Configurando roteadores virtuais VRRP em um switch SG550XG através da CLI

Introduction

O Virtual Router Redundancy Protocol (VRRP) é um protocolo de redundância que elege um ou mais roteadores em um grupo virtual que atua como standby. No caso de uma falha, esse protocolo atribui dinamicamente a responsabilidade de um roteador ativo a um dos roteadores físicos em uma rede local (LAN). Diante de uma possível falha de rede, esse protocolo aumenta a disponibilidade e a confiabilidade dos caminhos de roteamento na sua rede.

No VRRP, um roteador físico em um grupo de roteadores virtuais é eleito como Ativo, com o outro roteador físico do mesmo grupo de roteadores virtuais agindo como Standbys, caso o Ativo falhe. Os roteadores físicos são chamados de roteadores VRRP.

O gateway padrão de um host é atribuído ao endereço IP do grupo de roteadores virtuais em vez de um endereço IP de roteador físico. Se o roteador físico que está roteando pacotes dentro do grupo de roteadores virtuais falhar, outro roteador físico será selecionado para substituí-lo automaticamente. O roteador físico que está encaminhando pacotes em um determinado momento é chamado de roteador ativo.

O VRRP também permite o compartilhamento de carga de tráfego. O tráfego pode ser compartilhado de forma equitativa entre os roteadores disponíveis, configurando o VRRP de forma que o tráfego de e para os clientes da LAN seja compartilhado por vários roteadores.

A seguir está uma topologia de LAN na qual o VRRP está configurado. Neste exemplo, os roteadores A, B e C são VRRP e compõem um roteador virtual. O endereço IP do grupo de roteadores virtuais é o mesmo que configurado para a interface Ethernet do Roteador A (192.168.2.1).

Nesse cenário, o roteador virtual usa o endereço IP da interface Ethernet física do Roteador A, o Roteador A assume a função do roteador virtual Ativo e também é conhecido como o proprietário do endereço IP. Como o roteador virtual Ativo, o roteador A controla o endereço IP do roteador virtual e é responsável por rotear pacotes em nome do roteador virtual. Os clientes de 1 a 4 são configurados com o endereço IP do gateway padrão de 192.168.2.1.

O roteador VRRP que é o proprietário do endereço IP responde/processa pacotes cujo destino é o endereço IP. O roteador VRRP que é o roteador virtual Ativo, mas não o proprietário do endereço IP, não responde/processa esses pacotes.

Os roteadores B e C funcionam como um roteador virtual em standby. Se o roteador virtual Ativo falhar, o roteador configurado com a prioridade mais alta se tornará o roteador virtual Ativo e fornecerá serviço aos hosts da LAN com interrupção mínima.

A prioridade do roteador VRRP depende do seguinte: Se o roteador VRRP for o proprietário, sua prioridade será 255 (a mais alta), se não for um proprietário, a prioridade será configurada manualmente e sempre será menor que 255.

Quando o Roteador A se recupera, ele se torna o roteador virtual Ativo novamente. Durante o período em que o Ativo está se recuperando, ambos os Ativos encaminham pacotes e, como resultado, há alguma duplicação (comportamento regular), mas nenhuma interrupção.

O exemplo abaixo mostra uma topologia de LAN na qual o VRRP está configurado. Os roteadores A e B compartilham o tráfego de e para os clientes de 1 a 4 e os roteadores A e B atuam como roteadores virtuais em standby entre si se qualquer um dos roteadores falhar.

Nesta topologia, dois roteadores virtuais são configurados. Para o roteador virtual 1, o roteador A é o proprietário do endereço IP 192.168.2.1 e é o roteador virtual ativo, e o roteador B é o roteador virtual em standby para o roteador A. Os clientes 1 e 2 são configurados com o endereço IP do gateway padrão de 192.168.2.1. Para o roteador virtual 2, o roteador B é o proprietário do endereço IP 192.168.2.2 e do roteador virtual Ative, e o roteador A é o roteador virtual Standby to Router B. Os clientes 3 e 4 são configurados com o endereço IP do gateway padrão de 192.168.2.2.

Neste documento, configuraremos a primeira topologia em que o Roteador A está ativo e o Roteador B está atuando como standby. Se o roteador A falhar, o roteador B se tornará o roteador ativo.

Se você não está familiarizado com os termos usados abaixo, confira o <u>Cisco Business:</u> <u>Glossário de Novos Termos</u>.

Objetivo

Este artigo fornece instruções sobre como configurar as configurações de VRRP em seus switches através da CLI (Command Line Interface, interface de linha de comando).

Dispositivos aplicáveis

Série SG550X

Versão de software

• 2.3.0.130

Configurar roteadores virtuais VRRP em um switch

Etapa 1. SSH para o switch. O nome do usuário e a senha padrão são cisco/cisco. Se você configurou um novo nome do usuário ou senha, digite as credenciais.

Note: Para saber como acessar uma CLI de switch SMB através de SSH ou Telnet, clique aqui.

Note: Os comandos podem variar de acordo com o modelo exato do switch. Neste exemplo, o SG550XG-24T é usado.

Etapa 2. No modo EXEC com privilégios do switch, insira o modo de configuração global digitando o seguinte:

Etapa 3. Para definir as configurações do roteador virtual VRRP em uma interface VLAN, digite o seguinte comando:

SG550XG#interface [vlan-id]

Neste exemplo, usamos a **interface vlan 1** para configurar as configurações do roteador virtual VRRP.

Etapa 4. Para definir um endereço IP de um roteador virtual, use o comando **vrrp ip** no modo de configuração de interface. A interface IP do roteador VRRP e do grupo virtual devem estar na mesma sub-rede IP. Um roteador virtual entra em funcionamento quando tem um ou mais roteadores VRRP participantes. Um roteador VRRP pode usar seu endereço IP real para o grupo VRRP, permitindo que esse roteador VRRP se torne o Ativo do grupo VRRP. Você também pode atribuir um endereço IP virtual que não esteja atribuído a nenhuma interface do roteador, mas o roteador com a prioridade mais alta se tornará o Ativo. Só pode haver um proprietário para o grupo VRRP.

SG550XG#(config)#vrrp [vrid] ip [ip-address]

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é 1-255.
- ip-address Endereço IP do roteador virtual.

Para esta demonstração, usamos o comando **vrp 1 ip 192.168.2.1** para definir o endereço IP de 192.168.2.1 para o roteador virtual.

Nota: Para remover o endereço IP, use o comando no vrrp [vrid] ip [ip-address].

Etapa 5. Para ativar o roteador virtual VRRP na interface, use o seguinte comando:

SG550XG#(config-if)#no vrrp [vrid] shutdown

 vrid - Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é 1-255.

Vamos inserir **no vrrp 1 shutdown** para ativar o roteador virtual VRRP na interface.

Note: Para desativar o roteador virtual VRRP na interface, use o comando vrrp shutdown no modo de configuração de interface. Quando um roteador virtual VRRP é desabilitado em uma interface, sua configuração não é removida.

Etapa 6. Para atribuir uma descrição ao roteador virtual VRRP, use o seguinte comando no modo de configuração de interface.

SG550XG#(config-if)#vrrp [vrid] descrição [texto]

• vrid - Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O

intervalo é 1-255.

• text - Texto que descreve a finalidade ou o uso do roteador virtual. O parâmetro pode conter de 0 a 160 caracteres.

Para este exemplo, inserimos o comando **vrrp 1 description VirtualRouter1** para atribuir a descrição VirtualRouter1 para nosso vrid 1.

Passo 7. Para definir a versão VRRP suportada, use o comando vrrp version no modo Interface Configuration . A escolha de uma versão depende da configuração da rede. No entanto, se a topologia permitir, a última versão deverá ser sua escolha. Lembre-se de que a versão 3 também suporta IPv6.

Note: Cada switch precisa ser configurado com a mesma versão para que o VRRP funcione corretamente.

```
SG550XG#(config-if)#vrrp [vrid] versão [número da versão]
```

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é 1-255.
- 2 VRRPv2 especificado pelo RFC3768 é suportado. As mensagens VRRPv3 recebidas são descartadas pelo roteador virtual VRRP. Somente anúncios VRRPv2 são enviados. VRRPv2 suporta apenas endereços IPv4. Os temporizadores estão em segundos e usam 224.0.0.18 para o endereço multicast. O VRRP precisa ser ativado por interface e nó com o mesmo valor de prioridade, mas o IP mais alto causaria preempção.
- 3 VRRPv3 especificado por RFC5798 é suportado sem suporte a VRRPv3 (8.4, RFC5798). As mensagens VRRPv2 recebidas são descartadas pelo roteador virtual VRRP. Somente anúncios VRRPv3 são enviados. O VRRPv3 suporta o uso de endereços IPv4 e IPv6. Os temporizadores estão em milissegundos e usam 224.0.0.18 para multicast IPv4 e FF02:0:0:0:0:12 para IPv6. O VRRP precisa ser ativado globalmente e apenas uma prioridade mais alta causará preempção.
- 2&3 O VRRPv3 especificado pelo RFC5798 é suportado com suporte a VRRPv2 (8.4, RFC5798). As mensagens VRRPv2 recebidas são tratadas pelo roteador virtual VRRP. Anúncios de VRRPv3 e VRRPv2 são enviados.

Para esta demonstração, usaremos a versão 2 inserindo o comando vrrp 1 versão 2.

Etapa 8. Para definir um endereço VRRP real que será usado como o endereço IP de origem das mensagens VRRP, digite o seguinte comando no modo de configuração de interface. Cada roteador VRRP que suporta um roteador virtual usa seu próprio endereço IP como o endereço IP origem em suas mensagens VRRP de saída para o roteador virtual.

SG550XG#(config-if)#vrrp [vrid] source-ip [ip-address]

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é 1-255.
- endereço IP endereço IP do roteador VRRP: um dos endereços IP do roteador VRRP definido na mesma interface.

Neste exemplo, digitamos o endereço IP do switch como o endereço IP de origem digitando o comando **vrrp 1 source-ip 192.168.2.1**.

Etapa 9. (Opcional) Para definir a prioridade do Virtual Router Redundancy Protocol (VRRP), use

o comando vrrp priority no modo de configuração de interface.

SG550XG#(config-if)#vrrp [vrid] priority [priority number]

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é 1-255.
- Prioridade prioridade do roteador virtual. O intervalo é 1-254.

Para esta demonstração, o switch é o proprietário e tem uma prioridade de 255.

Note: A prioridade padrão do proprietário é 255 e não pode ser alterada. Para não proprietário, a prioridade padrão é 100. A figura abaixo mostra um exemplo de como o comando deve ser digitado, mas não foi digitado.

Etapa 10. Para habilitar a preempção do Virtual Router Redundancy Protocol (VRRP), use o comando preempt no modo de configuração de interface. Por padrão, o roteador VRRP que está sendo configurado com esse comando assumirá como roteador virtual ativo para o grupo se tiver uma prioridade mais alta do que o roteador virtual ativo atual. O roteador que é o proprietário do endereço IP terá preferência, independentemente da configuração desse comando.

SG550XG#(config-if)#vrrp [vrid] preempt

Note: Para desabilitar a preempção de VRRP para o roteador virtual de VRRP especificado, use o seguinte comando: **no vrrp** [vrid] **preempt**.

Etapa 11. Para definir o VRRP no modo de aceitação, digite o seguinte comando:

SG550XG#(config-if)#vrrp [vrid] modo de aceitação [aceite | queda]

As opções são definidas como:

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é de 1 a 255.
- accept O roteador virtual no estado Ative aceitará pacotes endereçados ao endereço IP do roteador virtual como seu próprio mesmo que não seja o proprietário do endereço.
- drop O roteador virtual no estado Ativo descartará pacotes endereçados ao endereço IP do roteador virtual mesmo que ele não seja o proprietário do endereço.

Neste exemplo, a opção Ativo é configurada para aceitar pacotes usando o comando vrrp 1 accept mode accept.

Etapa 12. Para definir o intervalo entre anúncios sucessivos pelo roteador virtual VRRP ativo, use o comando vrrp timers advertise no modo de configuração de interface. Neste exemplo, deixamos

o anúncio de temporizadores como a configuração padrão de 1 segundo. A figura abaixo mostra um exemplo de como o comando deve ser digitado por 2 segundos.

SG550XG#(config-if)#vrrp [vrid] timers anunciam o *intervalo* msec [msec]

As opções são definidas como:

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo é de 1 a 255.
- msec (Opcional) Altera a unidade do tempo do anúncio de segundos para milissegundos.
 Sem a palavra-chave, o intervalo do anúncio é em segundos.
- intervalo intervalo de tempo entre anúncios sucessivos. Se a palavra-chave msec estiver presente, o intervalo válido será de 50 a 4.0950 milissegundos. Se a palavra-chave msec for omitida, o intervalo válido será de 1 a 40 segundos.

Etapa 13. (Opcional) O rastreamento de objeto é um processo independente que gerencia a criação, o monitoramento e a remoção de objetos rastreados, como o estado do protocolo de linha de uma interface, o estado de uma rota IP ou a acessibilidade de uma rota. O processo de rastreamento pesquisa periodicamente os objetos rastreados e anota qualquer alteração de valor. O rastreamento de objeto VRRP dá acesso VRRP a todos os objetos disponíveis por meio do processo de rastreamento. A prioridade do dispositivo virtual é incrementada ou diminuída com base no estado do objeto sendo rastreado.

Para saber mais sobre o rastreamento de objetos para VRRPv3, consulte o link: <u>VRRPv3</u>: <u>Integração de Rastreamento de Objeto</u>

Para configurar o VRRP para rastrear um objeto, insira o seguinte:

SG550XG#(config-if)#vrrp [vrid] track [object-id] decremento [priority]

- vrid Identificador de roteador virtual na interface para a qual o VRRP está sendo definido. O intervalo vai de 1 a 255.
- object-id número de associados para rastrear o objeto com este roteador VRRP. Os valores válidos para o argumento number variam de 1 a 64. Este valor foi inserido nas faixas de SLA, clique <u>aqui</u> para obter mais informações.

 priority - (Opcional) Valor pelo qual a prioridade do roteador é reduzida ou incrementada quando o objeto rastreado fica inativo ou volta a funcionar. O valor padrão é 10. Os decrementos podem ser definidos para qualquer valor entre 1 e 253.

Neste exemplo, não configuramos o VRRP para rastrear um objeto, mas digitamos o comando para mostrar um exemplo de como ele seria.

Etapa 14. Digite o comando end para voltar ao modo EXEC Privilegiado.

Etapa 15. (Opcional) No modo EXEC Privilegiado do switch, salve as configurações configuradas no arquivo de configuração de inicialização. Em seguida, pressione Y para Yes (Sim) ou N para No (Não) no teclado depois que o prompt *Overwrite file [startup-config]... (Sobrescrever arquivo [startup-config]) for exibido.*

Etapa 16. Repita as etapas 1 a 15 no próximo switch para configurar outro roteador virtual. Neste exemplo, configuramos um segundo switch para se tornar o roteador virtual em standby.

Verificando/Testando o VRRP

Etapa 1. Para exibir um status breve ou detalhado de uma ou todas as configurações dos roteadores virtuais VRRP, digite o seguinte comando:

SG550XG#show vrrp {all | resumo | interface [interface-id]}

As opções são:

- all (Opcional) Fornece informações do roteador virtual VRRP sobre todos os roteadores virtuais VRRP, incluindo roteadores virtuais no status de desabilitação. Se nenhuma palavrachave for inserida, a palavra-chave all será aplicada.
- brief (Opcional) Fornece uma visão resumida das informações do roteador virtual VRRP.
- interface interface-id (Opcional) Identificador de interface.

Neste exemplo, usamos show vrrp all.

Etapa 2. No segundo switch, usamos o seguinte comando para exibir informações detalhadas do roteador VRRP.

Etapa 3. Esta etapa mostra um exemplo do que acontece quando o primeiro switch (Ativo) é desativado. O segundo switch (Standby) torna-se o Ativo, como mostra o exemplo abaixo. O estado é *Ativo* para o segundo switch com o endereço IP origem de *192.168.2.2*.

Conclusão

Agora você deve ter configurado com êxito o VRRP em um switch SG550X através da CLI.