Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

PPP over Ethernet (PPPoE) profiles contain configuration information for a group of PPPoE sessions. Multiple PPPoE profiles can be defined for a device, allowing different virtual templates and other PPPoE configuration parameters to be assigned to different PPP interfaces, VLANs, and ATM permanent virtual circuits (PVCs) that are used in supporting broadband access aggregation of PPPoE sessions.

Note
This module describes the method to configure PPPoE sessions using profiles. If you have configured your PPPoE sessions using a release of Cisco IOS software earlier than Cisco IOS Release 12.4, see the documentation that corresponds to that release. Although the configuration methods used in Cisco IOS software releases prior to Release 12.4 are supported in Release 12.4, it is recommended that you use the configuration methods described in this module for new configurations and when upgrading to Cisco IOS Release 12.4.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the “Feature Information for Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions” section on page 1381.

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

- You must understand the concepts described in the “Understanding Broadband Access Aggregation” module.
- You must perform the tasks contained in the “Preparing for Broadband Access Aggregation” module.

Restrictions for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

PPPoE profiles separate the configuration of PPPoE from the configuration of virtual private dialup networks (VPDNs). The legacy method of configuring PPPoE in VPDN groups is permitted, but you cannot configure PPPoE profiles and PPPoE in VPDN groups simultaneously.

VPDN is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

If a PPPoE profile is assigned to a PPPoE port (Ethernet, interface, VLAN, or virtual circuit (VC) class), or ATM range and the profile has not yet been defined, the following restrictions are applicable:

- The port, VC class, or range does not have any PPPoE parameters configured.
- The port, VC class, or range does not use parameters from the global group.

Only PPPoE over 802.1Q VLAN support can be configured without using subinterfaces on the PPPoE server.
Information About Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions

To provide protocol support for broadband access aggregation for PPPoE sessions, you should understand concepts described in the following sections:

- PPPoE Specification Definition, page 1343
- Benefits of PPPoE Profiles, page 1343
- PPPoE Connection Throttling, page 1344
- PPPoE Profile Assignment to a VLAN Without Subinterfaces, page 1344
- Autosense for ATMs, page 1346
- MAC Address for PPPoEoA, page 1346

PPPoE Specification Definition

PPPoE is a specification that defines how a host PC interacts with a common broadband medium (for example, a digital subscriber line (DSL), wireless modem or cable modem) to achieve access to a high-speed data network. Relying on two widely accepted standards, Ethernet and PPP, the PPPoE implementation allows users over the Ethernet to share a connection. The Ethernet principles supporting multiple users in a LAN, combined with the principles of PPP, which apply to serial connections, support this connection.

The base protocol is defined in RFC 2516.

Benefits of PPPoE Profiles

Before the introduction of the use of PPPoE profiles, PPPoE parameters were configured within a VPDN group. Configuring PPPoE in a VPDN group limited PPPoE configuration options because only one PPPoE VPDN group with one virtual template was permitted on a device. The PPPoE Profiles feature provides simplicity and flexibility in PPPoE configuration by separating PPPoE from VPDN configuration. The PPPoE Profiles feature allows multiple PPPoE profiles, each with a different configuration, to be used on a single device.

Note

VPDN is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.
This module describes the method for configuring PPPoE sessions using profiles. If you have configured your PPPoE sessions using a release of Cisco IOS software earlier than Cisco IOS Release 12.4, see the documentation that corresponds to that release. Although the configuration methods used in Cisco IOS software releases prior to Release 12.4 are supported in Release 12.4, it is recommended that you use the configuration methods described in the “Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions” module for new configurations and when upgrading to Cisco IOS Release 12.4.

PPPoE Connection Throttling

Repeated requests to initiate PPPoE sessions can adversely affect the performance of a router and RADIUS server. The PPPoE Connection Throttling feature limits PPPoE connection requests to help prevent intentional denial-of-service attacks and unintentional PPP authentication loops. This feature implements session throttling on the PPPoE server to limit the number of PPPoE session requests that can be initiated from a MAC address or VC during a specified period of time.

PPPoE Profile Assignment to a VLAN Without Subinterfaces

Use PPPoE profile assignment to a VLAN without subinterfaces to improve PPPoE over IEEE 802.Q VLAN functionality in the following two ways:

- It removes the requirement for each PPPoE VLAN to be created on a subinterface. Removal of this requirement increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.
- It adds ATM support for PPPoE over VLAN traffic that uses bridged RFC 1483 encapsulation.

Note

ATM is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

To configure PPPoE over 802.1Q VLAN support on an interface rather than a subinterface, and to configure ATM support for PPPoE over 802.1Q VLANs, you should understand the concepts described in the following sections:

- [PPPoE over VLAN Configuration Without Using Subinterfaces](#), page 1344
- [PPPoE over VLAN Support on ATMs](#), page 1345
- [Benefits of PPPoE over VLAN Scaling and ATM Support for PPPoE over VLANs](#), page 1345

PPPoE over VLAN Configuration Without Using Subinterfaces

PPPoE profile assignment to a VLAN without subinterfaces removes the requirement for each PPPoE VLAN to be created on a subinterface. Allowing more than one PPPoE VLAN to be configured on a main interface increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.

Individual VLANs or a range of VLANs can be configured on an interface. You can configure a VLAN range on a main interface and at the same time configure VLANs outside the range on subinterfaces of the same interface.
PPPoE over VLAN Support on ATMs

PPPoE profile assignment to a VLAN without subinterfaces enables ATMs to process PPPoE over VLAN packets that use bridged RFC 1483 encapsulation. This capability allows PPPoE traffic from different 802.1Q VLANs to be multiplexed over the same ATM.

Figure 1 shows a sample network topology that implements PPPoE over VLAN on ATM. In this topology, a service provider is using an Ethernet switch to provide Ethernet service to home users and a single multiplexer to provide the switch with WAN access. The home users use PPPoE to access services on the network access server (NAS). Each port on the switch is assigned a separate VLAN, and the VLANs are trunked over a Fast Ethernet or Gigabit Ethernet interface that is connected to a DSL modem acting as a bridge.

The 802.1Q VLAN-encapsulated traffic coming in from the Ethernet switch trunk is encapsulated in RFC 1483 bridged encapsulation by the DSL modem and sent across the ATM WAN to the NAS. The NAS, which is configured to support PPPoE over VLAN over ATM, will extract the PPPoE packet from the PPPoE over 802.1Q VLAN over RFC 1483 bridged encapsulation and provide PPPoE services to the user.

In the downlink, the NAS sends packets in PPPoE over 802.1Q VLAN over RFC 1483 bridged encapsulation. The DSL modem strips off the RFC 1483 encapsulation and forwards the 802.1Q VLAN packets across the trunk to the switch. The switch then sends the Ethernet packets to the port associated with the 802.1 VLAN ID.

Benefits of PPPoE over VLAN Scaling and ATM Support for PPPoE over VLANs

PPPoE over VLAN scaling and ATM support for PPPoE over VLANs has the following benefits:

- Increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface by removing the requirement for each PPPoE VLAN to be configured on a subinterface.
- Provides support for PPPoE over VLAN over ATM interfaces using RFC 1483 bridged encapsulation.
Autosense for ATMs

The PPPoA/PPPoE Autosense for ATM PVCs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPPoE and to create virtual access based on demand for both PPP types.

Note

The Preauthentication with ISDN PRI and Channel-Associated Signalling feature is supported on Subnetwork Access Protocol (SNAP)-encapsulated ATMs only. It is not supported on multiplexer (MUX)-encapsulated.

Benefits of Autosense for ATMs

Autosense for ATMs provides resource allocation on demand. For each autosense configured for both PPPoA and PPPoE, certain resources (including one virtual-access interface) are allocated upon configuration, regardless of the existence of a PPPoA or PPPoE session on that resource. The autosense for ATMs resources are allocated for PPPoA and PPPoE sessions only when a client initiates a session, thus reducing overhead on the NAS.

Note

Autosense for ATMs supports ATMs only. Switched virtual circuits (SVCs) are not supported.

MAC Address for PPPoEoA

Any change in the usage of MAC addresses will not happen unless it is explicitly configured. This will prevent you from experiencing unexpected behavior resulting from a system change.

Except for using a different MAC address, this feature does not change the way PPPoE works. This change is limited to ATM interfaces only—specifically, PPPoEoA—and will not be applied to other interfaces where PPPoE is operated such as Ethernet, Ethernet VLAN, and Data-over-Cable Service Interface Specifications (DOCSIS). Changing the PPPoE MAC address on those interfaces, which are broadcast in nature, requires placing the interface in promiscuous mode, thereby affecting the performance of the router because the router software has to receive all Ethernet frames and then discard unneeded frames in the software driver.

This feature is disabled by default and applies to all PPPoE sessions on an ATM interface configured in a BBA group.

When PPPoE and RBE are configured on two separate ATMs on the same DSL, the customer premises equipment (CPE) acts like a pure bridge, bridging from Ethernet to the two ATMs on the DSL. Because the CPE acts as a bridge, and because the aggregation router uses the same MAC address for both PPPoE and RBE, the CPE will not be able to bridge packets to the correct MAC address. The solution is to have a different MAC address for PPPoE only. The MAC address can be either configured or selected automatically.

The MAC address of the PPPoEoA session is either the value configured on the ATM interface using the `mac-address` command or the burned-in MAC address if a MAC address is not already configured on the ATM interface. This functionality is effective only when neither autoselect nor a MAC address is specified on a BBA group.

If the MAC address is specified on a BBA group, all PPPoEoA sessions use the MAC address specified on the BBA group, which is applied on the VC.

If the MAC address is selected automatically, 7 is added to the MAC address of the ATM interface.
Benefits of the Configurable MAC Address for PPPoE Feature

Because the Cisco IOS aggregation routers use the interface MAC address as the source MAC address for all broadband aggregation protocols on that interface, this feature solves problems that may occur when both RBE and PPPoE are deployed on the same ATM interface.

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

To provide protocol support for broadband access aggregation by assigning a profile, you must define the profile. The profile definition is required as described in the “Defining a PPPoE Profile” section on page 1348, and an additional task makes an assignment of the profile to a protocol type.

- Defining a PPPoE Profile, page 1348 (required)
- Assigning a PPPoE Profile to an Ethernet Interface, page 1349 (optional)
- Assigning a PPPoE Profile to an ATM, page 1350 (optional)
- Assigning a PPPoE Profile to an ATM Range and Within a Range, page 1351 (optional)
- Assigning a PPPoE Profile to an ATM VC Class, page 1353 (optional)
- Configuring MAC Addresses for PPPoEoA, page 1368 (optional)
- Assigning a PPPoE Profile to a VLAN Subinterface, page 1354 (optional)
- Configuring PPPoEoE on a Cisco 7600 SIP-400, page 1355

When assigning a PPPoE profile to a VLAN without a subinterface, choose from the following tasks:

- Enabling PPPoE over IEEE 802.1Q VLAN, page 1365 (optional)
- Enabling an ATM to Support Encapsulated PPPoE over IEEE 802.1Q VLAN, page 1366 (optional)
- Enabling Support for PPPoE over IEEE 802.1Q VLAN in a VC Class, page 1367 (optional)

When configuring PPPoE session recovery after a system reload, perform the following task:

- Configuring MAC Addresses for PPPoEoA, page 1368 (optional)
Defining a PPPoE Profile

Perform this task to define a PPPoE profile.

SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe \{group-name | global\}
4. virtual-template template-number
5. sessions max limit number-of-sessions \{threshold threshold-value\}
6. sessions per-mac limit per-mac-limit
7. sessions per-vlan limit per-vlan-limit \{inner vlan-id\}
8. sessions per-vc limit per-vc-limit \{threshold threshold-value\}
9. sessions \{per-mac | per-vc\} throttle session-requests session-request-period blocking-period
10. ac name name
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bba-group pppoe {group-name</td>
<td>global}</td>
</tr>
<tr>
<td>Example: Router(config)# bba-group pppoe global</td>
<td>* The global keyword creates a profile that serves as the default profile for any PPPoE port that is not assigned a specific profile.</td>
</tr>
<tr>
<td>Step 4 virtual-template template-number</td>
<td>Specifies which virtual template will be used to clone virtual access interfaces for all PPPoE ports that use this PPPoE profile.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 sessions max limit number-of-sessions {threshold threshold-value}</td>
<td>Configures the PPPoE global profile with the maximum number of PPPoE sessions that will be permitted on a router and sets the PPPoE session-count threshold at which a Simple Network Management Protocol (SNMP) trap will be generated.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# sessions max limit 8000</td>
<td>Note This command applies only to the global profile.</td>
</tr>
</tbody>
</table>
Assigning a PPPoE Profile to an Ethernet Interface

Perform this task to assign a PPPoE profile to an Ethernet interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface ethernet number`
4. `pppoe enable [group group-name]`
5. `end`
How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface ethernet number</td>
<td>Specifies an Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface ethernet 2/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 pppoe enable [group group-name]</td>
<td>Enables PPPoE sessions on an Ethernet interface or subinterface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# pppoe enable group one</td>
<td>Note If a PPPoE profile is not assigned to the interface by using the group group-name option, the interface will use the global PPPoE profile.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Assigning a PPPoE Profile to an ATM

Perform this task to assign a PPPoE profile to an ATM.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm number[.subinterface-number] {multipoint | point-to-point}`
4. `pvc [name] vpi/vci [ilmi | l2transport | qsaal]`
5. `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]`
6. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. | | |
| **Step 3** interface atm number/.subinterface-number {multipoint | point-to-point}] | Specifies an ATM interface or subinterface and enters subinterface configuration mode. |
| **Step 4** pvc [name] vpi/vci [1lmi | 12transport | qsaal] | Creates an ATM PVC and enters ATM virtual circuit configuration mode. |
| **Step 5** protocol pppoe [group group-name]
or
encapsulation aal5autoppp virtual-template number [group group-name] | Enables PPPoE sessions to be established on the ATMs.
or
Configures PPoA/PPPoE autosense on the MUX- and SNAP-encapsulated ATM PVCs.
Note If a PPPoE profile is not assigned to the PVC by using the group group-name option, the PVC will use the global PPPoE profile. |
| **Step 6** end | (Optional) Exits the configuration mode and returns to privileged EXEC mode. |

Assigning a PPPoE Profile to an ATM Range and Within a Range

Perform this task to assign a PPPoE profile to an ATM range and within a range.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number [.subinterface-number {multipoint | point-to-point}]
4. range [range-name] pvc [start-vpi] /[start-vci] [end-vpi] /[end-vci]
5. `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]`

6. `pvc-in-range [name] [[vpi]/vci]`

7. `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]`

8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 `enable` | Enables privileged EXEC mode. |

 Example:
  ```
  Router> enable
  ```

 - Enter your password if prompted.

| **Step 2**
 `configure terminal` | Enters global configuration mode. |

 Example:
  ```
  Router# configure terminal
  ```

| **Step 3**
 `interface atm number[.subinterface-number]
 {multipoint | point-to-point}]` | Specifies an ATM interface or subinterface and enters subinterface configuration mode. |

 Example:
  ```
  Router(config)# interface atm 5/0.1 multipoint
  ```

| **Step 4**
 `range [range-name] pvc [start-vpi]/start-vci
 [end-vpi]/end-vci` | Defines a range of ATM profiles and enters ATM PVC range configuration mode. |

 Example:
  ```
  Router(config-subif)# range range-pppoa-1 pvc 100 4/199
  ```

| **Step 5**
 `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]` | Enables PPPoE sessions to be established on a range of ATMs. |

 Example:
  ```
  Router(config-if-atm-range)# protocol pppoe group one
  ```

 or
  ```
  Router(config-if-atm-range)# encapsulation aal5autopp virtual-template 1 group one
  ```

 Note
 If a PPPoE profile is not assigned to the range by using the `group group-name` option, the ATMs in the range will use the global PPPoE profile.
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Assigning a PPPoE Profile to an ATM VC Class

Perform this task to assign a PPPoE profile to an ATM VC class.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vc-class atm vc-class-name`
4. `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]`
5. `end`

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td><code>pvc-in-range [-name] [vpi/vci]</code></td>
<td>Defines an individual ATMs within a range and enters PVC-in-range configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if-atm-range)# pvc-in-range 1 3/104</td>
<td></td>
</tr>
</tbody>
</table>
| 7 | `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]` | Enables PPPoE sessions to be established on a group within a range.
 or
Configures PPPoA/PPPoE autosense.

Note If a PPPoE profile is not assigned to the range by using the `group group-name` option, the ATMs in the range will use the global PPPoE profile.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td><code>end</code></td>
<td>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if-atm-range)# pvc-in-range
```

```
Router(config-if-atm-range-pvc)# protocol pppoe group two
```

```
Router(config-if-atm-range-pvc)# encapsulation aal5autopp virtual-template 1 group two
```

```
Router(config-if-atm-range-)# end
```

Assigning a PPPoE Profile to an ATM VC Class

Perform this task to assign a PPPoE profile to an ATM VC class.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vc-class atm vc-class-name`
4. `protocol pppoe [group group-name]`
 or
 `encapsulation aal5autopp virtual-template number [group group-name]`
5. `end`
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm vc-class-name</td>
<td>Creates an ATM VC class and enters ATM VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 protocol pppoe [group group-name]</td>
<td>Enables PPPoE sessions to be established.</td>
</tr>
<tr>
<td>or</td>
<td>Configures PPPoA/PPPoE autosense.</td>
</tr>
<tr>
<td>encapsulation aal5autoppp virtual-template number [group group-name]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# protocol pppoe group two</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# encapsulation aal5autoppp virtual-template 1 group two</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# end</td>
<td></td>
</tr>
</tbody>
</table>

Assigning a PPPoE Profile to a VLAN Subinterface

Perform this task to assign a PPPoE profile to a VLAN subinterface.

Note
This configuration method requires the use of subinterfaces. One subinterface supports one VLAN.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface range \{fastethernet interfacenumber - interfacenumber \| gigabitethernet interfacenumber - interfacenumber \| loopback number \| tunnel number \| port-channel number \| vlan number \| macro keyword\}
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

4. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`

5. `protocol pppoe [group group-name]`

6. `end`

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:**
Router> enable |

| **Step 2** `configure terminal` | Enters global configuration mode. |
| **Example:**
Router# configure terminal |

| **Step 3** `interface range {fastethernet interfacenumber - interfacenumber | gigabitethernet interfacenumber - interfacenumber | loopback number | tunnel number | port-channel number | vlan number | macro keyword}` | Assigns a subinterface to an interface and enters interface range configuration mode. |
| **Example:**
Router(config)# interface range fastethernet 5/1.1 - fastethernet 5/1.4 |

| **Step 4** `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]` | Sets the encapsulation method used by the interface. |
| **Example:**
Router(config-if-range)# encapsulation dot1q 301 |

| **Step 5** `protocol pppoe [group group-name]` | Enables PPPoE sessions to be established. |
| **Example:**
Router(config-if-range)# protocol pppoe group two |

| **Step 6** `end` | (Optional) Exits the configuration mode and returns to privileged EXEC mode. |
| **Example:**
Router(config-int-if)# end |

Configuring PPPoEoE on a Cisco 7600 SIP-400

PPP provides a standard method of communicating to peers over a point-to-point link. An Ethernet link provides multipoint communication between multiple peers. PPPoE allows point-to-point communication across multipoint Ethernet links.
The PPPoE over Ethernet interface (PPPoEoE) enables the Cisco 7600 series router with a Cisco 7600 SIP-400 to tunnel and terminate Ethernet PPP sessions over Ethernet links. The PPPoE over IEEE 802.1Q VLANs feature enables the router to tunnel and terminate Ethernet PPP sessions across VLAN links. IEEE 802.1Q encapsulation is used to interconnect a VLAN-capable router with another VLAN-capable networking device. The packets on the 802.1Q link contain a standard Ethernet frame and the VLAN information associated with that frame.

PPPoEoE on Cisco 7600 SIP-400 supports the following features:

- PPPoE discovery packets (rate-limited), PPPoE PPP control packets, and PPPoE PPP IP data packets provide a per-user session on an Ethernet interface.
- PPPoE is supported on main interfaces, 802.1q and QinQ access interfaces, and VLAN ranges (802.1q ranges and QinQ inner ranges).
- 8000 PPPoE sessions are supported.
- PPPoE and IP sessions can be configured on the same subinterface.

Restrictions

- PPPoA and any PPP feature on ATM interfaces are not supported.
- Ambiguous VLANs and a range of VLANs for IP session interfaces are not supported. However, a range of VLANs is supported for PPPoE-configured interfaces.
- Negotiated maximum transmission unit (MTU) value can only be 1492 or 1500 bytes.
- If the `ip tcp adjust-mss` command is used, the only value supported is 1468.
- PPPoE can be configured only on subinterfaces.
- Layer 2 Tunnel Protocol (L2TP) tunneling of PPPoE sessions is not supported.

Configuration Tasks for PPPoE over Ethernet

To configure PPPoE over Ethernet, perform the following tasks:

- Configuring a Virtual Template Interface, page 1356 (required)
- Monitoring Virtual Access Interface, page 1358 (required)
- Creating an Ethernet Interface and Enabling PPPoE, page 1359 (required)
- Configuring a BBA Group to Establish PPPoE Sessions, page 1359 (required)
- Configuring PPPoE over 802.1Q VLANs on a Cisco 7600 Router With a SIP-400, page 1361 (required)

Configuring a Virtual Template Interface

Configure a virtual template interface before you configure PPPoE on an Ethernet interface. The virtual template interface is a logical entity that is applied dynamically as needed to an incoming PPP session request. Perform this task to create and configure a virtual template interface:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface virtual-template number [type [ethernet | serial | tunnel]]`
4. `ip unnumbered ethernet number`
5. `mtu bytes`
6. `ppp authentication chap`
7. `ppp ipcp ip address required`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface virtual-template number [type</td>
<td>Creates a virtual template interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>ethernet</td>
<td>type</td>
</tr>
<tr>
<td>Example: Router(config)# interface virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip unnumbered ethernet number</td>
<td>Enables IP without assigning a specific IP address on the LAN.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip unnumbered ethernet 3/1</td>
<td></td>
</tr>
<tr>
<td>Step 5 mtu bytes</td>
<td>(Optional) Sets the maximum MTU size for the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# mtu bytes</td>
<td>• Valid range for the MTU size is 1492 or 1500.</td>
</tr>
<tr>
<td>Step 6 ppp authentication chap</td>
<td>Enables PPP authentication on the virtual template interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ppp authentication chap</td>
<td></td>
</tr>
<tr>
<td>Step 7 ppp ipcp ip address required</td>
<td>Prevents a PPP session from being set up without a valid address being negotiated.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ppp ipcp ip address required</td>
<td>This command is required for legacy dialup and DSL networks.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows the configuration of a virtual template interface:
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Router(config)# interface virtual-template 1
Router(config)# ip unnumbered 21 Loopback1
Router(config-if)# no peer default ip address
Router(config-if)# ppp authentication chap
Router(config-if)# ppp authorization
Router(config-if)# ppp accounting

Monitoring Virtual Access Interface

When a virtual template interface is applied dynamically to an incoming user session, a virtual access interface (VAI) is created. You cannot use the command-line to directly create or configure a VAI. Perform this task to monitor the VAI and free the memory for other dial-in uses.

SUMMARY STEPS

1. enable
2. show interfaces virtual-access number [configuration]
3. clear interface virtual-access number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show interfaces virtual-access number [configuration]</td>
<td>Displays the status, traffic data, and configuration information about a specified active VAI that was created using a virtual template interface.</td>
</tr>
<tr>
<td>Example: Router# show interfaces virtual-access 3</td>
<td></td>
</tr>
<tr>
<td>Step 3 clear interface virtual-access number</td>
<td>Tears down the live sessions and frees the memory for other client users.</td>
</tr>
<tr>
<td>Example: Router# clear interface virtual-access 3</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows how to display the active VAI configuration:

Router# show interfaces virtual-access 1.1 configuration
!
interface virtual-access1.1
 if vrf forwarding vrf-1
 ip unnumbered Loopback1
 no ip proxy-arp
 peer default ip address pool vrf-1
 ppp authentication chap
end

Note Virtual-access 1.1 is a PPPoE subinterface.
Creating an Ethernet Interface and Enabling PPPoE

Perform this task to create an Ethernet interface and enable PPPoE on it.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface GigabitEthernet number**
4. **pppoe enable [group group-name]**
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:**
 Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**
 Router# configure terminal | |
| **Step 3** interface GigabitEthernet number | Creates an Ethernet interface and enters GigabitEthernet interface configuration mode. |
| **Example:**
 Router(config)# interface GigabitEthernet 0/0 | |
| **Step 4** pppoe enable [group group-name] | Enables PPPoE and allows PPPoE sessions to be created through that interface. |
| **Example:**
 Router(config-if)# pppoe enable group1 | |
| **Step 5** end | Exits interface configuration mode. |
| **Example:**
 Router(config-if)# end | |

Configuring a BBA Group to Establish PPPoE Sessions

Note
Cisco IOS Release 12.2(33)SRC does not support the configuration of broadband aggregation (BBA) groups using RADIUS. You must configure BBA groups manually.

Perform this task to configure a BBA group to establish PPPoE sessions and link it to the appropriate virtual template interface.
SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe name
4. virtual-template template-number
5. sessions per-mac limit per-mac-limit
6. sessions max limit number-of-sessions [threshold threshold-value]
7. sessions per-vc limit per-vc-limit [threshold threshold-value]
8. exit
9. interface type-number
10. encapsulation dot1q vlan-id
11. protocol pppoe group group-name
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bba-group pppoe name</td>
<td>Configures a BBA group to be used to establish PPPoE sessions and enters BBA group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>The name identifies the BBA group. You can have multiple BBA groups.</td>
</tr>
<tr>
<td>Router(config)# bba-group pppoe name</td>
<td></td>
</tr>
<tr>
<td>Step 4 virtual-template template-number</td>
<td>Specifies the virtual template interface to use to clone virtual access interfaces (VAIs).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 sessions per-mac limit per-mac-limit</td>
<td>(optional) Specifies the maximum number of sessions per MAC address for each PPPoE port that uses the group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# sessions per-mac limit 100</td>
<td></td>
</tr>
</tbody>
</table>
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Configuring PPPoE over 802.1Q VLANs on a Cisco 7600 Router With a SIP-400

PPPoE over IEEE 802.1Q VLANs enables the Cisco 7600 series router with a SIP-400 to support PPPoE over IEEE802.1Q encapsulated VLAN interfaces. IEEE 802.1Q encapsulation is used to interconnect a VLAN-capable router with another VLAN-capable networking device. The packets on the 802.1Q link contain a standard Ethernet frame and the VLAN information associated with that frame. Perform the following tasks to configure PPPoE on a Cisco 7600 router with a SIP-400:

- Configuring a Virtual Template, page 1362
- Creating an Ethernet 802.1Q Encapsulated Subinterface and Enabling PPPoE, page 1362

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 6 | **sessions max limit number-of-sessions**
| | **threshold** threshold-value |
| Example: | Router(config-bba-group)# sessions max limit 32000 |
| | Configures the PPPoE global profile with the maximum number of PPPoE sessions that will be permitted on a router, and sets the PPPoE session-count threshold at which a Simple Network Management Protocol (SNMP) trap will be generated. |
| This command applies only to the global profile. |
| Step 7 | **sessions per-vc limit per-vc-limit**
| | **threshold** threshold-value |
| Example: | Router(config-bba-group)# sessions per-vc limit 2000 |
| (Optional) Sets the maximum number of PPPoE sessions allowed per VC session limit in a PPPoE profile. |
| Step 8 | exit |
| Example: | Router(config-bba)# exit |
| Returns to global configuration mode. |
| Step 9 | interface type number |
| Example: | Router(config)# interface atm 2/0 |
| Specifies the interface to which you want to attach the BBA group and enters interface configuration mode. |
| Step 10 | encapsulation dot1q vlan-id second-dot1q (any | vlan-id | vlan-id-vlan-id[,vlan-id-vlan-id]) |
| Example: | Router(config-if)#encapsulation dot1q vlan-id |
| Enables IEEE 802.1Q encapsulation on traffic on a specified subinterface in a VLAN. |
| • Specify the VLAN identifier. |
| Step 11 | protocol pppoe group group-name |
| Example: | Router(config-if)#protocol pppoe group group-name |
| Attaches the BBA group to the VLAN. |
| Step 12 | end |
| Example: | Router(config-if)# end |
| Exits interface configuration mode. |
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

- Verifying PPPoE over Ethernet, page 1363
- Clearing PPPoE Sessions, page 1364

Note

PPPoE is disabled by default on a VLAN.

Configuring a Virtual Template

Before configuring PPPoE on an IEEE 802.1Q VLAN interface, configure a virtual template. See the “Configuring a Virtual Template Interface” section on page 1356.

Creating an Ethernet 802.1Q Encapsulated Subinterface and Enabling PPPoE

Perform this task to create an Ethernet 802.1Q interface and enable PPPoE on it.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/subslot/port`
4. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`
5. `exit`
6. `bba-group pppoe {bba-group-name | global}`
7. `pppoe enable [group group-name]`
8. `pppoe max-sessions number`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface gigabitethernet slot/subslot/port</code></td>
<td>Creates a Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# interface gigabitethernet 0/2/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 `encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native]`</td>
</tr>
<tr>
<td>Example: <code>Router(config-subif)# encapsulation dot1q second-dot1q 20</code></td>
<td></td>
</tr>
</tbody>
</table>
How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Verifying PPPoE over Ethernet

Perform this task to verify PPPoE over Ethernet.

SUMMARY STEPS

1. enable
2. show pppoe session all
3. show pppoe session packets
4. show pppoe summary

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 exit</td>
<td>Exits subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-subif)# exit</td>
</tr>
<tr>
<td>Step 6 bba-group pppoe (bba-group-name</td>
<td>global)</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# bba-group pppoe group1</td>
</tr>
<tr>
<td>Step 7 pppoe enable pppoe enable [group group-name]</td>
<td>Enables PPPoE and allows PPPoE sessions to be created through the specified subinterface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba)# pppoe enable group1</td>
</tr>
<tr>
<td>Step 8 pppoe max-sessions number</td>
<td>Specifies the maximum number of PPPoE sessions that can be terminated on this router from all interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba)# pppoe max-sessions 23</td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Exits BBA group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba)# end</td>
</tr>
</tbody>
</table>
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show pppoe session all</td>
<td>Displays PPPoE session information for each session ID.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show pppoe session all</td>
<td></td>
</tr>
<tr>
<td>Step 3 show pppoe session packets</td>
<td>Displays PPPoE session statistics.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show pppoe session packets</td>
<td></td>
</tr>
<tr>
<td>Step 4 show pppoe summary</td>
<td>Displays a summary of PPPoE session information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show pppoe summary</td>
<td></td>
</tr>
</tbody>
</table>

Clearing PPPoE Sessions
Perform this task to clear the PPPoE sessions.

SUMMARY STEPS

1. enable
2. clear pppoe all
3. clear pppoe {interface type number [vc [vpi]vci | vc-name]}
4. clear pppoe rmac mac-address [sid session-id]
5. clear pppoe interface type number[vlan vlan-number]
How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 clear</td>
<td>Clears all PPPoE sessions.</td>
</tr>
<tr>
<td>pppoe all</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe all</td>
<td></td>
</tr>
<tr>
<td>Step 3 clear</td>
<td>Clears all PPPoE sessions on a physical interface or subinterface.</td>
</tr>
<tr>
<td>pppoe (interface</td>
<td></td>
</tr>
<tr>
<td>type number [vc</td>
<td></td>
</tr>
<tr>
<td>{vpi/vci</td>
<td>vc-name})</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe interface</td>
<td></td>
</tr>
<tr>
<td>Step 4 clear</td>
<td>Clears PPPoE sessions from a client host MAC address.</td>
</tr>
<tr>
<td>pppoe rmac</td>
<td></td>
</tr>
<tr>
<td>mac-address [sid</td>
<td></td>
</tr>
<tr>
<td>session-id]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe rmac sid</td>
<td></td>
</tr>
<tr>
<td>Step 5 clear</td>
<td>Clears sessions from a specific VLAN.</td>
</tr>
<tr>
<td>pppoe interface</td>
<td></td>
</tr>
<tr>
<td>type number [vlan</td>
<td></td>
</tr>
<tr>
<td>vlan-number]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe interface ATM 2/0 vlan 200</td>
<td></td>
</tr>
</tbody>
</table>

Enabling PPPoE over IEEE 802.1Q VLAN

Perform this task to enable PPPoE over IEEE 802.1Q VLAN support on a main Ethernet interface. The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature removes the requirement for each PPPoE VLAN to be created on a subinterface. Allowing more than one PPPoE VLAN to be configured on a main interface increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface. Individual VLANs or a range of VLANs can be configured on an interface. You can configure a VLAN range on a main interface and at the same time configure VLANs outside the range on subinterfaces of the same interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. vlan-id dot1q vlan-id
 or
 vlan-range dot1q start-vlan-id end-vlan-id
5. `pppoe enable [group group-name]`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.

 • Enter your password if prompted.
| 2 | `configure terminal` | Enters global configuration mode. |
| 3 | `interface type number` | Specifies the interface to be configured and enters interface configuration mode.

 `Example:`

 `Router(config)# interface fastethernet 0/2` |
| 4 | `vlan-id dot1q vlan-id`
 or
 `vlan-range dot1q start-vlan-end-vlan-id` | Enables IEEE 802.1Q VLAN encapsulation for a specific VLAN on an Ethernet interface and enters VLAN range configuration mode.

 or
 Enables IEEE 802.1Q VLAN encapsulation for a range of VLANs on an Ethernet interface and enters VLAN range configuration mode.

 `Example:`

 `Router(config-if)# vlan-id dot1q 0`
 or
 `Router(config-if)# vlan-range dot1q 0 60` |
| 5 | `pppoe enable [group group-name]` | Enables PPPoE sessions over a specific VLAN or a range of VLANs.

 `Example:`

 `Router(config-if-vlan-range)# pppoe enable group pppoe1` |
| 6 | `end` | Exits VLAN range configuration mode.

 `Example:`

 `Router(config-if-vlan-range)# end` |

Enabling an ATM to Support Encapsulated PPPoE over IEEE 802.1Q VLAN

Perform the following task to enable an ATM to support encapsulated PPPoE over IEEE 802.1Q VLAN traffic. The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature enables ATMs to process PPPoE over VLAN packets that use bridged RFC 1483 encapsulation. This capability allows PPPoE traffic from different 802.1Q VLANs to be multiplexed over the same ATM. For more information, see the “PPPoE over VLAN Support on ATMs” section on page 1345.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number.subinterface-number \{multipoint \| point-to-point\}
4. pvc [name] vpi/vci
5. protocol pppovlan dot1q \{vlan-id \| start-vlan-id end-vlan-id\} \{group group-name\}
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface atm number.subinterface-number {multipoint | point-to-point}</td>
<td>Configures an ATM multipoint subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm 2/0.1 multipoint</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>pvc [name] vpi/vci</td>
<td>Configures a VC and enters ATM PVC configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-subif)# pvc name1 0/60</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>protocol pppovlan dot1q {vlan-id | start-vlan-id end-vlan-id} {group group-name}</td>
<td>Enables PPPoE for a specific IEEE 802.1Q VLAN or a range of VLANs on an ATM.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-atm-vc)# protocol pppovlan dot1q 0 50 group pppoe1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>end</td>
<td>Exits ATM PVC configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-atm-vc)# end</td>
<td></td>
</tr>
</tbody>
</table>

Enabling Support for PPPoE over IEEE 802.1Q VLAN in a VC Class

Perform the following task to enable support for PPPoE over IEEE 802.1Q VLANs in a VC class.
SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. protocol pppovlan dot1q {vlan-id | start-vlan-id end-vlan-id} [group group-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>vc-class atm name</td>
<td>Configures an ATM VC class and enters ATM VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# vc-class atm class1</td>
</tr>
<tr>
<td>protocol pppovlan dot1q {vlan-id</td>
<td>start-vlan-id end-vlan-id} [group group-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# protocol pppovlan dot1q 0 50 group pppoe1</td>
</tr>
</tbody>
</table>

Configuring MAC Addresses for PPPoEoA

You can configure the MAC address on ATMs in a BBA group to use a different MAC address for PPP over Ethernet over ATM (PPPoEoA).

Perform this task to configure different MAC addresses on PPPoEoA and enable the aggregation router to bridge packets from Ethernet to the appropriate MAC addresses.

Prerequisites for Configurable MAC Address for PPPoE

A BBA group profile should already exist. The BBA group commands are used to configure broadband access on aggregation and client devices that use PPPoA, PPPoE, and Routed Bridge Encapsulation (RBE).

SUMMARY STEPS

1. enable
2. configure terminal
3. `bba-group pppoe {bba-group-name | global}`
4. `mac-address {autoselect | mac-address}`
5. `exit`
6. `show pppoe session`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** `bba-group pppoe {bba-group-name | global}` | Enters BBA group configuration mode. |
| **Example:** Router(config)# bba-group pppoe group1 |
| **Step 4** `mac-address (autoselect | mac-address)` | Selects the MAC address.
- **autoselect**—Automatically selects the MAC address based on the ATM interface address, plus 7.
- **mac-address**—Standardized data link layer address having a 48-bit MAC address. Also known as a hardware address, MAC layer address, and physical address. All PPPoEoA sessions use the MAC address specified on the BBA group, which are applied on the VC. |
| **Example:** Router(config-bba-group)# mac-address autoselect |
| **Step 5** `exit` | Exits BBA group configuration mode. |
| **Example:** Router(config-bba-group)# exit |
| **Step 6** `show pppoe session` | Displays the MAC address as the local MAC (LocMac) address on the last line of the display. |
| **Example:** Router# show pppoe session |
| **Step 7** `end` | Exits privileged EXEC mode. |
| **Example:** Router# end |
Examples

The following example shows the display of the MAC address as LocMac:

```
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
 1 session total
  Uniq ID  PPPoE  RemMAC          Port                    VT  VA
State   SID  LocMAC                                      VA-st
 3 3 000b.fdc9.0001 ATM3/0.1                 1  Vi2.1
 0008.7c55.a054  VC:  1/50                   UP
```

LocMAC is burned in mac-address of ATM interface(0008.7c55.a054).

Configuring PPPoE Session Recovery After Reload

Perform this task to configure the aggregation device to send PPPoE active discovery terminate (PADT) packets to the CPE device upon receipt of PPPoE packets on “half-active” PPPoE sessions (a PPPoE session that is active on the CPE end only).

If the PPP keepalive mechanism is disabled on a CPE device, a PPPoE session will pause indefinitely after an aggregation device reload. The PPPoE Session Recovery After Reload feature enables the aggregation device to attempt to recover PPPoE sessions that failed because of reload by notifying CPE devices about the PPPoE session failures.

The PPPoE protocol relies on the PPP keepalive mechanism to detect link or peer device failures. If PPP detects a failure, it terminates the PPPoE session. If the PPP keepalive mechanism is disabled on a CPE device, the CPE device has no way to detect link or peer device failures over PPPoE connections. When an aggregation router that serves as the PPPoE session endpoint reloads, the CPE device will not detect the connection failure and will continue to send traffic to the aggregation device. The aggregation device will drop the traffic for the failed PPPoE session.

The `sessions auto cleanup` command enables an aggregation device to attempt to recover PPPoE sessions that existed before a reload. When the aggregation device detects a PPPoE packet for a half-active PPPoE session, the device notifies the CPE of the PPPoE session failure by sending a PPPoE PADT packet. The CPE device is expected to respond to the PADT packet by taking failure recovery action.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bba-group pppoe {group-name | global}`
4. `virtual-template template-number`
5. `sessions auto cleanup`
6. `end`
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** bba-group pppoe {group-name | global} | Defines a PPPoE profile and enters BBA group configuration mode.
 - The `global` keyword creates a profile that will serve as the default profile for any PPPoE port that is not assigned a specific profile. |
| **Example:** Router(config)# bba-group pppoe global |
| **Step 4** virtual-template template-number | Specifies which virtual template will be used to clone virtual access interfaces for all PPPoE ports that use this PPPoE profile. |
| **Example:** Router(config-bba-group)# virtual-template 1 |
| **Step 5** sessions auto cleanup | Configures an aggregation device to attempt to recover PPPoE sessions that failed because of reload by notifying CPE devices about the PPPoE session failures. |
| **Example:** Router(config-bba-group)# sessions auto cleanup |
| **Step 6** end | (Optional) Exits the configuration mode and returns to privileged EXEC mode. |
| **Example:** Router(config-bba-group)# end |

Troubleshooting Tips

Use the `show pppoe session` and `debug pppoe` commands to troubleshoot PPPoE sessions.

Monitoring and Maintaining PPPoE Profiles

Perform this task to monitor and maintain PPPoE profiles.

SUMMARY STEPS

1. enable
2. show pppoe session [all | packets]
3. clear pppoe [interface type number [vc {{vpif}|vc | vc-name}]] | rmac mac-addr [sid session-id] | all
4. debug pppoe [data | errors | events | packets] [rmac remote-mac-address | interface type number [vc {{vpif}|vc | vc-name}]]
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>show pppoe session [all</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show pppoe session all</td>
</tr>
<tr>
<td></td>
<td>Displays information about active PPPoE sessions.</td>
</tr>
<tr>
<td>Step 3</td>
<td>clear pppoe [interface type number [vc (vpi/vci</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# clear pppoe interface atm 0/1.0</td>
</tr>
<tr>
<td></td>
<td>Terminates PPPoE sessions.</td>
</tr>
<tr>
<td>Step 4</td>
<td>debug pppoe [data</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug pppoe events</td>
</tr>
<tr>
<td></td>
<td>Displays debugging information for PPPoE sessions.</td>
</tr>
</tbody>
</table>

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

This section provides the following configuration examples:

- PPPoE Profiles Configuration: Example, page 1373
- MAC Address of the PPPoEoA Session as the Burned-In MAC Address: Example, page 1374
- MAC Address Configured on the ATM Interface: Example, page 1376
- Address Autoselect Configured and MAC Address Not Configured: Example, page 1375
- MAC Address Configured on the BBA Group: Example, page 1377
- PPPoE over 802.1Q VLAN Support on an Ethernet Interface: Example, page 1376
- PPPoE over 802.1Q VLAN Support on ATMs: Example, page 1376
- MAC Address Configured on the BBA Group: Example, page 1377
- PPPoE Session Recovery After Reload: Example, page 1378
PPPoE Profiles Configuration: Example

The following example shows how to configure the three PPPoE profiles: vpn1, vpn2, and a global PPPoE profile. The profiles vpn1 and vpn2 are assigned to VC classes, VLANs, and ranges. Any Ethernet interface, VLAN, range, or VC class that is configured for PPPoE but is not assigned either profile vpn1 or vpn (such as VC class class-pppoe-global) will use the global profile.

Note
The order in which the commands are configured can be changed.

```
vpdn enable
!
vpdn-group 1
 request-dialin
 protocol l2tp
 domain vpn1
 initiate-to ip 209.165.200.225 priority 1
 local name NAS1-1
!
vpdn-group 2
 request-dialin
 protocol l2tp
 domain vpn2
 initiate-to ip 209.165.201.1 priority 1
 local name NAS1-2
!
virtual-template 1 pre-clone 20
virtual-template 2 pre-clone 20
!
bba-group pppoe global
 virtual-template 1
 sessions max limit 8000
 sessions per-mac limit 2
 sessions per-vc limit 8
!
bba-group pppoe vpn1
 virtual-template 1
 sessions per-vc limit 2
 sessions per-mac limit 1
!

!
bba-group pppoe vpn2
 virtual-template 2
 sessions per-mac limit 1
 sessions per-vc limit 2
!
vc-class atm class-pppoe-global
 protocol pppoe
!
vc-class atm class-pppoe-auto
 encapsulation aal5autopp virtual-template 1 group vpn1
!
vc-class atm class-pppoe-1
 protocol pppoe group vpn1
!
vc-class atm class-pppoe-2
 protocol pppoe group vpn2
!
interface Loopback 1
```
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

```plaintext
ip address 209.165.201.1 255.255.255.0
!
interface ATM 1/0.10 multipoint
range range-pppoe-1 100 109
protocol pppoe group vpn1
!
interface ATM 1/0.20 multipoint
class-int class-pppox-auto
0/200
encapsulation aal5autopp virtual-template 1
!
0/201
!
0/202
encapsulation aal5autopp virtual-template 1 group vpn2
!
0/203
class-vc class-pppoe-global
!
!
interface Ethernet 2/3.1
encapsulation dot1Q 1
pppoe enable group vpn1
!
interface Ethernet 2/3.2
encapsulation dot1Q 2
pppoe enable group vpn2
!
interface ATM 6/0.101 point-to-point
ip address 209.165.202.129 255.255.255.0
0/101
!
interface ATM 6/0.102 point-to-point
ip address 209.165.201.1 255.255.255.0
0/102
!
interface virtual-template 1
ip unnumbered loopback 1
no logging event link-status
no keepalive
peer default ip address pool pool-1
ppp authentication chap
!
interface virtual-template 2
ip unnumbered loopback 1
no logging event link-status
no keepalive
peer default ip address pool pool-2
ppp authentication chap
!
ip local pool pool-1 10.10.1.1 10.10.1.250
ip local pool pool-2 10.10.2.1 10.10.2.250
!
```

MAC Address of the PPPoEoA Session as the Burned-In MAC Address: Example

In the following example, neither address autoselect nor a MAC address is configured on the BBA group, and the MAC address is not configured on the ATM interface (the default condition). The `show pppoe session` command is used to confirm that the MAC address of the PPPoEoA session is the burned-in MAC address of the ATM interface.
bba-group pppoe one
virtual-template 1
interface ATM 3/0
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
en encapsulation aal5snap
 protocol pppoe group one
!
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA
State SID LocMAC VA-st
3 3 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA
0008.7c55.a054 VC: 1/50 UP
LocMAC is burned in mac-address of ATM interface(0008.7c55.a054).

Address Autoselect Configured and MAC Address Not Configured: Example

The following example shows how to configure address autoselect in the BBA group. The MAC address is not configured on the ATM interface. The show pppoe session command displays the MAC address of the interface, plus 7.
bba-group pppoe one
virtual-template 1
mac-address autoselect
!
interface ATM 3/0
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
en encapsulation aal5snap
 protocol pppoe group one
!
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA
State SID LocMAC VA-st
5 5 000b.fdc9.0001 ATM3/0.1 1 Vi2.1

PPPoE over 802.1Q VLAN Support on an Ethernet Interface: Example

The following example shows how to configure PPPoE over a range of 802.1Q VLANs on FastEthernet interface 0/0. The VLAN range is configured on the main interface, and therefore each VLAN will not use up a separate subinterface.

```
bba-group pppoe PPPOE
virtual-template 1
sessions per-mac limit 1
interface virtual-template 1
ip address 209.165.201.1 255.255.255.0
mtu 1492

interface fastethernet 0/0
no ip address
no ip mroute-cache
duplex half
vlan-range dot1q 20 30
pppoe enable group PPPOE
exit-vlan-config
```

PPPoE over 802.1Q VLAN Support on ATMs: Example

The following example shows how to configure an ATM to support PPPoE over a range of 802.1Q VLANs:

```
bba-group pppoe PPPOEOA
virtual-template 1
sessions per-mac limit 1

interface virtual-template 1
ip address 209.165.202.129 255.255.255.0
mtu 1492

interface atm 4/0.10 multipoint
10/100
protocol pppovlan dot1q 0 50 group PPPOEOA
```

MAC Address Configured on the ATM Interface: Example

In the following example, neither autoselect nor the MAC address is configured on the BBA group, but the MAC address is configured on the ATM interface, as indicated by the report from the `show pppoe session` command:

```
bba-group pppoe one
virtual-template 1

interface ATM 3/0
mac-address 0001.0001.0001
no ip address
no ip route-cache
```
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
capsulation aal5snap
protocol pppoe group one
!

Router# show pppoe session

1 session in LOCALLY_TERMINATED (PTA) State
1 session total

<table>
<thead>
<tr>
<th>Uniq ID</th>
<th>PPPoE</th>
<th>RemMAC</th>
<th>Port</th>
<th>VT</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>LocMAC</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>000b.fdc9.0001</td>
<td>ATM3/0.1</td>
<td>1</td>
<td>Vi2.1</td>
</tr>
<tr>
<td>PTA</td>
<td></td>
<td>0001.0001.0001</td>
<td>VC: 1/50</td>
<td></td>
<td>UP</td>
</tr>
</tbody>
</table>

LocMAC = configured mac-address on atm interface(0001.0001.0001).

MAC Address Configured on the BBA Group: Example

The following example shows how to configure the MAC address on the BBA group. The display from the show pppoe session command indicates that all PPPoEoA sessions on the ATM interface associated with the BBA group use the same MAC address as specified on the BBA group.

bba-group pppoe one
 virtual-template 1
 mac-address 0002.0002.0002

interface ATM 3/0
 mac-address 0001.0001.0001
 no ip address
 no ip route-cache
 no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
 no ip route-cache
 1/50
 encapsulation aal5snap
 protocol pppoe group one

Router# show pppoe session

1 session in LOCALLY_TERMINATED (PTA) State
1 session total

<table>
<thead>
<tr>
<th>Uniq ID</th>
<th>PPPoE</th>
<th>RemMAC</th>
<th>Port</th>
<th>VT</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
<td>LocMAC</td>
<td>State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>000b.fdc9.0001</td>
<td>ATM3/0.1</td>
<td>1</td>
<td>Vi2.1</td>
</tr>
<tr>
<td>PTA</td>
<td></td>
<td>0002.0002.0002</td>
<td>VC: 1/50</td>
<td></td>
<td>UP</td>
</tr>
</tbody>
</table>

LocMac(Mac address of PPPoEoA session) is mac-address specified on bba-group one (0002.0002.0002)
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Where to Go Next

PPPoE Session Recovery After Reload: Example

The following example shows how the router attempts to recover failed PPPoE sessions in the ATM range called “range-pppoe-1”:

```
bba-group pppoe group1
  virtual-template 1
  sessions auto cleanup
!
interface ATM1/0.10 multipoint
  range range-pppoe-1 100 109
  protocol pppoe group group1
!
interface virtual-template 1
  ip address negotiated
  no peer default ip address
  ppp authentication chap
```

Where to Go Next

- If you want to establish PPPoE session limits for sessions on a specific PVC or VLAN configured on an L2TP access concentrator, see the “Establishing PPPoE Session Limits per NAS Port” module.
- If you want to use service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup, see the “Offering PPPoE Clients a Selection of Services During Call Setup” module.
- If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to an L2TP network server (LNS) or tunnel switch, see the “Enabling PPPoE Relay Discovery and Service Selection Functionality” module.

Note

L2TP is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

- If you want to configure the transfer upstream of the Point-to-Point Protocol over X (PPPoX, where X designates a family of encapsulating communications protocols such as pppoe, pppoa, pppoeoa, pppoevlan implementing PPP), see the “Configuring Upstream Connections Speed Transfer” module.
- If you want to use SNMP to monitor PPPoE sessions, see the “Monitoring PPPoE Sessions with SNMP” module.
- If you want to identify a physical subscribe line for RADIUS communication with a RADIUS server, see the “Identifying a Physical Subscriber Line for RADIUS Access and Accounting” module.
- If you want to configure a Cisco Subscriber Service Switch, see the “Configuring Cisco Subscriber Service Switch Policies” module.

Additional References

The following sections provide references related to the Providing Protocol Support for Broadband Access Aggregation of PPPoE Session feature.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation concepts</td>
<td>“Understanding Broadband Access Aggregation” module in Cisco IOS Broadband and DSL Configuration Guide</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation</td>
<td>“Preparing for Broadband Access Aggregation” module in Cisco IOS Broadband and DSL Configuration Guide</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
</tr>
<tr>
<td>Establishing PPPoE session limits for sessions on a specific permanent virtual circuit or VLAN configured on an L2TP access concentrator</td>
<td>“Establishing PPPoE Session Limits per NAS Port” module in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Using service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup</td>
<td>“Offering PPPoE Clients a Selection of Services During Call Setup” module in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Enabling an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to an L2TP LNS or tunnel switch</td>
<td>“Enabling PPPoE Relay Discovery and Service Selection Functionality” module in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Configuring the transfer upstream of the PPPoX session speed value</td>
<td>“Configuring Upstream Connections Speed Transfer” module in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Using SNMP to monitor PPPoE sessions</td>
<td>“Monitoring PPPoE Sessions with SNMP” in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Identifying a physical subscribe line for RADIUS communication with a RADIUS server</td>
<td>“Identifying a Physical Subscriber Line for RADIUS Access and Accounting” module in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Configuring a Cisco Subscriber Service Switch</td>
<td>“Configuring Cisco Subscriber Service Switch Policies” module in Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature. | To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
http://www.cisco.com/go/mibs |

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1483</td>
<td>Multiprotocol Encapsulation over ATM Adaptation Layer 5</td>
</tr>
<tr>
<td>RFC 2516</td>
<td>A Method for Transmitting PPP over Ethernet (PPPoE)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
</table>
| The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. | http://www.cisco.com/techsupport |
Feature Information for Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in Cisco IOS Releases 12.2(1) or 12.0(3)S or a later release appear in the table.

For information on a feature in this technology that is not documented here, see the “Configuring Broadband Access Aggregation Features Roadmap.”

Not all commands may be available in your Cisco IOS software release. For release information about a specific command, see the command reference documentation.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS and Catalyst OS software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://tools.cisco.com/ITDIT/CFN/jsp/index.jsp. An account on Cisco.com is not required.

Note

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
</table>
| Configurable MAC Address for PPPoE | 12.3(11)T | The Configurable MAC Address for PPPoE feature configures the MAC address on ATM PVCs in a broadband access (BBA) group to use a different MAC address for PPP over Ethernet over ATM (PPPoEoA). The following section provides information about this feature:
- “Configuring MAC Addresses for PPPoEoA” section on page 1368
The following commands were introduced or modified:
* bba-group pppoe, mac-address. |
| Configuration Limit Removal and ATM Support | 12.3(2)T | The Configuration Limit Removal and ATM Support feature provides two enhancements to PPP over Ethernet (PPPoE) over IEEE 802.1Q VLAN functionality:
- It removes the requirement for each PPPoE VLAN to be created on a subinterface. Removal of this requirement increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.
- It adds ATM support for PPPoE over VLAN traffic that uses bridged RFC 1483 encapsulation. The following sections provide information about this feature:
 - “Assigning a PPPoE Profile to a VLAN Subinterface” section on page 1354
 - “Enabling PPPoE over IEEE 802.1Q VLAN” section on page 1365
 - “Enabling an ATM to Support Encapsulated PPPoE over IEEE 802.1Q VLAN” section on page 1366
The following commands were introduced or modified:
* encapsulation dot1q, interface atm, interface range, protocol pppoe, pppoe enable, protocol pppoe, vlan-id dot1q, vlan dot1q. |
Table 1
Feature Information for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
</table>
| PPPoA/PPPoE Autosense for ATMs | 12.1(1)DC, 12.2(4)T, 12.2(4)T3 | The PPPoA/PPPoE Autosense for ATMs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types.
The following sections provide information about this feature:
- “Autosense for ATMs” section on page 1346
- “Assigning a PPPoE Profile to an ATM” section on page 1350
- “Assigning a PPPoE Profile to an ATM Range and Within a Range” section on page 1351
The following commands were introduced or modified:
encapsulation aal5 auto, interface ATM, ppp virtual-template, protocol pppoe, pvc-in-range, range. |
| PPPoE Connection Throttling | 12.2 (15)T, 12.2(33)SRC | The PPPoE Connection Throttling feature limits PPPoE connection requests to help prevent intentional denial-of-service attacks and unintentional PPP authentication loops. This feature implements session throttling on the PPPoE server to limit the number of PPPoE session requests that can be initiated from a MAC address or virtual circuit during a specified period of time.
The following sections provide information about this feature:
- “PPPoE Connection Throttling” section on page 1344
- “Defining a PPPoE Profile” section on page 1348 |
| PPPoE Profiles | 12.2(15)T | The PPPoE Profiles feature configures PPP over Ethernet profiles that contain configuration information for a group of PPPoE sessions.
The following sections provide information about this feature:
- “Information About Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions” section on page 1343
- “How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions” section on page 1347 |
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

Table 1 Feature Information for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Session Recovery After Reload</td>
<td>12.3(2)T 12.2(33)SRC</td>
<td>The PPPoE Session Recovery After Reload feature enables the aggregation device to attempt to recover PPPoE sessions that failed because of reload by notifying CPE devices about the PPPoE session failures. The following section provides information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “Configuring MAC Addresses for PPPoEoA” section on page 1368</td>
</tr>
<tr>
<td>VLAN Range</td>
<td>12.0(7)XE 12.1(5)T 12.2(2)DD 12.2(4)B 12.2(8)T 12.2(13)T</td>
<td>The VLAN Range feature can be used to group VLAN subinterfaces so that any command entered in a group applies to every subinterface within the group. This capability simplifies configurations and reduces command parsing. The following section provides information about this feature:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• “PPPoE over VLAN Configuration Without Using Subinterfaces” section on page 1344.</td>
</tr>
</tbody>
</table>