CHAPTER

Getting Started with the
Prime Cable Provisioning API

This chapter describes how to start the API clients and process a batch.

Startup Process for API Client

The startup process for an API client interaction involves:
e Configuring the System, page 6-1.
e Executing the API Client, page 6-2.

Configuring the System

Before executing a simple client, ensure that you have completed the tasks listed in this section.

)

Note These tasks are part of an initial configuration workflow that you must complete before executing a
simple client for the first time. Thereafter, you can execute any number of simple clients.

Table 6-1 System Configuration Workflow
Task Refer to
1. Install Java Development Kit version 1.6. Sun Microsystems support site

2. Ensure that files bpr.jar, bacbase.jar, and bac-common.jar are |—
available in the classpath. These .jar files are located in the
BPR_HOME/lib directory.

3. Access the Prime Cable Provisioning administrator user Cisco Prime Cable Provisioning
interface and ensure that the password that you set for the 6.3 User Guide
default admin username matches the password that you set on
the RDU. The default password is changeme.

Cisco Prime Cable Provisioning 6.3 Integration Developers Guide
| =

http://www.cisco.com/en/US/products/ps12728/products_user_guide_list.html
http://www.cisco.com/en/US/products/ps12728/products_user_guide_list.html

Chapter 6 Getting Started with the Prime Cable Provisioning APl |

B Processing a Batch

Executing the API Client

Step 1

Step 2

Step 3

To execute a simple API client:

N

Note This procedure uses the AddDeviceExample.java classfile as an example.

Compile the API classfile using the following code:

javac -classpath .:bpr.jar:bacbase.jar:bac-common.jar java_source_file

For example:

javac -classpath .:bpr.jar:bacbase.jar:bac-common.jar AddDeviceExample

~

Note This example assumes that the bpr.jar, bacbase.jar and bac-common.jar files exist in the local
directory.

Execute the API classfile using the following code:

java -cp .:bpr.jar:bacbase.jar:bac-common.jar class_file
For example:

java -cp .:bpr.jar:bacbase.jar:bac-common.jar AddDeviceExample

Verify the results.

For example, the AddDeviceExample print success or failure messages. If there is no error, the following
message appears:

Successfully provisioned device with identifier [OUI-serial-12345]
You can also verify the results for the device record from the administrator user interface from the

Devices > Manage Device page. For more information, see the Cisco Prime Cable Provisioning 6.3 User
Guide.

Processing a Batch

Step 1

This section describes how you can connect to the RDU, create a batch, post the batch to the RDU, and
verify the result.

N

Note This procedure uses the AddDeviceExample.java classfile as an example.

Create a connection to the Provisioning API Command Engine (PACE).

// The PACE connection to use throughout the example. When

// executing multiple batches in a single process, it is advisable
// to use a single PACE connection that is retrieved at the start
// of the application. When done with the connection, YOU MUST

// explicitly close the connection with the releaseConnection ()

// method call.

Cisco Prime Cable Provisioning 6.3 Integration Developers Guide
[62 | I

http://www.cisco.com/en/US/products/ps12728/products_user_guide_list.html
http://www.cisco.com/en/US/products/ps12728/products_user_guide_list.html

| Chapter6 Getting Started with the Prime Cable Provisioning API

Processing a Batch W

[/ S oo
//

// 1) Connect to the Regional Distribution Unit (RDU) .

//

// The parameters defined at the beginning of this class are

// used here to establish the connection. Connections are

// maintained until releaseConnection() is called. 1If

// multiple calls to getInstance() are called with the same

// arguments, you must still call releaseConnection() on each

// connection you received.

//

// The call can fail for one of the following reasons:

// - The hostname / port is incorrect.

// - The authentication credentials are invalid.

//

[/ m e oo
try

connection = PACEConnectionFactory.getInstance (

// RDU host

rduHost,

// RDU port

rduPort,

// User name

userName,

// Password

password) ;

}

catch (PACEConnectionException pce)
{
// failed to get a connection
System.out.println("Failed to establish a PACEConnection to ["
+ userName + "@" + rduHost + ":" + rduPort + "]; " +
pce.getMessage ()) ;
throw new RuntimeException (pce.getMessage()) ;

}

catch (RDUAuthenticationException bae)
{
// failed to get a connection
System.out.println("Failed to establish a PACEConnection to ["
+ userName + "@" + rduHost + ":" 4+ rduPort + "]; " +
bae.getMessage()) ;
throw new RuntimeException (bae.getMessage()) ;

Step2 Get a new batch instance.

F e et
//

// 2) Get a new batch instance.

//

// To perform any operations in the Provisioning API, you must

// first start a batch. As you make commands against the batch,
// nothing actually start until you post the batch.

// Multiple batches can be started concurrently against a

// single connection to the RDU.

//

F e it

Batch myBatch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,

Cisco Prime Cable Provisioning 6.3 Integration Developers Guide
| =

Chapter 6 Getting Started with the Prime Cable Provisioning APl |

B Processing a Batch

// No need to confirm activation
ConfirmationMode. NO_CONFIRMATION,

// No publisining to external database
PublishingMode.NO_PUBLISHING) ;

Step 3 Register the AddpeviceExample() call with the batch.

F e et
//

// 3) Register the add(...) call with the batch.

//

// Add to the batch the add(...) call. This make

// the batch add the device during the post() operation. If

// multiple methods are added to a batch, they be executed

// in the order they are registered. For example, you could

// add a device and then modify it successfully in a batch.

//

// The host name and domain name only needs to be specified if the
// device should have an explicit name assigned to it -- and this is
// only really useful if you have dynamic DNS enabled in CNR.

// Properties can be used to store additional information that

// should be maintained by BPR. This data be returned as a

// response to a query for device details.

//

[/ oo ooooooooooooooo-

myBatch.add (

// Device type

DeviceType.DOCSIS,

// deviceID list with MACAddress
deviceIDList,

// Host name - Not used in this example
null,

// Domain Name - Not used in this example
null,

// ownerID

accountNumber,

// classOfService - Use default COS

null,

// dhcpCriteria - Use default DHCP Criteria
null,

// properties

null) ;

Step4 Post a batch to the RDU.

//

// 4) Post the batch to the server.

//

// Executes the batch against the RDU. All of the

// methods are executed in the order entered and the data

// changes are applied against the embedded database in RDU.

//

F A b
BatchStatus batchStatus = null;

try

{
}

catch (ProvisioningException pe)

{

batchStatus = myBatch.post () ;

System.out.println("Failed to provision device with identifer ["

Cisco Prime Cable Provisioning 6.3 Integration Developers Guide
| 64 | I

| Chapter6 Getting Started with the Prime Cable Provisioning API

Step 5

!/

th

+ deviceId + "]; " + pe.getMessage());

row new RuntimeException (pe.getMessage()) ;

Verify the result of the connection.

!/
//

if

{

5)

(ba
//
//
//

if

{

}

Check to see if the batch was successfully posted.

Verify if any errors occurred during the execution of the
batch. Exceptions occur during post () for truly exception
situations such as failure of connectivity to RDU.

Batch errors occur for inconsistencies such as no lease
information for a device requiring activiation. Command
errors occur when a particular method has problems, such as
trying to add a device that already exists.

tchStatus.isError())

Batch error occurred.
we need to determine if it was a batch error or a
command error that caused this failure

(batchStatus.getFailedCommandIndex () == -1)

// this is a batch only error

// get the error code and get the error message
final StringBuilder msg = new StringBuilder(128);
msg.append ("Batch with ID [");

msg.append (batchStatus.getBatchID()) ;

msg.append ("] failed with error code [");
msg.append (batchStatus.getStatusCode ()) ;
msg.append ("] . [");

msg.append (batchStatus.getErrorMessage ()) ;
msg.append ("].") ;

// throw an exception or log the message

System.out.println("Failed to add device with identifier ["

+ deviceId + "]; " + msg.toString());

else

{

// this is a batch error caused by a command
final CommandStatus commandStatus =
batchStatus.getFailedCommandStatus () ;

// get the error code and get the error message
final StringBuilder msg = new StringBuilder(128) ;
msg.append ("Batch with ID [");

msg.append (batchStatus.getBatchID()) ;

msg.append ("] failed with command error code [");
msg.append (commandStatus.getStatusCode ()) ;
msg.append("]l. [");

msg.append (commandStatus.getErrorMessage ()) ;
msg.append ("].");

// throw an exception or log the message

System.out.println("Failed to add device with identifier ["

+ deviceId + "]; " + msg.toString()) ;

Processing a Batch W

Cisco Prime Cable Provisioning 6.3 Integration Developers Guide g

Chapter 6 Getting Started with the Prime Cable Provisioning APl |

B Processing a Batch

1
else
{
// Successfully added device
System.out.println("Successfully added device with identifier ["
+ deviceId + "1");
1

Step6 Release the connection to the RDU.

[e
//

// 6) Release the connection to the RDU.

//

// Once the last batch has been executed, the connection can

// be closed to the RDU. It is important to explictly

// close connections since it helps ensure clean shutdown of

// the Java virtual machine.

//

[e

connection.releaseConnection() ;

[l Cisco Prime Cable Provisioning 6.3 Integration Developers Guide

	Getting Started with the Prime Cable Provisioning API
	Startup Process for API Client
	Configuring the System
	Executing the API Client

	Processing a Batch

