Nexus 7000 M3模块ELAM程序

目录

<u>简介</u>				
<u>拓扑</u>				
<u>确定入口</u>	<u>转</u>	<u>发</u>	引	擎
<u>配置触发</u>	<u>器</u>			
<u>开始捕获</u>				
<u>解释结果</u>				
<u>其他验证</u>				

简介

本文档介绍在Cisco Nexus 7700(N7700)M3模块上执行ELAM所用的步骤,解释最相关的输出,并 说明如何解释结果。

提示:有关ELAM的概述,请参阅ELAM概述文档。

拓扑

在本示例中,VLAN 2500(10.0.5.101)上的主机端口Eth4/1向VLAN 55(10.0.3.101)上的主机**端口** Eth3/5发送Internet控制消息协议(ICMP)请求. ELAM用于捕获从10.0.5.101 10.0.3.101到 10.0.3.101的单个数据包。请记住,ELAM允许您捕获单个帧。

要在N7K上执行ELAM,您必须首先连接到相应的模块(这需要网络管理员权限):

N7700# **attach module 4** Attaching to module 4 ... module-4#

确定入口转发引擎

流量应通过端口**Eth4/1**进入交换机。当您检查系统中的模块时,您会看到**模块**4是M3模块。请务必 记住,N7K是完全分布式的,并且模块(而不是管理引擎)会为数据平面流量做出转发决策。

N7700# show module									
Mod	Ports	Module-Type	2	Mode	1		Statu	IS	
1	12	100 Gbps Et	chernet Module	N77-	F312CK-2	6	ok		
3 48	1/10 Gł	bps Ethernet	Module N77-M348XP-23L	ok 4	24	10/40	Gbps	Ethernet	Module
N77-M324FQ-25L ok									
5	0	Supervisor	Module-2	N77-	SUP2E		activ	7e *	
6	0	Supervisor	Module-2	N77-	SUP2E		ha-st	andby	
7	24	10/40 Gbps	Ethernet Module	N77-	F324FQ-2	5	ok		
Mod	Sw	F	Iw						

1 7.3(0)DX(1) 1.1

3 7.3(0)DX(1) 1.1 4 7.3(0)DX(1) 1.0 5 7.3(0)DX(1) 1.2 6 7.3(0)DX(1) 1.2 7 7.3(0)DX(1) 1.0

对于M系列模块,在内部代号为**F4**的第2层(L2)转发引擎(FE)上执行ELAM。请注意,L2 FE数据总 线(DBUS)包含L2和第3层(L3)查找之前的原始报头信息以及结果总线(RBUS))包含L3和L2查找后的 结果。

N7K M3模块可以为每个模块使用多个FE,因此您必须确定端口Eth4/1上用于FE的F4 ASIC。输入 此命令以验证:

module-4# show hardware internal dev-port-map (some output omitted) ----- CARD_TYPE: 24 port 40G >Front Panel ports:24 ----- Device name Dev role Abbr num_inst: ------ > SLF L3 Driver DEV LAYER 3 LOOKUP L3LKP 4 > SLF L2FWD driver DEV LAYER 2 LOOKUP **L2LKP** 4 +-----+ +----- TO ASIC INSTANCE MAP+++------++ +------FP port | PHYS | MAC_0 | RWR_0 | L2LKP | L3LKP | QUEUE | SWICHF 0 0 **0** 0 0 0 0 0 0 1 0,1 0 0 0,1 2 0 0 0 0 0 0,1 3

在输出中,您可以看到**端口Eth4/1**位于**F4(L2LKP)实例0**上。在N77-M312CQ-26L模块上,每个端口 组中都有2个端口的**6 F4 ASIC。**在N77-M324FQ-25L模块上,每个端口组**有4**个F4 ASIC,带6个端 口。N77-M348XP-23L模块有2个F4 ASIC,**每个**端口组中有12个端口。

注意:与F系列模块一样,M3模块ELAM语法使用基于0的值。M1和M2模块使用基于1的值 ,但情况并非如此。

module-4# elam asic f4 instance 0
module-4(f4-elam)# layer2
module-4(f4-l2-elam)#

配置触发器

F**4 ASIC**支持IPv4、IPv6等的ELAM触发器。ELAM触发器必须与帧类型对齐。如果该帧是IPv4帧 ,则触发器也必须是IPv4。IPv4帧不会用其他触发器*捕获*。IPv6也适用同样的逻辑。

使用Nexus操作系统(NX-OS),您可以使用问号字符来分隔ELAM触发器:

module-4(f4-12-elam)# trigger dbus ipv4 ingress if ?
 (some output omitted)
 destination-index Destination-index
destination-ipv4-address Destination ipv4 address
destination-ipv4-mask Destination ipv4 mask
destination-mac-address Destination mac address
14-protocol L4 protocol
source-index Source-index
source-ipv4-address Source ipv4 address
source-ipv4-mask Source ipv4 mask
source-mac-address Source mac address

F4需要DBUS和RBUS单独的触发器。

以下是DBUS触发器:

module-4(f4-l2-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.0.5.101 destination-ipv4-address 10.0.3.101

以下是RBUS触发器:

module-4(f4-l2-elam)# trigger rbus ingress result if tr 1

开始捕获

现在,已选择入口FE并配置了触发器,您可以开始捕获:

module-4(f4-12-elam)# start
要检查ELAM的状态,请输入status命令:

module-4(f4-12-elam)# status
ELAM Slot 4 instance 0: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Configured
ELAM Slot 4 instance 0: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Configured
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 PLI: Unconfigured
L2 PLE: Unconfigured
FE收到与触发器匹配的帧后,ELAM状态显示为"已触发:

module-4(f4-l2-elam)# status
ELAM Slot 4 instance 1: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Triggered
ELAM Slot 4 instance 1: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Triggered
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 EGR: Unconfigured

解释结果

要显示ELAM结果,请输入**show dbus** 和**show rbus** 命令。如果有大量流量与相同的触发器匹配 ,则DBUS和RBUS可能会在不同帧上触发。因此,检查DBUS和RBUS数据上的内部序列号以确保 它们匹配非常重要:

module-4(f4-12-elam)# show dbus | i seq
port-id : 0x0 sequence-number : 0x868
module-4(f4-12-elam)# show rbus | i seq
de-bri-rslt-valid : 0x1 sequence-number : 0x868
以下是与本示例最相关的ELAM数据的摘要(省略部分输出):

module-4(f4-12-elar	n)#	show dh	ous		
		LBD II	PV4		
ttl destination-address source-address: 10	: :: .0.	0xff 10.0.3.1 5.101	13-packet-length .01	:	0x54
packet-length	:	0x66	vlan	:	0x9c4
segid-lsb	:	0x0	source-index	:	0xe05
destination-mac-ad	ldr	ess : 80	:60.4f07.ac65		
source-mac-address	5:	8c60.4f	b7.3dc2		
port-id	:	0x0	sequence-number	:	0x868
module-4(f4-l2-elar	n)#	show rh	Dus		
		L2 RBU	JS RSLT CAP DATA		
de-bri-rslt-valid	:	0x1	sequence-number	:	0x868
vlan	:	0x37	rbh	:	0x65
COS	:	0x0	destination-index	:	0x9ed

使用DBUS数据,您可以验证该帧是否在VLAN 2500上收到,源MAC地址为8c60.4fb6.3dc2,目的 MAC地址为8c60.4f07.ac65。您还可以看到这是IPv4帧,源自10.0.5.101,发往10.0.3.101。

提示:此输出中还包含其他几个有用字段,如服务类型(TOS)值、IP标志、IP长度和L2帧长度 。

要验证帧在哪个端口上收到,请输入SRC_INDEX命令(源本地目标逻辑(LTL))。输入此命令可将 LTL映射到N7K的端口或端口组:

N7700# show system internal pixm info ltl 0xe05

Member info -----Type LTL -----PHY_PORT Eth4/1

FLOOD_W_FPOE 0xc031

输出显示0xe05**的SRC_INDEX** 映射到端口Eth4/1。这确认该帧在端口Eth4/1上收到。

使用**RBUS** 数据,您可以验证该帧是否已路由到VLAN 55。请注意,TTL在DBUS数据中**以0xff**开**始** 。此外,您可以从DEST_INDEX(目标**LTL)**确认出口端口:

N7K# show system internal pixm info ltl 0x9ed Member info

Туре

LTL

LIBLTLMAP_LTL_TYPE_FLOOD_WITH_FPOE

PHY_PORT Eth3/5

FLOOD_W_FPOE 0x8017 FLOOD_W_FPOE 0x8016

输出显示0x9ed的DEST_INDEX映射到端口Eth3/5。这确认该帧是从端口Eth3/5发送的。

其他验证

要验证交换机如何分配LTL池,请输入**show system internal pixm info ltl-region命**令。如果LTL与物 理端口不匹配,此命令的输出对于了解其用途非常有用。Drop LTL就是一个很**好的例子**:

N7700# show system internal pixm info ltl 0xcad 0x0cad is Drop DI LTL N7700# show system internal pixm info ltl-region MAP Version: 3 Description: LTL Map for Crossbow ====== LTL_TYPE SIZE START END _____ LIBLTLMAP LTL TYPE PHY PORT 3072 0x0 0xbff LIBLTLMAP LTL TYPE SUP ETH INBAND 64 0xc00 0xc3f LIBLTLMAP_LTL_TYPE_UCAST_VPC_VDC_SI 32 0xc40 0xc5f LIBLTLMAP_LTL_TYPE_EXCEPTION_SPAN 32 0xc60 0xc7f LIBLTLMAP_LTL_TYPE_UCAST_GENERIC 48 0xc80 0xcaf ----------- LIBLTLMAP_LTL_TYPE_UCAST_GENERIC_NOT_USED 0xcaf LIBLTLMAP_LTL_TYPE_DROP_DI_WO_HW_BITSET 0xcae LIBLTLMAP_LTL_TYPE_DROP_DI 0xcad LIBLTLMAP_LTL_TYPE_SUP_DIAG_SI_V5 0xcac LIBLTLMAP_LTL_TYPE_RESERVED_ERSPAN_LTL 0xcab _____ LIBLTLMAP_LTL_TYPE_LC_CPU 192 0xcb0 0xd6f LIBLTLMAP LTL TYPE UCAST RESERVED 144 0xd70 0xdff 1536 0xe00 0x13ff LIBLTLMAP_LTL_TYPE_PC 5120 0x1400 0x27ff LIBLTLMAP_LTL_TYPE_DYNAMIC_UCAST 48 LIBLTLMAP_LTL_TYPE_MCAST_RESERVED 0x2800 0x282f LIBLTLMAP_LTL_TYPE_DYNAMIC_MCAST 38848 0x2830 0xbfef 16 0xbff0 0xbfff LIBLTLMAP_LTL_TYPE_SAC_FLOOD

16384 0xc000 0xffff