask 49
Bridging software.
X.25 software, Version 3.0.0.
```

Cisco – Cisco 2600 Series Router Architecture
Basic Operation

Memory Structure Overview – Buffer Allocation

Within low-end and mid-range systems, packet flow through a router (regardless of the switching mechanism) is closely related to buffer usage. This section provides a quick overview to ensure that you are familiar with the buffer and memory structures used for process- and fast-switched packets.

There are two basic buffer pools available: public buffers (system buffer) and private buffers (interface buffer).

Some interface processors create pools of private buffers when they initialize, some do not.

Private buffer pools can be viewed using the show buffers interface command.

Public buffer pools are created by Cisco IOS software, and they are used to process switch packets, or by interfaces that either run out of private buffers or do not support the private buffers function.

When a packet first arrives on an interface, it is placed in a buffer on the receive ring. The interface processor
then tries to replace this used buffer with a free buffer, either from its private pool, or if this is not possible, from a buffer from the public pool.

If the packet is to be process-switched, then ownership of that buffer passes from the interface processor to the CPU. If the packet is to be fast-switched, then ownership passes either to the output queue, or to the outbound transmit ring.

It is important to note that in low-end and mid-range systems, packets are never copied from buffer to buffer. Only ownership of the buffer changes (using pointers).

Once the packet has been transmitted, the buffer is returned to its original owner.

Interface buffers are particle-based. This means that you use 1524 bytes of long particles instead of continuous buffers. You only use particles for interfaces with a large maximum transmission unit (MTU) to avoid overhead. You can't handle particles at process level, so packets are reassembled when transferred to the system buffers (small and medium).

Interfaces have a private particles pool. When they are short of private buffers, they can fall back to a public particle pool corresponding to their buffer size.

Process-Switching

Process-switched refers to the fact that the CPU is directly involved in the decision process required to forward the packet.

After a packet arrives on an inbound interface, the interface driver must first copy that packet into a packet buffer in shared memory. This buffer can be pulled from either a public or a private pool, and is done without signalling an interrupt to the CPU.

The interface driver next determines what type of Layer 3 protocol is encapsulated in the packet. This information is also buffered.

Once the interface driver has buffered the packet and identified the Layer 3 protocol, it then generates an interrupt to the processor, indicating that a packet is waiting in the input queue for processing.

Once the processor receives the interrupt generated by the interface driver, it assumes ownership of the packet buffer and determines which process must be called to handle this packet, and then schedules that process to run.

At this point, there is a period of "idle time" for the packet, as it waits for the called process to be run. Exactly how much idle time depends on the number of outstanding processes that are waiting to run, the number of additional packets waiting to be forwarded, and so on.

When the process that handles the required packet type finally runs, it determines which interface this packet should be forwarded out of by doing a route table lookup. If it is determined that this packet is to be forwarded, then a new Layer 2 header is added to the packet and it is placed on the relevant output queue.

However, if the packet is destined for the router itself, then it is requeued for additional processing. The process that handles the destination output queue then places the packet onto the interface transmit ring. The interface driver identifies that there is a packet in the transmit ring waiting to be sent, and forwards it out onto the physical media. The interface driver then signals an interrupt back to the processor, requesting that counters be updated and buffers placed back into free pools.
Fast-Switching

Fast-switching relies on the forwarding of Layer 3 packets by referencing a cache of destination Layer 3 addresses, corresponding Layer 2 addresses, and the associated outbound interfaces.

Fast-switching is applicable to all Cisco IOS software platforms, although it does not support all protocols or packet features. For example, TCP header compression requires CPU processing, and some IBM and X.25/LAPB protocols cannot be fast-switched.

For fast-switching paths, after a packet arrives on an inbound interface, the interface driver first copies that packet into a packet buffer in shared memory. This buffer can be pulled from either a public or a private pool, and is done without interruption to the CPU.

The interface driver next determines what type of Layer 3 protocol is encapsulated in the packet. This information is also buffered.

The interface driver then examines the switching cache, to determine whether or not an entry exists for the required destination. If a valid entry exists, the new Layer 2 header is copied from the cache and prepended onto the Layer 3 packet. Then, using information from the cache, the interface driver determines which outbound interface should be used for forwarding this packet.

If the outbound interface already has packets queued in its outbound, the driver adds the new packet to the end of the queue. If the queue is empty, the driver places the new packet directly onto the transmit ring.

After successful transmission onto the physical media, the transmitting interface processor signals a transmit interrupt to the processor, so that counters can be updated, buffers returned, and so on.

If the cache does not contain a valid entry for the required destination, the interface driver signals a receive interrupt to the processor, and the packet is process-switched (as described in the previous section). However, in addition to forwarding the packet, the processor uses the results of the forwarding decision to populate the fast cache, so that subsequent packets to the same destination can be fast-switched.

CEF-Switching

The fast-switching mechanisms discussed in the previous sections all suffer the following drawbacks:

- They are all traffic-driven, in that they depend on the reception of the first packet to populate the cache.

- It is possible for caches to grow larger than routing tables, thus consuming significant amounts of memory.

- Periodic aging of the cache entries can consume large amounts of CPU time if the cache is large.

- Cache invalidation due to a route-flap relies on process-switching to re-populate the cache with valid entries.

- On some platforms, the size of the cache may lead to cache entry churn if there are too many entries for the cache to support.

- They are unable to do per-packet load-balancing from an interrupt level.
It is the inherent drawbacks to traditional demand–based caches that led to the development of Cisco Express Forwarding (CEF). The two main components of CEF are the Forwarding Information Base (FIB) and the adjacency table. Both tables are stored in DRAM memory.

The FIB table is used to make IP destination prefix–based forwarding decisions. It contains a mirror image of the information stored in the IP routing table. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are reflected in the FIB. The FIB maintains next–hop address information based on the information in the IP routing table.

CEF also uses adjacency tables to prepend Layer 2 addressing information. The adjacency table maintains Layer 2 next–hop addresses for all FIB entries. The entries allow the Route/Switch Processor (RSP) to perform fast Layer 2 header rewrites when switching the packet from source interface to destination interface.

The adjacency table is populated as adjacencies are discovered. Each time an adjacency entry is created (for example, through the Address Resolution Protocol – ARP), a link–layer header for that adjacent node is precomputed and stored in the adjacency table. Once a route is determined, it points to a next hop and corresponding adjacency entry. That entry is then subsequently used for encapsulation during CEF switching of packets.

More information about CEF can be found at the CEF home page.

Performance

The performance figures below are based on the Cisco 2600 Series Modular Access Router Family:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Throughput (max, fast–switching)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2610–12</td>
<td>15K packets per second (pps)</td>
</tr>
<tr>
<td>2620/21</td>
<td>25K pps</td>
</tr>
<tr>
<td>2650/51</td>
<td>37K pps</td>
</tr>
<tr>
<td>2610/11XM</td>
<td>20K pps</td>
</tr>
<tr>
<td>2620/21XM</td>
<td>30K pps</td>
</tr>
<tr>
<td>2650/51XM</td>
<td>40K pps</td>
</tr>
<tr>
<td>2691</td>
<td>70K pps</td>
</tr>
</tbody>
</table>

Related Information

Related Topics

- Password Recovery for Cisco 2600 Series Routers
- Software Installation and Upgrade Procedure for Cisco 2600 Series Routers
- ROMmon Recovery for the Cisco 2600 Series Router and the VG200
- Maximum Number of Interfaces and Subinterfaces for Cisco IOS Platforms: IDB Limits
- Cisco 2600 Series Modular Access Routers – Product Overview

Additional Documentation

- Product Support Page
- Technology Support Page