Procedura ELAM del modulo Nexus 7000 M3

Sommario

Introduzione <u>Topologia</u> <u>Determinare il motore di inoltro in ingresso</u> <u>Configurazione del trigger</u> <u>Avvia l'acquisizione</u> <u>Interpreta i risultati</u> <u>Ulteriore verifica</u>

Introduzione

Questo documento descrive i passaggi utilizzati per eseguire un ELAM sui moduli M3 Cisco Nexus 7700 (N7700), spiega gli output più rilevanti e descrive come interpretare i risultati.

Suggerimento: Fare riferimento al documento <u>ELAM Overview</u> per una panoramica su ELAM.

Topologia

Nell'esempio, un host sulla VLAN 2500 (10.0.5.101), la porta Eth4/1 invia una richiesta ICMP (Internet Control Message Protocol) a un host sulla VLAN 5 (10.0.3.101), la porta **Eth3/5**. ELAM viene usato per acquisire questo pacchetto singolo da **10.0.5.101** a **10.0.3.101**. È importante ricordare che ELAM consente di acquisire un singolo frame.

Per eseguire un ELAM sulla N7K, è necessario prima connettersi al modulo appropriato (è necessario avere il privilegio di amministratore di rete):

N7700# **attach module 4** Attaching to module 4 ... module-4#

Determinare il motore di inoltro in ingresso

Èprevisto che il traffico entri nello switch sulla porta **Eth4/1**. Quando si controllano i moduli nel sistema, si osserverà che il **modulo 4** è un modulo M3. È importante ricordare che la N7K è completamente distribuita e che i moduli, non il supervisore, prendono le decisioni di inoltro per il traffico della corsia dati.

N7700	0# show	module					
Mod	Ports	Module-Type		Model		Status	
1	 12	100 Gbps Ethernet	Module	 N77-F	 312CK-26	ok	
3 48	1/10 G	ops Ethernet Modul	e N77-M348XP-23L	ok 4	24 10/40	0 Gbps Etherne	t Module
N77-1	M324FQ-2	2 5L ok					
5	0	Supervisor Module	-2	N77-S	UP2E	active *	
6	0	Supervisor Module	-2	N77-S	UP2E	ha-standby	
7	24	10/40 Gbps Ethern	et Module	N77-F	324FQ-25	ok	
Mod	Sw	Hw					
1	7.3(0)1	DX(1) 1.1					
3 7.3	3(0)DX(2	L) 1.1 4 7.3(0)DX(1) 1.0 5 7.3(0)D	X(1) 1.2	6 7.3(0)DX(2	1) 1.2 7 7.3(0)DX(1) 1.0
Per i	i modul	i serie M. esequire	e l'ELAM sul Lave	er 2 (L2)	Forwarding	Engine (FE) co	on nome i

Per i moduli serie M, eseguire l'ELAM sul Layer 2 (L2) Forwarding Engine (FE) con nome in codice interno **F4**. Notare che l'L2 FE Data Bus (DBUS) contiene le informazioni di intestazione originali prima delle ricerche L2 e Layer 3 (L3) e il Result Bus (RBUS) contiene i risultati dopo entrambe le ricerche L3 e L2.

I moduli M3 N7K possono utilizzare più FE per ciascun modulo, quindi è necessario determinare l'ASIC **F4** utilizzato per FE sulla porta **Eth4/1**. Per verificare questa condizione, immettere questo comando:

module-4# s	show hardware i	nternal d	lev-poi	rt-map					
(some output	it omitted)								
						(CARD_TYPE:	24 port 4	0G >Front
Panel ports	s:24							Devic	e name Dev
role Abbr n	num_inst:								> SLF L3
Driver DEV_	LAYER_3_LOOKUP	L3LKP 4	> SLF	L2FWD dr	iver DEV	LAYER_	2_LOOKUP	L2LKP	4
+							+		
+	++FRONT	PANEL PO	ORT TO	ASIC INS	FANCE MA	P+++	+		
+							+		
FP port	PHYS MAC_0	RWR_0	L2LKP	L3LKP	QUEUE	SWICHF			
1	0	0	0	0	0	0,1			
2	0	0	0	0	0	0,1			
3	0	0	0	0	0	0,1			

Nell'output, è possibile vedere che la porta **Eth4/1** si trova sull'istanza **F4 (L2LKP) 0**. Sul modulo N77-M312CQ-26L, sono presenti **6** ASIC F4 con 2 porte in ciascun gruppo di porte. Sul modulo N77-M324FQ-25L sono presenti **4** ASIC F4 con 6 porte in ciascun gruppo di porte. Il modulo N77-M348XP-23L dispone di **2** ASIC F4 con 12 porte in ciascun gruppo di porte.

Nota: Come i moduli della serie F, la sintassi ELAM del modulo M3 utilizza valori basati su 0. Ciò non avviene per i moduli M1 e M2, che utilizzano valori a base 1.

module-4# elam asic f4 instance 0
module-4(f4-elam)# layer2
module-4(f4-l2-elam)#

Configurazione del trigger

L'ASIC **F4** supporta i trigger ELAM per IPv4, IPv6 e altri. Il trigger ELAM deve essere allineato al tipo di frame. Se il frame è un frame IPv4, il trigger deve essere anche IPv4. Un frame IPv4 non viene acquisito con un *altro* trigger. La stessa logica si applica a IPv6.

Con Nexus Operating Systems (NX-OS), è possibile utilizzare il punto interrogativo per separare il trigger ELAM:

```
module-4(f4-l2-elam)# trigger dbus ipv4 ingress if ?
  (some output omitted)
  destination-index Destination-index
destination-ipv4-address Destination ipv4 address
destination-mac-address Destination mac address
l4-protocol L4 protocol
source-index Source-index
source-ipv4-address Source ipv4 address
source-ipv4-mask Source ipv4 mask
source-mac-address Source mac address
```

Nell'esempio, il frame viene acquisito in base agli indirizzi IPv4 di origine e di destinazione, quindi vengono specificati solo i valori specificati.

F4 richiede trigger separati per DBUS e RBUS.

Di seguito è riportato il trigger DBUS:

```
module-4(f4-l2-elam)# trigger dbus ipv4 ingress if source-ipv4-address
10.0.5.101 destination-ipv4-address 10.0.3.101
```

Di seguito è riportato il trigger RBUS:

module-4(f4-l2-elam)# trigger rbus ingress result if tr 1

Avvia l'acquisizione

Dopo aver selezionato la FE in entrata e configurato il trigger, è possibile avviare l'acquisizione:

```
module-4(f4-l2-elam)# start
Per controllare lo stato dell'ELAM, immettere il comando status:
```

```
module-4(f4-l2-elam)# status
ELAM Slot 4 instance 0: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Configured
ELAM Slot 4 instance 0: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Configured
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 EGR: Unconfigured
L2 PLI: Unconfigured
```

L2 PLE: Unconfigured

Quando il frame che corrisponde al trigger viene ricevuto dal FE, lo stato ELAM viene visualizzato come **Triggered**:

```
module-4(f4-l2-elam)# status
ELAM Slot 4 instance 1: L2 DBUS/LBD Configuration: trigger dbus ipv4 ingress if
source-ipv4-address 10.0.5.101 destination-ipv4-address 10.0.3.101
L2 DBUS/LBD: Triggered
ELAM Slot 4 instance 1: L2 RBUS Configuration: trigger rbus ingress result if tr 1
L2 RBUS: Triggered
L2 BIS: Unconfigured
L2 BPL: Unconfigured
L2 PLI: Unconfigured
L2 PLE: Unconfigured 7
```

Interpreta i risultati

Per visualizzare i risultati ELAM, immettere i comandi **show dbus** e **show rbus**. Se il volume di traffico è elevato e corrisponde agli stessi trigger, DBUS e RBUS potrebbero attivare due frame diversi. È quindi importante controllare i numeri di sequenza interni sui dati DBUS e RBUS per verificare che corrispondano:

```
module-4(f4-l2-elam)# show dbus | i seq
port-id : 0x0 sequence-number : 0x868
module-4(f4-l2-elam)# show rbus | i seq
de-bri-rslt-valid : 0x1 sequence-number : 0x868
```

Di seguito è riportato l'estratto dei dati ELAM più importante per questo esempio (alcuni output sono omessi):

```
module-4(f4-l2-elam)# show dbus
_____
            LBD IPV4
_____
tt]
          : 0xff
                    13-packet-length : 0x54
destination-address: 10.0.3.101
source-address: 10.0.5.101
packet-length : 0x66
: 0x0
_____
          : 0x66
                    vlan
                               : 0x9c4
                    source-index
                               : 0xe05
destination-mac-address : 8c60.4f07.ac65
source-mac-address : 8c60.4fb7.3dc2
port-id : 0x0 sequence-number : 0x868
module-4(f4-l2-elam)# show rbus
_____
            L2 RBUS RSLT CAP DATA
  _____
de-bri-rslt-valid : 0x1
                    sequence-number : 0x868
vlan
       : 0x37
                    rbh
                               : 0x65
cos
          : 0x0
                   destination-index : 0x9ed
```

Con i dati DBUS, è possibile verificare che il frame venga ricevuto sulla VLAN 2500 con un indirizzo MAC di origine pari a **8c60.4fb6.3dc2** e un indirizzo MAC di destinazione pari a **8c60.4f07.ac65**. Si tratta inoltre di un frame IPv4 originato da **10.0.5.101** e destinato a **10.0.3.101**.

Suggerimento: Sono disponibili diversi altri campi utili non inclusi in questo output, ad esempio il valore TOS (Type of Service), i flag IP, la lunghezza IP e la lunghezza del frame L2.

Per verificare su quale porta viene ricevuto il frame, immettere il comando **SRC_INDEX** (la logica di destinazione locale (LTL) di origine). Immettere questo comando per eseguire il mapping di una LTL a una porta o a un gruppo di porte per la scheda N7K:

N7700# show system internal pixm info 1t1 0xe05

```
Member info

------

Type LTL

------

PHY_PORT Eth4/1

FLOOD_W_FPOE 0xc031
```

L'output mostra che SRC_INDEX di 0xe05 è mappato alla porta Eth4/1. Ciò conferma che il frame viene ricevuto sulla porta Eth4/1.

Con i dati **RBUS**, è possibile verificare che il frame sia instradato alla VLAN 5. Si noti che il valore TTL inizia come **0xff** nei dati **DBUS**. Inoltre, è possibile confermare la porta in uscita da **DEST_INDEX** (LTL di destinazione):

 N7K# show system internal pixm info ltl 0x9ed

 Member info

 Type
 LTL

 PHY_PORT
 Eth3/5

 FLOOD_W_FPOE
 0x8017

FLOOD_W_FPOE 0x8016 L'output mostra che il valore DEST INDEX di 0x9ed vie

L'output mostra che il valore DEST_INDEX di 0x9ed viene mappato sulla porta Eth3/5. Ciò conferma che il frame viene inviato dalla porta Eth3/5.

Ulteriore verifica

Per verificare in che modo lo switch alloca il pool LTL, immettere il comando **show system internal pixm info ltl-region**. L'output di questo comando è utile per comprendere lo scopo di una LTL se non corrisponde a una porta fisica. Un buon esempio è il comando **Drop LTL**:

LIBLTLMAP_LTL_TYPE_DROP_DI_WO_HW_BITSET 0xcae LIBLTLMAP_LTL_TYPE_DROP_DI							
0xcad							
LIBLTLMAP_LTL_TYPE_SUP_DIAG_SI_V5		0xcac					
LIBLTLMAP_LTL_TYPE_RESERVED_ERSPAN_LTL		0xcab					
LIBLTLMAP_LTL_TYPE_LC_CPU	192	0xcb0	0xd6f				
LIBLTLMAP_LTL_TYPE_UCAST_RESERVED	144	0xd70	0xdff				
LIBLTLMAP_LTL_TYPE_PC	1536	0xe00	0x13ff				
LIBLTLMAP_LTL_TYPE_DYNAMIC_UCAST	5120	0x1400	0x27ff				
LIBLTLMAP_LTL_TYPE_MCAST_RESERVED	48	0x2800	0x282f				

388480x28300xbfef160xbff00xbfff

16384 0xc000 0xffff

LIBLTLMAP_LTL_TYPE_DYNAMIC_MCAST

LIBLTLMAP_LTL_TYPE_FLOOD_WITH_FPOE

LIBLTLMAP_LTL_TYPE_SAC_FLOOD