CONFIGURING DIAL BACKUP WITH DYNAMIC MULTIPOINT VPN USING RELIABLE STATIC ROUTING

OVERVIEW
This document provides a sample configuration for configuring Dial backup on a Dynamic Multipoint spoke router in a Dynamic Multipoint VPN (DMVPN) Hub-and-spoke network. The DMVPN solution is used to build large Cisco IOS® IP Security (IPsec) VPNs. DMVPN combines generic routing encapsulation (GRE) tunnels, IPsec encryption, and Next Hop Resolution Protocol (NHRP). Dial backup enables the spoke router to try alternative path to reach the hub router, when the direct primary path to the hub router fails. This configuration relies on Dial back up, Reliable Static Routing Backup Using Object Tracking, and Policy Based Routing. This sample configuration shows how to enable the failover over a dial-up modem, when the primary path to the hub router fails and how to recover from the backup path, when the primary path is recovered.

Figure 1. Network Diagram

DMVPN BENEFITS

Simplification of IPsec VPN Configuration
Adding or removing a spoke does not require configuration changes on the hub router. The configuration on all the spokes is identical, except for the site specific addresses. The same configuration template can be used at all the spoke routers.

Support for Dynamically Addressed Spoke Routers
To configure the hub router using point-to-point GRE and IPsec hub-and-spoke VPN networks, the physical interface IP address of the spoke routers must be known, because IP address must be configured as the GRE tunnel destination address. This feature allows spoke routers to have dynamic physical interface IP addresses (common for cable and DSL connections). When the spoke router comes online it sends registration packets to the hub router. Current physical interface IP address of this spoke is located within these registration packets.
Support for Enterprise Class Remote Sites

Using DMVPN provides support for routing protocols to the remote sites. Using routing protocols to remote sites enables dynamic propagation of routing information and optimized route selection. Also, remote sites can utilize multicast traffic for supporting multimedia, video, and distant learning applications.

This network is using hub to spoke configuration topology. This configuration is using an alternate DMVPN configuration, which does not use the new tunnel protection configuration.

Prerequisites

The sample configuration is based on the following assumptions:

- Public IP address of the hub (this configuration is using 172.16.32.124)
- IP address of the IPsec tunnel on the hub (this configuration is using 192.168.0.1)
- IP address of the IPsec tunnel on the local spoke (this configuration is using 192.168.0.10)
- A static IP address on the wan interface of the spoke
- The Routing protocol to be used with the hub router (this configuration is using Open Shortest Path First (OSPF))
- An assigned pre-shared key that will be used on the hub and all the spokes
- Dial-up account to an Internet service provider (ISP) to provide an alternate path to the hub router

Limitations

- This guide describes the spoke router for hub and spoke DMVPN configurations only.
- Full security audit on the router configuration is not covered. It is recommended to run Security Audit in the wizard mode to lock down and secure the router.
- An initial router configuration step is not covered in the steps. The full configuration is shown in the next section.
- This network is using hub to spoke configuration topology. Traffic from a spoke to another spoke is required to pass via the hub first.
- This configuration is using the alternate DMVPN configuration, which uses a crypto map on the physical interface rather than the new tunnel protection configuration.

Prepare to Begin

Before beginning the configurations, make sure that:

- The spoke router can reach the DMVPN hub directly over the internet, and the DMVPN hub is configured and operational
- The spoke router can reach the DMVPN hub via the dial-up modem and the ISP

Components Used

The sample configuration uses the following Cisco IOS Software releases and Cisco hardware:

- Cisco IOS Software Release 12.3(8)T1 and Cisco 831 Series Router (Cisco 831-K9O3SY6-M Series Router)
- Cisco IOS Software Release 12.3(10) and Cisco 3700 Series Multiservice Access Router (Cisco 3745-IK9O3S-M Series Router)

Figure 1 illustrates the network for the sample configuration.

The information presented in this document was obtained from devices in a specific lab environment. All of the devices started with a cleared (default) configuration. In a live network, it is imperative to understand the potential impact of any command before implementing it.

The idea is to use Internet Control Message Protocol (ICMP) pings to track the reachability of the Hub via the Spokes primary interface. It is
assumed that the spoke router must use different source addresses for tunnel packets going out of the primary interface and for tunnel packets going out of the backup interface. Cisco uses a tunnel mode IPsec and loopback interface as the GRE tunnel source, this allows the local IPsec peer address to dynamically match the outbound (primary or backup) interface address. Only DMVPN hub and spoke networks will be supported.

This sample configuration also used the following software features:

- **DMVPN Configuration with Crypto Map**—This DMVPN configuration uses traditional “crypto map” command instead of the new “tunnel protection” command. This configuration method is required on both hub and spoke routers.

- **Reliable Static Routing Backup Using Object Tracking**—The Reliable Static Routing Backup Using Object Tracking feature introduces the ability for Cisco IOS Software to use Internet Control Message Protocol (ICMP) pings to identify when an IPsec VPN hub become unreachable and allows the initiation of a backup connection from any alternative path with a floating static path. For the complete documentation, check out the Reliable Static Routing Backup Using Object Tracking link in the related information section of this document.

- **Policy Based Routing**—The policy based routing is only required when the reliable static Routing is required to track the IP address of the DMVPN hub router. If tracking of different IP address, such as a secondary IP address on the DMVPN hub, is possible, then a host static route can be used instead of PBR.

 The Policy based routing is needed on the spoke router only. It is used to direct local ICMP packets, sent only from the spoke router to the hub router, to go through the WAN interface, even during the failover. These packets are sent by the Reliable Static Routing Backup Using Object Tracking feature to determine the reachability via the direct Internet path. Following are the configuration used for the Policy Based Routing:

```
interface Ethernet1
    ip address 172.18.132.186 255.255.255.248
!
ip local policy route-map MY_LOCAL_POLICY
!
ip route 172.16.32.124 255.255.255.255 172.18.132.185 track 123
!
access-list 101 permit icmp host 172.18.132.186 host 172.16.32.124
!
route-map MY_LOCAL_POLICY permit 10
    match ip address 101
    set interface Ethernet1
    set ip next-hop 217.181.132.185
```

Dial Backup

Dial backup enables the establishment of an alternative path using the auxiliary port of the spoke router. Cisco 831 Series Router with a virtual aux port configuration is used in this case. For complete information on virtual aux port, check the Virtual auxiliary port Feature documentation.

CONFIGURATION OF THE SPOKE ROUTER

Following are the configurations on the spoke router:

```
version 12.3
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
```
hostname c831-27

boot-start-marker
default local
boot-end-marker

logging buffered 32000 debugging
enable password 7 02150056

aaa new-model

!

aaa authentication login default none
aaa authentication ppp default local
aaa session-id common
ip subnet-zero

!

ip dhcp excluded-address 10.80.1.1
!

ip dhcp pool TEST
 network 10.80.0.0 255.255.255.0
 default-router 10.80.1.1
!

!

ip host hub 172.16.32.124
ip cef
ip ips po max-events 100
no ftp-server write-enable

chat-script dial ABORT ERROR ABORT BUSY "" "ATDT\T" TIMEOUT 60 CONNECT

track 123 rtr 1 reachability
!
crypto isakmp policy 10
 hash md5
 authentication pre-share
crypto isakmp key 7578 address 0.0.0.0 0.0.0.0
crypto isakmp keepalive 10
!
crypto ipsec transform-set LAB-TRANSFORM esp-des esp-md5-hmac
!
crypto map LABMAP 10 ipsec-isakmp
 set peer 172.16.32.124
set transform-set LAB-TRANSFORM

match address 100

!

interface Tunnel0
 bandwidth 1000
 ip address 10.87.252.10 255.255.252.0
 no ip redirects
 ip mtu 1400
 ip nhrp authentication cisco
 ip nhrp map 10.87.252.1 192.168.0.1
 ip nhrp network-id 100000
 ip nhrp nhs 10.87.252.1
 ip tcp adjust-mss 1360
 delay 1000
 tunnel source Loopback0
 tunnel destination 192.168.0.1
 tunnel key 100000

!

interface Loopback0
 ip address 192.168.0.10 255.255.255.255

!

interface Ethernet0
 ip address 10.80.1.1 255.255.255.0
 ip virtual-reassembly
 no cdp enable
 hold-queue 32 in
 hold-queue 100 out

!

interface Ethernet1
 ip address 172.18.132.186 255.255.255.248
 ip route-cache flow
duplex auto
 crypto map LABMAP

!

interface Async1
 bandwidth 56
 ip address negotiated
 encapsulation ppp
 no ip mroute-cache
dialer in-band
dialer idle-timeout 300
dialer fast-idle 10800

crypto map LABMAP
dialer enable-timeout 6
dialer wait-for-carrier-time 75
dialer string 60340
dialer hold-queue 100 timeout 75
dialer-group 1
async default routing
async dynamic address
async dynamic routing
async mode dedicated
no fair-queue
ppp authentication pap callin
ppp pap sent-username lab password 0 lab
crypto map LABMAP
!
router ospf 100
 log-adjacency-changes
 passive-interface Ethernet1
 network 10.87.252.0 0.0.1.255 area 0
 network 10.80.1.0 0.0.0.255 area 0
!
 ip local policy route-map MY_LOCAL_POLICY
 ip classless
 !
 ip route 172.16.32.124 255.255.255.255 172.18.132.185 track 123
 ip route 0.0.0.0 0.0.0.0 172.18.132.185
 ip route 172.16.32.124 255.255.255.255 Async1 200
 ip route 192.168.0.1 255.255.255.255 172.16.32.124
!
 ! The IP route for the tunnel destination needs to follow the route for
 ! IPsec remote peer, so in this case we set the IP next-hop on the tunnel
 ! destination route to be the IPsec peer address. So by fact of recursive
 ! route lookup in the routing table the tunnel destination route will follow
 ! the IPsec remote peer route.
 !
 ip http server
 ip http authentication local
 no ip http secure-server
 ip http path flash:dir
 !
 access-list 100 permit gre host 192.168.0.10 host 192.168.0.1
 access-list 101 permit icmp host 172.18.132.186 host 172.16.32.124
 access-list 102 permit ip any any
dialer-list 1 protocol ip list 102
route-map MY_LOCAL_POLICY permit 10
 match ip address 101
 set interface Ethernet1
 set ip next-hop 217.181.132.185
!
control-plane
!
 rtr 1
 !
 type echo protocol icmpEcho 172.16.32.124 source-ipaddr 172.18.132.186
 ! Explicitly set the IP ICMP source address otherwise the rtr ICMP code will
 ! use an incorrect source address when switching back the IPsec peer address
 ! route from using the Async to using Ethernet1, because these ICMP packets
 ! are policy routed
 !
 timeout 1000
 threshold 40
 frequency 3
 rtr schedule 1 life forever start-time now
!
 line con 0
 exec-timeout 0 0
 modem enable
 transport preferred all
 transport output all
 stopbits 1
 line aux 0
 exec-timeout 0 0
 script dialer dial
 modem InOut
 modem autoconfigure discovery
 transport preferred all
 transport input all
 transport output all
 speed 19200
 flowcontrol hardware
 line vty 0 4
 access-class 23 in
 exec-timeout 0 0
 password 7 01100F1758040506324F41
 transport preferred all
transport input all
transport output all
!
end

VERIFYING THE RESULTS

Normal Operation
This section provides information that can be used to confirm that configuration is working properly.
c831-27#sh ip nhrp
10.87.252.1/32 via 10.87.252.1, Tunnel0 created 1w4d, never expire
 Type: static, Flags: authoritative
 NBMA address: 192.168.0.1

c831-27#sh cry sess
Crypto session current status

 Interface: Ethernet1
 Session status: UP-ACTIVE
 Peer: 172.16.32.124/500
 IKE SA: local 172.18.132.186/500 remote 172.16.32.124/500 Active
 IPSEC FLOW: permit 47 host 192.168.0.10 host 192.168.0.1
 Active SAs: 2, origin: crypto map

c831-27#sh dialer

 As1—dialer type = IN-BAND ASYNC NO-PARITY
 Idle timer (300 secs), Fast idle timer (10800 secs)
 Wait for carrier (75 secs), Re-enable (6 secs)
 Dialer state is idle

 Dial String Successes Failures Last DNIS Last status
 00:29:09 successful

 Dial String Successes Failures Last DNIS Last status
 00:29:09 successful

 Dial String Successes Failures Last DNIS Last status
 00:29:09 successful

c831-27#show ip route track-table
 ip route 172.16.32.124 255.255.255.255 172.16.28.185 track 123 state is [up]
c831-27#
c831-27#sh int tunnel 0

 Tunnel0 is up, line protocol is up
 Hardware is Tunnel
 Internet address is 10.87.252.10/22
 MTU 1514 bytes, BW 1000 Kbit, DLY 10000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation TUNNEL, loopback not set
Keepalive not set
Tunnel source 192.168.0.10 (Loopback0), destination 192.168.0.1
Tunnel protocol/transport GRE/IP, key 0x186A0, sequencing disabled
Tunnel TTL 255
Checksumming of packets disabled, fast tunneling enabled
Tunnel transmit bandwidth 8000 (kbps)
Tunnel receive bandwidth 8000 (kbps)
Last input 00:00:04, output 00:00:06, output hang never
Last clearing of “show interface” counters 6d02h
Input queue: 0/75/6023/0 (size/max/drops/flushes); Total output drops: 1639
Queueing strategy: fifo
Output queue: 0/0 (size/max)
5 minute input rate 5000 bits/sec, 5 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 801270 packets input, 91832605 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 316526 packets output, 39386483 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 output buffer failures, 0 output buffers swapped out

c831-27#
c831-27#sh int asyn 1
Async1 is up (spoofing), line protocol is up (spoofing)
Hardware is Async Serial
Internet address will be negotiated using IPCP
MTU 1500 bytes, BW 56 Kbit, DLY 100000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, LCP Closed, loopback not set
Keepalive not set
DTR is pulsed for 5 seconds on reset
Last input 00:31:17, output 00:31:33, output hang never
Last clearing of “show interface” counters 6d02h
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/10 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 707530 packets input, 118223126 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 65 input errors, 65 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 237830 packets output, 42472287 bytes, 0 underruns
 0 output errors, 0 collisions, 121 interface resets
0 output buffer failures, 0 output buffers swapped out
0 carrier transitions

c831-27#

c831-27#sh ip route

Codes: C—connected, S—static, R—RIP, M—mobile, B—BGP
D—EIGRP, EX—EIGRP external, O—OSPF, IA—OSPF inter area
N1—OSPF NSSA external type 1, N2—OSPF NSSA external type 2
E1—OSPF external type 1, E2—OSPF external type 2
i—IS-IS, su—IS-IS summary, L1—IS-IS level-1, L2—IS-IS level-2
ia—IS-IS inter area, *—candidate default, U—per-user static route
o—ODR, P—periodic downloaded static route

Gateway of last resort is 172.16.28.185 to network 0.0.0.0

172.16.0.0/32 is subnetted, 1 subnets
S 172.16.32.124 [1/0] via 172.16.28.185

10.32.0.0/24 is subnetted, 1 subnets
O 10.32.12.0 [110/101] via 10.87.252.1, 00:33:13, Tunnel0

10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 10.80.1.0/24 is directly connected, Ethernet0
S 10.0.149.0/24 [1/0] via 172.16.28.185
C 10.87.252.0/22 is directly connected, Tunnel0

192.168.0.0/32 is subnetted, 2 subnets
C 192.168.0.10 is directly connected, Loopback0
S 192.168.0.1 [1/0] via 172.16.32.124

172.16.28.0/29 is subnetted, 1 subnets
C 172.16.28.184 is directly connected, Ethernet1

S* 0.0.0.0/0 [1/0] via 172.16.28.185

c831-27#
Operation During Initiating the Backup Path

This section provides information on the messages during initiating the backup path. The debug dialer was enabled on the router.

c831-27#
*Mar 25 23:15:34.803: CHAT1: Chat script dial finished, status = Success
*Mar 25 23:15:36.803: %LINK-3-UPDOWN: Interface Async1, changed state to up
*Mar 25 23:15:36.803: As1 DDR: Dialer statechange to up
*Mar 25 23:15:36.803: As1 DDR: Dialer call has been placed
*Mar 25 23:15:37.595: As1 DDR: dialer protocol up
*Mar 25 23:15:37.595: As1 DDR: Call connected, 1 packets unqueued, 1 transmitted, 0 discarded
*Mar 25 23:15:37.803: %LINEPROTO-5-UPDOWN: Line protocol on Interface Async1, changed state to up
*Mar 25 23:15:48.023: %OSPF-5-ADJCHG: Process 100, Nbr 192.168.0.1 on Tunnel0 from FULL to DOWN, Neighbor Down: Dead timer expired
*Mar 25 23:16:10.419: %OSPF-5-ADJCHG: Process 100, Nbr 192.168.0.1 on Tunnel0 from LOADING to FULL, Loading Done

c831-27#

Operation Through the Backup Path

Following is the status of the configuration, working properly through the failover path:

c831-27#sh ip nhrp
10.87.252.1/32 via 10.87.252.1, Tunnel0 created 1w4d, never expire
 Type: static, Flags: authoritative
 NBMA address: 192.168.0.1

c831-27#sh cry sess
Crypto session current status

Interface: Ethernet1
Session status: UP-ACTIVE
Peer: 172.16.32.124/500
 IKE SA: local 172.18.132.186/500 remote 172.16.32.124/500 Active
 IPSEC FLOW: permit 47 host 192.168.0.10 host 192.168.0.1
 Active SAs: 2, origin: crypto map

© 2004 Cisco Systems, Inc. All rights reserved.
Important notices, privacy statements, and trademarks of Cisco Systems, Inc. can be found on cisco.com.
Page 11 of 20
Interface: Async1
Session status: UP-ACTIVE
Peer: 172.16.32.124/500
 IKE SA: local 172.21.0.29/500 remote 172.16.32.124/500 Active
 IPSEC FLOW: permit 47 host 192.168.0.10 host 192.168.0.1
 Active SAs: 2, origin: crypto map

```
c831-27#sh dialer
Asl-dialer type = IN-BAND ASYNC NO-PARITY
Idle timer (300 secs), Fast idle timer (10800 secs)
Wait for carrier (75 secs), Re-enable (6 secs)
Dialer state is data link layer up
Dial reason: ip (s=172.16.28.187, d=172.18.132.186)
Time until disconnect 290 secs
Current call connected 00:04:59
Connected to 60340

Dial String     Successes  Failures  Last DNIS     Last status
60340            1680         19       00:04:59     successful Default
```

```
c831-27#sh ip route track-table
   ip route 172.16.32.124 255.255.255.255 172.16.28.185 track 123 state is [down]
c831-27#sh int tunnel 0
Tunnel0 is up, line protocol is up
   Hardware is Tunnel
   Internet address is 10.87.252.10/22
   MTU 1514 bytes, BW 1000 Kbit, DLY 10000 usec,
   reliability 255/255, txload 1/255, rxload 1/255
   Encapsulation TUNNEL, loopback not set
   Keepalive not set
   Tunnel source 192.168.0.10 (Loopback0), destination 192.168.0.1
   Tunnel protocol/transport GRE/IP, key 0x186A0, sequencing disabled
   Tunnel TTL 255
   Checksumming of packets disabled, fast tunneling enabled
   Tunnel transmit bandwidth 8000 (kbps)
   Tunnel receive bandwidth 8000 (kbps)
   Last input 00:00:03, output 00:00:05, output hang never
   Last clearing of "show interface" counters 6d02h
   Input queue: 0/75/6864/0 (size/max/drops/flushes); Total output drops: 1643
   Queueing strategy: fifo
   Output queue: 0/0 (size/max)
   5 minute input rate 0 bits/sec, 0 packets/sec
   5 minute output rate 0 bits/sec, 0 packets/sec
```
803485 packets input, 92073897 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
316685 packets output, 39402455 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out

c831-27#sh int asyn 1
Async1 is up, line protocol is up
 Hardware is Async Serial
 Internet address is 172.21.0.29/32
 MTU 1500 bytes, BW 56 Kbit, DLY 100000 usec,
 reliability 255/255, txload 1/255, rxload 9/255
 Encapsulation PPP, LCP Open
 Open: IPCP, loopback not set
 Keepalive not set
 DTR is pulsed for 5 seconds on reset
 Time to interface disconnect: idle 00:04:54
 Last input 00:00:04, output 00:00:05, output hang never
 Last clearing of "show interface" counters 6d02h
 Input queue: 1/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/10 (size/max)
 5 minute input rate 2000 bits/sec, 1 packets/sec
 5 minute output rate 0 bits/sec, 0 packets/sec
 707927 packets input, 118286572 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 65 input errors, 65 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 237903 packets output, 42483142 bytes, 0 underruns
 0 output errors, 0 collisions, 121 interface resets
 0 output buffer failures, 0 output buffers swapped out
 0 carrier transitions

c831-27#sh ip route
Codes: C—connected, S—static, R—RIP, M—mobile, B—BGP
 D—EIGRP, EX—EIGRP external, O—OSPF, IA—OSPF inter area
 N1—OSPF NSSA external type 1, N2—OSPF NSSA external type 2
 E1—OSPF external type 1, E2—OSPF external type 2
 i—IS-IS, su-IS-IS summary, L1—IS-IS level-1, L2—IS-IS level-2
 ia—IS-IS inter area, *—candidate default, U—per-user static route
 o—ODR, P—periodic downloaded static route

Gateway of last resort is 172.16.28.185 to network 0.0.0.0
172.16.0.0/32 is subnetted, 1 subnets
S 172.16.32.124 is directly connected, Async1
172.21.0.0/32 is subnetted, 2 subnets
C 172.21.0.29 is directly connected, Async1
C 172.21.0.11 is directly connected, Async1
10.32.0.0/24 is subnetted, 1 subnets
O 10.32.12.0 [110/101] via 10.87.252.1, 00:05:36, Tunnel0
10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 10.80.1.0/24 is directly connected, Ethernet0
S 10.0.149.0/24 [1/0] via 172.16.28.185
C 10.87.252.0/22 is directly connected, Tunnel0
192.168.0.0/32 is subnetted, 2 subnets
C 192.168.0.10 is directly connected, Loopback0
S 192.168.0.1 [1/0] via 172.16.32.124
172.16.28.0/29 is subnetted, 1 subnets
C 172.16.28.184 is directly connected, Ethernet1
S* 0.0.0.0/0 [1/0] via 172.16.28.185
c831-27#

Hub Router Configurations
Current configuration : 6965 bytes
!
version 12.3
no service pad
service timestamps debug datatime msec localtime show-timezone
service timestamps log datatime msec localtime show-timezone
no service password-encryption
service sequence-numbers
!
hostname c3745-20
!
boot-start-marker
boot system flash c3745-ik9o3s-mz.123-10.bin
boot-end-marker
!
logging buffered 51200 warnings
!
username sdm privilege 15 password 0 sdm
no network-clock-participate slot 1
no aaa new-model
ip subnet-zero
no ip source-route
ip cef

crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2

crypto isakmp policy 10
 hash md5
 authentication pre-share
 crypto isakmp key 7578 address 0.0.0.0 0.0.0.0
 crypto isakmp keepalive 10

crypto ipsec transform-set LAB-TRANSFORM esp-des esp-md5-hmac

crypto dynamic-map DYNMAP 10
 set transform-set LAB-TRANSFORM

crypto map LABMAP 10 ipsec-isakmp dynamic DYNMAP

interface Loopback0
 ip address 192.168.0.1 255.255.255.255

interface Tunnel0
 bandwidth 1000
 ip address 10.87.252.1 255.255.255.252.0
 no ip redirects
 ip mtu 1400
 ip nhrp authentication cisco
 ip nhrp map multicast dynamic
 ip nhrp network-id 100000
 ip nhrp holdtime 360
 ip tcp adjust-mss 1360
 delay 1000
 tunnel source Loopback0
tunnel mode gre multipoint
tunnel key 100000

! interface FastEthernet0/1
description FW_INSIDE
ip address 10.32.12.4 255.255.255.0

! interface FastEthernet1/0
description $FW_OUTSIDE$
ip address 172.16.32.124 255.255.255.0
ip access-group 152 in
ip verify unicast reverse-path
no ip redirects
no ip unreachable
no ip proxy-arp
ip route-cache flow
speed auto
full-duplex
crypto map LABMAP

! router ospf 100
 log-adjacency-changes
 redistribute static subnets route-map VPN-OUT
 network 10.87.252.0 0.0.1.255 area 0
 network 10.0.0.0 0.255.255.255 area 0
 network 172.0.0.0 0.255.255.255 area 0

! ip classless
ip route 0.0.0.0 0.0.0.0 172.16.32.1
end

ISP Router Configuration
!hostname ISP

! logging buffered 51200 warnings
username lab password 0 lab

! aaa new-model
aaa authentication login default local
aaa authorization network AUTH_LIST local
aaa authorization network I123 local
aaa session-id common
ip subnet-zero

ip domain name yourdomain.com
ip name-server 172.19.192.254
ip cef
!
!
interface FastEthernet0/0
 description $ETH-LAN$$ETH-SW-LAUNCH$
 ip address 172.19.193.20 255.255.255.0
 ip accounting output-packets
 ip route-cache flow
 speed 100
 full-duplex
!
interface Async5
 bandwidth 56
 ip address 172.21.0.11 255.255.0.0
 encapsulation ppp
 ip route-cache flow
 no ip mrout cache
 dialer in-band
 dialer idle-timeout 300
 dialer fast-idle 10800
 dialer enable-timeout 20
 dialer wait-for-carrier-time 75
 dialer map ip 172.21.1.1 name test-1600 broadcast 6662400
 dialer hold-queue 100 timeout 75
 dialer-group 1
 async default routing
 async dynamic address
 async dynamic routing
 async mode dedicated
 peer default ip address pool p140
 no fair-queue
 ppp authentication pap callin
!
ip local pool p140 172.21.0.20 172.21.0.30
ip route 0.0.0.0 0.0.0.0 172.19.193.1
access-list 102 permit ip any any
dialer-list 1 protocol ip list 102
!
!
line aux 0
 exec-timeout 0 0
modem InOut
modem autoconfigure discovery
transport input all
transport output all
autoselect ppp
speed 19200
flowcontrol hardware
end

RELATED INFORMATION

• IPsec Support Page
• An Introduction to IP Security (IPsec) Encryption
• Cisco IOS Easy VPN Client Feature
• Cisco IOS Easy VPN Server
• Reliable Static Routing Backup Using Object Tracking:
• Virtual Auxliliary Port Feature and Configuration of DSL Settings:
• Configuring IPsec Network Security
• Configuring Internet Key Exchange Security Protocol
• Command Lookup Tool (registered customers only)
• Technical Support—Cisco Systems
Cisco Systems has more than 200 offices in the following countries and regions. Addresses, phone numbers, and fax numbers are listed on the [Cisco Web site](https://www.cisco.com/go/offices).

Africa • Argentina • Australia • Austria • Belgium • Brazil • Bulgaria • Canada • Chile • China • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Dubai, UAE • Finland • France • Germany • Greece • Hong Kong SAR • Hungary • India • Indonesia • Ireland • Israel • Italy • Japan • Korea • Luxembourg • Malaysia • Mexico • The Netherlands • New Zealand • Norway • Peru • Philippines • Poland • Portugal • Puerto Rico • Romania • Russia • Saudi Arabia • Scotland • Singapore • Slovakia • Slovenia • South Africa • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • Ukraine • United Kingdom • United States • Venezuela • Vietnam • Zimbabwe

Copyright © 2004, Cisco Systems, Inc. All rights reserved. Cisco, Cisco IOS, Cisco Systems, and the Cisco Systems logo are registered trademarks or trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries. All other trademarks mentioned in this document or Web site are the property of their respective owners.

The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0304R)

Printed in the USA