

Monitoring System Processes and Logs

This chapter provides details on monitoring the health of the switch. It includes the following sections:

- Displaying System Processes, page 27-2
- Displaying System Status, page 27-5
- Configuring Core and Log Files, page 27-6
- Configuring HA Policy, page 27-8
- Resetting HA Statistics, page 27-8
- Configuring Heartbeat Checks, page 27-8
- Configuring Watchdog Checks, page 27-8
- Configuring Upgrade Resets, page 27-9
- Configuring Kernel Core Dumps, page 27-9

Displaying System Processes

Use the **show processes** command to obtain general information about all processes (see Examples 27-1 to 27-6).

Example 27-1 Displays System Processes

switch#	show	processes			
PID	State	PC	Start_cnt	TTY	Process
868	S	2ae4f33e	1	-	snmpd
869	S	2acee33e	1	-	rscn
870	S	2ac36c24	1	-	qos
871	S	2ac44c24	1	-	port-channel
872	S	2ac7a33e	1	-	ntp
-	ER	-	1	-	mdog
-	NR	-	0	-	vbuilder

Terms:

- PID = process ID.
- State = process state
 - D = uninterruptible sleep (usually IO)
 - R = runnable (on run queue)
 - S = sleeping
 - T = traced or stopped
 - Z = defunct ("zombie") process
- NR = not-running
- ER = should be running but currently not-running
- PC = current program counter in hex format
- Start_cnt = how many times a process has been started (or restarted).
- TTY = terminal that controls the process. A "-" usually means a daemon not running on any particular TTY
- Process = name of the process

Example 27-2 Displays CPU Utilization Information

switch# show processes cpu						
PID	Runtime(ms)	Invoked	uSecs	1Sec	Process	
842	3807	137001	27	0.0	sysmgr	
1112	1220	67974	17	0.0	syslogd	
1269	220	13568	16	0.0	fcfwd	
1276	2901	15419	188	0.0	zone	
1277	738	21010	35	0.0	xbar_client	
1278	1159	6789	170	0.0	wwn	
1279	515	67617	7	0.0	vsan	

Terms:

- Runtime(ms) = CPU time the process has used, expressed in milliseconds
- Invoked = number of times the process has been invoked

- uSecs = microseconds of CPU time in average for each process invocation
- 1Sec = CPU utilization in percentage for the last one second

Example 27-3 Displays Process Log Information

switch#	show	processes	log				
Process		PID	Normal-exit	Stack-trace	Core	Log	-create-time
fspf		1339	N	Y	1	Jan	5 04:25
lcm		1559	N	Y	1	J Jan	2 04:49
rib		1741	N	Y	1	Jan	1 06:05

Terms:

- Normal-exit = whether or not the process exited normally
- Stack-trace = whether or not there is a stack trace in the log
- Core = whether or not there exists a core file
- Log-create-time = when the log file got generated

Example 27-4 Displays Detail Log Information About a Process

```
switch# show processes log pid 1339
Service: fspf
Description: FSPF Routing Protocol Application
Started at Sat Jan 5 03:23:44 1980 (545631 us)
Stopped at Sat Jan 5 04:25:57 1980 (819598 us)
Uptime: 1 hours 2 minutes 2 seconds
Start type: SRV OPTION RESTART STATELESS (23)
Death reason: SYSMGR_DEATH_REASON_FAILURE_SIGNAL (2)
Exit code: signal 9 (no core)
CWD: /var/sysmgr/work
Virtual Memory:
    CODE
                08048000 - 0809A100
              0809B100 - 0809B65C
    DATTA
              0809D988 - 080CD000
    BRK
    STACK 7FFFD20
    TOTAL 23764 KB
Register Set:

        ECX
        7FFFF8CC
        EDX
        00000000

        EDI
        7FFFF6CC
        EBP
        7FFFF95C

        XDS
        8010002B
        XES
        0000002B

    EBX 0000005
    ESI 00000000
    EAX FFFFDFE XDS 8010002B
                                                   XCS 00000023
    EAX 0000008E (orig) EIP 2ACE133E
    EFL 00000207 ESP 7FFF654
                                                   XSS 0000002B
```

Stack: 1740 bytes. ESP 7FFFF654, TOP 7FFFFD20

Example 27-5 Displays All Process Log Details

switch# show processes log details Service: snmpd Description: SNMP Agent Started at Wed Jan 9 00:14:55 1980 (597263 us) Stopped at Fri Jan 11 10:08:36 1980 (649860 us) Uptime: 2 days 9 hours 53 minutes 53 seconds Start type: SRV_OPTION_RESTART_STATEFUL (24) Death reason: SYSMGR_DEATH_REASON_FAILURE_SIGNAL (2) Exit code: signal 6 (core dumped) CWD: /var/sysmgr/work Virtual Memory:

 CODE
 08048000
 0804C4A0

 DATA
 0804D4A0
 0804D770

 BRK
 0804DFC4
 0818F000

 STACK
 7FFFFCE0
 TOTAL
 26656
 KB

Example 27-6 Displays Memory Information About Processes

switch	# show pro	cesses memory	
PID	MemAlloc	StackBase/Ptr	Process
1277	120632	7ffffcd0/7fffefe4	xbar_client
1278	56800	7ffffce0/7ffffb5c	wwn
1279	1210220	7ffffce0/7ffffbac	vsan
1293	386144	7fffcf0/7fffebd4	span
1294	1396892	7ffffce0/7fffdff4	snmpd
1295	214528	7ffffcf0/7ffff904	rscn
1296	42064	7ffffce0/7ffffb5c	qos

Where:

- MemAlloc = total memory allocated by the process.
- StackBase/Ptr = process stack base and current stack pointer in hex format

Displaying System Status

Use the **show system** command to display system-related status information (Example 27-7 to Example 27-10.

Example 27-7 Displays Default Switch Port States

switch# show system default switchport
System default port state is down
System default trunk mode is on

Example 27-8 Displays Error Information for a Specified ID

```
switch# show system error-id 0x401D0019
Error Facility: module
Error Description: Failed to stop Linecard Async Notifciation.
```

Example 27-9 Displays the System Reset Information

```
switch# Show system reset-reason
  --- reset reason for module 6 --
1) At 520267 usecs after Tue Aug 5 16:06:24 1980
   Reason: Reset Requested by CLI command reload
   Service
   Version: 1.2(0.73a)
2) At 653268 usecs after Tue Aug 5 15:35:24 1980
   Reason: Reset Requested by CLI command reload
   Service:
   Version: 1.2(0.45c)
3) No time
   Reason: Unknown
   Service:
   Version: 1.2(0.45c)
4) At 415855 usecs after Sat Aug 2 22:42:43 1980
   Reason: Power down triggered due to major temperature alarm
   Service:
   Version: 1.2(0.45c)
```

The show system reset-reason command displays the following information:

- In a Cisco MDS 9500 Series switch, the last four reset-reason codes for the supervisor module in slot #5 and slot #6 are displayed. If either supervisor module is absent, the reset-reason codes for that supervisor module are not displayed.
- In a Cisco MDS 9200 Series switch, the last four reset-reason codes for supervisor module in slot #1 are displayed.
- The **show system reset-reason module** *number* command displays the last four reset-reason codes for a specific module in a given slot. If a module is absent, then the reset-reason codes for that module will not be displayed.

Example 27-10 Displays System Uptime

```
switch# show system uptime
Start Time: Sun Oct 13 18:09:23 2030
Up Time: 0 days, 9 hours, 46 minutes, 26 seconds
```

Use the **show system resources** command to display system-related CPU and memory statistics (see Example 27-11).

Cisco MDS 9000 Family Configuration Guide

Example 27-11 Displays System-Related CPU and Memory Information

switch# show system resources Load average: 1 minute: 0.43 5 minutes: 0.17 15 minutes: 0.11 Processes : 100 total, 2 running CPU states : 0.0% user, 0.0% kernel, 100.0% idle Memory usage: 1027628K total, 313424K used, 714204K free 3620K buffers, 22278K cache

Where:

- Load is defined as number of running processes. The average reflects the system load over the past 1, 5, and 15 minutes.
- Processes displays the number of processes in the system, and how many are actually running when the command is issued.
- CPU states shows the CPU usage percentage in user mode, kernel mode, and idle time in the last one second.
- Memory usage provides the total memory, used memory, free memory, memory used for buffers, and memory used for cache in KB. Buffers and cache are also included in the *used* memory statistics.

Configuring Core and Log Files

You can save cores (from the active supervisor module, the standby supervisor module, or any switching module) to an external flash (slot 0) or to a TFTP server in one of two ways:

- On demand—to copy a single file based on the provided process ID.
- Periodically—to copy core files periodically as configured by the user.

To copy the core and log files on demand, follow this step:

	Command	Purpose
Step 1	<pre>switch# copy core:7407 slot0:coreSample</pre>	Copies the core file with the process ID 7407 as coreSample in slot 0.
	<pre>switch# copy core://5/1524 tftp:/1.1.1.1/abcd</pre>	Copies cores (if any) of a process with pid 1524 generated on slot 5 to tftp server.

• If the core file for the specified process ID is not available, you will see the following response:

```
switch# copy core:133 slot0:foo
No core file found with pid 133
```

• If two core files exist with same process ID, only one file will be copied:

```
switch# copy core:7407 slot0:foo1
2 core files found with pid 7407
Only "/isan/tmp/logs/calc_server_log.7407.tar.gz" will be copied to the destination.
```

To copy the core and log files periodically, follow these steps:

	Command	Purpose
Step 1	switch# config t	Enters configuration mode.

	Command	Purpose
Step 2	<pre>switch(config)# system cores slot0:coreSample</pre>	Copies the core files coreSample to slot 0.
	<pre>switch(config)# system cores tftp:/1.1.1.1/abcd</pre>	Copies the core files (abcd) in the specified directory on the TFTP server.
	<pre>switch(config)# no system cores</pre>	Disable the core files copying feature.

A new scheme overwrites any previously-issued scheme. For example, if you issue a new system core command, the cores are periodically saved to the new location or file.

```
<u>P</u>
Tip
```

Be sure to create any required directory before issuing this command. If the directory specified by this command does not exist, the switch software logs a syslog message each time a copy cores is attempted.)

Clearing the Core Directory

Use the **clear cores** command to clean out the core directory. The software keeps the last few cores per service and per slot and clears all other cores present on the active supervisor module.

switch# clear cores

Displaying Cores Status

Use the **show system cores** command to display the currently configured scheme for copying cores. See Examples 27-12 to 27-14.

Example 27-12 Displays the status of System Cores

switch# show system cores
Transfer of cores is enabled

Example 27-13 Displays All Cores Available for Upload from the Active Supervisor Module

 switch#
 show cores

 Module-num
 Process-name
 PID
 Core-create-time

 5
 fspf
 1524
 Jan 9 03:11

 6
 fcc
 919
 Jan 9 03:09

 8
 acltcam
 285
 Jan 9 03:09

 8
 fib
 283
 Jan 9 03:08

Where:

module-num shows the slot number on which the core was generated. In this example, the fspf core was generated on the active supervisor module (slot 5), fcc was generated on the standby supervisor module (slot 6), and acltcam and fib were generated on the switching module (slot 8).

Example 27-14 Displays Logs on the Local System

switch# show processes log Process PID Normal-exitStack-traceCore Log-create-time fspf 1524 N Y Y Jan 9 03:11

Configuring HA Policy

You can disable the HA policy supervisor reset feature (enabled by default) for debugging and troubleshooting purposes.

To configure HA policies, follow this step:

	Command	Purpose
Step 1	switch# system no hap-reset	Disables supervisor reset HA policy.
	switch# system hap-reset	Enables Supervisor Reset HA policy whenever a critical service runs out of HA policies (default) and reverts it to factory default.

Resetting HA Statistics

The system statistics reset feature resets the high availability statistics collected by the system. switch# system statistics reset

Configuring Heartbeat Checks

The software monitors every service to verify if heartbeats are sent at regular intervals. If not, the software restarts that service. This feature helps locate situations when a service is stuck in an infinite loop.

You can disable the heartbeat checking feature (enabled by default) for debugging and troubleshooting purposes like attaching a GDB to a specified process.

To configure heartbeat checks, follow this step:

	Command	Purpose
Step 1	switch# system no heartbeat	Disables heartbeat checks.
	switch# system heartbeat	Enables heartbeat checks (default) and reverts it to factory default.

Configuring Watchdog Checks

If a watchdog is not logged at every 8 seconds by the software, the supervisor module reboots the switch.

You can disable the watchdog checking feature (enabled by default) for debugging and troubleshooting purposes like attaching a GDB or a kernel GDB (KGDB) to a specified process.

To configure watchdog checks, follow this ste	10	onfigure w	vatchdog	checks,	follow	this	step
---	----	------------	----------	---------	--------	------	------

	Command	Purpose
Step 1	switch# system no watchdog	Disables watchdog checks.
	switch# system watchdog	Enables watchdog checks (default) and reverts it to factory default.

L

This feature enables supervisor module resets when an upgrade has failed. If the upgrade fails for any reason, the software reboots the switch since the file system may be in an unstable state.

You can disable the upgrade-reset feature (enabled by default) for debugging and troubleshooting purposes.

To configure supervisor upgrade resets, follow this step:

	Command	Purpose
1	switch# system no upgrade-reset	Disables the upgrade reset feature.
	switch# system upgrade-reset	Enables the upgrade reset feature (default) and reverts it to factory default.

Configuring Kernel Core Dumps

∕!∖ Caution

Step

Changes to the kernel cores should be made by an administrator or individual who is completely familiar with switch operations.

When a specific module's operating system (OS) crashes, it is sometimes useful to obtain a full copy of the memory image (called a kernel core dump) to identify the cause of the crash. When the module experiences a kernel core dump it triggers the proxy server configured on the supervisor. The supervisor sends the module's OS kernel core dump to the Cisco MDS 9000 System Debug Server. Similarly, if the supervisor OS fails the supervisor sends its OS kernel core dump to the Cisco MDS 9000 System Debug Server.

The Cisco MDS 9000 System Debug Server is a Cisco application that runs on Linux. It creates a repository for kernel core dumps. You can download the Cisco MDS 9000 System Debug Server from the Cisco.com website at http://www.cisco.com/kobayashi/sw-center/sw-stornet.shtml.

Kernel core dumps are only useful to your technical support representative. The kernel core dump file, which is a large binary file, must be transferred to an external server that resides on the same physical LAN as the switch. The core dump is subsequently interpreted by technical personnel who have access to source code and detailed memory maps.

 ρ

Тір

Core dumps take up disk space on the Cisco MDS 9000 System Debug Server application. If all levels of core dumps (**level all** option) are configured, you need to ensure that a minimum of 1GB of disk space is available on the Linux server running the Cisco MDS 9000 System Debug Server application to accept the dump. If the process does not have sufficient space to complete the generation, the module resets itself.

To configure the external server, follow these steps:

	Command	Purpose	
Step 1	<pre>switch# config terminal switch(config)#</pre>	Enters configuration mode.	
Step 2	<pre>switch(config)# kernel core target 10.50.5.5 succeeded</pre>	Configures the external server's IP address.	

To configure the module information, follow these steps:

	Command	Purpose
Step 1	<pre>switch# config terminal switch(config)#</pre>	Enters configuration mode.
Step 2	<pre>switch(config)# kernel core module 5 succeeded</pre>	Configures kernel core generation for module 5.
	<pre>switch(config)# kernel core module 5 level header succeeded</pre>	Configures kernel core generation for module 5, and limits the generation to header-level cores.
Step 3	<pre>switch(config)# kernel core limit 2 succeeded</pre>	Configures generations for two modules. The default is 1 module.

All changes made to kernel cores are saved to the running configuration and may be viewed using the **show running-config** command. Alternatively, use the **show kernel cores** command to view specific configuration changes (see examples 27-15 to 27-17).

Example 27-15 Displays the Core Limit

```
switch# show kernel core limit
2
```

Example 27-16 Displays the External Server

switch# show kernel core target
10.50.5.5

Example 27-17 Displays the Core Settings for the Specified Module

```
switch# show kernel core module 5
module 5 core is enabled
    level is header
    dst_ip is 10.50.5.5
    src_port is 6671
    dst_port is 6666
    dump_dev_name is eth1
    dst_mac_addr is 00:00:0C:07:AC:01
```