Contents

Introduction .. 5

Document Organization ... 5

Technology Introduction - Security Levels ... 6

Cisco TelePresence C-series Endpoints ... 8
- C-series Secure Management Reference Material ... 8
 Default Protocols and Services in MXP Systems .. 8
 Secure Management Features Added Beginning with TC3.0.0 Software 9
 C-series Secure Management Profiles ... 11
- C-series Secure Management Implementation Material 11
 Readiness Checklist for implementing HTTPS Management for C-series systems 11
 Implementation Guide for Configuring a C-series system for Level 3 Security 12
 Implementation Guide for Configuring a C-series system for Level 4 Security 13

Cisco TelePresence MXP Series Endpoints ... 16
- MXP Secure Management Reference Material ... 16
 Default Protocols and Services in MXP Systems .. 16
 Secure Management Features Added Beginning with F7 Software 17
 Interpreting Certificate Failure Errors .. 19
 MXP Secure Management Profiles ... 19
- MXP Secure Management Implementation Material .. 20
 Readiness Checklist for implementing HTTPS Management for MXP Series 20
 Implementation Guide for Configuring an MXP for Level 3 Security 20
 Implementation Guide for Configuring an MXP for Level 4 Security 22

MPS Series ... 25
- MPS Secure Management Reference Material ... 25
 Default Protocols and Services in MPS Systems .. 25
 Secure Management Features Added Beginning with J4.2 Software 26
 MPS Secure Management Profiles ... 28
- MPS Secure Management Implementation Material .. 29
 Readiness Checklist for implementing HTTPS Management for MPS Series 29
 Implementation Guide for Configuring an MPS for Level 3 Security 29
 Implementation Guide for Configuring an MPS for Level 4 Security 30

Cisco VCS ... 34
- VCS Secure Management Reference Material .. 34
 Default Protocols and Services in VCS Systems .. 34
 Secure Management Features Added Beginning with X4.0 Software 35
 VCS Secure Management Profiles .. 37
- VCS Secure Management Implementation Material .. 37
 Readiness Checklist for implementing HTTPS Management for VCSs 37
 Implementation Guide for Configuring a VCS for Level 3 Security 38
Contents

Find if your certificate authority is trusted by the server ... 72
Adding a Certificate to the Trusted Root CA List for all users of the Server 73
Viewing the contents of a Certificate File .. 73
Additional Tips for the Microsoft Certificates MMC Snap-In ... 73
OpenSSL Certificate Tools .. 74
Common Cisco TMS Certificate Tasks using OpenSSL ... 74
 Generating a Server Certificate for the Cisco TMS Server using OpenSSL 74
 Renewing a Server Certificate for the Cisco TMS Server using OpenSSL 76
 Generating a Self-Signed Certificates using OpenSSL ... 76
Find if your certificate authority is trusted by the server ... 76
Adding a Certificate to the Trusted Root CA List for all users of the Server 76
Viewing the contents of a Certificate File .. 76
Exporting a PEM Certificate and Private Key to PKCS#12 for Windows 77

Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems78
OpenSSL Certificate Tools .. 78
Common Cisco TelePresence System Certificate Tasks using OpenSSL 78
 Generating a Server Certificate for a Cisco TelePresence System using OpenSSL 78
 Renewing a Server Certificate for a Cisco TelePresence System using OpenSSL 79
Generating a Self-Signed Certificates using OpenSSL .. 80
Find if your certificate authority is trusted by the system ... 80
Adding a Certificate to the Trusted Root CA List for the system ... 80
Viewing the contents of a Certificate File .. 80
Merging Multiple Root Certificates into a PEM file for use on Cisco TelePresence Systems 81
Introduction

This document is intended to provide Cisco TelePresence customers with background information on the security of communications for management when using Cisco TelePresence products and provide details on how to configure those systems secure management.

This document currently supports:

- Cisco TelePresence Management Suite (Cisco TMS) version 12.1
- Cisco TelePresence System MXP Series (MXP Series) version F7.1
- Cisco TelePresence Video Communication Server (Cisco VCS) version X4.0
- Cisco TelePresence MPS Series (MPS Series) version J4.3

These versions do not reflect the minimum versions required for this functionality, but rather the configurations and abilities as reflected in these versions. Minimum version requirements are elaborated on in the sections related to each device.

Document Organization

This document is broken into a technology introduction, followed by chapters based on the device to be managed. Each chapter explains the management technologies in use followed by implementation guides for that particular device.

Note: This document assumes a working knowledge of network technologies, X.509 certificates and TLS encryption.

- Readers not familiar with X.509, public key cryptography, or TLS should start by reviewing Appendix A – Communications, Certificate and Key Primer. Appendix A provides a primer to understand the differences in encryption vs. authentication in friendly terms as well as introducing and explaining the relevant concepts required when implementing a TLS communication setup.

- Readers needing assistance creating certificates, key pairs and converting formats may read Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS and Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems which provides step-by-step instructions for generating X.509 certificates and key pairs using commonly available tools.

Readers who do not use Cisco TMS may skip the Cisco TMS section, but users of Cisco TMS looking for secure management should read both the Cisco TMS and device-specific chapters of the devices they wish to use.
Technology Introduction - Security Levels

The level of security an organization requires when communicating with a device will vary based on the company’s policies and willingness to implement security infrastructure. Most commonly organizations are concerned about the security of information sent over a network when managing a system.

Information sent that organizations may be concerned about include:

- Passwords
- Call Detail Records
- Video images from Conferences
- Participant Information

When managing the system, sensitive information may be sent over a network that may or may not be secured. Many protocols send their information in a ‘clear text’ format which means the data can easily be read or interpreted if the information on the IP network is intercepted. Ideally, all data would be encrypted so that only the intended receivers would be able to interpret the information, but this is not always possible.

As an intermediate step, many protocols utilize methods that make it so sensitive information like passwords are not actually sent out over the network but rather use things such as Challenge/Response systems. A Challenge/Response method is used to verify knowing a shared secret without actually sending the secret information itself over the network. This allows non-encrypted protocols such as HTTP or telnet to secure important information like passwords without the overhead or complexity of encrypting the entire conversation.

The security provided with the standard services used by systems may not be sufficient to meet an organization’s needs. Most of the services are limited by the definition of the service/protocol itself. The protocols commonly used with Cisco TelePresence systems are:

- **HTTP** – provides no encryption but can require a password for authentication. HTTP digest is supported to provide passwords without sending in the clear (Challenge/Response). The HTTP clients in Cisco TelePresence systems only support anonymous connections (externalmanager, etc)
- **Telnet** – provides no encryption but can require a password for authentication. Telnet Challenge is supported to provide passwords without sending the password in the clear (Challenge/Response)
- **SNMP v1/v2** – provides no encryption and uses a Community Name as a password for authentication. The Community Name is sent in the clear
- **FTP** – provides no encryption but can require a password for authentication. The password is sent in the clear
- **SSH** – provides encryption for an entire conversation and uses passwords for authentication. Keys must be checked to verify identity, but X.509 Certificates are not used.
- **HTTPS** – provides encryption for an entire conversation and passwords for authentication. Some systems support loading your own X.509 certificate to provide identity authentication.

The above list shows that the actual level of security when managing a system will vary based on the services/protocol used when interfacing with the system. To simplify the comparison and discussion of security levels, we will simplify the behaviors into four levels. These levels do not represent industry standardized definitions but are only used for illustration and simplification.

- **Level 1: Password Only Security** – Passwords and conversations are not protected on the network (sent in clear)
- **Level 2: Password Authentication with Protected Passwords** – Password exchanges are protected using challenge/response systems but the rest of the conversation is not protected on the network (sent in clear)
- **Level 3: Encryption using Simple Authentication** – Encryption is used to protect the conversation on the network and password exchange. No verification of identity through certificates or if certificates are used - errors or warnings about the certificates are ignored.
Level 4: Encryption with Authorization through Certificates – Encryption is used to protect the conversation and passwords on the network. Certificates are exchanged and verified before communications will proceed.

Ideally every conversation would be secure in that the conversation was encrypted and all identities are verified. However, doing so requires infrastructure and policy adherence that not all organizations are willing to invest time and resources to implement. Due to the high requirements, most organizations settle for a level of security between Level 2 and Level 3. Organizations with stricter policies on confidentiality or secrecy may demand an environment that provides Level 4 security.

With existing Cisco TelePresence products, security up through Level 3 can be achieved when limiting yourself to using HTTPS and SSH when interacting with devices. However, for full functionality, especially when used with Cisco TMS, lower security protocols were relied upon. To address customer’s needs for more strict security, Cisco has added functionality and configuration choices to the products to allow those who demand a higher level of security to do so.

At the time of writing, the products enhanced to support this higher level of security are the following Cisco TelePresence units:

- C-series endpoints,
- MXP endpoints (not including the 150 MXP),
- MPS Series,
- Cisco VCS,
- Cisco TMS.

Support will be expanded into other product lines in the future.
Cisco TelePresence C-series Endpoints

Before attempting to deploy a Secure Management solution for Cisco TelePresence C-series systems, it is critical that an administrator understands the fundamentals of certificates, TLS, and the C-series platform’s functionality. Appendix A of this document provides primer information on TLS and certificates for those who are not familiar with those technologies and Appendix C provides step by step instructions for creating and working with certificates.

This chapter is part reference and part implementation guide for the C-series endpoints. The first half details methods and protocols in use between a C-series system and an external management system. The material is broken into sections explaining the default methods implemented in C-series systems, followed by the functionality added beginning with TC3.0.0 software to increase the security level. These sections should be read and understood before attempting to deploy C-series systems in a Secure Management solution.

The second half of this chapter provides a readiness checklist for an administrator to verify they have the information and network configuration required to configure C-series systems for Secure Management. This is followed by comprehensive step-by-step Best Practice guides to configuring a C-series system for Secure Management.

C-series Secure Management Reference Material

Default Protocols and Services in MXP Systems

All C-series endpoints support multiple interfaces for managing the system, including:

- HTTP
- HTTPS
- Telnet
- SSH
- SNMP
- SNMP Traps
- Serial Port

In the factory default configuration, all of the above protocols are enabled except for HTTPS and SSH. These protocols may be enabled or disabled via the XML interface, the web administrator interface under System Configuration > Misc, or using the dataport and xconfiguration commands.

```
xconfiguration networkservices https mode: <on/off>
xconfiguration networkservices http mode: <on/off>
xconfiguration networkservices ssh mode: <on/off>
xconfiguration networkservices telnet mode: <on/off>
xconfiguration networkservices snmp mode: <on/off>
```

Turning a service on or off requires a reboot for changes to take effect.

For services that require a server certificate, such as HTTPS, the systems come preconfigured with a X.509 certificate signed by a TANDBERG Certificate Authority. By default this certificate authority will not be trusted by a user’s computer resulting in a certificate warning in their web browser unless they specify to ignore the warning or trust the TANDBERG Certificate Authority.

Additionally, C-series devices have internal clients used to connect to management platforms. These clients are used for External Manager, and Corporate Directory. These clients by default use HTTP to connect to the configured management addresses. These services can be configured from several locations in the onscreen menus, XML interface, web interface, or dataport. The most direct way to configure these services is through the dataport where each service has their own list of settings under them.

```
xconfiguration provisioning externalmanager
xconfiguration phonebook
```
All of these clients are used when the system is managed by Cisco TMS, but are optional in stand-alone implementations.

Lastly, C-series systems also implement a feedback system which can be used by external systems to monitor activity of the device. Feedback works by having the system post changes using HTTP by default to an external URL. This feedback system is configured using the XML interface or `xcommand httpfeedback register` command available in the dataport of the C-series system or via XML.

The default services/protocols can be summarized based on the security levels outlined in the Technology Introduction chapter of this document as follows:

<table>
<thead>
<tr>
<th>Service/Protocol</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Server</td>
<td>Level 2</td>
</tr>
<tr>
<td>HTTPS Server</td>
<td>Level 4</td>
</tr>
<tr>
<td></td>
<td>(if client checks certificate)</td>
</tr>
<tr>
<td>Telnet</td>
<td>Level 1</td>
</tr>
<tr>
<td>Telnet Challenge</td>
<td>Level 2</td>
</tr>
<tr>
<td>FTP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP Traps</td>
<td>Level 1</td>
</tr>
<tr>
<td>SSH</td>
<td>Level 3</td>
</tr>
<tr>
<td>External services/feedback</td>
<td>Level 2</td>
</tr>
</tbody>
</table>

The overall management security of the device can be improved by disabling unneeded services, and increasing the security of the services in use. Previously, when using Cisco TMS, administrators were limited in what services they could disable. Now, when combined with Secure-Only settings in Cisco TMS, administrators can achieve a Level 3 security by using the security settings added beginning with TC3.0.0 or a Level 4 security when combined with the verify certificates settings.

Secure Management Features Added Beginning with TC3.0.0 Software

Starting with software release TC3.0.0, the security of management interfaces has been increased, including the ability to achieving a security of Level 4, through the following new additions:

Uploading Root Certificates

To properly handle X.509 certificates when acting as an HTTPS client, systems now support loading a list of trusted root certificates into the system. The system allows the upload of a PEM encoded file which contains the root certificates of any CAs you wish the system to trust. The system will use these root certificates when validating X.509 certificates presented by HTTPS servers the system connects to.

The system supports uploading of a single PEM encoded file, which may contain multiple certificates. If an existing list of certificates is present, uploading a new PEM encoded file will overwrite the existing list. Certificate lists are uploaded using the web interface of the system under **Upload certificates > Trusted CA Certificates**.

The system supports X.509 root certificates using RSA and DSA keys that are encoded in the PEM base-64 format. Root certificates are not encrypted with passphrases. For additional help with certificate formats, please see Appendix A of this document.
Uploading Server Certificates

Uploading a server certificate to use for the system’s HTTPS server was introduced in TC3.0.0 software. An uploaded certificate replaces the factory default certificate and is used for the HTTPS server of the system. A certificate is uploaded through the web interface of the system under Upload Certificates > SSL Certificate. The certificate to be uploaded must be a PEM encoded file. If the private key is encrypted with a passphrase, the passphrase must be supplied when uploading the certificate in the separate Passphrase field. For additional help with certificate formats, please see Appendix A of this document.

HTTPS for External Services

External Services can now be configured to use either HTTP or HTTPS. The setting is controlled with command protocol under the external manager configuration and in the path of the phone book server.

```
xconfiguration provisioning externalmanager protocol: <HTTP/HTTPS>
```
```
xconfiguration phonebook server 1 url: <http/https>://<address & path>
```

When protocol is set to HTTPS, only HTTPS will be used. The system intentionally will not fall back to HTTP if HTTPS fails. The management server must also be configured to support HTTPS. See the Cisco TMS section of this document for information on how TMS interacts with HTTPS and these settings.

HTTPS for Feedback URLs

Feedback URLs can now be defined to use HTTPS in the URL using the `httpfeedback register` command. If the feedback URL registered in the system starts with HTTPS, HTTPS will be used when posting events to the external server. When the URL is set to HTTPS, only HTTPS will be used (system will not fall back to HTTP if HTTPS fails). The management server must also be configured to support HTTPS. See the Cisco TMS section of this document for information on how TMS interacts with HTTPS and these settings.

Verify Server Certificates Mode

To achieve Level 4 security, a system must not only handle certificates, it must validate them and adhere to any warnings or errors discovered. Enforcing certificate checking may not be desirable for organizations that want the encryption offered by TLS but do not wish to manage and deploy valid server certificates on all devices. Using TLS without validating certificates results in an equivalent Level 3 security. To address both needs, a new system setting is defined to control the handling of X.509 certificates

```
xconfiguration networkservices https verifyservercertificate: <on/off>
```

When the system is acting as an HTTPS client to connect to an external server, the server will provide a X.509 certificate to validate its identity. If VerifyServerCertificate is enabled, the server certificate will be validated before a connection continues. The system checks attributes of the Certificate such as:

- certificate is complete and any checksums are valid
- the current time is within the certificates valid date range
- the common name matches the hostname name used to access the server
- certificate has been signed by a certificate authority the system trusts through its root certificate

If any of the certificate checks fail - the HTTPS connection will fail and the communication is halted to prevent sharing information with an unsecure party.

If VerifyServerCertificate is disabled, the HTTPS client will accept any complete server certificate presented by the server and ignore any warnings or errors allowing the communication to continue.
Additional Settings Required for VerifyServerCertificate

When VerifyServerCertificate is enabled, the system must be able to perform its validation checks including hostname and date checks. Therefore the system’s configuration must include:

- NTP must be configured and active in the system
- a DNS Server must be defined in the system
- Server Addresses must be entered as hostnames, not IP Addresses

C-series Secure Management Profiles

With the additional features added beginning with TC3.0.0, C-series systems can operate in a full Level 3 or Level 4 security configuration.

Level 3 is available by

- Disabling all services except for HTTPS and SSH
- Configuring feedback and client services (external manager, services, and corporate directory) to use HTTPS protocol

Level 4 is available by

- Disabling all services except for HTTPS
- Configuring feedback and client services (external manager, services, and corporate directory) to use HTTPS protocol
- Installing a valid Server Certificate on the system
- Installing root certificates to trust and enabling Verify Certificates mode

The Implementation Guides included in this chapter provide step by step best instructions for deploying systems in either of these security profiles.

C-series Secure Management Implementation Material

Readiness Checklist for implementing HTTPS Management for C-series systems

This list is intended to provide a quick reference to the information that an administrator must have available before implementing HTTPS management. Failure to organize this information prior to implementation will hinder or prevent you from deploying this functionality.

If not using verify certificates

- Each endpoint must be running TC3.0.0 software or newer
- You must have an administrative logon to the C-series endpoints
- Be familiar with the HTTPS related commands outlined in the C-series reference section of this document
- If a management tool besides Cisco TMS, your external management platform or tools must support HTTPS connections
- If using Cisco TMS to manage the endpoints, Cisco TMS must be version 12.6 or newer, and you must have an administrative logon to Cisco TMS

If using the verify certificates mode, the following ADDITIONAL items apply

- Each endpoint must have a fully qualified domain hostname (FQDN) that points to the system’s IP Address. The FQDN is defined in your DNS Server
- You must have a NTP source that endpoints can be pointed at for time synchronization. See endpoint command xconfiguration networkservices NTP
- Each endpoint must have a DNS lookup server defined in its configuration. See endpoint command xconfiguration network 1 DNS
- Each endpoint will require its own Server Certificate be generated
You must have the Private Key, Server Certificate, and passphrase (if used) for each endpoint. Certificates and Keys must be in PEM encoded files.

You must have the public certificate of the Root Certificate Authority that will be used to verify the Server Certificates used on the network.

If using Cisco TMS, Cisco TMS must have a FQDN configured, and its own Server Certificate.

For information on how to generate Server Certificates or related information, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. Once the steps outlined in the checklist are complete and the information is gathered, you can configure your endpoints to use HTTPS. The next sections outline the steps required to configure a C-series endpoint in Level 3 or Level 4 security.

Implementation Guide for Configuring a C-series system for Level 3 Security

The following provides an example of best practices for configuring a default C-series system for Level 3 security, where the system will only support communicating with management systems that use HTTPS but certificates are not verified, reducing the complexity and requirements of the deployment. If preparing a system for use with Cisco TMS, these steps should be performed either before adding the system to Cisco TMS or before enabling Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

These steps assume you already have the device configured on the IP network via DHCP or Static IP and you know the IP Address of the system. Replace <systemIP> in the examples below with the actual IP address of the system.

1. Open a telnet session to the system using a telnet utility of your choice. In Windows you can use Start Menu > Run and enter telnet <systemIP> and hit OK.

2. When prompted for a password, the default password is TANDBERG.

3. After logging in, enter the following commands individually:

 xconfig networkservices http mode: off
 xconfig networkservices https mode: on
 xconfig networkservices telnet mode: off
 xconfig networkservices snmp mode: off
 xconfig networkservices ssh mode: on (<= Optional but recommended)
 xconfig networkservices https verifyservercertificate: off

4. Configure the external services to be disabled. These will be enabled automatically by Cisco TMS if needed.

 xconfig provisioning externalmanager address: 127.0.0.1
 xconfig provisioning externalmanager protocol: https
 xconfig provisioning externalservices mode: off
 xconfig phonebook server 1 url: 127.0.0.1

5. Configure the IP Password you wish to use with the system.

 xcom systemunit adminpassword set password: superstongpasswordhere

6. Reboot the codec by entering xcom boot in the telnet session. Wait until the codec has fully restarted.

7. Verify the changes. Open a new web browser window and enter the address https://<systemIP> and the web page of the codec will start to open.
Note: You will see SSL security warnings in your browser because the certificate authority is not trusted and the name of the server does not match that of the certificate

8. When prompted for login, enter anything as the username and your new password for the password.

The system is now locked down and is ready to be added to Cisco TMS if needed. Cisco TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to Cisco TMS or when Secure-Only is enabled in Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, continue on to the Cisco TMS chapter of this document to complete the configuration of the total solution.

Implementation Guide for Configuring a C-series system for Level 4 Security

The following provides an example of best practices for configuring a default C-series system for Level 4 security, where the system will only support communicating with management systems that use HTTPS and have valid X.509 certificates. If preparing a system for use with Cisco TMS, these steps should be performed either before adding the system to Cisco TMS or before enabling Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

1. Decide the hostname that will be used to manage the system. This hostname must be defined in your network’s DNS servers.

 Example: rm204-bld5.company.com

Note: If DNS records are to be created by the DHCP server, the hostname portion of the FQDN is taken from the system’s systemname setting.

2. Decide which certificate authority you will use to sign your certificates and obtain the public root certificate for that CA. Convert that file if necessary to PEM file format and save as rootcerts.pem

 If multiple certificate authorities need to be trusted by the system, obtain the root certificate for each and catenate each into a single PEM file. See Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems for additional help on PEM files

3. Using the tool of your choice, create a key pair, and generate a certificate request to submit to your CA. Your private key may be encrypted with a passphrase if desired. Remember to keep your private key secure. Unless your key was encrypted with a passphrase when you created the key you should never distribute it, store it, nor transfer it via a non-encrypted method (such as copying via a file share or internet email). Create a PEM encoded file of your private key named privatekey.pem. Create a backup of your private key and store it somewhere safe, such as on a CD-ROM stored in locked location. Submit your certificate request to your CA using the methods specified by your CA administrator.

4. When you receive your signed certificate back from the CA, convert it to PEM format if necessary and rename to cert.pem. This file is safe to transfer in a non-secure method.

5. Copy the cert.pem and privatekey.pem files to storage medium you can securely transfer (such as CD-ROM or USB Key) to a computer that you can create a private network between it and the system to be configured. Delete any copies of privatekey.pem files left on the computer to not leave any unsecure copies of your private key.

6. Copy the rootcerts.pem file to the same media where you saved the other PEM files

The remaining steps should be performed on a computer you can create a private network between it and the system to be configured. Since the default certificate installed on the system cannot be truly verified, it should not be trusted to encrypt the transmission of sending your new private key to the system over a non-secured network, even using HTTPS. For future updates, if a trusted certificate is already installed on the system, the loading of the certificates can be done over a non-secure network rather than building a private network by substituting HTTPS for HTTP and SSH for telnet in the remaining steps below.
7. Create a private network between a codec and a PC. The simplest way to do this is to use an Ethernet Switch and connect only the system to be configured and the computer used to configure it.
 a. Configure the codec using the on-screen menus to use a statically assigned IP address of 192.168.1.2 and a subnet mask of 255.255.255.0. Reboot the codec to have the changes take effect.
 b. Configure your computer with a statically assigned IP address of 192.168.1.3 and a subnet mask of 255.255.255.0. DNS servers and gateway addresses are not needed at this time in the computer or system to be configured.
 c. Verify you can communicate to the system from the computer by opening a web browser and entering \texttt{http://192.168.1.2} - the webpage of the system should start to load and you will be prompted for a username and password.

8. Open the web interface of the system by opening a web browser on the computer and entering \texttt{http://192.168.1.2}. When prompted for a login, enter anything for the username and the default password is TANDBERG

9. Navigate to the Certificate Management page \textbf{Upload certificates}

10. Click the \textbf{Browse} button next to Trusted CA List file (PEM format) to specify the Root Certificate file to upload to the system. Insert your secure media where the \texttt{rootcerts.pem} file is located and select that file and hit OK.

11. Click the \textbf{Browse} button next to HTTPS Certificate (PEM format) to specify the HTTPS certificate file to upload to the system. Insert your secure media where the \texttt{cert.pem} file is located and then select that file and hit OK.

12. Click the \textbf{Browse} button next to Private Key (PEM format) to specify the PEM file containing your private key to upload to the system. Insert your secure media where the \texttt{privatekey.pem} file is located and then select that file and hit OK.
 a. If your private key was encrypted with a passphrase, enter it in the Passphrase field.

13. Click \textbf{Upload} to transfer files to the system.

14. Open a telnet session to the system using a telnet utility of your choice. In Windows you can use \texttt{Start Menu > Run} and enter \texttt{telnet 192.168.1.2} and hit OK

15. When prompted for a password, the default password is TANDBERG

16. After logging in, enter the following commands individually

 \begin{verbatim}
 xconfig networkservices http mode: off
 xconfig networkservices https mode: on
 xconfig networkservices telnet mode: off
 xconfig networkservices snmp mode: off
 xconfig networkservices ssh mode: on \hfill (\textasciitilde Optional but recommended)
 xconfig networkservices https verifyservercertificate: on
 \end{verbatim}

17. If the system will be deployed on a static IP address or NTP settings are not provided by the DHCP server, configure the NTP server properties for the network the system will reside on (replace example IP below with actual NTP server address). This is required when using verify certificates.

 \begin{verbatim}
 xconfig networkservices ntp mode: on
 xconfig networkservices ntp address: 1.pool.ntp.org
 \end{verbatim}

18. If the system will be deployed on a static IP address or DNS settings are not provided by the DHCP Server, configure the DNS server properties for the network the system will reside on (replace example IP below with actual DNS server address). This is required when using verify certificates.

 \begin{verbatim}
 xconfig network 1 dns server 1 address: 10.10.10.2
 xconfig network 1 dns domain name: company.com
 \end{verbatim}
19. Configure the systemname of the system

 xconfig systemunit name: rm204-bld5

20. Configure the external services to be disabled. These will be enabled automatically by Cisco TMS if needed.

 xconfig provisioning externalmanager address: 127.0.0.1
 xconfig provisioning externalmanager protocol: https
 xconfig provisioning externalservices mode: off
 xconfig phonebook server 1 url: 127.0.0.1

21. Configure the IP Password you wish to use with the system

 xcom systemunit adminpassword set password: superstongpasswordhere

22. Reboot the codec by entering xcom boot in the telnet session. Wait until the codec has fully restarted.

23. Open a new web browser window and enter the address https://192.168.1.2 and the web page of the codec will start to open.

 Note: You will see SSL security warnings in your browser because the name of the server does not match that of the certificate because we did not access the system by its hostname

24. When prompted for login, enter anything as the username and your new password for the password.

25. Verify the current server certificate by viewing the certificate details page in your browser. In Internet Explorer 7, click on the Lock Icon and select View Certificate. In Firefox, double-click on the Lock icon.

 The system is now locked down and is ready to be configured with the IP properties of the network where it is intended to be deployed. Use the system’s onscreen menus, dataport, or web interface to configure the IP Configuration including IP Assignment, Address, Subnet Mask, and Gateway. The IP properties can be found in the following places:

 - Onscreen Menus - **Settings > Advanced > IP settings**
 - Web - **Advanced configuration > Network 1 > IPv4**
 - Dataport – **under xconfiguration network 1 ipv4**

 Once the system has been moved to the network where it will be deployed, verify the certificate and FQDN by opening your web browser to the address http://rm204-bld5.company.com and checking for any certificate errors. Your client must have the trusted root certificate installed for the client to automatically trust the system’s certificate.

 For ongoing upkeep, administrators must remember that root certificates and server certificates have a fixed valid date range. Certificates must be replaced before they expire to prevent communication failures, so an administrator should be aware of when certificates will expire and check periodically that no systems are using expired certificates.

 The system is now locked down and is ready to be added to Cisco TMS if needed. Cisco TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to Cisco TMS or when Secure-Only is enabled in Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, continue on to the Cisco TMS chapter of this document to complete the configuration of the total solution.
Cisco TelePresence MXP Series Endpoints

Before attempting to deploy a Secure Management solution for Cisco TelePresence MXP systems, it is critical that an administrator understands the fundamentals of certificates, TLS, and the MXP platform’s functionality. Appendix A of this document provides primer information on TLS and certificates for those who are not familiar with those technologies and Appendix C provides step by step instructions for creating and working with certificates.

This chapter is part reference and part implementation guide for the MXP Series endpoints. The first half details methods and protocols in use between an MXP system and an external management system. The material is broken into sections explaining the default methods implemented in MXP systems, followed by the functionality added beginning with F7 software to increase the security level. These sections should be read and understood before attempting to deploy MXP systems in a Secure Management solution.

The second half of this chapter provides a readiness checklist for an administrator to verify they have the information and network configuration required to configure MXP systems for Secure Management. This is followed by comprehensive step-by-step Best Practice guides to configuring an MXP system for Secure Management.

MXP Secure Management Reference Material

Default Protocols and Services in MXP Systems

All MXP Series endpoints support multiple interfaces for managing the system, including:

- HTTP
- HTTPS
- Telnet
- SSH
- SNMP
- SNMP Traps
- Serial Port
- FTP

In the factory default configuration, all of the above protocols are enabled except for HTTPS and SSH. These protocols may be enabled or disabled via the XML interface, the web administrator interface under System Configuration > Misc, or using the dataport and xconfiguration commands.

```
xconfiguration https mode: <on/off>
xconfiguration http mode: <on/off>
xconfiguration ssh mode: <on/off>
xconfiguration telnet mode: <on/off>
xconfiguration telnetchallenge mode: <on/off>
xconfiguration snmp mode: <on/off>
xconfiguration ftp mode: <on/off>
```

Turning a service on or off requires a reboot for changes to take effect.

For services that require a server certificate, such as HTTPS, the systems come preconfigured with an X.509 certificate signed by a TANDBERG Certificate Authority. By default this certificate authority will not be trusted by a user’s computer resulting in a certificate warning in their web browser unless they specify to ignore the warning or trust the TANDBERG Certificate Authority.

Additionally, MXP devices have internal clients used to connect to management platforms. These clients are used for External Manager, External Services, and Corporate Directory. These clients by default use

1 Added in F5.0 Software
HTTP to connect to the configured management addresses. These services can be configured from several locations in the onscreen menus, XML interface, web interface, or dataport. The most direct way to configure these services is through the dataport where each service has their own list of settings under them.

```
xconfiguration externalmanager
xconfiguration externalservices
xconfiguration corporatedirectory
```

All of these clients are used when the system is managed by Cisco TMS, but are optional in stand-alone implementations.

Lastly, MXP systems also implement a feedback system which can be used by external systems to monitor activity of the device. Feedback works by having the system post changes using HTTP by default to an external URL. This feedback system is configured using the XML interface or `xcommand feedbackregister` series of commands available in the dataport of the MXP or via XML.

The default services/protocols can be summarized based on the security levels outlined in the Technology Introduction chapter of this document as follows:

<table>
<thead>
<tr>
<th>Service/Protocol</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Server</td>
<td>Level 2</td>
</tr>
<tr>
<td>HTTPS Server</td>
<td>Level 4 (if client checks certificate)</td>
</tr>
<tr>
<td>Telnet</td>
<td>Level 1</td>
</tr>
<tr>
<td>Telnet Challenge</td>
<td>Level 2</td>
</tr>
<tr>
<td>FTP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP Traps</td>
<td>Level 1</td>
</tr>
<tr>
<td>SSH</td>
<td>Level 3</td>
</tr>
<tr>
<td>External services/feedback</td>
<td>Level 2</td>
</tr>
</tbody>
</table>

The overall management security of the device can be improved by disabling unneeded services, and increasing the security of the services in use. Previously, when using Cisco TMS, administrators were limited in what services they could disable. Now, when combined with Secure-Only settings in Cisco TMS, administrators can achieve a Level 3 security by using the security settings added beginning with F7 or a Level 4 security when combined with the verify certificates settings.

Secure Management Features Added Beginning with F7 Software

Starting with software release F7.0, the security of management interfaces has been increased, including the ability to achieving a security of Level 4, through the following new additions:

Uploading Root Certificates

To properly handle X.509 certificates when acting as an HTTPS client, systems now support loading a list of trusted root certificates into the system. The system allows the upload of a PEM encoded file which contains the root certificates of any CAs you wish the system to trust. The system will use these root certificates when validating X.509 certificates presented by HTTPS servers the system connects to.

The system supports uploading of a single PEM encoded file, which may contain multiple certificates. If an existing list of certificates is present, uploading a new PEM encoded file will overwrite the existing list. Certificate lists are uploaded using the web interface of the system under `System Configuration > Certificate Management`
The system supports X.509 root certificates using RSA and DSA keys that are encoded in the PEM base-64 format. Root certificates are not encrypted with passphrases. For additional help with certificate formats, please see Appendix A of this document.

Uploading Server Certificates

Uploading a server certificate to use for the system’s HTTPS server was introduced in F6.0 software, but is covered here for completeness. An uploaded certificate replaces the factory default certificate and is used for the HTTPS server of the system. A certificate is uploaded through the web interface of the system under **System Configuration > Certificate Management**. The certificate to be uploaded must be a PEM encoded file. If the private key is encrypted with a passphrase, the passphrase must be supplied when uploading the certificate in the separate Passphrase field. For additional help with certificate formats, please see Appendix A of this document.

HTTPS for External Services

External Services can now be configured to use either HTTP or HTTPS. The setting is controlled with a new command `protocol` under each service’s configuration.

```
xconfiguration externalmanager protocol: <HTTP/HTTPS>
xconfiguration externalservice protocol: <HTTP/HTTPS>
xconfiguration corporatedirectory protocol: <HTTP/HTTPS>
```

When protocol is set to HTTPS, only HTTPS will be used. The system intentionally will not fall back to HTTP if HTTPS fails. The management server must also be configured to support HTTPS. Refer to [Cisco TMS](#) section in this document for information on how TMS interacts with HTTPS and these settings.

HTTPS for Feedback URLs

Feedback URLs can now be defined to use HTTPS in the URL. If the feedback URL registered in the system starts with HTTPS, HTTPS will be used when posting events to the external server. The syntax of the `xconfiguration feedbackregister` command was not modified, only updated that using an `https://` formatted URL is now valid. When the URL is set to HTTPS, only HTTPS will be used (system will not fall back to HTTP if HTTPS fails). The management server must also be configured to support HTTPS. Refer to [Cisco TMS](#) section in this document for information on how TMS interacts with HTTPS and these settings.

Verify Server Certificates Mode

To achieve Level 4 security, a system must not only handle certificates, it must validate them and adhere to any warnings or errors discovered. Enforcing certificate checking may not be desirable for organizations that want the encryption offered by TLS but do not wish to manage and deploy valid server certificates on all devices. Using TLS without validating certificates results in an equivalent Level 3 security. To address both needs, a new system setting is defined to control the handling of X.509 certificates

```
xconfiguration https verifyservercertificate: <on/off>
```

When the system is acting as an HTTPS client to connect to an external server, the server will provide a X.509 certificate to validate its identity. If VerifyServerCertificate is enabled, the server certificate will be validated before a connection continues. The system checks attributes of the Certificate such as:

- certificate is complete and any checksums are valid
- the current time is within the certificates valid date range
- the common name matches the hostname name used to access the server
- certificate has been signed by a certificate authority the system trusts through its root certificate

If any of the certificate checks fail - the HTTPS connection will fail and the communication is halted to prevent sharing information with an unsecure party.
If VerifyServerCertificate is disabled, the HTTPS client will accept any complete server certificate presented by the server and ignore any warnings or errors allowing the communication to continue.

Additional Settings Required for VerifyServerCertificate

When VerifyServerCertificate is enabled, the system must be able to perform its validation checks including hostname and date checks. Therefore the system’s configuration must include:

- NTP must be configured and active in the system
- A DNS Server must be defined in the system
- Server Addresses must be entered as hostnames, not IP Addresses

Certificate Dataport Command

F7 introduced a new dataport command which allows the viewing or deleting the system’s currently loaded server certificate or root certificate. The command’s syntax is

```
certificate <list>/<del> [<cert/root>]
```

The command will list the contents of the uploaded certificate used for the system’s web server or root certificate. The output can be copied and run through OpenSSL tools if desired to validate their contents. The command can also be used to delete either certificate if needed. If replacing certificates, there is no need to delete them first, as they can be overwritten by uploading a new certificate via the web interface of the system.

Interpreting Certificate Failure Errors

For troubleshooting purposes, if an administration needs to see the specific error code that caused a certificate to be rejected when the system connects to a server, you must enable syslog in the system prior to performing a server request. The error code for the certificate will be displayed and the error codes may be referenced in the [OpenSSL documentation](#).

Example:

1. Telnet or SSH to the system
2. Enable syslog by entering `syslog on`
3. Perform a Corporate Directory Search to initiate a server connection
   ```bash
   xcom corpdirsearch startswith: a
   ```
4. The output will include a line starting with SSL like the following
   ```plaintext
   SSL: socklib_sslHandshake:
   VerifyResult=14=ERROR_IN_CERT_NOT_AFTER_FIELD, NameCheck: Match
   ```
5. Stop syslog by entering `syslog off`

 The error code is listed as `VerifyResult=14=ERROR_IN_CERT_NOT_AFTER_FIELD` which means the date on the server certificate was expired. SSL Error codes can be looked up in the [OpenSSL documentation](#).

MXP Secure Management Profiles

With the additional features added beginning with F7, MXP systems can operate in a full Level 3 or Level 4 security configuration.

Level 3 is available by

- Disabling all services except for HTTPS and SSH
- Configuring feedback and client services (external manager, services, and corporate directory) to use HTTPS protocol
Level 4 is available by

- Disabling all services except for HTTPS
- Configuring feedback and client services (external manager, services, and corporate directory) to use HTTPS protocol
- Installing a valid Server Certificate on the system
- Installing root certificates to trust and enabling Verify Certificates mode

The Implementation Guides included in this chapter provide step by step best instructions for deploying systems in either of these security profiles.

MXP Secure Management Implementation Material

Readiness Checklist for implementing HTTPS Management for MXPs

This list is intended to provide a quick reference to the information that an administrator must have available before implementing HTTPS management. Failure to organize this information prior to implementation will hinder or prevent you from deploying this functionality.

If not using verify certificates

- Each endpoint must be running F7.0 software or newer
- You must have an administrative logon to the MXP endpoints
- Be familiar with the HTTPS related commands outlined in the MXP reference section of this document
- If a management tool besides TMS, your external management platform or tools must support HTTPS connections
- If using TMS to manage the endpoints, TMS must be version 11.9.1 or newer, and you must have an administrative logon to TMS

If using the verify certificates mode, the following ADDITIONAL items apply

- Each endpoint must have a fully qualified domain hostname (FQDN) that points to the system’s IP Address. The FQDN is defined in your DNS Server
- You must have a NTP source that endpoints can be pointed at for time synchronization. See endpoint command xconfiguration NTP
- Each endpoint must have a DNS lookup server defined in its configuration. See endpoint command xconfiguration IP DNS
- Each endpoint will require its own Server Certificate be generated
- You must have the Private Key, Server Certificate, and passphrase (if used) for each endpoint. Certificates and Keys must be in PEM encoded files
- You must have the public certificate of the Root Certificate Authority that will be used to verify the Server Certificates used on the network
- If using TMS, TMS must have a FQDN configured, and its own Server Certificate

For information on how to generate Server Certificates or related information, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. Once the steps outlined in the checklist are complete and the information is gathered, you can configure your endpoints to use HTTPS. The next sections outline the steps required to configure an MXP endpoint in Level 3 or Level 4 security.

Implementation Guide for Configuring an MXP for Level 3 Security

The following provides an example of best practices for configuring a default MXP system for Level 3 security, where the system will only support communicating with management systems that use HTTPS but certificates are not verified, reducing the complexity and requirements of the deployment. If preparing a system for use with TMS, these steps should be performed either **before** adding the system to TMS or before enabling Secure-Only mode in TMS. For any help creating certificates or converting file formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems.
Implementing Secure Management

Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

These steps assume you already have the device configured on the IP network via DHCP or Static IP and you know the IP Address of the system. Replace <systemIP> in the examples below with the actual IP address of the system.

1. Open a telnet session to the system using a telnet utility of your choice. In Windows you can use Start Menu > Run and enter telnet <systemIP> and hit OK.

2. When prompted for a password, the default password is TANDBERG.

3. After logging in, enter the following commands individually:
 - xconfig http mode: off
 - xconfig https mode: on
 - xconfig telnet mode: off
 - xconfig telnetchallenge mode: off
 - xconfig snmp mode: off
 - xconfig ftp mode: off
 - xconfig ssh mode: on (← Optional but recommended)
 - xconfig https verifyservercertificate: off

4. Configure the external services to be disabled. These will be enabled automatically by TMS if needed.
 - xconfig externalmanager address: 127.0.0.1
 - xconfig externalmanager protocol: https
 - xconfig externalservices mode: off
 - xconfig corporatedirectory mode: off

5. Configure the IP Password you wish to use with the system.
 - xconfig strictpassword: on
 - xconfig systemunit password: superstrongpasswordhere

6. Reboot the codec by entering xcom boot in the telnet session. Wait until the codec has fully restarted.

7. Verify the changes. Open a new web browser window and enter the address https://<systemIP> and the web page of the codec will start to open.

 Note: You will see SSL security warnings in your browser because the certificate authority is not trusted and the name of the server does not match that of the certificate.

8. When prompted for login, enter anything as the username and your new password for the password.

The system is now locked down and is ready to be added to TMS if needed. TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to TMS or when Secure-Only is enabled in TMS. If TMS is to be used in the Secure Management solution, continue on to the TMS chapter of this document to complete the configuration of the total solution.
Implementation Guide for Configuring an MXP for Level 4 Security

The following provides an example of best practices for configuring a default MXP system for Level 4 security, where the system will only support communicating with management systems that use HTTPS and have valid X.509 certificates. If preparing a system for use with TMS, these steps should be performed either before adding the system to TMS or before enabling Secure-Only mode in TMS. For any help creating certificates or converting file formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

1. Decide the hostname that will be used to manage the system. This hostname must be defined in your network’s DNS servers.
 Example: rm204-bld5.company.com

 Note: If DNS records are to be created by the DHCP server, the hostname portion of the FQDN is taken from the system’s systemname setting.

2. Decide which certificate authority you will use to sign your certificates and obtain the public root certificate for that CA. Convert that file if necessary to PEM file format and save as rootcerts.pem.
 If multiple certificate authorities need to be trusted by the system, obtain the root certificate for each and concatenate each into a single PEM file. Refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems for additional help on PEM files.

3. Using the tool of your choice, create a key pair, and generate a certificate request to submit to your CA. Your private key may be encrypted with a passphrase if desired. Remember to keep your private key secure. Unless your key was encrypted with a passphrase when you created the key you should never distribute it, store it, or transfer it via a non-encrypted method (such as copying via a file share or internet email). Create a PEM encoded file of your private key named privatekey.pem . Create a backup of your private key and store it somewhere safe, such as on a CD-ROM stored in locked location. Submit your certificate request to your CA using the methods specified by your CA administrator.

4. When you receive your signed certificate back from the CA, convert it to PEM format if necessary and rename to cert.pem. This file is safe to transfer in a non-secure method.

5. Copy the cert.pem and privatekey.pem files to storage medium you can securely transfer (such as CD-ROM or USB Key) to a computer that you can create a private network between it and the system to be configured. Delete any copies of privatekey.pem files left on the computer to not leave any unsecure copies of your private key.

6. Copy the rootcerts.pem file to the same media where you saved the other PEM files.

The remaining steps should be performed on a computer you can create a private network between it and the system to be configured. Since the default certificate installed on the system cannot be truly verified, it should not be trusted to encrypt the transmission of sending your new private key to the system over a non-secured network, even using HTTPS. For future updates, if a trusted certificate is already installed on the system, the loading of the certificates can be done over a non-secure network rather than building a private network by substituting HTTPS for HTTP and SSH for telnet in the remaining steps below.

1. Create a private network between a codec and a PC. The simplest way to do this is to use an Ethernet Switch and connect only the system to be configured and the computer used to configure it.
 a. Configure the codec using the on-screen menus to use a statically assigned IP address of 192.168.1.2 and a subnet mask of 255.255.255.0. Reboot the codec to have the changes take effect.
 b. Configure your computer with a statically assigned IP address of 192.168.1.3 and a subnet mask of 255.255.255.0. DNS servers and gateway addresses are not needed at this time in the computer or system to be configured.
c. Verify you can communicate to the system from the computer by opening a web browser and entering `http://192.168.1.2` - the webpage of the system should start to load and you will be prompted for a username and password.

2. Open the web interface of the system by opening a web browser on the computer and entering `http://192.168.1.2`. When prompted for a login, enter anything for the username and the default password is TANDBERG.

4. Click the Browse button next to Root Certificate to specify the Root Certificate file to upload to the system. Insert your secure media where the `rootcerts.pem` file is located and select that file and hit OK.

5. Click the Browse button next to HTTPS Certificate to specify the HTTPS certificate file to upload to the system. Insert your secure media where the `cert.pem` file is located and then select that file and hit OK.

6. Click the Browse button next to Private Key to specify the PEM file containing your private key to upload to the system. Insert your secure media where the `privatekey.pem` file is located and then select that file and hit OK.
 a. If your private key was encrypted with a passphrase, enter it in the passphrase field.

7. Click Upload to transfer files to the system.

8. Open a telnet session to the system using a telnet utility of your choice. In Windows you can use Start Menu > Run and enter `telnet 192.168.1.2` and hit OK.

9. When prompted for a password, the default password is TANDBERG.

10. After logging in, enter the following commands individually:
    ```
    xconfig http mode: off
    xconfig https mode: on
    xconfig telnet mode: off
    xconfig telnetchallenge mode: off
    xconfig snmp mode: off
    xconfig ftp mode: off
    xconfig ssh mode: on  (<- Optional but recommended)
    xconfig https verifyservercertificate: on
    ```

11. If the system will be deployed on a static IP address or NTP settings are not provided by the DHCP server, configure the NTP server properties for the network the system will reside on (replace example IP below with actual NTP server address). This is required when using verify certificates.
    ```
    xconfig ntp mode: on
    xconfig ntp address: 1.pool.ntp.org
    ```

12. If the system will be deployed on a static IP address or DNS settings are not provided by the DHCP Server, configure the DNS server properties for the network the system will reside on (replace example IP below with actual DNS server address). This is required when using verify certificates.
    ```
    xconfig ip dns server 1 address: 10.10.10.2
    xconfig ip dns domain name: company.com
    ```

13. Configure the systemname of the system
    ```
    xconfig systemunit name: rm204-bld5
    ```

14. Configure the external services to be disabled. These will be enabled automatically by TMS if needed.
    ```
    xconfig externalmanager address: 127.0.0.1
    xconfig externalmanager protocol: https
    ```
xconfig externalservices mode: off
xconfig corporatedirectory mode: off

15. Configure the IP Password you wish to use with the system
 xconfig strictpassword: on
 xconfig systemunit password: superstrongpasswordhere

16. Reboot the codec by entering `xcom boot` in the telnet session. Wait until the codec has fully restarted.

17. Open a new web browser window and enter the address https://192.168.1.2 and the web page of the codec will start to open.

 Note: You will see SSL security warnings in your browser because the name of the server does not match that of the certificate because we did not access the system by its hostname

18. When prompted for login, enter anything as the username and your new password for the password.

19. Verify the current server certificate by viewing the certificate details page in your browser. In Internet Explorer 7, click on the Lock Icon and select View Certificate. In Firefox, double-click on the Lock icon.

 The system is now locked down and is ready to be configured with the IP properties of the network where it is intended to be deployed. Use the system’s onscreen menus, dataport, or web interface to configure the IP Configuration including IP Assignment, Address, Subnet Mask, and Gateway. The IP properties can be found in the following places:
 - Onscreen Menus - **Control Panel > Network > IP Settings**
 - Web - **System Configuration > IP**
 - Dataport – **under xconfiguration ip**

 Once the system has been moved to the network where it will be deployed, verify the certificate and FQDN by opening your web browser to the address http://rm204-bld5.company.com and checking for any certificate errors. Your client must have the trusted root certificate installed for the client to automatically trust the system’s certificate.

 For ongoing upkeep, administrators must remember that root certificates and server certificates have a fixed valid date range. Certificates must be replaced before they expire to prevent communication failures, so an administrator should be aware of when certificates will expire and check periodically that no systems are using expired certificates.

 The system is now locked down and is ready to be added to TMS if needed. TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to TMS or when Secure-Only is enabled in TMS. If TMS is to be used in the Secure Management solution, continue on to the TMS chapter of this document to complete the configuration of the total solution.
Before attempting to deploy a Secure Management solution for Cisco TelePresence MPS systems, it is critical that an administrator understands the fundamentals of certificates, TLS, and the MPS platform’s functionality. Appendix A of this document provides primer information on TLS and certificates for those who are not familiar with those technologies and Appendix C provides step by step instructions for creating and working with certificates.

This chapter is part reference, and part implementation guide for the MPS system. The first half details methods and protocols in use between an MPS system and an external management system. The material is broken into sections explaining the default methods implemented in MPS systems, followed by the functionality added beginning with J4.2 software to increase the security level. These sections should be read and understood before attempting to deploy MPS systems in a Secure Management solution.

The second half of this chapter provides a readiness checklist for an administrator to verify they have the information and network configuration required to configure MPS systems for Secure Management. This is followed by comprehensive step-by-step Best Practice guides to configuring an MPS system for Secure Management.

MPS Secure Management Reference Material

Default Protocols and Services in MPS Systems

The MPS system supports many of the same protocols and services that the MXP systems support. The description and behavior of the MPS will be very similar to the MXP with only minor changes due to components the MPS system does not require.

MPS systems support multiple interfaces for managing the system, including

- HTTP
- HTTPS
- SSH
- SNMP
- SCP
- Telnet
- Serial Port

In the factory default configuration, all of the above protocols are enabled except for HTTPS and SSH. These protocols may be enabled or disabled via the XML interface, the web administrator interface under **System Configuration > Misc**, or using the dataport and xconfiguration commands

```
xconfiguration https mode: <on/off>
xconfiguration http mode: <on/off>
xconfiguration ssh mode: <on/off>
xconfiguration telnet mode: <on/off>
xconfiguration snmp mode: <on/off>
```

Turning a service on or off requires a reboot for changes to take effect

For services that require a server certificate, such as HTTPS, the systems come preconfigured with a X.509 certificate signed by a TANDBERG Certificate Authority. By default this certificate authority will not be trusted by a user’s computer resulting in a certificate warning in their web browser unless they specify to ignore it or trust the TANDBERG Certificate Authority.
Additionally, MPS devices have an internal client used to connect to management platforms. This client is used for External Manager. The client by default uses HTTP to connect to the configured management address. This service can be configured from several locations in the XML interface, web interface, or dataport. The most direct way to configure this service is through the dataport where each service has their own list of settings under them.

`xconfigure externalmanager`

This client is used when the system is managed by a TMS system, but is optional in stand-alone implementations.

MPS devices also implement a feedback system which can be used by external systems to monitor activity of the device by having the MPS system post changes using HTTP to an external URL. This feedback system is configured using the XML interface or `xcommand feedbackregister` series of commands available in the dataport of the MPS or via XML.

The existing services/protocols can be summarized based on the security levels outlined in the Introduction section of this document as follows:

<table>
<thead>
<tr>
<th>Service/Protocol</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Server</td>
<td>Level 2</td>
</tr>
<tr>
<td>HTTPS Server</td>
<td>Level 4</td>
</tr>
<tr>
<td></td>
<td>(if client checks certificate)</td>
</tr>
<tr>
<td>Telnet</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP Traps</td>
<td>Level 1</td>
</tr>
<tr>
<td>SSH</td>
<td>Level 3</td>
</tr>
<tr>
<td>SCP</td>
<td>Level 3</td>
</tr>
<tr>
<td>External Services/feedback</td>
<td>Level 2</td>
</tr>
</tbody>
</table>

The overall management security of the device can be improved by disabling unneeded services, and increasing the security of the services in use. Previously, when using Cisco TMS, administrators were limited in what services they could disable. Now, when combined with Secure-Only settings in Cisco TMS, administrators can achieve a Level 3 security by using the security settings added beginning with J4.2 or a Level 4 security when combined with the verify certificates settings.

Secure Management Features Added Beginning with J4.2 Software

Starting with software release J4.2, the security of management interfaces has been increased, including the ability to achieving a security of Level 4, through the following new additions:

Uploading Root Certificates

To properly handle X.509 certificates when acting as an HTTPS client, systems now support loading a list of trusted root certificates into the system. The system allows the upload of a PEM encoded file which contains the root certificates of any CAs you wish the system to trust. The system will use these root certificates when validating X.509 certificates presented by HTTPS servers the system connects to.

The system supports uploading of a single PEM encoded file, which may contain multiple certificates. If an existing list of certificates is present, uploading a new PEM encoded file will overwrite the existing list. Certificate lists are uploaded using the web interface of the system under System Configuration > Certificate Management.

The system supports X.509 root certificates using RSA and DSA keys that are encoded in the PEM base-64 format. Root certificates are not encrypted with passphrases. For additional help with certificate
formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document.

Uploading Server Certificates

Uploading a server certificate to use for the HTTPS server was introduced in J4.1 software, but is covered here for completeness. An uploaded certificate replaces the factory default certificate and is used for the HTTPS server of the system. A certificate is uploaded through the web interface of the system under **System Configuration > Certificate Management**. The certificate to be uploaded must be a PEM encoded file. If the private key is encrypted with a passphrase, the passphrase must be supplied when uploading the certificate in the separate Passphrase field. For additional help with certificate formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document.

HTTPS for External Services

ExternalManager service can now be configured to use either HTTP or HTTPS. The setting is controlled with a new command `protocol` under the service’s configuration.

```
xconfiguration externalmanager protocol: <HTTP/HTTPS>
```

When `protocol` is set to HTTPS, only HTTPS will be used. The system intentionally will not fall back to HTTP if HTTPS fails. The management server must also be configured to support HTTPS. Refer to the Cisco TMS section in this document for information on how TMS interacts with HTTPS and these settings.

HTTPS for Feedback URLs

Feedback URLs can now be defined to use HTTPS in the URL. If the feedback URL registered in the system starts with HTTPS, HTTPS will be used when posting events to the external server. The syntax of the `xconfiguration feedbackregister` command was not modified, only updated that using an `https://` formatted URL is now valid. When the URL is set to HTTPS, only HTTPS will be used (system will not fall back to HTTP if HTTPS fails). The management server must also be configured to support HTTPS. Refer to the Cisco TMS section in this document for information on how TMS interacts with HTTPS and these settings.

Verify Server Certificates Mode

To achieve Level 4 security, a system must not only handle certificates, it must validate them and adhere to any warnings or errors discovered. Enforcing certificate checking may not be desirable for organizations that want the encryption offered by TLS but do not wish to manage and deploy valid server certificates on all devices. Using TLS without validating certificates results in an equivalent Level 3 security. To address both needs, a new system setting is defined to control the handling of X.509 certificates

```
xConfiguration ExternalManager Server Certificate Verify Mode: <off/on>
```

This setting is also configurable via the web interface under **System Configuration > External Manager**

When the system is acting as an HTTPS client to connect to an external server, the server will provide a X.509 certificate to validate its identity. If Certificate Verify Mode is enabled, the server certificate will be validated before a connection continues. The system checks attributes of the Certificate such as:

- certificate is complete and any checksums are valid
- the current time is within the certificates valid date range
- the common name matches the hostname name used to access the server
- certificate has been signed by a certificate authority the system trusts through its root certificate

If any of the certificate checks fail - the HTTPS connection will fail and the communication is halted to prevent sharing information with an unsecure party.
If Certificate Verify Mode is disabled, the HTTPS client will accept any complete server certificate presented by the server and ignore any warnings or errors allowing the communication to continue.

Additional Settings Required for Certificate Verify Mode

When Server Certificate Verify is enabled, the system must be able to perform its validation checks including hostname and date checks. Therefore the system’s configuration must include:

- NTP must be configured and active in the system
- a DNS Server must be defined in the system
- Server Addresses must be entered as hostnames, not IP Addresses

Certificate Dataport Command

A new command has been added to the system’s dataport which allows the viewing or deleting the system’s currently loaded server certificate or root certificate. The command’s syntax is

```
certificate <list>/<del> [cert/root]
```

The command will list the contents of the uploaded certificate used for the system’s web server or root certificate. The output can be copied and run through OpenSSL tools if desired to validate their contents. The command can also be used to delete either certificate if needed. If replacing certificates, there is no need to delete them first, as they can be overwritten by uploading a new certificate via the web interface of the system.

Interpreting Certificate Failure Errors

For troubleshooting purposes, if an administration needs to see the specific error code that caused a certificate to be rejected when the system connects to a server, you must enable syslog in the system prior to performing a server request. The error code for the certificate will be displayed and the error codes may be referenced in the OpenSSL documentation

Example:

1. Telnet or SSH to the system
2. Enable syslog by entering `syslog on`
3. Initiate a call from the web interface to another system to generate feedback and initiate a server connection
4. In the dataport, the logging output will include a line starting with SSL like the following

   ```
   SSL: socklib_sslHandshake:
   VerifyResult=14=ERROR_IN_CERT_NOT_AFTER_FIELD, NameCheck: Match
   ```
5. Stop syslog by entering `syslog off`

The error code is listed as VerifyResult=14=ERROR_IN_CERT_NOT_AFTER_FIELD which means the date on the server certificate was expired. SSL Error codes can be looked up in the OpenSSL documentation

MPS Secure Management Profiles

With the additional features added beginning with J4.2, MPS systems can operate in a full Level 3 or Level 4 security configuration.

Level 3 is available by

- Disabling all services except for HTTPS and SSH
- Configuring feedback and client services (external manager) to use HTTPS protocol

Level 4 is available by

- Disabling all services except for HTTPS
- Configuring feedback and client services (external manager) to use HTTPS protocol
- Installing a valid Server Certificate on the system
- Installing root certificates to trust and enabling Verify Certificates mode
The Implementation Guides included in this chapter provide step by step best instructions for deploying systems in either of these security profiles.

MPS Secure Management Implementation Material

Readiness Checklist for implementing HTTPS Management for MPS Series

This list is intended to provide a quick reference to the information that an administrator must have available before implementing HTTPS management. Failure to organize this information prior to implementation will hinder or prevent you from deploying this functionality.

If not using verify certificates

- Each system must be running J4.2 software or newer
- You must have an administrative logon to the MPS systems
- Be familiar with the HTTPS related commands outlined in the MPS reference section of this document
- If a management tool besides Cisco TMS, your external management platform or tools must support HTTPS connections
- If using Cisco TMS to manage the endpoints, Cisco TMS must be version 11.9.1 or newer, and you must have an administrative logon to Cisco TMS

If using the verify certificates mode, the following ADDITIONAL items apply

- Each system must have a fully qualified domain hostname (FQDN) that points to the system’s IP Address. The FQDN is defined in your DNS Server
- You must have a NTP source that systems can be pointed at for time synchronization. See system command xconfiguration NTP
- Each endpoint must have a DNS lookup server defined in its configuration. See system command xconfiguration IP DNS
- Each system will require its own Server Certificate be generated
- You must have the Private Key, Server Certificate, and passphrase (if used) for each system. Certificates and Keys must be in PEM encoded files
- You must have the public certificate of the Root Certificate Authority that will be used to verify the Server Certificates used on the network
- If using Cisco TMS, Cisco TMS must have a FQDN configured, and its own Server Certificate

For information on how to generate Server Certificates or related information, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. Once the steps outlined in the checklist are complete and the information is gathered, you can configure your systems to use HTTPS. The next sections outline the steps required to configure an MPS system in Level 3 or Level 4 security.

Implementation Guide for Configuring an MPS for Level 3 Security

The following provides an example of best practices for configuring a default MPS system for Level 3 security, where the system will only support communicating with management systems that use HTTPS but certificates are not verified, reducing the complexity and requirements of the deployment. If preparing a system for use with Cisco TMS, these steps should be performed either before adding the system to Cisco TMS or before enabling Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

These steps assume you already have the device configured on the IP network and you know the IP Address of the system. Replace <systemIP> in the examples below with the actual IP address of the system.
1. Open a telnet session to the system using a telnet utility of your choice. In Windows you can use
Start Menu > Run and enter telnet <systemIP> and hit OK

2. When prompted for login, use admin as the username and the default password is TANDBERG

3. Enter the following commands individually

 xconfig http mode: off
 xconfig https mode: on
 xconfig telnet mode: off
 xconfig snmp mode: off
 xconfig ssh mode: on (<- Optional but recommended)
 xconfig https verifyservercertificates: off

4. Configure the external services to be disabled. These will be enabled automatically by Cisco TMS if needed.

 xconfig externalmanager address: 127.0.0.1
 xconfig externalmanager protocol: https

5. Configure the IP Password you wish to use with the system

 xconfig systemunit password: superstrongpasswordhere

6. Reboot the system by entering xcom boot in the telnet session. Wait until the system has fully restarted.

7. Verify the changes. Open a new web browser window and enter the address https://<systemIP>
 and the web page of the system will start to open.

 Note: You will see SSL security warnings in your browser because the certificate authority is not trusted and the name of the server does not match that of the certificate

8. When prompted for login, enter anything as the username and your new password for the password.

The system is now locked down and is ready to be added to Cisco TMS if needed. Cisco TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to Cisco TMS or when Secure-Only is enabled in Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, continue on to the Cisco TMS chapter of this document to complete the configuration of the total solution.

Implementation Guide for Configuring an MPS for Level 4 Security

The following provides an example of best practices for configuring a default MPS system for Level 4 security, where the system will only support communicating with management systems that use HTTPS and have valid X.509 certificates. If preparing a system for use with Cisco TMS, these steps should be performed before enabling the Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

1. Decide the hostname that will be used to manage the system.

 Example: mps-204.company.com

2. Decide which certificate authority you will use to sign your certificates and obtain the public root certificate for that CA. Convert that file if necessary to PEM file format and save as rootcerts.pem

 If multiple certificate authorities need to be trusted by the system, obtain the root certificate for each and cationate each into a single PEM file. See Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems for additional help on PEM files
3. Using the tool of your choice, create a key pair, and generate a certificate request to submit to your CA. Your private key may be encrypted with a passphrase if desired. Remember to keep your private key secure. Unless your key was encrypted with a passphrase when you created the key you should never distribute it, store it, nor transfer it via a non-encrypted method (such as copying via a file share or internet email). Create a PEM encoded file of your private key named `privatekey.pem`. Create a backup of your private key and store it somewhere safe, such as on a CD-ROM stored in locked location. Submit your certificate request to your CA using the methods specified by your CA administrator.

4. When you receive your signed certificate back from the CA, convert it to PEM format if necessary and rename to `cert.pem`. This file is safe to transfer in a non-secure method.

5. Copy the `cert.pem` and `privatekey.pem` files to storage medium you can securely transfer (such as CD-ROM or USB Key) to a computer that you can create a private network between it and the system to be configured. Delete any copies of `privatekey.pem` files left on the computer to not leave any unsecure copies of your private key.

6. Copy the `rootcerts.pem` file to the same media where you saved the other PEM files.

The remaining steps should be performed on a computer you can create a private network between it and the system to be configured. Since the default certificate installed on the system cannot be truly verified, it should not be trusted to encrypt the transmission of sending your new private key to the system over a non-secured network, even using HTTPS. For future updates, if a trusted certificate is already installed on the system, the loading of the certificates can be done over a non-secure network rather than building a private network by substituting HTTPS for HTTP and SSH for telnet in the remaining steps below.

7. Create a private network between the MPS and a PC. The simplest way to do this is to use an Ethernet Switch and connect only MPS to be configured and the computer used to configure it. Connect the MPS using the Ethernet Port on the front of the system controller card.
 a. Configure the MPS using the LCD panel on the front of the system by entering the `Parameter Config > SC Config` and configure the IP Address to 192.168.1.2 and the subnet mask of 255.255.255.0. Reboot the system to have the changes take effect.
 b. Configure your computer with a statically assigned IP address of 192.168.1.3 and a subnet mask of 255.255.255.0. DNS servers and gateway addresses are not needed at this time in the computer or system to be configured.
 c. Verify you can communicate to the system from the computer by opening a web browser and entering `http://192.168.1.2` - the webpage of the system should start to load and you will be prompted for a username and password.

8. Open the web interface of the system by opening a web browser on the computer and entering `http://192.168.1.2`. When prompted for a login, enter anything for the username and the default password is TANDBERG.

10. Click the `Browse` button next to Root Certificate to specify the Root Certificate file to upload to the system. Insert your secure media where the `rootcerts.pem` file is located and select that file and hit OK.

11. Click the `Browse` button next to HTTPS Certificate to specify the HTTPS certificate file to upload to the system. Insert your secure media where the `cert.pem` file is located and then select that file and hit OK.

12. Click the `Browse` button next to Private Key to specify the PEM file containing your private key to upload to the system. Insert your secure media where the `privatekey.pem` file is located and then select that file and hit OK.
 a. If your private key was encrypted with a passphrase, enter it in the passphrase field.

13. Click `Upload` to transfer files to the system.

14. Open a telnet session to the system using a telnet utility of your choice. In Windows you can use `Start Menu > Run` and enter `telnet 192.168.1.2` and hit OK.

15. When prompted for login, use `admin` as the username and the default password is TANDBERG.
16. Enter the following commands individually

   ```
   xconfig http mode: off
   xconfig https mode: on
   xconfig telnet mode: off
   xconfig snmp mode: off
   xconfig ssh mode: on  (<- Optional but recommended)
   xconfig https verifyservercertificates: on
   ```

17. Configure the external services to be disabled. These will be enabled automatically by Cisco TMS if needed.

   ```
   xconfig externalmanager address: 127.0.0.1
   xconfig externalmanager protocol: https
   ```

18. Configure the NTP server properties for the network the system will reside on (replace example IP below with actual NTP server address)

   ```
   xconfig ntp address: 1.pool.ntp.org
   ```

19. Configure the DNS server properties for the network the system will reside on (replace example IP below with actual DNS server address). This is required when using verify certificates.

   ```
   xconfig ip dns server 1 address: 10.10.10.2
   xconfig ip dns domain name: company.com
   ```

20. Configure the system name of the system

   ```
   xconfig systemunit name: mps-204
   ```

21. Configure the IP Password you wish to use with the system

   ```
   xconfig systemunit password: superstrongpasswordhere
   ```

22. Reboot the system by entering `xcom boot` in the telnet session. Wait until the system has fully restarted.

23. Verify the changes. Open a new web browser window and enter the address `https://192.168.1.2` and the web page of the system will start to open.

 Note: You will see SSL security warnings in your browser because the name of the server does not match that of the certificate because we did not access the system by its hostname

24. When prompted for login, enter anything as the username and your new password for the password.

25. Verify the current server certificate by viewing the certificate details page in your browser. In Internet Explorer 7, click on the Lock Icon and select View Certificate. In Firefox, double-click on the Lock icon.

 The system is now locked down and is ready to be configured with the IP properties of the network where it is intended to be deployed. Use the system’s LCD Panel, dataport or web interface to configure the IP Configuration of the System Controller including IP Assignment, Address, Subnet Mask, and Gateway. Media blade or additional Ethernet port configurations can be done now or when the device is deployed on its intended network. The IP properties can be found in the following places:

 - **LCD Panel** – Parameter Config > SC Config
 - **Web** – System Configuration > IP
 - **Dataport** – under xconfiguration ip

 Once the system has been moved to the network where it will be deployed, verify the certificate and FQDN by opening your web browser to the address `http://mps-204.company.com` and checking for
any certificate errors. Your client must have the trusted root certificate installed for the client to automatically trust the system’s certificate.

For ongoing upkeep, administrators must remember that root certificates and server certificates have a fixed valid date range. Certificates must be replaced before they expire to prevent communication failures, so an administrator should be aware of when certificates will expire and check periodically that no systems are using expired certificates.

The system is now locked down and is ready to be added to Cisco TMS if needed. Cisco TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to Cisco TMS or when Secure-Only is enabled in Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, continue on to the Cisco TMS chapter of this document to complete the configuration of the total solution.
Before attempting to deploy a Secure Management solution for Cisco TelePresence Video Communication Server (VCS) systems, it is critical that an administrator understands the fundamentals of certificates, TLS, and the VCS platform’s functionality. Appendix A of this document provides primer information on TLS and certificates for those who are not familiar with those technologies and Appendix C provides step by step instructions for creating and working with certificates.

This chapter is part reference, and part implementation guide for the VCS system. The first half details methods and protocols in use between an VCS system and an external management system. The material is broken into sections explaining the default methods implemented in VCS systems, followed by the functionality added beginning with X4.0 software to increase the security level. These sections should be read and understood before attempting to deploy VCS systems in a Secure Management solution.

The second half of this chapter provides a readiness checklist for an administrator to verify they have the information and network configuration required to configure VCS systems for Secure Management. This is followed by comprehensive step-by-step Best Practice guides to configuring a VCS system for Secure Management.

VCS Secure Management Reference Material

Default Protocols and Services in VCS Systems

The VCS system supports many of the same protocols and services that the MXP systems support. The description and behavior of the VCS will be very similar to the MXP with only minor changes due to components the VCS system does not require.

VCS systems support multiple interfaces for managing the system, including:

- HTTP
- HTTPS
- Telnet
- SSH
- SCP
- SNMP
- Serial Port

In the factory default configuration, all of the above protocols are enabled except for Telnet. These protocols may be enabled or disabled via the XML interface, the web administrator interface under System Configuration > System and System Configuration > SNMP, or using the dataport and xconfiguration commands:

```plaintext
xconfiguration administration https mode: <on/off>
xconfiguration administration http mode: <on/off>
xconfiguration administration ssh mode: <on/off>
xconfiguration administration telnet mode: <on/off>
xconfiguration snmp mode: <on/off>
```

Turning a service on or off requires a reboot for changes to take effect.

For services that require a server certificate, such as HTTPS, the systems come preconfigured with a X.509 certificate signed by a TANDBERG Certificate Authority. By default this certificate authority will not be trusted by a user’s computer resulting in a certificate warning in their web browser unless they specify to ignore it or trust the TANDBERG Certificate Authority.

Additionally, VCS devices have an internal client used to connect to management platforms. This client is used for External Manager. The client by default uses HTTP to connect to the configured management address. This service can be configured from several locations in the XML interface, web interface, or dataport. The most direct way to configure this service is via the web interface under
System Configuration > External Manager. This client is used when the system is managed by Cisco Cisco TMS, but is optional in stand-alone implementations.

VCS systems also implement a feedback system which can be used by external systems to monitor activity of the device by having the VCS system post changes using HTTP to an external URL. This feedback system is configured using the XML interface or \texttt{xcommand feedbackregister} series of commands available in the dataport of the MPS or via XML.

The existing services/protocols can be summarized based on the security levels outlined in the Introduction section of this document as follows:

<table>
<thead>
<tr>
<th>Service/Protocol</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Server</td>
<td>Level 2</td>
</tr>
<tr>
<td>HTTPS Server</td>
<td>Level 4</td>
</tr>
<tr>
<td></td>
<td>(if client checks certificate)</td>
</tr>
<tr>
<td>Telnet</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SSH</td>
<td>Level 3</td>
</tr>
<tr>
<td>SCP</td>
<td>Level 3</td>
</tr>
<tr>
<td>External Service/feedback</td>
<td>Level 2</td>
</tr>
</tbody>
</table>

The overall management security of the device can be improved by disabling unneeded services, and increasing the security of the services in use. Previously, when using Cisco TMS, administrators were limited in what services they could disable. Now, when combined with Secure-Only settings in Cisco TMS, administrators can achieve a Level 3 security by using the security settings added beginning with X4.0 or a Level 4 security when combined with the verify certificates settings.

Secure Management Features Added Beginning with X4.0 Software

Starting with software release X4.0, the security of management interfaces has been increased, including the ability to achieving a security of Level 4, through the following new additions.

HTTPS for External Services

ExternalManager service can now be configured to use either HTTP or HTTPS. The setting is controlled via the web interface under **System Configuration > External Manager** or with a new command \texttt{protocol} under the service’s dataport configuration command:

\texttt{xconfiguration externalmanager protocol: <HTTP/HTTPS>}

When protocol is set to HTTPS, only HTTPS will be used. The system intentionally will not fall back to HTTP if HTTPS fails. The management server must also be configured to support HTTPS. Refer to the **Cisco TMS** section of this document for information on how Cisco TMS interacts with HTTPS and these settings.

HTTPS for Feedback URLs

Feedback URLs can now be defined to use HTTPS in the URL. If the feedback URL registered in the system starts with HTTPS, HTTPS will be used when posting events to the external server. The syntax of the \texttt{xconfiguration feedbackregister} command was not modified, only updated that using an https:// formatted URL is now valid. When the URL is set to HTTPS, only HTTPS will be used (system will not fall back to HTTP if HTTPS fails). The management server must also be configured to support HTTPS. Refer to the **Cisco TMS** section of this document for information on how Cisco TMS interacts with HTTPS and these settings.
Verify Server Certificates Mode

To achieve Level 4 security, a system must not only handle certificates, it must validate them and adhere to any warnings or errors discovered. Enforcing certificate checking may not be desirable for organizations that want the encryption offered by TLS but do not wish to manage and deploy valid server certificates on all devices. Using TLS without validating certificates results in an equivalent Level 3 security. To address both needs, a new system setting is defined to control the handling of X.509 certificates.

xConfiguration ExternalManager Server Certificate Verify Mode: <off/on>

This setting is also configurable via the web interface under System Configuration > External Manager. When the system is acting as an HTTPS client to connect to an external server, the server will provide a X.509 certificate to validate its identity. If Certificate Verify Mode is enabled, the server certificate will be validated before a connection continues. The system checks attributes of the Certificate such as:

- certificate is complete and any checksums are valid
- the current time is within the certificates valid date range
- the common name matches the hostname name used to access the server
- certificate has been signed by a certificate authority the system trusts through its root certificate

If any of the certificate checks fail - the HTTPS connection will fail and the communication is halted to prevent sharing information with an unsecure party.

If Certificate Verify Mode is disabled, the HTTPS client will accept any complete server certificate presented by the server and ignore any warnings or errors allowing the communication to continue.

Additional Settings Required for Certificate Verify Mode

When Server Certificate Verify is enabled, the system must be able to perform its validation checks including hostname and date checks. Therefore the system’s configuration must include:

- NTP must be configured and active in the system
- a DNS Server must be defined in the system
- Server Addresses must be entered as hostnames, not IP Addresses

Related Existing Commands

Previous VCS software releases included functionality that is also relevant to Secure Management. These features include uploading of Server Certificates, Private Keys, and the uploading of Root Certificates to trust. These functionalities are on the Maintenance > Security page within the VCS’s web interface.

Root Certificates

Uploading a list of trusted root certificates into the system allows the upload of a PEM encoded file which contains the root certificates of any CAs you wish the system to trust. The system will use these root certificates when validating X.509 certificates presented by HTTPS servers the system connects to.

The system supports uploading of a single PEM encoded file, which may contain multiple certificates. If an existing list of certificates is present, uploading a new PEM encoded file will overwrite the existing list. Certificate lists are uploaded using the web interface of the system under Maintenance > Security. These certificates are also used by the SIP functionality of the VCS.

The system supports X.509 root certificates using RSA and DSA keys that are encoded in the PEM base-64 format. Root certificates are not encrypted with passphrases. For additional help with certificate formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document.
Server Certificates and Private Key

Uploading a Server Certificate replaces the factory default certificate and is used for the HTTPS server of the system. A certificate is uploaded through the web interface of the system under Maintenance > Security. The certificate to be uploaded must be a PEM encoded file. The VCS does not currently support Private Keys that are encrypted using passphrases. For additional help with certificate formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document.

VCS Secure Management Profiles

With the additional features added beginning with X4, VCS systems can operate in a full Level 3 or Level 4 security configuration.

Level 3 is available by
- Disabling all services except for HTTPS and SSH
- Configuring feedback and client services (external manager) to use HTTPS protocol

Level 4 is available by
- Disabling all services except for HTTPS
- Configuring feedback and client services (external manager) to use HTTPS protocol
- Installing a valid Server Certificate on the system
- Installing root certificates to trust and enabling Verify Certificates mode

The Implementation Guides included in this chapter provide step by step best instructions for deploying systems in either of these security profiles.

VCS Secure Management Implementation Material

Readiness Checklist for implementing HTTPS Management for VCSs

This list is intended to provide a quick reference to the information that an administrator must have available before implementing HTTPS management. Failure to organize this information prior to implementation will hinder or prevent you from deploying this functionality.

If not using verify certificates
- Each system must be running X4.0 software or newer
- You must have an administrative logon to the VCS systems
- Be familiar with the HTTPS related commands outlined in the VCS reference section of this document
- If a management tool besides Cisco TMS, your external management platform or tools must support HTTPS connections
- If using Cisco TMS to manage the endpoints, Cisco TMS must be version 11.9.1 or newer, and you must have an administrative logon to Cisco TMS

If using the verify certificates mode, the following ADDITIONAL items apply
- Each system must have a fully qualified domain hostname (FQDN) that points to the system’s IP Address. The FQDN is defined in your DNS Server
- You must have a NTP source that systems can be pointed at for time synchronization. See system command xconfiguration NTP
- Each endpoint must have a DNS lookup server defined in its configuration. See system commands xconfiguration IP DNS
- Each system will require its own Server Certificate be generated
- You must have the Private Key, Server Certificate, and passphrase (if used) for each system. Certificates and Keys must be in PEM encoded files
You must have the public certificate of the Root Certificate Authority that will be used to verify the Server Certificates used on the network.

If using Cisco TMS, Cisco TMS must have a FQDN configured, and its own Server Certificate.

For information on how to generate Server Certificates or related information, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. Once the steps outlined in the checklist are complete and the information is gathered, you can configure your systems to use HTTPS. The next sections outline the steps required to configure an VCS system in Level 3 or Level 4 security.

Implementation Guide for Configuring a VCS for Level 3 Security

The following provides an example of best practices for configuring a default VCS system for Level 3 security, where the system will only support communicating with management systems that use HTTPS but certificates are not verified, reducing the complexity and requirements of the deployment. If preparing a system for use with Cisco TMS, these steps should be performed either before adding the system to Cisco TMS or before enabling Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

These steps assume you already have the device configured on the IP network and you know the IP Address of the system. Replace <systemIP> in the examples below with the actual IP address of the system.

1. Using your web browser, open a connection to the VCS by entering the URL https://<systemIP>

 Note: You will see SSL security warnings in your browser because the certificate authority is not trusted and the name of the server does not match that of the certificate.

2. On the Logon Page, click on the Administrative Logon Button. When prompted for login, use admin as the username and the default password is TANDBERG.

3. Disable unnecessary services. Browse to System Configuration > System. Using the drop down boxes, set Enabled to OFF Telnet and HTTP to OFF, and HTTPS and SSH to ON (Optional, but recommended). Click the Save button to save the changes.

4. Disable SNMP. Browse to System Configuration > SNMP. Using the drop down boxes, set Enabled to OFF. Click the Save button to save the changes.

5. Configure the external services to be disabled. These will be enabled automatically by Cisco TMS if needed. Browse to System Configuration > External Manager. Configure
 - Address field to 127.0.0.1
 - Protocol to HTTPS
 - Certificate Verify Mode to Off
 Click the Save button to save the changes.

6. Configure the administrator password you wish to use with the system. Browse to Maintenance > Administration > Administration Accounts. Click on the View/Edit link for the admin account. Enter a strong complex password, confirm it, and click the Save button.

7. Reboot the system by Browsing to Maintenance > Restart. Wait until the system has fully restarted.

8. Verify the changes. Open a new web browser window and enter the address https://<systemIP> and the web page of the system will start to open.

 Note: You will see SSL security warnings in your browser because the certificate authority is not trusted and the name of the server does not match that of the certificate.
9. On the Logon Page, click on the Administrative Logon Button. When prompted for login, use admin as the username and the password you created.

The system is now locked down and is ready to be added to Cisco TMS if needed. Cisco TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to Cisco TMS or when Secure-Only is enabled in Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, continue on to the Cisco TMS chapter of this document to complete the configuration of the total solution.

Implementation Guide for Configuring a VCS for Level 4 Security

The following provides an example of best practices for configuring a default VCS system for Level 4 security, where the system will only support communicating with management systems that use HTTPS and have valid X.509 certificates. If preparing a system for use with Cisco TMS, these steps should be performed before enabling the Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

1. Decide the hostname that will be used to manage the system.
 Example: vcs-ext.company.com

2. Decide which certificate authority you will use to sign your certificates and obtain the public root certificate for that CA. Convert that file if necessary to PEM file format and save as rootcerts.pem
 If multiple certificate authorities need to be trusted by the system, obtain the root certificate for each and catonate each into a single PEM file. See Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems for additional help on PEM files

3. Using the tool of your choice, create a key pair, and generate a certificate request to submit to your CA. Your private key must NOT be encrypted with a passphrase to be compatible with the VCS. Remember to keep your private key secure. Since your key was created without a passphrase you should never distribute it, store it, nor transfer it via a non-encrypted method (such as copying via a file share or internet email). Create a PEM encoded file of your private key named privatekey.pem . Create a backup of your private key and store it somewhere safe, such as on a CD-ROM stored in locked location. Submit your certificate request to your CA using the methods specified by your CA administrator.

4. When you receive your signed certificate back from the CA, convert it to PEM format if necessary and rename to cert.pem . This file is safe to transfer in a non-secure method.

5. Copy the cert.pem and privatekey.pem files to storage medium you can securely transfer (such as CD-ROM or USB Key) to a computer that you can create a private network between it and the system to be configured. Delete any copies of privatekey.pem files left on the computer to not leave any unsecure copies of your private key.

6. Copy the rootcerts.pem file to the same media where you saved the other PEM files

The remaining steps should be performed on a computer you can create a private network between it and the system to be configured. Since the default certificate installed on the system cannot be truly verified, it should not be trusted to encrypt the transmission of sending your new private key to the system over a non-secured network, even using HTTPS. For future updates, if a trusted certificate is already installed on the system, the loading of the certificates can be done over a non-secure network rather than building a private network by substituting HTTPS for HTTP and SSH for telnet in the remaining steps below.

7. Create a private network between the VCS and a PC. The simplest way to do this is to use an Ethernet Switch and connect only VCS to be configured and the computer used to configure it. Connect the VCS using the LAN Port 1 on the front of the appliance.
 a. If the VCS is new or defaulted, it will have a default IP Address of 192.168.0.100. If the unit is already configured with another IP address, complete the initial configuration wizard described on the VCS Installation Sheet to configure the VCS to be IP Address 192.168.0.100 with a subnet mask of 255.255.255.0 and default gateway of 192.168.0.1. Reboot the system at the end of the wizard to have the changes take effect.
b. Configure your computer with a statically assigned IP address of 192.168.0.101 and a subnet mask of 255.255.255.0. DNS servers and gateway addresses are not needed at this time in the computer or system to be configured.

c. Verify you can communicate to the system from the computer by opening a web browser and entering https://192.168.0.100 - the webpage of the system should start to load and you should see the Logon page.

8. Open the web interface of the system by opening a web browser on the computer and entering https://192.168.0.100. When the Login Page opens, click the Administrator Login button, and then enter admin as the username and the default password is TANDBERG.

10. Under Trusted CA Certificate, Click the Browse button to specify the Root Certificate file to upload to the system. Insert your secure media where the rootcerts.pem file is located and select that file and hit OK. Click the Upload CA certificate button to upload the file to the system.

11. Under Server Certificate Data, Click the Browse button next to Select server private key. Insert your secure media where the privatekey.pem file is located and then select that file and hit OK.

12. Under Server Certificate Data, Click the Browse button next to server certificate file. Insert your secure media where the cert.pem file is located and then select that file and hit OK.

13. Click Upload server certificate data to transfer files to the system. The certificate changes will take effect immediately on the system.

14. Disable unnecessary services. Browse to System Configuration > System. Using the drop down boxes, set Enabled to OFF for Telnet and HTTP. Set Enabled to ON for HTTPS and SSH (Optional, but recommended). Enter the name for the system in the System Name field. Example: vcs-ext. Click the Save button to save the changes.

15. Disable SNMP. Browse to System Configuration > SNMP. Using the drop down boxes, set Enabled to OFF. Click the Save button to save the changes.

16. Configure the external services to be disabled. These will be enabled automatically by Cisco TMS if needed. Browse to System Configuration > External Manager. Configure

- Address field to 127.0.0.1
- Protocol to HTTPS
- Certificate Verify Mode to Off

Click the Save button to save the changes.

17. Configure the administrator password you wish to use with the system. Browse to Maintenance > Administration > Administration Accounts. Click on the View/Edit link for the admin account. Enter a strong complex password, confirm it, and click the Save button.

18. Configure the NTP server for the network the system will reside on by browsing to System > Time and configuring the NTP Server address with a valid NTP Server for your network. Click the Save button to save the changes.

19. Configure the DNS server properties for the network the system will reside on by Browsing to System > DNS. Configure at least the first DNS Server address field with a valid DNS server for your network. Click the Save button to save the changes. DNS is required when using verify certificates.

20. Reboot the system by entering browsing to Maintenance > Restart and chose to restart the system. Wait until the system has fully restarted.

21. Verify the changes. Open a new web browser window and enter the address https://192.168.0.100 and the web page of the system will start to open.

Note: You will see SSL security warnings in your browser because the name of the server does not match that of the certificate because we did not access the system by its hostname.

22. On the Login Page, click on the Administrative Logon Button. When prompted for login, use admin as the username and the password you created.
23. Verify the current server certificate by viewing the certificate details page in your browser. In Internet Explorer 7, click on the Lock Icon and select View Certificate. In Firefox, double-click on the Lock icon.

The system is now locked down and is ready to be configured with the IP properties of the network where it is intended to be deployed. Use the system’s serial port, dataport or web interface to configure the IP Configuration of the device including IP Assignment, Address, Subnet Mask, and Gateway. The IP properties can be found in the following places:

- **Serial Port** – Refer to VCS Installation Sheet
- **Web** – System Configuration > IP
- **Dataport** – under xconfiguration ip

Once the system has been moved to the network where it will be deployed, verify the certificate and FQDN by opening your web browser to the address https://vcs-ext.company.com and checking for any certificate errors. Your client must have the trusted root certificate installed for the client to automatically trust the system’s certificate.

For ongoing upkeep, administrators must remember that root certificates and server certificates have a fixed valid date range. Certificates must be replaced before they expire to prevent communication failures, so an administrator should be aware of when certificates will expire and check periodically that no systems are using expired certificates.

The system is now locked down and is ready to be added to Cisco TMS if needed. Cisco TMS will automatically configure the external services and feedback addresses using ‘Enforce Management Settings’ when the system is added to Cisco TMS or when Secure-Only is enabled in Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, continue on to the Cisco TMS chapter of this document to complete the configuration of the total solution.
Cisco TelePresence MCU

Before attempting to deploy a Secure Management solution for Cisco TelePresence MCU Series, it is critical that the administrator understands the fundamentals of certificates, TLS, and the MCU platform’s functionality. Appendix A of this document provides primer information on TLS and certificates for those who are not familiar with those technologies and Appendix C provides step by step instructions for creating and working with certificates.

This chapter is part reference, and part implementation guide for the MCUs. The first half details methods and protocols in use between an MCU and an external management system. The material is broken into sections explaining the default methods implemented in MCUs, followed by the functionality added beginning with 2.4 software to increase the security level. These sections should be read and understood before attempting to deploy MCUs in a Secure Management solution.

The second half of this chapter provides a readiness checklist for an administrator to verify that he or she has the information and network configuration required to configure MCUs for Secure Management. This is followed by comprehensive step-by-step Best Practice guides to configuring an MCU for Secure Management.

MCU Secure Management Reference Material

Default Protocols and Services in MCU Systems

Cisco TelePresence MCU systems support multiple interfaces for managing the system, including

- HTTP
- HTTPS*
- FTP
- SNMP
- Serial console

*This field is only visible if the MCU has the Secure management (HTTPS) feature key or an Encryption feature key installed. For more information about installing feature keys, see the Help contents > Configuring the MCU > Upgrading and backing up the MCU section of the Cisco TelePresence MCU online help.

These protocols may be enabled or disabled via the web user interface under Network > Services. Turning a service on or off will take effect immediately.

The MCU has a local certificate and private key pre-installed. These will be used by default when you are accessing the unit using HTTPS. This certificate will not be trusted by default by a user’s computer, resulting in a certificate warning in the web browser.
The existing services/protocols can be summarized based on the security levels outlined in the Introduction section of this document as follows:

<table>
<thead>
<tr>
<th>Service/Protocol</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Server</td>
<td>Level 2</td>
</tr>
<tr>
<td>HTTPS Server</td>
<td>Level 4*</td>
</tr>
<tr>
<td>FTP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP</td>
<td>Level 1</td>
</tr>
<tr>
<td>SNMP Traps</td>
<td>Level 1</td>
</tr>
<tr>
<td>Serial Console</td>
<td>Level 1**</td>
</tr>
</tbody>
</table>

* If the client checks the certificate
** (for MCU 4.0 or newer with serial console login enabled)

The overall management security of the device can be improved by disabling unneeded services, and increasing the security of the services in use. Previously, when using Cisco TMS, administrators were limited in what services they could disable. Now, when combined with Secure-Only settings in Cisco TMS, administrators can achieve a Level 4 security.

MCU Secure Management Implementation Material

Readiness Checklist for implementing HTTPS Management for MCUs

This list is intended to provide a quick reference to the information that an administrator must have available before implementing HTTPS management. Failure to organize this information prior to implementation will hinder or prevent you from deploying this functionality.

If not using verify certificates
- The MCU must be running version 2.4 software or newer
- The MCU must have a Secure management (HTTPS) or Encryption feature key installed
- You must have an administrative logon to the MCU
- If using another management tool than Cisco TMS, your external management platform or tool must support HTTPS connections
- If using Cisco TMS to manage the endpoints, Cisco TMS must be version 12.5 or newer, and you must have an administrative logon to Cisco TMS

If using the verify certificates mode, the following ADDITIONAL items apply
- Each system must have a fully qualified domain hostname (FQDN) that points to the MCU’s IP Address. The FQDN is defined in your DNS Server
- You must have a NTP source that systems can be pointed at for time synchronization.
- The MCU must have a DNS lookup server defined in its configuration
- Each MCU will require its own Server Certificate to be generated
- You must have the Private Key, Server Certificate, and passphrase (if used) for each MCU. Certificates and Keys must be in PEM encoded files
- You must have the public certificate of the Root Certificate Authority that will be used to verify the Server Certificates used on the network
- If using Cisco TMS, Cisco TMS must have a FQDN configured, and its own Server Certificate

For information on how to generate Server Certificates or related information, refer to **Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems** in this document. Once the steps outlined in the checklist are complete and the information is gathered, you can configure your
MCUs to use HTTPS. The next sections outline the steps required to configure an MCU for Level 3 or Level 4 security.

Implementation Guide for Configuring an MCU for Level 3 Security

The following provides an example of best practices for configuring a default MCU for Level 3 security, where the MCU will only support communicating with management systems that use HTTPS but certificates are not verified, reducing the complexity and requirements of the deployment. If preparing an MCU for use with Cisco TMS, these steps should be performed either before adding it to Cisco TMS or before enabling Secure-Only mode in Cisco TMS. For any help creating certificates or converting file formats, please see Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

These steps assume you already have the device configured on the IP network and you know the IP Address of the system. Replace <systemIP> in the examples below with the actual IP address of the system.

1. In a web browser, go to `<systemIP>` for accessing the MCU's web user interface
2. When prompted for login, use ‘admin’ as the username with an empty password (default)
3. Go to Network > Services.

 ![Network Services Table]

5. Click ‘Apply Changes’

Note: You will see SSL security warnings in your browser because the certificate authority is not trusted and the name of the server does not match that of the certificate

The system is now ready to be added to Cisco TMS. If Cisco TMS is to be used in the Secure Management solution, refer to the Cisco TMS section to complete the configuration of the total solution.
Implementation Guide for Configuring an MCU for Level 4 Security

The following provides an example of best practices for configuring a default MCU for Level 4 security. In this security model, Cisco TMS will verify the MCU’s certificate when communicating via HTTPS, and the MCU will likewise verify the certificate from Cisco TMS.

If preparing a system for use with Cisco TMS, these steps should be performed before enabling the Secure-Only mode in Cisco TMS.

Note: Enabling an MCU for Level 4 security has the side effect of making the MCU validate certificates for SIP calls over TLS. If you want to enable Level 4 security between the MCU and Cisco TMS, but do not want to add valid certificates for all SIP participants to the MCU, go to Settings > SIP > SIP call settings > Outgoing transport and make sure that either ‘UDP’ or ‘TCP’ is selected.

The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

1. Decide the hostname that will be assigned to the MCU as a fully qualified domain name (FQDN).
 Example: mcu.company.com

2. Decide which certificate authority you will use to sign your certificates and obtain the public root certificate for that CA. Convert that file if necessary to PEM file format and save as rootcerts.pem

 If multiple certificate authorities need to be trusted by the system, obtain the root certificate for each and concatenate each into a single PEM file. See Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems for additional help on PEM files

Using the tool of your choice, create a key pair, and generate a certificate request to submit to your CA. Your private key may be encrypted with a passphrase if desired. Remember to keep your private key secure. Unless your key was encrypted with a passphrase when you created the key you should never distribute it, store it, nor transfer it via a non-encrypted method (such as copying via a file share or internet email). Create a PEM encoded file of your private key named privatekey.pem. Create a backup of your private key and store it somewhere safe, such as on a CD-ROM stored in locked location.

Submit your certificate request to your CA using the methods specified by your CA administrator.

3. When you receive your signed certificate back from the CA, convert it to PEM format if necessary and rename it to cert.pem. This file is safe to transfer in a non-secure method.

4. Copy the cert.pem and privatekey.pem files to a storage medium such as a CD-ROM or USB key. Delete any copies of privatekey.pem files left on the computer so that you are not leaving any unsecure copies of your private key.

5. Copy the rootcerts.pem file to the same medium as you used for saving the other PEM files

You may upload the certificate and key within your local network. However, for security reasons Cisco recommends that you perform the following steps on a computer that is on a private network with the MCU. This is because the default certificate installed on the MCU cannot be truly verified, and it should not be trusted to encrypt the transmission of sending your new private key to the system over a non-secured network, even using HTTPS.
For future updates, if a trusted certificate is already installed on the system, the loading of the certificates can be done over a non-secure network rather than building a private network by substituting HTTPS for HTTP in the remaining steps below.

1. Create a private network between the MCU and a PC. The simplest way to do this is to use an Ethernet Switch and connect only the MCU to be configured and the computer used to configure it.

2. Configure the MCU using the serial console. Configure the IP Address to 192.168.1.2 and the subnet mask to 255.255.255.0.

3. Configure your computer with a statically assigned IP address of 192.168.1.3 and a subnet mask of 255.255.255.0. DNS servers and gateway addresses are not needed at this time in the computer or MCU to be configured.

4. Verify that you can communicate to the MCU from the computer by opening a web browser and entering http://192.168.1.2. The web user interface of the system should now start loading, and you will be prompted for a username and password.

5. Navigate to Network > SSL certificates.

6. Click the ‘Browse’ button next to the ‘Certificate’ field to specify the HTTPS certificate file to upload to the system. Insert your secure media where the cert.pem file is located and then select that file.

7. Click the ‘Browse’ button next to the ‘Private Key’ field to specify the PEM file containing your private key to upload to the system. Insert your secure media where the privatekey.pem file is located and then select that file. If your private key was encrypted with a passphrase, enter it in ‘encryption password’ field.

8. Click 'Upload Certificate and Key' to upload the files.

10. Verify that the certificate has been loaded correctly. You can view the certificate configuration by clicking on the certificate file name in the certificate table.
Note: If you select ‘Outgoing connections and incoming calls’, the MCU will refuse incoming SIP calls over TLS unless the MCU has valid certificates for the endpoints calling in. Cisco recommends using ‘Outgoing connection only’, as this is sufficient for enabling Level 4 security between the MCU and Cisco TMS, while not giving the side effect of dropping incoming SIP-TLS calls.

10. Click the ‘Browse’ button next to the ‘Trust store’ field to specify the trust store file to upload to the MCU. The trust store file contains local copies of the certificates from the other systems the MCU should trust. This file must therefore contain either a valid Cisco TMS certificate or the root certificate of the CA that issued Cisco TMS’ certificate. Click ‘Upload trust store’.

12. Go to Settings > Time. Configure the NTP server properties for the network the system will reside on.

13. Go to Network > Port A > DNS configuration. Configure the DNS server properties for the network the system will reside on. This is required when using verify certificates.

14. On the MCU, go to Settings > Shutdown. Reboot the system by clicking the ‘Shutdown’ button twice and then the ‘Restart’ button.

15. Verify the changes. Open a new web browser window and enter the address https://192.168.1.2. The web page of the MCU will start to open.

Note: You will see SSL security warnings in your browser. This is because the name of the server does not match that of the certificate, as you did not access the system by its hostname.

16. Verify the current server certificate by viewing the certificate details page in your browser. In Internet Explorer 7, click on the Lock Icon and select View Certificate. In Firefox, double-click on the Lock icon.

The MCU is now ready to be configured with the IP properties of the network where it is intended to be deployed. By using the serial console, change the configuration of IP Assignment, Address, Subnet Mask, and Gateway to the intended values. You can find further information on configuring the MCU in the MCU’s online help, or in the Getting Started Guide for the MCU available for download from http://www.tandberg.com/support.

Once the system has been moved to the network where it will be deployed, verify the certificate and FQDN by opening your web browser to the address https://mcu.company.com. Check for any certificate errors. Your client must have the trusted root certificate installed for the client to automatically trust the MCU’s certificate.

For ongoing upkeep, administrators must remember that root certificates and server certificates have a fixed valid date range. Certificates must be replaced before they expire to prevent communication failures, so an administrator should be aware of when certificates will expire and check periodically that no systems are using expired certificates.

If you need to remove the installed certificates, go to Network > SSL certificates and click the ‘Delete custom certificate and key’ button.

The MCU is now ready to be added to Cisco TMS. Open Cisco TMS, and go to System > Navigator. Then select the desired folder, and add the MCU by clicking ‘Add Systems’.
Some further changes to the MCU’s settings will automatically be made after you enable Secure-Only management in Cisco TMS. As explained in the Cisco TMS chapter of this document, it may take some time for Cisco TMS to update these settings. You can make Cisco TMS do the update immediately by clicking ‘Enforce Management Settings’ under Settings > Edit Settings for the MCU in question.

Continue on to the TMS section of this document to complete the configuration of the total solution.
Before attempting to deploy a Secure Management solution using Cisco TelePresence Management Suite (Cisco TMS), it is critical that an administrator understands the fundamentals of certificates, TLS, how Cisco TMS communicates with devices and the related Cisco TMS security functionalities. Appendix A of this document provides primer information on TLS and certificates for those who are not familiar with those technologies and Appendix B provides step by step instructions for creating and working with certificates for Cisco TMS.

This chapter is part reference, and part implementation guide for a Cisco TMS server. The first half details methods and protocols in use between Cisco TMS and external systems. The material is broken into sections explaining the default methods implemented in Cisco TMS, followed by the functionality added beginning with Cisco TMS version 11.9.1 software to increase the security level. These sections should be read and understood before attempting to deploy Cisco TMS and systems in a Secure Management solution.

The second half of this chapter provides a readiness checklist for an administrator to verify they have the information and network configuration required to configure Cisco TMS for Secure Management. This is followed by comprehensive step-by-step Best Practice guides to configuring Cisco TMS for Secure Management.

Cisco TMS Secure Management Reference Material

Default Protocols and Services and Communication used with Cisco TMS

The following sections will describe the methods and security available by default when using Cisco TMS with different external systems, including devices, databases, software integrations, and users.

Cisco TMS Interaction with Devices

Cisco TMS uses multiple protocols to communicate with the devices and software packages it interacts with. In general Cisco TMS communicates with systems and external integrations using the following protocols

- HTTP
- HTTPS
- Telnet
- FTP
- SNMP
- SNMP Traps
- Vendor Specific Protocols

Which protocol is used for a specific device or task is generally dictated by what is supported by the device. Example, Cisco TMS would prefer to use HTTPS to communicate with an endpoint, but the endpoint may only support telnet and SNMP for management interfaces. When multiple choices are available, Cisco TMS will generally use the more secure of the methods available. Because Cisco TMS interoperates with existing multiple devices types and vendors, Cisco TMS cannot dictate the protocols to use when communicating with systems or require protocols or methods to achieve the highest level of security.

Connections from Cisco TMS will use secure protocols when possible, for example, if a Cisco TelePresence MXP codec has HTTPS enabled, Cisco TMS will use HTTPS when connecting to the codec. Other systems that may not support HTTPS, may support challenge response on their login methods, for example, a Cisco TelePresence Classic codec does not support HTTPS, but does support telnet challenge which uses a MD5 challenge response system, so that the system's password is not sent over the network. Other HTTP systems may support digest as a method to exchange passwords.

Additionally systems must also open their own connections to Cisco TMS, such as when sending feedback to Cisco TMS about activity and may only use HTTP or SNMP Traps. Not all functions may be available via the secure interface, such as only being able to transfer files via FTP. Devices themselves do not have a set of user credentials to connect to Cisco TMS, but still must be able to open...
connections to Cisco TMS autonomously – this requires some interfaces always be open for anonymous connections.

Because of these restrictions Cisco TMS traditionally cannot be locked down and require only authenticated, encrypted connections into Cisco TMS to achieve an equivalent Level 4 security. Cisco TMS by default can deliver up to Level 2 security depending on the device types being managed and it is important to recognize that even though encrypted channels are not used all the time or in all cases, sensitive information such as passwords are protected when allowed by the device.

For additional details on which protocols are used with a specific piece of equipment, please see the Cisco TMS product support document available from http://www.tandberg.com/support.

Cisco TMS Interaction with Users

Cisco TMS by default only uses HTTP when communicating with users accessing Cisco TMS. All browsing and file transfers are done via HTTP. Note that Cisco TMS does offer links to systems that allows a user to interact with a system’s management interfaces directly, but those links open new connections that do not go through Cisco TMS and are between the user and the system directly. Cisco TMS is not setup for HTTPS when installed, however the IIS web server does support secure login methods such as NTLM, Kerberos, and digest authentication, so user logins to Cisco TMS will be secure as long as the client accessing Cisco TMS supports one of these methods.

Cisco TMS Interaction with the Database

Cisco TMS by default uses a locally install SQL 2005 database server which it interacts with using ADO.NET SQL Client. The SQL Server by default does not allow any remote connections and the communications between Cisco TMS and the database happen locally -- they do not go out over the network. The connection settings that Cisco TMS uses to connect to the database are encrypted on the local server.

When using a customer supplied external SQL server, Cisco TMS relies upon the security methods of the SQL Server and client to protect the SQL conversation over the network. SQL Server provides password encryption for the SQL Client connection if the SQL Server has a server certificate installed. Additionally, Cisco TMS supports using delegated SQL Users to minimize the exposure the remote user has to the SQL Server. Lastly, an administrator can enable SSL encryption for the entire connection if desired.

Note: Requiring SSL will put increased CPU load on the SQL client and server.

For additional information on password encryption and SSL within SQL Server, see the following Microsoft articles as a start point:

How SQL Server uses a certificate when the Force Protocol Encryption option is turned on - http://support.microsoft.com/kb/318605

How to enable SSL for SQL Server 2000
Cisco TMS Interaction with External Integrations

External Integrations such as the Microsoft Exchange Integration, typically communicate back to Cisco TMS via a centralized server, rather than having clients communicate directly with Cisco TMS. These integrations all support using HTTP or HTTPS to communicate to Cisco TMS. However, since Cisco TMS by default is not installed with HTTPS, the integrations will use HTTP and password encryption support will vary depending on the integration product being used.

Cisco TMS does not initiate outbound connections to external integrations with the exception of See&Share, which uses TLS on its connections, even when using the HTTP port 80.

Default Cisco TMS Communications Security Summary

The following table summarizes Cisco TMS’s communications security with devices, users, and the database. The table reflects the maximum level with the existing Cisco TMS product. Actual levels can vary based on the systems being supported and SQL server configuration.

<table>
<thead>
<tr>
<th>Service/Protocol</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interaction</td>
<td>Level 2</td>
</tr>
<tr>
<td>Device Interaction – HTTP</td>
<td>Level 2</td>
</tr>
<tr>
<td>Device Interaction – HTTPS</td>
<td>Level 3</td>
</tr>
<tr>
<td>Device Interaction – SNMP</td>
<td>Level 1</td>
</tr>
<tr>
<td>Device Interaction – SNMP Traps</td>
<td>Level 1</td>
</tr>
<tr>
<td>Device Interaction – Telnet</td>
<td>Level 1</td>
</tr>
<tr>
<td>Device Interaction – Telnet Challenge</td>
<td>Level 2</td>
</tr>
<tr>
<td>Device Interaction – FTP</td>
<td>Level 1</td>
</tr>
<tr>
<td>Device Interaction – Feedback</td>
<td>Level 1</td>
</tr>
<tr>
<td>Database Interaction</td>
<td>Level 4</td>
</tr>
<tr>
<td>External Integrations</td>
<td>Level 2</td>
</tr>
</tbody>
</table>

Secure Management Features Added Beginning with Cisco TMS v11.9.1 Software

To help strengthen the communications security available in Cisco TMS, Cisco TMS version 11.9.1 introduced HTTPS compatibility, removed the use of FTP for some MXP/MPS functions, and added a new Secure-Only mode to allow Level 3 or Level 4 security in Cisco TMS.

HTTPS Compatibility for Web Server

Cisco supports configurations that enable HTTPS on the Cisco TMS web server to allow fully encrypted connections to Cisco TMS by both users and devices. When enabled, Cisco TMS will support both HTTP and HTTPS connections for compatibility.

Removal of FTP use for MXP/MPS

Starting with Cisco TMS version 11.9.1, Cisco TMS no longer depends on FTP for Cisco TelePresence MXP and MPS systems by migrating functionality that previously used FTP to HTTP/HTTPS for these system types.
Secure-Only Option in Cisco TMS Administrative Tools

Starting with Cisco TMS version 11.9.1, Cisco TMS added a new mode for customers looking to use only secure communication protocols between Cisco TMS and devices. When this mode is enabled, Cisco TMS will **only** use secure protocols (such as HTTPS) when communicating to supported devices, and those devices will only use HTTPS when opening connections to Cisco TMS. When enabled and used with compatible systems, Level 3 or Level 4 security can be achieved between Cisco TMS and devices.

This mode only changes behavior for devices that can support both HTTPS into the device and from the device. These devices will be labeled as ‘Secure-only supported devices’ in this document. Devices that do not support Secure-only communications with Cisco TMS will continue to operate as they did previously. Currently, the supported devices are Cisco MXP endpoints, Cisco VCS and Cisco MPS. Support does require minimum software versions on the devices as the behavior communicating from the device to Cisco TMS has changed as well. The minimum required versions of software for each device type are covered in the chapter corresponding to that device in this document.

Note: While previous versions of Cisco TelePresence systems supported an HTTPS server for web management of the device, they did not support an HTTPS client for connecting to Cisco TMS and therefore are not supported in Secure-Only mode.

The setting has two states and an optional parameter.

- **Off** - Cisco TMS will continue to use HTTPS to communicate to devices when possible, and instruct the devices to use HTTP when communicating to Cisco TMS. This is an equivalent Level 2 security when communicating with supported devices.

- **On** - Cisco TMS will only use HTTPS to communicate to supported systems and instruct devices to use HTTPS when communicating to Cisco TMS. This is an equivalent Level 3 security when communicating with supported devices.

- **Verify Certificates** – When enabled, Cisco TMS will validate certificates presented by devices and will not communicate if the certificates are not valid. Additionally, Cisco TMS will configure supported devices to do the same, by configuring the Verify Server Certificates setting in the device which requires they validate certificates presented before allowing communication. This is an equivalent Level 4 security when communicating with supported devices.

Security Level possibilities with Cisco TMS

With the additional features and changes available starting with Cisco TMS version 11.9.1, communications security when using Cisco TMS can be greatly enhanced for those organizations looking to enforce policy. By enabling HTTPS and Secure-Only on the Cisco TMS server

- Interaction with Users can be elevated to Level 3 or Level 4 security depending on their browser’s certificate settings
- Interaction with devices that support the Secure-only mode can achieve Level 3 security, and if Verify Certificates mode is enabled, Level 4.
- Interaction with External Integrations can achieve Level 3 security or Level 4 if the remote system validates certificates
- Interaction with the Database can be as high as Level 4 security as it was previously

The implementation sections of this chapter provide specific instructions on how to configure Cisco TMS to achieve these security levels. It is important to note that for compatibility reasons, communications with devices that do not support the Secure-Only configurations are not changed. Therefore you total effective security level will depend on the device types managed, and may differ to different systems. See the implementation guides of this chapter for additional optional changes that can be made to restrict Cisco TMS to Secure-Only systems.
How does Cisco TMS change when Secure-Only Mode is enabled?

The following describes how the normal operation of Cisco TMS will change when the Secure-Only mode is enabled.

- The customer installs a server certificate on the IIS server which enables HTTPS in addition to HTTP. HTTPS becomes an optional method for connection to the Cisco TMS web server.
- Systems types that support Secure-Only and are running at least the minimum version for Secure-Only are all treated as Secure-Only systems and must be configured to meet the requirements of Secure-Only.
- Cisco TMS will instruct Secure-Only supported devices to use HTTPS when connecting to Cisco TMS and configure their management settings appropriately, including:
 - Externalmanager protocol
 - Externalservices protocol
 - Corporate Directory protocol
 - Feedback URL
- Cisco TMS will not fallback to HTTP if an HTTPS connection attempt to a Secure-Only supported device fails.
- The System Alive-Status scanner which uses a short interval SNMP scan to improve response time of the detection of systems going offline is disabled for Secure-Only supported systems (due to the use of SNMP). The scanner will still operate for systems that do not support Secure-Only communications and Secure-Only systems will still update based on normal feedback and watchdog scan intervals.
- Cisco TMS will not rely on SNMP queries or SNMP traps to Secure-Only supported devices.
- Cisco TMS will not use FTP or telnet to Secure-Only supported devices.
- Cisco TMS will not open tickets on Secure-Only supported devices that have their non-secure services disabled.
- Cisco TMS will open an HTTPS Connection failure ticket if Cisco TMS cannot communicate to a Secure-Only supported system.
- Required services enabled on Secure-Only supported devices are reduced so that only HTTPS must be enabled on the device (Telnet, SNMP, and FTP all may be disabled on device).
- Optionally users may connect to Cisco TMS using HTTPS rather than HTTP by using https://<servername> when connecting to Cisco TMS.

If the Verify Certificates checkbox is enabled, the following additional changes also apply:

- Cisco TMS sets the verify server certificates setting to on for Secure-Only supported devices when setting management settings on the system.
- Cisco TMS will validate certificates supplied by HTTPS devices when communicating to them, and if the validation fails, it will open a new Certificate Validation Error ticket on the system and will not continue the communication.
- By having their verify server certificate setting enabled, Secure-only supported devices communicating to Cisco TMS expect to receive a valid server certificate when connecting to Cisco TMS and will stop their communication if the server certificate provided does not pass their validation check.
- Cisco TMS requires Secure-Only supported systems be tracked by hostname. Cisco TMS will automatically change supported systems to this method if a hostname is available in the system’s Connection Settings.
External Integrations when Secure-Only is enabled

When Secure-Only is enabled, both HTTP and HTTPS are still available on the Cisco TMS server. Any external integration products pointed at the Cisco TMS server will continue to operate as normal since HTTP is still available. With HTTPS available, external integrations may use HTTPS if desired and their Cisco TMS Connection Settings are updated. The following applications support HTTPS connections to Cisco TMS if configured to do so:

- Microsoft Exchange Integration
- Microsoft Live Communications Server Integration
- 3rd Party Booking API
- Microsoft SIP-CX Gateway
- IBM Lotus Notes Integration
- IBM Lotus Sametime Integration
- TANDBERG See & Share

It is recommended to configure these products to use HTTPS to Cisco TMS if HTTPS is available on the Cisco TMS server as these integrations do use login credentials to access Cisco TMS.

Additional Cisco TMS Server Requirements when Secure-Only is enabled

When Secure-Only is enabled, the additional rules should be adhered to when operating Cisco TMS

- Secure-Only supported systems must be entered in Cisco TMS by hostname (rather than IP address) and should be tracked by hostname. Use the Connection Settings page for each device to update these settings if required. Cisco TMS will enforce this tracking method on supported system types as long as a hostname is available in the Connection Settings page for that device
- The Cisco TMS host server needs a valid DNS server configured
- The Cisco TMS host server should have a valid time server to keep its date accurate
- Override DNS under Administrative Tools > Network Settings must be set to No (default)
- Cisco TMS must have a valid DNS hostname associated to its IP address and must be entered in the TMS Server Fully Qualified Hostname fields under Administrative Tools > Configuration > Network Settings
- Because a website may only have one Server Certificate, all systems must use the same hostname to reach Cisco TMS. So the local and public Cisco TMS Server DNS Addresses must be the same and devices on both the public and local networks must be able to reach Cisco TMS via that hostname.

Turning Secure-Only Mode Off

Turning Secure-Only off will reverse Cisco TMS’s behavior without impact, and systems will have their connection settings automatically reverted to use HTTP methods the next time Enforce Management Settings are applied to the system. Connectivity will not be disrupted while waiting for the Enforce Management Settings update unless HTTPS has been disabled on IIS server of Cisco TMS by disabling or removing the server certificate before all systems have been updated.

Systems may continue to use HTTPS for their own web servers as Cisco TMS supports HTTPS or HTTP connectivity to devices even with Secure-Only disabled in Cisco TMS.

2 Requires Notes Integration version 11.1
Cisco TMS Secure Management Implementation Material

Readiness Checklist for implementing HTTPS Management for Cisco TMS

This list is intended to provide a quick reference to the information that an administrator must have available before implementing HTTPS management. Failure to organize this information prior to implementation will hinder or prevent you from deploying this functionality.

If not using verify certificates

- Cisco TMS must be running software version 11.9.1 or newer (or as specified per system type).
- It is recommended that each managed system that meets the minimum software requirements for Secure-Only mode is configured in their secure-only mode prior to proceeding with Cisco TMS changes. Please see the corresponding chapter of this document for each device type.
- You must have an login with site administrator rights to Cisco TMS.
- You must have a Windows login with administrator rights to the Windows Server running Cisco TMS.
- Be familiar with the Secure-Only commands and changes outlined in the Cisco TMS reference section of this document.

If using the verify certificates mode, the following ADDITIONAL items apply

- Each managed system that meets the minimum software requirements for Secure-Only mode must have a fully qualified domain hostname (FQDN) that points to the system’s IP Address. The FQDN is defined in your DNS Server.
- Each managed system that meets the minimum software requirements for Secure-Only mode must be entered in Cisco TMS by hostname (rather than IP address) and should be tracked by hostname. Use the Connection Settings page for each device to update these settings if required. Cisco TMS will enforce this tracking method on supported system types as long as a hostname is available in the Connection Settings page for that device.
- Each managed system that meets the minimum software requirements for Secure-Only mode should already have its Server Certificate, Private Key, and Trusted Root Certificates installed and operational. Please see the corresponding chapter of this document for each device type.
- You must have the Server Certificate and Private Key for the certificate that will be used in Cisco TMS, or it must already be installed on the server.
- You must have the public certificate of the Root Certificate Authority that will be used to verify the Server Certificates used on the network or have it already installed on the server.
- The Windows Server Cisco TMS is hosted on should have its time synchronized via NTP or domain membership.
- The Windows Server Cisco TMS is hosted on should have its DNS name servers configured properly.
- Cisco TMS must have a FQDN assigned to it, and configured as the Cisco TMS Server Fully Qualified Hostname under Administrative Tools > Configuration > Network Settings in Cisco TMS.
- You must have the Server Certificate, and Private Key ready, or already installed on the Windows Server Hosting Cisco TMS.

For information on how to generate Server Certificates or related information, refer to Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS in this document. Once the steps outlined in the checklist are complete and the information is gathered, you can configure your systems to use HTTPS. The next sections outline the steps required to configure Cisco TMS system in Level 3 or Level 4 security.
Implementation Guide for Configuring Cisco TMS for Level 3 Security

The following provides an example of best practices for configuring a default Cisco TMS installation for Level 3 security, where the system will only support communicating with compatible external devices using HTTPS. In this Level 3 Security environment, certificates are not verified which greatly reduces the complexity and requirements of the deployment.

These steps assume you are configuring Cisco TMS with a locally installed SQL Server. Steps to increase the security level of the SQL connection if desired can be done independently of this implementation guide and will not be covered here. For more information on security of the SQL connection, please see the Cisco TMS Reference Material section of this chapter.

For any help creating certificates or converting file formats, please see Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

Note: Secure-Only changes will apply to all systems that are capable of running in Secure-Only mode based on their type and software version, not just systems configured for Secure-Only. So when checking or configuring systems in the steps below, be sure to include all systems that meet the Secure-Only minimum software version requirement.

1. Set the Cisco TMS website to use a Server Certificate. To enable HTTPS in IIS, you must have a X.509 certificate for the server. Administrators have several alternatives for creating and installing a server certificate for Windows. If you do not have an existing certificate installed, or are unsure, please see Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS before proceeding for help creating and installing X.509 certificates for Windows Servers.
 - Open Internet Information Services (IIS) Manager from the Administrative Tools folder (Start Menu > Administrative Tools)
 - Expand the Web Sites folder under local computer
 - Right-Click on Default Web Site (or the web site Cisco TMS is installed into if another was selected during installation) and select Properties

2. Select the Directory Security tab. The View Certificate button should be available in the Secure Communications section. Click View Certificate to see the details of the installed certificate. If the button is not available, the certificate has not been selected. Click the Server Certificate button and in the wizard, select Assign an existing certificate to select a certificate installed on the server.
 - Verify you can access Cisco TMS via HTTPS by opening a web browser and entering https://<servername>/tms The page should open normally and appear the same as when using HTTP http://<servername>/tms

The following steps assume the systems to be managed are already added to Cisco TMS. This is not a requirement as systems may be added to Cisco TMS before or after Secure-Only is enabled. See the section at the end of this guide for notes on adding systems to Cisco TMS after Secure-Only has been enabled. Secure-Only systems that are already in Cisco TMS, should be configured for Secure-Only communications per the Implementation Guide of this document for that device type before proceeding for the smoothest implementation.
1. Go to the Administrative Tools > Configuration > Network in Cisco TMS. Set Secure-Only mode to be on, ensure the Verify Certificates checkbox is unchecked, and click the Save button.

2. Cisco TMS will immediately initiate an Enforce Management Setting background task where all Secure-Only compatible systems will be updated with the correct Secure Management settings. This update will start immediately after enabling Secure-Only mode, but may take some time to update all systems depending on the number of systems in Cisco TMS.

 If Cisco TMS cannot connect to the system via HTTPS, the settings will not be updated until the Connection Error is resolved and the automated background task updating Enforce Management Settings has a chance to run again.

3. After giving the Enforce Management Setting task some time to complete, you should open the Cisco TMS Ticketing Service page under Systems > Ticketing Service and look for any new tickets for No HTTPS Response or Certificate Validation Errors. Review the configuration and connectivity to any system which has opened new tickets since enabling Secure-Only mode.

Cisco TMS will now use HTTPS only to supported Secure-Only systems. HTTP is still available on the Cisco TMS Server for compatibility reasons with other device types. Users should be instructed to use HTTPS when connecting to Cisco TMS and any external software integrations can now be updated to use HTTPS when connecting to Cisco TMS.

Adding Systems to Cisco TMS after Secure-Only has been enabled

Cisco TMS will continue to operate as normal for systems that do not support Secure-Only connectivity and therefore the Add System procedures will not change for those systems. Any device that does meet the Secure-Only software version requirements should be configured per the system’s chapter of this document before attempting to add it to Cisco TMS. Failure to do so will result in Connectivity Error messages and partial configuration of the system until the system is properly configured; the Connection Errors are resolved in Cisco TMS; and the Enforce Management settings have been applied to the system.

Optional Level 3 Change - Restricting Cisco TMS to Secure-Only Operation

For compatibility reasons, when Secure-Only is enabled in Cisco TMS, non-secure protocols and devices in the Cisco TMS server are not disabled. This is to ensure compatibility with devices that do not support Secure-Only and to ease discovery and deployment of systems. If an organization wishes to lock Cisco TMS down to using only devices that support Secure-Only mode and prevent all non-secure access to the Cisco TMS server, this can be done through a manual process.

CAUTION: This lock-down model should only be considered by advanced administrators who are willing to accommodate the additional limitations when Cisco TMS is locked down. This is not recommended for most Cisco TMS installations. The limitations this configuration imposes on Cisco TMS and devices are outlined later in this section.

Configuration

1. Complete the steps required to enable Secure-Only mode outlined in the previous section
2. Any external integrations (Exchange Integration, IBM Lotus Notes Integration, etc) must be configured to use HTTPS in their Cisco TMS Connection Settings
3. Open Internet Information Services (IIS) Manager from the Administrative Tools folder (Start Menu > Administrative Tools)
4. Expand the Web Sites folder under local computer
5. Right-Click on Default Web Site (or the web site Cisco TMS is installed into if another was selected during installation) and select Properties

6. Select the Directory Security tab. Click Edit under the Secure Communications Section

7. Mark the checkboxes for Require secure channel (SSL) and Require 128bit Encryption and click Ok close the window, and Ok again to close the Properties window and save the changes. If prompted that your change affects other child directories, accept these changes. Close Internet Information Services (IIS) Manager.

8. Under Administrative Tools > Configuration > Network settings in Cisco TMS, make the following changes
 - Set Scan SNMP Capable Systems To Allow… to OFF
 - Set SNMP Broadcast/Multicast Addresses to 127.0.0.1

9. Users must now access Cisco TMS using https://servername/tms Requests to http:// will result in a 403 error from IIS. IIS does not offer a built-in auto-redirect to https:// for web sites, but there are several options for setting this up manually. This non-Cisco web page discusses some possibilities. Cisco TelePresence support will not be able to assist with customized options to automate redirections in IIS.

Limitations of Restricting Cisco TMS to Secure-Only

- The only devices that support Secure-Only communications will be usable in Cisco TMS. See the other chapters of this document for specifics on which devices are supported
- Some device types that use non-secure protocols (such as telnet or SNMP only) will appear usable in Cisco TMS, but would not be secure and may not operate properly so they should not be used or the lock-down would be compromised.
- Users who access the old URL to Cisco TMS will only get an error page unless the administrator adds other methods to IIS to redirect them to the https URL. Users should be trained to use the new https URL
- Discovery of rogue systems functionality is hindered and should not be relied upon
- Pre-registration of codecs with factory default settings will not work. Pre-registration will work if HTTPS is enabled for externalmanager in the codec prior to activation – xconfigure externalmanager protocol: https
- Secure-only supported devices must have HTTPS mode set to on before Cisco TMS can add them successfully to Cisco TMS or communicate with them (HTTPS is disabled by default on systems)
- All external integrations to Cisco TMS must be updated to use HTTPS in their Cisco TMS Connection Settings
- If the Require Secure Connection properties are enabled on the specific virtual directories instead of the Parent Web Site properties, they will be reset when Cisco TMS is upgraded or uninstalled or reinstalled. This means the changes must be re-applied after each Cisco TMS upgrade.
• The SNMP Services used by Cisco TMS are left running for compatibility reasons. SNMP will not be relied upon for communicating with secure-only systems and may be blocked at the network level (Firewall) if desired

Implementation Guide for Configuring Cisco TMS for Level 4 Security

The following provides an example of best practices for configuring a default Cisco TMS installation for Level 4 security when communicating with supported systems. In this scenario Cisco TMS communications with supported systems will only use HTTPS and identities will be verified by validating X.509 certificates.

These steps assume you are configuring Cisco TMS with a locally installed SQL Server. Steps to increase the security level of the SQL connection if desired can be done independently of this implementation guide and will not be covered here. For more information on security of the SQL connection, please see the Cisco TMS Reference Material section of this chapter.

For any help creating certificates or converting file formats, please see Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS in this document. The filenames used in this example are only examples used for clarity. The actual filenames used may be any you chose.

Note: Secure-Only changes will apply to all systems that are capable of running in Secure-Only mode based on their type and software version, not just systems configured for Secure-Only. So when checking or configuring systems in the steps below, be sure to include all systems that meet the Secure-Only minimum software version requirement.

1. Set the Cisco TMS website to use a Server Certificate. To enable HTTPS in IIS, you must have a X.509 certificate for the server. Administrators have several alternatives for creating and installing a server certificate for Windows. If you do not have an existing certificate installed, or are unsure, please see Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS before proceeding for help creating and installing X.509 certificates for Windows Servers,

 o Open Internet Information Services (IIS) Manager from the Administrative Tools folder (Start Menu > Administrative Tools)

 o Expand the Web Sites folder under local computer

 o Right-Click on Default Web Site (or the web site Cisco TMS is installed into if another was selected during installation) and select Properties

 o Select the Directory Security tab. The View Certificate button should be available in the Secure Communications section. Click View Certificate to see the details of the installed certificate. If the button is not available, the certificate has not been selected. Click the Server Certificate button and in the wizard, select Assign an existing certificate to select a certificate installed on the server.

 o Verify you can access Cisco TMS via HTTPS by opening a web browser and entering https://<servername>/tms The page should open normally and appear the same as when using HTTP http://<servername>/tms
2. Ensure the Windows Server has the public certificate of the root CA used to trust certificates on the network installed in the Local Computer Certificate Store. Check this by opening the Certificate Manager for the Computer Account
 a. Go to **Start Menu > Run.. enter mmc.exe** and click **OK**
 b. From the File Menu, select **Add/Remove Snap-In**
 c. Click the **Add** Button, and from the list select **Certificates** and click **Add**
 d. When prompted, select **Computer Account** and click **Next**. On the next screen, ensure **Local Computer** is selected and click **Finish**
 e. Click **Close** to close the Select Snap-in Window, and Click **OK** to close the Add window
 f. Expand the folders to **Certificates (Local Computer) > Trusted Root Certification Authorities > Certificates**
 g. Browse the list to find the name of your Certificate Authority.
 h. If your CA’s certificate is not present, Add it by Right Clicking the folder, and selecting **All Tasks > Import**. The certificate wizard will guide you through importing the certificate
 i. Browse to the certificate file, and then click **Next**
 j. When prompted to specify where to import the certificate, ensure import to **Trusted Root Certification Authorities** is specified and click **Next**. On the Summary Page click **Finish**.

 The certificate will now be available to all users of the computer

3. Verify the Windows Server has the correct date and time. The server should be setup to synchronize it’s time by being a member of a Windows Domain. If not a member of a domain, use the Internet Time tab in the Date & Time Control Panel of Windows to configure an NTP source to synchronize to.

4. Verify Cisco TMS is configured with the proper Fully Qualified Domain Name that clients and devices will use to reach the server. In Cisco TMS, under **Administrative Tools > Configuration > Network Settings**, the **Cisco TMS Server Fully Qualified Hostname** settings must be configured with the FQDN of the Cisco TMS server.

 The following steps assume the systems to be managed are already added to Cisco TMS. This is not a requirement as systems may be added to Cisco TMS before or after Secure-Only is enabled. See the section at the end of this guide for notes on adding systems to Cisco TMS after Secure-Only has been enabled. Secure-Only systems that are already in Cisco TMS, should be configured for Secure-Only communications per the Implementation Guide of this document for that device type before proceeding for the smoothest implementation.

5. Ensure all Secure-Only systems have their hostname (not just IP Address) configured in Cisco TMS and that Cisco TMS has no Connection Errors to the system. Each system must have its FQDN entered in the **hostname** field of the **Connection Settings** tab of System Navigator for that system. Administrators can quickly browse for systems that do not have their hostname defined by browsing through System Navigator. If a system has its hostname defined, the Network Address column in System Navigator will show the name entered and not an IP Address. For any Secure-Only system that does not have its hostname entered in Cisco TMS, add it on the **Connection Settings** tab for that system and check that for any Connection Errors reported.

6. Go to the **Administrative Tools > Configuration > Network** in Cisco TMS. Set **Secure-Only mode** to be **on**, ensure the **Verify Certificates** checkbox is checked, and click the **Save** button.

7. Cisco TMS will immediately initiate an Enforce Management Setting background task where all Secure-Only compatible systems will be updated with the correct Secure Management settings. This update will start immediately after enabling Secure-Only mode, but may take some time to update all systems depending on the number of systems in Cisco TMS

 If Cisco TMS cannot connect to the system via HTTPS or verify the system’s certificate, the settings will not be updated until the Connection Error is resolved and the automated background task updating Enforce Management Settings has a chance to update all systems.

 The Enforce Management Settings will also change all Secure-Only systems to **Track By Hostname** in their Connection Settings tab in System Navigator. If for some reason Cisco TMS is not able to communicate with a system, this and other settings will not be changed until the connection errors are resolved.
8. After giving the Enforce Management Setting task some time to complete, you should open the Cisco TMS Ticketing Service page under Systems > Ticketing Service and look for any new tickets regarding No HTTPS Response or Certificate Validation Errors. Review the configuration and connectivity to any system which has opened new tickets system since enabling Secure-Only mode.

If there are any systems in Cisco TMS that are capable of Secure-Only operation, but have not been properly configured, their communication with Cisco TMS will be broken and will have a No HTTPS Response or Certificate Validation Error ticket open.

Cisco TMS will now use HTTPS only and verify the certificate when connecting to supported Secure-Only systems. HTTP is still available on the Cisco TMS Server for compatibility reasons with other device types. Users should be instructed to use HTTPS when connecting to Cisco TMS and any external software integrations can now be updated to use HTTPS when connecting to Cisco TMS. Administrators looking to further restrict the security of Cisco TMS should read the XYZ section for additional optional configuration.

Adding Systems to Cisco TMS after Secure-Only has been enabled

Cisco TMS will continue to operate as normal for systems that do not support Secure-Only connectivity and therefore the Add System procedures will not change for those systems. Any device that does meet the Secure-Only software version requirements should be configured per the system’s chapter of this document before attempting to add it to Cisco TMS. Failure to do so will result in Connectivity Error messages and partial configuration of the system until the system is properly configured; the Connection Errors are resolved in Cisco TMS; and the Enforce Management settings have been applied to the system.

When adding a system that is properly configured for secure management to Cisco TMS after Secure-Only has been enabled, Cisco TMS will automatically update the system’s management address to use port 433. However, updating these settings is done as a background task, and it may take some time (30 minutes or more if you have a lot of systems) before this task is finished. To explicitly make Cisco TMS update these settings for the newly added system, click the ‘Enforce Management Settings’ button under Settings > Edit Settings > Monitoring/SNMP Settings for the system in question.

Optional Level 4 Change - Restricting Cisco TMS to Secure-Only Operation

For compatibility reasons, when Secure-Only is enabled in Cisco TMS, non-secure protocols and devices in the Cisco TMS server are not disabled. This is to ensure compatibility with devices that do not support Secure-Only and to ease discovery and deployment of systems. If an organization wishes to lock Cisco TMS down to using only devices that support Secure-Only mode and prevent all non-secure access to the Cisco TMS server, this can be done through a manual process.

CAUTION: This lock-down model should only be considered by advanced administrators who are willing to accommodate the additional limitations when Cisco TMS is locked down. This is not recommended for most Cisco TMS installations. The limitations this configuration imposes on Cisco TMS and devices are outlined later in this section.

Configuration

1. Complete the steps required to enable Secure-Only mode outlined in the previous section
2. Any external integrations (Exchange Integration, IBM Lotus Notes Integration, etc) must be configured to use HTTPS in their Cisco TMS Connection Settings
3. Open Internet Information Services (IIS) Manager from the Administrative Tools folder (Start Menu > Administrative Tools)
4. Expand the Web Sites folder under local computer
5. Right-Click on Default Web Site (or the web site Cisco TMS is installed into if another was selected during installation) and select Properties

6. Select the Directory Security tab. Click Edit under the Secure Communications Section

7. Mark the checkboxes for Require secure channel (SSL) and Require 128bit Encryption and click Ok close the window, and Ok again to close the Properties window and save the changes. If prompted that your change affects other child directories, accept these changes. Close Internet Information Services (IIS) Manager.

8. Under Administrative Tools > Configuration > Network settings in Cisco TMS, make the following changes
 - Set Scan SNMP Capable Systems To Allow… to OFF
 - Set SNMP Broadcast/Multicast Addresses to 127.0.0.1

9. Users must now access Cisco TMS using https://servername/tms Requests to http:// will result in a 403 error from IIS. IIS does not offer a built-in auto-redirect to https:// for web sites, but there are several options for setting this up manually. This non-Cisco web page discusses some possibilities. Cisco TelePresence support will not be able to assist with customized options to automate redirections in IIS.

Limitations of Restricting Cisco TMS to Secure-Only

- The only devices that support Secure-Only communications will be usable in Cisco TMS. See the other chapters of this document for specifics on which devices are supported
- Some device types that use non-secure protocols (such as telnet or SNMP only) will appear usable in Cisco TMS, but would not be secure and may not operate properly so they should not be used or the lock-down would be compromised.
- Users who access the old URL to Cisco TMS will only get an error page unless the administrator adds other methods to IIS to redirect them to the https URL. Users should be trained to use the new https URL
- Discovery of rogue systems functionality is hindered and should not be relied upon
- Pre-registration of codecs with factory default settings will not work. Pre-registration will work if HTTPS is enabled for externalmanager in the codec prior to activation –
 xconfigure externalmanager protocol: https
- Secure-only supported devices must have HTTPS mode set to on before Cisco TMS can add them successfully to Cisco TMS or communicate with them (HTTPS is disabled by default on systems)
- All external integrations to Cisco TMS must be updated to use HTTPS in their Cisco TMS Connection Settings
- If the Require Secure Connection properties are enabled on the specific virtual directories instead of the Parent Web Site properties, they will be reset when Cisco TMS is upgraded or uninstalled or reinstalled. This means the changes must be re-applied after each Cisco TMS upgrade.
• The SNMP Services used by Cisco TMS are left running for compatibility reasons. SNMP will not be relied upon for communicating with secure-only systems and may be blocked at the network level (Firewall) if desired
Appendix A – Communications, Certificate and Key Primer

Communications Security Primer

This appendix focuses on the management of devices over an IP network and the communications between the devices and tool interacting with them, be it an administrator from their computer, or software acting as a management tool.

Cisco TelePresence devices support most of the common communications protocols used in management, providing interfaces to interact with the device over these protocols. Examples include:

- HTTP
- HTTPS
- Telnet
- FTP
- SNMP
- SNMP Traps
- SSH

Cisco provides this range of interfaces to provide the best flexibility to meet customer demands. However, many of these protocols are not secure in a strict sense. In most networks today, information security is important to prevent interception or manipulation of information. Most organizations want to be confident that information or access that is intended to be restricted, remains that way. An important aspect of maintaining this confidence is ensuring that as information is exchanged, it is not done in a way that reduces the confidence or security of the information.

Communication Security

When managing devices remotely, the information exchanged between the tool and a device is sent over an IP network that may or may not be secured. Many protocols send their information in a 'clear text' format which means the data can easily be read or interpreted if the information on the IP network is intercepted. Ideally, all data would be encrypted so that even if the information is intercepted in transit, only the intended receivers would be able to interpret the information. Due to implementations, technical limitations, and complexity, full encryption is not always possible.

Examples of protocols with no built-in protection:

- Telnet
- FTP
- HTTP
- SNMP v1/v2

Examples of protocols with improved protection using challenge/response systems:

1. Telnet using Telnet Challenge
2. HTTP using HTTP-digest authentication

Secure the Important Stuff

As an intermediate step, many protocols utilize methods that make it so sensitive information like passwords are not actually sent out over the network but rather use things such as Challenge/Response systems. A Challenge/Response method is used to verify knowing a shared secret between systems (such as a password) without actually sending the secret information itself over the network. This allows non-encrypted protocols such as HTTP or Telnet to secure important information like passwords without the overhead or complexity of encrypting the entire conversation. Cisco TelePresence implements HTTP-digest authentication and Telnet Challenge (a MD5 challenge/response system) in the Cisco MXP and Cisco MPS product lines to provide a secure way of exchanging passwords over the network without encrypting the entire conversation.

Examples of protocols with improved protection using challenge/response systems:

1. Telnet using Telnet Challenge
2. HTTP using HTTP-digest authentication
Encrypt the Conversation

The next level of protection is to encrypt not only sensitive information, but the entire communication so that only those who can decrypt the data can get to the enclosed information. Encryption can protect the entire contents of the conversation, but comes at a complexity in implementation and complicates use. Encryption requires the receiver to know how to decrypt the information – but not allow just anyone to decrypt the information. How decryption information is shared with the intended receiver varies between methods and is where most of the complexity arises. Encryption systems are constantly trying to balance security with how much burden the system puts on the use of the system. An example of a protocol that uses encryption to protect its communications is SSH.

Ensuring Identity

The last step is to ensure identity or authentication. The security of information over the IP network is irrelevant if the person you told how to view/decrypt the information is not the intended recipient. If you are giving your bank account number to someone who claims to be from your bank, you want to ensure the person is who they claim to be before handing them your account number.

There are many levels and ways to achieve authentication of an identity. A simple example is a password – the idea is that only the intended person and the secured resource know the password. If the person supplies the right password, they are assumed to be the correct person. However, anyone who knows the password can now claim to be that person, so these systems can still be improved upon.

More advanced systems combine multiple checks to ensure identity. ‘something you have and something you know’ is a common phrase describing a two element system. Example: having a key (something you have) and having a PIN code (something you know) used together are more secure than either method used alone. Additionally, secure systems should have a means to ensure the information they are given, is authentic. Example: A person may present to you an ID card to prove their identity to you, but you need to be able to validate that the ID card itself is real, not a fake.

TLS

In IP communications, the most common way to address these concerns today is by using encryption and authentication using TLS (Transport Layer Security). TLS is the successor to SSL (Secure Sockets Layer) which most people are familiar with from using their Internet Browser. While the two are defined separate, modern TLS is often commonly referred to as SSL.

TLS is a standardized method that includes privacy through full encryption of a conversation and identity verification through authentication. Because TLS addresses the points of both privacy and authentication in sufficiently safe methods, it is commonly accepted as a true ‘secure’ way of exchanging information between parties. TLS operates as connection method, rather than as an application itself. It creates a secure connection that other applications will use – such as a web browser session, a mail transfer session, etc. It is used as the connection pipe built between two systems that other applications will flow through.

TLS implements authentication through digitally signed Certificates and privacy through symmetric encryption where the encryption keys have been exchanged in real-time using trusted key pairs that have been shared securely using an existing public/private key pair. The next sections will elaborate on these concepts.

Examples of protocols that implement TLS

- HTTPS
- SMTP over TLS

Certificate Primer

Certificates are electronic credentials used to certify the identity of something or someone. Certificates as certified by a Certificate Authority (CA). A simple example of certificates and certificate authorities is a government ID card or driver’s license.
In daily life, you often need to prove to others you are who you claim to be. To do this, you need something to show to others they sufficiently trust to prove your identity. Governments usually fill this need. You provide information to the government to validate who you are. If your information is accepted, the government certifies your identity by issuing an ID card (a certificate) so that you can prove your identity to others. Here, the government is acting as a **Certificate Authority**, issuing **certificates** (IDs) to those it will vouch for their identity. For someone to accept your driver’s license or ID as a valid way of proving your identity, they must trust the certificate itself is valid, is not altered, and trust the issuing authority (the CA) itself. The trust of the issuing authority is a conscious choice, but verifying the credential is valid and not altered can be more complex. For secure communications on the internet, this is achieved by the creation of X.509 certificates and digitally signing of them with **key pairs**.

Key Pairs

Key pairs are a form of encryption commonly known as **public key cryptology** where a matching set of keys are used – a public and private key. The keys are unique in that what is encoded by one key, can only be decoded by the other key of the pair, and vise versa. One key is held private (the private key), while the other key is distributed to others publicly (the public key). When something can be decoded by the public key, one is ensured the data was encrypted by the holder of the private key – ensuring the originator of the information and that it has not been modified in transit. The inverse works as well, where data encrypted with a public key can only be decoded by the holder of the private key. This relationship allows secure exchange of information and verifying the originator of information presented as long as the private key remains secret and secured.

Validating Certificates through Signing

Key pairs are used with X.509 certificates in both the granting and validating of certificates. When someone wants a certificate, they generate a **certificate signing request** or often just called a **certificate request**. The certificate requester generates a key pair and submits their public key as part of the request to a Certificate Authority (CA). The CA has their own private and public key pair. The CA uses their private key to sign the certificate request and return the request to the requester as a **signed certificate**.

When the certificate holder presents their signed certificate (which includes their public key) to validate their identity to a 3rd party, anyone with the public key of the CA that signed the certificate can validate the certificate as being valid and unmodified since the CA signed it. From this point, the certificate holder is trusted by the 3rd party to be whom they claim to be and the public key sent by the certificate holder is trusted. With the public key of the certificate holder, information can now be sent securely to the certificate holder by encrypting it with their public key. This process can be repeated in the other direction as well, so the other party’s identity can be verified as well.

Who are Certificate Authorities?

For digital communications and X.509 certificates, there are many Certificate Authorities in the world – you can even become your own. The issue is that the Certificate Authority itself must be trusted, as by trusting it, you trust the identity of anyone they certify. This means Certificate Authorities must be very secure, reliable organizations. To trust a Certificate Authority, you import their certificate, which includes their public key, into your device or computer. Most major operating systems come pre-installed with a list of CAs the vendor believes to be trustworthy. Users or administrators may also add/remove to this list. Due to the cost of obtaining certificates for every device from public CAs, certificates are often reserved for critical systems where security is important. Alternatively, many organizations setup their own Certificate Authority, which is setup to be automatically or manually trusted by the users of their organization.

Which CA to use is a preference by an organization and is not something Cisco can advise on which to use.
Important Aspects of Certificates and Keys

When validating certificates, devices not only check who signed the certificate, but that the information in it is still valid and matches the person/device using it. A certificate includes descriptive information about the certificate holder but also includes important information such as valid date ranges and the name of the device the certificate was granted to. Most software will present an error or warning if this information is not valid. The commonly checked properties are:

- date ranges – a certificate has both a start and end date on its validity
- common name – the name the certificate is assigned to. For computers, this usually represents the hostname or fully qualified hostname of the server – example www.tandberg.com
- purpose – a certificate may be assigned a specific use, such as for a mail server, or web server

Common mistakes include changing the names of servers without getting a new certificate so that the name check will fail, letting certificates expire, or not accessing the service using the name registered on the certificate (using an IP address rather than a hostname). Using invalid certificates will lead to services failing to connect or users seeing warning messages.

Passphrases

Because the private key in a key pair is so valuable in the security of the system, best practice dictates that the key itself is also encrypted. This encryption uses a strong passphrase to ensure only trusted entities can read the key. However, the key must be read by services/software using the key to decode things so the passphrase must entered each time the software starts (when it reads the private key). Because of this, encryption is often not used on private keys to make it easier to use with server software.

Self-signed Certificates

Instead of being signed by a Certificate Authority, it is possible to sign a certificate using its own key. These certificates are not secure because their identity cannot be validated against a CA. These certificates do not provide the security of a signed certificate and should not be used in production-ready networks concerned about security. Self-signed certificates are often used for testing purposes or by organizations who do not demand the full security that signed certificates offer.

Revoking Certificates

If a certificate becomes compromised, a CA may revoke the previously granted certificate – marking it as no longer valid. This is done by the CA by publishing a certificate revocation list (CRL). The CRL is distributed to clients who check it when checking if a certificate is valid.

Secure Communications using TLS/SSL

When communicating over the internet securely, the challenge is to ensure:

- Who you are talking to is who they claim to be
- That no one can intercept your information and interpret it

Transport Layer Security (TLS) addresses both these requirements and is the most common form of encryption used between clients and servers on the internet. TLS addresses who you are talking to by means of X.509 certificate exchanges and verifying the certificates.

When a client connects to a server, the server provides its certificate to prove who it is, and provide its public key. The certificate has been signed using the private key of a Certificate Authority. The client looks at the certificate to see who signed it and then uses the public key provided by the signing Certificate Authority to validate the certificate and its contents. If this check passes, the client trusts the public key provided by the server, and provides its own public key back to the server. Optionally the server may require a certificate from the client to validate the client’s identity and public key (this is known as Mutual Authentication). Using these public keys and private keys, the client and server can encrypt and exchange a new random shared secret which they use to encrypt the rest of their communication.
conversation. The new shared secret is used to encrypt to the rest of the communication rather than
the public and private keys because it is more efficient and less intensive then using the key pairs to
encrypt the rest of the conversation. Now, the client and server can have a secure conversation free of
worry of eavesdroppers and imposters.

Glossary of Terms

CA – A Certificate Authority. A organization that validates and signs certificate requests

Certificate Response – another term often used to label the signed certificate a CA returns in
response to a certificate request

CRL – Certificate Revocation List. A list from a CA of previously signed certificates that it marks as no
longer valid

csr – filename extension normally associated with certificate signing request. Request sent to a
Certificate Authority to obtain a certificate

Passphrase – a secret phrase of text used to secure or encrypt something. Similar to a password, but
typically more secure through greater length or complexity

PEM – a text file format and filename extension used when storing certificates and keys. There are
several formats for storing keys and certificate. A PEM file includes descriptive headers and a text
representation of keys and certificates

PKCS#12 – another file format used to save or distribute keys and certificates. Commonly used by
Microsoft Internet Explorer for easy import of certificates and by Microsoft Windows for
importing/exporting keys and certificates. Can be converted to PEM format using openssl tools

Private key – the portion of a matching key pair that is held secret. Used to validate and decode any
information encrypted with the matching public key. Loss or compromise of a private key will invalidate
the security of any information encrypted with that key.

Public key – the portion of a matching key pair that is publicly distributed and shared. Used to validate
and decode information encoded with the matching private key.

Self-Signed Certificate – a certificate digitally signed using its own key rather then by a CA. Does not
provide the same level of security as a CA signed certificate

SSL – Secure Sockets Layer – a protocol used to ensure secure communications using identities and
digital signatures

X.509 – An international standard from the ITU-T that defines aspects of public key infrastructure,
including digital certificates and validation methods. X.509 certificates are used with SSL
communications

Additional References

A description of SSL, how it works, and what security it provides. Written for the layman. -
http://luxsci.com/info/about_ssl.html

SSL Introduction from Apache - http://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS

This appendix provides external references and assistance with generating and requesting X.509 certificates to enable HTTPS on Windows Servers, and Cisco TMS. For help generating and working with certificates for other devices such as endpoints, MCUs, etc, refer to Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems.

The two most common methods to generating certificate requests are using Microsoft supplied Certificate wizards or using utilities provided by the OpenSSL open source project. Either can be used to prepare certificates for use with Windows. Please note these guides do not represent the only way to provision Windows Servers, but are presented only for assistance. This document will provide examples using the Microsoft tools, and then the same tasks using the OpenSSL tools. Administrators may chose whichever toolset they prefer to use. The OpenSSL tool kit has an advantage that it can work with multiple formats and convert between them easier then the Microsoft Tools.

The format and steps required to create requests may vary between Certificate Authorities. Most Certificate Authorities have detailed FAQs on how to generate certificate requests for their services. These pages offer detailed step-by-step guides. Some Examples are below

- Thawte – By Product Listing
- Verisign – By Product Listing

Microsoft Certificate Tools

Windows Server provides a Certificate Wizard which can be used to generate certificate requests, import existing certificates, or install a certificate response. The wizard is automatically loaded when starting related tasks. Additionally, Windows provides a Certificate Services functionality that operates as a Certificate Authority that can be integrated with Active Directory. The Enterprise CA will not be discussed here, but further information about requesting certificate using an integrated Enterprise CA can be found at Microsoft’s website

- Managing Microsoft Certificate Services and SSL for Windows 2000
- Public Key Infrastructure for Windows Server 2003

The most common Tool you must interface with on Windows is the Certificates Snap-In Tool for Microsoft Management Console. To access certificates that have been loaded into a Windows Server, you must use the Certificates Snap-In for Microsoft Management Console (MMC). Certificates may be stored in a user’s profile, service account’s profile, or the local computer account’s profile. If a certificate is to be available to all users, the certificates must be loaded into the Local Computer Account.
Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS

To open the Certificate Snap-In to the Local Computer Account

1. Goto Start Menu > Run. enter `mmc.exe` and click OK
2. From the File Menu, select Add/Remove Snap-In
3. Click the Add Button, and from the list select Certificates and click Add
4. When prompted, select Computer Account and click Next. On the next screen, ensure Local Computer is selected and click Finish
5. Click Close to close the Select Snap-in Window, and Click Ok to close the Add window
6. The Certificates Item can be expanded to view the various containers. Containers of interest include:
 - Personal > Certificates – Default location for user loaded Server Certificates
 - Trusted Root Certification Authorities > Certificates – Default location for certificates of Root CAs to trust
 - Certificate Enrollment Requests > Certificates – Default location for pending certificates and keys generated through the Certificate Wizard

Common Cisco TMS Certificate Tasks using Microsoft Tools

Generate a Server Certificate for the Cisco TMS Server using the Microsoft Certificate Wizard

1. Under Administrative Tools, open Internet Information Services (IIS) Manager.
2. Expand the Web Sites Folder and right click on the Default Web Site item and select Properties. If Cisco TMS was installed to another web site during installation, please select that web site.
4. Click Server Certificate in the Secure communications section
5. Select Create a new certificate
6. Select Prepare the request now, but send it later.
7. The Wizard will prompt for a Name for the certificate. This is just a friendly name that will be used when browsing through Certificate listings and can be anything. You should use a name that makes it easy to recognize the certificate as for this server. Select the key length (1024 is appropriate) and do not mark the CSP checkbox
8. The Wizard will prompt for the X.509 attributes of the certificate.
 a. The Organization Name and Unit are labels that will be stored in the certificate and should help identify the valid use of the certificate.
 b. The Common Name is critical and must match the fully qualified host name that users use to access the web server – Example: `tms.na.corporation.com`
 c. The Geographical Information are labels that will appear in the certificate and should help identify the valid use of the certificate.
 d. Specify the filename to use for the certificate request and click Next and Finish the Certificate Wizard. The resultant .csr file is the certificate request including your public key that you will submit to a Certificate Authority to sign.

Your resulting Certificate Request file must now be sent to the Certificate Authority you wish to sign your Certificate (Verisign, Thawte, your internal IT Group, etc). Instructions on how to submit the certificate request will be provided by the Certificate Authority.

Once your Certificate Authority has signed your Certificate Request, they will return you a signed certificate, usually in PEM format. If the certificate is on an email or webpage and not in its own file, copy the contents starting with the -----BEGIN CERTIFICATE----- line and through the -----END
CERTIFICATE----- line. Save the contents to a text file and name the file cert.pem. This is your signed certificate file.

10. Expand the Web Sites Folder and right click on the Default Web Site item and select Properties. If Cisco TMS was installed to another web site during installation, please select that web site.

12. Click Server Certificate in the Secure communications section

13. Choose Process the Pending Request and Install the Certificate, then click Next.

14. Select the location of the certificate response file, and then click Next.

15. The Wizard will confirm the information contained in the certificate, acknowledge the information and continue clicking Next to finish the installation.

You can review installed certificates and keys on a server using the Certificates Snap-in in Microsoft Management Console (MMC). Certificates will be stored in the Computer Account, under Personal>Certificates.

Renewing a Server Certificate for the Cisco TMS Server using the Microsoft Certificate Wizard

Renewing a server certificate is similar to requesting a new certificate. The IIS Certificate Wizard is used to generate a new certificate signing request and install the resulting certificate.

1. Under Administrative Tools, open Internet Information Services (IIS) Manager.

2. Expand the Web Sites Folder and right click on the Default Web Site item and select Properties. If Cisco TMS was installed to another web site during installation, please select that web site.

4. Click Server Certificate in the Secure communications section

5. Select Renew the current certificate

6. Select Prepare the request now, but send it later.

7. You will be prompted for the filename to save the request in. Click Next, verify the information, and click Finish to complete the wizard.

Your resulting Certificate Request file must now be sent to the Certificate Authority you wish to sign your Certificate (Verisign, Thawte, your internal IT Group, etc). Instructions on how to submit the certificate request will be provided by the Certificate Authority.

Once your Certificate Authority has signed your Certificate Request, they will return you a signed certificate, usually in PEM format. Save the resulting certificate in a separate text file and copy it to your server. This is your certificate request file.

1. Under Administrative Tools, open Internet Information Services (IIS) Manager.

2. Expand the Web Sites Folder and right click on the Default Web Site item and select Properties. If Cisco TMS was installed to another web site during installation, please select that web site.

4. Click Server Certificate in the Secure communications section

5. Choose Process the Pending Request and Install the Certificate, then click Next.

6. Select the location of the certificate response file, and then click Next.

7. The Wizard will confirm the information contained in the certificate, acknowledge the information and continue clicking Next to finish the installation.
Generating a Self-Signed Certificates using the Microsoft Self-SSL tool

Microsoft provides a utility in their IIS 6.0 Resource Kit to allow easy creation of self-signed certificates for IIS named SelfSSL. The use of self-signed certificates is not recommended for production use, but may be used if an organization accepts the security limitations. This tool can be used for IIS6 or IIS5. These instructions refer to installing a self-signed certificate on the Default Web Site of the IIS Server.

To install a self-signed certificate using SelfSSL, perform the following:

1. Download the IIS 6.0 Resource Kit from Microsoft’s Support Site.
2. Install the IIS 6.0 Resource Kit on your Cisco TMS Server. You may use the default options, or choose custom installation and only select SelfSSL to install. Once the installation completes, there will be a new Folder added to your Start Menu under All Programs > IIS Resources > SelfSSL.
3. Open SelfSSL from the Start Menu All Programs > IIS Resources > SelfSSL > SelfSSL. A command prompt will open showing the help for the command.
4. Creating and installing a certificate is done by simply entering the selfssl command with the appropriate options. The command line options you should specify are:
 - /T – this installs the newly created certificate on the local server as trusted so you will not get any errors when viewing the website locally on the computer.
 - /N:commonname – commonname should be the hostname users use to connect to your server. Example: tms.na.company.com
 - /V:days – the length of time in days you wish the certificate to be valid.

 Example: Currently users reach your Cisco TMS server at http://tms.na.company.com/tms and you want to create and install a self-signed certificate for this server that will be good for 2 years, you would enter the command as:

 `selfssl.exe /T /N:tms.na.company.com /V:730`

5. After entering the command, the program will prompt you

 Do you want to replace the SSL settings for site 1 (Y/N)?

 Site 1 is the Default Web Site – Enter Y and press enter. The certificate will now be installed on the server.

Self-signed certificates will still generate certificate warnings when clients connect to the server because the signing authority is not trusted. Users can avoid future warnings by adding the certificate to their local computer’s trusted list.

- Firefox users are prompted what to do with the certificate when they connect to the HTTPS site – Either accept the certificate permanently, temporarily, or not at all.
- Internet Explorer users can install the certificate by clicking View Certificate in the Warning dialog when connect to the HTTPS site and installing the certificate following the options provided.

Find if your certificate authority is trusted by the server

1. Open the Certificates Snap-In to the Local Computer Account
2. Expand the folders for Trusted Root Certification Authorities > Certificates
3. Browse the list for the name of your Certificate Authority. Double-click a certificate to see additional details.

Note: A certificate may be loaded in a user’s profile, but would only be available to that user. The certificate should be loaded in the Local Computer account if it is to be available to all users, including the service accounts of the server.
Adding a Certificate to the Trusted Root CA List for all users of the Server

1. Open the Certificates Snap-In to the Local Computer Account
2. Expand the folders for Trusted Root Certification Authorities > Certificates
3. If your CA’s certificate is not present, Add it by Right Clicking the folder, and selecting All Tasks > Import.. The certificate wizard will guide you through importing the certificate
4. Browse to the certificate file, and then click Next
5. When prompted to specify where to import the certificate, ensure import to Trusted Root Certification Authorities is specified and click Next. On the Summary Page click Finish.

Viewing the contents of a Certificate File

Windows has built in viewing of both .PEM encoded certificates, and PKCS #12 encoded certificates. Viewing the content of a certificate is useful to ensure a certificate is the particular certificate you are looking for, and for viewing the details of the certificate itself.

Viewing PEM encoded files

1. To view a text encoded PEM certificate, rename the file extension to be .cer in Windows. If the certificate is on an email or webpage, copy the contents starting with the -----BEGIN CERTIFICATE----- line and through the -----END CERTIFICATE----- line. Save the contents to a text file and name the file with the extension .cer
2. Browse to the .cer file on your Desktop in Windows. Double-click the .cer file and a details Window will open showing you the details of the certificate, including if it is trusted by the currently installed Certificate Authorities.

Note: Installing Certificates by clicking the Install Certificate button in the details Window will only install the Certificate in the current user’s profile – not the Local Computer Account which is needed for Cisco TMS installs.

Viewing PKCS#12 encoded files

1. PKCS#12 encoded files are binary files, so unlike PEM files they cannot be copied and pasted between messages or web pages. A PKCS#12 file should have a file extension of .pfx on Windows. If not, rename the rename the file’s extension to be .pfx in Windows.
2. Browse to the .pfx file on your Desktop in Windows. Double-click the .cer file and a details Window will open showing you the details of the certificate, including if it is trusted by the currently installed Certificate Authorities. If the file included the private key for the certificate, it will be noted at the bottom of the Details Window.

Note: Installing Certificates by clicking the Install Certificate button in the details Window will only install the Certificate in the current user’s profile – not the Local Computer Account which is needed for Cisco TMS installs.

Additional Tips for the Microsoft Certificates MMC Snap-In

Adding an Existing Server Certificate to the Local Computer Account of the Server

1. Open the Certificates Snap-In to the Local Computer Account
2. Expand the folders for Personal > Certificates
3. Right Click the Certificates folder, and select All Tasks > Import.. The certificate wizard will guide you through importing the certificate
4. Browse to the certificate file, and then click Next
5. When prompted to specify where to import the certificate, ensure import to Personal is specified and click Next. On the Summary Page click Finish.
To find the private key of a Certificate Generated by the Certificate Wizard

1. Open the Certificates Snap-In to the Local Computer Account
2. Expand the folders and find the certificate in question. User installed certificates generally are in the Personal > Certificates folder, and pending Certificate Requests will be in the Certificate Enrollment Requests > Certificates folder.
3. Right-Click on the Certificate and select All Tasks > Export… . The Certificate Export Wizard will be opened
4. Click Next to start the Wizard. Select to Yes, Export the Private Key and click Next
5. Personal Information Exchange will be selected, along with Enable Strong Encryption by default. Click Next.
6. You can choose a password to protect the private key. This is optional and can be skipped if the resulting file will be handled in a secure manner. Click Next
7. Name the file to export the certificate to. Click Next and Finish to complete the export. The resulting file will be a PKCS #12 formatted certificate with the private key included. To extract the private key, the resulting pfx file can be converted using OpenSSL tools.

OpenSSL Certificate Tools

OpenSSL is an open source project designed to run on unix/linux systems and is commonly installed in most distributions. A 32bit Windows port of OpenSSL is also available from Shining Light Productions and will behave the same for the tasks described here. In Windows you will perform these steps from the command prompt. To use the tools, open a command prompt and Navigate to the openssl\bin installation directory and enter the commands as shown.

There are many resources available on the web that describe the creation and signing of certificates. This document will only show the basics needed for Cisco TMS administrators. Please recognize there are also many ways to achieve the same results using different commands or sequences. This document will act only as a basic guide. Some additional resources can be found at OpenSSL’s FAQ Page - http://www.openssl.org/support/faq.html
This document will not go into setting up a CA or signing certificates as a CA

Common Cisco TMS Certificate Tasks using OpenSSL

Generating a Server Certificate for the Cisco TMS Server using OpenSSL

To generate a Server Certificate for Windows using OpenSSL, the following steps must be completed
1. Generate a Private Key
2. Generate a Certificate Signing Request
3. Have the Certificate Authority Sign the Certificate Signing Request
4. Convert the certificate and private key into a PKCS#12 formatted file
5. Import the resulting signed certificate and private key to the server

These steps differ from using the Microsoft Certificate Wizard as the Microsoft tool automates steps 1 and 4. Using the OpenSSL tools is sometimes desirable because of the greater control over options possible. The majority of these steps can also be performed on any machine, not just the Cisco TMS server.
The full steps are outlined below:

1. Generate a Private Key. Assuming you do not have a key to start, we will generate a new 1024bit RSA key without a passphrase

 `openssl genrsa -out privatekey.pem 1024`

 privatekey.pem is your private key in PEM format. It must be protected and remain hidden from other people!

2. Start the process of generating a new certificate signing request

 `openssl req -new -key privatekey.pem -out certcsr.pem`

 The program will now prompt you for the values to go into the certificate. Details on the values are below. The critical value is the commonname which must be the full hostname that users will use to reach your site. Example, if users reach your site as http://tms.na.company.com/tms your commonname should be `tms.na.company.com`

 a. The Organization Name and Unit are labels that will be stored in the certificate and should help identify the valid use of the certificate.

 b. The Common Name is critical and must match the fully qualified host name that users use to access the web server – Example: tms.na.corporation.com

 c. The Geographical Information are labels that will appear in the certificate and should help identify the valid use of the certificate.

 d. Leave the challenge password empty

 The result is certcsr.pem which is a certificate signing request in PEM format. The resulting Certificate Signing Request file must now be sent to the Certificate Authority you wish to sign your Certificate (Verisign, Thawte, your internal IT Group, etc). Instructions on how to submit the certificate request will be provided by the Certificate Authority.

3. Once your Certificate Authority has signed your Certificate Request, they will return you a signed certificate, usually in PEM format via email or a webpage. If the certificate is on an email or webpage and not in its own file, copy the contents starting with the -----BEGIN CERTIFICATE----- line and through the -----END CERTIFICATE----- line. Save the contents to a text file and name the file `cert.pem`. You can quickly verify the contents of your cert.pem file with the following command

 `openssl x509 –in cert.pem –noout –text`

4. To import your certificate and private key to Windows, they must be packaged together into a PKCS#12 formatted file. OpenSSL provides a method to do this for you. The example is your private key is in `privatekey.pem` and your signed certificate is in `cert.pem`. Enter the following command on a single line. ‘My Server Cert’ is a friendly name for the certificate; use a name that will identify the certificate. When prompted for an export password, enter a password to protect the certificate. You will be prompted for this password when importing to the certificate into Windows.

 `openssl pkcs12 -export -in cert.pem –inkey privatekey.pem -out certificate.pfx -name “My Server Cert”`

 The resulting certificate.pfx file is suitable for importing to the Server using the Certificate MMC Snap-In. Do not distribute this file to anyone! It contains your private key.

5. Import the certificate.pfx file to the Certificate Store of the Local Computer Account. Copy the certificate.pfx file to the Windows server in a secure fashion (such as using a CD-ROM or USB Key). Import the Certificate to be used by Cisco TMS by performing the following:

 a. Under Administrative Tools, open Internet Information Services (IIS) Manager.

 b. Expand the Web Sites Folder and right click on the Default Web Site item and select Properties. If Cisco TMS was installed to another web site during installation, please select that web site.

 c. Click the Directory Security tab.

 d. Click Server Certificate in the Secure communications section

 e. Choose Import a Certificate from a pfx file and click Next.
f. Select the location of the certificate.pfx file, and then click Next. It is optional to allow the certificate to be exportable, but you must keep the privatekey.pem file you chose not to let the certificate be exportable to use for future renewals.

g. When prompted, enter the export password created when creating the certificate.pfx file and click Next.

h. Leave the SSL port to be 443, and Click Next.

i. The Wizard will confirm the information contained in the certificate, acknowledge the information and continue clicking Next and then Finish.

The certificate is now installed in IIS for use, and stored in the Certificate store of the computer. You can review installed certificates and keys on a server using the Certificates Snap-in in Microsoft Management Console (MMC). Certificates will be stored in the Computer Account, under Personal. To protect your certificate, you should retain the privatekey.pem file in a safe, secure location and delete all additional copies of it, and the certificate.pfx file.

Renewing a Server Certificate for the Cisco TMS Server using OpenSSL

Since the Windows Server has the private key, the easiest way to renew a Cisco TMS certificate is to use the Windows Certificate Wizard. Please see Renewing a Server Certificate for the TMS Server using the Microsoft Certificate Wizard.

Generating a Self-Signed Certificates using OpenSSL

To generate a self-signed certificate for Cisco TMS rather than having a true Certificate Authority sign the certificate signing request, you follow all the same steps used to generate a key, signing request, and install the certificate outlined in Generating a Server Certificate for the TMS Server using OpenSSL with one exception. Instead of sending the certcsr.pem file to a Certificate Authority, you process the file yourself using OpenSSL. To self-sign a Certificate Signing Request, use the following command. certcsr.pem is your certificate signing request in PEM format. privatekey.pem is your private key in PEM format. Days is the number of days you’d like the certificate to be valid.

```
openssl x509 -req -days 360 -in certcsr.pem -signkey privatekey.pem -out cert.pem
```

The resulting cert.pem is your self-signed certificate.

Using the cert.pem file, you can complete the remainder of the installation steps as if the certificate were returned from a regular Certificate Authority.

Find if your certificate authority is trusted by the server

This task must be completed using the Windows Certificate Tools. Please see Find if your certificate authority is trusted by the server.

Adding a Certificate to the Trusted Root CA List for all users of the Server

This task must be completed using the Windows Certificate Tools. Please see Adding a Certificate to the Trusted Root CA List for all users of the Server.

Viewing the contents of a Certificate File

If you need to verify the contents of a certificate, this can be done with the x509 commands of openssl. To display the contents of a certificate, enter the command below, substituting cert.pem with your specific filename.

```
openssl x509 -in cert.pem -noout -text
```

Openssl will display the contents of the certificate.
Exporting a PEM Certificate and Private Key to PKCS#12 for Windows

If you have a signed certificate in PEM format and private key you wish to import into Windows for use as a server certificate, use the following command to convert the file to a PKCS#12 file Windows will understand. In the example is your private key is in `privatekey.pem` and your signed certificate is in `cert.pem`. Enter the following command on a single line. ‘My Server Cert’ is a friendly name for the certificate; use a name that will identify the certificate. When prompted for an export password, enter a password to protect the certificate. You will be prompted for this password when importing to the certificate into Windows.

```
openssl pkcs12 -export -in cert.pem –inkey privatekey.pem -out certificate.pfx -name “My Server Cert”
```

The resulting certificate.pfx file is suitable for importing to the Server using the Certificate MMC Snap-In. Do not distribute this file to anyone! It contains your private key.

To import the certificate and private key into Windows perform the following:

1. Copy the certificate.pfx file to the Windows server in a secure fashion (such as using a CD-ROM or USB Key)

If the Certificate is to be used by any service on the Server, it should be installed into the Local Computer Account using the Certificates Snap-In.

2. Goto Start Menu > Run.. enter `mmc.exe` and click OK
3. From the File Menu, select Add/Remove Snap-In
4. Click the Add Button, and from the list select Certificates and click Add
5. When prompted, select Computer Account and click Next. On the next screen, ensure Local Computer is selected and click Finish
6. Click Close to close the Select Snap-in Window, and Click Ok to close the Add window
7. Expand the Personal > Certificates folder. Right Click the Certificates folder, and select All Tasks > Import..
8. Browse to the location of the certificates.pfx file and select Next
9. When prompted, enter the password created when creating the certificate.pfx file. It is optional to allow the certificate to be exportable, but you must keep the privatekey.pem file you chose not to let the certificate be exportable to use for future renewals. Click Next
10. Place all Certificates… will be selected and the location will be Personal. Click Next
11. Click Finish to complete the import
12. If the certificate was imported successfully, go back and delete the files copied to the server and the certificate.pfx file for security purposes.

The certificate may now be selected for use by applications such as IIS through their management interfaces.
Appendix C – Creating and Working with Certificates for Cisco TelePresence Systems

This appendix provides external references and assistance with generating and requesting X.509 certificates to enable HTTPS on Cisco TelePresence endpoints, MCUs, and gatekeepers. For help generating and working with certificates for Windows Servers and Cisco TMS, refer to Appendix B – Creating and Working with Certificates for Windows Server and Cisco TMS.

The Cisco TelePresence systems do not have internal tools for generating or manipulating certificates, so you must use external tools such as the utilities provided by the OpenSSL open source project. Please note these guides do not represent the only way to work with certificates, but are presented only for assistance. This document will provide examples using the OpenSSL tools.

The format and steps required to create requests may vary between Certificate Authorities. Most Certificate Authorities have detailed FAQs on how to generate certificate requests for their services. These pages offer detailed step-by-step guides. Some Examples are below

- Thawte – By Product Listing
- Verisign – By Product Listing

OpenSSL Certificate Tools

OpenSSL is an open source project designed to run on unix/linux systems and is commonly installed in most distributions. A 32bit Windows port of OpenSSL is also available from Shining Light Productions and will behave the same for the tasks described here. If using Windows, you will perform these steps from the command prompt. To use the tools, open a command prompt and Navigate to the openssl\bin installation directory and enter the commands as shown.

There are many resources available on the web that describes the creation and signing of certificates. This document will only show the basics needed for Cisco TelePresence system administrators. Please recognize there are also many ways to achieve the same results using different commands or sequences. This document will act only as a basic guide. Some additional resources can be found at OpenSSL’s FAQ Page - http://www.openssl.org/support/faq.html

This document will not go into setting up a CA or signing certificates as a CA

Common Cisco TelePresence System Certificate Tasks using OpenSSL

Generating a Server Certificate for a Cisco TelePresence System using OpenSSL

To generate a Server Certificate for Windows using OpenSSL, the following steps must be completed

1. Generate a Private Key
2. Generate a Certificate Signing Request
3. Have the Certificate Authority Sign the Certificate Signing Request
4. Import the resulting signed certificate and private key to the system

These steps are performed on a computer separate from the Cisco TelePresence system.
The full steps are outlined below:

1. **Assuming you do not have a key to start, we will generate a new 1024bit RSA key**

   ```bash
   openssl genrsa -out privatekey.pem 1024
   ```

 Optional: If you want the key to be encrypted with a passphrase, add `--des3` to the command and you will be prompted for a passphrase when the command executes.

   ```bash
   openssl genrsa -out privatekey.pem --des3 1024
   ```

 `privatekey.pem` is your private key in PEM format. It must be protected and remain hidden from other people!

2. **Start the process of generating a new certificate signing request**

   ```bash
   openssl req -new -key privatekey.pem -out certcsr.pem
   ```

 The program will now prompt you for the values to go into the certificate. Details on the values are below. The critical value is the commonname which must be the full hostname that users will use to reach your system. Example, if users reach your site as `http://codec43.na.company.com` your commonname should be `codec43.na.company.com`.

 a. The Organization Name and Unit are labels that will be stored in the certificate and should help identify the valid use of the certificate.

 b. The Common Name is critical and must match the fully qualified host name that users use to access the web server – Example: `codec43.na.corporation.com`

 c. The Geographical Information are labels that will appear in the certificate and should help identify the valid use of the certificate.

 d. Leave the challenge password empty

 The result is `certcsr.pem` which is a certificate signing request in PEM format. The resulting Certificate Signing Request file must now be sent to the Certificate Authority you wish to sign your Certificate (Verisign, Thawte, your internal IT Group, etc). Instructions on how to submit the certificate request will be provided by the Certificate Authority.

3. **Once your Certificate Authority has signed your Certificate Request, they will return you a signed certificate, usually in PEM format via email or a webpage.** If the certificate is on an email or webpage and not in its own file, copy the contents starting with the `-----BEGIN CERTIFICATE-----` line and through the `-----END CERTIFICATE-----` line. Save the contents to a text file and name the file `cert.pem`. You can quickly verify the contents of your `cert.pem` file with the following command

   ```bash
   openssl x509 -in cert.pem -noout -text
   ```

4. The signed certificate `cert.pem`, `privatekey.pem`, and your passphrase are the components needed to configure your Cisco TelePresence system. Please find the chapter for your type of device in the main portion of this document, and follow the implementation guides for that device for specific instructions on deploying the certificate to the system.

Renewing a Server Certificate for a Cisco TelePresence System using OpenSSL

Renewing an existing certificate is similar to creating your original certificate request. You can reuse the certificate signing request you generated when creating the original certificate, or generate a new one using your existing private key. To re-use the original certificate signing request, simply re-submit the request to your Certificate Authority. Use the steps below to generate a new request.

1. **Start the process of generating a new certificate signing request**

   ```bash
   openssl req -new -key privatekey.pem -out certcsr.pem
   ```

 The program will now prompt you for the values to go into the certificate. Details on the values are below. The critical value is the commonname which must be the full hostname that users will use to reach your system. Example, if users reach your site as `http://codec43.na.company.com` your commonname should be `codec43.na.company.com`.
a. The Organization Name and Unit are labels that will be stored in the certificate and should help identify the valid use of the certificate.

b. The Common Name is critical and must match the fully qualified host name that users use to access the web server – Example: codec43.na.corporation.com

c. The Geographical Information are labels that will appear in the certificate and should help identify the valid use of the certificate.

d. Leave the challenge password empty

The result is certcsr.pem which is a certificate signing request in PEM format. The resulting Certificate Signing Request file must now be sent to the Certificate Authority you wish to sign your Certificate (Verisign, Thawte, your internal IT Group, etc). Instructions on how to submit the certificate request will be provided by the Certificate Authority.

Once the certificate has been signed, it is installed using the same process as a new certificate.

Generating a Self-Signed Certificates using OpenSSL

To generate a self-signed certificate for a Cisco TelePresence system rather than having a true Certificate Authority sign the certificate signing request, you follow all the same steps used to generate a key, signing request, and install the certificate outlined in Generating a Server Certificate for a Cisco TelePresence System using OpenSSL with one exception, instead of sending the certcsr.pem file to a Certificate Authority, you process the file yourself using OpenSSL. To self-sign a Certificate Signing Request, use the following command. certcsr.pem is your certificate signing request in PEM format. privatekey.pem is your private key in PEM format. Days is the number of days you’d like the certificate to be valid

```bash
openssl x509 -req -days 360 -in certcsr.pem -signkey privatekey.pem -out cert.pem
```

The resulting cert.pem is your self-signed certificate

Using the cert.pem file, you can complete the remainder of the installation steps as if the certificate were returned from a regular Certificate Authority.

Find if your certificate authority is trusted by the system

Cisco VCS allows displaying of the currently loaded root certificate on the Maintenance>Security webpage. Cisco MXP and MPS systems allow listing the currently loaded root certificate using the certificate list root dataport command. In both cases, if the text version of the certificate was not included in the PEM file, you will have to save the text output as a PEM file and feed the file into OpenSSL to view the contents of the encoded file. Example, if you saved the contents as cert.pem, the OpenSSL command to view it would be:

```bash
openssl x509 –in cert.pem –noout –text
```

Adding a Certificate to the Trusted Root CA List for the system

This task must be completed using the web interface of the specific system. Please see the implementation guide section of this document for the specific system you are managing.

Viewing the contents of a Certificate File

If you need to verify the contents of a certificate, this can be done with the x509 commands of OpenSSL. To display the contents of a certificate, enter the command below, substituting cert.pem with your specific filename.

```bash
openssl x509 –in cert.pem –noout –text
```

OpenSSL will display the contents of the certificate.
Merging Multiple Root Certificates into a PEM file for use on Cisco TelePresence Systems

When loading the root certificates for certificate authorities to trust to a Cisco TelePresence system you must ensure the certificates are in the proper format and if you have multiple CAs to trust, combine the certificates into a single PEM file.

Converting to PEM format

PEM is the base-64 (text only) encoding of the DER binary form of an X.509 certificate with a header and footer line for each certificate. Most certificate authorities will provide their root certificate in both formats, DER and PEM. If the certificate file has a .cer extension, it may already be a PEM file or can be a binary version (DER). Open the file with a text editor. If the file is a uniform block of text, with a header and footer as shown below, then the file is a PEM file.

```plaintext
-----BEGIN CERTIFICATE-----
asdjkljgfldfkjalsdkjfasdfasdfsdf
-----END CERTIFICATE-----
```

If the certificate is not in PEM format, you can use the OpenSSL tools to convert a certificate into a PEM format. If you have a certificate in DER format named cert.der you can use the following command to copy it to PEM format.

```
openssl x509 --in cert.der --inform DER --out cert.pem --outform PEM
```

Additionally, Windows can be used to covert .cer files to PEM. Files with a CER extension can be double-clicked in Windows and a properties window opens. Click on the Details tab, and clicking the Copy to File button opens the Certificate Export Wizard. The wizard will prompt for the file format to use and a filename to save the certificate as. Select Base-64 encoded (.CER) for the Export File Format and specify any filename. The resulting file will be a PEM encoded version of the original certificate.

Merging multiple certificates into a single file

Assuming you have two certificates to merge together, cert1.pem and cert2.pem, the following methods demonstrate how they can be combined into a single text file, combined.pem

On UNIX/Linux

1. Navigate to the directory containing the files. Cateenate the files together using

   ```
cat cert1.pem cert2.pem > combined.pem
```

On Windows

1. Open a command prompt using the Start Menu or Run.. option entering cmd.exe
2. Navigate to the directory containing the certificate files. Cateenate the files together using

   ```
type cert1.pem cert2.pem > combined.pem
```

These principles can be applied to combine more than 2 files as well. The resulting combined.pem file is the file you will upload to the Cisco TelePresence system as the root certificate.