

マルチサイトとSR-MPLSL30utハンドオフ

- ・概要とユースケース (1ページ)
- SR-MPLS インフラ要件とガイドライン (5ページ)
- SR-MPLS テナントの要件と注意事項 (8 ページ)
- SR-MPLS の カスタム QoS ポリシー を作成 (10 ページ)
- SR-MPLS インフラ L3Out の作成 (13 ページ)
- SR-MPLS ルート マップ ポリシーの作成 (17 ページ)
- L3Out テンプレート内のSR-MPLS テナント L3Outs を作成 (19ページ)
- EPG-to-External-EPG(North-South)通信を構成 (20ページ)

概要とユース ケース

Nexus Dashboard Orchestrator リリース 3.0 (1) および APIC リリース 5.0 (1) 以降、マルチサ イトアーキテクチャは、ACI ボーダー リーフ (BL) スイッチと SR-MPLS ネットワーク間の より優れたハンドオフ機能を提供します。

代表的な Multi-Site デプロイでは、サイト間トラフィックは、VXLAN カプセルかを介したサイト間ネットワーク (ISN) を通じて転送されます。

次の図に示されているようにリリース 3.0(1) で MPLS ネットワークは、WAN を介したサイト間通信を許可する ISN に加えて、またはその代わりに使用できます。East-West レイヤ 3 通信が SR-MPLS L3Out データ パス(ISN 全体の VXLAN データ パスではなく)に従うようにするために、この SR-MPLS ハンドオフのユース ケースにいくつかの制限を適用する必要がありました。

- •SR-MPLS L3Out が属する VRF は、サイト間でストレッチしてはなりません。
- 上記の制限により、すべてのサイトは、定義されたサイトローカル VRF ごとに1つ(または複数)のローカル SR-MPLS L3Out を展開する必要があります。
- ・異なる VRF に属するサイトローカル EPG 間で契約を適用してはなりません。

これにより、通信は SR-MPLS L3Out データ パスに従うようになります。

ND0 リリース 4.0 (2) 以降の追加の使用例

NDO リリース4.0 (2) より前では、SR-MPLS ユース ケースを展開する場合は、単一のサイト にのみ関連付けることができ、複数のサイトにまたがることはできない特別な「SR-MPLS」テ ンプレートを定義します。この場合、Nexus Dashboard Orchestrator によって管理され、SR-MPLS ネットワーク経由で接続された 2 つのサイトがあり、site1 の EPG と site2 の別の EPG 間の 通信を確立したい場合、2 つの個別の VRF に関連付けられている 2 つの個別の

SR-MPLS-VRF-L3Out (各サイトに1つ) を展開する必要がありました。そして、各サイトの EPG とそのサイトの SR-MPLS L3Out (EPG 間で直接ではなく) との間で契約を確立する必要 もあります。つまり、EPG のトラフィックは、East-West トラフィック用の従来の Multi-Site データ プレーンと統合することなく、サイト間の EPG-to-EPG 通信でも常に SR-MPLS データ パスを使用します。

リリース 4.0 (2) 以降、SR-MPLS L3Out は従来の IP ベースの L3Out と同様に機能します。こ れにより、サイトと外部ネットワーク間の North-South 接続専用に SR-MPLS L3Out ハンドオフ を使用できます。この間すべての East-West トラフィックは、ISN 全体で VXLAN でカプセル 化されたデータ プレーンを使用して、従来のマルチサイト方式で処理できます。これは、 SR-MPLS ハンドオフを従来の IP ベースのハンドオフとして扱うことができ、同じ VRF で IP と SR-MPLS L3Out の混合を展開できることを意味します。これらの変更により、次の特定の ユース ケースのサポートが追加されます。 それぞれが独自のローカル SR-MPLS-VRF-L3Out を持つ複数のサイトの展開と、ローカル L3Outを使用する VRF内トラフィック(使用可能な場合)または別のサイトからのリモート SR-MPLS-VRF-L3Out(サイト間L3Out)。

この場合、リモート SR-MPLS-VRF-L3Out を単純なバックアップとして使用したり、リ モート SR-MPLS-VRF-L3Out で受信した一意の外部プレフィックスに到達したりできま す。トラフィックはローカル EPG からローカル SR-MPLS-VRF-L3Out に通過します。その パスがダウンしているか、ルートが使用できない場合、トラフィックは別のサイトのリ モート SR-MPLS-VRF-L3Out を使用できます。

•1 つの VRF のアプリケーション EPG がローカル サイトまたはリモート サイトのいずれか の別の VRF で SR-MPLS-VRF-L3Out を使用できる共有サービスでも、同様の使用例がサ ポートされます。

この場合、EPGは別のテナントにも配置できます。たとえば、Site1のTenant1には、Site2のTenant2でSR-MPLS-VRF-L3Outを使用するアプリケーションEPGを含めることができます。

• IP ベースのハンドオフと SR-MPLS のハンドオフを組み合わせる機能。

(従来の IP ベースの L3Out の代わりに)SR-MPLS L3Out を使用すると、個別の BL ノード、 BL 論理インターフェイス、および外部ネットワークに接続する必要のある各 VRF のルーティ ング ピアリングの作成を必要とする VRF-Lite 構成の必要性がなくなるため、より大規模な運 用の簡素化が可能になります。SR-MPLS L3Out を使用すると、論理ノードと論理インターフェ イスは、外部デバイスとの単一の MP-BGP EVPN ピアリングとともに、インフラテナントで 一度定義されます。このインフラ L3Out コンストラクトを使用して、複数のテナント VRF へ の外部接続を提供でき、すべての VRF のプレフィックスは、共通の MP-BGP EVPN コントロー ルプレーンを使用して交換されます。

次のセクションでは、Nexus Dashboard Orchestrator からサイトに展開されるスキーマを管理す るためのガイドライン、制限事項、およびそれ特定の構成について説明します。MPLSハンド オフ、サポートされている個々のサイトのトポロジ(リモートリーフサポートなど)、ポリシー モデルは、『*Cisco APIC Layer 3* ネットワーキング設定ガイド』で入手可能です。

構成ワークフロー

このドキュメントの他のセクションでは、必要な構成について詳しく説明しています。簡単に 言えば、次のワークフローを実行します。

• SR-MPLS QoS ポリシーの作成

SR MPLS カスタム QoS ポリシーは、MPLS QoS 出力 ポリシーで定義された着信 MPLS EXP 値に基づいて、SR-MPLS ネットワークから送信されるパケットのプライオリティを 定義します。これらのパケットは、ACI ファブリック内にあります。また、MPLS QoS 出 カポリシーで定義された IPv4 DSCP 値に基づく MPLS インターフェイスを介して ACI ファ ブリックから離れるパケットの CoS 値および MPLS EXP 値をマーキングします。

このステップはオプションであり、そしてカスタム出力ポリシーが定義されていない場合、デフォルトの Qos レベル(Level3)がファブリック内のパケットに割り当てられま

す。カスタム出力ポリシーが定義されていない場合、デフォルトのEXP 値(0)がファブ リックから離れるパケットにマーキングされます。

• SR-MPLS インフラ L3Out を作成します。

これにより、SR-MPLS ネットワークに接続されているサイトから出るトラフィックの L3Out が構成されます。

その後、同じ SR-MPLS インフラ L3Out を複数の SR-MPLS テナント L3Out で使用して、 外部ネットワーク ドメインとの制御およびデータ プレーン通信を行うことができます。

特定のテナントのプレフィックスに一致するSR-MPLSルートマップポリシーを作成します。

ルートマップは、テナントSR-MPLS L3Outからアドバタイズされるルートを指定できる if-then ルールのセットです。ルートマップでは、DC-PE ルータから受信したどのルート を BGP VPNv4 ACI コントロールプレーンに挿入するかを指定することもできます。

 リリース 4.0 (2) より前のリリースと同様のユース ケースを展開する場合は、SR-MPLS ネットワーク経由で接続された各サイトに VRF、SR-MPLS L3Out、および SR-外部 EPG を作成し、各サイト内で契約を確立します。そのサイトのテナント EPG と SR-External EPG の間。

この場合、1つのサイトからのすべての通信は、North-Southルートをたどり、マルチサイトドメインを出て、外部 SR-MPLS ネットワークに向かいます。トラフィックの宛先が、 Orchestrator によって管理される別のサイトの EPG である場合、そのサイトの SR-MPLS L3Out を使用して、外部ネットワークから他のファブリックに入ります。

 North-South 通信専用の標準 IP ベースの L3Out と同じ方法で SR-MPLS L3Out を使用する場合は、既存のすべての EPG-to-EPG への通信の使用例に対して通常行うように、VRF、 SR-MPLS L3Out、EPG、および契約を作成できます。

SR-MPLS インフラ要件とガイドライン

Nexus ダッシュボードオーケストレータを使用して、SR-MPLS ネットワークに接続された ACI ファブリックの SR-MPLS L3Out ハンドオフを管理する場合:

- •ノードの更新など、トポロジーへの変更は、サイト接続性情報の更新の説明に従ってサイトの構成が更新されるまで、Orchestrator構成には反映されません。
- ・異なるサイト間のマルチサイトトラフィックは、リモートリーフスイッチを介して出入りすることはできません。

この制限は、SR-MPLSの使用例に固有のものではなく、一般にすべてのマルチサイトトラフィックに適用されます。

- ・優先グループの一部である SR-External EPG は、共有サービス(VRF 間)コントラクトの プロバイダになることはできません。
- ・優先グループはサイト間 SR-MPLS L3Out をサポートしません。

- vzAny は共有サービスプロバイダーをサポートしません。
- 優先グループに対して有効になっている VRF は、vzAny コンシューマにすることはできません。
- ・同じコントラクトを使用する他の構成オブジェクトとの循環依存を避けるために、専用テンプレートの下でテナントコントラクトオブジェクトを構成することをお勧めします
- 従来の IP ベースの L3Out の代わりに SR-MPLS L3Out を使用する場合:
 - ホストベースのルーティングアドバタイズメントは、サイト全体に広がるブリッジ ドメインではサポートされていません。
 - テナントルーテッドマルチキャスト(TRM)はSR-MPLSL3Outでサポートされていないため、外部ネットワークドメインとのレイヤー3ユニキャスト通信を確立するためにのみ使用できます。

サポート対象ハードウェア

SR-MPLS ハンドオフは、以下のプラットフォームに対してサポートされています:

- ボーダー リーフ スイッチ:「FX」、「FX2」、「GX」、および「GX2」 スイッチ モデル。
- •スパイン スイッチ:
 - ラインカード名の末尾に「LC-EX」、「LC-FX」、および「GX」が付いたモジュラ スパインスイッチモデル。
 - Cisco Nexus 9000 シリーズ N9K-C9332C、N9K-C9364C、「-GX」、および「-GX2」 固定スパイン スイッチ。
- DC-PEルータ:
 - Network Convergence System (NCS) 5500 シリーズ
 - ASR 9000 シリーズ
 - NCS 540 または 560 ルータ

SR-MPLS インフラ L3Out

次のセクションの説明に従って、SR-MPLSネットワークに接続されたファブリックのSR-MPLS Infra L3Out を作成する必要があります。SR-MPLS L3Out Infra を作成するときには、次の制約 が適用されます。

• 各 SR-MPLS L3Out Infra L3Out には固有の名前が必要です。

SR-MPLS インフラ L3Out を使用すると、ACI ボーダー リーフ スイッチと外部プロバイ ダーエッジ (PE) デバイスの間にコントロール プレーンとデータ プレーンの接続を確立 できます。さまざまなテナント VRF に属する SR-MPLS L3Out は、そのインフラ L3Out 接 続を利用して、外部ネットワーク ドメインとの通信を確立できます。

- ・異なるルーティングドメインに接続されているロケーションごとに複数のSR-MPLS Infra L3Out を持つこと、その際に同じボーダーリーフスイッチは複数のL3Out にあること、 各ルーティングドメインに向かって VRFのルーティングポリシーをエクスポートするこ とが可能です。
- ボーダー リーフ スイッチが複数の SR-MPLS Infra L3Out にあることができる場合でも、 ボーダー リーフ スイッチ/プロバイダ エッジ ルーターの組み合わせは1つの SR-MPLS L3Out になければなりません。ユーザ VRF/ボーダー リーフ スイッチ/プロバイダ エッジ ルートの組み合わせに対して1つのルーティング ポリシーのみが存在できるからです。
- 複数のポッドおよびリモートロケーションから SR-MPLS 接続を確立する必要がある場合は、SR-MPLS 接続を使用するポッドおよびリモートリーフロケーションのそれぞれに異なる SR-MPLS インフラ L3Out があることを確認します。
- ポッドの1つがSR-MPLSネットワークに直接接続されていないマルチポッドまたはリモー トリーフトポロジがある場合、SR-MPLSネットワークを宛先とするそのポッドのトラ フィックは、SR-MPLSL3Outを持つ別のポッドへの標準IPNパスを使用します。その後、 トラフィックは他のポッドのSR-MPLSL3Outを使用して、SR-MPLSネットワーク全体の 宛先に到達します。

これは、サイト 1 のエンドポイントの南北通信をサイト 2 の SR-MPLS L3Out 接続経由で確 立できるマルチサイト展開にも適用できます。

• 複数の VRF からのルートは、1 つの SR-MPLS Infra L3Out から、この SR-MPLS Infra L3Out のノードに接続されているプロバイダ エッジ (PE) ルーターにアドバタイズできます。

PEルータは、ボーダーリーフに直接接続することも、他のプロバイダー (P) ルータを介して接続することもできます。

•アンダーレイ設定は、1つのロケーションに対して複数の SR-MPLS Infra L3Out にわたって異なるか、同じ場合があります。

たとえば、両方に対して別のプロバイダルーターに接続されたアンダーレイをもつ、ドメ イン1の PE-1 とドメイン2の PE-2 に同じボーダー リーフスイッチが接続されていると 想定します。この場合、2つの SR-MPLS Infra L3Out が作成されます。PE-1 に対して1つ と PE-2 に対して1つです。しかしアンダーレイの場合、プロバイダルーターへの同じ BGP ピアになります。インポート/エクスポートルートマップは、ユーザ VRFの対応する ルートプロファイル設定に基づいて、PE-1 および PE-2 への EVPN セッションに設定され ます。

MPLS カスタム QoS ポリシー

次に、MPLS QoS のデフォルトの動作を示します。

・境界リーフスイッチ上のすべての受信 MPLS トラフィックは QoS レベル3(デフォルトの QoS レベル) に分類されます。

- ・境界リーフスイッチは、再マーキングなしでSR-MPLSからのトラフィックの元のDSCP 値を保持します。
- ・境界リーフスイッチは、デフォルトのMPLSEXP(0)のパケットをSR-MPLSネットワークに転送します。

次に、MPLS カスタム QoS ポリシーを設定する際のガイドラインと制約事項を示します。

- ・データ プレーン ポリサー (DPP) は、SR-MPLS L3Out ではサポートされていません。
- ・レイヤ 2 DPP は、MPLS インターフェイスの入力方向で動作します。
- レイヤ2DPPは、出力カスタムMPLSQoSポリシーがない場合、MPLSインターフェイスの出力方向で動作します。
- VRF レベルのポリシングはサポートされていません。

SR-MPLS テナントの要件と注意事項

Infra MPLS の設定と要件は Day-0 操作の章で説明されていますが、次の制約が SR-MPLS ネットワークに接続されているし後に展開するユーザテナントに適用されます。

- ファブリックの2つのEPG間のトラフィックがSR-MPLSネットワークを通過する必要がある場合:
 - 各 EPG とローカル SR-MPLS L3Out で定義された SR-EPG の間に、コントラクトを割り当てる必要があります。
 - 両方の EPG が同じACI ファブリックの一部であるが、SR-MPLS ネットワークによっ て分離されている場合(たとえば、マルチポッドまたはリモートリーフの場合)、EPG が異なる VRF に属していること、その間にはコントラクトがないこと、ルートリー キングが設定されていないことが必要です。
 - EPG が異なるサイトにある場合、それらは同じ VRF に存在できますが、EPG と同じ VRF の一部の他のリモート EPGの間で直接構成されたコントラクトがあってはなり ません。

• SR-MPLS L3Out のルート マップ ポリシーを設定する場合:

- 各L3Outは、単一のエクスポートルートマップがなければなりません。オプションで、単一のインポートルートマップももつことができます。
- SR-MPLS L3Out に関連付けられたルートマップは、SR-MPLS L3Out からアドバタイズする必要がある、ブリッジドメインサブネットを含むすべてのルートを明示的に定義する必要があります。
- ・0.0.0.0/0プレフィックスを定義し、ルートをアグレゲートしないことにした場合、 デフォルトのルートのみを許可します。

しかし、ルート 0.0.0.0/0 プレフィックスにアグリゲートすることにした場合、VRF のすべてのトラフィックが許可されます。

- ・任意のルーティングポリシーを任意のテナントL3Outに関連付けることができます。
- Nexus Dashboard リリース 4.0 (1) 以降、SR-MPLS ネットワーク間のトランジット ルー ティングは、Cisco APIC リリース 5.1 (1) 以降を実行しているファブリックに同じまたは 異なる VRF を使用してサポートされます。

図 3: 単一の VRF を使用する移行ルーティング構成

図 4:異なる VRFを使用する移行ルーティング構成

以前のリリースでは、異なる VRF のみを使用したトランジット ルーティングがサポート されていました。

SR-MPLS の カスタム QoS ポリシー を作成

SR MPLS カスタム QoS ポリシーは、MPLS QoS 出力 ポリシーで定義された着信 MPLS EXP 値 に基づいて、SR-MPLS ネットワークから送信されるパケットのプライオリティを定義します。 これらのパケットは、ACI ファブリック内にあります。また、MPLS QoS 出力ポリシーで定義 された IPv4 DSCP 値に基づく MPLS インターフェイスを介して ACI ファブリックから離れる パケットの CoS 値および MPLS EXP 値をマーキングします。

- (注) カスタム QoS ポリシーの作成はオプションです。カスタム出力ポリシーが定義されていない 場合、デフォルトのQos レベル(Level3)がファブリック内のパケットに割り当てられます。 カスタム出力ポリシーが定義されていない場合、デフォルトのEXP 値(0)がファブリックから離れるパケットにマーキングされます。
- ステップ1 Nexus Dashboard にログインし、Nexus Dashboard Orchestrator サービスを開きます。
- **ステップ2**新しいファブリックポリシーを作成します。
 - a) 左側のナビゲーションメニューで、[ファブリック管理(Fabric Management)]>[ファブリックポリ シー(Fabric Policies)]を選択します。
 - b) [ファブリック ポリシー テンプレート (Fabric Policy Template)]ページ内で[ファブリック ポリシー テンプレートを追加 (Add Fabric Policy Template)]をクリックします。
 - c) [+オブジェクトを作成(+Create Object) ドロップダウンからQoS SR-MPLSを作成します。
 - d) 右のプロパティのサイドバーでは、ポリシーの[名前 (Name)]を指定します。
 - e) (オプション)[説明を追加(Add Description)]をクリックして、このポリシーの説明を入力します。

ステップ3 入力 QoS 変換ルールを追加するには、[入力ルールの追加 (Add Ingress Rule)] をクリックします。

これらのルールは、MPLS ネットワークから ACI ファブリックをイングレスしているトラフィックに適用 されます。そして、受信される EXP ビット(EXP)の値のパケットを ACI QoS レベルにマップするためと パケットがファブリックに接続されたエンドポイントに転送されるときに設定するべきだったDSCP およ び/または CoS の値の設定に使用されます。

値は、境界リーフでカスタムQoS変換ポリシーを使用して取得されます。カスタムポリシーが定義されて いないか、一致していない場合、デフォルトのQoSレベル(Level3)が割り当てられます。

- a) [EXP 照合開始 (Match Exp From)] と [EXP 照合終了 (Match EXP To)] フィールドで、照合する入力 MPLS パケットの EXP 範囲を指定します。
- b) [キューの優先順位 (Queuing Priority)] ドロップダウンから、マッピングする ACI QoS レベルを選択し ます。

これは、ACIファブリック内のトラフィックに割り当てる QoS レベルで、ACI はファブリック内のト ラフィックのプライオリティを決めるために使用します。オプションの範囲は Level1 ~ Level6 です。 デフォルト値は Level3です。このフィールドで選択しない場合、トラフィックには自動的に Level3 の 優先順位が割り当てられます。

c) [DSCP を設定(Set DSCP)]ドロップダウンから、カプセル化されていないパケットをファブリック に接続されたエンドポイントに送信するときに使用する DSCP 値を選択します。

指定された DSCP 値は、外部ネットワークから受信した元のトラフィックに設定されるため、トラフィックが宛先 ACI リーフ ノードで VXLAN カプセル化解除された場合にのみ再公開されます。

値を [未指定 (Unspecified)] に設定すると、パケットの元の DSCP 値が保持されます。

d) [CoS を設定(Set CoS)] ドロップダウンから、カプセル化されていないパケットをファブリックに接続されたエンドポイントに送信するときに使用する DSCP 値を選択します。

指定された CoS 値は、トラフィックが宛先 ACI リーフ ノードで VXLAN カプセル化解除された場合にのみ再公開されます。

値を [未指定 (Unspecified)] に設定すると、パケットの元の CoS 値が保持されます。

上記のどちらの場合も、ファブリックで CoS 保存オプションを有効にする必要があります。CoS 保存 の詳細については、「*Cisco APIC and QoS*」を参照してください。

- e) チェックマーク アイコンをクリックして、ルールを保存します。
- f) 追加の入力 QoS ポリシー ルールについて、この手順を繰り返します。
- ステップ4 出力 QoS 変換ルールを追加するには、[出力ルールの追加 (Add Egress Add Rule)] をクリックします。

これらのルールは、MPLS L3Out 経由で ACI ファブリックから発信されるトラフィックに適用され、パケットの IPv4 DSCP 値を MPLS パケットの EXP 値および内部イーサネットフレームの CoS 値にマッピングするために使用されます。

パケットの IPv4 DSCP 値の設定は、EPG および L3Out トラフィックに使用される既存のポリシーに基づい て非境界リーフスイッチで行われます。カスタムポリシーが定義されていないか、一致していない場合、 デフォルトの EXP 値 0 がすべてのラベルでマークされます。EXP 値は、デフォルト ポリシー シナリオと カスタム ポリシー シナリオの両方でマークされ、パケット内のすべての MPLS ラベルで行われます。

カスタム MPLS 出力ポリシーは、既存の EPG、L3Out、および契約 QoS ポリシーをオーバーライドできます。

- a) [DSCP 照合開始 (MATCH DSCP From)] と [DSCP 照合終了 (MATCH DSCP To)]] ドロップダウンを使 用して、出力 MPLS パケットのプライオリティを割り当てるために一致させる ACI ファブリックパケッ トの DSCP 範囲を指定します。
- b) [MPLS EXP の設定 (SET MPLS EXP)] ドロップダウンから、出力 MPLS パケットに割り当てる EXP 値 を選択します。
- c) [CoS の設定(Set CoS)] ドロップダウンから、出力 MPLS パケットに割り当てる CoS 値を選択します。
- d) チェックマーク アイコンをクリックして、ルールを保存します。
- e) 追加の出力 QoS ポリシー ルールについて、この手順を繰り返します。
- **ステップ5 [アクション(Actions)]** メニューから、**[サイトの関連付け(Sites Association)]** を選択し、このテンプ レートを関連付ける SR-MPLS サイトを選択します。
- **ステップ6**[保存 (Save)]をクリックして、テンプレート ポリシーを保存します。
- **ステップ7 [展開する (Deploy)**]をクリックして、ファブリック ポリシーをサイトに展開します。

次のタスク

QoS ポリシーを作成したら、SR-MPLS インフラ L3Out の作成 (13 ページ) の説明に従って mpls 接続を有効にし、MPLS L3Out を設定します。

SR-MPLS インフラ L30ut の作成

このセクションでは、SR-MPLSネットワーク経由で接続されているサイトのSR-MPLSインフ ラ L3Out を構成する方法について説明します。

- SR-MPLS インフラ L3Out は、境界リーフスイッチで設定され、SR-MPLS ハンドオフに必要なアンダーレイ BGP-LUおよびオーバーレイ MP-BGP EVPN セッションを設定するために使用されます。
- SR-MPLS インフラ L3Out は、ポッドまたはリモート リーフスイッチ サイトにスコープさ れます。
- •1つの SR-MPLS インフラ L3Out 内の境界リーフ スイッチまたはリモート リーフ スイッチ は、1つ以上のルーティング ドメイン内の1つ以上のプロバイダー エッジ (PE) ルータ に接続できます。
- ・ポッドまたはリモート リーフスイッチ サイトには、1 つ以上の SR-MPLS インフラ L3Out を設定できます。

始める前に

次のものが必要です。

- Cisco ACI サイトの追加で説明しているように、MPLS ネットワークを経由して接続されているサイトを追加したこと。
- 必要に応じ、SR-MPLSのカスタム QoS ポリシーを作成(10ページ)で説明しているように、SR-MPLS QoS ポリシーを作成したこと。
- ステップ1 サイトで SR-MPLS 接続が有効になっていることを確認します。
 - a) メイン ナビゲーションメニューから、[インフラストラクチャ(Infrastructure)]>[サイト接続(Site Connectivity)]を選択します。
 - b) [サイト接続(Site Connectivity)]ページで、[構成(Configure)]をクリックします。
 - c) 左のペインの [サイト (Sites)]の下、SR-MPLS で接続されている特定のサイトを選択します。
 - d) 右に <*Site*>[設定 (Settings)]ペインで、[SR-MPLS 接続 (SR-MPLS Connectivity)]を有効にして、 SR-MPLS 情報を提供します。
 - ・セグメントルーティンググローバルブロック(SRGB)範囲は、ラベルスイッチングデータベース(LSD)でセグメントルーティング(SR)用に予約されているラベル値の範囲です。セグメント識別子(SID)は、特定のセグメントの一意の識別子であり、MPLSトランスポートループバック用に各ノードで構成されます。後にボーダーリーフ構成の一部として構成するSIDインデックスはBGP-LUを使用してピアルータにアドバタイズされ、ピアルータはSIDインデックスを使用してローカルラベルを計算します。

デフォルトの範囲は16000~23999です。

 ・ドメイン識別子ベースは、BGPドメインパス機能を有効にします。詳細については、Cisco APIC レイヤ3ネットワーキング構成ガイドを参照してください。

このフィールドに値を指定してドメインパス機能を有効にする場合は、マルチサイトドメイン内の各 SR-MPLS サイトに一意の値を使用するようにしてください。これは、この ACI ファブリックに固有になります。

- ステップ2 メインのペインで、ポッド内の[+SR-MPLS L3Out の追加 (+Add SR-MPLS L3Out)] をクリックします。
- ステップ3 右側の [プロパティ (Properties)] ペインで、SR-MPLS L3Out の名前を入力します。
- ステップ4 (任意) [QoS ポリシー (QoS Policy)] ドロップダウンで、MPLS トラフィックのために作成した QoS ポリ シーを選択します。

SR-MPLS の カスタム QoS ポリシー を作成 (10 ページ) で作成した QoS ポリシーを選択します。

それ以外の場合、カスタムQoSポリシーを割り当てないと、次のデフォルト値が割り当てられます。

- ・境界リーフスイッチ上のすべての着信 MPLS トラフィックは、QoS レベル3(デフォルトの QoS レベル) に分類されます。
- ・境界リーフスイッチは次の処理を実行します。
 - 再マーキングなしで SR-MPLS からのトラフィックの元の DSCP 値を保持します。
 - CoS保存が有効な場合、テナントトラフィックの元のCoS値を使用してパケットをMPLSネット ワークに転送します。
 - ・デフォルトの MPLS EXP 値 (0) のパケットを SR-MPLS ネットワークに転送します。
- また、境界リーフスイッチは、SRネットワークへの転送中に、アプリケーションサーバから着信するテナントトラフィックの元のDSCP値を変更しません。
- ステップ5 [L3 ドメイン (L3 Domain)] ドロップダウンで、レイヤ 3 ドメインを選択します。
- ステップ6 境界リーフスイッチと、SR-MPLSネットワークに接続されているポートの設定を構成します。

境界リーフスイッチについての情報、そして SR-MPLS ネットワークに接続されているインターフェイス ポートの情報を入力する必要があります。

- a) [+**リーフの追加** (+Add Leaf)] をクリックして、リーフ スイッチを追加します。
- b) [リーフの追加 (Add Leaf)] ウィンドウで、[リーフ名 (Leaf Name)] ドロップダウンからリーフ スイッ チを選択します。
- c) [SID 指数(SID Index)] フィールド内で、有効なセグメント 識別子(SID) オフセットを入力しま す。

このセクションの後の部分で、インターフェイスポートを設定する際には、セグメントルーティン グを有効にするかを選択できます。SIDインデックスは、MPLSトランスポートループバックの各 ノードで設定されます。SIDインデックス値はBGP-LUを使用してピアルータにアドバタイズされ、 ピアルータはSIDインデックスを使用してローカルラベルを計算します。セグメントルーティング を使用する予定の場合には、この境界リーフのセグメント IDを指定する必要があります。

・セグメント識別子値は、先ほど構成した SRGB の範囲内である必要があります。

- ・セグメント識別子値は、サイト内のすべての SR-MPLS L3Out で選択したリーフスイッチで同じ 必要があります。
- ・すべてのサイトの複数のリーフに SID 指数値を使用することはできません。
- ・値を更新する必要がある場合は、まず、リーフスイッチ内のすべてのSR-MPLSL3Outから値を 削除し、構成を再展開する必要があります。その後、新しい値で更新し、新しい設定を再展開 できます。
- d) ローカルの [**ルータ ID** (Router ID)] を入力します。

ファブリック内で一意なルータ 識別子です。

- e) [BGP EVPN ループバック (BGP EVPN Loopback)] アドレスを入力します。
 - (注) この値 BGP EVPN ループバック アドレス、サイト内のすべての SR-MPLS L3Out で選択 したリーフスイッチで同じ必要があります。

BGP-EVPN ループバックが BGP-EVPN コントロール プレーン セッションに使用されます。この フィールドを使用して、境界リーフスイッチの EVPN ループバック アドレスと DC-PE 間の MP-BGP EVPN セッションを設定し、オーバーレイ プレフィックスをアドバタイズします。 MP-BGP EVPN セッションは、BGP-EVPN ループバックと BGP-EVPN リモート ピアアドレスの間で確立されます。 これは、以下の「インターフェイスの追加」サブステップで構成します。

BGP-EVPN ループバックと MPLS トランスポート ループバックに異なる IP アドレスを使用できます が、ACI 境界リーフスイッチの BGP-EVPN と MPLS トランスポート ループバックに同じループバッ クを使用することを推奨します。

f) [MPLS トランスポート ループバック (MPLS Transport Loopback)] アドレスを入力します。

MPLS トランスポートループバックは、ACI 境界リーフスイッチとDC-PE 間のデータプレーンセッションを構築するために使用されます。MPLS トランスポート ループバックは、境界リーフスイッチから DC-PE ルータにアドバタイズされるプレフィックスのネクスト ホップになります。

BGP-EVPN ループバックと MPLS トランスポート ループバックに異なる IP アドレスを使用できます が、ACI 境界リーフスイッチの BGP-EVPN と MPLS トランスポート ループバックに同じループバッ クを使用することを推奨します。

g) [インターフェイスの追加 (Add Interface)] をクリックして、スイッチ インターフェイスの詳細を入 力します。

[インターフェイスのタイプ (Interface Type)] ドロップダウンから、レイヤ3物理のインターフェイ スなのか、それともポート チャネルインターフェイスなのかを選択します。ポート チャネルイン ターフェイスを使用する場合には、それ以前に APIC 上で作成しておく必要があります。

それからインターフェイス、そのIPアドレス、およびMTUサイズを入力します。サブインターフェ イスを使用する場合には、サブインターフェイスの [VLAN ID] を入力します。それ以外の場合には [VLAN ID] フィールドはブランクのままにします。

[**BGP ラベル ユニキャスト ピア IPv4 アドレス (BGP-Label Unicast Peer IPv4 Address)**] および [**BGP ラベル ユニキャスト リモート AS 番号 (BGP-Label Unicast Remote AS Number)**] で、ネクスト ホッ プデバイス (インターフェイスに直接接続されているデバイス)の BGP-LU ピア情報を指定します。 ネクスト ホップ アドレスは、インターフェイスで設定したサブネットの一部である必要があります。

MPLS または SR-MPLS ハンドオフを有効にするかどうかを選択します。

(任意)展開に基づいて追加の BGP オプションを有効にします。

最後に、[インターフェイス タイプ (Interface Type)] ドロップダウンの横にあるチェックマークをク リックして、、インターフェイス ポート情報を保存します。

- h) MPLS ネットワークに接続されているスイッチのすべてのインターフェイスについて、前のサブス テップを繰り返します。
- i) [保存 (Save)] をクリックして、リーフ スイッチ情報を保存します。
- j) MPLS ネットワークに接続されているすべてのリーフ スイッチについて、このステップを繰り返し ます。

ステップ7 BGP-EVPN 接続を構成します。

サイトの境界リーフ (BL) スイッチとプロバイダエッジ (PE) ルータ間の BGP EVPN 接続について、BGP 接 続の詳細を指定する必要があります。

- a) [+BGP-EVPN 接続の追加(+Add BGP-EVPN Connectivity)] をクリックします。
- b) [MPLS BGP-EVPN 接続の追加 (Add MPLS BGP-EVPN Connectivity)] ウィンドウで詳細を入力します。

[MPLS BGP-EVPN ピア IPv4 アドレス (MPLS BGP-EVPN Peer IPv4 Address)] フィールドで、DC-PE ルータのループバック IP アドレスを入力します。このルータは必ずしも、境界リーフに直接接続され ているデバイスとは限りません。

[リモート AS 番号 (Remote AS Number)] に、DC-PEのネイバー自律システムを一意に識別する番号を 入力します。自律システム番号は4 バイトで、1 ~ 4294967295 のプレーン形式で指定します。ACIは asplain 形式のみをサポートし、asdot または asdot+ 形式のAS番号はサポートしないことに注意して ください。ASN形式の詳細については、『Explaining 4-Byte Autonomous System (AS) ASPLAIN and ASDOT Notation for Cisco IOS』を参照してください。

[TTL] フィールドで、境界リーフと DC-PE ルータ間の複数のホップ数を考慮に入れて、十分大きな値 を指定します。たとえば 10 とします。許容範囲は 2 ~ 255 ホップです。

(任意)展開に基づいて追加の BGP オプションを有効にします。

- c) [保存(Save)] をクリックして BGP 設定を保存します。
- d) 追加の BGP 接続があれば、このステップを繰り返します。

通常、2つのDC-PEルータに接続することになるので、両方の接続につていBGPピア情報を入力します。

ステップ8 変更をサイトに展開します。

次のタスク

MPLS 接続を有効にして構成したら、[マルチサイト構成ガイド、リリース 3.0 (x) (Multi-Site Configuration Guide, Release 3.0(x))]に説明されている方法で、テナント、ルートマップ、およびスキーマを作成し、管理することができます。

SR-MPLS ルートマップポリシーの作成

このセクションでは、ルートマップポリシーを作成する方法について説明します。ルートマッ プは、テナントSR-MPLS L3Outからアドバタイズされるルートを指定できる if-then ルールの セットです。ルートマップでは、DC-PE ルータから受信したどのルートを BGP VPNv4 ACI コ ントロールプレーンに挿入するかを指定することもできます。

テナントSR-MPLSL3Outのサイトローカル設定を定義するときは、次のセクションでSR-MPLS ルートマップポリシーを使用します。

ステップ1 Nexus Dashboard にログインし、Nexus Dashboard Orchestrator サービスを開きます。

- ステップ2 新しいテナントポリシーを作成。
 - a) 左側のナビゲーション メニューで、[アプリケーション管理(Application Management)]>[テナント ポリシー(Tenant Policies)]を選択します。
 - b) [テナントポリシーテンプレート(Tenant Policy Template)]ページ内で[テナントポリシーテンプレートを追加(Add Tenant Policy Template)]をクリックします。
 - c) テナントポリシーページの右のプロパティサイトバーにテナントの[名前 (Name)]を入力します。
 - d) [テナントの選択 (Select a Tenant)]ドロップダウンから、このテンプレートに関連付けるテナントを 選択します。

次の手順に従ってこのテンプレートで作成するすべてのポリシーは、選択したテナントに関連付けら れ、テンプレートを1つ以上のサイトにプッシュするときに展開されます。

デフォルトでは、新しいテンプレートは空であるため、次のステップに従って1つ以上のテナントポリ シーを追加する必要があります。テンプレートで使用可能なすべてのポリシーを作成する必要はないこと に注意してください。SR-MPLSのユースケースに対して1つのルートマップポリシーだけでテンプレー トを作成できます。

- **ステップ3** ルート制御のルート マップ ポリシーを作成。
 - a) [+オブジェクトの作成(+Create Object)] ドロップダウンから、[ルート コントロールのルート マッ プポリシー(Route Control Policy for Multicast)] を選択します。
 - b) 右のプロパティのサイドバーでは、ポリシーの [名前 (Name)] を指定します。
 - c) (オプション)[説明を追加(Add Description)]をクリックして、このポリシーの説明を入力します。
 - d) [+エントリを追加(+Add Entry)]をクリックして、ルートマップ情報を入力します。

ルートマップごとに、1つ以上のコンテキストエントリを作成する必要があります。次の情報による と各コンテキストは、1つ以上の一致基準に基づいてアクションを定義するルールです:

- コンテキストの順序 コンテキストの順序は、コンテキストが評価される順序を決定するために
 使用されます。値は0~9の範囲内である必要があります。
- コンテキストアクション-コンテキストアクションは、一致が検出された場合に実行するアクションの許可または拒否を定義します。複数のコンテキストに同じ値が使用されている場合、それらは定義された順序で1つ評価されます。

コンテキストの順序とアクションを定義したら、コンテキストを一致させる方法を選択します。

•[+属性の追加(+Add Attibute)]をクリックして、コンテキストが一致する必要があるアクションを 指定します。

次のアクションのうちの1つを選択できます。

- コミュニティの設定
- ・ルート タグの設定
- ダンプニングを設定します
- ウェイトの設定
- ネクスト ホップの設定
- プリファレンスの設定
- メトリックの設定
- メトリック タイプの設定
- •AS パス の設定
- 追加のコミュニティを設定

属性を構成したら、[保存(Save)]をクリックします。

・定義したアクションを IP アドレスまたはプレフィックスに関連付ける場合は、[IP アドレスの追加(Add IP Address)]をクリックします。

[プレフィックス (prefix)] フィールドに、IP アドレス プレフィックスを入力します。IPv4 と IPv6 の両方のプレフィックスがサポートされています(例:2003:1:1a5:1a5::/64または205.205.0.0/16)。

特定の範囲の IP を集約する場合は、[集約 (aggregate)] チェックボックスをオンにして、範囲を指定します。たとえば、0.0.0/0プレフィックスを指定して任意の IP に一致させるか、10.0.0/8 プレフィックスを指定して任意の 10.xxx アドレスに一致させることができます。

・定義したアクションをコミュニティリストに関連付ける場合は、[コミュニティの追加]をクリックします。

[コミュニティ (Community)] フィールドに、コミュニティ文字列を入力します。たとえば、 regular:as2-as2-nn2:200:300 などです。

次に、[範囲(Scope)]を選択します:推移性は、コミュニティがeBGPピアリング全体(自律シス テム(AS)全体)に伝播することを意味し、非推移性は、コミュニティが伝播しないことを意味し ます。

- e) 前のサブステップを繰り返して、同じポリシーの追加のルート マップ エントリを作成します。
- f) [保存 (Save)]をクリックしてポリシーを保存し、テンプレートページに戻ります。
- g) この手順を繰り返して、ルートコントロールポリシーの追加のルートマップを作成します。
- ステップ4 [アクション(Actions)]メニューから、[サイトの関連付け(Sites Association)]を選択し、このテンプ レートを関連付ける1つ以上の SR-MPLS サイトを選択します。
- **ステップ5 [展開する (Deploy)**]をクリックして、テナント ポリシーをサイトに展開します。

L3Out テンプレート内のSR-MPLS テナント L3Outs を作成

NDO リリース 4.1 (1) 以降、L3Out および SR-MPLS L3Out 構成は、アプリケーションテンプ レートから専用の L3Out テンプレートに移動しました。SR-MPLS ネットワーク全体の接続を 構成する前に、このセクションで説明されているように、L3Out テンプレートを作成し、サイ トごとに SR-MPLS L3Out を定義する必要があります。

- ステップ1 Nexus Dashboard にログインし、Nexus Dashboard Orchestrator サービスを開きます。
- ステップ2 新しい L3Out テンプレートを作成します。
 - a) 左側のナビゲーションメニューで、[アプリケーション管理(Application Management)]>[L3Out テ ナント(L3Out Tenants)]を選択します。
 - b) [L3Out テンプレート(L3Out Templates)] ページで、[L3Out テンプレートの追加(Add L3Out Template)] をクリックします。
 - c) [テナントとサイトの選択(Select a Tenant and Site)]ダイアログで、このテンプレートを関連付ける テナントとサイトを選択し、[保存してテンプレートに移動(Save and go to template)]をクリックし ます。

各L3Outテンプレートは、他のNDOテンプレートに類似する特定のテナントに関連します。しかし、 L3Out 構成は、通常サイト固有としてシングル サイトにのみにも割り当てられます。

複数のサイトのために L3Out 構成 を定義したい場合、各サイトに一つ以上の L3Out テンプレートを作成する必要があります。しかし、同じ L3Out テンプレート内に全てを定義することで複数の L3Out サイト/テナントごとに展開することができます。 複数のテナントに割り当てられている場合、サイトごとに複数の L3Out テンプレートがある可能性があります。

- d) テンプレート表示内にテンプレートの[名前 (Name)]を入力します。
- ステップ3 SR-MPLS L3Out (s) を作成します。
 - a) メインペインで、[オブジェクトを作成(Create Object)]>[SR-MPLS L3Out を選択します。
 - b) L3Out の [名前 (Name)] を入力します。
 - (注) サイト全体のすべての SR-MPLS L3Out には、同じテナントに属しているか、同じ外部情報 技術への接続を許可している場合でも、一意の名前を指定することをお勧めします。
 - c) [VRF>を選択(Select VRF>)]をクリックし、このSR-MPLSL3Out に関連付ける VRF を選択します。

とができます。

- (注) この手順では、この SR-MPLS L3Out に対して VRF がすでに定義されていることを前提としています。そうしない場合は、テンプレートページを閉じ、通常どおりにアプリケーションテンプレートで VRF を定義してから、この手順から SR-MPLS L3Out の作成を再開できます。
- d) [SR-MPLS L3Out の追加(Add SR-MPLS L3Out)]をクリックします。
- e) 開いた [SR-MPLS L3Out の追加(Add SR-MPLS L3Out)]ダイアログで、SR-MPLS インフラ L3Out の作成 (13ページ) に定義した[SR-MPLS インフラ L3Out (SR-MPLS Infra L3Out)]を選択します。
- f) [ルートマップポリシーの追加(Add Route Map Policy)]をクリックし、SR-MPLS ルートマップポリシーの作成(17ページ)で定義したルートマップポリシーを選択し、[インポート(Import)]ポリシーか[エクスポート(Export)]ポリシーを選択します。
 複数のルートマップポリシーを SR-MPLS L3Out に追加する場合は、このサブステップを繰り返すこ
- g) この特定のサイトおよびテナント用に作成するすべての SR-MPLS L3Out について、この手順を繰り返 します。
- **ステップ4** テンプレート表示で、[展開(Deploy)] をクリックしてテンプレートをサイトに展開します。
- ステップ5 このプロセスを繰り返して、サイトのSR-MPLSL3Outを持つサイトごとに個別のL3Outテンプレートを作成します。

次のセクションでは、2つの SR-MPLS L3Out が2つの異なるサイト、たとえばmpls-l3out-1とmpls-l3out-2 で作成されたユース ケースを想定しています

EPG-to-External-EPG (North-South) 通信を構成

このセクションでは、アプリケーション EPG と外部 SR-MPLS ネットワークとの間で North-South 通信を確立する方法について説明します。また、このアプローチを使用して、SR-MPLS L3Out データ パス(外部 SR-MPLS ネットワークを利用)を介したサイト間での EPG-to-EPG 通信を 有効にすることもできます。

代わりに、リリース 4.0 (2) からサポートされている ISN 全体の VXLAN データ プレーンを 介して EPG から EPG へのサイト間接続を確立する場合は、通常どおり、それらの EPG 間の契 約関係を簡単に確立できます。

ステップ1 テンプレートを選択または、新しいのを作成します。

他の ACI ファブリックのユース ケースで通常行うように、テンプレートを選択できます。

- a) メインのナビゲーションメニューで、[Application Management (アプリケーション管理)]>[スキー マ (Schemas)] を選択します。
- b) 既存のスキーマを選択するか、新しいスキーマを作成します。
- c) 既存のテンプレートを選択するか、[新しいテンプレートの追加(Add New Template)]をクリック して、テンプレートタイプとして [ACI マルチクラウド(ACI Multi-Cloud)]を選択します。

- d) 新しいテンプレートのテナントを選択します。
- e) (オプション)このテンプレートを他のサイトへのサイト間接続を持たないサイトにのみ展開する予定 の場合は、テンプレートの[自律(Autonomous)]オプションを有効にします。
- ステップ2 VRF を作成します。
 - a) [+オブジェクトを作成(+Create Object)] メニューから、[VRF] を選択します。
 - b) 右のプロパティのサイドバーでは、VRF の名前を指定します。
- **ステップ3** SR-External EPG を作成します。
 - (注) SR-External EPG を含むテンプレートを複数のサイトに割り当てると、EPG はそれらのすべてのサイトに拡張されます。この場合、各サイトにはローカル SR-MPLS L3Out が必要です。そうしないと、そのテンプレートを関連するすべてのサイトに展開できません。
 - a) [+オブジェクトを作成(+Create Object)] メニューから、SR-External EPG を選択します。
 - b) 右のプロパティのサイドバーでは、外部 EPG の名前を指定します。
 - c) [仮想ルーティングと転送 (Virtual Routing & Forwarding)] ドロップダウンから、前のステップで作 成された VRF を選択します。
 - d) L3Out ドロップダウンから、L3Out テンプレート内のSR-MPLS テナント L3Outs を作成 (19 ページ) で作成した SR-MPLS L3Out を選択します。
 - e) [+ **サブネットの追加(+Add Subnet)**] をクリックし、通常どおりにサブネットとそのルート制御オ プションを定義します。

複数のサブネットを定義する場合は、このサブステップを繰り返します。

- **ステップ4** 構成する必要がある特定のユース ケースに応じて、テンプレートを1つのサイトまたは複数のサイトに 割り当てます。
- **ステップ5** 構成しているテンプレートのサイトローカル設定を選択します。

次のいくつかの手順では、前の手順で作成した VRF および SR-External EPG のサイト ローカル設定を構成します。

ステップ6 VRF のサイト ローカル設定を構成します。

SR-MPLS L3Out によって使用される VRF のための BGP ルート情報を設定する必要があります。

- a) メインペインで VRF エリアにスクロールし、前のステップで作成した VRF を選択します。
- b) [アドレスファミリ (Address Family)] ドロップダウンから、その IPv4 または IPv6 アドレスを選択し ます。
- c) [ルートターゲット (Route Target)] フィールドで、ルート文字列を設定します。
 - (注) インポート/エクスポートのルートターゲット値の構成は、DC-PEデバイスに展開された 構成と一致している必要があり、展開されている特定のユース ケースに依存します。

たとえば、route-target:ipv4-nn2:1.1.1.1:1901のようにします。

- d) [タイプ(Type)] ドロップダウンで、ルートをインポートするのか、それともエクスポートするのか を選択します。
- e) [保存 (Save)] をクリックして、ルート情報を保存します。

f) (オプション) このステップを繰り返して、その他の BGP ルート ターゲットを追加します。

- **ステップ1** 通常のように、アプリケーション EPG を作成し構成します。
 - (注) EPGは、同じまたは異なるテンプレートとスキーマにある可能性があります。
- **ステップ8** アプリケーション EPG と SR-External EPG 間の契約を作成します。

ステップ9 設定を展開する

- a) [スキーマ (Schemas)] 表示のメイン ペインで、[サイトに展開 (Deploy to Sites)] をクリックします。
- b) [サイトに展開(Deploy to Sites)] ウィンドウで、サイトにプッシュされる変更を検証し、[展開(Deploy)] をクリックします。
- (注) リリース 4.0 (2) 以降、従来の IP ベースの L3Out と同様に、North-South トラフィック (ACI ファブリックの外部の情報技術との通信)専用に EPG-to-SR-External-EPG コントラクトを使用できます。その場合、EPG 間の契約関係を作成するだけで、ISN 全体の VXLAN データパスを介して EPG から EPG へのサイト間通信を有効にすることができます。

ただし、外部 SR-MPLS ネットワーク全体の異なるサイトにある EPG 間で EPG-to-EPG (East-West) 通信を確立する場合は、次の手順で説明するように行うことができます。

ステップ10 サイト間のEPG-to-EPGトラフィックにSR-MPLSL3Outデータパスを使用する場合(ISN全体のVXLAN データパスの代わりにSR-MPLS外部ネットワークを利用)、各サイトローカル EPG 間で契約を確立で きます。およびテナント SR-MPLSL3Out に関連付けられた SR-External EPG。

> SR-External EPG は、各サイトのサイト ローカル オブジェクトとして、またはサイト全体のストレッチ オブジェクトとして展開できます。サイト間の EPG-to-EPG トラフィックに SR-MPLS L3Out データパス を使用できるのは、それらの EPG 間または各 EPG と他のリモート EPG 間に直接の契約関係がない場合 にのみ可能であることに注意してください。

> a) 異なるサイトに関連付けられたテンプレートで通常行うように、2 つのアプリケーション EPG を作 成します。

たとえば、epg1 および epg2 とします。

この EPG は、同じまたは異なる VRF または テナントに含まれる場合があります。

b) 2 つの別個のサイトローカル SR-External EPG または単一の拡張 SR-External EPG を作成します。

個別の SR-External EPG を作成している場合、それらは、特定の展開シナリオに応じて、同じまたは 異なる VRF またはテナントおよび同じテンプレートまたは異なるテンプレートにある可能性があり ます。

(注) L3Out を明示的に関連付ける通常の外部 EPG とは対照的に、SR-MPLS L3Out は VRF ごとに1つしかないため、SR-外部 EPGを作成するときは、L3Outテンプレート内のSR-MPLS テナント L3Outs を作成(19ページ)で作成した SR-MPLS テナント L3Out に使用したのと同じ VRF にそれらを関連付けます。

例えば、次のステップは、mpls-extepg-1とmpls-extepg-2を作成する想定します。

c) 各サイトのローカル EPG と SR-MPLS L3Out ローカル接続間のトラフィックを許可するために使用す る契約を作成します。 通常のように、コントラクトのためのフィルタを作成して定義する必要があります。

d) コントラクトを適切な EPG に割り当てます。

作成した2つのアプリケーション EPG 間のトラフィックを許可するため、実際にはコントラクトを 2回割り当てる必要があります。epg1 とその mpls-extepg-1の間、そして epg2 とその mpls-extepg-2 の間です。サイト間で拡張されている場合は、2つの個別の EPG ではなく、同じ SR-External EPG を 使用できることに注意してください。

例として、epg1 が epg2 にサービスを提供する場合、次のようにします。

- epg1 にタイプ consumer でコントラクトを割り当てます。
- mpls-extepg-1 にタイプ consumer でコントラクトを割り当てます。
- epg2 にタイプ consumer でコントラクトを割り当てます。
- mpls-extepg-2 にタイプ consumer でコントラクトを割り当てます。

翻訳について

このドキュメントは、米国シスコ発行ドキュメントの参考和訳です。リンク情報につきましては 、日本語版掲載時点で、英語版にアップデートがあり、リンク先のページが移動/変更されている 場合がありますことをご了承ください。あくまでも参考和訳となりますので、正式な内容につい ては米国サイトのドキュメントを参照ください。